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Abstract

Significance: The cerebral metabolic rate of oxygen (CMRO2) is an important indicator of
brain function and pathology. Knowledge about its magnitude is also required for proper inter-
pretation of the blood oxygenation level-dependent (BOLD) signal measured with functional
MRI. Despite the need for estimating CMRO2, no gold standard exists. Traditionally, the esti-
mation of CMRO2 has been pursued with somewhat indirect approaches combining several dif-
ferent types of measurements with mathematical modeling of the underlying physiological
processes. The recent ability to measure the level of oxygen (pO2) in cortex with two-photon
resolution in in vivo conditions has provided a more direct way for estimating CMRO2, but has
so far only been used to estimate the average CMRO2 close to cortical penetrating arterioles
in rats.

Aim: The aim of this study was to propose a method to provide spatial maps of CMRO2 based
on two-photon pO2 measurements.

Approach: The method has two key steps. First, the pO2 maps are spatially smoothed to reduce
the effects of noise in the measurements. Next, the Laplace operator (a double spatial derivative)
in two spatial dimensions is applied on the smoothed pO2 maps to obtain spatially resolved
CMRO2 estimates.

Result: The smoothing introduces a bias, and a balance must be found where the effects of
the noise are sufficiently reduced without introducing too much bias. In this model-based study,
we explored this balance using synthetic model-based data, that is, data where the spatial maps
of CMRO2 were preset and thus known. The corresponding pO2 maps were found by solving
the Poisson equation, which relates CMRO2 and pO2. MATLAB code for using the method is
provided.

Conclusion: Through this model-based study, we propose a method for estimating CMRO2 with
high spatial resolution based on measurements of pO2 in cerebral cortex.
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1 Introduction

The level of consumption of oxygen by metabolic processes, that is, the cerebral metabolic rate of
oxygen (CMRO2), is an important indicator of brain function and pathology. Further, knowledge
about the magnitude of the CMRO2 is required for a proper interpretation of the blood oxygena-
tion level-dependent (BOLD) signal measured in functional MRI studies.1 The ability to measure
CMRO2 with high spatial and temporal resolution in cortex is thus crucial. Traditionally, the
CMRO2 has been estimated from several different types of measurements combined with math-
ematical modeling of the underlying physiological processes.1 Given the numerous assumptions
and experimental limitations typically involved, questions have been raised about the accuracy of
the estimates of the CMRO2 provided by these complex and somewhat indirect approaches.2

The possibility to optically measure the partial pressure of oxygen (pO2) around cortical
diving arterioles with two-photon resolution in vivo3 has provided a more direct way to estimate
the CMRO2. Previously, we (Sakadžić, Devor, and collaborators) used measured pO2 gradients
around diving arterioles in rats to estimate the average CMRO2 in the vessel’s vicinity, that is,
within a radius of ∼100 μm.4 We based our estimates on the Krogh–Erlang formula relating the
pO2 to the CMRO2 in a cylinder section around an arteriole providing the brain tissue with
oxygen.5,6

The Krogh–Erlang formula assumes the pO2 level to have reached a stationary state, so that
the fundamental equation relating the pO2 and the CMRO2 in the neural tissue can be described
by the Poisson equation:

EQ-TARGET;temp:intralink-;e001;116;489∇2PðrÞ ¼ MðrÞ; (1)

where PðrÞ represents pO2 measured at the position r, and MðrÞ is a measure that encapsulates
the local CMRO2. The Krogh–Erlang formula gives a specific solution to the forward problem of
this partial differential equation, that is, the radial profile of P, for the case where (i) the CMRO2

[MðrÞ] is assumed to be a constant and (ii) all the oxygen provided by the center arteriole is
assumed to be consumed within a radial distance Rt.

The problem of estimating MðrÞ based on measured pO2 profiles PðrÞ is referred to as the
inverse problem. In Ref. 4, this inverse problem was solved by fitting the Krogh–Erlang formula
to pO2 data obtained in the close vicinity of a penetrating cerebral arteriole. This approach is
global in the sense that it uses all measurements within a radial distance Rt to obtain an estimate
for an assumed constant value of M.

In this paper, we present a different approach to estimating M based on the same kind of
two-photon pO2 measurements. The solution of inverse source problems for systems described
by differential equations is important in many fields of science and technology and has conse-
quently received substantial attention from mathematicians.7 Equation (1) is known as the
Poisson equation, and several approaches have been taken to solve the inverse Poisson problem
in different science and engineering contexts.8–11 In this study, we develop an approach to the
inverse Poisson problem in the context of CMRO2 estimation. Specifically, we solve the problem
by applying the Laplace operator ∇2 directly to suitably smoothed pressure maps PðrÞ to obtain
a measure of MðrÞ. We will refer to this approach as the diffusion-operator method for CMRO2

estimation. Unlike the Krogh–Erlang method, the diffusion-operator method provides a spatially
resolved map of CMRO2 estimates around the arterioles and is thus not restricted to estimating
an assumed constant value of M. Further, the diffusion-operator method is not restricted to sit-
uations with radially symmetric pO2 maps as when a single arteriole provides all oxygen.

The double spatial derivatives in the Laplace operator make the diffusion-operator method
inherently very sensitive to noise in the measured spatial pO2 maps. In order to have a practical
method for CMRO2 estimation, we smooth the experimental data in two dimensions before
application of the Laplace operator to reduce the effects of the noise. Smoothing introduces
a bias, that is, a systematic error in the estimates, and a balance must be found where the effects
of the noise are sufficiently reduced without introducing too much bias. In the present model-
based study we explore this balance by examining the accuracy of CMRO2 estimates in situa-
tions where the ground truth, that is, spatial maps of MðrÞ are preset and thus known, and the
corresponding maps of PðrÞ are found by solving the forward problem of Eq. (1), either numeri-
cally or by taking advantage of the Krogh–Erlang formula.
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The manuscript is organized as follows. In Sec. 2, we describe the diffusion-operator method,
the methods used to provide model-based pO2 maps used in the method validation, and the
metrics used to quantify the accuracy of the resulting estimates. In Sec. 3, we first illustrate
the method and the necessary compromise between reducing noise and limiting bias when
choosing the level of spatial smoothing. Next, we systematically explore the accuracy of
CMRO2 estimates for a variety of situations with different levels of noise, different grid sizes
of the pO2 measurement, and different levels of smoothing. In these systematic explorations of
the efficacy of the method, the simple single-arteriole situation where the Krogh–Erlang formula
gives the ground truth, is considered for simplicity. Later, we illustrate the use of the diffusion-
operator method in more complicated situations where several arterioles provide the consumed
oxygen, or the CMRO2 varies with position. In Sec. 4, we discuss the diffusion-operator method
and its further development and use.

2 Methods

2.1 Mathematical Modeling of CMRO2 and pO2

The blood-tissue O2 transport is thought to be dominated by diffusion.12 The relationship
between pO2 values denoted as Pðr; tÞ and the net rate of oxygen consumption sðr; tÞ in the
tissue can then, in the general case, be described by6,12

EQ-TARGET;temp:intralink-;e002;116;489

∂Pðr; tÞ
∂t

¼ D∇2Pðr; tÞ þ sðr; tÞ
α

: (2)

In Eq. (2), ∇2 is the Laplace operator in three spatial dimensions (3D). Further, D and α are the
diffusion coefficient and solubility, respectively, of oxygen in the tissue. They are assumed to be
space-invariant. If warranted, Eq. (2) can be generalized to the case whereD depends on position
and direction, or when α varies with position.12

Equation (2) is only applicable outside the arterioles supplying the oxygen to the brain tissue.
In the context of this equation, the oxygen supplied to the tissue is represented by a boundary
condition of pO2 imposed at the vessel wall of the arteriole. Note, however, that the effect of an
oxygen supply from a bed of small capillary vessels located some distance away from the arteri-
ole may be incorporated in the description. Such an oxygen supply will offset (or even reverse
the sign of) the net rate of oxygen consumption sðr; tÞ in this region.

In this paper, we will focus on a special case of this diffusion problem where (i) the system is
in a steady-state so that the term ∂Pðr; tÞ∕∂t can be neglected and (ii) there is no variation of pO2

in the vertical z-direction, that is, the direction along the cortical axis parallel to the penetrating
arteriole. These assumptions are also incorporated in the Krogh–Erlang model used to estimate
the CMRO2 in Ref. 4. In this case, the diffusion equation [Eq. (2)] simplifies to

EQ-TARGET;temp:intralink-;e003;116;266∇2PðrÞ ¼ sðrÞ
Dα

; (3)

where ∇2 now refers to the 2D Laplace operator (which with Cartesian coordinates reads
∇2 ¼ ∂2∕∂x2 þ ∂2∕∂y2). Equation 3 can be written more compactly as

EQ-TARGET;temp:intralink-;e004;116;198∇2PðrÞ ¼ MðrÞ; (4)

where

EQ-TARGET;temp:intralink-;e005;116;154MðrÞ ≡ sðrÞ∕Dα: (5)

Here MðrÞ is a new position-dependent variable encapsulating the net rate of oxygen consump-
tion in the neural tissue. In principle, Eq. (4) describes the spatial map of pO2 for any set of
oxygen sinks [metabolic consumption, sðrÞ > 0] and sources [i.e., oxygen provided by small
capillaries, sðrÞ < 0]. The variableMðrÞ is then proportional to the net rate of oxygen consump-
tion, that is, the difference between oxygen sinks and sources at position r in tissue.

Sætra et al.: Spatially resolved estimation of metabolic oxygen consumption. . .

Neurophotonics 035005-3 Jul–Sep 2020 • Vol. 7(3)



By introducing a characteristic length r� and a characteristic oxygen consumption M�, we
can rewrite Eq. (4) in a dimensionless form which is useful in the further analysis:

EQ-TARGET;temp:intralink-;e006;116;711∇̂2P̂ðr̂Þ ¼ M̂ðr̂Þ: (6)

In Eq. (6), r̂ ¼ r∕r�, P̂ ¼ P∕ðM�r�2Þ, M̂ ¼ M∕M�, and ∇̂2 is the Laplace operator in terms of
the dimensionless position variables. In this dimensionless form, the number of model param-
eters is effectively reduced by one, making the further analysis simpler.

2.2 Inverse Problem of Estimating CMRO2 from pO2 Measurements

We estimate CMRO2 by solving the inverse diffusion problem, that is, the problem where PðrÞ
is known from experiments, and the net rate of oxygen consumption sðr; tÞ is the unknown
function of interest. It follows from Eq. (2) that sðr; tÞ based on pO2 measurements
Pdataðr; tÞ is given by

EQ-TARGET;temp:intralink-;e007;116;555sestðr; tÞ ¼ α
∂Pdataðr; tÞ

∂t
þ αD∇2Pdataðr; tÞ: (7)

For the stationary 2D case, this reduces to

EQ-TARGET;temp:intralink-;e008;116;501sestðrÞ ¼ αD∇2PdataðrÞ; (8)

or

EQ-TARGET;temp:intralink-;e009;116;458MestðrÞ ¼ ∇2PdataðrÞ; (9)

where ∇2 is the Laplace operator in 2D.
Equation 9 says that given a data set of oxygen partial pressure Pdata measured on a 2D spatial

grid, M can be estimated by taking the Laplacian of Pdata (or in practice, a smoothed version of
Pdata). We refer to this approach as the diffusion-operator method for CMRO2 estimation. If one
wants estimates for sest, values of the diffusion coefficient D and the solubility α are also
required.

The double spatial derivatives in the Laplace operator make the diffusion-operator method
inherently very sensitive to noise in the measured spatial pO2 profiles. Thus to reduce adverse
effects of noise in the pO2 measurements, we pursue a method that spatially smooths Pdata before
application of the Laplace operator.

2.2.1 Smoothing of pO2 data

To smooth pressure data, we performed cubic smoothing spline interpolation using the csaps
function in MATLAB’s Curve Fitting Toolbox. The function minimizes the square deviation
between the estimated and measured 2D data (so-called L2 norm) while penalizing large dou-
ble-spatial derivatives in the smoothed data. Other smoothing procedures could have been pur-
sued instead, but a key motivation for this particular choice was the public availability of the tool.

In terms of dimensionless quantities, the csaps function takes a given data set P̂dataðx̂; ŷÞ
and generates a smoothing spline P̂smoothðx̂; ŷÞ that minimizes

EQ-TARGET;temp:intralink-;e010;116;180

ð1 − qÞ
Xn
i¼1

Xm
j¼1

½P̂dataðx̂i; ŷjÞ − P̂smoothðx̂i; ŷjÞ�2

þ q
ZZ ��

∂2P̂smoothðx̂; ŷÞ
∂x̂2

�2
þ
�
∂2P̂smoothðx̂; ŷÞ

∂ŷ2

�2�
dx̂ dŷ: (10)

Here n and m are the number of entries of x̂ and ŷ, respectively, and q is a smoothing parameter
between 0 and 1. q ¼ 0 corresponds to the case with no smoothing, and increasing values of
q imply increasing the amount of smoothing. Note that the csaps function takes p ¼ 1 − q
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as input argument, see MATLAB documentation. This MATLAB function allows for giving
more weights to some data points than others in the optimization. We keep the weights identical
to 1 for all data points in the present application.

The csaps function allows the smoothing spline P̂smooth to be computed with higher res-
olution than the spatial resolution of the measurements. This is convenient as it allows for a
higher spatial resolution in the maps of estimatedM obtained from the discrete Laplace function
del2. Assuming that the measurements are taken in a rectangular grid of points,13 we here refer to

the grid spacing between the pressure data points as d̂data, and the grid spacing of the estimated

pressure points P̂smooth as d̂est. In the smoothing function, d̂est is set by inserting position vectors

for the estimation points x̂est and ŷest with this spacing. Likewise, d̂data is set by inserting position

vectors for the data points x̂ and ŷ with this spacing. Then P̂smooth is estimated from the recorded
pressure by the following call of csaps:

EQ-TARGET;temp:intralink-;e011;116;581P̂smooth ¼ csapsðfŷ; x̂g; P̂; ð1 − qÞ; fŷest; x̂estgÞ: (11)

In this paper, we keep a fixed small value of d̂est, that is, d̂est ¼ 0.001, to minimize the error
introduced from the discreteness of the Laplace operator used in the estimator presented in the
next section. With this choice, the discreteness error is negligible far away from the arteriole and
much smaller than other estimation errors close to the arteriole.

2.2.2 Application of Laplace operator

After the smoothing procedure, the net oxygen consumption as described by M̂ðx̂; ŷÞ can be
estimated directly by application of the Laplace operator:

EQ-TARGET;temp:intralink-;e012;116;434M̂estðx̂; ŷÞ ¼ ∇̂2P̂smoothðx̂; ŷÞ: (12)

With P̂smooth given on a square (or rectangular) grid with grid spacing d̂, we apply the discrete
finite difference approximation of the Laplace operator:

EQ-TARGET;temp:intralink-;e013;116;375M̂estðx̂i; ŷjÞ

¼ P̂smoothðx̂iþ1; ŷjÞþ P̂smoothðx̂i−1; ŷjÞþ P̂smoothðx̂i; ŷjþ1Þþ P̂smoothðx̂i; ŷj−1Þ− 4P̂smoothðx̂i; ŷjÞ
d̂2

:

(13)

Here the integers i and j represent the grid point positions, that is, x̂i ¼ id̂ and ŷj ¼ jd̂. In the
present application, the MATLAB function del2 is used to compute this discrete finite difference
approximation of the Laplace operator. Note that in order to calculate the right-hand side
of Eq. (13), one must multiply the output from del2 by 4. Specifically, we use the command

4 � del2ðP̂smooth; d̂Þ to calculate M̂estðx̂; ŷÞ.

2.2.3 Choice of smoothing parameter

The effect of the csaps smoothing function can be characterized by a smoothing length d̂q,
which describes how much a spatial δ-function is smeared out in space. By numerical explora-

tion, we found that this characteristic smoothing length depends on q and d̂data through the rela-
tionship

EQ-TARGET;temp:intralink-;e014;116;140d̂q ¼ kðqd̂dataÞ1∕4; (14)

where k is a constant.
This relationship was found numerically by smoothing a square single-entry matrix with one

as the center element, and the rest of the elements set to zero. The resulting spatially smoothed
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δ-function was then plotted, for a fixed value of d̂data and different values of q, as a function of
the distance r to the center point, as shown in Fig. 1(a). We then defined the characteristic length

d̂q to be the distance from the center point, in which the function value had fallen 50% compared
to the center value, see dotted lines in Fig. 1(a). Figure 1(b) shows the dependence of the esti-

mated d̂q on q (for a fixed d̂data of 0.005). We observe that d̂q increases slowly with q, that is,

when q is increased by a factor 104, d̂q increases only by a factor 10. Figure 1(c) shows the

smoothed δ-function when instead the value of q is fixed, while d̂data has different values.

Again, when d̂q is read out from the curve and plotted as a function of d̂data [Fig. 1(d)], we

see that d̂q increases slowly with d̂data, that is, when d̂data is increased by a factor 104, d̂q increases
only by a factor 10.

The detailed value of the constant k in Eq. (14) is not critical for our purpose. We set it by

reading out the value for d̂q from the graph for the case with d̂data ¼ 5 × 10−3 and q ¼ 5 × 10−4

as shown with a blue line in Fig. 1(e). The readout value, d̂q ≈ 5.6 × 10−2, was then used to
calculate k from Eq. (14). After rounding to one decimal, this gave k ¼ 1.4.

Thus given d̂data and a chosen value of d̂q, we can find which q to use in csaps in Eq. (11)
through the following equation:

(a) (b)

(c)

(e)

(d)

×
×

×

Fig. 1 Choice of smoothing parameter in csaps. The effect of the smoothing function csaps is

characterized by a smoothing length d̂q that is related to the smoothing factor q and the spatial

spacing d̂data through Eq. (14). We found this relationship by smoothing a 2D spatial δ-function

using different values of q and d̂data, and plotting the result as a function of the distance r̂ from the
position of the δ-function. (a) and (c) The normalized smoothed δ-function [δsmoothðr̂ Þ] for different
values of q (d̂data fixed) and d̂data (q fixed), respectively. The characteristic smoothing length d̂ q is
defined as the distance corresponding to δsmooth ¼ 0.5 (dotted lines) and is plotted as a function of

q and d̂data in (b) and (d), respectively. In (e), we demonstrate how different sets of q and d̂data-

values correspond to the same d̂q , that is, the same smoothing effect.
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EQ-TARGET;temp:intralink-;e015;116;735q ¼
�
d̂q
1.4

�4
1

d̂data
: (15)

This equation tells us that if, say, d̂data increases from 5 × 10−3 to 1 × 10−2, then q must decrease
from q ¼ 5 × 10−4 to about q ¼ 2.6 × 10−4 to keep the same smoothing effect, that is, give the

same value of d̂q. The dotted orange line in Fig. 1(e) illustrates that this is indeed the case.

2.3 Forward Modeling of Ground Truth pO2 Data

To validate the CMRO2 estimation method, we generate synthetic data of oxygen partial pressure
P̂ðr̂Þ by solving Eq. (4) for chosen values of M̂ðr̂Þ and chosen geometries of vascular sources
and measurements points. The synthetic data work as a “ground truth.” Since we know its true
value of M̂ðr̂Þ, we can use it to test our estimation method. In this study, we compute this ground
truth data by means of two methods: (i) using the Krogh–Erlang model and (ii) by means of
finite-element modeling.

2.3.1 Krogh–Erlang model

In the well-known Krogh–Erlang model,5 a cylindrical geometry, mimicking a straight segment
of a blood vessel, was used to model the metabolic consumption of oxygen provided by capil-
laries in muscles. In Ref. 4, the same model was used to study metabolic consumption of oxygen
provided by penetrating arterioles in brain tissue. The model describes the blood vessel as a small
cylinder with radius Rves supplying a tissue cylinder with radius Rt with oxygen. The further
assumptions are (i) uniform consumption of oxygen in the tissue, that is, constant M outside the
vessel, (ii) no axial diffusion of oxygen, (iii) P ¼ Pves at Rves, and (iv) no pressure gradient at the
surface of the tissue cylinder, that is, dP∕dr ¼ 0 at Rt. With these four assumptions, the solution
of Eq. (4) is found to be

EQ-TARGET;temp:intralink-;e016;116;396PðrÞ ¼ Pves þ
1

4
Mðr2 − R2

vesÞ −
1

2
MR2

t ln
r

Rves

; (16)

for Rt ≥ r ≥ Rves. This so-called Krogh–Erlang formula predicts the oxygen pressure P in the
tissue as a function of the distance r from the vessel’s center. For our application, we set PðrÞ ¼
Pves if r < Rves.

Equation 16 can be written in dimensionless form as

EQ-TARGET;temp:intralink-;e017;116;304P̂ðr̂Þ ¼
�
P̂ves; if r < R̂ves

P̂ves þ 1
4
M̂ðr̂2 − R̂2

vesÞ − 1
2
M̂R̂2

t ln r̂
R̂ves

; if R̂t ≥ r ≥ R̂ves:
(17)

Here we also have introduced P̂ves ¼ Pves∕ðM�r�2Þ, r̂ ¼ r∕r�, R̂ves ¼ Rves∕r�, and R̂t ¼ Rt∕r�.
Further, the boundary condition dP̂∕dr̂ ¼ 0 for r̂ ¼ R̂t is assumed.

2.3.2 Finite-element modeling: FEniCS model

The Krogh–Erlang formula relates the oxygen consumption and the partial oxygen pressure
under very specific conditions. Another option is to solve Eq. (6) numerically. This allows for
the solutions for more general cases, such as a more complicated geometry with, for example,
several arterioles providing oxygen, or an inhomogenous oxygen consumption. We implemented
Eq. (6) in the finite-element software package FEniCS14 and verified the implementation by
comparing the result to that of the Krogh–Erlang formula.

The FEniCS implementation solves the variational formulation of Eq. (6): Let V be a space of
test functions fv1; : : : vNg on the computational domain Ω. We aim to find P̂ such that

EQ-TARGET;temp:intralink-;e018;116;93

Z
Ω
∇P̂ · ∇vi þ M̂vidx −

Z
∂Ω

∇P̂ · nds ¼ 0; ∀ vi ∈ V; (18)
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where ∂Ω denotes the boundary of the domain, and n is a normal vector pointing out of the
domain. This variational form is obtained by multiplying Eq. (6) with the test function vi and
integrating over Ω, followed by integration by parts of the Laplacian term. Note that as we apply

a fixed value for P̂ by the blood vessel and no pressure gradient at the boundary of the domain,
the boundary integral in Eq. (18) vanishes.

The solution to Eq. (18) gives us P̂ on an unstructured finite-element mesh. Experimental
data are typically measured on a structured Cartesian grid, and to better mimic this we transfer
the synthetic data generated by FEniCS to a 2D NumPy array. We do this by first defining a

new Cartesian mesh using NumPy with a distance d̂data between each point. Then in the next

step, we pick out values of P̂ from the FEniCS solution corresponding to these positions and
save them to a 2D NumPy array. We set PðrÞ ¼ Pves if r < Rves.

2.3.3 Noise

We add additive Gaussian noise to the synthetic data using the normrnd function in MATLAB.

For each value P̂ of oxygen partial pressure, whether it comes from the Krogh–Erlang equation

or the FEniCS solution, we draw a random number from a Gaussian distribution with mean P̂

and standard deviation (SD) σ̂P, and replace P̂ by this number.

2.4 Performance Measures of the Diffusion-Operator Method

In order to evaluate the performance of the diffusion-operator method, we test it on the synthetic
data and calculate its bias, precision, and accuracy. As precision and accuracy measures, we use
SD and root-mean-square error (RMSE). The mathematical definitions of these measures are

EQ-TARGET;temp:intralink-;e019;116;432bias ¼ 1

N

XN
j¼1

ðM̂est;j − M̂Þ; (19)

EQ-TARGET;temp:intralink-;e020;116;368SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

ðM̂est;j − M̂estÞ2
vuut ; (20)

and

EQ-TARGET;temp:intralink-;e021;116;321RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
j¼1

ðM̂est;j − M̂Þ2
vuut ; (21)

where N is the number of synthetic samples and M̂est;j is the j’th estimate of M̂.
The RMSE combines both bias and precision as its squared value MSE is equal to the SD

squared plus the bias squared: MSE ¼ SD2 þ bias2.15

3 Results

3.1 Illustration of the Diffusion-Operator Method

The principle of the diffusion-operator method for estimation of the net oxygen consumption
MðrÞ from pO2 measurements PðrÞ is illustrated in Fig. 2. In this example, we assume the spatial
map of pO2 to follow the Krogh–Erlang formula in Eq. (16), mimicking the situation where a
single arteriole is the source of the oxygen, and the oxygen consumption M is constant around
the arteriole.

Figure 2(a) shows the pressure profile in the radial directions as described by this formula
with example parameters Pves, M, and Rves chosen to be in qualitative agreement with example
data from Ref. 4, that is, Pves ¼ 80 mmHg, M ¼ 0.001 mmHg μm−2, and Rves ¼ 6 μm, and Rt
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set to 200 μm. Figure 2(b) shows a contour plot of this synthetic pO2 map in 2D. Here dimen-
sionless parameters (cf., Sec. 2) are used with r� ¼ 141 μm and the convenient choice M� ¼ M
so that the maximal pressure Pves corresponds to P̂ves ≈ 4.1 and M̂ ¼ 1. We show the pO2 map in
a square window with side lengths of 282 μm so that the dimensionless position coordinates
extends from −1 to 1 along the x̂ and ŷ axes. With this choice, the corners of the square cor-

respond to a radial distance equal to R̂t, the radius of the tissue cylinder.
The problem of CMRO2 estimation now corresponds to estimating M at the different loca-

tions inside the square window based on these recordings. Figure 2(c) shows the estimated M
(in units of M�) found by applying the Laplace estimator in Eq. (13) on the data in Fig. 2(b).
In this example, the dimensionless distance between the grid points, in which pO2 is “measured”
is set to d̂ ¼ 0.007, corresponding to a physical grid-point distance of about 1 μm. It is seen that
some distance away from the vessel, the estimator predicts M̂ very close to 1, that is,M ≃ M�, as
it should.

However, close to the vessel, that is, for r̂ ≳ R̂ves, clearly incorrect values of M̂ are obtained.
One obvious reason is that the discrete Laplace estimator in Eq. (13) will be inaccurate when one
or more of the grid points used in the estimation is inside the vessel. Here the pressure P is not
described by Eq. (16) and is instead assumed constant so that ∇2P ≠ M, cf. Eq. (4). For the
present example, a more important reason is that immediately outside the vessel, the pressure
profile drops sharply [due to the last term in the Krogh–Erlang formula in Eq. (16)] so that the

discrete Laplace estimator becomes inaccurate when the grid-point distance d̂ is too large.
The “flower-like” symmetric pattern of this estimation error in Fig. 2(c) reflects the Cartesian
symmetry of the estimator in Eq. (13). This discretization error can be reduced by reducing the

value of d̂, i.e., using a finer grid.
Figure 2(c) illustrates that if the experimental measurements were noiseless, the Laplace

estimator in Eq. (13) could be used directly on the pO2 data, at least when the grid of recordings
is finely spaced. This would apply for any distribution of vessels as long as the estimator M̂est in
Eq. (13) is used sufficiently far away from the vessel wall. Experimental pO2 data will always

(a)

(d)

(b) (c)

(e) (f)

(g) (h)

Fig. 2 Illustration of diffusion-operator estimation method. (a) An example of a synthetic pO2

profile calculated using the Krogh–Erlang formula in Eq. (17) without noise. (b) The corresponding
2D representation of this pO2 data set with use of dimensionless parameters. (d) A map of addi-
tive Gaussian noise P̂σ and (e) the corresponding pO2 map where this noise has been added.
(g) A data set where smoothing has been applied. (c), (f), and (h) Estimated M̂s calculated from
the pO2 data in (b), (e), and (g), respectively. Parameter values: all panels: Pves ¼ 80 mmHg,
Rves ¼ 6 μm, R t ¼ 200 μm, M ¼ 0.001 mmHg μm−2. (a) ddata ¼ 1 μm; (b)–(h) d̂data ¼ 0.007;
r � ¼ 141 μm, M� ¼ M ; (d)–(h) σ̂P ¼ 5 × 10−4; and (g), (h) d̂est ¼ 0.001, d̂ q ¼ 0.04.
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contain noise, however, and Fig. 2(d) shows a map of additive Gaussian noise P̂σ with zero
mean and SD σ̂P ¼ 0.0005. Figure 2(e) shows the same synthetic data as in Fig. 2(b) where
this noise has been added, indistinguishable by eye from the noise-free map in Fig. 2(b).

When M̂est in Eq. (13) is applied on these synthetic data, the estimated values of M̂ are wildly

inaccurate [Fig. 2(f)]. Not only does the estimated values of M̂ have much larger magnitudes than

the true value of M̂ ¼ 1, they also have both signs and vary strongly between neighboring grid
positions (that is, between neighboring pixels in the map). These poor estimates reflect that
the double-derivative operation of the Laplacian estimator corresponds to a high-pass spatial
filtering that effectively amplifies the effects of the noise in the data.

This noise in the estimated M̂ can be reduced by the use of spatial smoothing, that is, low-

pass filtering, of the data P̂ before application of M̂est. While the smoothed map P̂smooth in
Fig. 2(g) at first glance does not appear to be very different from the unsmoothed version in
Fig. 2(e), the effect of the smoothing on the estimatedM is dramatic [(Fig. 2(h)]. With the choice

of smoothing used in this example (see figure caption for details), quite accurate estimates of M̂
are found for a large region of the area around the central vessel [light-colored regions of
Fig. 2(h)]. However, the smoothing procedure results in large estimation errors in a sizable
region around the blood vessel as well as close to the edges of the square data set.

To summarize, suitable smoothing of the pO2 data before using the Laplace estimator M̂est

may dramatically improve the estimation accuracy. However, the choice of smoothing is critical:
too little low-pass smoothing will not remove enough of the high-frequency spatial noise; too
much smoothing will smooth away spatial information in the data and thus give poor estimates of
M. Next, we will investigate this dilemma in more detail.

3.2 Noise Removal versus Bias

Figure 3 illustrates the dilemma when choosing the right level of low-pass smoothing of the pO2

data P before using the Laplace estimator in Eq. (13). In the smoothing algorithm, the quantity
described in Eq. (10) was minimized to penalize sharp variations in Psmooth while at the same
time fitting the synthetic data Pdata. The level of smoothing is set by the smoothing length dq
(or d̂q in dimensionless units) which is related to the smoothing parameter used in the presently
used MATLAB function csaps via Eq. (14) (see Sec. 2). This smoothing length describes how
much a point (that is, a 2D spatial δ-function) will be smeared out in space. Thus the larger dq is,
the more the pO2 map will be smeared out or smoothed.

To quantify the performance of the estimator, we use the following three performance mea-
sures: bias, SD, and RMSE. The bias [Eq. (19)] measures the systematic error in the estimator
Mest introduced by the smoothing (and discreteness of data points) whether the data is noisy or
not. It can be evaluated from noiseless data (that is, with Pσ ¼ 0), and the results for different
values of smoothing are shown in Figs. 3(a), (d), (g), and (j). In the case of no smoothing

[d̂q ¼ 0, Fig. 3(a)], the only bias comes from the discreteness of the grid of data points and is

only observed close to the vessel. With a small amount of smoothing [d̂q ¼ 0.02, Fig. 3(d)], the

bias around the vessel is increased. For d̂q ¼ 0.04 [Fig. 3(g)] and d̂q ¼ 0.08 [Fig. 3(j)], this

tendency of increased bias with increasing d̂q is continued, and some bias is also observed close
to the edges of the square grid. For the largest smoothing depicted in Fig. 3(j), about one-third or
so of the map has a bias with a magnitude larger than 100%.

The SD [Eq. (20)] measures the precision or the error in the estimation due to the presence
of noise. This measure obviously depends on the level of noise Pσ . In the present example in
Fig. 3, a Gaussian noise with a SD of σ̂P ¼ 5 × 10−4 is used. With r� ¼ 141 μm and M� ¼
0.001 mmHg μm−2 as in Fig. 2 this corresponds to a physical noise level of σP ≈ 0.01 mmHg.
The SD for different amounts of smoothing is shown in Figs. 3(b), (e), (h), and (k). Three obser-
vations of note are that (i) the SD of the estimates is extremely large when no smoothing is

applied (d̂q ¼ 0), (ii) the SD decreases with increasing d̂q, and (iii) unlike for the bias, the
SD has similar values at the different positions.
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An essential feature of the SD is that it is proportional to the SD of the noise in the pressure
σ̂P. Thus if σ̂P was doubled to 0.001, the SDs in Figs. 3(b), (e), (h), and (k) would be doubled
as well.

The accuracy of the estimator Mest is measured by the RMSE [Eq. (21)], which incorporates
both the bias and precision (SD) through the relation

EQ-TARGET;temp:intralink-;e022;116;310RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2 þ SD2

p
: (22)

This measure describes the total statistical uncertainty of the estimates when Mest is applied on

individual data sets. The bias increases with increasing d̂q [Figs. 3(a), (d), (g), and (j)], whereas

the SD instead decreases with increasing d̂q [Figs. 3(b), (e), (h), and (k)]. One would thus expect

a suitable intermediate value of d̂q to give the smallest RMSE. For the example in Fig. 3, we

indeed see that for the values of d̂q considered, the intermediate value d̂q ¼ 0.04 [Fig. 3(I)] offers
the best compromise between bias and noise removal and gives the smallest RMSE. For this

value of d̂q, the RMSE is smaller than 25% for almost all positions except for a region around
the blood vessel.

The large RMSE close to the blood vessel even for the “best” choice of d̂q in Fig. 3(I) reflects
the large bias at these locations [Fig. 3(g)].

3.3 Choice of Smoothing Length dq

As illustrated in the previous section, a key question when using the Laplace estimator in
Eq. (13) is the choice of the amount of smoothing, or more specifically, the choice of the smooth-
ing length dq. This will not only depend on the noise level, but also the spatial resolution of the

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3 Illustration of noise removal versus bias. (a), (d), (g), and (j) Bias ofMest for different values
of dq . (b), (e), (h), and (k) SD of Mest for different values of dq . (c), (f), (i), and (l) RMSE of Mest for
different values of dq . Bias is computed from Eq. (19) for the case without noise σ̂P ¼ 0 so that a
single estimate of M̂est is sufficient, that isN ¼ 1 in Eq. (19). SD is computed from Eq. (20) with 104

estimates of M̂est, that is, N ¼ 104. In the computation of SD and RMSE, σ̂P ¼ 5 × 10−4. All per-
formance measures are given as the percentage of the ground truth value M̂ ¼ 1. Note also that
the MATLAB routine csaps is used also for the case without smoothing (d̂ q ¼ 0) with q ¼ 0
inserted in Eq. (11). Other parameter values: d̂data ¼ 0.007, Pves ¼ 80 mmHg, Rves ¼ 6 μm,
R t ¼ 200 μm, M ¼ 0.001 mmHg μm−2, r � ¼ 141 μm, and M� ¼ M .
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data as described by the grid resolution, that is, the distance between adjacent points on the
measurement grid, ddata. Since the bias is independent of the noise level, and the SD is linearly
proportional to the SD σP of the noise, it is convenient to first explore the interplay between dq
and ddata for the bias and SD separately.

In Fig. 4, we show how the bias varies with ddata and dq for three choices of parameter values

of each: d̂data ¼ 0.0035, 0.007, 0.014 (here corresponding to physical grid resolutions of approx-

imately 0.5, 1, and 2 μm, respectively), d̂q ¼ 0, 0.02, and 0.04 (corresponding to physical
smoothing lengths of approximately 0, 3, and 6 μm, respectively). For the case with no smooth-

ing [Figs. 4(a), (d), and (g)], we observe that the bias increases with increasing d̂data. This illus-
trates that the error due to the discreteness of the Laplace estimator is sensitive to ddata even when

dest is set to a very small number (d̂est ¼ 0.001, cf., Sec. 2). This is not surprising because

decreasing the grid resolution from d̂data to d̂est means that we estimate P̂ at a denser grid
of points than what is directly available in the data. With smoothing added (two rightmost col-

umns of Fig. 4), the bias increases, and the larger the value of d̂q is, the larger the bias is. (Note
the difference in color scales in this figure.)

In Fig. 5, we correspondingly show how the SD varies with ddata and dq for the same set of
parameters as in Fig. 4 for a fixed level of noise in the data, σ̂P ¼ 5 × 10−4. Here the most
important feature is that the SD is strongly reduced with increased smoothing, that is, increasing
dq (from left to right). For the smoothed cases (two rightmost columns), we also observe that SD
increases with increasing ddata (i.e., making the grid of measurements more sparse).

Figure 6 shows the RMSE, computed from Eq. (22), for the example bias and SD shown in
Figs. 4 and 5, respectively. For the smoothed cases (two right columns), we observe that the

RMSE always increases with the d̂data. Thus, with the noise level fixed, it is (unsurprisingly)
always advantageous to have a dense measurement grid. For the noise level in this example, we

see that the choice d̂q ¼ 0.02 (second column) gives a good estimate for d̂data ¼ 0.0035, that is,

low RMSE, for large parts of the map. For d̂data ¼ 0.007 and especially d̂data ¼ 0.014 the SD is
not sufficiently reduced, and the RMSE is overall high. For the case with a larger smoothing

(d̂q ¼ 0.04, third column) the SD is much reduced for all values of d̂data. However, the region

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)

Fig. 4 Bias for different smoothing. (a)–(i) Bias of Mest for different values of dq (increasing from
left to right) and d̂est ¼ 0.001 (increasing from top to bottom) computed from Eq. (19) and given as
the percentage of the ground truth value M̂ ¼ 1. There was no noise added to the pressure data
so that a single estimate of M̂est is sufficient, that is N ¼ 1 in Eq. (19). Parameter values: Pves ¼
80 mmHg, Rves ¼ 6 μm, R t ¼ 200 μm, M ¼ 0.001 mmHg μm−2, r � ¼ 141 μm, and M� ¼ M .

Sætra et al.: Spatially resolved estimation of metabolic oxygen consumption. . .

Neurophotonics 035005-12 Jul–Sep 2020 • Vol. 7(3)



with large bias around the vessel is increased, and the spatial region in which RMSE values are
small is shrunken.

Note that the SD results in Fig. 5 and the RMSE results in Fig. 6 only pertain to the particular
noise level used in the example, that is, σ̂P ¼ 5 × 10−4. However, the SD is proportional to the
noise level, so a doubling of σ̂P would simply double the SD from what is shown in Fig. 5.
RMSE results analogous to Fig. 6 for other noise levels can thus be obtained by appropriate
scaling of SD in Eq. (22).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Root-mean-square error for different smoothing—fixed noise level. (a)–(i) RMSE computed
from Eq. (21) for the bias and SDs shown in Figs. 4 and 5, respectively. Values are given as the
percentage of the ground truth value M̂ ¼ 1.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5 SD for different smoothing—fixed noise level. (a)–(i) SD of Mest for different values of dq

(increasing from left to right) and ddata (increasing from top to bottom) computed from Eq. (20) with
N ¼ 104. Values are given as the percentage of the ground truth value M̂ ¼ 1. (Note that the grid-
like pattern visible in some of the panels is a numerical artifact resulting from the application of the
MATLAB routine csaps.) Parameter values: σ̂P ¼ 5 × 10−4, Pves ¼ 80 mmHg, Rves ¼ 6 μm,
R t ¼ 200 μm, M ¼ 0.001 mmHg μm−2, r � ¼ 141 μm, and M� ¼ M .
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3.4 Estimation of CMRO2 for Other Example Situations

In the examples above, we have applied the diffusion-operator method to the situation with (i) a
constant value ofM and (ii) a single vessel providing the oxygen so that the pO2 map is described
by the Krogh–Erlang formula in Eq. (16). For these examples, an alternative approach could be
to estimateM by fitting the Krogh–Erlang formula directly to measured data.4 In other situations
where, for example,M varies with position or several nearby vessels provide the oxygen so that
the circular symmetry assumed in the Krogh–Erlang formula does not hold, this approach would
not be applicable. In contrast, the current diffusion-operator method does not assume a constant
M and can be applied to cases where multiple arterioles deliver oxygen.

3.4.1 Spatially varying CMRO2

To illustrate the applicability of the Laplace estimator to the situation with varying M, we con-
sider in Fig. 7 a hypothetical case where a single vessel provides the oxygen, but where the
parameter M varies with distance from the vessel. Specifically, the value of M is assumed
to be smaller far away from the vessel. This can be due to genuine differences in CMRO2.
Alternatively, this can mimic the situation where a distant bed of capillaries acts as an oxygen
source unaccounted for in the model and leading to an apparent decrease in CMRO2. Here the
solution of the Poisson equation in Eq. (4) must be found numerically, and in Figs. 7(a) and (b),
we illustrate the pO2 maps found using the FEniCS numerical solver (see Sec. 2). Figure 7(a)
shows a 1-D representation of this pO2 profile in the radial direction for the case without any
added noise. Figure 7(b) correspondingly shows a 2D colormap of the same synthetic data when
noise has been added. The dotted lines in Fig. 7(a) mark the distance from the vessel (jr̂j ¼ 0.7)

where the value of M̂ changes. With the characteristic length r� used throughout this paper, this
corresponds to a physical distance of ∼100 μm, which is a typical size of the region around
diving arterioles void of capillaries in the rat cortex.4 We see in Fig. 7(a) that beyond this dis-
tance, there is almost no decay in the pO2 compared to that within the capillary-free region.

When using the Laplace estimator on the noise-free data, we obtain excellent estimates ofM,

that is, M̂est ≈ 2 within the capillary-free region and M̂est ≈ 0.5 outside this region [Fig. 7(c)].

(a) (b)

(c) (d)

Fig. 7 Estimation of spatially varying M . Diffusion-operator estimation of M̂ for the case with a
single oxygen-releasing vessel in the center with a larger M̂ close to the vessel (r̂ < 0.7 and
M̂ ¼ 2) than far away (r̂ > 0.7 and M̂ ¼ 0.5). The synthetic pO2 maps were calculated using
the FEniCS numerical solver (see Sec. 2). (a) 1-D illustration of pO2 map for the case without
noise (σ̂P ¼ 0). The dotted lines mark the boundary between different levels of M̂ . (b) 2D illustra-
tion of the case with noise added (σ̂P ¼ 0.0005). (c) Estimated M̂ from the noise-less data
without use of smoothing. (d) Estimated M̂ from the data in (b) (where noise is present) with use
of smoothing (d̂ q ¼ 0.04). Other parameter values: d̂data ¼ 0.007, Pves ¼ 80 mmHg, Rves ¼ 6 μm,
r � ¼ 141 μm, and M� ¼ 10−3.
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We only observe sizable errors in the immediate vicinity of the vessel, the errors stemming from

the discreteness of the synthetic pO2 data used in the estimation (d̂data ¼ 0.007). Further, when
using the Laplace estimator on a smoothed version of the data in Fig. 7(b), we still obtain good

estimates of M̂ some distance away from the vessel. This is in agreement with the low values for

the RMSE found for suitable smoothing of noisy data for the case with constant M̂ in Fig. 6.

3.4.2 Several vessels providing oxygen

An example of a situation where multiple nearby vessels serve as oxygen sources is shown in
Fig. 8. Again, no analytical solution for the pO2 map is available, and the Poisson equation is
instead computed by means of FEniCS. As observed in Fig. 8(a), the circular symmetry of the
pO2 map seen in the earlier examples is broken around the vessels, but the Laplace estimator is

still able to accurately estimate M̂ except in locations close to the vessels [Fig. 8(b)].

3.5 Estimation of Spatially-Averaged M

So far, we have used the Laplace estimator to estimate spatial maps ofM. The Laplace estimator
can give accurate estimates as long as the noise level is not too large, but the estimates ofM in the
immediate vicinity of the oxygen-releasing blood vessels are typically inaccurate due to the bias
introduced by the smoothing procedure.

In situations where the pO2 data are too noisy to give reliable spatially resolved maps of
estimatedM, one can still obtain estimates of spatially averaged values ofM (as when estimating
CMRO2 based on fitting the Krogh–Erlang model in Eq. (16) to experimental data4). The
obvious procedure for estimating such average valuesMest;av is to take the average over spatially
resolved values of Mest, that is

EQ-TARGET;temp:intralink-;e023;116;425Mest;av ¼
1

N

XN
i¼1

MestðriÞ: (23)

The SD ofMest;av is then expected to be a factor
ffiffiffiffi
N

p
reduced compared to the SD for the spatially

resolved estimates MestðrÞ.
The bias is not reduced by such an averaging procedure, however. To reduce the effects of

smoothing-induced bias, one possible procedure is to take the average of M only for positions
outside a circular region around the oxygen-delivering vessel. As illustrated in Fig. 9(a), this can

reduce the bias in the Mest;av substantially. Larger values of the smoothing length d̂q give larger
regions of large bias around the vessel (Fig. 4). Thus larger areas around the vessel, parame-

terized by the diameter d̂cut, should be removed from the averaging sum in Eq. (23) to keep the
bias small. This removal of area from the averaging sum implies a smaller value for N in Eq. (23)

(a) (b)

Fig. 8 Estimation of M with several vessels providing oxygen. Example of diffusion-operator esti-
mation for a situation where three vessels release oxygen into the tissue. The synthetic pO2 map
was calculated using the FEniCS numerical solver (see Sec. 2). Here Pves is set to 80, 70, and
50 mmHg for the vessel on the left, lower right, and upper right, respectively, whereas Rves is set to
6 μm for all vessels. Noise is added to the synthetic data in (a) (σ̂P ¼ 0.0005), and d̂ q ¼ 0.04 is
used in the smoothing to provide the estimates of M̂ in (b). Other parameter values: d̂data ¼ 0.007,
M ¼ 0.001 mmHg μm−2, r � ¼ 141 μm, and M� ¼ M .
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and thus a larger value of SD ofMest;av. Again, a compromise between the bias and the SD must
be found to get the most accurate estimate.

This compromise is illustrated in Figs. 9(b)–9(g). Figure 9(b) shows the spatially resolved
RMSE for a case with low noise corresponding to no smoothing applied (cf., left column of
Fig. 6). Here the noise level is so low that even without smoothing, the SD of Mest;av becomes

<1% for all averaging areas considered, that is, all choices of d̂cut [cf., d̂q ¼ 0 in Fig. 9(c)]. With
smoothing applied, the SD of Mest;av becomes even smaller, much <0.1% [Fig. 9(c)]. We also

note that the SD is largest for the largest value of d̂cut, reflecting that here the averaging area
[and thus N in Eq. (23)] is the smallest. The corresponding RMSE is shown in Fig. 9(d). For this
low-noise situation, there is nothing to gain by doing smoothing when estimating Mest;av. The

lowest RMSEs are obtained for d̂q ≈ 0 since smoothing reduces the accuracy of the estimates due
to the bias introduced [cf., Fig. 9(a)].

The situation with a much higher noise level (σ̂P a factor 100 larger, that is, σ̂P ¼ 5 × 10−2) is

shown in Figs. 9(e)–(g). The spatially resolved RMSE using a smoothing factor of d̂q ¼ 0.1 is
seen to give large lobes with high RMSE values around the vessel [Fig. 9(e)]. Moreover, the
typical RMSE value outside the lobe region is about 120%. The SD of Mest;av [Fig. 9(f)] is seen

to be on the order of 50% for the case without smoothing (d̂q ¼ 0), and a smaller RMSE can thus
be obtained with smoothing applied [Fig. 9(g)]. The smallest RMSE, less than ∼10%, is obtained

for d̂q ≈ 0.1 and d̂cut ¼ 0.3.

(a)

(b) (c) (d)

(g)(e) (f)

Fig. 9 Estimation of spatially averaged M . Illustration of accuracy of the estimation of spatially
averaged M for different values of the diameter d̂ cut of the circular disc removed from the
average in Eq. (23). N ¼ 1000 has been used in the estimation of the SD [Eq. (20)]. Other
parameter values: All panels: d̂data ¼ 0.035, Pves ¼ 80 mmHg, Rves ¼ 6 μm, R t ¼ 200 μm, M ¼
0.001 mmHg μm−2, r � ¼ 141 μm, and M� ¼ M . (a) σ̂P ¼ 0; (b)–(d) σ̂P ¼ 5 × 10−4; and (e)–(g)
σ̂P ¼ 5 × 10−2, d̂ q ¼ 0.1. Note that for figure clarity, only the circles corresponding to
d̂ cut ¼ 0.1, 0.2, and 0.5 are shown in (b) and (e).
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This high-noise example illustrates how accurate estimates of Mav can be obtained even
when the spatially resolved estimates for M have a large uncertainty. With the parameter values
used here, that is, M� ¼ 0.001 mmHg μm−2 and r� ¼ 141 μm, a σ̂P of 5 × 10−2 corresponds
to a physical noise level σP of ≈1 mmHg. [Here we have used that σP ¼ σ̂PM�r�2, cf.,
Eq. (6).] For comparison, the corresponding pO2 at the vessel wall in this example would
be Pves ¼ 80 mmHg.

4 Discussion

In this paper, we have introduced a new method, the diffusion-operator method, to provide spa-
tially resolved maps of CMRO2 estimates based on two-photon measurements of pO2.

3,4 The
method has two key steps: (i) spatial smoothing of measured pO2 maps followed by (ii) appli-
cation of double spatial derivatives in two spatial dimensions, that is, a Laplace operator. This
method is an alternative to the Krogh–Erlang method where a spatially averaged value of
CMRO2 is obtained around arterioles assuming circular symmetry.4

4.1 Choice of Inverse-Modeling Method

The present diffusion-operator method is an approach to the inverse diffusion problem in the
context of CMRO2 estimation from high-resolution pO2 data obtained with two-photon micros-
copy. The two key elements of the method are (i) the Poisson equation in Eq. (4) describing how
estimates of CMRO2, or more precisely the variableMðrÞ in principle can be found by applying
the Laplace operator on measured pO2 maps PdataðrÞ and (ii) the use of a smoothing routine on
PdataðrÞ to reduce effects of spatial noise before application of the Laplace operator. The develop-
ment of the inverse-modeling method was mainly motivated by the need to have a method that is
conceptually clear, easy to use, and based on publicly available software.

As the double spatial-derivative operation in the diffusion-operator approach is inherently
sensitive to spatial noise, the choice of a suitable smoothing method is thus essential for
obtaining accurate CMRO2 estimates. The ideal smoothing method should reduce the effects
of this spatial noise without introducing large biases in the resulting estimates. We performed
smoothing using the cubic smoothing spline function csaps from MATLAB’s Curve Fitting
Toolbox. This method minimizes the square deviation between the estimated and measured data
(so-called L2 norm) while penalizing large double-spatial derivatives in the smoothed pO2 maps
[Eq. (10)]. However, other smoothing methods could be used, for example, with norms other
than L2 or using different types of splines. Also since CMRO2, or more precisely the variableM
in Eq. (4), is proportional to double spatial derivatives, the smoothing method inherent in csaps
effectively penalizes large magnitudes ofM and thus introduces an unwanted bias. An alternative
approach could be to penalize instead changes in the spatial derivatives ofM, that is, third spatial
derivatives of the pO2. Finally, while csaps allows for different weighting of different locations
within the map, the weighting functions are restricted to be spatially separable in the x and y
directions. For the present application, this limitation is not optimal as it would be preferable to
exclude only a small region in and around the vessel.

While the exploration of effects of different smoothing methods on estimation accuracy is
beyond the current scope, an obvious next step would be to test the accuracy of the diffusion-
operator method with other smoothing methods. In particular, it would be interesting to explore
to what extent other methods could reduce the size and magnitude of the lobes of large bias seen
around the vessel in Fig. 4. The present MATLAB scripts, which can be found online at https://
github.com/CINPLA/CMRO2estimation, are designed to allow for an easy exchange of smooth-
ing methods for such exploration.

4.2 Use of the Diffusion-Operator Method

The noise level and sampling distance in the experimental pO2 data reported in Ref. 4 were too
large to allow for reliable estimation of spatially resolved maps of CMRO2 (results not shown).
Further advancements in engineering of brighter and more sensitive optical pO2 probes and
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further development of optical instrumentation will improve the measurement accuracy4 and
facilitate estimation of such maps. Additionally, other inverse-modeling methods may allow for
more accurate spatially resolved CMRO2 estimation based on the same set of data.

Pooling of spatially resolved estimates [as described in Eq. (23)] will always improve the
accuracy, but this will be at the expense of spatial resolution. This trade-off can be investigated
within the present version or future variations of the diffusion-operator method using the scripts
accompanying this paper. Estimation accuracy can be studied systematically with model-based
ground truth data (either based on the Krogh–Erlang model or based on FEniCS simulations)
using the same grid density and noise levels as those in the experimental setting.

4.3 Generalization of the Diffusion-Operator Method

Here the diffusion-operator method has been applied to estimation of CMRO2 for the case with
2D measurements of (assumed) steady state pO2 data. The diffusion-operator method straight-
forwardly generalizes to the 3D situation and also the nonstationary case where the pO2 varies
with time. With time-resolved measurements of pO2 across a 3D volume of brain tissue, spa-
tiotemporally resolved estimates of CMRO2 can be found by an analogous inverse-modeling
problem based on Eq. (7). Also here, model-based validation of the estimation method can easily
be pursued with synthetic data generated by finite-element modeling, for example, using
FEniCS.
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3. S. Sakadžić et al., “Two-photon high-resolution measurement of partial pressure of oxygen
in cerebral vasculature and tissue,” Nat. Methods 7(9), 755 (2010).
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