
UCLA
UCLA Previously Published Works

Title
Spatiotemporal control for integrated catalysis

Permalink
https://escholarship.org/uc/item/7gv2r5xd

Journal
Nature Reviews Methods Primers, 3(1)

ISSN
2662-8449

Authors
Deng, Shijie
Jolly, Brandon J
Wilkes, James R
et al.

Publication Date
2023

DOI
10.1038/s43586-023-00207-0

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7gv2r5xd
https://escholarship.org/uc/item/7gv2r5xd#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1 
 

Spatiotemporal control for integrated catalysis 1 

Shijie Deng,1,# Brandon J. Jolly,1,# James R. Wilkes,2 Yu Mu,2 Jeffery A. Byers,2 Loi H. Do,3 Alexander J. M. 2 

Miller,4 Dunwei Wang,2 Chong Liu,1 and Paula L. Diaconescu1* 3 

1Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young 4 

Drive East, Los Angeles, California 90095, United States 5 

2Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, 2609 Beacon Street, 6 

Chestnut Hill, Massachusetts 02467, United States 7 

3Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77004, United 8 

States 9 

4Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-10 

3290, United States 11 

#These authors contributed equally. 12 

*Corresponding author: pld@chem.ucla.edu 13 

Abstract 14 

Integrated catalysis is an emerging methodology that can streamline the multistep synthesis of 15 

complicated products in a single reaction vessel, achieving a high degree of control and reducing the waste 16 

and cost of an overall chemical process. Integrated catalysis can be defined by the use of spatial and 17 

temporal control to couple different catalytic cycles in one pot. This primer discusses commonly employed 18 

approaches and their underlying mechanisms, and elaborates on how the integration of spatially and 19 

temporally controlled catalysis in one pot can deliver the synthesis of complex products with high 20 

efficiency. We highlight recent advances, analyze current applications and limitations, and provide an 21 

outlook for the future development of integrated catalysis. 22 
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[H1] Introduction 23 

Chemical synthesis plays a crucial role in modern technology and everyday life. From plastics to 24 

pharmaceuticals, virtually every facet of society is impacted by our ability to construct small molecules 25 

and macromolecules. A major focus in chemical research is the development of efficient methods for the 26 

production of synthetic chemicals. In 2017, the chemical industry was responsible for 10% of the total 27 

annual global energy consumption (and 28% of industrial energy consumption).1,2 Thus, alternative 28 

approaches to chemical synthesis that minimize energy consumption and increase efficiency are needed.  29 

The majority of commodity chemicals, pharmaceuticals and consumer materials are prepared in multistep 30 

syntheses that require catalysts to achieve high yields with selectivity toward the desired products.3 A 31 

drawback of such methods is that they require time, energy, and exhaustive effort between reaction steps 32 

to separate and purify stable reaction intermediates. Alternative methods that enable multistep 33 

sequences would remove the need to isolate such species. A particularly attractive approach for chemical 34 

synthesis is integrated catalysis, in which multiple catalysts are carefully controlled and positioned to 35 

allow efficient multistep reaction sequences, funneling products generated by one catalyst to the next.  36 

A combination of catalytic processes, either involving one catalyst or multiple catalysts with orthogonal 37 

reactivity, (FIG. 1a)4 may be classified as a cascade or domino process [G] if only one linear reaction 38 

sequence occurs. If multiple reactions are proceeding simultaneously, then it is considered a tandem 39 

process [G]. Examples of integrated catalysis are often special cases of tandem catalysis, in which multiple 40 

catalysts operate through orthogonal mechanisms synergistically or can be switched on/off using external 41 

triggers. The recent literature has many excellent examples of cascade or tandem processes,4-20 but 42 

integrated processes are rarely reported. Multiple catalytic processes operating together could be solely 43 

chemo− or bio− based, or a combination of the two. In this primer, we will focus on chemocatalytic 44 

systems. 45 

Integrated reactions hold promise to be more efficient than an iterative process; combining spatial and 46 

temporal control avoids the need for separation and purification of intermediate steps. Furthermore, 47 

combining spatial and temporal control may also lead to the development of new chemistry and novel 48 

products. For example, a hypothetical integrated catalytic system (FIG. 1b) with spatiotemporal control 49 

can allow the efficient conversion of a starting material (gold square) to an intermediate (brown square). 50 

This intermediate can diffuse to another part of the reactor where a second catalyst, spatially separated 51 

so as not to interact with the first catalyst, reacts with and couples the intermediate with a second 52 

reactant (green square). The second catalyst may also be temporally switched to a state where it is now 53 

active for the incorporation of a third reactant (blue square). This approach could be a general strategy to 54 

synthesize complex structures that are not accessible using conventional methods, as such methods do 55 

not typically consider spatial and temporal control.  56 
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 57 

Fig. 1| Concept of integrated catalysis. a| A flowchart guide to nomenclature of different multistep one-pot catalytic 58 

processes. b| Illustration of integrated catalysis. In a hypothetical integrated catalytic system with spatiotemporal 59 

control, the starting material (gold square) is efficiently converted to an intermediate (brown square). This 60 

intermediate could then react with another catalyst that would combine the synthesized intermediate with another 61 

reactant (green square). The second catalyst can also be switched on to incorporate a third reactant (blue square). 62 

This approach can be a general strategy for synthesizing complex structures that are not available by conventional 63 

methods. Temporal control methods include external stimuli, e.g., chemical reagents, light, electron transfer, etc., 64 

whereas spatial control can be achieved by using flow chemistry, immobilization, compartmentalization, and 65 

microscopic concentration gradients. 66 

 67 

To enable multiple catalysts to operate concurrently, issues relating to compatibility must be overcome. 68 

For example, potentially problematic catalyst-catalyst, catalyst-reactant, and catalyst-product 69 

interactions need to be addressed. To reconcile potential incompatibility, spatial and/or temporal control 70 

are required to manipulate where and when certain processes occur. Spatial control may be employed to 71 

localize and separate catalysts or entire catalytic systems from each other. This may be achieved in a 72 

number of approaches (vide infra), namely compartmentalization [G],8,21-27 immobilization onto a 73 
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surface,28-35 or by taking advantage of microscopic concentration gradients.18,20,36,37 By preventing 74 

incompatible species from coming into contact with each other, efficient integrated processes may be 75 

promoted. In addition to spatial control, introducing temporal control can also alleviate compatibility 76 

concerns. If two processes compete with or hinder each other’s activity, deactivating one while the other 77 

is active can help avoid incompatibility. Temporal control may be achieved using a variety of external 78 

stimuli38-41 to switch between different states of a catalyst that have orthogonal reactivity [G] toward 79 

certain substrates.  80 

In this primer, approaches to achieve spatial and temporal control in catalysis to achieve integrated 81 

catalysis are discussed. Seminal studies illustrating spatiotemporal control of catalysts will be presented 82 

to showcase their impact on some of the most challenging problems in catalysis. The development of a 83 

toolbox for integrated catalysis is also discussed, followed by limitations and suggested optimizations for 84 

this nascent field of research. Lastly, the direction in which integrated catalysis is likely to make progress 85 

in the next 5-10 years is discussed. 86 

 87 

[H1] Experimentation 88 

This section outlines considerations for the temporal and spatial control of a number of catalytic systems. 89 

By the use of examples, reaction processes and mechanisms are discussed, as well as considerations for 90 

each catalytic system. The typical setup for catalytic systems and design considerations for such systems 91 

are described. 92 

[H2] Temporal control 93 

In nature, living organisms have the ability to respond to environmental factors, causing them to behave 94 

differently or take on different forms. At the microscopic level, external stimuli regulate feedback loops 95 

and modulate enzymatic reactions within cells to effect biological changes. Taking inspiration from nature, 96 

scientists have been working on artificial catalytic systems that could be tuned reversibly by external 97 

stimuli. In such switchable systems, a catalyst could be toggled on/off or may oscillate between different 98 

catalytic states to achieve orthogonal reactivity. Depending on the application and reaction conditions, 99 

different external stimuli can be used to implement a switchable behavior. In this section, redox, chemo-, 100 

and photo-switching will be discussed, with a focus on the switching mechanisms and general catalyst 101 

design concepts. Several comprehensive reviews have been published on temporally switchable 102 

catalysis.38,40-43  103 

 104 
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Fig. 2| Different types of switchable catalysis as temporal control. a| Switchable catalysis using different external 106 

stimuli. b| Redox-switchable catalysis. (i) Design of a redox-switchable metal catalyst. (ii) Redox-switchable 107 

polymerization using electrochemical setup. Fe(II) catalyst can polymerize lactide (red ball) while the Fe(III) catalyst 108 

can polymerize cyclohexene oxide (green ball). c| Chemoswitchable catalysis. (i) Anion coordination leads to 109 

allosteric change which unblocks the catalytic active center for the ring opening polymerization of -caprolactone. 110 

The red block denotes a bulky aromatic group that results in steric hindrance. (ii) Metal cation coordination onto the 111 

hemilabile crown ether moiety promotes the hydrogen activation reaction. (iii) Metal cation coordination to the 112 

oligomeric ethylene glycol chain increases ethylene polymerization activity. (iv) Presence of CO2 prevents the 113 

polymerization of -caprolactone (blue ball) and initiates the ring opening copolymerization of CO2 and cyclohexene 114 

oxide (green ball). d| Photoswitchable catalysis. (i) The catalyst can bind to the substrates via hydrogen bonds; in 115 

the E form the catalyst can bring the substrates closer and accelerate the amidation process, while the Z form 116 

separates the substrates apart and thus slows down the amidation. (ii) The diarylethene-type catalyst with a phenol 117 

moiety in the ring-opened phenol form incorporates more valerolactone (blue ball) while the ring-closed ketone 118 

form incorporates more trimethylene carbonate (purple ball) in the copolymerization process. (iii) By using different 119 

photocatalysts and changing the wavelength of light, the polymerization mechanism can switch between radical and 120 

cationic polymerization. 121 

 122 

[H3] Redox-switchable catalysis 123 

A challenge associated with achieving switchable catalysis is designing a system that has two (or more) 124 

different reactive states that can be accessed through application of external stimuli. Since redox reactions 125 

change the electronic configuration of a compound, which is intimately associated with its reactivity, an 126 

attractive option for switchable catalysts is through iterative addition of oxidants or reductants. A 127 

common way to carry out redox-switchable catalysis [G] is to design redox-active ancillary ligands44-46 that 128 

are coordinated to a redox-inactive metal, which serves as the site for catalysis. This strategy was 129 

employed in the first example of redox-switchable catalysis,47 when a rhodium complex supported by a 130 

cobaltocene bis(phosphine) was used for the hydrogenation and isomerization of alkenes. Despite this 131 

first example being applied to catalysis involving small molecules, the utility of redox-switchable catalysis 132 

has been exploited with more success in polymerization. For example, a titanium complex containing two 133 

redox-active ferrocene moieties appended to a salen (N,N’-bis(salicylidene)ethylenediamine) ancillary 134 

ligand (FIG. 2bi)48 demonstrated redox modulation when used for the polymerization of lactide, with the 135 

reduced species being more active than the oxidized form of the catalyst. Since this report, several groups 136 

have utilized the ferrocene moiety for redox-switchable polymerization.49-54 For example, using chelating 137 

ligands to position the ferrocene moiety in close proximity to the redox-inactive site for catalysis results 138 

in a greater difference in the reaction rate of the oxidized and reduced states of a catalyst (FIG. 2b). For 139 

example, while both forms of the above titanium complex demonstrated some activity for lactide 140 

polymerization, an yttrium complex showed complete on/off activity for lactide polymerization.55 141 

An alternative method for redox-switchable catalysis is to use redox-active metals that serve as the redox-142 

switching moiety and the site for catalysis (FIG 2bi). Catalysts based on several different redox-active 143 

metals have been explored using this strategy, with the most notable examples being ring-opening 144 

polymerization catalysts using cerium salfen56 and iron bis(imino)pyridine complexes.57 These catalysts 145 
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show similar behavior as that of polymerization catalysts utilizing redox-active ancillary ligands, 146 

demonstrating that it is not necessary to separate the redox-switching entity from the catalytically active 147 

entity.  148 

A challenge associated with redox-switchable catalysis is the need to add oxidants and reductants to the 149 

reaction. When chemical redox reagents are used, purification of the product is required to remove the 150 

byproducts from the redox-switch. Moreover, adding chemical redox reagents to reactions that require 151 

gaseous reagents at elevated pressures requires specialized equipment. To address these limitations, an 152 

electrochemical potential can be used instead of chemical redox reagents for redox switching (FIG. 2bii). 153 

Such electrochemical potential can be achieved by employing bis(imino)pyridine iron complexes whose 154 

redox-active site is also the site for catalysis,58 or catalysts that contain redox-switchable moieties installed 155 

in the ancillary ligand.59 156 

While there are now many redox-switchable catalysts, a mechanistic understanding of how these systems 157 

perform redox switching is not well established. The oxidation state of the active catalyst and the 158 

efficiency of the redox switch are dependent on many factors. In addition to the proximity of the redox-159 

switching moiety to the catalytically active site, another important factor is the identity of the metal center. 160 

For example, while the yttrium complex is active for lactide polymerization in its reduced state, the indium 161 

complex that contains the same ancillary ligand is active for lactide polymerization in its oxidized state.55 162 

The interaction between the metal center and the redox switchable moiety can be intricate; as revealed 163 

by computational and experimental studies,60,61 the oxidation state of the redox active group can alter the 164 

Lewis acidity of the metal center, as well as change the energetic profile of the catalyst-substrate 165 

interaction.62 Another factor is the identity of the reactant; some reactants may display orthogonal 166 

reactivity with respect to the oxidation state of the catalyst and some may not. For example, the iron 167 

complex shown in FIG. 2bii,63 as well as other redox switchable catalysts,51,53,55,60,64,65 is capable of 168 

polymerizing lactide selectively in its reduced form and epoxide in its oxidized form, but less selectivity is 169 

observed for lactones or cyclic carbonates.61,64,66-68 The selectivity shown by each state of the system, i.e., 170 

orthogonal reactivity, is important in being able to combine multiple catalytic cycles without interference 171 

from the reaction that is turned off, for example. While more work is needed to understand these and 172 

other effects, two related factors appear to be important in polymerization catalysis: the propensity of 173 

the monomer to bind to the catalytically active site and the electrophilicity/nucleophilicity of reactive 174 

intermediates.61,67,69 Both factors are altered by changing the oxidation state of the catalysts, and the 175 

relative importance of each is related to the nature of each reaction, including the identity of the metal 176 

centers and the monomers employed. 177 

 178 

[H2] Chemoswitchable catalysis 179 

Chemoswitchable catalysts are compounds that are responsive to the presence of external chemical 180 

additives. Unlike redox-switchable catalysis, chemoswitchable catalysis [G] does not involve alterations to 181 

the catalyst that leads to changes in their formal oxidation state. Because chemical reagents have a wide 182 

range of properties, they can trigger molecular events via various modes of action. For example, cations 183 
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can bind Lewis basic sites, whereas anions can bind Lewis acidic sites. Such interactions could turn a 184 

catalyst on or off, or modulate their reaction rates. Alternatively, chemical reagents could covalently 185 

modify a catalyst to produce another active species capable of achieving orthogonal reactivity. 186 

The key design challenge in chemoswitchable catalysis is to enable a catalyst to change its structure and 187 

function by interacting with a chemical additive. One effective strategy for chemoswitchable reactivity 188 

involves regulating catalysis using anion coordination/dissociation to alter the metal complex geometry 189 

or block/unblock catalytically active sites. For instance, a supramolecular triple layer catalyst, comprising 190 

an aluminum salen complex flanked by two rhodium nodes equipped with biaryl blocking groups, was 191 

used for the chemoswitchable polymerization of lactones (FIG. 2ci). In the closed form, the rhodium 192 

centers are ligated by the amino donor of the supporting ligand, which positions the biaryl units above 193 

and below the aluminum active site.70 Because aluminum is inaccessible due to the steric bulk of the 194 

amino arms, the catalyst cannot react with substrates. In the open form, chloride anions are bound to 195 

rhodium so that the amino groups are forced away from aluminum, opening up access to incoming 196 

monomers. When chloride salts are added, the triple layer catalyst reaches an open state that is active 197 

for the ring-opening polymerization of -caprolactone; when sodium salts are added, the chloride is 198 

abstracted from the rhodium centers, re-forming the closed catalyst state and almost completely stopping 199 

the polymerization. Remarkably, the molecular weight of the polymer increased linearly with conversion 200 

even as the catalyst was activated, deactivated, and reactivated, indicating an excellent control over 201 

catalysis. 202 

Another strategy for chemoselective switching is to regulate catalysis using cations. By installing crown 203 

ether moieties in ancillary ligands, alkali metal cations can interact with the crown ether moiety to tune 204 

the electron density of the catalytically active site. This type of cation switching has been well-205 

demonstrated in small molecule activation (FIG. 2cii).71 For example, an iridium PCN-pincer complex was 206 

prepared containing an aza-crown ether macrocycle, which serves as a hemilabile ligand and cation 207 

receptor. When sodium or lithium tetraarylborate salts were added to a CD2Cl2/Et2O solution of the 208 

compound, the free energy of aza-crown ether dissociation from iridium is lowered due to the favorable 209 

interaction of the alkali metal ion with the macrocycle. In the presence of these alkali metal cations, 210 

binding of dihydrogen becomes possible, and the cation-activated iridium species catalyzed H/D exchange 211 

with D2 is significantly faster than the unactivated complex. This concept can be extended to a three-state 212 

(off/slow/fast) catalyst system, such as the positional olefin isomerization.72 For example, iridium chloride 213 

complex is inactive for isomerization of allylbenzene; removal of the chloride produces a cationic species 214 

with hemilabile Ir–O interactions resulting in a slow catalyst. Addition of Li+ salts to this cationic catalyst 215 

enhances the isomerization rate over 1,000-fold. The rate enhancement is attributed to cation–crown 216 

interactions making olefin binding more favorable, and increasing the amount of iridium that is actively 217 

engaged in catalysis. Another example of a cation-switchable system was used to achieve regioselectivity 218 

in positional isomerization: without salts added, alkenes were isomerized from the 1- to the 2-position; 219 

under the same conditions but with added Na+ salts, 3-alkenes were observed instead.73 220 

The cation coordination strategy of a catalyst can be used to tune not only the reaction rates but also the 221 

architecture of a polymer product.74 For example, a family of nickel phenoxyimine complexes bearing 222 
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polyethylene glycol (PEG) chains can coordinate secondary metals (FIG. 2ciii); the addition of M+ (where 223 

M+ = Li+, Na+, or K+) can produce 1:1 and 2:1 nickel: alkali species. The association constants between Ni 224 

and M+
 correlated with the size match between the ionic radius of M+ and the chain length of the PEG 225 

chelator (larger cations require longer PEG chains and vice versa). Combining Na+ or K+ with the nickel 226 

catalysts featuring tri- or tetra-ethylene glycol chains increased the ethylene polymerization activity and 227 

gave polymers with higher molecular weight and branching density than the nickel catalysts alone. Cation-228 

tuning was also applied to other olefin polymerization platforms and catalyst nuclearity was controlled 229 

through suitable ligand design.75-78 230 

Small gas molecules can also be utilized as chemoselective switches by serving either as a trigger or a 231 

substrate for a reaction. For example, CO2 can be used to oscillate a catalytic system between ring opening 232 

polymerization [G] (ROP) of a lactone and ring opening copolymerization (ROCOP) of epoxides and CO2 233 

(FIG. 2civ).79,80 Another example of a small gas molecule switch is O2. Although more well-known as a 234 

radical scavenger, O2 can also be used in chemical transformations to generate radical species that can 235 

initiate radical polymerization.81,82 Small gas molecules have the advantage of being easy to remove, 236 

however, a pressure reactor might be needed for the reaction.  237 

Such examples demonstrate that chemical switching can be a useful strategy for regulating many different 238 

catalytic processes. Chemical switching can also take advantage of solution equilibria to tune reaction 239 

rates in a dynamic fashion. In cation tuning, different amounts or types of metal salts can be used to 240 

achieve different effects without requiring tedious synthetic modifications of the catalyst. Ideally, the 241 

chemical switch is only needed in catalytic amounts relative to the substrate (for example, in cation 242 

switching) or is incorporated into the reaction product (such as in CHO and CO2 ROCOP). Some possible 243 

disadvantages of chemical switching are that the chemical reagents used are not traceless so they may 244 

need to be removed from the final product or they might not be compatible with subsequent steps in 245 

one-pot tandem or cascade reactions. Another potential limitation in cation switching is that the catalyst 246 

must be amenable to installation of secondary metal binding groups to achieve high cation responsiveness 247 

since Lewis acid additives are relatively commonly used to enhance activity.83 248 

  249 

[H3] Photoswitchable catalysis 250 

Photoresponsive processes are ubiquitous in nature and in artificial synthesis and catalysis. 251 

Photoswitchable catalysis involves a catalytically active species that can undergo a reversible 252 

photochemical transformation, which consequently changes its intrinsic catalytic properties.84 In 253 

photoswitchable catalysis, photochromic functionalities such as azobenzenes, which can undergo an E-Z 254 

isomerization, and diarylethenes, which can undergo a photo-induced ring closing, are commonly 255 

employed.  256 

The photoinduced E-Z isomerization of diarylethenes and stilbenes can lead to a change in the steric 257 

environment of the active site, which can block or unblock substrate access or bring substrates closer 258 

together or further apart, thus changing the catalytic activity.85 Such azobenzene photochromic 259 

functionality has been used to control the rate of an amidation reaction (FIG. 2di).86 For example, for the 260 



9 
 

amidation between aminoadenosine and adenosine-derived p-nitrophenol ester, a template molecule 261 

that contains two adenine receptors linked by an azobenzene spacer was designed. When the template 262 

molecule is in the E configuration, substrates bound to each receptor are far apart, resulting in a slow 263 

coupling rate. Upon UV irradiation (λex = 366 nm), the template molecule undergoes a photo-induced 264 

isomerization, resulting in a photostationary state ratio of E:Z = 1:1. The Z configuration brings the two 265 

substrates in close proximity, thereby accelerating the reaction.  266 

The photoinduced ring opening or ring closing of photochromic functionalities, such as spiropyrans87,88 267 

and diarylethenes,89 results in steric and electronic changes that have been used to alter rates of lactone 268 

polymerization. For example, in a diarylethene-based system (FIG. 2dii),90 the ring-opened phenol catalyst 269 

uses the exposed -OH group to activate lactide, which leads to a high polymerization rate. Upon UV 270 

irradiation (λex = 300 nm), a photostationary state is reached, leading to 98% of the ring-closed ketone 271 

isomer, which shows a diminished polymerization rate. The system can be turned back on to the active 272 

state by irradiation with visible light. The different rates of the opened and closed forms toward 273 

valerolactone and trimethylenecarbonate (TMC) polymerization can also be harnessed to control the 274 

microstructure of the polymers. The ring-opened phenol catalyst, incorporates more valerolactone than 275 

TMC to synthesize copolymers with higher valerolactone content, while the ring-closed ketone isomer 276 

leads to a polymer with higher TMC than valerolactone content. 277 

Unlike most redox-switchable and chemoswitchable catalysts, photoswitchable catalysis provides a non-278 

invasive method to achieve temporal control since light is the only reagent required for switching. 279 

Consequently, product purification does not require removing excess reagents. Additionally, switching 280 

can be fast and not limited by mass transport.91,39,92 A combination of different polymerization 281 

mechanisms can also be achieved by changing the wavelengths of light. For example, by using 282 

photocatalysts and a thiocarbonate chain transfer agent, cationic polymerization could be initiated by 283 

green light, while radical polymerization could be commenced by blue light (FIG. 2diii).93 In terms of the 284 

experimental setup, light-emitting diodes are typically used as a source of light with specific and narrow 285 

wavelength. Although photoswitchable catalysis shows many advantages in temporal control, it also 286 

needs to overcome several hurdles such as obtaining a high photostationary state isomer ratio with a 287 

short irradiation time, finding isomers with orthogonal reactivity, and using UV light, which limits 288 

compatibility with some organic substrates or metal catalysts.  289 

 290 

[H2] Spatial control  291 

Spatial control in catalysis refers to the localization or separation of a catalyst from other species in 292 

reaction media. There are many reasons why spatial control is desirable, ranging from mitigating 293 

incompatibility between reagents/catalysts8,13,18,20,21,23-27,94-99 to simple heterogenization of a catalyst to 294 

be recycled,23,100-107 and opportunities to capitalize on local concentrations of reagents and effects that 295 

may occur from local magnetic or electric fields.20,37,108-110 Spatial control may be realized in numerous 296 

ways, with the bulk of this work centered around confining catalysts within compartments,8,13,20,23,25-27 297 

using biphasic conditions,111-114 and immobilizing catalysts onto supports.100-103 The last few decades have 298 
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witnessed a steady growth in exploring the spatial control of molecular catalysts, with several reviews 299 

outlining the intricacies and caveats of localizing catalysts.23,26,97,100 Here, the motivations and working 300 

principles for spatial control are discussed, all within the context of ultimately utilizing spatial localization 301 

to control multiple catalysts in proximity and circumvent potential challenges in integrating catalysis to 302 

carry out catalytic transformations that are not trivial for homogeneous catalysts. 303 

 304 

Fig. 3 | Approaches to spatial control via compartmentalization of catalysts in close proximity within confined 305 

spaces. a| (i) Micelle support with the synthetic scheme for micelle formation. An amphiphilic ABC-triblock 306 

copolymer was used to form the micelle support. The cobalt catalyst was covalently attached to the hydrophobic 307 

core (red and black blocks) via the thio-ene reaction, while the rhodium catalyst was attached to the hydrophilic arm 308 

(blue block). (ii) Tandem alkyne hydration and hydrogenation. b| Immobilization of two species in close proximity 309 

onto an oxide surface for synergistic catalysis. 310 

 311 
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[H3] Compartmentalization 312 

Two major forms of spatial control are compartmentalization and surface immobilization [G]. The key 313 

challenge in compartmentalization is to design a system that keeps each catalyst inside a specific 314 

compartment while allowing reactants, intermediates, and products to move between the compartments. 315 

Compartmentalization has been reported in the biocatalytic literature as an approach for constructing 316 

efficient tandem catalysis by separating enzymes in well-defined micro- and nano-structures.21,22,115-119 In 317 

doing so, compartmentalization results in beneficial circumvention of deactivating or competing pathways, 318 

retention of reactive or toxic intermediates, increases in reaction rates and high local substrate 319 

concentration.21,22,115-119. Inspired by the mechanistic work on in vivo compartmentalization, spatial 320 

organization at the nano- and microscopic levels has been implemented to construct in vitro biomimetic 321 

cascades with augmented catalytic performance.22,26,95,99,117,120,121 For example, confining the β-galactose, 322 

glucose oxidase, and horseradish peroxidase in metal-organic frameworks led to an enhancement of the 323 

reaction yield in comparison to a freely diffusing enzyme.26,95 Additionally, encapsulation of a nickel-iron 324 

hydrogenase in capsids enhanced the rate of H2 production and improved the enzyme’s thermal 325 

stability.121 326 

Following the wealth of literature in applications of bio-compartmentalization, the organometallic 327 

community has subsequently made great strides in confining transition metal-based catalysts. Of 328 

relevance to integrated catalysis, compartmentalization may be used to construct efficient tandem, 329 

heterogeneous, organometallic systems that otherwise cannot be achieved with homogeneous 330 

catalysts.8,13,18,20,27 The majority of prior confined organometallic catalysts focuses on employing 331 

macromolecular structures to tune selectivity in a manner unachievable in a homogeneous setting.23 332 

Additionally, the confinement of such catalysts often results in an improved stability and heightened 333 

activity over freely diffusing analogues.23 Furthermore, compartmentalization has been applied to 334 

organometallic-mediated catalytic chain transfer polymerization, from which insight into the relationship 335 

between confinement and polymer modality has been extensively studied.122-124  336 

Organometallic catalyst(s) can be compartmentalized by encapsulation in molecular cages to accelerate 337 

reaction rates and alter selectivity.23,125-129 One example of compartmentalization is  the selective 338 

recognition and stabilization of imminium ions by a Ga(III) catecholate molecular cage.130 The 339 

compartmentalization of catalysts in molecular cages  has been extensively applied in various reactions, 340 

such as aza-Prins cyclizations,131 to promote kinetically disfavored pathways and thus steer selectivity.131 341 

One way to do this is using a micelle to support two co-encapsulated catalysts for incompatible catalytic 342 

reactions (FIG. 3a).8 For example, in the direct conversion of an alkyne to an enantioenriched secondary 343 

alcohol, the Co-porphyrin catalyzed hydration of alkyne to ketone was not compatible with the Rh-TsDPEN 344 

catalyzed asymmetric hydrogenation of ketone to secondary alcohol, and when the two catalytic reactions 345 

were carried out in tandem, no product was detected. To bypass the issue, the cobalt catalyst was 346 

immobilized in the hydrophobic core of the micelle and the rhodium catalyst in the hydrophilic shell thus 347 

separating the two catalytic systems in two different domains to avoid interference. The intra-micellar 348 

diffusion of the ketone intermediate was fast enough to render high efficiency to the overall reaction.  349 
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Changing the local environment of a catalyst may understandably alter its catalytic properties, such as 350 

activity. Thus, in the realm of confinement via compartmentalization, a judicious design and choice of 351 

compartments will be paramount.132 A likely pitfall of this approach may be a deleterious reduction in 352 

activity. To circumvent this, we point out a recent report that modeled the effect of varying compartment 353 

dimensions on catalytic activity for several common catalytic cycles.27 Ultimately, a confinement must be 354 

employed carefully so that entry and exit into the compartment via diffusion is as fast as or slower than 355 

the kinetics of the catalytic cycle. 356 

 357 

[H3] Surface immobilization 358 

Another way to achieve spatial control over a reaction is by attaching a molecular catalyst onto a solid 359 

support material, also known as surface immobilization [G].28,30-35,133-135 A rich history of surface 360 

attachment of catalysts has led to a diverse lexicon: a compound can be attached, anchored, or 361 

immobilized to produce a surface-supported or surface-immobilized catalyst. Sometimes such systems 362 

are referred to as single-site heterogeneous catalysts because, ideally, the molecular nature of the catalyst 363 

leads to excellent homogeneity in catalyst activity and selectivity, while also boasting the benefits of a 364 

heterogeneous catalyst (for example, easy separation from reactants/products, facile recycling). An 365 

immobilized catalyst will only carry out the reaction where it is anchored to the surface, controlling the 366 

location of product generation. Furthermore, two or more catalysts can each be attached to a surface in 367 

order to prevent unwanted interactions and ensure catalyst compatibility, an invaluable aspect in 368 

integrated catalysis. For example, a palladium catalyst and an organic base were co-immobilized in close 369 

proximity onto a silica surface (FIG. 3b).136-138 Synergism was realized by a significant acceleration (3 times 370 

higher conversion) of palladium catalyzed Tsuji−Trost allylic alkylation reactions with the co-immobilized 371 

palladium catalyst and organic base material, in comparison to a palladium catalyst on the silica surface 372 

without an organic base pair in close proximity.136 In integrated catalysis, this approach may be adapted 373 

to co-immobilize two incompatibly catalysts, such as a metal/enzyme system,139,140 to minimize transport 374 

between catalyst sites, while preventing deleterious interactions between them.  375 

Considering the breadth of methods for surface attachment, ranging from covalent bonding to a silica 376 

surface or non-covalent interactions with modified surfaces,28-35,133-135,141-143 the following should be 377 

considered when designing an anchored catalyst system. First, the application is important. Thermal 378 

reactions require a support that is robust under the reaction conditions, whereas electrochemical 379 

reactions require a conductive support and a linker that provides sufficient electronic coupling. 380 

Photochemical reactions generally require a transparent support, and often materials with a high surface 381 

area so that a sufficient amount of photocatalyst can absorb light. Second, the reaction mechanism is 382 

relevant. If multiple catalysts are required, the anchoring group should be sufficiently long and flexible to 383 

accommodate intermolecular interactions. If ligands dissociate, then the dissociating ligands should not 384 

be chosen for the attachment group to avoid catalyst leaching. Third, the reaction solvent is also important. 385 

Sequestration methods that rely on weak intermolecular forces, such as hydrophobic interactions, may 386 

be appropriate for reactions in water but not reactions that require nonpolar solvents. Finally, in terms of 387 
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the synthetic strategy to be used, sometimes it is more effective to anchor an organic group with a key 388 

functionality, and then use a different reaction to anchor the metal unit. For example, a silyl ether 389 

containing an azide can be attached to a surface, and then an alkyne-containing metal complex can be 390 

connected to the azide in a copper-catalyzed click reaction to form a robust linkage.35 391 

 392 

[H2] Biocatalysis 393 

Biocatalysis has become a vital component in modern organic synthesis, spanning from academic research 394 

to industrial chemical and pharmaceutical processes.144 Natural enzymatic catalysis is remarkable in its 395 

high activity and selectivity and mild working conditions. Although naturally evolved enzymes typically 396 

have a limited substrate scope, their performance may be enhanced by artificial enzyme engineering or 397 

integration with chemocatalysis for broader applications.145 For instance, in dynamic kinetic resolution of 398 

amines and alcohols, an enantioselective enzyme catalyst was coupled with a racemization catalyst to 399 

maximize the reaction yield.104 Furthermore, the spatial and temporal control methods developed for 400 

synthetic catalysis could also be applied to biocatalysis, providing new strategies to manipulate enzymes. 401 

For example, the integration of biocatalysis and photoredox catalysis has been developing rapidly in 402 

recent decades enabling otherwise challenging chemical transformations.146,147 Spatial control approaches 403 

such as immobilizing enzymes onto heterogeneous supports148 and crosslinking enzymes to form 404 

extended structures149,150 can simplify the workup process and facilitate enzyme recycling.  405 

Biology has many exquisite examples of systems that can manage complex reaction networks and perform 406 

efficient multistep reaction sequences.21,24-26,95,96,116,117,119,120,151,152 Compartmentalization is a key spatial 407 

control feature that allows organelles to orchestrate how enzymes and substrates/intermediates interact, 408 

while simultaneously blocking entry of unwanted species. Discussed previously, compartmentalization is 409 

a major form of spatial control that biology also utilizes, wherein meticulously designed organelles localize 410 

enzymes and key substrates in close proximity to allow efficient channeling of intermediates between 411 

active sites, while simultaneously blocking entry of unwanted or exit of wanted intermediate species into 412 

or out of the confinement.151,152 413 

A representative example is the co-encapsulation of glucose oxidase and horse radish peroxidase within 414 

macromolecular scaffolds such as MOFs or polymersomes.26,153 The cascade sequence between the two 415 

enzymes that consumes glucose shows drastically improved yields when the enzymes are confined versus 416 

the freely diffusing analogues. This method has been applied to many multi-enzyme systems, 417 

demonstrating that it is a robust strategy for creating complex yet efficient catalytic processes. Temporal 418 

control methods are also commonly used in biocatalysis, such as applying actuators or substrate gates to 419 

direct when each step of multienzymatic processes occurs.154,155 The combination of enzymes with 420 

synthetic catalysts offers the best of both worlds, providing new opportunities to streamline chemical 421 

synthesis.156 422 

 423 

 424 
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Fig. 4 | Temporal and spatial control in integrating different catalytic cycles. a| Harnessing activity of different 426 

catalytic states to control the polymer sequence and microstructure. (i) Redox-switchable catalysis toward the 427 

synthesis of a biodegradable crosslinked polymer network. (ii) Electrochemically controlled redox-switchable 428 

polymerization to synthesize a tetrablock copolymer. b| Polyethylene degradation via tandem (de)hydrogenation 429 

using γ-Al2O3 supported iridium complexes and alkane metathesis using Re2O7/Al2O3. The dehydrogenation/ 430 

hydrogenation process was catalyzed by the iridium compound while the olefin metathesis step was catalyzed by 431 

Re2O7/Al2O3. 432 

 433 

[H2] Addressing catalytic compatibility 434 

Spatial and temporal control approaches provide the means for coupling multiple catalytic cycles in a 435 

single reaction vessel. Spatiotemporal control may be utilized to couple different catalytic cycles by either 436 

exploiting the switchable catalysis of a single precatalyst or by reconciling incompatibility among multiple 437 

catalytic systems to generate products that would otherwise be difficult to synthesize. In this regard, 438 

polymerization reactions are the best examples to showcase how complex products can be generated 439 

from simple building blocks.  440 

[H3] Cross-linking 441 

Cross-linked polymer networks are valuable materials due to their high toughness and enhance thermal 442 

properties.157,158 These materials are often synthesized using two-part resins or through the application of 443 

heat or light as a trigger for cross-linking. Each of these methods have different limitations such as the 444 

temperature required for heating and limited substrate penetration, respectively. The orthogonal activity 445 

of redox-switchable catalysis can be applied in the realm of polymer crosslinking to address some of these 446 

limitations (FIG. 4ai).159 For example, when a bifunctional monomer that contained a cyclic diester and a 447 

pendant epoxide was polymerized upon exposure to an iron(II) complex, an epoxide-functionalized 448 

polyester was formed. By adding an external oxidizing agent, Fe(II) is oxidized to Fe(III), triggering the ring-449 

opening polymerization of the epoxide moiety, thereby forming a crosslinked polymer network. 450 

Compared to linear poly(lactic acid), the cross-linked polymers show remarkably different thermal and 451 

physical properties. Moreover, the crosslinking method that capitalizes on the switching capability of the 452 

iron complex is beneficial because it does not require two-part resins, polymer creep is not an issue, and 453 

there are no limitations with respect to the thickness of substrates. 454 

[H3] Switchable polymerization 455 

Other sophisticated macromolecules can be synthesized by taking advantage of switchable 456 

polymerization reactions, such as block copolymers. Block copolymers demonstrate very useful properties 457 

by melding the properties of two different polymer classes. However, some block copolymers cannot be 458 

synthesized through sequential addition of monomers because the mechanisms for their polymerization 459 

may be very different. Consequently, these block copolymers are usually synthesized through sequential 460 

polymerization reactions that sometimes involve tedious and imperfect post-polymerization chain-end 461 

modifications to accommodate subsequent reactions. When encountering this scenario, switchable 462 

polymerization reactions are a good option to allow for the synthesis of block copolymers from pools of 463 
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monomers in a single reaction vessel. Electrochemistry has advanced redox-switchable catalysis by 464 

obviating the need for chemical oxidants and reductants, thus bypassing the incompatibility issue 465 

between substrates and redox reagents when the reaction is conducted in one pot. As such, 466 

electrochemically controlled redox-switchable catalysis have been employed to synthesize block 467 

copolymers in one pot.58,59 For example, a ferrocene-containing zirconium compound is active in its 468 

reduced state for lactide polymerization, but inactive for epoxide polymerization (FIG. 4aii). When 469 

oxidized, the activity is reversed toward these two types of monomers. To achieve the synthesis of a 470 

multiblock copolymer, a one-pot setup was used with lactide and cyclohexene oxide monomers present 471 

at the beginning of the reaction to simplify the overall process, and electrochemistry was used to eliminate 472 

the need to add reagents during copolymerization. Using this strategy, a tetrablock copolymer was 473 

synthesized through sequential application of oxidative and reductive potentials. In addition to simplifying 474 

polymer purification, the electrochemical setup precludes possible side reactions, such as epoxide 475 

polymerization initiated by oxidants. 476 

[H3] Solid supports 477 

Spatially localizing a catalyst on the surface of a silica support is another important method that can be 478 

used to address compatibility issues. Although the general perception is that immobilizing the catalyst 479 

onto a surface reduces its activity due to hindered mass transport, the activity loss can be compensated 480 

with appropriate system modifications and optimization. For example, when various γ-Al2O3 supported 481 

iridium complexes (Ir@γ-Al2O3) used for alkane dehydrogenation and alkene hydrogenation were 482 

combined with a heterogeneous alkene metathesis catalyst (Re2O7/Al2O3), polyolefin degradation was 483 

observed when the polymer was combined with a light alkane (FIG. 4b).160 By carrying out the alkane 484 

dehydrogenation in tandem with the olefin metathesis, alkanes are converted into substrates for alkene 485 

metathesis, the products from which are substrates for hydrogenation, thereby resulting in new alkanes. 486 

When the polymeric alkane polyethylene is combined with an excess of a light alkane, the result is smaller 487 

alkanes. Importantly, the dual nature of the iridium complexes used for alkane dehydrogenation and 488 

alkene hydrogenation enables the process, and requires that the supported iridium complex be used 489 

concurrently with the heterogeneous metathesis catalyst. Moreover, separating the molecular iridium 490 

complexes from the rhenium alkane metathesis catalyst circumvents any unwanted catalyst-catalyst 491 

interactions, which plagued similar reactions involving entirely homogeneous catalysts.6 In addition, this 492 

system proved effective even when commercial polyethylene products, such as plastic bottles and food 493 

packaging were employed. This approach has also been employed in alkane upgrading by both homo- and 494 

heterogeneous Ir species,161 the olefin degradation exampled discussed shows spatial control of multiple 495 

catalysts. 496 
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 497 

Fig. 5| Applications of integrated catalysis. a| Metal-organic framework (MOF) host-guest system for tandem CO2 498 

hydrogenation to CH3OH via two separate ruthenium species encapsulated in a MOF (note: only one octahedral cage 499 

of the MOFs is shown for simplicity). b| O2 mediated CH4 oxidation to CH3OH via an air sensitive Rh(II) intermediate 500 
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enabled in air by an electrochemically generated O2 gradient. c| Integration of electrochemically catalyzed CO2 501 

reduction to CO and organometallic catalyzed ethylene/CO copolymerization for polyketone synthesis. d| 502 

Electrochemical control of a redox-switchable iron compound supported on a TiO2 surface with two electronically 503 

isolated sections leading to different polymerization reactions. e| Sequence specific peptide synthesis by localizing 504 

the amino acid building blocks on a rotaxane. 505 

 506 

[H1] Results 507 

For temporal control, prior to reporting any catalytic results, it is essential to characterize the activity of 508 

the molecular catalyst in different states. NMR spectroscopy is the most commonly employed method for 509 

diamagnetic compounds, while other approaches like UV-vis spectroscopy can be used for paramagnetic 510 

compounds. When reporting the activity and selectivity of a catalyst in different states, vitality is 511 

important to rule out the possible interference coming from the external stimulus. Thus, control 512 

experiments should always be performed and reported. Furthermore, the addition and presence of a 513 

substrate in the reaction medium, i.e., from an incomplete reaction, may alter the nature of the 514 

catalytically active species and change its activity toward another substrate. Therefore, future research 515 

would benefit substantially from detailed experiment procedures, e.g., the concentrations and order of 516 

addition, when reactivity results are reported. 517 

To confirm spatial control, one may employ a suite of characterization methods for heterogeneous 518 

systems. For example, in immobilizing a catalyst onto a surface, solid state NMR spectroscopy can help 519 

confirm and also determine the nature of a bound species.162 Other methods such as FTIR spectroscopy 520 

can confirm the presence of key functional groups on the surface, while inductively coupled plasma - 521 

optical emission spectrometry (ICP-OES) can assess catalyst loading on the solid support.33 522 

When combining two or more spatially controlled catalytic systems, mass transport between catalysts 523 

may understandably cloud reporting of reaction rates. In order to assess the extent to which mass 524 

transport alters observed reaction rates, the Φ criterion proves useful.163,164 Developed in the middle to 525 

late 1900s, the Φ criterion can provide a qualitative assessment of mass transport. Derived from the 526 

reaction rate, concentration, diffusion coefficient of the species to be transported, and diffusion path 527 

length, if Φ < 1, then one may ignore diffusional effects on reported reaction rates and kinetics. However, 528 

if Φ > 1, one cannot ignore the effect of mass transport. In addition to providing insight into the interplay 529 

of mass transport and kinetics in integrated catalysis, the Φ criterion can also provide a justification for 530 

exploring ways to alleviate mass transport (vide infra).  531 

 532 

[H1] Applications  533 

Integrated spatiotemporally controlled catalysis, although rare, has been employed to construct 534 

sophisticated systems and solve compatibility problems between multiple catalytic cycles. Such 535 

applications include small molecule activation, polymerization, and surface patterning. Although the 536 

development of integrated catalysis is still in its infancy, and some examples are not strictly, by definition, 537 
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an integrated system, they demonstrate the potential of integrated catalysis and how it can be exploited 538 

in synthesizing products with high complexity.  539 

[H2] Confinement 540 

Integrated catalysis can address thermodynamic constraints in sequences of chemical reactions. For 541 

example, the power of encapsulating transition metal catalysts in metal organic frameworks (MOFs) for 542 

integrated catalysis was recently demonstrated for the efficient hydrogenation of CO2 to methanol.19,165 543 

In this example (FIG. 5a), two different ruthenium complexes were encapsulated in UiO-66, enabling a 544 

tandem catalytic reaction in three steps: the thermodynamically unfavorable hydrogenation of CO2 to 545 

formic acid catalyzed by a PNP ruthenium complex; the near thermoneutral conversion of formic acid to 546 

formate ester catalyzed by the zirconium oxide nodes of UiO-66; the thermodynamically favored 547 

hydrogenation of formate ester to methanol catalyzed by a PNN ruthenium complex. This catalyst system 548 

overcomes the thermodynamic limitations associated with the hydrogenation of CO2 to formic acid by 549 

coupling it with the thermodynamically favored hydrogenation of formate esters. If the first step was 550 

separated from the second two in a sequential process, no formic acid would be obtained. Importantly, 551 

no methanol was observed unless at least one of the two ruthenium-based complexes was encapsulated 552 

in UiO-66, and catalyst recyclability was only possible if both ruthenium complexes were encapsulated in 553 

UiO-66. These observations highlight the benefits of catalyst compartmentalization to prevent undesired 554 

catalyst-catalyst interactions. 555 

[H2] Concentration gradients 556 

Another form of spatial control that has been beneficial for integrated catalysis is the generation of local 557 

concentration gradients, which can be conveniently achieved electrochemically. Depending on the 558 

steepness of the gradient, areas rich or void of certain species may be loosely defined as compartments. 559 

For example, a nanowire-array electrode can be employed to reconcile incompatibility between CH4 560 

activation by an O2-sensitive rhodium(II) metalloradical with O2-based oxidation for CH3OH formation (FIG. 561 

5b).20,166 A reducing potential applied to the nanowire array electrode generated an O2 gradient along the 562 

wire, and an anoxic, essentially O2 free zone was established at the bottom of the wires. As a result, an 563 

efficient catalytic cycle was established in which the air-sensitive Rh(II) activated CH4 in the anoxic region, 564 

whereas CH3OH synthesis proceeded in the aerobic region with O2 as the terminal oxidant. When a planar 565 

electrode was used, such a result was unattainable, showing that the O2 gradient of the nanowire array 566 

was responsible for reconciling incompatibility. The effective detainment of the ephemeral Rh(II) 567 

intermediate by the nanowire electrode for catalytic CH4-to-CH3OH conversion20,166 encourages further 568 

exploration in utilizing microscopic concentration gradients in catalysis to reconcile incompatibility.  569 

A similar strategy using the electrochemical method to control the concentration of small molecules can 570 

also be applied in generating CO from CO2 then utilizing the produced CO as a building block in subsequent 571 

reactions. Considering that CO2 is abundant and is one of the culprits of climate change, deriving reactive 572 

building blocks from it and converting them into value-added products would be ideal and could benefit 573 

substantially from integrated catalysis. For example, CO produced from CO2 was utilized as the carbon 574 

feedstock in reactions such as Fischer–Tropsch, hydroformylation, and carbonylation.167 Furthermore, in 575 
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reactions like CO and ethylene copolymerization, the pressure of CO was fine-tuned electrochemically, 576 

and the amount of CO incorporated was modulated in an integrated catalytic system to control the 577 

structure of the resulting polyketone (FIG. 5c).168 578 

[H2] Solid-state polymerization 579 

Integrated catalysis can generate highly complex products, such as a precisely controlled macromolecular 580 

structure,58,59,169,170 but the spatiotemporal control that is inherent to integrated catalysis has also been 581 

exploited to synthesize patterned polymer-functionalized surfaces (FIG. 5d).171 By immobilizing redox-582 

switchable bis(imino)pyridine iron polymerization catalyst to semiconducting TiO2 nanoparticles, redox-583 

switchable polymerization reactions can be carried out in the solid state. Suspending the iron(II)-584 

functionalized TiO2 nanoparticles on conducting fluorine-doped tin oxide surfaces led to electroactive 585 

surfaces whose chemoselectivity for polymerization can be altered through the application of an electrical 586 

current: surfaces with the catalyst in the iron(II) oxidation state react with lactide to form polyesters while 587 

surfaces that have been exposed to oxidizing potentials result in oxidation of the catalyst to the iron(III) 588 

oxidation state, which reacts with epoxides to form polyethers. By using fluorine-doped tin oxide 589 

substrates that contain electrically isolated zones of the functionalized TiO2 nanoparticles, patterned 590 

surfaces containing polyesters and polyethers can be synthesized by applying oxidizing potentials to zones 591 

where polyethers are desired.  592 

[H2] Molecular machines 593 

Another example of synthesizing products of high complexity is the application of a molecular machine in 594 

peptide synthesis. An artificial molecular machine was developed to mimic nature’s ribosome and 595 

synthesize oligopeptides with a predetermined sequence (FIG. 5e).170 The system consists of a rotaxane, 596 

an axle with protected amino acids immobilized to it, and a bulky end-stopper. The rotaxane has a 597 

polypeptide arm that contains a cysteine moiety and a terminal glycylglycine amine group. The 598 

oligopeptide synthesis is accomplished by a series of O-S and S-N acyl transfers as the rotaxane moves 599 

along the axle. Though the system is only capable of incorporating up to 4 amino acids and is not catalytic, 600 

it still represents a valuable proof of concept that demonstrates how artificial synthesis can mimic nature. 601 

Furthermore, it illuminates an encouraging direction that, beyond stoichiometric templating, an 602 

integrated system, showing spatial and temporal control, may be able to deliver the synthesis of highly 603 

complex products. 604 

[H2] Automation 605 

Finally, the benefits of integrated catalysis are amenable to future automation strategies, such as the 606 

Chemputer. Like in biocatalysis, where high-throughput screening can help identify the best protein from 607 

the vast genome database among numerous candidates and myriad mutations, integrated catalysis could 608 

also benefit from a highly automated synthesis-characterization-analysis system when devising a complex 609 

system involving multiple catalytic cycles to optimize the working conditions, e.g., solvent, temperature, 610 

concentrations, and cocatalyst. Other than the well-established peptide and nucleotide syntheses, 611 

laboratory-scale synthesis of complicated products is still mainly performed manually. The Chemputer 612 

demonstrates an efficient automation of multistep synthesis and purification processes (FIG. 6).172 By 613 
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using programming, various synthetic procedures can be abstracted from written protocols, translated 614 

into machine language and implemented on synthetic modules to prepare pharmaceutical compounds. 615 

The Chemputer may be as or more efficient than a traditional iterative lab approach, without any human 616 

intervention. Furthermore, the Chemputer was specifically designed to be amenable to variations in the 617 

sequence of steps performed, to allow adaptation to a wide array of chemical processes. In addition, such 618 

a synthetic platform allows for the standardization of chemical synthesis, minimizing irreproducibility 619 

caused by the synthetic nuances that are often omitted or assumed already known by the reader.172,173  620 

 621 

Fig. 6| Organic synthesis in a robotic system enabled by the application of a chemical programming language to an 622 

automated synthetic set up. 623 

 624 

[H1] Reproducibility and data deposition  625 

[H2] Reproducibility 626 

The degradation of catalysts during a reaction is one of the main problems in catalysis. Degradation has 627 

an even more profound impact on switchable catalysis, as the switching process introduces additional 628 

possible degradation pathways. Therefore, a judicious choice of the most compatible external stimulus 629 

may be the key to successful switchable catalysis. In addition, for catalysts confined onto surfaces, mass 630 

transfer may slow down the overall reaction rate and is influenced by the distance and diffusivity between 631 

the two catalysts. While this property can be exploited for integrated catalysis (for example, capitalizing 632 

on local concentration gradients), if the physical location or diffusivity of the catalysts is not well controlled 633 

(stirring, solvent, temperature), irreproducible results can be problematic. 634 

In addition to the chemical and engineering complications that exist with integrated catalysis, there also 635 

is an analytical challenge to address when catalysts are spatially confined. For homogeneous catalytic 636 

systems, the characterization methods are diverse and often diagnostic, such as NMR spectroscopy and 637 
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X-ray crystallography. However, when the catalyst is compartmentalized or immobilized on a solid surface, 638 

the system becomes complex, and characterization needs to involve relatively complicated techniques. 639 

Some spectroscopic methods such as X-ray photoelectron spectroscopy, inductively coupled plasma mass 640 

spectrometry (ICP-MS), and ICP-OES can be used to obtain elemental information either for the surface 641 

or the bulk powder. Infrared, Raman, absorption, and solid state NMR spectroscopy can facilitate 642 

understanding the nature of the active species. However, additional characterization methods are 643 

necessary for a detailed and precise chemical structure of the catalytic system that would ensure 644 

reproducibility. Especially in an integrated system, using operando techniques to understand the 645 

mechanism of the reaction and the interactions between catalyst-catalyst, catalyst-substrate, and 646 

substrate-substrate under working conditions will be extremely beneficial.174,175 647 

[H2] Database 648 

The field would benefit from a database of coupled tandem to use as a reference when constructing 649 

complicated integrated catalytic systems. When possible, the catalytic reactions involved, the 650 

spatiotemporal control methods and reaction conditions employed, and how the activity and selectivity 651 

of the overall reaction compared to the isolated stepwise reactions should be deposited. A database of 652 

the resulting products would also be informative. In the case of polymerization reactions, for example, 653 

many copolymers are synthesized using tandem polymerization reactions, and while there are databases 654 

listing the structures and properties of polymers, such as PolyInfo, Polymer Property Predictor and 655 

Database, and CAMPUS, these databases are far from comprehensive in summarizing the structures and 656 

corresponding properties of the various copolymers produced and reported. If this information could be 657 

benchmarked and centralized, it could provide guidance for future polymer design and retrosynthesis. 658 

[H1] Limitations and optimizations 659 

A major limitation of the current state of iterative chemical synthesis is inefficiencies related to time and 660 

material involved in workup steps, which may also lead to decreased yields.176 An integrated catalytic 661 

approach can alleviate this drawback, as well as pave the way to obtaining complex products from simple 662 

feedstocks. As a field that continues to evolve, integrated catalysis still faces many challenges. First is the 663 

issue of compatibility. Compatibility considerations in integrated systems is multifaceted and includes the 664 

compatibility between catalysts, reagents, solvents and reaction conditions. When different reaction 665 

cycles are carried out in one pot, the catalysts may undergo deactivation or decomposition caused by the 666 

substrates or cocatalysts of another reaction. In principle, switchable catalysis circumvents the problem 667 

by generating different catalytic species at different times, while spatial control can be used to separate 668 

different precatalysts. Furthermore, when different reactions require different conditions, such as 669 

temperature and pressure, reconciling such disparity is pivotal. Again, spatial control becomes important 670 

by separating such reactions in different microenvironments (such as compartmentalization, 671 

immobilization, or electrochemically generated concentration gradients). 672 

Limitations and potential drawbacks may be related to the temporal control of a catalyst. For example, 673 

the mode of temporal control (photochemical, electrochemical, or chemical) may not be compatible with 674 

other reagents in the reaction medium. An applied potential or light source that switches a catalyst 675 

https://polymer.nims.go.jp/en/
https://www.nist.gov/programs-projects/polymer-property-predictor-and-database
https://www.nist.gov/programs-projects/polymer-property-predictor-and-database
https://www.campusplastics.com/
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between active states may have undesired consequences on other species in solution. One method to 676 

circumvent this incompatibility would be to spatially separate the species of interest. For example, if a 677 

catalyst is to be switched electrochemically, immobilizing it onto the electrode surface may help prevent 678 

some unwanted redox reactions with other species. However, if the other species are free to diffuse, they 679 

may still be decomposed by an applied potential. Further, compartmentalization of the incompatible 680 

species could also help. Thus, great care must be taken to ensure other species in an integrated system 681 

are compatible with the means of temporal control.  682 

With respect to spatially localizing a catalyst, mass transport can become important. The heterogenization 683 

of a previously homogeneous catalyst introduces transport from the bulk solution to the catalyst site as a 684 

fundamental step for catalysis to proceed. Should this step prove limiting, it may be counterproductive to 685 

spatially control a catalyst. Instead of relying solely on diffusion, the introduction of fluid transport may 686 

help overcome mass transport limitations.177-181 Further, conducting a reaction in flow provides numerous 687 

additional parameters, such as flow rate and residence time, providing more opportunities for 688 

optimization compared to a batch process. Mass transport limitations may also be exploited to avoid 689 

unwanted background reactions. This would greatly depend on the pervasiveness of such mass transport 690 

limitations, as well as the competition between diffusive and kinetic phenomena.164 691 

When employing spatiotemporal control to build an integrated catalytic system, one must take into 692 

account some key considerations. The compatibility and practicality of all components of an integrated 693 

system should be considered. First, all possible combinations of controls should be tested to assess 694 

compatibility between catalysts, catalysts and reactants, and reactants. Simple outputs such as percent 695 

conversion can be used to assess the effect of one reagent on another with respect to maintaining or 696 

diminishing activity. In addition, assuming the separate catalyst systems have different optimal conditions 697 

(such as temperature, solvent, pressure) compatible middle ground conditions must be determined. In 698 

the event there is an incompatibility between some reagents in the two systems, spatial and/or temporal 699 

control may be implemented to circumvent the mutual deactivation.  700 

For spatial control, a key consideration is whether the catalyst/reagents need to be separated or can 701 

feasibly be immobilized onto a surface or confined within an easily accessible compartment. For temporal 702 

control, when incorporating switchable catalysis to either achieve on/off control or to open more avenues 703 

for different reactions, electronic effect of a redox catalyst, the ring opening/closing of a photochromic 704 

moiety, or the metal cation coordination onto a pendant ligand can be used, depending on the reaction 705 

conditions. For example, if the reagents/substrates/products in the system are colored, then it might be 706 

easier to add a redox-switchable or metal cation coordinating moiety to the ligand framework to realize 707 

a switch in catalytic activity rather than employing light as the external stimulus. On the other hand, if 708 

switchable catalysis requires intercepting short-lived reactive intermediates, then light may be the most 709 

appropriate external stimulus to target. The next thing to consider is whether the exogenous trigger 710 

interferes with the catalytic transformation itself. If the system is non-colored and remote control is 711 

preferred, then a photoswitch or an electrochemical switch are the most viable options as neither 712 

technique requires adding reagents to the reaction. Finally, practicality is as equal if not the most 713 

important consideration. The most intricate spatial and temporal methods may be developed and applied 714 
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to address any conceivable compatibility issues. However, the time and effort spent should not be greater 715 

than that of the combined systems treated independently. Thus, researchers must critically evaluate and 716 

determine what compatibility issues need to be addressed before considering what spatial and/or 717 

temporal methods to use and whether an integrated approach is superior to an approach involving 718 

sequential catalytic reactions. 719 

[H1] Outlook 720 

In integrated catalysis, different reactions are coupled in a single vessel to generate products with high 721 

complexity from a mixture of abundant starting materials. Inspired by macromolecule synthesis in living 722 

cells, artificial catalysis for the synthesis of polymers with a well-defined sequence and microstructure has 723 

been achieved in one pot with the proper utilization of integrated spatial and temporal control. Biological 724 

macromolecules, such as proteins and DNA, encode information in their sequences and structures. 725 

Likewise, the sequence and structure of synthetic macromolecules dictate their properties. We envisage 726 

that integrated catalysis can become the machinery for synthesizing novel molecules and materials with 727 

distinct properties. In addition to macromolecules, integrated catalysis can also be an effective tool for 728 

multistep syntheses, and asymmetric syntheses of organic small molecules, such as pharmaceuticals. 729 

Careful design of catalyst combinations in tandem catalytic cycles may enable reactions to proceed under 730 

mild conditions and improve the selectivity and yield of the overall process. More importantly, integrated 731 

catalysis can capture unstable, transient, and hazardous intermediates,182-184 and subsequently convert 732 

them into stable and valuable products, thus expanding synthetic capabilities. For example, by coupling 733 

an exothermic and endothermic reaction, thermodynamic leveraging in tandem reactions can drive the 734 

formation of otherwise unviable products.19,165,185,186 Furthermore, breaking down a thermodynamically 735 

favorable but high activation energy reaction into a series of steps that can be optimized individually, can 736 

lower the overall energy barrier and allow the reaction to proceed through milder conditions. 737 

To achieve precisely controlled and widely applicable integrated catalytic systems, it is imperative to 738 

enrich and update the toolbox available by adding emerging methods for spatial and temporal control. As 739 

a complement to artificial catalysis, biocatalysis is also indispensable, and often provides exquisite 740 

selectivity. Thus, the construction of hybrid catalyst systems that involve biocatalysis and artificial spatial-741 

temporally controlled catalysis is an exciting new direction for integrated catalysis.145 Finally, when 742 

implementing integrated catalysis, engineering aspects such as reactor design are also crucial to ensure 743 

that the anticipated results can be achieved. 744 

Another way to facilitate the design of integrated catalytic systems is to use simulations and predictions 745 

that evaluate structure-activity-selectivity relationships to identify the best catalyst in a timely manner. 746 

Recent advances in quantum mechanical and finite element simulations now make possible an holistic 747 

analysis of the entire integrated system that takes into account all contributing factors.187 In this regard, 748 

screening of catalysts for isolated reactions should be coupled with first-principles calculations and data 749 

science to optimize the integrated system. Computer-assisted calculations can also be used in conjunction 750 

with high-throughput automation188 to further expedite screening and streamline the synthetic routes to 751 

achieve high efficiency, low waste, and low cost.752 
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Glossary 753 

Cascade / Domino process: A transformation that installs two or more bonds under identical conditions 754 

and with the same mechanism. 755 

 756 

Chemoswitchable catalysis: A reaction in which the selectivity of a catalyst can be reversibly altered by 757 

a chemical trigger. 758 

 759 

Compartmentalization: Spatial localization of one or multiple species within a well-defined 760 

encapsulation or confinement, where entry and exit within the compartment is dependent on the 761 

chemical makeup of both the compartment and diffusing species. 762 

 763 

Orthogonal reactivity: Reactivity of a multistate catalyst toward different substrates: catalyst is active in 764 

one state for one type of reaction and inactive for another, and shows the opposite trend in the other 765 

state. 766 

 767 

Redox-switchable catalysis: The reactivity or selectivity of a catalyst that can be reversibly altered by 768 

changing its oxidation state. 769 

 770 

Ring opening polymerization: A chain growth polymerization reaction in which the polymer chain 771 

propagation is achieved by the reactive terminus attacking and ring opening a cyclic monomer to 772 

elongate the polymer chain and generate a new active terminus. 773 

 774 

Surface immobilization: Spatial localization of a typically homogeneous species onto a heterogeneous 775 

support. 776 

 777 

Tandem process: Coupled catalytic processes in which substrates are converted sequentially by two or 778 

more mechanistically distinct reactions.  779 
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