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Modeling transfer of high-order uncertain information
Michele Herbstritt (michele.herbstritt@gmail.com)

Michael Franke (mchfranke@gmail.com)
Department of Linguistics, University of Tübingen

Wilhelmstraße 19, 72070 Tübingen, Germany

Abstract
Complex uncertainty expressions such as probably likely and
certainly possible naturally occur in everyday conversations.
However, they received much less attention in the literature
than simple ones. We propose a probabilistic model of the use
and interpretation of complex uncertainty expressions based on
the assumption that their predominant function is to communi-
cate factual information about the world, and that further layers
of uncertainty are pragmatically inferred. We collected empir-
ical data on the use and interpretation of these expressions and
use it for detailed model criticism.
Keywords: uncertainty; probability; experimental pragmatics;
computational modeling

Introduction
One of the main goals of human linguistic interactions is the
exchange of information. However, the information that we
want to exchange can be uncertain: we often talk about things
that we do not know for sure. As a consequence, it should not
surprise us that human languages are equipped with so called
“uncertainty expressions” such as epistemic modals (possi-
ble, might) and probability expressions (probably, likely).

Simple uncertainty expressions have been extensively in-
vestigated in psychology (Beyth-Marom, 1982; Teigen, 1988;
Windschitl & Wells, 1996, 1998) and formal linguistics
(Kratzer, 1991; Yalcin, 2010; Egan & Weatherson, 2011;
Lassiter, 2011), where some consensus has recently emerged
about the advantage of adopting a formal semantics that uses
probability measures (contra the purely qualitative semantics
à la Kratzer). Herbstritt and Franke (2016) empirically in-
vestigated the production of simple uncertainty expressions
(probably, possibly) and propose a pragmatic model of their
production. This paper substantially extends the scope of that
work: here we investigate complex (or nested) expressions
such as probably likely and certainly possible and we model
both their production and interpretation in a conversation.

Complex uncertainty expressions have received much less
attention in the literature.1 Indeed, many foundational issues
arise in the attempt to formalize a model of their use and in-
terpretation. Most pressingly are two interrelated concerns:
(i) what is the semantic meaning of a complex uncertainty
expression? and (ii) what is the communicative goal of a
complex uncertainty expression, i.e. what is the pragmatic
purpose of communication? In this paper we present a first
model that commits itself to what are arguably the most nat-
ural answers to (i) and (ii) from the point of view of formal
semantics (Swanson, 2006; Moss, 2015) and a rational anal-
ysis of communicative practices as efficient transfer of infor-
mation about the world (Anderson, 1990, 1991).

1A recent exception is (Moss, 2015).

This approach enables a straightforward regular and com-
positional treatment of the meaning of uncertainty expres-
sions: simple and complex uncertainty expressions denote
sets of probability distributions over the state space that repre-
sents the possible ways in which the world can be. The mean-
ings of simple expressions are always singleton sets. The
meanings of complex expressions are derived composition-
ally in terms of the simple ones and in general they contain
more than one distribution (see details below). If we model
agents’ uncertain beliefs about the world as (sets of) probabil-
ity distributions over the same state space, then the meaning
of a simple or complex uncertainty expression can be seen as
a collection of ways to update the agents’ beliefs. Figure 1
displays an intuitive representation of this idea.

We incorporate this idea in a probabilistic pragmatic model
of language production and interpretation based on the Ra-
tional Speech Acts (RSA) model (Frank & Goodman, 2012).
In particular our model can be seen as a conservative gen-
eralization of the RSA model proposed by Goodman and
Stuhlmüller (2013). The key innovation of our model is to
treat uncertain beliefs of agents (and thus the communicative
effect of messages) as sets of probability distributions, hence
more fine grained than in the usual approach.

Speaker Listener

s

s

s

It's probably likely!

Figure 1: Listener’s beliefs as complex uncertainty state.
Each probability distribution in the listener’s beliefs is com-
patible with the literal meaning of the received message.

The details of the model are spelled out in the next sec-
tion. In the following section we report on two experiments
designed to collect human data about production and inter-
pretation of complex uncertainty expressions. Finally, the
predictions of the model are evaluated against experimental
data with Bayesian inference and model criticism.

Pragmatic model
Setup We want to model communication in situations of
what we call high-order uncertainty. To illustrate, imagine
an urn containing 10 balls of two different colors (e.g., red
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and blue). The universe of the discourse, the set of possible
states of affairs, can be modeled as the set of natural numbers
S = {0, . . . ,10} where each s ∈ S is a possible quantity of
red balls in the urn. The ratio s/10 expresses the objective
chance that a randomly drawn ball will be red, and represents
first-order uncertainty: even if we know the objective chance,
we are uncertain about the color of a randomly drawn ball.
The second, high-order level of uncertainty comes into play
when we are uncertain about the objective chance too. We
model agents that do not have direct access to the objective
chance. Instead, one agent (the speaker) can draw a certain
number of balls from the urn (referred to as the “access” and
denoted with a) and look at them. The set of possible access
values is A = {1, . . . ,10}. The number of red balls among the
accessed ones is referred to as the “observation” and denoted
o, 0≤ o≤ a. We assume that the communication is about the
content of the urn: after her observation, the speaker puts all
balls back in the urn and makes a prediction about the color
of a randomly drawn ball (see Figure 2). This prediction is
what the speaker will try to communicate.

?
? ?
??

?
?
? ?
? ?
?

?
?

?
??

? ?

? ?
??

?

??
? ?

Figure 2: Partial observation of the content of the urn.

The probability of observing o red balls when the speaker
draws a balls and there are s red balls in the urn is given by
the hypergeometric distribution. Assuming that the agent has
a prior belief distribution over the state space S, we can say
that each pair 〈o,a〉 induces a posterior rational belief distri-
bution over S, computed as the Bayes-inverted hypergeomet-
ric distribution:2

rat.bel(s|o,a) ∝ hypergeom(o;a,s,10)∗prior(s) (1)

On the basis of the rational belief resulting from her observa-
tion, together with the lexical meaning of the available mes-
sages, the speaker chooses the best message to send given her
communicative goal.

Messages and semantics The speaker sends messages of
the form It is [. . . ] that a randomly drawn ball will be red,
choosing from the following 12 expressions to fill the gap:

likely possible unlikely
certainly likely certainly possible certainly unlikely
probably likely probably possible probably unlikely
might be likely might be possible might be unlikely

2For convenience, the prior distribution over states is assumed
to be a symmetric betabinomial distribution between 0 and 10 with
shape parameters α = β free in the model.

Simple messages (likely, possible, unlikely) have a simple
threshold semantics:

Jlikely(p)K = {s ∈ S | s/10 > θlikely}
Jpossible(p)K = {s ∈ S | s/10 > θpossible}
Junlikely(p)K = {s ∈ S | s/10 < 1−θlikely}

The thresholds θlikely and θpossible are free parameters in the
model (more about this below). The variable p can be instan-
tiated with a sentence such as A randomly drawn ball will be
red. For example, this semantics states that the meaning of
It’s possible that a randomly drawn ball will be red is the set
of states where the objective probability of the ball being red
is bigger than a certain threshold θpossible.

The semantics of complex messages is stated in a general
form as follows:

Jmodifier[simple](p)K= {〈o,a〉 | ∑
s∈Jsimple(p)K

rat.bel(s|o,a)> θm}

where θm is the semantic threshold associated with the mod-
ifier.3 Each state in the meaning of the simple message
Jsimple(p)K is associated with a certain probability mass ac-
cording to the rational belief induced in the speaker by each
pair 〈o,a〉; the meaning of the complex message is computed
collecting the pairs 〈o,a〉 where the probability mass of the
states in Jsimple(p)K is greater than the semantic threshold
of the modifier. The semantics of complex messages is rooted
in the literal semantics of the simple ones. The difference be-
tween the two is that while the meanings of simple messages
contain states of affairs, the meanings of complex expressions
contains pairs denoting partial observations, i.e. distributions
over states. Still, both simple and complex expressions can
be linked to sets of probability distributions over world states.
Making use of this allows for a uniform grounding of seman-
tic meaning in a model of rational communication.

Beliefs and expected utility On the basis of the literal
meaning of each message, we compute their effect on the so-
called “literal listener”, a theoretical construct modeling the
interpretation process of a non-pragmatic agent. Each sim-
ple message induces exactly one belief distribution in the lit-
eral listener, whereas each complex message induces a set of
distributions (one for each pair 〈o,a〉 in the meaning of the
expression). This idea is captured in Equation 2, where the
set of distributions lit.bel is defined by cases as a function of
messages.4

3We assume θprobably = θlikely and θmight = θpossible. The thresh-
old of the remaining modifier θcertainly is free in the model.

4The delta function δs∈JmK gives 1 as output if the state s belongs
to the meaning of s, 0 otherwise. The expression rat.bel(.|o,a) refers
to the belief distribution over states induced in a rational agent by the
observation of o red balls out of a.
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lit.bel(m) =

=

{
{P∈∆(S)|∀s∈S :P(s)∝ δs∈JmK ∗prior(s)} m simple

{P∈∆(S)|∃〈o,a〉∈JmK:P=rat.bel(.|o,a)} m complex
(2)

We assume that the communicative goal of the speaker is to
maximize the information transferred to the listener. Here
we formalize this concept as choosing the message which
brings the listener’s factual beliefs as close as possible to
the speaker’s, i.e. which minimizes the distance between the
probability distributions expressing these beliefs. In general
each message is associated with a set of probability distri-
butions over states, according to Equation 2. Idealizing, we
assume that the literal listener would uniformly sample from
this set of uncertain beliefs upon hearing each message. For
this reason the expected utility (EU) of a message m given an
observation 〈o,a〉 is defined as the negative average Hellinger
distance between the speaker’s belief distribution given an
observation and the set of the listener’s distributions given
a message (Equation 3).

EU(m;o,a) =−avg [HD({rat.bel(.|o,a)}, lit.bel(m))] (3)

where HD denotes a function computing pairwise Hellinger
distances between two sets of discrete distributions.5

Production and interpretation Adopting the terminology
of rational choice theory, the speaker’s behavior is to soft-
maximize the EU of each message given her observation:

speaker.prob(m|o,a) ∝ exp(λ∗EU(m;o,a)) (4)

EU is multiplied by a rationality parameter λ (free in the
model) that modulates “how rational” the choice is.6 The dis-
tribution over messages defined in Equation 4 gives rise to the
first half of the set of predictions made by our model, whose
fit to the experimental data is discussed below.

A pragmatic listeners reasons about the received message
and her model of speaker’s behavior in order to infer the
most likely interpretation. The pragmatic listener’s behavior
is modeled as the joint Bayesian inference over the variables
of interest:

listener.prob(s,o,a|m) ∝ speaker.prob(m|o,a)∗priors (5)

We are interested in the interpretation of uncertainty expres-
sions alongside two axes of their communicative effect. One

5Goodman and Stuhlmüller (2013) use Kullback-Leibler diver-
gence as a measure of discrepancy between speaker and listener be-
liefs. We found Hellinger distance a more adequate measure in the
present setting because utilities in terms of KL-divergence lead to
speakers who will never use messages that are semantically false,
whereas HD allows messages to be send if they are “true enough.”
The Hellinger distance between two discrete distributions P and Q

is defined as HD(P,Q) = 1√
2

√
∑i (
√

Pi−
√

Qi)
2.

6As λ→ ∞, the choice approaches perfect rationality.

is the objective state of affairs communicated (i.e., the infer-
ence of s). The other is the subjective, high-order, state of
uncertainty of the speaker (i.e., the inference of 〈o,a〉). The
joint distribution defined in Equation 5 gives rise to the sec-
ond half of the set of predictions made by our model, whose
fit to the experimental data is discussed below.

Experiments
We conducted two experimental studies, a production task
and an interpretation task. The goal of the production task
was to collect human data on the use of simple and com-
plex uncertainty expressions under different high-order un-
certainty conditions. The goal of the interpretation task was
to collect human data on the interpretation of the expressions
in terms of inference of s,o,a.

Participants 252 self reported English native speakers with
USA IP-addresses were recruited via Amazon’s Mechanical
Turk. 102 participants completed the production task, 150
participants completed the interpretation task.

Material Participants in the production task were exposed
to visual stimuli depicting partial observations of the urn. We
asked participants to imagine drawing a number of balls (ac-
cess) and counting the red balls among them (observation).
Then they would put the balls back in the urn, and make a
prediction about the color of another randomly drawn ball
(Figure 2).

The experimental conditions are the different observa-
tion/access configurations displayed to the participants. We
selected 15 such configuration:

high 0/2 1/4 2/4 3/4 2/2
low 0/8 2/8 4/8 6/8 8/8
none 2/10 3/10 5/10 7/10 8/10

Each fraction in the table corresponds to a possible partial ob-
servation, e.g. 3/4 means accessing 4 balls and observing that
3 of them are red. The fractions are grouped according to their
level of high-order uncertainty. Access values smaller than 5
balls are labeled “high” high-order uncertainty, whereas val-
ues greater than 5 correspond to “low” high-order uncertainty,
and values equal to 10 represent no high-order uncertainty
whatsoever.

The set of stimuli for the interpretation task was derived
from the 12 expressions assumed in the model.

Procedure Before the experimental phase, participants
completed a training phase which contained a cover story in-
troducing an interactive game between two players, a sender
and a receiver. Participants in the production task were told
that they would play as senders, and that other players would
receive their messages and try to guess the content of the
urn. Participants in the interpretation task were told that they
would play as receivers. The motivation for this setup was to

509



clarify the purpose of the conversation when producing uncer-
tainty expressions and to prompt participants to reason about
the effect of their choices on other agents.

Each participant in the production task completed 12 trials,
one for each of 12 conditions randomly picked from the 15
total conditions. In each trial the participant made the partial
observation of the urn corresponding to the selected condi-
tion and was asked to send a message containing a prediction
about the color of a randomly drawn ball. Crucially, this pre-
diction must be expressed by completing a sentence of the
form It [. . . ] [. . . ] that the next ball will be red, selecting the
most appropriate combination of auxiliary/modifier and un-
certainty expression from two drop-down menus (Figure 3).7

Figure 3: Input menus in the production task.

Each participant in the interpretation task completed 24 tri-
als, 2 for each of the 12 expressions. That is, for each expres-
sion there were 2 kinds of trials, perfectly balanced, in ran-
dom order. Half of the trials (“state” trials) recorded partic-
ipants’ interpretation of the message alongside the objective
axis, i.e. their answer to the question “How many red balls
do you think there are in the urn?”, expressed with a natu-
ral number selected with a slider ranging from 0 to 10. Half
of the trials (“observation” trials) recorded participants’ inter-
pretation of the message alongside the subjective uncertainty
axis, i.e. their answers to the questions “How many balls do
you think the sender has drawn? And how many of them do
you think were red?”, expressed with two natural numbers
selected on sliders ranging from 0 to 10 (Figure 4).

Figure 4: Input sliders in observation trials. The picture on
the right dynamically visualized the current slider selection
in order to provide immediate visual feedback for a selection.

Results Results are visualized in Figures 5 and 6 and will
be discussed in the light of the model’s predictions below.

7The possible choices included not only likely but also probable
in embedded position. However, having not found interesting differ-
ences in the behavior of these two expressions, the results reported
in this paper, the visualization in Figure 5 and the model evaluation
are all based on data in which the counts of participants’ choices of
messages containing probable and likely have been aggregated.

Model evaluation and criticism
Model fit The data collected in the production task and
the interpretation task are respectively counts of expression
choices in each observation condition, and counts of state,
access and observation choices for each expression. We used
the data to compute credible values for the free parameters
of the model, i.e. the semantic thresholds θlikely, θpossible,
θcertainly, the shape parameter of the prior belief distribution
α, the rationality parameter λ. We implemented the compu-
tational model in JAGS (Plummer, 2003) and approximated
the posterior distribution of parameters given the experimen-
tal data. We assumed flat prior distributions over the parame-
ters with support [0;1] for the semantic thresholds and [0;20]
for α and λ. We gathered two chains of 2500 samples af-
ter an initial burn-in of 2500. We checked convergence via R̂
(Gelman & Rubin, 1992). Each sample consists of a vector of
inferred values for each parameter. The following table sum-
marizes the mean values for the threshold parameters together
with their 95% highest density intervals (HDIs):8

θlikely θpossible θcertainly
mean 0.531 0.214 0.979
HDI 0.511-0.551 0.200-0.236 0.965-0.996

Notice that the model recovers plausible values for thresh-
olds given the data without assuming them from the start.

For each sample vector of parameter values our model gen-
erates a set of predictions about speaker’s and listener’s be-
havior. In order to evaluate our model we correlated each
set of predictions with the set of corresponding experimen-
tal count data. The results are collected in vectors of Pear-
son’s correlation scores, whose means and HDIs give us an
indication of the overall performance of the fitted model, as
summarized in the following table:

expression state access observation
mean 0.649 0.862 0.883 0.941
HDI 0.647-0.651 0.857-0.867 0.880-0.886 0.938-0.943

Discussion Correlation scores do not provide detailed in-
formation about what aspects of the data the model can and
cannot explain. To get a better sense of the performance of
the model we compare data and predictions in more detail
with posterior predictive checks (PPCs) (Kruschke, 2014).

We begin with the production task (Figure 5). Visual in-
spection of the plot suggests interesting features of the data.
First, the number of observed red balls seems to have an in-
fluence on the choice of expressions. For example, with the
same access of 8 (middle row of Figure 5), different obser-
vation values (0, 2, 4, 6 and 8) resulted in different distribu-
tions of expressions. This is an intuitive result, and the model
correctly predicts the general pattern. Second, the same pro-
portions of red balls but with different access levels seem to
result in different expression choices. For example, compare
the distributions of expressions observed (and predicted) with

8The other parameters of interest are α: mean= 6.373, HDI:
5.546−7.178; and λ: mean= 5.429, HDI: 5.192−5.659.
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a proportion of 0 observed red balls and access values equal
to 2 and 8, and similarly with a proportion of 1 and access
values equal to 2 and 8. The distributions are different, and
the model seems to predict the patterns.

However, there are also several discrepancies between ob-
served data and the models PPCs. Discrepancies show in
Figures 5 and 6 whenever the HDIs of the PPCs do not in-
clude the observed frequencies: in these cases the model, be-
ing trained on the data, would still be surprised, so to speak,
by seeing the data points where observations do not fall in
to the HDIs of our PPCs. For example, the model under-
predicts choice frequencies of might be possible in favor of
possible in the high uncertainty conditions and underpredicts
unlikely and likely in the no uncertainty conditions. More in
general, the model almost always overpredicts choice of, e.g.,
certainly possible and might be unlikely. At the same time,
whenever PPCs are off for simple expressions, the model un-
derpredicts their choice frequency. This suggests that a cru-
cial ingredient might be missing from the model, namely a
baseline preference of some expressions over others.

Turning now to the interpretation task (Figure 6), we ob-
serve that in general the patterns displayed in the data seem
to be captured relatively well by the model. However, PPCs
highlight a number of discrepancies. One clear example con-
cerns the state interpretation for unlikely and its nested ver-
sions (left panel, right column): the predictions are visibly
shifted to the right compared to the data. Another feature that
the model fails to predict is the relatively low counts of access
choices of 5 (compared to 4 and 6) for several expressions
(middle panel), although this seems to be a puzzling feature
of the data rather than an obvious shortcoming of the model.

Conclusion
Communication under high-order uncertainty raises a number
of issues for formal semantics and pragmatics. Our work here
is intended as a first but transparent explication of a number
of assumptions that allow the formulation of a computational
model of the use and interpretation of complex uncertainty
expressions. The resulting model captures basic patterns in
the data well enough, suggesting that our basic assumptions
are not entirely off. Still, detailed model criticism also reveals
a number of shortcomings. These point the way to further ex-
ploration; we see our main contribution exactly in this point-
ing. Most importantly, a measure of a differential inclina-
tion to produce messages (e.g., in terms of frequency, length,
salience) should be included. Also, the artificial restriction on
the set of message choices should ideally be relaxed as much
as possible. Moreover, it will be telling to see how partici-
pants react to contextual manipulations such as of the relative
relevance of information about the world state vs. information
about the speaker’s epistemic state.
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Figure 5: Percentages of expression choices in each partial observation condition, together with mean predictions and HDIs.

Figure 6: Counts of state, access and observation choices for each expression, together with mean predictions and HDIs.
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