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Alternative splicing (AS) is a fundamental biological process that diversifies the 

transcriptomes and proteomes. Aberrant splicing is the main cause of rare diseases and 

cancers. Our understanding of AS is far from complete, resulting in a limited 

comprehension of phenotypic effects of splicing dysregulation. Recent advances in next-

generation sequencing (NGS) technologies have revolutionized the discoveries of AS. There 

are considerable efforts put into generating a large compendium of RNA-seq datasets. 

These datasets offer an opportunity to study the regulation of AS in tissues, cell stages, and 

perturbation of biological conditions at unprecedented resolutions and scales. However, 

utilizing the large number of datasets to make biological discoveries remains a challenge. In 

this dissertation, we developed machine-learning-based strategies to integrate various 
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types of RNA-seq datasets and transform them into biological knowledge, thereby enabling 

discoveries towards regulatory mechanisms and functional consequences of AS.  

 In the first part of the dissertation, we report a deep-learning-based computational 

framework, Deep-learning Augmented RNA-seq analysis of Transcript Splicing (DARTS), 

that utilizes the Bayesian integration of deep-learning-based predictions with empirical 

RNA datasets to make inference of differential alternative splicing between biological 

samples. RNA sequencing (RNA-seq) analysis of alternative splicing is largely limited by 

depending on high sequencing coverage. DARTS transforms large amounts of publicly 

available RNA-seq datasets into biological knowledge of how splicing is regulated through 

deep learning, thus enabling researchers to better characterize alternative splicing 

inaccessible from RNA-seq datasets with modest coverage.  

  In the second part of the dissertation, we present a computational tool, Systematic 

Investigation of Retained Introns (SIRI), to quantify unspliced introns and describe a deep-

learning-based computational framework to investigate the sequence preferences of 

different intron groups across subcellular locations. Steps of mRNA maturation occur in 

distinct cellular locations, while subcellular distribution of processed and unprocessed 

transcripts often miss in transcriptomic analyses. We employed SIRI to measure intron 

levels in subcellular locations across cell development and identified four intron groups 

that have disparate patterns of RNA enrichment across subcellular locations. Through the 

deep-learning based framework, we identified a set of triplet motifs and sequence 

conservation patterns that are predictive of intron behavior among biological conditions.  
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 In the third part of the dissertation, we exhibit a deep-learning-based tissue-specific 

framework, individualized Deep-learning Analysis of RNA Transcript Splicing (iDARTS), for 

predicting splicing levels. The rapid accumulation of RNA-seq datasets matched with whole 

exome or genome sequencing yields enormous variants underlying diseases, traits, and 

cancer. Interpreting the functional consequences of these variants remains a challenge in 

disease diagnostics and precision medicine. iDARTS leverages the publicly available RNA-

seq datasets to model the cis RNA sequence features and trans RNA binding protein levels 

determinants of AS, allowing precise predictions of genetic splice-altering variants. We 

demonstrated that predicted splice-altering variants are functionally relevant and related 

to cancer development when analysing ~10 million intronic and exonic variants with 

iDARTS. Applying iDARTS to interpret functional consequences of variants of uncertain 

significance in clinical studies, we found that predicted splice-altering variants are ten 

times enriched in pathogenic categories over benign categories. Our results indicate that 

iDARTS will benefit large-scale screening disease-implicated variants, thus improving 

disease diagnosis and enabling discoveries for precision medicine.   

 In the fourth part of the dissertation, we study the underlying mechanisms of N6-

methyladenosine (m6A) RNA modification by investigating the biological consequences of 

arginine methylation of METTL14 through transcriptome-wide profiling of m6A. Arginine 

methylation of METTL14 controls m6A deposition in mammalian cells. Mouse embryonic 

stem cells (mESCs) expressing arginine methylation-deficient METTL14 exhibit 

significantly reduced global m6A levels. These arginine methylation-dependent m6A sites 

identified from transcriptome-wide analysis are associated with enhanced translation of 

genes essential for the repair of DNA interstrand crosslinks. Collectively, these findings 
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reveal important aspects of m6A regulation and new functions of arginine methylation in 

RNA metabolism.  
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1 INTRODUCTION 

The central dogma of molecular biology describes an information flow from DNA to 

messenger RNA to protein1. Since the last decades, the diagram has been largely expanded 

by showing diverse regulations of genes. After transcription initiation, the maturation of 

pre-messenger RNA (pre-mRNA) involves co-transcriptional and post-transcriptional 

regulations including 5’ capping, splicing, 3’ polyadenylation, RNA editing, and RNA 

modifications such as N6-methyladenosine (m6A) at the subcellular level. Of these 

transcriptional regulations, alternative splicing (AS) is a major biological process where 

introns are removed, and exons are selectively joined together to form mature transcripts2. 

AS enables the production of multiple isoforms from a single gene, thus greatly diversifying 

the transcriptome and proteomes3. AS exhibits a tissue-specific and developmental stage-

specific manner and is regulated via recognizing cis-elements and trans-acting factors that 

bind to the cis-elements4. The dysregulation of AS underlies rare diseases and cancers5,6.  

 With the advent of next-generation sequencing (NGS), biological technologies 

including RNA sequencing7 (RNA-seq) have transformed the discoveries of AS in tissues, 
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cell developmental stages, and various biological conditions. These enormous datasets 

offer great opportunities to study the regulation of AS while posing a challenge for the 

development of computational approaches.  

 Machine learning is a data-driven computational approach that learns functional 

relationships from data8. The advantage of machine learning over conventional statistical 

methods is that it does not need strong assumptions or data structures, which are poorly 

defined especially in biological datasets. Machine learning consists of two main subtypes: 

unsupervised learning and supervised learning9,10. The difference between unsupervised 

learning and supervised learning is whether labelled data is needed. Unsupervised learning 

often refers to clustering which aims to find a set of clusters with similar unlabelled data 

points while supervised learning learns the mapping functions from the input data to 

output labels. Over the past ten years, striking advances in machine learning have 

drastically changed how researchers utilize big data to make significant discoveries. 

Profound progress in image, speech, and languages has shown a promising power of 

machine learning in transforming large-scale datasets into knowledge base11,12.  

 Motivated by the scalability to large-scale datasets and the capability of machine 

learning to learn complex functions, Chapters 2, 3, and 4 of this dissertation present novel 

machine-learning-based approaches for studying various types of transcriptome 

sequencing data. In detail, Chapter 2 describes a novel computational and statistical 

framework, Deep-learning Augmented RNA-seq analysis of Transcript Splicing (DARTS)13, 

for inferring differential splicing events between biological conditions. Consortium efforts 

such as ENCODE14 project and Roadmap15 project have released diverse RNA-seq datasets 

in different tissues and under perturbations of RNA binding proteins (RBPs). Utilizing these 
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datasets to make biological discoveries has been limited to highly expressed and 

observable regulatory events. We trained a deep neural network (DNN) that predicts 

differential alternative splicing between biological conditions by leveraging the publicly 

available RNA-seq datasets from ENCODE and Roadmap project. We validated the DARTS 

DNN’s accuracy and generalizability in diverse biological conditions. As an informative 

prior in the statistical model, DARTS DNN significantly improved the confidence of 

reported differential AS, especially from low-coverage RNA-seq datasets. We further 

demonstrated that DARTS could accurately and reliably predict AS changes in lowly 

expressed genes using the cellular models of the epithelial-mesenchymal transition. In 

conclusion, DARTS provides a generic framework to infer differential AS between biological 

samples.  

 Chapter 3 presents a novel computational tool, Systematic Investigation of 

Retained Introns (SIRI), and a deep-learning-based computational framework to study the 

regulation of intron retention at the subcellular level16. Steps of mRNA maturation are 

important gene regulatory events that occur in distinct cellular locations. However, 

transcriptomic analyses often lose information on the subcellular distribution of processed 

and unprocessed transcripts. We generated extensive RNA-seq datasets to track mRNA 

maturation across subcellular locations in mouse embryonic stem cells, neuronal 

progenitor cells, and postmitotic neurons. Retained introns are more difficult to 

characterize than other patterns of AS in whole transcriptome RNA-seq data. Overlapping 

patterns of alternative processing can be mis-called as intron retention by sequence 

analysis tools17,18. In this regard, we developed SIRI that characterizes four types of intron 

retention events by their overlapping patterns with other exons and introns. Using SIRI, we 
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reliably quantified intron retention events in different subcellular locations across different 

cell types. These intron retention events show disparate regulatory patterns across 

subcellular locations. Through a machine-learning-based approach, X-means, four 

regulatory groups were defined, including complete cotranscriptional splicing, complete 

intron retention in the cytoplasmic RNA, and two intron groups present in nuclear and 

chromatin transcripts but fully excised in cytoplasm. We further explored the RNA 

sequence features of the four regulatory groups by utilizing a deep-learning-based 

computational approach and found triplet motifs and conservations of introns could be 

predictive of intron behaviour, indicating that particular RNA/protein interactions likely 

determine the retention properties of these groups.  

 Chapter 4 shows a novel deep-learning-based framework for predicting tissue-

specific AS from arbitrary sequences, called individualized Deep-learning Analysis of RNA 

Transcript Splicing (iDARTS). Accumulated RNA-seq datasets with matched exome 

sequencing or whole genome sequencing provide tremendous resources for studying the 

associations of mis-splicing related variants with disease and traits. Analyses like splicing 

quantitative trait locus (sQTL)19,20 help to characterize variants that are associated with the 

changes of AS. However, identifying causal variants in association studies remains elusive. 

Clinical studies have been continuously reporting large number of disease-related 

variants21,22. Interpretation of the functional effects of the variants poses a challenge, owing 

to our limited understanding of gene regulation and splicing. Motivated by the success of 

DARTS, we expanded the DARTS framework to the iDARTS framework that directly 

predicts AS levels, thus enabling the prediction of quantitative effects of variants on AS. The 

iDARTS framework integrates the cis RNA sequence features and trans RBP levels into a 
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deep-learning model of AS using large-scale RNA-seq datasets from 8,304 samples in 53 

tissues from the GTEx23 project (V7). iDARTS shows a robust, accurate, and generalizable 

behaviour in predicting tissue-specific exon skipping levels as validated in held-out and 

independent RNA-seq datasets. The design of iDARTS that directly learns RNA sequence 

features and trans RBP levels determinates of AS makes it capable of interpreting the 

potential effects of variants in AS from a tissue-specific perspective. We expect iDARTS 

could benefit the interpretation and prioritization of variants implicated in diseases and 

cancers, therefore helping to discover potential candidates for therapeutic interventions.  

 Chapter 5 studies the biological regulations of arginine methylation of METTL14 

via transcriptome-wide profiling of m6A24. The m6A RNA modification serves crucial 

functions in RNA metabolism and involves in co-transcriptional regulation of splicing25 

while the molecular mechanisms underlying the regulation of m6A are not well understood. 

We establish arginine methylation of METTL14, a component of the m6A methyltransferase 

complex, as a novel pathway that controls m6A deposition in mammalian cells. Specifically, 

protein arginine methyltransferase 1 (PRMT1) interacts with, and methylates the 

intrinsically disordered C terminus of METTL14, which promotes its interaction with RNA 

substrates, enhances its RNA methylation activity, and is crucial for its interaction with 

RNA polymerase II (RNAPII). Our findings indicate methylation deficient METTL14 results 

in globally reducing m6A levels in mouse embryonic stem cells. Transcriptome-wide m6A 

analysis identified 1,701 METTL14 arginine methylation-dependent m6A sites located in 

1,290 genes involved in various cellular processes, including stem cell maintenance and 

DNA repair. Investigating the RNA sequence features of these m6A sites revealed their 

predicted preferences of RNA secondary structures such as helix/stem or multi-branched 
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loops. In summary, these findings show the important role of m6A regulation and their 

potential structural preferences from computational approaches.  
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2 DEEP-LEARNING 

AUGMENTED RNA-SEQ 

ANALYSIS OF TRANSCRIPT 

SPLICING 

2.1 Introduction 

RNA sequencing (RNA-seq) enables transcriptome-wide profiling of alternative splicing1,2. 

The rapid accumulation of RNA-seq data in public repositories (for example, ENCODE3, 

Roadmap Epigenomics4) provides unprecedented resources for characterizing alternative 

splicing across diverse biological states. However, an inherent limitation of RNA-seq is that 

it is restricted by sequencing depth5 and cannot reliably quantify splicing in genes with low 

expression6.  

 Motivated by recent successes in the use of machine learning to predict exon-

inclusion/skipping levels in bulk tissues or single cells7-10, we hypothesized that large-scale 
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RNA-seq resources can be used to construct a deep-learning model of differential 

alternative splicing. To test this hypothesis, we developed DARTS (deep-learning 

augmented RNA-seq analysis of transcript splicing). DARTS consists of two core 

components: a deep neural network (DNN) model that predicts differential alternative 

splicing between two conditions on the basis of exon-specific sequence features and 

sample-specific regulatory features, and a Bayesian hypothesis testing (BHT) statistical 

model that infers differential alternative splicing by integrating empirical evidence in a 

specific RNA-seq dataset with prior probability of differential alternative splicing (Figure 

2.1a). During training, large-scale RNA-seq data are analyzed by the DARTS BHT with an 

uninformative prior (DARTS BHT(flat), with only RNA-seq data used for the inference) to 

generate training labels of high-confidence differential or unchanged splicing events 

between conditions, which are then used to train the DARTS DNN. During application, the 

trained DARTS DNN is used to predict differential alternative splicing in a user-specific 

dataset. This prediction is then incorporated as an informative prior with the observed 

RNA-seq read counts by the DARTS BHT (DARTS BHT(info)) for deep learning-augmented 

splicing analysis. 

2.2 Results 

2.2.1 Deep-learning based differential splicing prediction of DARTS framework 

Unlike methods that use cis sequence features to predict exon splicing patterns in specific 

samples7-10, the DARTS DNN predicts differential alternative splicing by incorporating both 

cis sequence features and messenger RNA (mRNA) levels of trans RNA-binding proteins 

(RBPs) in two conditions (Figure 2.1b and Supplementary Figure 2.4). This design 
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allows the DARTS DNN to consider how altered expression of RBPs affects splicing. We 

initially focused on exon skipping, the most frequent alternative splicing pattern in 

animals6. We compiled 2,926 cis sequence features and 1,498 annotated RBPs11 whose 

mRNA levels were treated as trans RBP features.  

 To train the DARTS DNN, we used large-scale RBP-depletion RNA-seq data in two 

human cell lines (K562 and HepG2) generated by the ENCODE consortium12 (Figure 2.1c). 

We used RNA-seq data of 196 RBPs depleted by short-hairpin RNA (shRNA) in both cell 

lines, corresponding to 408 knockdown-versus-control pairwise comparisons (Figure 

2.1c). The remaining ENCODE data, corresponding to 58 RBPs depleted in only one cell 

line, were excluded from training and used as leave-out data for independent evaluation of 

the DARTS DNN (Figure 2.1c). To generate training labels, we applied DARTS BHT(flat) to 

calculate the probability of an exon being differentially spliced or unchanged in each 

pairwise comparison. DARTS BHT(flat) was benchmarked using simulation datasets, and 

compared favorably to two state-of-the-art statistical models for differential splicing 

inference, MISO1 and rMATS2 (Supplementary Figure 2.5 and 2.6). From the high-

confidence differentially spliced versus unchanged exons called by DARTS BHT(flat), we 

used 90% of labeled events for training and fivefold cross-validation, and the remaining 

10% of events for testing (Methods). The performance of the DARTS DNN increased as 

training progressed, reaching a maximum area under the receiver operating characteristic 

curve (AUROC) of 0.97 during cross-validation and 0.86 during testing (Supplementary 

Figure 2.7). 

 To test the general applicability of the DARTS DNN, we used the leave-out data, 

corresponding to 58 RBPs that had never been seen during training (Figure 2.1c). The 
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trained DARTS DNN showed a high accuracy (average AUROC=0.87) on the leave-out data. 

We used the leave-out data to compare the DARTS DNN with three alternative baseline 

methods: the identical DNN structure trained on individual leave-out datasets (DNN), 

logistic regression with L2 penalty (logistic), and random forest. We trained these baseline 

methods using fivefold cross-validation in each leave-out dataset. Additionally, we 

implemented another alternative baseline method by predicting sample-specific exon-

inclusion levels (PSI values; percent spliced in, or ψ)1,10 and then taking the absolute 

difference of the predicted PSI values between two conditions as the metric for differential 

splicing, (ψ̂KD - ψ̂CTRL). The DARTS DNN trained on the large-scale ENCODE data 

outperformed baseline methods by a large margin in 57 out of 58 experiments (Figure 

2.1d). The DARTS DNN model trained on individual leave-out datasets was the worst 

performer, illustrating the importance of training the DARTS DNN on large-scale data 

comprising diverse perturbation experiments. 

2.2.2 DARTS Bayesian framework improves the inference of differential splicing 

in RNA-seq data by incorporating informative prior from DARTS DNN.  

Next, we evaluated the ability of the DARTS framework to infer differential splicing from a 

specific RNA-seq dataset, by incorporating the DARTS DNN predictions as the informative 

prior, and observed RNA-seq read counts as the likelihood (DARTS BHT(info)). The 

posterior ratio of differential splicing consists of two components: the prior ratio, 

generated by the DARTS DNN on the basis of cis sequence features and expression levels of 

trans RBPs; and the likelihood ratio, determined by modeling of the biological variation and 

estimation uncertainty of the splice isoform ratio based on observed RNA-seq read counts. 

Simulation studies demonstrated that the informative prior improves the inference when 
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the observed data are limited, for instance, because of low levels of gene expression or 

limited RNA-seq depth, but does not overwhelm the evidence in the observed data 

(Supplementary Figure 2.8).  

 We used DARTS BHT(info) and DARTS BHT(flat) to infer cell type-specific splicing 

events between HepG2 and K562 cell lines. To obtain high-confidence differential and 

unchanged splicing events between the two cell types, we aggregated all 24 or 28 RNA-seq 

replicates of HepG2 or K562 from ENCODE and applied DARTS BHT(flat) to this ultra-deep 

RNA-seq dataset. Next, we applied DARTS BHT(info) and DARTS BHT(flat) to all possible 

(24×28) pairwise comparisons between individual replicates of HepG2 and K562, and 

computed the area under the precision recall curve (AUPR) for the two methods. DARTS 

BHT(info) outperformed DARTS BHT(flat) in all pairwise comparisons, and the 

performance gain was negatively correlated with the RNA-seq depth of individual 

replicates (Spearman’s ρ=−0.69, P<2.2×10−16), with the largest gain coming from 

comparisons involving low-coverage RNA-seq samples (Figure 2.2a). Thus, incorporating 

the DNN prediction as prior information improves the detection of cell-type-specific 

splicing events from low-coverage RNA-seq data. 

2.2.3 Extending DARTS to diverse cell types and different types of alternative 

splicing 

Next, we determined whether the DARTS DNN can be extended to additional cell types, and 

how the choice of training datasets influences its performance. We used RNA-seq data from 

diverse cell types generated by the Roadmap Epigenomics consortium4. We performed 253 

pairwise comparisons of Roadmap samples by DARTS BHT(flat) to generate training data 
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for the DARTS DNN. We excluded all pairwise comparisons involving the thymus tissue 

from training to use as leave-out data for independent evaluation. We trained three DARTS 

DNN models, using ENCODE data only, Roadmap data only, or both (Figure 2.2b). The 

DARTS DNN trained on ENCODE data exhibited high predictive power for leave-out 

ENCODE data but modest predictive power for leave-out Roadmap data. Conversely, the 

DARTS DNN trained on Roadmap data had high predictive power for leave-out Roadmap 

data but modest predictive power for leave-out ENCODE data. The DARTS DNN trained on 

combined ENCODE and Roadmap data had the best performance (Figure 2.2b).  

 We extended the DARTS DNN beyond exon skipping to predict other types of 

alternative splicing patterns. We compiled cis sequence features and trained three DNN 

models for predicting differential alternative 5′ splice sites, alternative 3′ splice sites, and 

retained introns. Trained on ENCODE and Roadmap data, these DNN models exhibited a 

high prediction accuracy in independent leave-out datasets (Supplementary Figure 2.9). 

2.2.4 Analysis of epithelial–mesenchymal transition by DARTS 

Finally, we applied DARTS to study alternative splicing during the epithelial–mesenchymal 

transition (EMT), a key process in embryonic development and cancer metastasis13. We 

reanalyzed our published time-course RNA-seq data on an inducible H358 lung cancer cell 

line model of the EMT14. We used DARTS BHT(flat) to compare each day to day 0, then 

assessed the ability of the DARTS DNN to predict high-confidence differential versus 

unchanged splicing events during the EMT. The DARTS DNN trained on combined ENCODE 

and Roadmap data had the best performance, followed closely by the DARTS DNN trained 

on Roadmap data, whereas the DARTS DNN trained on ENCODE data performed least well 
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(Figure 2.3a). This was expected, given that the Roadmap data cover epithelial and 

mesenchymal cell types. The best prediction accuracy (AUROC=0.82) was achieved by the 

DARTS DNN trained on combined ENCODE and Roadmap data for the comparison of day 6 

versus day 0. As an example, the DARTS DNN predicted the EMT-associated alternative 

splicing change in PLEKHA1 (Supplementary Figure 2.10). 

 To further assess the DARTS DNN predictions, we compiled 449 ‘DARTS DNN 

rescued’ events from the comparison of day 6 versus day 0 (Methods). A subset of these 

DARTS DNN rescued events had significantly reduced exon inclusion during the EMT, and 

their downstream intronic regions were enriched for the consensus motif of the splicing 

factors epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2; ref. 15) (Figure 

2.3b). A similar pattern of ESRP-motif enrichment was observed for differential splicing 

events called by DARTS BHT(flat) using RNA-seq data alone (Figure 2.3b). By contrast, 

events that were called significant by DARTS BHT(flat) but fell below the significance 

threshold (posterior probability<0.9) after incorporation of the informative prior were not 

enriched for the ESRP motif (Supplementary Figure 2.11). ESRPs are epithelial-specific 

splicing factors, the downregulation of which is a major driver of alternative splicing during 

the EMT14. This observed pattern of ESRP-motif enrichment is consistent with ESRP 

binding downstream of alternative exons enhancing exon inclusion13. To extend our DARTS 

analysis of the H358 EMT system, we carried out paired-end RNA-seq of the PC3E and 

GS689 prostate-cancer cell lines, which have contrasting epithelial versus mesenchymal 

characteristics2,16. The DARTS DNN scores of these two EMT systems were highly 

correlated (Spearman’s ρ=0.87, P<2.2×10−16; Figure 2.3c), suggesting that the DARTS 

DNN can capture a core EMT splicing signature. 
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2.2.5 The analysis of RASL-seq reveals the ability of DARTS to uncover 

alternative splicing changes in genes with low expression 

To assess whether DARTS can uncover bona fide differential splicing events from genes 

expressed at low levels, we carried out targeted splicing profiling using the RNA-mediated 

oligonucleotide annealing, selection, and ligation with next-generation sequencing (RASL-

seq) technology17 and estimated the absolute difference of PSI values (RASL−|ΔPSI|) for 

1,058 alternative splicing events between PC3E and GS689 (Methods). We restricted our 

further analysis to events where RASL−|ΔPSI|<0.3. As expected, alternative splicing events 

called as differential or unchanged by RNA-seq data alone (by DARTS BHT(flat)) had the 

highest or lowest RASL−|ΔPSI| values, respectively (Figure 2.3d). For the remaining events 

called as inconclusive by DARTS BHT(flat), we compiled DARTS-DNN-predicted differential 

events and unchanged events, with high and low DARTS DNN scores (false positive rate or 

FPR<5% and >80%), respectively. DARTS-DNN-predicted differential events had 

significantly greater RASL−|ΔPSI| values than DARTS-DNN-predicted unchanged events 

(P=0.035, one-sided Wilcoxon test), with the former group similar to the RNA-seq 

differential events and the latter group similar to the RNA-seq unchanged events (Figure 

2.3d). DARTS-DNN-predicted differential events were in genes with significantly lower 

expression levels (P=0.001, two-sided Wilcoxon test) and had significantly lower RNA-seq 

coverage (P=2.1×10−7, two-sided Wilcoxon test) compared with differential events called 

by DARTS BHT(flat) (Supplementary Figure 2.12a,b). Collectively, among the events 

analyzed by RASL-seq, DARTS DNN predicted 52 additional differential splicing events 

beyond the 77 events called with RNA-seq data alone. Moreover, on RNA-seq inconclusive 

events with high or low DARTS DNN scores, we used RASL-seq to define the ground truth 
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with RASL−|ΔPSI|>5% as differential and RASL−|ΔPSI|<1% as unchanged. We 

benchmarked the performance of DARTS BHT(info), DARTS BHT(flat), DARTS DNN, 

rMATS2 and SUPPA218 that adopted alignment-based versus alignment-free strategies for 

quantifying splicing with RNA-seq data. DARTS BHT(info) consistently outperformed 

baseline methods that use RNA-seq data alone to call differential splicing (Supplementary 

Figure 2.12c,d). These data suggest that by combining deep-learning predictions with 

empirical evidence in user-specific RNA-seq data, DARTS can uncover alternative splicing 

changes in genes with low expression and expand the findings beyond a conventional RNA-

seq splicing analysis. 

2.3 Discussion 

We report DARTS, a deep-learning augmented statistical framework for RNA-seq analysis 

of differential alternative splicing. DARTS utilizes the enormous RNA-seq resources 

including diverse cell types with perturbations of expressions of RBPs to predict 

differential alternative splicing in two conditions using cis-elements of alternative splicing 

events and the expression of trans-RBPs.  We demonstrated the benefit of using DARTS to 

uncover differential splicing events in lowly expressed genes that cannot be captured via 

conventional RNA-seq analysis. This enables us to investigate the regulation of splicing 

events in lowly expressed genes potentially implicated in diseases of interest or acting as 

potential biomarkers or therapeutic targets. The conceptual innovation of iDARTS is it 

transforms massive amounts of RNA-seq data into a knowledge base of how splicing 

regulates through deep learning, which can benefit individual studies by expanding the 



 

18 

pools of alternative splicing events under investigation. DARTS is an open resource 

software available at https://github.com/Xinglab/DARTS. 

2.4 Methods 

2.4.1 DARTS Bayesian hypothesis testing framework 

We developed DARTS BHT, a Bayesian statistical framework to determine the statistical 

significance of differential splicing events or unchanged splicing events between RNA-seq 

data of two biological conditions. The DARTS BHT framework was designed to integrate 

deep-learning-based prediction as prior and empirical evidence in a specific RNA-seq 

dataset as likelihood. We start by modelling the simplest case, that is, testing the difference 

in exon-inclusion levels (PSI values) between two conditions without replicates (one 

sample per condition; for model with replicates, see Appendix): 

𝐼𝑖𝑗 | 𝜓𝑖𝑗 ∼ Binomial(𝑛 = 𝐼𝑖𝑗 + 𝑆𝑖𝑗, 𝑝 = 𝑓𝑖(𝜓𝑖𝑗)) 

 

𝜓𝑖1 = 𝜇𝑖 

 

𝜓𝑖2 = 𝜇𝑖 + 𝛿𝑖 

 

𝜇𝑖 ∼ Unif(0,1) 

 

𝛿𝑖 ∼ 𝑁(0, 𝜏2) 

Where 𝐼𝑖𝑗, 𝑆𝑖𝑗 and 𝜓𝑖𝑗 are the exon inclusion read count, the exon skipping read count, and 

the exon inclusion level for exon i in sample group 𝑗 ∈ (1,2), respectively; 𝑓𝑖 is the length 

normalization function for exon i that accounts for the effective lengths of the exon 

inclusion and skipping isoforms (4); 𝜇𝑖 is the baseline inclusion level for exon i, and 𝛿𝑖 is the 

https://github.com/Xinglab/DARTS
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expected difference of the exon inclusion levels between the two conditions. The goal of the 

differential splicing analysis is to test whether the difference in exon inclusion levels 

between the two conditions 𝛿𝑖 exceeds a user-defined threshold c (e.g. 5%) with a high 

probability, i.e. 

𝑃(|𝛿𝑖|> 𝑐|𝐼𝑖𝑗, 𝑆𝑖𝑗) ≈ 1 

In Bayesian statistics, this test can be approached by assuming a “spike-and-slab” prior for 

the parameter of interest 𝛿. The spike-and-slab prior is a two-component mixture prior 

distribution, with the “spike” component depicting the probability of the model parameter 

𝛿 being constrained around zero, and the “slab” component depicting the unconstrained 

distribution of the model parameter 𝛿.  

 In the DARTS BHT statistical framework, we impose a spike prior 𝐻0 with a small 

variance 𝜏 = 𝜏0, such that the probability of 𝛿 concentrates around 0, to account for random 

biological or technical fluctuations in PSI values between two biological conditions for 

unchanged splicing events. We impose a slab prior 𝐻1 with a much larger variance 𝜏 = 𝜏1 to 

model the difference in PSI values between two conditions for differential splicing events. 

We set 𝜏0 = 0.03, corresponding to 90% density constrained within 𝛿 ∈ [−0.05,0.05], and 𝜏1 

= 0.3; we note that the final inference is robust to choice of 𝜏 values (for more details, see 

Appendix and Supplementary Figure 2.13). The posterior probability of a splicing event 

being generated by the two models can be written as: 

𝑃(𝐻1|𝐼𝑖𝑗 , 𝑆𝑖𝑗) =  
1

𝑍
𝑃(𝐻1) ∙ 𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻1)  

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻1) = ∫
𝛿

∫
𝜇

 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝜇𝑖, 𝛿𝑖) ∙ 𝑃(𝜇𝑖, 𝛿𝑖|𝐻1)𝑑𝜇𝑖 𝑑 𝛿𝑖  
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𝑃(𝐻0|𝐼𝑖𝑗 , 𝑆𝑖𝑗) =  
1

𝑍
𝑃(𝐻0) ∙ 𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻0)  

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻0) = ∫
𝛿

∫
𝜇

 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝜇𝑖, 𝛿𝑖) ∙ 𝑃(𝜇𝑖, 𝛿𝑖|𝐻0)𝑑𝜇𝑖 𝑑 𝛿𝑖  

Where 𝑃(𝐻1) is the prior probability of exon i being differentially spliced, determined by 

exon-specific cis features and sample-specific trans RBP expression levels in the two 

biological conditions, which is independent of the observed RNA-seq read counts. 𝑃(𝐻0) = 1 

− 𝑃(𝐻1) is the prior probability of exon i being unchanged. 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝐻1) and 𝑃(𝐼𝑖𝑗, 𝑆𝑖𝑗|𝐻0) 

represent the likelihoods under the model of differential splicing or unchanged splicing 

respectively. Z is a normalizing constant. 

 Since we are comparing only two models, we can further re-write the above 

equation as a factorization of the ratios between prior and likelihood: 

𝑃(𝐻1|𝐼𝑖𝑗 , 𝑆𝑖𝑗)

𝑃(𝐻0|𝐼𝑖𝑗, 𝑆𝑖𝑗)
=

𝑃(𝐻1)

𝑃(𝐻0)
∙

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻1)

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗|𝐻0)
  

 Note that when the prior distribution is flat, i.e. 𝑃(𝐻0) = 𝑃(𝐻1) = 0.5, the above 

equation is equivalent to a likelihood ratio test, which we refer to as DARTS BHT(flat). 

When 𝑃(𝐻0) and 𝑃(𝐻1) incorporate an informative prior based on exon- and sample- 

specific predictive features, we refer to this DARTS BHT model as DARTS BHT(info). 

 Finally, using the equation above, we can derive the marginal posterior probability 

𝑃(𝛿𝑖|𝐼𝑖𝑗, 𝑆𝑖𝑗) for the parameter of interest 𝛿𝑖 as a mixture of the posterior conditioned on the 

two models: 

𝑃(𝛿𝑖|𝐼𝑖𝑗 , 𝑆𝑖𝑗) = 𝑃(𝛿𝑖|𝐻1, 𝐼𝑖𝑗, 𝑆𝑖𝑗) ∙ 𝑃(𝐻1|𝐼𝑖𝑗, 𝑆𝑖𝑗) + 𝑃(𝛿𝑖|𝐻0, 𝐼𝑖𝑗 , 𝑆𝑖𝑗) ∙ 𝑃(𝐻0|𝐼𝑖𝑗 , 𝑆𝑖𝑗)   
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 Hence, the final inference is performed on the probability 𝑃(|𝛿𝑖| > 𝑐|𝐼𝑖𝑗, 𝑆𝑖𝑗). In our 

analysis, we set c=0.05 (i.e. a 5% change in exon inclusion level) and call events with 𝑃(|𝛿𝑖| 

> 0.05 |𝐼𝑖𝑗, 𝑆𝑖𝑗) > 0.9 as significant differential splicing events and 𝑃(|𝛿𝑖| >0.05 |𝐼𝑖𝑗, 𝑆𝑖𝑗) < 0.1 

as significant unchanged splicing events. Events with 0.1 ≤ 𝑃(|𝛿𝑖| > 0.05|𝐼𝑖𝑗, 𝑆𝑖𝑗) ≤ 0.9 are 

deemed as inconclusive. In the following text, we omit the subscripts and use 𝑃(|𝛿𝑖| > 𝑐 |𝐼𝑖𝑗, 

𝑆𝑖𝑗) and 𝑃(|∆𝜓| > 𝑐) interchangeably. 

2.4.2 DARTS DNN model for predicting differential alternative splicing 

A core component of the DARTS BHT framework is a DNN model that generates a 

probability of differential splicing between two biological conditions using exon and 

sample-specific predictive features. We designed the DARTS DNN to predict differential 

splicing of a given exon based on exon-specific cis sequence features and sample-specific 

trans RBP expression levels in two biological conditions. As noted above, a useful feature of 

the DARTS BHT framework is its capability to determine the statistical significance of both 

differential splicing events and unchanged splicing events. Specifically, for a splicing event i 

in the comparison k between RNA-seq datasets from two distinct biological conditions, let 

Yik=1 if this event is differentially spliced (that is, H1 is true) and Yik=0 if H0 is true as labels 

for differential and unchanged splicing events, respectively. The task of predicting 

differential splicing can be formulated as 

𝑃(𝑌𝑖𝑘 = 1) = 𝐹(𝑌𝑖𝑘; 𝐸𝑖 , 𝐺𝑘) 

where Yik is the label for event i in the comparison k; Ei is a vector of 2,926, 2,973, 2,971, 

and 1,748 cis sequence features for event i, including evolutionary conservation, splice site 

strength, regulatory motif composition, and RNA secondary structure for skipped exons, 



 

22 

alternative 5′ splice sites, alternative 3′ splice sites, and retained introns, respectively; and 

Gk is a vector of 2,996 (that is, 1,498×2) normalized gene expression levels of 1,498 RBPs in 

the two conditions. The prediction of p(Yik=1) based on the features from any specific RNA-

seq dataset can then be incorporated as an informative prior for p(H1) in the DARTS BHT 

framework. We implemented a deep-learning model (DARTS DNN) to learn the unknown 

function F that maps the predictive features to splicing profiles (differential versus 

unchanged). For skipped exons, we designed the DARTS DNN with four hidden layers and 

7,923,402 parameters. The configuration of the DNN was as follows: an input layer with 

5,922 (that is, 2,926+1,498×2) variables; four fully connected hidden layers with 1,200, 

500, 300, and 200 variables and the ReLU activation function; and an output layer with two 

variables and the Softmax activation function. We implemented the DARTS DNN using 

Keras (https://github.com/ keras-team/keras) with the Theano back-end. 

 To mitigate potential overfitting of the DARTS DNN, we added a drop-out 

probability19 for connections between hidden layers. Specifically, the variables in the four 

hidden layers were randomly turned off during the training process with probabilities of 

0.6, 0.5, 0.3, and 0.1, respectively. We also added batch normalization layers20 for all hidden 

layers to help the model converge and generalize. Finally, we used the RMSprop optimizer 

to adaptively adjust for the magnitudes of the components of the gradient in this deep 

architecture and chose 1,000 labeled alternative splicing events as one mini-batch to obtain 

a more stable gradient. In each mini-batch we balanced the composition of positive and 

negative labels by adding more positive events in the mini-batch such that 

positive:negative = 1:3 in the mini-batch. Because there were significantly more negative 

https://github.com/%20keras-team/keras
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(unchanged) events than positive (differential) events, such a balanced composition will 

provide a gradient for learning the positive events in different mini-batches.  

 To monitor the training loss and validation loss, we computed the loss every ten 

mini-batches and saved the current model parameters if the validation loss was lower than 

that of the previous best model. We trained the DARTS DNN on Tesla K40m. 

2.4.3 Processing of ENCODE RNA-seq data and training of the DARTS DNN 

model 

We used a comprehensive RNA-seq dataset from the ENCODE consortium to train the 

DARTS DNN. The ENCODE investigators have performed systematic shRNA knockdown of 

more than 250 RBPs in two human cell lines, HepG2 and K562. We downloaded all 

available (as of May 2017) RNA-seq alignments (ENCODE processing pipeline on the 

human genome version hg19) for shRNA-knockdown and control samples from the 

ENCODE data portal (https://www.encodeproject.org/).  

 We processed the RNA-seq alignments (bam files) using rMATS2 (v.4.0.1). Starting 

with RNA-seq alignment files, rMATS constructs splicing graphs, detects annotated and 

novel alternative splicing events, and counts the number of RNA-seq reads for each exon 

and splice junction. Given the modest depth of the ENCODE RNA-seq data (32 million read 

pairs per replicate on average), the read counts from the two replicates were pooled 

together for downstream analyses. We processed the raw RNA-seq reads with Kallisto21 

(v.0.43.0) to quantify gene expression levels using Gencode22 (v.19) protein-coding 

transcripts as the index. For each of the two biological conditions in a given comparison 

(that is, shRNA knockdown and control), we extracted the Kallisto-derived gene-level 
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transcripts per kilobase million (TPM) values of 1,498 known RBPs11. We normalized the 

TPM value of each RBP by dividing by its maximum observed TPM value of all comparisons, 

then used that as the RBP expression feature in the DARTS DNN.  

 To generate training labels for the DARTS DNN, we applied DARTS BHT(flat) to the 

ENCODE RNA-seq data. Events with posterior probability p(|Δψ|>0.05) > 0.9 were called 

positive (Y=1). Events with posterior probability p(|Δψ|>0.05) < 0.1 were called negative 

(Y=0). We defined these significant differential splicing events and significant unchanged 

splicing events as labeled events and used them to train the DARTS DNN. 

 The vast majority of the RBPs (n=196) in the ENCODE data were knocked down by 

at least one shRNA in both HepG2 and K562 cell lines, corresponding to a total of 408 

comparisons between knockdown and control. We set aside 10% of the labeled positive 

events and the same number of labeled negative events in each comparison as the testing 

data for estimating the generalization error of the trained DNN model. For the remaining 

90% of the labeled events, we further split them into fivefold cross-validation subsets for 

the purposes of training, monitoring overfitting, and early stopping. We also collected 

ENCODE RBP-knockdown experiments performed in only one cell line (either HepG2 or 

K562; n=58) as leave-out datasets. All labeled events in these leave-out datasets were used 

only to evaluate the trained DARTS DNN and never during training.  

 We randomly drew 4 RBPs without replacement for a training batch, and iterated 

through all 196 RBPs as an epoch. The performance of the DARTS DNN was measured on 

the basis of the AUROC. The model with the best performance during training and cross-
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validation was selected, and subsequently benchmarked using the testing data and leave-

out data. 

2.4.4 Rank-transformation of the DARTS informative prior 

In a typical RNA-seq study, the number of unchanged splicing events can be orders of 

magnitude larger than the number of differential splicing events, and machine-learning 

algorithms may be biased to the majority class. To mitigate this potential bias, we used an 

unsupervised rank-transformation to rescale DARTS DNN scores to derive the informative 

prior for the DARTS BHT framework. Specifically, we first fit a two component Gaussian 

mixture model for all the DARTS DNN scores to derive the mean and variance of the two 

mixed Gaussian components, as well as the posterior probability λ of each DARTS DNN 

score belonging to a specific component. With the new mean and variance of the two 

Gaussian components set at μ0 and μ1, σ0 and σ1, respectively, each DARTS DNN score was 

rank-transformed to the new Gaussian components and then averaged by the weight 

parameter λ. Finally, to maintain a valid prior probability, we rescaled the transformed 

DARTS DNN scores to [α,1−α], where α∈[0,0.5) sets the desired prior strength for the 

DARTS BHT framework and a smaller α value corresponds to a stronger strength of the 

informative prior. With this rescaling scheme, the entire ranks of the DARTS DNN scores 

are preserved while the potential bias for negative over positive events is reduced. In 

practice, we set μ0=0.05, μ1=0.95, σ0=σ1=0.1, and α=0.05. 
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2.4.5 Generalization of the DARTS framework to diverse tissues and cell types 

We generalized the DARTS framework to incorporate diverse tissues and cell types by 

using RNA-seq resources from the Roadmap Epigenomics project4. The Roadmap data were 

processed via the same protocol used for the ENCODE data. We took all Roadmap data with 

101bp×2 or 100bp×2 paired-end RNA-seq, and truncated reads from the 101bp×2 datasets 

to 100bp for rMATS. In total, this represented 23 distinct tissues or cell types. All possible 

pairwise comparisons (n=253) between these 23 RNA-seq samples were made. 

Comparisons involving thymus were held out as Roadmap leave-out data, and all remaining 

comparisons were used as training datasets.  

 We trained three DARTS DNN models using different training datasets: (1) 

ENCODE data only, (2) Roadmap data only, and (3) the combination of ENCODE and 

Roadmap data. We subsequently benchmarked the performances of the three models by 

using ENCODE or Roadmap leave-out datasets. 

2.4.6 DARTS splicing analyses of EMT-associated RNA-seq datasets 

We applied the trained DARTS model to study EMT-associated alternative splicing events 

in two distinct human cell culture systems: H358 lung-cancer cell line induced to undergo 

EMT through a seven-day time course14, and PC3E/GS689 prostate-cancer cell lines that 

had contrasting epithelial versus mesenchymal characteristics2,16. For the H358 time-

course RNA-seq data (GSE75492), we used DARTS BHT(flat) to compare RNA-seq data 

from day 1 to day 7 against that for day 0. Splicing events that displayed a high DARTS DNN 

score of differential splicing (FPR<5%) and a non-trivial splicing change (more than 10% 

difference in exon inclusion level) but did not pass the significance threshold by DARTS 
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BHT(flat) using observed RNA-seq read counts alone were defined as DARTS DNN rescued 

events. We carried out motif analysis by calculating the average percentage of nucleotides 

covered by any of the top 12 ESRP SELEX-seq hexamer motifs15 in a 45-bp sliding window. 

Background sequences were significant unchanged events by DARTS BHT(flat). For the 

PC3E and GS689 cell lines, we conducted RASL-seq17 and RNA-seq experiments on the 

same batch of RNA samples, each with three replicates and on average 125 million read 

pairs per RNA-seq replicate (raw data deposited as GSE112037). RASL-seq reads were 

aligned to the pool of target splice junctions in the RASL-seq library using Blat23. RASL-PSI 

values were calculated as I/(I+S), where I is the number of exon-inclusion splice junction 

reads and S is the number of exon-skipping splice junction reads. Alternative splicing 

events with total RASL-seq read counts greater than five in every replicate were used for 

downstream analyses. Gene expression levels of RBPs in the two datasets were quantified 

with Kallisto v.0.43.0. 

2.4.7 RASL-seq library preparation and sequencing 

RASL-seq was performed as described24, with some modifications. Total RNA from PC3E 

and GS689 cell lines were extracted with Trizol (Thermo Fisher Scientific). RASL-seq 

oligonucleotides (a gift from X.-D. Fu) were annealed to 1μg of total RNA and then 

subjected to selection by oligo-dT beads. Paired probes templated by poly(A)+ RNA were 

ligated and then eluted. We used 5μl of the eluted ligated oligos for eight cycles of PCR 

amplification using primers F1:  

5′-CCGAGATCTACACTCTTTCCCTACACGACGGCGACCACCGAGAT-3′ and 
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R1: 5′-GTGACTGGAGTTCAGACGTGTGCGCTGATGCTACGACCACAGG-3′. One-third of the 

resulting PCR products were used in the second round of PCR amplification (nine cycles) 

with primers F2: 5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACG-3′ and R2: 

5′-CAAGCAGAAGACGGCATACGAGAT[index] GTGACTGGAGTTCAGACGTGTGC-3′; indexes 

used in this study were Illumina indexes D701–D706. The indexed PCR products were 

pooled and sequenced on a MiSeq with custom sequencing primer 5′-

ACACTCTTTCCCTACACGACGGCGACCACCGAGAT-3′ and custom index sequencing primer 

5′-TAGCATCAGCGCACACGTCTGAACTCCAGTCAC-3′. 

2.4.8 Code availability  

The DARTS program, trained model parameters, and predictive features are provided at 

GitHub (https://github.com/Xinglab/DARTS). 

2.4.9 Data availability  

The RNA-seq data that support the findings of the deep learning models are available from 

the ENCODE project (https://www.encodeproject.org/) and the Roadmap Epigenomics 

project (http://www.roadmapepigenomics.org/). The H358 time-course RNA-seq data 

were downloaded from GEO accession GSE75492. The PC3E-GS689 RNA-seq data and 

RASL-seq data can be accessed from GEO under accession GSE112037. 
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2.5 Figures 

 

Figure 2.1 The DARTS computational framework. 

(a) Overall workflow of DARTS. (b) Schematic of the DARTS DNN features, including cis 

sequence features and trans RBP features. (c) Overview of training and leave-out RBPs, and 

the number of significant differential splicing events called by DARTS BHT(flat) on the 

ENCODE data (illustrated by bar charts above the outer and middle circles). We used 196 
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RBPs knocked down in both the K562 and HepG2 cell lines for training (orange), while the 

remaining 58 RBPs knocked down in only one cell line were leave-out data (light orange) 

(illustrated in the inner circle). RRM, RNA recognition motif; KH, K homology; ZNF, zinc 

finger. (d) Comparison of the DARTS DNN with baseline methods in leave-out datasets. KD, 

knockdown; CTRL, control; RPL23A, ribosomal protein L23a; AQR, aquarius intron-binding 

spliceosomal factor. 
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Figure 2.2 Performance evaluation of the DARTS BHT framework, and the influence 

of training datasets on the performance of the DARTS DNN. 

(a) The performance of DARTS BHT(info) versus DARTS BHT(flat) in the cell-type-specific 

differential splicing analysis of HepG2 and K562 (two sided paired t-test; n= 672 pairwise 

comparisons). The performance gain by DARTS BHT(info) is plotted against the RNA-seq 

depth in pairwise comparisons of individual replicates (inset). (b) AUROC values of the 

DARTS DNN trained on both ENCODE and Roadmap data, ENCODE data only, or Roadmap 

data only when applied to ENCODE or Roadmap leave-out data. 



 

33 

 

Figure 2.3 DARTS analysis of alternative splicing during the EMT.  

(a) The performance of the DARTS DNN on the time-course RNA-seq data of an inducible 

H358 lung cancer cell line model of the EMT. The numbers of differential splicing events 

called by DARTS BHT(flat) are shown as bar plots at the bottom. (b) Meta-exon-motif 

analysis of the ESRP motif for RNA-seq differential events called by DARTS BHT(flat) and 

DARTS DNN rescued events in the comparison of day 6 versus day 0. (c) DARTS DNN 

predictions for the H358 EMT time course (day 6 versus day 0) and in GS689 versus PC3E. 
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Plotted are the ranks of predicted DARTS DNN scores. (d) RASL-seq validation of RNA-seq 

called events and DARTS DNN predicted events. Plotted are the cumulative density 

functions of the RASL − |ΔPSI| values of RNA-seq inconclusive events with high DARTS DNN 

scores (FPR  80%; n= 29 events) (green line). 
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Supplementary Figure 2.4 Schematic overview of the DARTS DNN model. 

The DARTS DNN model consists of four hidden layers and 7,923,402 parameters. Batch 

normalization and drop-out of hidden variables are implemented during training to 

mitigate overfitting. 
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Supplementary Figure 2.5 Performance comparison of DARTS BHT(flat), MISO, and 

MATS using simulated RNA-seq data generated by Flux simulator. 

We derived the transcriptome profiles from a real RNA-seq dataset with widespread splicing 

changes (E-MTAB-1147; knockdown of splicing factor HNRNPC in the HeLa cell line), and 

plugged into Flux simulator as ground-truth to simulate RNA-seq reads. Then (a) AUROC and 

(b) AUPR were computed for each statistical method by labelling the exon skipping events with 

ground-truth |Δψ|>0.05 as positive and |Δψ|≤0.05 as negative (for details, see Supplementary 

Notes). DARTS BHT(flat) performs favorably to MISO and MATS. 

 

 

 

 



 

37 

 

Supplementary Figure 2.6 Performance comparison of DARTS BHT(flat) with 

replicates versus DARTS BHT(flat) on pooled data and rMATS with replicates. 

We fixed the total RNA-seq read counts (coverage per replicate x number of replicates) 

while varying the number of replicates (K), within group variance (sigma), and whether 

there is one outlier sample. The replicate DARTS model (rDARTS) outperforms DARTS on 

pooled data when there exists outlier samples (b,e) or when the within-group variance is 

large (c,f). 

 

 

 

 

 



 

38 

 

Supplementary Figure 2.7 The performance of the DARTS DNN during cross-

validation and testing as training progressed. 

The maximum AUROC was 0.97 during cross-validation and 0.86 during testing. 
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Supplementary Figure 2.8 Relationship of DARTS posterior, prior, and the amount of 

observed RNA-seq read counts. 

For a fixed absolute PSI difference between the two conditions, i.e. the effect size (denoted 

as delta), posterior probability P(|δ|>0.05|I,S) was computed from simulated data by 

varying the prior probability and the amount of read counts. The prior’s effect on DARTS 

posterior diminished when the observed read counts were large (>100) and/or with large 

effect size (delta=0.3). For events with moderate or low read counts, a strong informative 

prior improves the inference accuracy. 
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Supplementary Figure 2.9 Application of the DARTS DNN to different classes of 

alternative splicing patterns. 

(a, c, e) The performance of the DARTS DNN on validation and testing data as training 

progresses for alternative 5’ splice sites (A5SS), alternative 3’ splice sites (A3SS), and 
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retained introns (RI) as measured by AUROC. (b, d, f) Comparison of the DARTS DNN with 

baseline methods in independent leave-out datasets. DARTS DNN outperforms baseline 

methods trained on individual leave-out datasets by a large margin. Note that in these 

analyses the DARTS DNN is trained using combined ENCODE + Roadmap RNA-seq datasets, 

with certain pairwise comparisons held-out for benchmarking as independent leave-out 

datasets. 
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Supplementary Figure 2.10 An example of the DARTS DNN prediction for the 

PLEKHA1 gene in the H358 EMT time-course RNA-seq data. 

The genome browser view represents aggregated RNA-seq signals from three biological 

replicates. The DARTS DNN score for this exon is 0.94 in day 5 versus day 0, increasing the 

posterior probability of differential splicing to 0.73 over 0.42 when using RNA-seq data 

alone. The differential splicing pattern of this exon was apparent throughout the time 

course and was previously validated by RT-PCR. 
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Supplementary Figure 2.11 Meta-exon motif analysis of the ESRP motif.  

(a,b) For the comparison of day 6 versus day 0 on the H358 time-course RNA-seq data, we 

calculated ESRP motif scores for (a) all DARTS BHT(flat) significant events and (b) DARTS 

BHT(flat) significant events that become insignificant in DARTS BHT(info). The latter set of 

events does not have enrichment of the ESRP motif. 

 

 

 

 

 

 



 

44 

 

Supplementary Figure 2.12 Characteristics of the DARTS DNN predicted events. 

(a,b) The cumulative density function of (a) gene expression levels (TPM values) and (b) 

RNA-seq read coverage for DARTS-DNN-predicted differential events and RNA-seq 

differential events. The DARTS-DNN predicted differential events are from genes with 

significantly lower expression levels and have significantly lower RNA-seq read coverage 

compared with that of RNA-seq differential events (two-sided Wilcoxon test). c, DARTS 

BHT(info) outperforms baseline methods that use RNA-seq data alone to call differential 

splicing (DARTS BHT(flat), rMATS, and SUPPA2), as benchmarked using ground truth 



 

45 

defined by RASL-seq. d, DARTS BHT(info) outperforms baseline methods at different FPR 

thresholds for DARTS-DNN-predicted differential events (n represents the number of 

alternative splicing events), with the maximum gain observed for the most confidently 

predicted events with FPR = 1%.  
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Supplementary Figure 2.13 Ranking by DARTS BHT on simulated data when using 

different t1 and t2 values. 

The results of DARTS BHT are robust to different choices of parameters, especially for the 

inference of differential alternative splicing events (upper right corner in each panel). 
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2.6 Appendix 

2.6.1 DARTS BHT statistical modelling 

Benchmarking DARTS BHT on simulated data 

Generation of benchmark dataset 

In order to better represent the variability inherent in real experimental datasets, while 

knowing the ground-truth, we employed the flux-simulator25 software (v1.2.1) to simulate 

RNA-seq reads. Flux-simulator is a specialized simulation software program that models 

RNA-seq experiments using a set of modules for different experimental procedures, 

including RNA fragmentation, library preparation and high-throughput sequencing. The 

major advantage of simulating data using flux-simulator as opposed to directly drawing 

reads from a statistical distribution is that the former approach takes the variances/noises 

at different stages into consideration, whereas the latter assumes all reads are generated 

by a simple stochastic process and are counted correctly; hence, our approach better 

captures the real-world variances compared to a naïve simulator.  

 Flux-simulator simulates RNA-seq reads based on a given molecular profile that 

contains “number of molecules” for each transcript. We derived the molecular profile from 

a previously published dataset, E-MTAB-1147 from Array Express, which is an RNA-seq 

experiment of HeLa cell line upon hnRNPC knockdown26. We chose this dataset because 

our previous analysis had demonstrated that it contained abundant splicing changes27, and 

that its sequencing depth was sufficiently deep to ensure robust estimation of the 

transcript expression. We used Kallisto4 (v 0.43.0) to estimate the transcript TPM from the 

raw reads using Gencode5 V19 as reference GTF. The transcript TPM was subsequently 



 

48 

converted to number of molecules by fixing the total number of molecules at 5,000,000 

(default setting in flux-simulator) and rounding fractional molecules to the nearest integer. 

 Taking the customized molecular profile, we ran Flux-simulator using: the 

fragment distribution derived from the above experiment, sequencing read length equal to 

72bp with 100 million paired-end reads, and leaving other parameters at their default 

settings. Next, we ran STAR (v 2.5.2a) to map the reads to the hg19 version of genome with 

Gencode v19 as gene annotation file. The resulting outputs were two alignment bam files 

corresponding to the profiles derived from Control and hnRNPC knockdown. 

Evaluation of DARTS BHT, MISO and MATS 

We processed the alignment files with rMATS2 (v4.0.1) to count the junction-spanning 

reads with Gencode v19 as reference annotation. The inclusion junction counts and 

skipping junction counts for all detected events were then fed into the DARTS BHT model 

with a flat prior as input. We ran DARTS BHT with 𝜏1 = 0.3, 𝜏0= 0.03 and testing for C=0.05. 

The output of DARTS BHT was subsequently benchmarked using the true delta-PSI values 

between two conditions.  

 Note that we only considered simple skipping events in the simulation study, 

because the complex events are often combinations of multiple alternative splicing events 

and the true PSI values are often ambiguous to define and hence hard to compute. We 

define the simple events as events with a unique one-to-one mapping for the 5’- and 3’- 

splice sites of the middle skipping exon, upstream exon 5’- to middle exon 3’- splice site, 

and middle exon 5’- to downstream 3’- splice site. After filtering for simple events, we had 

7,678 simple exon-skipping events out of 16,676 exons detected by rMATS. 
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 As a comparison, we also ran MISO1 (v0.5.3) and MATS (v4.0.1) on the simulated 

datasets. To run MISO exoncentric analysis, we downloaded the Human genome (hg19) 

annotation file v1.0 from the MISO website 

(https://miso.readthedocs.io/en/fastmiso/annotation.html) and built the index for MISO 

using the Skipping Events (SE) in the annotated folder by “index_gff”. Next, we ran MISO to 

quantify the splicing level under each condition then used “compare_miso” to compute the 

Bayes Factor for the skipping events in MISO annotation files. We ran the MATS statistical 

model with setting C=0.05 on the read counts generated by rMATS.  

 Since MISO analyzes its own internal skipping events annotation which is different 

from the simple events definition in DARTS and MATS, we took the intersection of the 

events from these software programs. There were 3,407 common events between the two 

software programs, with 1,344 events’ absolute delta-PSI larger than 5% which we labeled 

as positive. We measured the accuracy of DARTS BHT, MISO and MATS by AUROC and 

AUPR. As shown in Supplementary Figure 2.5, DARTS compares favorably to MISO and 

MATS, demonstrating its superior inference power to the state-of-the-art splicing inference 

tools when using only empirical RNA-seq data. 

DARTS BHT statistical model for unpaired or paired replicates 

Illustration of replicate DARTS BHT statistical model 

Thanks to the rapid development of sequencing technology, it has become practical and 

common for transcriptomic studies to carry out RNA-seq experiments with multiple 

replicates to quantify biological variances and improve reproducibility. Previously we had 

demonstrated that pooling the reads from different replicates is not recommended2. 

https://miso.readthedocs.io/en/fastmiso/annotation.html
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Motivated by the replicate analysis, we sought to develop the replicate DARTS model that 

considers replicates in its likelihood function while still being capable of taking the 

informative prior into account.  

 Following the notations in the DARTS main text, we extend the DARTS BHT model 

to include read counts from different replicates into the following hierarchical model (we 

are abusing the subscripts k here to index replicate; whereas k was used to index different 

experimental conditions in the main text): 

𝐼𝑖𝑗𝑘|𝜓𝑖𝑗𝑘 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 = 𝐼𝑖𝑗𝑘 +  𝑆𝑖𝑗𝑘, 𝑝 = 𝑓𝑖(𝜓𝑖𝑗𝑘)) 

𝜓𝑖𝑗𝑘 =  𝜇𝑖 + 1(𝑗 = 2) ∙ 𝛿𝑖 + 𝜀𝑖𝑘,    𝜀𝑖𝑘~𝑁(0,  𝜎2) 

𝜇𝑖𝑘 = 𝜇𝑖 + 𝜀𝑘,         𝜇𝑖𝑘~𝑁(𝜇𝑖,  𝜎2)  

𝜇𝑖~𝑈𝑛𝑖𝑓(0,1) 

𝛿𝑖~𝑁(0, 𝜏2) 

 𝐼𝑖𝑗𝑘, 𝑆𝑖𝑗𝑘 and 𝜓𝑖𝑗𝑘 are the inclusion read counts, the skipping read counts and the 

exon inclusion level for exon i, sample group j=1,2, in replicate k; 𝑓𝑖 is the length 

normalization function for exon i; 𝜇𝑖 is the baseline inclusion level for exon i, and 𝛿𝑖 is the 

difference of the exon inclusion levels between the two conditions. Without loss of 

generality, we let 𝜓𝑖1k   = 𝜇𝑖 + 𝜖𝑖𝑘, 𝜓𝑖2k = 𝜇𝑖 + 𝛿𝑖 + 𝜖𝑖𝑘; that is, we assume that the effect size 𝛿𝑖 

is the same across different replicates; and that 𝜓𝑖𝑗𝑘 values in each replicate k have a 

random replicate-specific deviation from the group mean 𝜇𝑖 by 𝜖𝑖𝑘. The term 𝜖𝑖𝑘 captures 

the within group variance of PSI values in different replicates and has an expectation of 0. 
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 It is worthwhile to point out that the above replicate DARTS framework is 

applicable for both paired replicates and unpaired replicates. The subscript k indexes for 

the samples from different/same origins. For paired replicates, the two paired 

observations under the two corresponding conditions are indexed with the same k, and 

should therefore share the same starting point/baseline level of 𝜇𝑖𝑘 = 𝜇𝑖 + 𝜖𝑖𝑘, while only 

differing by the amount 𝛿𝑖 caused by the treatment. For unpaired replicates, each sample is 

indexed with a different k, hence the baseline level 𝜇𝑖𝑘 was drawn independently from 𝑁(𝜇𝑖, 

𝜎2) and there is no covariance between samples in the two groups. 

Simulated read counts and evaluation 

Next, we simulated read counts by drawing reads from binomial distributions. We did not 

use flux-simulator for this analysis because it is non-trivial to define the within group 

variances at the “number of molecules” level; instead, we imposed a normal distribution to 

the simulated group mean PSI value, then drew read counts from this hierarchical 

generating process. 

 We performed extensive simulation studies using different combinations of 

parameters. Specifically, we set the model parameters equal to the following values: 𝛿 ∈ the 

within group variance, smaller values of 𝜎indicated more consistent patterns across 

replicates; K the number of replicates, more replicates would help better capture the within 

group variance; n ∈ ,the coverage of each replicate, deeper coverage would help estimation 

of sample-wise PSI; presence of outlier, outlier PSI value was draw randomly from [0,1] to 

represent one unrelated sample out of the all replicates. We benchmarked the 

performances of pooled DARTS, replicate DARTS (rDARTS), and rMATS, using the AUROC 
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and AUPR. To obtain a reliable performance estimate, we randomly sampled n=3,000 

events under each simulation configuration, with the expected differentially spliced events 

(positive cases) at 50%. 

 As shown in Supplementary Figure 2.6, replicate DARTS showed a consistent 

gain in power under two specific situations, regardless of the number of replicates: i) when 

the within-group variance 𝜎 is large, and ii) when there is an outlier sample. This is 

consistent with our previous observation in the rMATS paper. Notably, in all simulations, 

we fixed the total coverage at 300, i.e. when K=6, each sample has 50 read counts per event; 

when K=10, each sample has 30 read counts per event. Such configurations emulate a fixed 

sample-size budget, where researchers hope to get the best scientific outcomes using the 

optimal experimental design. It is not surprising that increasing the number of 6 replicates 

by 4 would significantly reduce the loss of power caused by introducing 1 outlier sample. 

The same effect was true for larger within-group variances, demonstrating the better group 

variance estimation captured by more replicates with less coverage per replicate. In all 

comparisons, the replicates DARTS model outperforms the pooled DARTS model under 

certain conditions, while inflicting no loss of power under regular conditions. Hence, we 

recommend using the replicate DARTS model whenever possible, and advise against 

pooling reads from replicates. 

Technical notes on statistical model optimization 

Laplacian approximation 

The optimization of the DARTS model involves two major steps: i) calculating the Bayes 

Factor of two competing models/hypotheses, ii) sampling the posterior distribution given 
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the non-conjugate priors. In this part we will first deal with the calculation of the Bayes 

Factor, where we utilized Laplace’s method to approximate the intractable integrals. 

 Following the notation in the Method section, the essence of DARTS BHT with flat 

prior is the ratio of the integrated likelihood function, also known as the Bayes Factor. In 

the DARTS model, the integrated likelihood function takes the form of 

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗 ∣ 𝐻𝑛) = ∬
Θ𝑛

 𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗 ∣ 𝜇𝑖, 𝛿𝑖) ⋅ 𝑃(𝜇𝑖, 𝛿𝑖 ∣ 𝐻𝑛)𝑑𝜇𝑖𝑑𝛿𝑖 

∝ ∫  
+∞

−∞

 ∫  
1

0

 𝑓𝑖(𝜓𝑖1)𝐼𝑖1 ⋅ (1 − 𝑓𝑖(𝜓𝑖1))
𝑆𝑖1

⋅ 𝑓𝑖(𝜓𝑖2)𝐼𝑖2 ⋅ (1 − 𝑓𝑖(𝜓𝑖2))
𝑆𝑖2

⋅ 𝟏(|2 ⋅ (𝜇𝑖 + 𝛿𝑖 − 0.5)| < 1)

⋅ 𝑒−𝛿2/𝜏𝑛
2

𝑑𝜇𝑖𝑑𝛿𝑖

 

= ∬  
Θ𝑛

𝑔(𝜇𝑖 , 𝛿𝑖; 𝐼𝑖𝑗 , 𝑆𝑖𝑗)𝑑𝜇𝑖𝑑𝛿𝑖 

= ∬
Θ𝑛

 exp (𝑔1(𝜇𝑖, 𝛿𝑖; 𝐼𝑖𝑗 , 𝑆𝑖𝑗)) 𝑑𝜇𝑖𝑑𝛿𝑖 

The above integral cannot be solved in closed form. Instead, we employ Laplace’s method 

to approximate the integral. Let 𝑔1 = log 𝑔 be the log posterior density function, the 

Laplacian approximation can be viewed as the Gaussian approximation to any (posterior) 

distribution that is smooth and well-peaked around its maximal point. To implement 

Laplacian approximation for DARTS BHT, we compute both the maximal point of the 

posterior probability as well as the local curvature/Hessian matrix around the maximal 

point using the “optim” function in R by feeding its objective function and the gradient 

function. Then the approximation for the integral, denoted by Zn, is 

𝑍𝑛 = log (𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗 ∣ 𝐻𝑛)) ≈ 𝑔1(𝜇̂𝑖, 𝛿𝑖; 𝐼𝑖𝑗, 𝑆𝑖𝑗) − 0.5 × log (|H(𝜇̂𝑖, 𝛿̂𝑖)|) +  
𝑑

2
⋅ log(2𝜋) 
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𝜇̂𝑖, 𝛿𝑖 are the parameter values that maximize posterior probability; 𝑔1(𝜇̂𝑖, 𝛿𝑖; 𝐼𝑖𝑗, 𝑆𝑖𝑗) is the 

log posterior probability function evaluated at maximal point; H(𝜇̂𝑖, 𝛿̂𝑖) is the Hessian 

matrix of 𝑔1 evaluated at the maximal point; and 𝑑 is the total number of parameters 

in𝑔1(∙). Then, the Bayes Factor (BF) is 

BF =
𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗 ∣ 𝐻1)

𝑃(𝐼𝑖𝑗 , 𝑆𝑖𝑗 ∣ 𝐻0)
= exp (𝑍1 − 𝑍0) 

MCMC sampling 

Next we seek to sample from the posterior distribution of the parameters given the 

data/observations under a specific hypothesis. Since we do not have the conjugate prior for 

the likelihood, we employ an MCMC random walk to draw samples from the posterior 

distribution. Specifically, we designed the transition probability q as a normal distribution 

with mean equal to the current state and a small variance corresponding to a small step 

size. For each proposed state, we accept the proposal by a Metropolis-Hasting acceptance 

probability: 

𝛼(𝜃𝑡, 𝜃𝑡+1) = min (1,
𝑞(𝜃𝑡 ∣ 𝜃𝑡+1) ⋅ 𝑔(𝜃𝑡+1; 𝐼𝑖𝑗, 𝑆𝑖𝑗)

𝑞(𝜃𝑡+1 ∣ 𝜃𝑡) ⋅ 𝑔(𝜃𝑡; 𝐼𝑖𝑗 , 𝑆𝑖𝑗)
) 

𝑔(𝜃𝑡+1; 𝐼𝑖𝑗, 𝑆𝑖𝑗) is the posterior probability function defined in subsection 1.3.1, and 𝑞(𝑥|𝑦) 

is the transition probability from state y to state x. Note that to maintain the domain of 

𝜓𝑖𝑗 ∈ [0,1], out of domain parameter values were truncated by setting the likelihood 

function to zero. 
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 In order to shorten the burn-in period, we initialize the Markov Chain at 𝜃, i.e. the 

optimal point obtained from the previous step while computing the Bayes Factor. 

Moreover, such an initialization ensures that the starting state is close to where the target 

probability density is concentrated, especially when there are multiple replicates and the 

target probability density is in high-dimensional space. The initialization scheme can 

greatly shorten the burn-in period. 

 Under the above configurations, we noticed that in practice, drawing 1500 samples 

with a burn-in period of 100 and 10 thinning achieved good balance between estimation 

accuracy and running time. 

Justification on different values of 𝜏 parameter 

In DARTS BHT, the choice of the parameter 𝜏 specifies the two competing hypotheses: 

differential splicing and unchanged splicing between two biological conditions. Here we 

show that since the final inference is performed on the probability of 𝑃(|Δ𝜓| > 𝑐) 

marginalizing over the hypotheses, DARTS BHT is robust to different choices of 𝜏k. We 

started with an example by comparing the inference results on a set of simulated splicing 

events (n=1000) when setting 𝜏1 = 0.3, 𝜏2 =0.03 (default setting in our paper) with 𝜏1 = 0.4, 

𝜏2 = 0.02 (alternative setting here). We observed the ranks of the final inference 𝑃(|Δ𝜓| > 𝑐) 

under these two settings were highly consistent (Spearman’s rho=0.99),  demonstrating  

the  robustness  of  DARTS  BHT  to  difference  choices  of 𝜏. Additionally, comparing the 

actually posterior probability of these two settings, we observed the values were highly 

similar for 𝑃(|Δ𝜓| > 𝑐) ≈ 1, where is the major region of interest for inference of differential 

splicing. The alternative setting has a negative bias (more conservative) around 𝑃(|Δ𝜓| > 𝑐) 
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≈ 0 due  to  stronger regularization effect from a smaller 𝜏2  = 0.02. This will allow users to 

reflect their beliefs on data quality through the choices of 𝜏 as regularization strength. For 

example, when data is noisy, users would preferably specify the alternative setting over our 

default setting. To further understand the impact of the parameter τ, we examined another 

four alternative settings of 𝜏 using various combinations of different τ values. Indeed, the 

inference results are robust in different scenarios, especially for the ranking/inference of 

differential alternative splicing events (upper right corner of each panel in Supplementary 

Figure 2.13). The model of DARTS BHT is designed to be robust to different specifications 

as well as flexible enough to account for different dataset-specific requirements. 

Running time analysis 

The computation of the DARTS BHT model is demanding because of the random sampling 

of the non-conjugate posterior. Compared to conventional inference methods that only 

estimate point estimates for the parameters of interest, the DARTS BHT model needs to 

derive the whole posterior probability distribution using an MCMC sampling. Hence, we re-

wrote the MCMC sampler in Rcpp28. The source code was compiled during the installation 

of the DARTS R package and the resulting speed gain was around 10-fold. We also tuned 

the MCMC sampling (see subsection 1.3.2) to shorten the burn-in period.  

 In general, the optimized optimization procedure runs in a reasonable amount of 

time. For the DARTS BHT without replicate mode, an individual event takes 0.23s wall-

clock time on average to finish the optimization on an Intel i7-4790 3.60GHz CPU. For the 

DARTS BHT with replicate, the running time scales linearly with the number of replicates 
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for an individual event. In our benchmarking, an event with 6 replicates takes around 1.38s 

and an event with 10 replicates takes 2.07 on average. 

2.6.2 DARTS DNN Machine learning 

Sequence feature extraction and normalization 

The DARTS DNN cis sequence features are built upon a previous report7 that curated 1,393 

RNA features. Furthermore, we expanded the feature set by including 1,533 additional 

features on RBP binding motifs and conservation scores. We compiled cis sequence 

features for four different types of alternative splicing events, i.e. exon skipping, alternative 

5’ splice sites, alternative 3’ splice sites, and retained introns. Below we briefly describe all 

the feature annotations of exon skipping events as an example; the full lists of all cis 

sequence features for the four types of alternative splicing events are publicly available in 

the GitHub repository.  

 For each exon skipping events, let C1, A, and C2 be the upstream exon, skipping 

exon and downstream exon respectively. I1 denotes the intron region between C1 and A, 

and I2 denotes the intron region between A and C2. The DARTS DNN cis features are 

grouped by the following generic categories:  

1) Exon length and ratio of length of exons and introns.  

2) Nucleosome occupancy scores are computed using NuPoP29 for the skipping exon and 

flanking introns. The features are defined as predicting the nucleosome positioning in the 

first 100 nucleotides of each intron and in the first and last 50 nucleotides of skipping 

exons.  
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3) The definition of translatability is whether a sequence can be translated without stop 

codons under three different reading frames. We are evaluating translatability of C1, C1-C2, 

C1-A, C1-A-C2.  

4) We include 111 curated RBP-binding motifs and count motifs in each of the 7 intronic 

and exonic regions. In addition to the counting procedure, we also download the RBP 

binding PSSM matrix from RBPmap30 and calculate the PSSM scores of each RBP-binding 

profile.  

5) We run two different tools, one from Itoh et al.31, and maxent32, to estimate the splicing 

strength between the three exon-exon junctions: C1-C2, C1-A and A-C2.  

6) Conservation scores are computed as average conservation score of the first and last 

100 nucleotides of intron I1 and intron I2. The conservation scores are downloaded from 

UCSC phastCons46way.  

7) The secondary structure score is predicted by the maximum availability of intron 

regions using RNAfold33.  

8) Short motifs are integrated from Xiong et al7.  

9) Alu repeats annotation is downloaded from UCSC genome browser. Features are defined 

as counts of Alu repeats on the plus and minus strand of two intronic regions.  

10) ESE (exon splicing enhancer), and ESS (exon splicing silencer) are from Burge’s and 

Chasin’s work34,35. ISS (intron splicing silencer) and ISE (intron splicing enhancer) are from 

Wainberg’s work36.  

In total, the number of RNA features was 2,926. 
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 Although certain classifiers (e.g. tree-based models) are robust to the feature 

scaling, it is important to scale the features for neural networks. We followed the feature 

scaling method described previously7 and divided each feature by its maximum absolute 

value across all training sets. This rescaled the features to [-1,1] while preserving the zero 

values, which has specific biological indications. 

ENCODE data processing 

Extraction of junction counts and detection of novel events 

Following the descriptions in the Method section, we had downloaded all the alignment 

files from the ENCODE data portal3 and processed the bam files with rMATS. Aside from the 

annotated events in the reference GTF Gencode v19, rMATS detected novel splicing events 

where edges not annotated in the GTF splicing graph connect two annotated exons. These 

novel events consist of a large proportion of our training dataset and are crucial for 

learning the regulatory code between RBP perturbations and alternative splicing. Note that 

our definition of novel events are novel edges or junction reads that are not present in GTF; 

we do not detect novel splice sites or novel exons. 

RBP expression estimation 

The robust performance of DARTS DNN is dependent on the robust estimation of RBP 

expression levels, given that all sequence features are static. A previous report has 

demonstrated that 10 million reads per sample was a good depth for differential gene 

expression analysis37, hence we reasoned that the gene expression estimates are fairly 

robust to reduction in sequencing depth, unlike the exon inclusion level estimates that 

depends on junction spanning read counts. In practice we re-analyzed gene expression 



 

60 

using Kallisto (v.0.43.0) from raw fastq reads downloaded from the ENCODE data portal. 

We extracted the TPM of all RBPs from the annotated list. The estimated TPM was 

subsequently divided by the maximum value across all datasets to rescale it range to [0,1]. 

Implementation of other machine learning strategies and comparison to DARTS DNN 

Logistic regression and Random Forest 

To benchmark the performance of our trained DARTS DNN model to other machine 

learning strategies, we implemented two baseline methods, Logistic regression with L2 

penalty and Random Forest. Because these baseline methods were unable to scale up to big 

data (see 2.3.2 below), they were trained and benchmarked on individual ENCODE leave-

out datasets by cross-validation. The identical events with their corresponding labels and 

features were fed into the baseline classifiers through 5-fold cross-validation and we 

recorded the performance measured by AUROC in each of the validation sets. We 

implemented the two methods using scikit-learn in python. For the logistic regression, we 

need to tune one parameter, i.e. the penalty strength, or the inverse of the penalty strength 

C. This parameter controls the complexity of the classifier and hence the severity of 

overfitting. We chose C=0.1 for our implementation of logistic regression because in 

practice such a penalty achieves good reasonable generalization over different datasets. 

Although logistic regression is easy to interpret and a good baseline method for most 

classification tasks, it cannot effectively detect high-order interaction terms, diminishing its 

predictive power for such complex tasks. Another more powerful and robust machine 

learning strategy we employed as a baseline method was Random Forest. Random Forest is 

an ensemble learning method where each base classifier is a decision tree that over-fits a 
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set of bootstrapped training samples with a subset of features. The Random Forest 

classifier has several desirable properties, including being robust to feature scaling and 

irrelevant features, and being capable of dividing the feature space more flexibly than more 

conventional partitioning based classification methods. We tuned the hyper-parameter of 

Random Forest, i.e. the number of trees in the forest. Typically, the more trees in a random 

forest, the better predictive power it renders to the ensemble classifier. We noticed that for 

our datasets, 500 trees achieved the best testing accuracy while increasing the number of 

trees further did not grant much more gain. As shown in Figure 2.1d, Random Forest 

almost always outperformed Logistic regression given the same training datasets. We can 

also observe a positive correlation between the performance of Random Forest and 

Logistic regression, indicating the internal structure of the training data plays an important 

role in the learning efficiency, despite the fact that the two learning algorithms are based 

on dramatically different underlying structures. Nevertheless, DARTS DNN showed 

superior performance compared to the baseline methods, even though these knock-down 

datasets have never been trained in DARTS DNN. Furthermore, the performance of DARTS 

DNN does not show strong correlations with the base learners, indicating its generalization 

over the single datasets to a more generic regulatory code. 

Technical notes on DNN training 

Below we briefly describe some technical details in training the DARTS DNN model using 

the ENCODE data. DARTS DNN was implemented in Keras with Theano backend. The DNN 

model was a 4-hidden layer fully connected neural network with drop-out (with 

probability 0.6, 0.5, 0.3 and 0.1, respectively) and batch normalization layers, and each 
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neuron had ReLU (rectifier linear unit) activation function that maps the input vector x to a 

non-linear output: 

ReLU (𝑥) = max(0, 𝑤𝑇𝑥 + 𝑏) 

 The weight parameter w and bias b are learned through training on labelled 

samples and minimizing the loss function, which is the binary cross-entropy between the 

observed labels 𝑌 and predictions 𝑌̂: 

L(𝑌; 𝑌) = −
1

 N
∑  

𝑁

𝑖=1

[𝑦𝑖 ⋅ log (𝑦̂𝑖) + (1 − 𝑦𝑖) ⋅ log (1 − 𝑦̂𝑖)] 

 We optimized the model parameters using the RMSprop optimizer. RMSprop is a 

variant of the stochastic gradient descent algorithm, which accounts for the recent 

momentums of the gradient and adaptively adjusts the learning rate. In our experiments, 

RMSprop works better than other optimizers for most network architectures. 

Because the training dataset was huge and took too much memory (> 100G) to be loaded 

at once, we divided the training samples into different data batches by the knock-down 

experiments. In each data batch, we randomly picked two different RBP knockdown 

experiments; due to the way the training datasets were constructed, every RBP selected 

must have been knocked down in both HepG2 and K562 cell lines. Hence in each data 

batch, we had at least 4 different datasets, sometimes more if this RBP was knocked-down 

by more than one shRNA in a certain cell line. The pairing of the same RBP in two different 

cell lines ensured that there was sufficient variance in the RBP expression features, hence 

facilitating the classifier to learn from the trans-acting factors. 



 

63 

 Next we mixed the training skipping-exon events from the data batch, and held-out 

20% of these events as validation set, and the remaining 80% as training set. The training 

set was then split into positive and negative stacks of cases, and we aimed to construct 

mini-batches of size 400 to feed into training the model sequentially. Because the training 

set was very imbalanced and the number of negative cases outweighed the number of 

positive cases, we balanced the composition of each mini-batch by first extracting 100 

(25%) positive cases from the positive stack, then compensating 300 ( 75% ) negative 

cases from the negative stack. Such biased composition of mini-batches will generate the 

back-propagation of errors from positive cases and reduce strong negative bias caused by 

the imbalanced data. 

 To monitor potential overfitting, we computed the validation loss and the 

prediction AUROC of the current model every 10 mini-batches of training. Due to the 

imbalanced composition of the datasets, we noticed that using AUROC as the monitoring 

criteria performed better than the loss function because the loss function could be stuck in 

a local optima where all cases were classified as negative. We only saved the parameter 

values of the best performing models on the validation data; by the end of the training for 

each data batch, we re-loaded the saved model parameter values. The goal of such a 

configuration was to avoid overfitting to any particular individual data batch while 

exploring for the global optimal point(s) in the model energy landscape. 
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3 TRACKING PRE-MRNA 

MATURATION ACROSS 

SUBCELLULAR 

COMPARTMENTS IDENTIFIES 

DEVELOPMENTAL GENE 

REGULATION THROUGH 

INTRON RETENTION AND 

NUCLEAR ANCHORING 

3.1 Introduction 

After transcription initiation, the maturation of pre-messenger RNA (pre-mRNA) requires 

splicing, polyadenylation, and release of the RNA from the chromatin template, before 

export to the cytoplasm for translation. For many genes, the bulk of expressed RNA exists 
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in the cytoplasm as mature mRNA, while nascent, intron-containing transcripts are limited 

to small nuclear puncta at the sites of transcription1,2. For other genes, unspliced introns 

may remain after transcript completion but are ultimately excised to allow export3-5. These 

nuclear transcripts are not necessarily found at their gene loci but some polyadenylated 

transcripts, including many non-coding RNAs, are tightly associated with chromatin6. 

Although proteins affecting processes such as DNA template release, RNA export, and 

nuclear RNA decay have been identified5,7, the global distribution of RNA transcripts 

between subcellular compartments, and the alteration of their maturation and location 

with development have not been well studied.  

 In earlier studies, we examined the kinetics of transcription, splicing, and nuclear 

export for macrophage transcripts induced by inflammatory stimuli8,9. By following 

inflammatory gene transcripts, we found that partially spliced but polyadenylated 

transcripts in the chromatin fraction completed splicing over time, and were released to 

the soluble nucleoplasmic fraction before appearing in the cytoplasm as functional 

mRNAs8,9. These studies focused on introns whose slow splicing impacted the rate of 

inflammatory gene expression. However, polyadenylated, partially spliced RNA has been 

long been observed in nuclei where its interactions and localization are largely unknown. 

 The above analyses used a fractionation procedure to enrich for nucleoplasmic or 

chromatin-associated RNA10-15. Nucleoplasmic and chromatin compartments are 

operationally defined as the supernatant and pellet fractions, respectively, after nuclear 

lysis in a stringent buffer containing NP-40, Urea, and NaCl. This solubilizes many 

components such as the U1 snRNP, while leaving other molecules associated with the high 

molecular weight chromatin pellet14. The cytoplasmic fraction is enriched for mature 
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mRNA, while the nucleoplasmic fraction contains recently matured transcripts released 

from the chromatin that have not yet reached the cytoplasm8,9, as well as some mature 

mRNAs associated with ER and mitochondria15. The chromatin pellet is enriched for 

nascent RNA bound by elongating RNA Pol II, but also contains substantial polyadenylated 

RNA, including the Xist non-coding RNA tightly bound to chromatin16, and the Malat1 non-

coding RNA, which is enriched in nuclear speckles that are adjacent to chromatin but only 

partially in contact with it17,18. 

 The consequences of intron retention are diverse and complex to dissect. Splice 

sites and binding of spliceosomal components can prevent nuclear RNA export5,19,20. 

Nevertheless, some intron containing transcripts are exported to the cytoplasm as 

alternative mRNA isoforms that either encode an alternative protein or are subject to 

altered translation and decay21,22. Other introns slow to be excised relative to transcription 

are ultimately removed and their transcripts exported as fully spliced mRNAs8,9,23-25. Such 

transcripts can create a nuclear pool of partially spliced RNA, which acts as a reservoir to 

feed the cytoplasmic mRNA pool upon splicing. A group of these introns found in genes 

affecting growth control and cell division were named “detained introns” to distinguish 

them from classical “retained introns” found in cytoplasmic mRNA26,27. A similar pool of 

incompletely spliced transcripts affecting synaptic function is found in neurons, where cell 

stimulation induces their processing to allow transcription independent changes in mRNA 

pools28. The term “retained intron” thus encompasses a wide range of molecular behaviors. 

 Retained introns are more difficult to characterize than other patterns of 

alternative splicing in whole transcriptome RNA-seq data. Overlapping patterns of 

alternative processing can be mis-called as intron retention by sequence analysis tools29,30. 
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Many RNA-seq studies have identified conditions leading to higher levels of unspliced 

introns across the transcriptome21,31-37. These studies have not always distinguished 

between nuclear and cytoplasmic RNA or examined the fate of the partially spliced 

transcripts, information that is essential to understanding the biological role of these 

regulatory mechanisms. 

 Here we undertook a broad examination of how RNAs are distributed between 

subcellular compartments and how this compartmentalization changes with development. 

Our goals were to distinguish transcripts in the nucleoplasmic and chromatin-associated 

RNA pools from cytoplasmic mRNAs and assess how their processing and localization to 

chromatin tracked with expression of mature cytoplasmic mRNA. 

3.2 RESULTS 

3.2.1 Both coding and non-coding RNAs exhibit defined partitioning between 

cellular compartments.  

To broadly categorize RNAs enriched in different cellular locations, and gain insight into 

how this compartmentalization might be regulated across cell types, we generated deep 

RNA-seq data from mouse embryonic stem cells (mESC), a neuronal progenitor cell line 

derived from embryonic mouse brain (mNPC), and explanted mouse cortical neurons 

cultured in vitro for 5 days (E15DIV5; mCtx) (Figure 3.1A). RNA was isolated from three 

fractions of each cell: cytoplasm, soluble nucleoplasm, and chromatin pellet as previously 

described8,12,14,15. The quality of subcellular fractionation was assessed by immunoblot for 

GAPDH and Tubulin alpha-1A (TUBA1A) proteins as cytoplasmic markers, SNRNP70 
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fractionating with the soluble nucleoplasm, and Histone H3.1 as a chromatin marker 

(Supplemental Figure 3.7A). 

 To provide information on the maturation of transcripts in each cell type and 

location, RNA was isolated as two separate pools. A total RNA pool depleted of ribosomal 

RNA (Total) will include nascent incomplete transcripts. A polyadenylated pool (Poly(A)+) 

includes RNAs whose transcription and 3’ processing is complete. Each RNA pool from each 

fraction was isolated from three separate cultures of each cell type to yield biological 

triplicates of each experimental condition. The RNA pools were converted to cDNA 

libraries, sequenced on the Illumina platform to yield 100 nt paired end reads, and aligned 

to the genome. Gene expression markers for each of the three cell types confirmed the 

expected patterns of ESC, NPC or immature neurons (E15DIV5; Supplementary Figure 

3.7B). Clustering of gene expression values across all the datasets showed the expected 

segregation by cell type, fraction, and replicate, for both the poly(A)+ and total RNA 

libraries (Supplementary Figure 3.7C). The resulting 54 datasets constitute an extensive 

resource for examining multiple aspects of RNA maturation and its modulation during 

development [GSE159919 for poly(A)+ RNA and GSE159944 for total RNA]. In addition to 

the libraries used in this study, we also generated libraries of small RNAs (< 200 nt) from 

all samples. As previously described, these can be used to assess miRNA maturation and 

other processes38. These 27 datasets are also available from GEO [GSE159971]. 

 Examining read distributions in the different RNA pools and fractions, we found 

that the housekeeping gene Gapdh (Figure 3.1B) yields similar patterns of reads from 

either the poly(A)+ or the total RNA populations, with the RNA being most abundant in the 

cytoplasm. The total Gapdh RNA on chromatin contains intron reads from the nascent 
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transcripts (Figure 3.1B bottom). Although more abundant in the soluble nucleoplasm and 

especially in the cytoplasm, polyadenylated Gapdh transcripts are also found in the 

chromatin fraction, but in contrast to the total RNA lack intron reads. We also examined the 

long non-coding RNA Xist, which condenses on the inactive X Chromosome in female cells 

(Figure 3.1C). The mNPCs were isolated from female mice, and Xist is seen to partition 

almost completely to chromatin in these cells. The poly(A)+ and the total RNA samples 

yielded very similar patterns of Xist reads indicating that this RNA is largely spliced and 

polyadenylated39. Other non-coding RNAs yielded more complex patterns of subcellular 

partitioning that changed with cell type. The paraspeckle lncRNA Neat1 is more highly 

expressed in mESC than mNPC or neurons (Supplementary Figure 3.8A). The short 

polyadenylated form (Neat1_1) predominates in ESC and is found mostly with chromatin 

but also in the nucleoplasm. The longer nonpolyadenylated Neat1 RNA (Neat1_2) is seen in 

the total RNA samples and is also chromatin-enriched. Whether this is a stable long isoform 

or nascent RNA is not clear. This longer RNA contributes a larger portion of the Neat1 

transcripts in mNPC and neurons, consistent with observations that Neat1 cleavage and 

polyadenylation may be modulated40. Overall, we find that gene transcripts can exhibit 

diverse patterns of enrichment and processing across the different fractions and cell types. 

 Because the relative transcript numbers and overall library complexity will differ 

between fractions, RPM (Reads Per Million) values or other read number normalizations of 

individual genes cannot be directly compared between different subcellular fractions. 

Using qRT-PCR in mESC to directly quantify individual transcripts in different fractions, we 

found that for cytoplasmic enriched transcripts in both the poly(A)+ and the total RNA 

libraries, RPM values undercounted the RNA abundance in the cytoplasmic fraction relative 
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to the chromatin and nucleoplasm. On the other hand, for RNAs that are primarily 

chromatin associated, qRT-PCR quantification yielded cytoplasmic to chromatin ratios that 

were similar to relative RPM numbers. Although the absolute transcript levels were not 

quantifiable by RPM, the ratios of these RPM values did reflect their relative enrichment in 

each fraction across a variety of genes. As an index for how RNAs partition between the 

chromatin and cytoplasmic pools, we used DESeq241 to measure the fold change in reads 

for each gene between the chromatin and cytoplasmic poly(A)+ RNA. This returns the ratio 

of the averaged read counts for each gene between fractions. For genes whose TPM 

(Transcripts Per Million) value in chromatin was over the median and which had read 

counts greater than 0 in the cytoplasm (13,036 genes), this chromatin partition index was 

distributed over a 100 fold range centered on 1 (Log2=0). Thus, a typical gene showed 

equal normalized read counts in chromatin and cytoplasm (Figure 3.1D). Examining the 

Ensembl annotations (V.91) for genes in the left, middle, and right side of this distribution 

(400 genes each), we found that genes with predominately cytoplasmic reads as well as 

genes with roughly equal read numbers in cytoplasm and chromatin were annotated 

almost entirely as protein-coding genes. For example, on the left edge (Figure 3.1D), 

Gapdh RNAs partition much more strongly to the cytoplasm than is typical. In the middle of 

the distribution, Rbfox2 RNAs exhibit slightly fewer reads on chromatin than in the 

cytoplasm, whereas Cdk8 exhibits 2 to 3 fold more chromatin reads (Figure 3.1D). Thus, 

although the transcripts from protein coding genes are usually most abundant in the 

cytoplasm, a substantial fraction of a gene’s RNA product is often nuclear and chromatin-

associated. Comparing qRT-PCR quantification for select genes to their chromatin partition 

indices, we found that RNAs from genes exhibiting a partition index above 3.6 were actually 
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more abundant in chromatin than the cytoplasm. This included about 3 % of protein coding 

genes. At the right edge of the curve, the 400 most chromatin enriched transcripts included 

the expected non-coding RNAs, such as pri-miRNAs, snoRNAs, and lncRNAs, but also many 

protein-coding genes, including Clcn2, Ankrd16, and Gpc2 (Supplementary Figure 3.8C, 

3.8D, 3.12B), and Gabbr1, which is analyzed further below. For these protein-coding genes, 

the majority of the polyadenylated product RNA is chromatin associated where it is 

presumably inactive for protein expression (Supplementary Figure 3.8C, 3.8D, 3.12B). 

 Examination of individual genes whose poly(A)+ transcripts remain sequestered 

with chromatin showed that their splicing was modulated across cell types. The chromatin-

associated Meg3 non-coding RNA is well expressed in mESC and neurons but not in mNPC 

(Supplementary Figure 3.8B). Meg3 is the host transcript for the miRNAs MiR-770 and 

MiR-1906-1. Mature MiR-770, processed from the last Meg3 intron, is weakly expressed in 

neurons but absent from mESC. This intron is absent from the RNA in mESC where it is 

apparently efficiently spliced. By contrast in neurons, this intron is abundant in the 

chromatin fraction of polyadenylated RNA, where its reduced excision might allow more 

efficient processing of MiR-770 (Supplementary Figure 3.8B). This is consistent with 

observations that perturbations causing a host transcript to be released from chromatin 

reduce DROSHA cleavage and miRNA expression13,42. The mESC small RNA data was 

previously used to examine expression of primary MiR-124a-1 in mESC whose processing 

is blocked by PTBP1 in the chromatin fraction38. For Meg3, the processing of MiR-770 may 

be modulated by the excision rate of its host intron. The upstream portion of Meg3 that 

includes MiR-1906-1 undergoes complex processing and exhibits more splicing in neurons 

than in mESC. Thus, an additional product from the gene, possibly MiR-1906-1, may also be 
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differentially regulated between mESC and neurons. These introns present in the 

polyadenylated RNA are not more abundant in the total RNA than adjacent exon sequences, 

indicating an absence of excised intron, which could also give rise to the miRNAs. Overall, 

the data indicate that splicing of the Meg3 transcript is regulated on chromatin to allow 

differential expression of its mature products. 

3.2.2 Chromatin associated transcripts can be spliced either cotranscriptionally or 

posttranscriptionally.  

It is expected that most introns will be transient species within the chromatin RNA, with 

many introns excised prior to transcript completion, while some introns with slow kinetics 

will be removed later. Various studies estimate that 45 to 84 % of introns are 

cotranscriptionally excised in mammals3,8,11,43-45. Several approaches compare read 

numbers for spliced (exon-exon) and unspliced (exon-intron or intron-exon) junctions in 

nascent RNA to those in total RNA to measure cotranscriptional excision10,44,45. To ensure 

that measurements are of the nascent RNA, this requires removal of polyadenylated RNA 

from the chromatin fraction and prevents parallel analysis of posttranscriptional events. 

Other studies identified sawtooth patterns of RNA read abundance in total cellular RNA, 

where reads peak in exons and then decline to the next exon or recursive splice site. Such a 

pattern is thought to indicate that the time needed to excise an intron is small relative to 

the time for RNA synthesis through the next intron downstream43,46,47. While sawtooth 

read densities can be observed on certain introns in the total chromatin RNA pools 

(Supplementary Figure 3.9), these patterns were infrequent and lost on introns shorter 

than 50kb, many of which are expected to be cotranscriptionally excised43. 
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 As an alternative for defining cotranscriptional and posttranscriptional intron 

excision, we compared the total RNA from chromatin to the poly(A)+ RNA from the same 

fraction. Introns remaining in polyadenylated RNA must be excised after transcription or 

be dead-end products. For example, in the Sorbs1 gene (Figure 3.2A) reads are observed 

across all the introns in the total RNA from chromatin indicating the presence of unspliced 

introns in the nascent transcripts. In the polyadenylated RNA on chromatin, reads are 

largely absent from introns indicating that by the time of polyadenylation or shortly after, 

these introns have been spliced out. However, one intron in Sorbs1 exhibits substantial 

read numbers in poly(A)+ RNA on chromatin that are reduced in RNA from the 

nucleoplasm and absent from the cytoplasm (Figure 3.2A). This intron is presumably 

excised after cleavage/polyadenylation. While most introns are absent from the 

polyadenylated RNA and likely spliced cotranscriptionally, there are many transcripts with 

one or more introns that are highly retained in the polyadenylated chromatin associated 

RNA (Figure 3.2A, 3.2B). The comparison of intron levels in total and poly(A)+ RNA on 

chromatin provides a simple bioinformatic metric for distinguishing co- versus 

posttranscriptional excision. 

 To compare intron levels in the total and poly(A)+ RNA pools, we determined 

fractional inclusion values (FI; Supplementary Figure 3.10A) by counting reads across 

exonintron, intron-exon, and exon-exon junctions. Assessing intron retention (IR) by FI 

value can be confounded by alternative splicing, polyadenylation or transcription initiation 

events occurring within the intron being measured (Supplementary Figure 3.10B) 29,30. 

To avoid errors in IR measurements arising from other processes, we defined a set of 

introns exhibiting a unique Ensembl v91 annotation without alternative processing events 
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(Supplementary Figure 3.10B). This set of 149,333 “unique” introns (U introns) across 

28,733 genes was used for subsequent analysis. Focusing on the mESC RNA, we determined 

the FI values of all U introns in the total RNA and the poly(A)+ RNA for genes above the 

median expression level as measured by kallisto 48. We included only introns excised by the 

major spliceosome with GU/AG splice junctions. Reads from poly(A)+ RNA containing long 

unspliced introns can be biased toward the 3’ ends. To avoid undercounting in the poly(A)+ 

samples, we removed genes where reads per nucleotide length from the second exon were 

less than half that of the second to last exon. To filter out introns that were not measurable 

due to anomalies in the generation of particular junction reads, we removed introns 

yielding a FI value below 0.1 in the total RNA, and introns with a zero value for one or more 

of the junction read counts. In mESC, these criteria returned 49,629 U introns within 7,672 

genes for analysis. 

 Of the 49,629 U introns being measured, 34,939 introns (within 6,952 genes) 

exhibited low FI values in the poly(A)+ RNA (FI < 0.1) and are presumably spliced before 

transcript completion. Conversely, 14,753 introns within 5,550 genes exhibited a FI value 

greater than or equal to 0.1 in the poly(A)+ RNA. These introns (29.7 %) appear to be 

excised posttranscriptionally, with many highly unspliced in the chromatin poly(A)+ RNA 

despite being fully spliced in other fractions. By this analysis, at least 70.3 % of introns 

within our analysis set are excised cotranscriptionally, similar to estimates made by other 

methods (Figure 3.2C; Supplementary Figure 3.10C-10F). On the other hand, the 

majority of genes (5,550 out of 7,672) have at least one posttranscriptionally spliced 

intron. Restricting the analysis to the top quartile of expressed genes rather than the top 

half, the fractions of co- and posttranscriptional splicing change only slightly (70.7 % 
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cotranscriptional). The fraction of cotranscriptionally spliced introns is also essentially the 

same if the analysis is restricted to the first introns in each transcript or to internal introns. 

For introns that are the last intron transcribed before the polyadenylation site, a slightly 

higher fraction is classified as posttranscriptional, presumably because they are 

polyadenylated more rapidly after intron synthesis (Supplementary Figure 3.10F). Thus, 

posttranscriptional splicing does not appear to be associated with higher or lower gene 

expression, or with the position of an intron along the gene. Examples of introns defined as 

co or posttranscriptional by these measures are shown in Figure 3.2B. Although in the 

minority, posttranscriptionally spliced introns are found across a wide range of genes, and 

often exhibit high FI values in the chromatin fraction, even though the cytoplasmic RNA is 

completely spliced. 

 In addition to the U introns analyzed above, we also analyzed a set of introns 

flanking simple cassette exons that could also be unambiguously measured for FI. Using the 

same parameters to define co- versus posttranscriptional splicing, we found a reversal in 

the percentages. Of these introns flanking alternative exons, approximately 67 % exhibit 

high read numbers (FI > 0.1) in the poly(A)+ RNA and thus appear to be excised 

posttranscriptionally (Figure 3.2C; Supplementary Figure 3.10E). This was seen for 

introns both upstream and downstream of the cassette exon. These data indicate that the 

majority of regulated splicing events occur with slower kinetics than the excision of typical 

constitutive introns. 
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3.2.3 Retained introns can be classified by their enrichment in the chromatin, 

nucleoplasmic, and cytoplasmic compartments. 

A variety of fates are possible for transcripts that retain introns after polyadenylation. 

Intron containing transcripts can be sequestered in the nucleus until they are spliced or can 

undergo nuclear decay. Other intron containing mRNAs are exported unspliced to the 

cytoplasm where they can be translated or undergo Nonsense-mediated mRNA decay 

(NMD). To categorize introns based on both their retention levels and location, FI values 

for the unique intron set in the polyadenylated RNA of all cells and fractions were subjected 

to X-means cluster analysis (Figure 3.3A) 49. Consistently, in all three cell types the 

clustering algorithm defined four groups of introns. The largest cluster Group A, containing 

49,981 introns in mESC, was almost entirely spliced in all three fractions. Introns in Group 

B (7,529), exhibited measurable retention in the poly(A)+ RNA from chromatin, but 

showed nearly complete splicing in the nucleoplasm and cytoplasm (Figure 3.3A). Group C 

introns (1,351), including introns in Zfp598 and Neil3 (Figure 3.3B), showed higher FI 

values in the chromatin and nucleoplasm than Group B, but were almost completely 

excised from the cytoplasmic RNA. The smallest cluster of only 247 introns in mESC, Group 

D, was almost entirely retained in all three fractions. Each of the other two cell types also 

generated four clusters with similar splicing levels and similar numbers of introns in each 

group (Figure 3.3A). 

 Group B and C introns that do not leave the nucleus can be seen to have different 

properties from Group D introns that also have high retention levels in the cytoplasm. A 

larger percentage of Group D introns are found in 5’ and 3’ UTR sequences, where they will 

not disrupt the primary reading frame, but will likely affect translation and decay. Group D 
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introns were also found to be depleted of in-frame premature termination codons (PTC) 

compared to Groups A, B and C (Figure 3.3C), presumably due to selection to prevent NMD 

in the cytoplasm. These observations indicate that the different intron clusters arise from 

selection for different functions in the intron containing RNAs. 

 We found that among transcripts where all introns could be assigned a group 

(Supplementary Figure 3.10G), RNAs containing at least one Group C intron have a 

higher average chromatin partition index than transcripts with no Group C intron 

(Supplementary Figure 3.10H). Previous work defined nuclear transcripts in mESC 

containing what are called detained introns (DI), whose splicing is modulated in cancer and 

growth control pathways 26,27. Of 3,150 detained introns, 1,021 were on our U intron list. Of 

these, 1,000 introns passed the filters for FI measurement and are seen to fall 

predominantly into Groups B and C, in agreement with the earlier studies (Figure 3.3D). 

However, the 1,021 detained introns were only a subset of the nearly 9,000 retained 

introns identified in Groups B and C. Similar to the detained introns affecting growth 

control, as well as inflammatory and neuronal gene introns also identified previously 

8,9,24,28,50, these new retained introns could affect cellular function by altering the movement 

of material through the gene expression pathway. 

3.2.4 Predicting retained introns 

To examine whether introns in different groups could be identified by their sequence 

features alone, we developed a deep learning model for predicting intron behavior. We 

extracted 1,387 sequence features from the first and last 300 nucleotides of each intron 

and from the two flanking exons. For introns less than 300 nucleotides, the intron interval 
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includes some adjacent exon sequence. Analyzed features included short motif frequencies, 

predicted RBP binding elements, propensity to form local secondary structure, splice site 

strength scores, conservation scores, and nucleosome positioning scores. This feature 

information was used to train a three-layer deep neural network tasked with predicting 

whether an intron belonged in Group A, B, C, or D (Figure 3.4A). 

 The performance of the model was assessed using Receiver Operating 

Characteristic (ROC) curves plotting the false and true positive rates (Figure 3.4B). The 

model was highly predictive in distinguishing Group D introns from A, yielding an Area 

Under the Curve of 0.94 (AUC = probability that any true positive will rank higher than any 

true negative). Group D introns could also be distinguished from Group B and C (AUC=0.9 

and 0.84, respectively), and Group B and C introns from Group A with reduced accuracy 

(AUC = 0.68 and 0.76, respectively). Thus, the Group D introns are most different from the 

introns of other groups. 

 To assess the features of Group C and D introns that distinguish them from each 

other and from Group A, we isolated the top 15 features predictive of intron retention or its 

absence and used a t-distributed stochastic neighbor embedding algorithm (t-SNE) to 

project them onto two dimensions (Figure 3.4C). As previously observed, high splice site 

strength scores were predictive of Groups A and C over D, and also Group A over C 31,51. 

Other features redundant with splice site strength scores were also predictive of Groups A 

or C, including GTAAG count in the 5’ portion of the intron and the conservation of the 

splice site sequences. Translatability of the flanking exons and their spliced product was 

predictive of Groups A and C over D. This may reflect a greater percentage of Group D 

introns in 5’ and 3’ UTR sequences. Conversely, the translatability of the exon-intron-exon 
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unit containing the retained intron was predictive of Group D over Group C, in agreement 

with the Group D introns being depleted of in frame termination codons (Figure 3.3C) and 

adding a coding segment to the mRNA. Overall, the data indicate that intron retention is 

controlled by many factors each having relatively small effect. 

 We examined whether particular sequence elements correlated with the intron 

group assignments, indicative of regulatory protein binding sites. The model did not clearly 

identify known elements affecting nuclear localization or intron retention such as 

constitutive transport elements or decoy exons 34,52. However, the sequence conservation 

score of the 5’ portion of the intron was predictive of Group D over Groups C or A, and 

conservation of both ends of the intron was predictive of C over A. Particular triplet motif 

frequencies within introns or their flanking exons were also predictive of intron behavior. 

For example, CGA triplets in the 3’ portion of the intron were predictive of Group D over C, 

whereas TTG and GTT triplets in the 5’ intron segment were predictive of Group C over D. 

The predictive power of intron sequence conservation and of multiple triplets indicate that 

particular RNA/protein interactions likely determine the retention properties of these 

groups. 

3.2.5 Intron retention and chromatin association are regulated with neuronal 

development. 

Since the X-means analysis yielded four intron clusters in each cell type, these cluster 

definitions allow bioinformatic analysis of IR regulation between cell types. While many 

introns maintain their classification between cell types (Figure 3.5A, left), some introns 

switched their group (Figure 3.5A, right). One example is Med22 (Figure 3.5B), which 
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contains a highly retained intron 3 (I3) in all three fractions of mESC (Group D). This intron 

became more spliced in mNPC and was classified as Group C, and then became almost fully 

spliced as a Group B intron in neurons. The nearby intron 1 (I1) was maintained as a Group 

A intron in all three cell types. Med22 encodes a subunit of the transcriptional mediator 

complex. The retention or splicing of Med22 intron 3 creates MED22 proteins with 

different C-terminal peptides that likely alters mediator function in the two cell types. The 

group switching introns are presumably part of the extensive alternative splicing programs 

modulated during neuronal development. Examining their Gene Ontology (GO) functions, 

we found that the 231 genes containing introns highly spliced in mESC but unspliced in 

neurons (switching from Group A or B to Group C or D) were enriched in processes such as 

ribosome biogenesis, organelle assembly, and metabolism. These functional categories may 

reflect the different proliferation rates and metabolic status of the two cells. In contrast, 

413 genes whose introns were unspliced in mESC and became more spliced in neurons 

(switching from Group C or D to Group A or B) were enriched in GO biological processes of 

glutamatergic synaptic transmission and organelle localization by membrane tethering, in 

keeping with gene expression and cell morphology changes in the early neuronal state 

(Supplemental Figure 3.11). 

 The changes in splicing between mESC, mNPC and neurons are driven by changes 

in the expression of multiple protein regulators. In previous work, we and others 

characterized alternative splicing programs controlled by the polypyrimidine tract binding 

proteins, PTBP1 and PTBP2 53,54. In ESC and other cells, PTBP1 maintains alternative 

splicing patterns characteristic of non-neuronal cells, and PTBP1 downregulation is a key 

step in neuronal differentiation. While the cultured NPC’s are not true lineage precursors to 
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the immature cortical neurons used here, the depletion of PTBP1 is common to many 

neuronal lineages. We previously reported neuronal cassette exons regulated by PTBP1 in 

ESC 55, and PTBP1 regulated retained introns, including the Med22 intron, have been 

described in a neuronal cell line 56. We next examined whether additional PTBP1 targets 

could be identified in the chromatin compartment of mESC. 

 To assess PTBP1 regulation, we fractionated cells after Ptbp1 knockdown and 

measured the splicing of polyadenylated RNA in the different compartments by RNA-seq. 

This confirmed the PTBP1 dependence of Med22 intron 3, which shifted from Group D to 

Group C with Ptbp1 depletion (Figure 3.5B, right). Examining all the retained introns, we 

found that many more splicing changes could be observed in the chromatin associated RNA 

than in the nucleoplasmic and cytoplasmic fractions (Figure 3.5C). As shown previously 

with cassette exons, these PTBP1 dependent introns in ESC also change with neuronal 

differentiation as PTBP1 levels drop (Figure 3.5C). These include introns identified 

previously 56 as well as new introns. Other introns whose splicing changes with neuronal 

development but are not sensitive to PTBP1 are presumably regulated by other factors. 

 By examining the chromatin associated RNA, our analysis identified substantially 

more PTBP1-regulated introns than previously recognized. The transcripts containing 

these introns may remain in the nucleus, similar to detained introns, or may be exported to 

the cytoplasm and then lost to NMD. To assess this, we used data from a study of 

unfractionated polyadenylated RNA after Upf1 knockdown that globally identified NMD 

targets in mESC 57. A majority of Group A, B and C introns are predicted to induce NMD, if 

their parent transcripts were exported to the cytoplasm (Figure 3.3C). However, we find 

that of 871 genes containing PTBP1 dependent retained introns in the chromatin fraction, 
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only 87 exhibited greater than 10 % transcript upregulation after Upf1 depletion. Thus, the 

majority of the PTBP1 dependent retained intron transcripts likely stay in the nucleus and 

will be eliminated by nuclear RNA decay pathways. 

 Looking more broadly at whether NMD might create the apparent nuclear 

enrichment of some transcripts, we found that protein-coding genes with high chromatin 

partition indices were actually less likely to show increases after Upf1 depletion than other 

genes across the distribution. For the genes in the L, M, and R regions in Figure 3.1D, NMD 

targets constituted 4.2, 7.2, and 1.1 % respectively. Rather than NMD causing the observed 

nuclear enrichment by depleting the cytoplasmic RNA, the nuclear enrichment may buffer 

the effect of NMD on the level of total RNA. It would be interesting to assess this by 

examining the effect of Upf1 knockdown specifically on the levels of cytoplasmic mRNA. 

3.2.6 Posttranscriptional repression of Gabbr1 expression. 

 For the most part, transcripts enriched in the chromatin fraction of mESC’s (Figure 

3.1D) were only mildly or unaffected by Upf1 depletion. Rather than cytoplasmic 

degradation, other processes prevent mRNA expression from these genes. A notable 

example is Gabbr1, which encodes GABBR1, an inhibitory neurotransmitter receptor 

whose cytoplasmic mRNAs are highly expressed in neurons, moderately expressed in 

mNPC, but nearly absent in mESC (Figure 3.6A). By immunoblot, GABBR1 protein is only 

observed in neurons (Figure 3.6C). In the chromatin fraction of mESC the Gabbr1 

precursor RNA is present at high levels that nearly match those seen in mNPC and neurons 

(Figure 3.6A). This Gabbr1 RNA is polyadenylated and most introns are excised, but 

introns 4 and 5 that exhibit a complex pattern of alternative processing in neurons, are 
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largely unprocessed in mESC (Figure 3.6A). Gabbr1 mRNA expression is apparently 

blocked by a combined process of splicing inhibition and sequestration on chromatin. Upon 

differentiation into neurons, the chromatin partition index of Gabbr1 RNA shifts from 4.43 

to -0.69, as the RNA becomes fully processed and released from chromatin to appear in the 

cytoplasm as mature mRNA (Figure 3.6A). Other protein coding transcripts, including 

Gpc2, were found to behave similarly to Gabbr1 with RNA abundant in mESC chromatin but 

low in cytoplasm. In neurons, this pattern was reversed with the Gpc2 partition index 

shifting from 4.60 in mESC to 1.09 in neurons (Supplementary Figure 3.12B).  

 PTBP1 was previously found to regulate Gabbr1 exon 15 in a neuronal cell line 58. 

To assess introns 4 and 5, we examined iCLIP maps of PTBP1 binding in mESC 55, which 

showed prominent PTBP1 binding peaks in the intron 4-5 region, as well as confirming 

PTBP1 binding upstream of exon 15 and to the 3’ UTR (Figure 3.6A, 3.6B). Examining the 

fractionated RNA-seq data, we found that Ptbp1 knockdown led to processing of the 

Gabbr1 RNA into the neuronal isoforms, including activation of exon 15 and activation of 

the exon 5 microexon encoding a 6 amino acid linker of Gabbr1a (Figure 3.6A, 3.6B). Some 

processed Gabbr1 mRNA was present in the cytoplasm after Ptbp1 knockdown, but more 

of this spliced RNA was in the soluble nuclear fraction. Even after Ptbp1 depletion, a 

majority of the Gabbr1 RNA was still in the chromatin fraction and still unprocessed in the 

intron 4-5 region, despite exon 15 being strongly activated for splicing in this fraction 

(Supplementary Figure 3.12C). GABBR1 protein was also not observed in mESC after 

Ptbp1 knockdown (Supplementary Figure 3.12D). Thus, although PTBP1 strongly 

affected the processing of Gabbr1, its depletion did not yield the predominantly 

cytoplasmic RNA seen in neurons. There must be additional factors preventing release of 
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the RNA from chromatin in mESC. Gabbr1 is highly transcribed in mESC, but its mRNA 

expression is blocked by a combination of splicing repression, NMD of transcripts that 

enter the cytoplasm, and sequestration of the unprocessed RNA on chromatin, with the 

latter mechanism having the largest effect. 

3.3 DISCUSSION  

3.3.1 A resource for the analysis of RNA-level gene regulation.  

We developed extensive datasets to examine RNA maturation events across cellular 

location and developmental state. Applying these data to analyze intron retention, we 

compare total and polyadenylated RNA across subcellular fractions and cell types to define 

classes of introns exhibiting different regulatory behaviors, and we uncover a novel form of 

gene regulation acting on chromatin associated RNA. We find that a substantial fraction of 

the polyadenylated RNA product of some genes is incompletely spliced and still associated 

with chromatin. This points to a limitation for whole transcriptome measurements of gene 

expression that assess total cellular polyadenylated RNA; The RNA being measured in these 

studies is not all cytoplasmic mRNA. The presence of nuclear polyadenylated RNA may thus 

contribute to the observed lack of correlation between RNA and protein levels in global 

gene expression measurements 59,60. The isolation of chromatin associated RNA has 

frequently been used to enrich for nascent pre-mRNAs and other short lived species 12,61,62. 

We find that many introns are only observed in the total RNA of this fraction, while others 

are also present in the polyadenylated RNA. Quantifying this difference, we estimate that 

70 % of introns within our analysis set are spliced before the RNA has been completely 

transcribed. Although this roughly agrees with other studies, we believe it is a lower-bound 
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estimate in our system because the criteria for counting cotranscriptionally excised introns 

required a measurable presence of the intron in the total RNA. In contrast, we find that 

introns flanking alternatively spliced cassette exons are mostly spliced 

posttranscriptionally - exhibiting significant intron retention levels in the polyadenylated 

RNA. These introns may be spliced more slowly than typical constitutive introns because of 

the complex regulatory RNP structures that must assemble onto the sequences flanking 

alternative exons. By creating a pool of unspliced RNA for these genes, the delayed splicing 

may allow additional controls over the isoform choice. It will be interesting to examine 

whether the subset of exons whose inclusion is affected by transcription elongation rates 

and perturbations of RNA Pol II are among the 30 % that appear to be cotranscriptionally 

excised 10,63,64.  

 Our data provide a rich resource for examining other questions of RNA metabolism 

and its regulation over development. Besides introns, transient species one could observe 

in chromatin associated RNA include upstream antisense RNAs and extended transcripts 

downstream from polyadenylation sites 65-67. These data could also allow more sensitive 

detection of recursive or back-splicing, and inform studies of regulated RNA export. We 

have also examined regulated miRNA processing using parallel data from short RNA 

libraries (GSE159971) 38. 

3.3.2 Behaviors of retained introns.  

To characterize incompletely spliced transcripts, we assessed introns based on their 

retention levels across fractions and cell types. Unsupervised X-means clustering yielded 

four intron groups in each cell type. The largest cluster (Group A) were completely spliced 
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in the poly(A)+ RNA, including in the chromatin fraction, and are presumably excised prior 

to transcription termination. The smallest cluster (Group D) behaved like classical retained 

introns in being exported to the cytoplasm within the otherwise fully spliced mRNA. Two 

intermediate clusters of introns (Groups B and C) were fully spliced in the cytoplasm while 

exhibiting different levels of retention on chromatin and to some extent the nucleoplasm. A 

deep neural network trained using a well-defined set of introns and a wide range of 

genomic features was able to distinguish introns in Group D from those in A or C with high 

accuracy. Group C introns were also distinguished from Group A with moderate accuracy 

(Figure 3.4B). These data indicate that Groups D and C are functionally distinct and the 

features which define them should give clues to their regulation. These features include 

those previously associated with retained introns, such as weak splice sites, conservation, 

and coding capacity28,31,34,51,68,69. We found that introns of the different groups were defined 

by enrichment of particular short sequence motifs in their terminal regions and adjacent 

exons. We have not yet identified proteins whose binding sites might underlie the 

enrichment of these motifs. This may be because the recognition elements assigned to 

individual proteins are not sufficiently specific. Introns also may be regulated by so many 

different proteins that no single binding motif is strongly predictive. Proteins including 

PTBP1 and others are known to regulate particular retained introns50,56,70,71, but there may 

be many such factors each regulating a subset of introns in a group. The extension of our 

approach to larger datasets will allow correlation of changes in intron group assignment 

with the expression of particular RNA-binding proteins. 

 Groups B and C include several previously described sets of interesting retained 

introns. Detained introns were defined as partially spliced introns in transcripts affecting 
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growth control, whose excision can be modulated by cellular stimuli25-27. These detained 

introns are a subset of the Group B and particularly Group C introns we defined in mESC. 

Another group of retained introns were shown to be regulated by PTB proteins in a 

neuronal cell line56. Our analytical strategy identified many new PTBP1 dependent introns 

that remain as chromatin associated transcripts in mESC. In the total cellular 

polyadenylated RNA of mature primary neuronal cultures28, retained introns were 

characterized as transient or stable according to their splicing after transcription 

inhibition. In our data from less mature neurons, we found that the largest portion of 

transient introns were in Group C (40 %). In contrast, of the stable introns that we could 

assay in our cultures, about 40 % were in Group D, consistent with the stable introns 

remaining in cytoplasmic mRNA after transcriptional shutoff. Similar to detained introns, 

Mauger et al. found that synaptic activation could change the splicing level of some retained 

introns. It will be interesting to examine whether these introns are associated with 

chromatin, but this will require improved isolation of nuclei from mature neuronal 

cultures. 

3.3.3 Developmental regulation by splicing inhibition and chromatin sequestration. 

In previous studies, we showed how the neuronal specific expression of certain genes is 

determined by the coupling of a PTBP1 dependent splicing event to NMD. RNAs for the 

neuronal PTBP2 and PSD-95 proteins are expressed in ESC and other non-neuronal cells, 

but through the action of PTBP1 are spliced as isoforms that are subject to NMD55,58,72-74. A 

similar mechanism affects Gabbr1 through regulation of exon 15 by PTBP158, but the 

change in RNA with loss of NMD is small57. Most protein-coding transcripts exhibiting 
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chromatin enrichment were not seen to be upregulated by Upf1 depletion, while some 

were modestly affected similar to Gabbr1. The nuclear pools of these RNAs may reduce the 

observed efficiency of NMD on total RNA levels, where transcripts exhibit only partial 

depletion by the decay pathway even though near complete loss of protein is observed. 

Here we uncover another mechanism controlling the developmental specific expression of 

a neuronal protein. The Gabbr1 RNA is abundant in mESC but its splicing is incomplete and 

its transcript remains in the chromatin compartment. 

 Gabbr1 is expressed as multiple isoforms75. The long Gabbr1a isoform comes from 

a promoter active in all three cell types studied here. Gabbr1b, which lacks N-terminal 

sushi domains, arises from an alternative promoter within intron 5 active in neurons 76. 

There is also a short transcript derived from an alternative polyadenylation site in intron 4. 

A micro exon 5 between these two introns adds a linker into the 1a isoform 76. This 

complex intron 4-5 region is largely unprocessed in mESC cells and becomes processed in 

neurons with the production of cytoplasmic mRNA including exon 5. The depletion of 

Ptbp1 from mESC leads to multiple changes in Gabbr1 splicing including activation of micro 

exon 5 and downstream exon 15. This leads to some expression of neuronal mRNA 

isoforms but very limited protein expression. Much of the RNA remains nuclear indicating 

that additional factors prevent its mobilization. Instead of regulation at the level of 

transcription or mRNA stability, incomplete Gabbr1 splicing and sequestration of its RNA 

on chromatin are modulated to control gene output over development. 

 The Gabbr1 transcript is extensively bound by PTBP1. Studies have shown that 

when binding RNA at high stoichiometry, PTBP1 can cause the condensation of 

RNA/protein liquid droplets in vitro77. Extensive PTBP1 binding to the long non-coding 
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RNA Xist is required for Xist condensation onto the X Chromosome during X inactivation16. 

PTBP1 also drives the condensation of the long non-coding RNA PNCTR in the 

perinucleolar compartment, and a similar mechanism may be involved in its interaction 

with LINE RNAs78,79. It will be interesting to examine whether PTBP1 might create a 

nuclear condensate of Gabbr1 RNA. Although Ptbp1 knockdown led to increased splicing 

and increased mRNA in the nucleoplasm and cytoplasm, it did not eliminate the enrichment 

of the unspliced RNA in the chromatin. This may be due to the partial depletion of Ptbp1 by 

RNAi, but it seems likely that other proteins will also contribute to the sequestration of 

Gabbr1 RNA, as is seen with Xist. If the chromatin enrichment of protein-coding transcripts 

like Gabbr1 involve similar mechanisms to those controlling lncRNA function, they may 

also have similar effects on chromatin condensation and gene expression. 

3.4 Methods 

3.4.1 Subcellular fractionation, RNA isolation, and library construction. 

Total RNA was isolated from mESCs, mNPCs, and cortical neurons (mCtx) that were 

fractionated into cytoplasmic, soluble nuclear, and chromatin pellet compartments as 

described previously12,14,15,38. After checking RNA quantity and integrity, RNAs longer than 

200 nt (long RNA) and shorter than 200 nt (short RNA) were separated using RNeasy 

MinElute Cleanup Kit (Qiagen). Long RNAs were used for total and poly(A)+ libraries, and 

short RNAs were used for small RNA library construction. See also Supplemental Materials. 



 

93 

3.4.2 Calculation of chromatin partition indices and biotype analysis. 

To analyze differential compartmentalization of RNAs, genes were selected that had 

chromatin expression greater or equal to the median TPM reported by kallisto (2.13 TPM), 

and had read counts greater than 0 in the cytoplasmic fractions as measured by 

FeatureCount. This returned 13,036 genes for analysis. DESeq2 was used to measure fold 

change in read counts between the chromatin-associated and the cytoplasmic poly(A)+ 

RNA by calculating the average read count among replicates of the chromatin fraction 

divided by the average read counts of the cytoplasmic fraction. The chromatin partition 

index was defined as the log2 of this ratio (Figure 3.1D). Biotypes were retrieved from 

Ensembl annotation (V.91). Of the 13,036 genes, 400 genes (3.1 %) were analyzed in each 

of three ranges of the distribution. Partition indices were from -4.2 to -2.6 for region L, -0.1 

to 0.1 for region M, and 4.1 to 8.6 for region R. 

3.4.3 Measurement of intron retention 

We developed SIRI (Systematic Investigation of Retained Introns), a tool to stringently 

quantify unspliced introns by deep sequencing (https://github.com/Xinglab/siri). In this 

tool, we first retrieved all introns from Ensembl gene transfer format (GTF) version 91 for 

the mouse mm10 genome80. The number of reads mapping to each exon-exon (EE), exon-

intron (EI), and intron-exon (IE) junctions were counted to determine the FI (Fraction of 

intron Inclusion) value of each intron. We selected only introns with a unique intron 

annotation (U introns) that are not involved in other alternative processing events 

(Supplementary Figure 3.10B). Introns subjected to FI measurement were also required 

have an intron length greater than and equal to 60 and have a sum of EE + EI + IE reads be 
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greater than and equal to 20. From this set, IR events with EE reads no fewer than 2 in at 

least one cell compartment in one cell type were then kept for downstream analysis. 

3.4.4 X-means clustering of IR events 

X-means clustering was performed using the Pyclustering tool81 applied to the FI values 

determined in all three compartments of each cell type (Figure 3.3A), with the maximum 

number of clusters set at 6. The distance matrix for X-means clustering is based on the 

Dynamic Time Warping (DTW) algorithm82 for the purpose of investigating directional 

changes of FI values from chromatin to nucleoplasm to cytoplasm. The Circos plot83 

showing the intron group changes from one cell type to another cell type was produced 

using R (R Core Team 2020) package circlize (version 0.4.4)84 (Figure 3.5A). 

3.4.5 Predicting intron retention patterns by deep learning 

To apply deep learning to IR group prediction, we constructed a compendium of 1,387 

intron features of five types: sequence motifs, transcript features, RNA secondary structure, 

nucleosome positioning, and conservation. Sequence motif features included splice site 

consensus sequences, position-specific matrices of RNA-binding proteins, dinucleotide and 

trinucleotide frequencies of introns and flanking exons. Transcript features included the 

lengths of upstream exon (E1), downstream exon (E2), and intron (I) and intron number in 

the host gene. The translatability of E1, E2, E1 + E2, I and E1 + I + E2 were defined by 

confirming the absence of a stop codon in one of the three reading frames. To predict RNA 

secondary structure, RNA sequences from the regions from -20 to +20 nt relative to each 

splice site were examined. Sequence intervals from 1 to 70 nt, 70 to 140 nt, 140 to 210 nt 
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from the 5’ portion of the intron, and from -210 to -140 nt, -140 to -70 nt and -70 to -1 nt 

from the 3’ portion of the intron were also examined. We computed the free energy of 

folding for each region with RNAfold (2.2.10)85 and used the free energy of unfolding for 

each region as features for the deep learning. The nucleosome positioning was predicted by 

NuPoP (version 1.0, set to the mouse model)86 on the last 50 nt of the upstream exon, the 

first 100 nt of 5’ intron region, the last 100 nt of 3’ intron region, and the first 50 nt of 

downstream exon. The training dataset included introns that had grouping information in 

at least two cell types and excluded U11/U12 introns and other introns lacking GT or AG 

splice sites. We trained a Deep Neural Network (DNN)87 with these 1,387 features to 

predict whether introns belong to group A, B, C, and D for each cell type (Figure 3.3A). The 

training was done with fivefold cross-validation with area under the ROC curves on data 

held-out during training reported for performance evaluation88. To evaluate the strengths 

of individual features, we assessed the decrease of AUC on held-out data when the values of 

each feature were substituted by its median. 

3.4.6 DATA ACCESS  

All raw and processed sequencing data generated in this study have been submitted to the 

NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under 

accession numbers GSE159944 for total RNA, GSE159919 for poly(A)+ RNA, GSE159971 

for small RNA, and GSE159993 for poly(A)+ RNA in Ptbp knockdown experiments in Figs. 

5, 6. Links to the data displayed on the UCSC Genome Browser are here: 

(https://genome.ucsc.edu/s/Chiaho/Kay_fraction_total_hub_10202020 for total RNA, and 

https://genome.ucsc.edu/s/Chiaho/Kay_fraction_polyA%2B_hub_10202020 for poly(A)+ 
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RNA). The source code of data analysis is available in 

https://github.com/Xinglab/intronretention-paper, as well as in Supplemental Code files. 

The data resources used to reproduce the analysis are available in 

https://doi.org/10.5281/zenodo.4540589. 
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3.5 Figures 

 

Figure 3.1 RNA partitioning between subcellular compartments. 

(A) Workflow used in this study. (B) Genome browser tracks of the Gapdh locus in mESC. 

GENCODE annotated isoforms (M11) are diagrammed at the top. Poly(A)+ RNA (open 

box), total RNA (grey box), and peak RPM are noted on the left. RNA from chromatin 

(Chr), nucleoplasmic (Nuc), and cytoplasmic (Cyto) fractions are labeled at the right. The 
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fixed Y scale (RPM) shows the strong enrichment of Gapdh RNA in the cytoplasm. The 

bottom tracks show chromatin RNA with an extended Y scale to observe the intron reads. 

(C) Genome browser tracks of the Xist/Tsix locus in female mNPCs show strong 

chromatin enrichment of Xist RNA. (D) Distribution of chromatin partition indices. The 

Chromatin / Cytoplasm ratio [Chr_Poly(A)+ / Cyto_Poly(A)+] of the averaged read 

counts of each gene are plotted as a distribution along the log2 scale, with partition 

indices of representative genes indicated below. Biotypes of the 400 genes from bottom 

(left (L), blue bar), peak (middle (M), green bar), and top (right (R), red bar) of the 

distribution are presented in the bar graph below. 
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Figure 3.2 Cotranscriptional and posttranscriptional intron excision.  

(A) Genome browser tracks of the Sorbs1 locus in mESC. Total chromatin RNA (grey box) 

shows intron reads, but the poly(A)+ RNA (open box) shows primarily exon reads except 

one posttranscriptional intron. (B) Genome browser tracks of chromatin RNA at the Wdr55 

and Vegfb loci in mESC. Total (grey box) and poly(A)+ (open box) are shown, with 
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cotranscriptionally and posttranscriptionally spliced introns are highlighted in green and 

red respectively. Yellow highlighted introns were not analyzable due to multiple processing 

patterns. (C) Proportions of co- and posttranscriptional splicing for 49,692 U introns in 

mESC, using criteria described in Supplementary Figure 10C-10E. Introns upstream 

(2,779) and downstream (2,744) from simple cassette exons were similarly analyzed. 
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Figure 3.3 Intron Groups defined by their retention level and fractionation behavior.  

(A) X-means clustering was applied to intron FI values and fraction enrichment in mESC, 

mNPC, and mCtx. The FI distribution for introns in each subcellular fraction and group is 

shown. (B) Genome browser tracks (top) and RT-PCR validation (bottom) of 

representative transcripts in mESC. Validated introns are indicated by a blue highlight and 

a bracket below. Gel images are one of 3 biological replicates. (C) The proportion of introns 

containing a PTC in frame with the upstream sequence is shown for each cluster and cell 
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type. D. Percent of introns in each group for U introns from mESC and for detained introns 

within the U intron set (Boutz et al. 2015). 
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Figure 3.4 Deep Learning Analysis of Intron Groups.  



 

104 

(A) Flow diagram for training the deep neural network. (B) Performance of the model in 

distinguishing introns of different groups. ROC curves were plotted for individual pairwise 

comparisons with AUC values shown in parentheses. (C) t-SNE plots of the 15 genomic 

features most predictive for distinguishing intron groups. Features distinguishing Group A 

from Groups C and D are shown above and those distinguishing Group C from Group D 

below. Features colored blue or red indicate the group for which they are positively 

correlated. 
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Figure 3.5 Regulation of intron retention and chromatin association during neuronal 

development.  

(A) Circos plot (Krzywinski et al. 2009; Gu et al. 2014) of intron group changes between 

cell types (mESC, mNPC, and mCtx). Introns not changing groups are on the left. Introns 

switching groups between cell types on the right. (B) Genome browser tracks of Med22 

during neuronal differentiation (left three panels) and after Ptbp knockdown in mESC 
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(right three panels). Dashed boxes indicate U introns with measured FI values (introns 1 

and 3) under each track. Group classification of intron 3 is at the bottom. (C) Scatter plots 

of FI change between mESC and neurons (mCtx) plotted for each fraction against FI change 

after Ptbp1 knockdown in mESC. Introns with delta FI less than -0.1 in both conditions are 

in red, and with delta FI greater than 0.1 in blue. Number of introns showing these changes 

with the number carrying PTBP1 iCLIP tags in parentheses, are above and below (Linares 

et al. 2015). Intron 3 of Med22 is circled in green. 
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Figure 3.6 Chromatin enrichment and PTBP1 regulation of Gabbr1 transcripts.  
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(A) Genome browser tracks of Gabbr1 in mESC and mCtx. PTBP1 iCLIP tags in mESC are 

plotted above in pink. Y axis indicates the maximum RPM in each cell type. The green box 

and bracket mark the intron 4-5 region expanded in panel B. PTBP1 responsive exons 5 

and 15 are marked with arrowheads. (B) Sashimi plots of the Gabbr1 intron 4-5 region in 

mESC, mCtx, and after Ptbp knockdown in mESC. RPKM is plotted on the Y axis. PTBP1 

responsive exon 5 is marked with an arrowhead. Exons encoding the two sushi domains 

and the 6-aa linker are marked on the conservation track below. (C) Immunoblot showing 

expression of GABBR1 protein relative to other proteins in mESC and cortical neurons. 
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Supplementary Figure 3.7 Validation of subcellular fractionation, cell type gene 

expression, and library consistency.  

(A) Confirmation of subcellular fractionation. Immunoblot analysis of diagnostic proteins 

in subcellular fractions. SNRNP70 for soluble nucleoplasm (Nuc), TUBA1A and GAPDH for 

cytoplasm (Cyto), and Histone H3.1 for chromatin pellet (Chr). Gel images include 3 

biological replicates of mouse embryonic stem cells (line E14), mouse neuronal progenitor 

cell line C2+, and mouse cortical neurons after 5 days in vitro culture (E15DIV5; mCtx). 

Note that the immunoblot results of the third replicate of mESC_E14 are reprinted from 
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Yeom et al. (Yeom et al. 2018). (B) Confirmation of cell type specific gene expression. 

Heatmap presents the cytoplasmic expression as measured by kallisto for the indicated 

mRNAs in each cell type and replicate. (C) Confirmation of library similarity. Heatmap 

displays similarity of gene expression between pairwise comparisons of all cell types, 

fractions, and replicates. Color codes are indicated on right. 
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Supplementary Figure 3.8 Example genome browser tracks of non-coding and coding 

RNAs.  

(A) Neat1 expression in mESC, mNPC, and mCtx. Genome browser tracks of the Neat1 locus 

for poly(A)+ and total libraries. Y axis shows RPM scaled to the highest value in the 

Chromatin-associated fraction. (B) Meg3 expression in mESC, mNPC, and mCtx. Genome 

browser tracks of the Meg3 locus in poly(A)+ and total libraries. (C) Genome browser 

tracks of the Clcn2 locus in mESC, mNPC, and mCtx. Transcripts are enriched in the 

chromatin fraction and exhibit unspliced introns in poly(A)+ RNA. The partition index of 

Clcn2 in each cell type is indicated on the right. (D) Genome browser tracks of the Ankrd16 

locus in mESC, mNPC, and mCtx. Transcripts are enriched in the chromatin fraction and 

exhibit unspliced introns in poly(A)+ RNA. Partition index of Ankrd16 in each cell type is 

indicated on the right. 
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Supplementary Figure 3.9 Very long introns exhibit declining reads 5’ to 3’ to create 

a sawtooth pattern.  

Genome browser tracks of the Rbfox1 locus for poly(A)+ and total libraries. Y axis shows 

RPM in each library. 
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Supplementary Figure 3.10 Computational definition of introns and splicing.  
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(A) Determination of FI value using read numbers for the exon-intron junction (EI), 

intronexon junction (IE), and exon-exon junction (EE). (B) Introns were categorized as one 

of four types based on their Ensembl v91 annotation. Introns that are not partly overlapped 

with either exons or other introns are classified as U type introns. Introns that partly 

overlap with exons but not with other introns are classified E type introns. Introns that 

overlap with other annotated introns but not exons are called I type introns. EI type introns 

overlap with both exons and introns of other annotated isoforms. (C) Determination of 

cotranscriptional and posttranscriptional splicing. FI values were determined for all U 

introns from total and poly(A)+ chromatin associated RNA. Genes with overall expression 

above the median (2.13 TPM) were analyzed. Genes showing a bias for reads in the 3’ end 

in the poly(A)+ RNA, and introns exhibiting FI values in total RNA below 0.1 were removed. 

A posttranscriptional splicing event was then defined as an intron having an FI value in 

poly(A)+ RNA greater than or equal to 0.1 (Post-tx). Cotranscriptional splicing of an intron 

generates an FI of less than 0.1 in the poly(A)+ RNA (Co-tx). (D) Illustration of post and 

cotranscriptional splicing. Introns with high read numbers on chromatin in both the total 

and poly(A)+ libraries were defined as posttranscriptionally spliced. Cotranscriptional 

splicing events exhibited reads in the total but not the poly(A)+ RNA. (E) Diagrams of 

constitutive U introns and I introns adjacent to simple cassette exons that were assessed 

for co- and posttranscription splicing as presented in Figure 3.2C. (F) The proportions of 

co- and posttranscriptional splicing for all U introns and for first, middle and last introns in 

a transcript. (G) Transcripts with unspliced introns are enriched in the chromatin fraction. 

Genes having only U introns were selected from those whose overall expression was above 

the median (2.13 TPM). The gene group was then defined by the highest intron group 
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within the gene (751 genes), where D > C > B > A. Introns marked ‘na’ indicate they were 

filtered by SIRI during X-means clustering. (H) Violin plots showing the distribution of 

chromatin partition indices (Log2(Chr/Cyto)) of transcripts from different gene groups 

defined above. The number of genes in each gene group is indicated at the bottom. 
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Supplementary Figure 3.11 GO analysis of genes containing introns that switch 

intron group during neuronal differentiation.  
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Number of genes containing introns that changed group between mESC and mCtx is 

indicated at the top in yellow and pink. GO biological process enrichment these gene sets 

are listed at the bottom. Fold enrichment and FDR (-log10) shown in blue and grey bars, 

respectively. 
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Supplementary Figure 3.12 Validation of subcellular fractionation after Ptbp 

knockdown in mESC and genome browser tracks of Gabbr1.  
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(A) Confirmation of subcellular fractionation. Immunoblot analysis of diagnostic proteins 

in sub cellular fractions. SNRNP70 for soluble nucleoplasm (Nuc), TUBA1A and GAPDH for 

cytoplasm (Cyto), and Histone H3.1 for chromatin pellet (Chr). Gel images include 3 

biological replicates of mouse embryonic stem cells (line E14). (B) (Upper Panel) Genome 

browser tracks of the Gpc2 locus in mESC, mNPC, and mCtx. Transcripts are enriched in the 

chromatin fraction and exhibit unspliced introns in poly(A)+ RNA. The partition index of 

Gpc2 in each cell type is indicated on the right. (Lower Panel) Immunoblot measuring 

expression of GPC2 protein relative to GAPDH control in mESC, mNPC and cortical neurons 

(mCtx). Gel image is one of 3 biological replicates. (C) Complete genome browser tracks of 

the Gabbr1 locus in mESC, mNPC, and mCtx, and for Ptbp1 knockdown and Ptbp1/2 double 

knockdown in mESC. PTBP1 iCLIP tags in mESC are shown at the top (Linares et al. 2015). 

Intron 4-5 region is shown with a bracket, and exons 5 and 15 are marked with 

arrowheads. (D) Immunoblot measuring expression of GABBR1 protein relative to GAPDH 

in Ptbp1 and Ptbp1/2 double knockdown samples in mESC and in mCtx as positive control. 

40ug of whole cell lysate (WCL) were loaded on the gel for mESC, and 1 and 10 ug of WCL 

for mCtx. Gel image is one of 3 biological replicates. 
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4 INDIVIDUALIZED DEEP-
LEARNING ANALYSIS OF RNA 

TRANSCRIPT SPLICING 

4.1 Introduction 

Pre-mRNA splicing is a fundamental biological process where introns are excised, and 

exons are joined to form mature mRNA transcripts1. Alternative splicing (AS) enables the 

production of multiple mRNA isoforms from every single gene by selective usages of splice 

sites1,2. Around 95% of genes undergo AS, hence diversifying the transcriptome and the 

proteome3. AS consists of five main patterns, which are exon skipping, alternative 5’ and 3’ 

splice sites, mutually exclusive exons, and intron retention4-6. Of the five types, exon 

skipping is the predominant type of AS5. AS exhibits tissue-specific and developmental-

stage-specific manner7, thus increasing the complexities of gene regulations. AS is 

regulated via recognizing cis-elements and trans-acting factors that bind to the cis-

elements8. The core cis-elements are the 5’ splice site, 3’ splice site and the branch point 
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site. The trans-acting factors are splicing factors that interact with the cis-elements in 

exons and flanking introns acting as splicing enhancers or splicing silencers9. These 

splicing factors, particularly referred to as RNA binding proteins (RBPs), often contribute 

to tissue-specific regulations. The examples of tissue-specific splicing factors include 

RBFOX, NOVA, PTB, and MBNL for regulating AS in neuronal and muscle cells7.   

 The defects of AS are frequently observed in human diseases and cancers. For 

example, a C to T mutation at position 6 in exon 7 of SMN2 causes the skipping of exon 7, 

thereby producing a truncated and less stable protein and responsible for spinal muscular 

atrophy10,11. It is estimated that 62% of disease-related pathogenic single-nucleotide 

variants (SNVs) affect splicing12,13. Up to 30% of disease-related mutations documented in 

the Human Gene Mutation Database (HGMD) have been estimated to disrupt splicing14-17. 

Additionally, half of cancer synonymous drivers are predicted to be associated with 

splicing defects18.  

 With the advent of next-generation sequencing (NGS), technologies including RNA 

sequencing (RNA-seq) have revolutionized the quantification and identification of AS 

scaled up to a genome-wide level19. Accumulated RNA-seq datasets with matched exome 

sequencing or whole genome sequencing (WGS) provide tremendous resources to study 

the associations of mis-splicing related variants with diseases and traits20,21 and even 

investigate the potential disease diagnosis22. Through analysis of splicing quantitative trait 

locus (sQTL), many genetic variants have been discovered to be associated with AS and 

treated as potential candidates or biomarkers for diseases or traits6. However, identifying 

causal variants from the analysis of sQTL remains a challenge as multiple variants within 

the same haplotype block of causal variants are likely to be called significantly6. 
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Furthermore, the analysis of sQTL is limited to commonly observable variants in relevant 

tissues, given the natural property of tissue-specific regulation of AS, leaving large amounts 

of variants unable to explore their impacts on AS. Moreover, the rapid progress in applying 

NGS to study disease diagnosis has resulted in an increasing number of variants identified 

in patients waiting for interpretation. Our incomplete understanding of AS leads to a large 

proportion of variants of uncertain significance (VUS), thus adversely affecting the yields of 

disease diagnosis. Considerable efforts such as high-throughput screening assays23 have 

been put into reducing the number of VUS by interpreting their functionalities and 

pathogenicity. Yet experimental validations of splicing variants are impractical and time-

consuming, especially for investigating de novo mutations or a combination of mutations in 

genetic diseases, motivating the development of computational approaches to evaluate the 

splicing effects of genomic variants.  

 Progress in predicting splicing has focused on modeling splice sites or splicing 

levels24-35. An inherent limitation of the developed computational tools that score the 

strength of splice sites is the lack of tissue-specific predictions of splice site usage. In this 

regard, multiple studies have been conducted to predict tissue-specific splicing patterns of 

AS by utilizing quantitative splicing microarrays or RNA-seq27,29,31,35. In a pioneer study, 

Barash et al. utilized quantitative splicing microarrays to predict tissue-specific splicing 

patterns in mouse with cis sequence features27. After this work, Xiong et al. developed a 

Bayesian deep-learning based method (SPANR) for predicting tissue-specific splicing in 16 

human tissues31. A recent study conducted by Cheng et al. concentrates on predicting the 

tissue-specific effects of variants on splicing with a restricted number of quantified exons 

from RNA-seq35. However, to date, no tools are publicly available for predicting an 
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individualized tissue-specific splicing level of any transcript from sequence information 

and other measurements.  

 Here we report iDARTS (individualized Deep-learning Analysis of RNA Transcript 

Splicing), an individualized tissue-specific framework for predicting splicing levels. 

Inspired by the recent success34 of using cis sequence features and mRNA expressions of 

trans RBPs to model differential AS in two conditions, the iDARTS framework integrates 

997 cis sequence features including convolutional neural network (CNN) based splice sites 

predictor and 1,498 annotated trans RBPs to construct a deep-learning model of AS using 

large-scale RNA-seq datasets from 8,304 samples in 53 tissues from the GTEx36 project 

(V7) (Figure 4.1a). This framework enables to model the cis-elements and trans-acting 

factors determinants of splicing patterns in the context of tissue-specificity, thus being 

capable of inferring causal effects of any common or rare variant on splicing.  

 We observed highly accurate predictions (R2 = 0.68) of RNA-seq quantified PSI 

values for exon skipping events from held out chromosomes during training (Figure 4.1b). 

We further evaluated iDARTS on tissue differences in splicing levels, tissues from 

independent data resources, and splicing changes quantified by reverse transcription 

polymerase chain reaction (RT-PCR). All of them showed the accurate, robust, and 

generalizable behaviors of iDARTS. With these behaviors, we applied iDARTS to prioritize 

sQTLs identified in the GTEx project (v7). The prioritized variants from iDARTS highly 

correlated with true sQTL signals, and the predicted effects accurately captured the 

directionalities of splicing changes. It demonstrated the potential utility of prioritization of 

casual variants by splicing prediction.  
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 The capability of iDARTS allows us to make splicing predictions with arbitrary 

sequences in the context of tissue-specificity. To explore the signatures of genetic 

variations implicated in splicing, we profiled the splicing effects of 9,991,388 variants up to 

300nt into introns from gnomAD37 across 447,248 exon triplets. The unprecedented scale 

of evaluated variants drastically expands our knowledge of the impact of variants on 

splicing. Our results highlighted that predicted splicing disrupt variants were strongly 

depleted in human populations and enriched in cancer genes. Encouraged by the findings 

that the predicted splicing disrupt variants could be potentially functional relevant, we 

envision that iDARTS, complementary to experimental approaches and genetic studies, 

could be of great clinical interest for disease causing variants, as evaluated in interpreting 

the functional consequences of VUS in clinical studies. 

4.2 Results 

4.2.1 Deep-learning based individual tissue-specific alternative splicing prediction 

We built a framework of iDARTS to predict tissue-specific exon skipping from cis-features 

and trans-features as described in Figure 4.1a. We firstly processed the RNA-seq datasets 

and VCF file from the GTEx36 project (v7) in which we obtained the quantifications of AS 

events and gene expressions of RNA binding proteins (RBPs). In total, 23,764 exon skipping 

events of 635 individuals across 53 tissues were fed in a deep-learning based model to 

learn the relations of input features and output PSI values. We split the exon skipping 

events by chromosomes (excluding chrY) into 5 folds and performed 5-fold cross-

validation. Three metrics consisting of R-square, Lin’s concordance correlation, and 

Pearson correlation were employed to evaluate the agreement between observed 
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predicted PSI and RNA-seq quantified PSI for exon skipping events from held out 

chromosomes. We observed a good agreement (R2 = 0.68) between predicted PSI and RNA-

seq quantified PSI (Figure 4.1c). We also noticed that the model performed the best in 

Esophagus Mucosa and Adrenal Gland and performed relatively less well in brain 

cerebellum and brain cerebellar hemisphere (Figure 4.1d).  

We next sought to investigate the tissue-specific prediction of iDARTS for AS events. 

As whole blood often is frequently treated as a proxy tissue to investigate the effects of 

exon skipping events12,22, we took exon skipping events from other tissues and predicted 

the PSI values of the exon skipping events by using the expression of RBP profiles from 

whole blood. We found that most tissues showed an increase in R-square between exon 

skipping events predicted with tissue-specific expression of RBP profiles and the 

expression of RBP profiles from whole blood (Figure 4.2a). Intriguingly, the predictions of 

exon skipping events from brain tissues benefited a lot with brain tissue-specific 

expression of RBP profiles compared to expression of RBP profiles from whole blood with 

at least 2% increment of R-square. The observation showed that iDARTS has successfully 

learned the tissue-specific manner of exon skipping.  

Furthermore, we evaluated the performance of iDARTS on external datasets. In this 

regard, we downloaded the RNA-seq datasets from Roadmap project38 and processed the 

RNA-seq similarly. iDARTS was used to predict the PSI values of exon skipping in a tissue-

specific manner. We achieved good performances (Figure 4.2b) for most tissue types 

except for embryonic stem cells. The result showed that iDARTS could be applied to other 

datasets. A statement noted here is that iDARTS can predict the level of exon skipping when 
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expression of RBP profiles is unavailable. Instead, iDARTS will output the predictions of AS 

events with the expression of RPB profiles curated from GTEx.  

In addition to the validation of iDARTS on RNA-seq data, we evaluated the 

performance of iDARTS on predicting PSI values of the exon 7 from SMN1 and SMN2. We 

extracted the effects of substitutions within exon 7 measured by RT-PCR from previous 

works11,30,39-41. In total, we collected 118 data points containing 71 different single 

substitutions and 47 different combinations of multiple substitutions. For each data point, 

we reported the predicted effects as the largest value of PSI across the 53 tissues. We then 

compared the predictions to the experimentally estimated PSI of the 118 data points. A 

good spearman correlation (R = 0.80) was observed (Supplementary 4.2) between the 

experimentally quantified PSI and predicted PSI. We also benchmarked the performance 

in comparison with the tool SPANR31. As only maximum PSI was reported for every single 

substitution in SPANR, we only compared the predictions of data points with single 

substitutions from iDARTS and SPANR. We found that iDARTS achieved better concordance 

with experimentally quantified PSI than SPANR. It is noted that both iDARTS and SPANR 

tend to underestimate the effects of the substitutions even with a good correlation with 

experimentally quantified PSI.  These results demonstrate the ability of iDARTS when 

applying to investigate the potential effects of single or multiple substitutions.  

In summary, we evaluated the performance of iDARTS on held out chromosomes in 

GTEx project, tissue-specific exon skipping prediction, and external data resources. The 

results from these analyses showed a good performance of iDARTS on predicting tissue-

specific exon skipping events. iDARTS can be used in a variety of scenarios with or without 
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the expression of customized RBP profiles. Besides, iDARTS can also be utilized to evaluate 

the effects of variants on exon skipping events. Thus, we applied iDARTS to study the 

effects of variants including sQTL variants, variants in human populations, and variants 

implicated with cancer and diseases. We exhibit the benefit of applying iDARTS to 

potentially identify causal variants for traits and reduce clinical uncertainty significance of 

variants implicated with diseases below.  

4.2.2 Prioritizing the effect of genomic variants on tissue-specific alternative 

splicing 

Identification of causal splicing quantitative traits loci remains challenging due to linkage 

disequilibrium6,42. We took the exon skipping event harbored in FERIL4 in stomach as an 

example. Three variants having significant p-values are very close to each other (Figure 

4.3a). It brought us great trouble to determine which one may be the causal one as they all 

are significant. We provided a way to disentangle this problem by prioritizing them with 

the predictions made by iDARTS. From the predictions of the PSI of iDARTS, we found the 

first variant with the most significant p-value had a -0.25 decrease by comparing the 

reference alleles and alternative alleles. The evidence together suggested the first variant 

may be the potential causal variant.  

To investigate the benefit of using iDARTS prediction in helping sQTL analysis, we 

applied iDARTS to tissue-specific sQTLs with significant p-values within 300nt of skipping 

exons of exon skipping events and their nearby variants in the same exon skipping events. 

To select a list of reliable sQTLs, we required at least 10 samples available for at least two 

genotypes of each sQTL and, that the differences of median PSI values between two 
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homozygous alleles are no less than 0.05 and homozygous allele and heterozygous allele 

are no less than 0.025. We further removed exon skipping events that were used for 

training the DNN model. We observed that iDARTS predicted the variants with significant 

p-value having larger effects on exon skipping than variants with insignificant p-values 

(Figure 4.3b). This concluded that iDARTS preferentially prioritized variants with true 

sQTL signal.  

Next, we explored the effects of iDARTS on prioritizing SNVs. The problem behind 

prioritizing SNVs is that multiple SNVs on the same exon skipping events were significant 

based on their p-value due to their distances close to the cause SNVs. Under the assumption 

that variants with significant p-value tend to be the causal variants, we selected the exon 

skipping events with sQTLs within 300nt of the exon-intron boundary and exonic regions 

of the skipping exons. To avoid ambiguity, we removed exon skipping events with at least 

two variants with the same most significant p-value. We ranked the variants with the 

absolute PSI predicted by iDARTS with tissue-specific RBP expression for each selected 

exon skipping event. The proportion was calculated as the sQTLs being ranked the first 

over all sQTLs by varying the thresholds of the absolute maximum predicted PSI for all 

variants in each exon skipping events. We also randomly ranked variants within each exon 

skipping event with sQTL served as control and calculated the proportion. Given each 

threshold, the analysis was performed with at least five observed sQTLs. In comparison 

with random ranked variants, iDARTS preferentially ranked sQTLs the first by varying the 

thresholds of the absolute maximum predicted PSI (Figure 4.3c). The trend was going up 

in general with the increasing absolute maximum predicted PSI (Figure 4.3c). We 

expected the strongly predicted effect variants to be highly enriched in bona fide causal 
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sQTLs. Among our identified sQTLs from the GTEx, iDARTS correctly predicted at least 92% 

of the variants with absolute predicted PSI >= 0.2 for all 53 tissues (Figure 4.3d). The 

results indicated that a higher proportion of sQTLs with larger predicted PSI are tending 

to be causal compared to background with the underline assumption that the effect of 

sQTLs direction of non-causal variants is independent of the predicted directions. Thus, 

iDARTS serves a unique role to help to interpret and prioritize genomic variants related to 

exon skipping.  

4.2.3 Predicted splicing disruption variants are strongly depleted in human 

population and enriched in cancer genomes. 

Connecting predicting the effects of variants on exon skipping and interpreting 

functionalities poses a challenge. Perturbations of different exon skipping events may 

result in distinct functional consequences due to the intricate biological processes43-45. As 

iDARTS can predict the effects of all possible variants on exon skipping in a genome-wide 

scale, it enables us to explore the signatures of splicing disruption variants in the context of 

natural selections and cancers.  

To facilitate a genome-wide study of the effects of SNVs on exon skipping events, we 

curated 444,248 exon triplets from GENCODE v26lift37. For scoring the effects of each SNV, 

we first mapped the SNV to all possible exon triplets of which the SNV could be found 

within 300nt of exon-intron boundaries and exonic regions of skipping exons. Then we 

applied iDARTS to predicting the splicing levels with and without the SNV for each exon 

triplet. The difference in predicting splicing level, PSI was computed for each tissue of 

each exon triplet. We took the largest value of PSI across all tissues from all mapped exon 
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triplets as the potential effects of SNVs on exon skipping. The large splicing disruption 

variants (LSDVs) were defined to have |PSI |≥0.1.  

Next, we predicted the effects of 9,991,388 variants across 447,248 exon triplets 

from gnomAD37 to investigate natural selections of splicing disruption variants. gnomAD 

variants predicted by iDARTS are broadly spreading across the intronic and exonic regions 

of skipping exons and having larger effects on exon skipping near splice sites (Figure 

4.4a). As expected, we found a significant reduction of the proportions of LSDVs from 

extremely rare (allele frequency < 0.001%) to common (allele frequency ≥ 5%) variants 

(Figure 4.4b). The depletion of LSDVs in common variants relative to rare or extremely 

rare variants suggests that predicted LSDVs may be functionally important and undergoing 

strong purifying selections. Furthermore, we found that the proportion of LSDVs in 

functionally important genes (intolerant with possibility of loss-of-function ≥ 0.9) is 

significantly lower than that in tolerant genes which indicates that predicted LSDVs are 

potentially functional relevant (Figure 4.4c). 

LSDVs predicted from human population genomes have demonstrated the 

advantages of using iDARTS in understanding the potentially functional roles of LSDVs 

from the perspective of population genetics. We then sought to study the functional 

importance of LSDVs of somatic mutations in cancers. We downloaded both coding and 

noncoding somatic mutations from COSMIC v9146 and predicted the effects of variants. 

There are two types of somatic mutations in COSMIC database, one is recurrent (found in at 

least 3 samples from all tumor samples collected in COSMIC) type and the other is non-

recurrent (only found in one sample) type. In contrast to non-recurrent cancer mutations, 

recurrent cancer mutations are more likely to be driver cancer mutations. To evaluate the 
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extent of driver cancer mutations on splicing, we obtained the number of LSDVs in 

recurrent and non-recurrent cancer mutations. We found LSDVs are significantly enriched 

in recurrent cancer mutations with odds ratio of 1.50 (Supplementary Figure 4.3a). 

These results indicate the advantage of interpreting the functions of mutations by using 

iDARTS in cancer genomes. For example, a somatic variant chr17:7579312 C>A in gene 

TP53 is found in a variety of cancer types including adenocarcinoma, hepatocellular 

carcinoma, acute lymphoblastic B cell leukemia, and endometrioid carcinoma46. It has been 

predicted to be highly deleterious and pathogenic by both CADD and FATHMM-MKL47,48. 

Previous studies indicated that this variant disrupts splicing of the TP53 mRNA49. We 

found it could also change the splicing by at least 31% predicted by iDARTS. The additional 

evidence from the view of splicing helps to understand the functions of the cancer 

mutation.  

4.2.4 Utilizing iDARTS to reduce variants of uncertain significance in clinical 

interpretation 

Splicing variants have also been recognized as significant contributors to diseases while are 

frequently underappreciated by disease diagnostic processes50. Our limited understanding 

of alternative splicing poses a challenge of evaluating clinical significances of splicing 

relevant variants, leading a large proportion of variants being annotated as variants of 

uncertain significance (VUS)12,51. The capability of iDARTS in identifying putatively 

functional important variants evidenced from the aspects of evolutionary constraint, gene 

function constraint, and cancer mutations makes it possible to explore the disease 

implicated variants acting upon splicing. In this regard, we used iDARTS to investigate the 
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utility of iDARTS for predicting the pathogenicity of SNVs and its potential application of 

reducing the number of VUS in clinical studies.  

We selected a set of credible SNVs having stars ranging from 2 to 4 with the clinical 

significances annotated as “Pathogenic” and “Benign” in ClinVar. More specifically, the SNVs 

that are rated 2 stars or more are in practice guideline, or reviewed by expert panel, or 

annotated by at least two submitters with the same interpretation51. To avoid 

ascertainment bias, we classified the SNVs into four different gene features which are 

dinucleotide, splicing window, exonic region, and intronic region based on the distances of 

the SNVs from the skipping exons. Each of the SNVs is only assigned to one of the gene 

features. We then compared the effects of the pathogenic SNVs against the effects of the 

benign SNVs per gene feature respectively. We found that pathogenic SNVs and benign 

SNVs can be significantly separated based on the effects of the SNVs predicted by iDARTS 

for all gene features (Figure 4.5a). The result is indicative of the usefulness of iDARTS in 

the understanding of the pathogenicity of variants in disease. However, pathogenic and 

benign SNVs that are in intronic regions are barely though significantly separated by the 

effects predicted by iDARTS. This observation implied difficulty when predicting the effects 

of deep intronic variants. Furthermore, we benchmarked the performance of iDARTS 

against other popular splicing predicting tools including SPANR31, SpliceAI33, and 

MMSplice32 on predicting the pathogenicity of SNVs. We found that iDARTS performs much 

better than any of these tools in splicing window and intronic regions but performs worst 

in dinucleotide region and slightly worse in exonic region (Supplementary Figure 4.4). 

Overall, iDARTS performs best of all compared tools but only slightly better than SPANR in 

terms of predicting the pathogenicity of SNVs.  
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We then explored whether iDARTS could be used to interpret the potential 

pathogenicity of variants being annotated as VUS. To evaluate the performance of iDARTS 

on predicting the potential pathogenicity of VUS, we took the VUS that could be mapped to 

within 300nt of exon-intron boundary and exon regions of all internal exons from the exon 

triplets from ClinVar 20170516 and found their reclassifications in ClinVar 20210511. 

Around 5.3% of these VUS in ClinVar 20170516 can be reclassified in the clinically 

significant categories of Pathogenic, Benign, Likely Pathogenic, and Likely Benign in ClinVar 

20210511 (Figure 4.5b). The reclassifications of these VUS provide a great opportunity of 

validating the predictions of iDARTS on VUS in ClinVar 20170516. Thus, we predicted the 

effects of these VUS similarly as we did for gnomAD variants. We defined the variants with 

|PSI|≥0.05 as splicing disrupt variants. We observed a great enrichment of predicted 

splicing disrupt variants in Pathogenic (2-4 star), Pathogenic (0-1 star), or Likely 

Pathogenic with the proportions 20%, 31%, and 12% compared to Benign (2-4 star), 

Benign (0-1 star) or Likely Benign with the proportions 2%, 2%, and 3% (Figure 4.5b). 

The result suggests that predicted splicing disrupt variants may be potential pathogenic. 

And the reduction of the number of VUS via iDARTS makes it possible for improving 

disease diagnostics and allowing evidence-based treatments to be conducted.  

4.3 Discussion 

In this work, we developed a deep-learning-based framework for modeling the cis 

sequence features and trans-acting factors determinants of AS in the context of tissue-

specificity. The cis sequence features include 997 sequence features from previous 

studies31,34, the hexamer-level scores of splicing enhancers and silencers learned from 2 
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million random sequences of a massive parallel report assay30, and the CNN based 

predictors of the strength of splice sites. The trans-acting factors consist of 1,498 mRNA 

expressions of trans-RBPs. Both the cis- and trans-features characterize our best 

knowledge of AS. Our framework learned the mapping function from 2,495 features to 

splicing patterns by leveraging 8,304 RNA-seq datasets from 635 individuals in 53 tissues 

from the GTEx project (V7) that provides enormous amounts of quantified AS events as 

well as unprecedented variations of splicing in terms of genetic backgrounds from different 

individuals and tissues. Our framework can predict individual’s tissue-specific, exon 

skipping-specific splicing level and can also be used in a variety of scenarios with or 

without the expression of individualized RBP profiles. We anticipate our framework could 

be of great benefits to studying splice-altering SNVs or combination of SNVs in a genome-

wide scale, inferring causal effects of variants in genetic studies, and interpreting 

potentially functional consequences of variants in disease. 

 Inferring causal variants from associations in population-based genetic studies 

remains a challenge. We demonstrated the performance of iDARTS in prioritizing sQTLs. 

The design of iDARTS framework enables us to predict the effects of variants directly from 

sequence information, thus capable of identifying causal variants. Additionally, our model 

does not use disease or traits-related variants collected in database or allele frequencies, 

thereby avoiding ascertainment bias. Our model could potentially be coupled with 

statistical methods in the case of rare diseases when available samples are not enough for 

drawing statistical significances of variants of interests.  

 Through genome-wide profiling of the effects of variants on splicing, we found that 

the predicted splicing disrupt variants undergo evolutionary constraints. Furthermore, our 
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results showed that iDARTS could be helpful to interpret the functionalities of VUS in 

diseases. These findings shed light on using iDARTS to study genetic determinants of 

diseases. Using in-silico tools to discover candidate disease implicated variants has been 

popular in clinical studies50. For example, ATP7B variant c.1934T > G has been reported to 

be a pathogenic variant with a limited understanding of its functional consequences52. 

Merico et al. combined the evidence from in-silico prediction of the splice change and 

experiment verification and validated the functional role of this variant. We found iDARTS 

could also identify the role of this variant on splicing with predicted PSI = -0.091. 

Motivated by this, we propose utilizing iDARTS to reveal the potential functions of the 

splice-altering variants in diseases. With the flexibility in terms of predicting splicing from 

arbitrary sequences in the context of tissue-specificity, iDARTS can be applied to any 

transcript and overcomes the issues that using single transcript may lead to mis-

classification of variants43,44 and disease relevant tissues are unavailable.  

 Our model exhibits accurate, robust, and generalizable behaviors with several 

limitations. Owing to a potential trade-off between robustness and sensitivity to sequence 

changes and unaccounted splicing features, our model may underestimate the effects of 

splice-altering variants yet with good correlations. We expect the sensitivity of our model 

to sequence changes would be improved with more datasets that perturb sequences as well 

as the expression of RBPs in tissues via high-throughput genome editing in a massive 

parallel manner. Moreover, our model could be further improved by incorporating gene 

regulation features including chromatin marks and transcriptional factors, RBP binding 

profiles, and RNA modifications.   



 

143 

 Our understanding of how genetic variants affect splicing is evolving. As splicing 

has become more and more appreciated in studying diseases6,43,44,50, we anticipate that in-

silico probing the effects of variants on splicing from genome-wide sequences through 

modeling the cis-elements and trans-acting factors determinants of splicing would be an 

integral part of clinical studies, thus providing splice-altering variant candidates with 

therapeutic potentials.  

4.4 Methods 

4.4.1 iDARTS framework architecture. 

We propose a method called iDARTS (Figure 4.1a), an individualized Deep-learning 

Analysis of RNA Transcript Splicing which learns a deep-learning model of alternative 

splicing by leveraging large-scale RNA-seq datasets from 8,304 samples in 53 tissues from 

the GTEx project (V7)36. iDARTS is designed to predict an individualized PSI (percent of 

spliced in) of an exon skipping event. The workflow of iDARTS consists of three 

components. First, a personalized genome and RNA sequencing (RNA-seq) are taken as 

inputs to provide the mutation profiles of exon skipping events and the expressions of RNA 

binding proteins (RBPs). Then, a list of curated cis-features generates from the input of 

exon skipping with the mutation profiles and trans-features retrieved from the expressions 

of RBPs. Last, both cis and trans-features are fed into a deep neural network (DNN) to make 

tissue-specific predictions of PSI (percent of spliced in) values for every exon skipping 

event.  
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In the first component, we downloaded both the VCF file and the RNA-seq datasets 

from the GTEx project via dbGAP53. We removed the RNA-seq fastq files with inconsistent 

read lengths and kept the fastq files with read length 76bp. In total, 8,304 RNA-seq datasets 

from 53 tissues were processed with aligner STAR 2.5.3.a. Alternative splicing (AS) events 

were quantified by rMATS-turbo4,54 using GENCODE55 v26lift37 as the gene annotation file. 

We processed the RNA-seq fastq files with Kallisto56 (v.43.0) to quantify gene expression 

levels using GENCODE (v.19) protein-coding transcripts as the index.  

The second component is the feature extractions for AS events. For trans-features, 

we extracted the gene level transcripts per kilobase million (TPM) values of 1,498 known 

RBPs. We collected 997 cis-features including conservation scores, motifs, splicing 

strength, and RNA secondary structures. In total, 2,495 features were collected for every 

exon skipping event. We normalized each of the features by dividing its maximum value of 

all exon skipping events. To obtain a high-quality and non-redundant set of exon skipping 

events for training, we removed cassette exons that overlap with other exons, and exons 

that are very short (< 10nt) or very long (> 600nt). To avoid penetrant bias, we removed 

the AS events in the training datasets with heterogenic alleles within 300nt of exon-intron 

boundaries and exonic regions of all three exons in the AS events. We also required that the 

cassette exons from rMATS-turbo processed AS events in each individual have junction 

counts no less than 20.  

The last component is a DNN model that predicts tissue-specific PSI value of exon 

skipping event. We designed iDARTS DNN model with three hidden layers. The model 

architecture was specified as follows: an input layer with 2,495 variables; three fully 

connected layers with 500, 250, 125 variables and the ReLU activation function; an output 
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layer with one variable and the Sigmoid activation function. Additionally, we added a drop-

out probability between hidden layers to reduce potential over-fitting issues. The drop-out 

probability was set to be 0.2 for all three hidden layers. Followed by drop-out, we also 

added Batch Normalization to help the convergence of the DNN model. Then, we used a 

stochastic gradient descent (SGD) optimizer with the learning rate 1e-4 and the batch size 

2,000 for the DNN model training task. The objective function for training the DNN model 

was defined as the sum of negative log-likelihood and mean-square-error of training 

samples with PSI values between 0.3 and 0.7. Specifically,  

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 +  5 × ||𝑌𝑡 − 𝑓𝑡(𝑋𝑡)||2 × 𝚰[0.3 ≤ 𝑌𝑡 ≤ 0.7] 

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =  − ∑ log (𝑌𝑡𝑓𝑡(𝑋𝑡) + (1 −  𝑌𝑡)(1 − 𝑓𝑡(𝑋𝑡))

𝑡

 

where 𝑡 indicates index of training samples and 𝑌𝑡 indicates PSI values between 0 and1 for 

samples. 𝑓𝑡(𝑋𝑡) denotes as the predicted PSI values given input 𝑋𝑡. We designed the 

objective function in the way to account for the U shape distribution of the PSI values in 

which most PSI values are either close to 1 or close to 0. The log-likelihood function was to 

fit the U shape distribution. We also posed more learning weight to balance the minor 

fraction of training samples with PSI values between 0.3 and 0.7 by adding five times the 

mean-square-error of these samples in the objective function. We implemented the DNN 

model architecture by using Keras (https://github.com/keras-team/keras) with 

Tensorflow (https://www.tensorflow.org/) backend.  

https://github.com/keras-team/keras
https://www.tensorflow.org/
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4.4.2 Evaluation of the performance of iDARTS 

The evaluation of iDARTS was conducted in three ways. First, we evaluated the 

performance of iDARTS on predicting RNA-seq quantified individual PSI values from GTEx 

project. We randomly split the chromosomes (excluding chrY) into 5 folds with nearly 

equal size of exon skipping events and performed 5-fold cross-validation. For each fold as 

the testing data, the remaining four folds were used for training five iDARTS DNN models 

with five different initial random seeds. The predicted PSI values were computed as the 

average of PSI values predicted by the five models for each fold. The procedure was 

repeated five times. The final performance was obtained by aggregating all testing data 

together. We employed three metrics: (1) Pearson correlation; (2) Lin's concordance 

correlation; and (3) R-square to evaluate the performance of predicted RNA-seq PSI values 

vs. RNA-seq quantified PSI values. Second, we sought to evaluate whether iDARTS had 

learned the tissue-specific behaviors of exon skipping events. We selected whole blood 

tissue as controls and compared the performance of iDARTS for predicting PSI values of 

exon skipping events that have average PSI values at least 5% different from those in whole 

blood tissue. Specifically, for each tissue other than whole blood, we compared the 

difference of the performances predicted by using tissue-specific median RBP expressions 

and the median RBP expressions in whole blood. The difference in R-square would reflect 

the benefit of using tissue-specific RBP expression profiles. Last, we tested the performance 

of iDARTS on external datasets. We processed the Roadmap RNA-seq similarly as we did 

for the GTEx project. In total, 52 tissues with both AS quantifications and gene expressions 

of RBPs were obtained by using rMATS-turbo and Kallisto. We applied iDARTS to predict 
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the PSI values of exon skipping events with the input of gene expressions of RBPs and the 

curated sequence features.  

4.4.3 The Splicing Quantitative Trait Loci (sQTL) analysis of GTEx  

We analyzed the sQTLs in 635 people in each tissue from the GTEx project. To obtain 

reliable AS events, we filtered out them in each tissue individually with the following 

criteria: (1) The median number of splice junction reads is no less than 5 where the 

number of splice junction reads is counted by the number of inclusion reads / 2 + the 

number of skipping reads; (2) The maximum difference of PSI values of AS events across all 

samples is larger than 10%; (3) at least three samples in the tissue have PSI values 

different than the median PSI values. We implemented a linear regression model to 

investigate sQTLs by testing the association of PSI values with SNVs within 200kb 

upstream or downstream of alternative exons. For each exon skipping event, the sQTL p 

value was reported as the closest SNP with the most significant p value within the 200kb 

window.  

4.4.4 Construction of exon triplets for genome-wide analysis 

To enable a genome-wide analysis of the effects of single nucleotide variants (SNVs), we 

constructed exon triplets based on all internal exons in GENCODE v26lift37 and their two 

flanking exons. We removed the exon triplets with exons that are very short (<10nt) and 

very long (>600nt). In total, 444,248 exon triplets are generated.  
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4.4.5 Genome-wide analysis of splicing dysregulation in Genome Aggregation 

Database 

Genome Aggregation Database (gnomAD v.2.1.1)37 is composed of 15,708 genomes and 

125,748 exomes from sequencing studies of unrelated individuals who generally do not 

have a Mendelian disease. We downloaded the gnomAD VCF file from 

https://gnomad.broadinstitute.org/downloads. SNVs from the VCF file within 300nt of 

exon-intron boundary and exon regions of all internal exons from the exon triplets were 

selected for downstream analysis. The minor allele frequencies for SNVs were determined 

using the flag “AF” in the VCF file. The annotation of intolerance and tolerance of genes 

were downloaded from https://gnomad.broadinstitute.org/ with the file name 

forweb_cleaned_exac_r03_march16_z_data_pLI_CNV-final.txt.gz.  

4.4.6 Genome-wide analysis of variants induced splicing defects in COSMIC 

Database 

The Catalogue of Somatic Mutations in Cancer (COSMIC v93)46 is a comprehensive data 

resource for somatic mutations in human cancer. We downloaded the mutations from both 

coding and noncoding regions in VCF file formats which are CosmicCodingMuts.vcf.gz, and 

CosmicNonCodingVariants.vcf.gz respectively. We also downloaded a list of curated cancer 

consensus genes from COSMIC database. The flag “CNT” in the VCF files was utilized to 

determine whether the mutations were recurrent or not following the descriptions on the 

website. We only investigated the SNVs that are within 300nt of exon-intron boundary and 

exon regions of all internal exons from the exon triplets that are harbored in cancer 

consensus genes.  

https://gnomad.broadinstitute.org/downloads
https://gnomad.broadinstitute.org/
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4.4.7 Genome-wide analysis of disease-related variants in ClinVar Database 

ClinVar51 is a publicly accessible and frequently updated database of disease-related 

variants curated from literature reviews, clinical and research studies. We downloaded 

ClinVar VCF files with two versions, namely, 20170516 and 20210511. We obtained the 

review status of variants with the flag “CLINREVSTAT” and the clinical significance of 

variants with the flag “CLINSIG” from the VCF files. The SNVs with clear annotations, 

review status, clinical significance, and within 300nt of exon-intron boundary and exon 

regions of all skipping exons of exon triplets were analyzed from the VCF files.  

4.4.8 Construction of the cis-sequence features  

The cis-sequence features were built partly based on the previous works31,34. We also 

incorporated new features to accommodate a more sequence-wise understanding of AS. 

For each exon skipping event, we denoted C1, A, and C2 as upstream exon, alternative exon, 

downstream exon, respectively. I1 represents the intronic region between upstream exon 

and alternative exon. I2 represents the intronic region between alternative exon and 

downstream exon. The whole descriptions of the cis-sequence features were listed below. 

1. Log-transformed exon length of C1, A, and C2, as well as the intron length of I1 and 

I2. 

2. Frameshift of A, where the length of A can be divided by 3 

3. Transability of C1, C1C2, C1A and C1AC2. The transability is defined as the same 

from the previous work31 in which it was defined whether there is no stop codon in 

all three possible reading frames. 
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4. Splice strength of donor and acceptor sites were predicted by splice strength 

predictor built by us. See supplemental methods for more details. 

5. We weighted the splice strength of donor and acceptor sites with the average of 

junction conservations. The definition of the junction conservations was taken from 

the work57 in which it was defined as the average conservation scores of junction 

sites divided by those of 100nt of nearby intronic regions. The conservation scores 

were downloaded from UCSC phastCons46way. 

6. We ran RNAplfold58 2.2.10 to predict unpaired probabilities of different intronic 

regions described as the RNA secondary features. 

7. We downloaded Alu elements from UCSC59. Features are computed as the counts of 

Alu elements on either plus strand and minus strand or both strands. 

8. Hexamers with respect to Exonic and intronic splicing enhancer and silencer scores 

were downloaded from these works30,60-62. 

9. Short motifs and their weighted scores by conservations were incorporated from 

the work31. 

In total, 997 cis-sequence features were constructed for each exon skipping event.  
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4.5 Figures 

 

Figure 4.1 The framework and performance of iDARTS.  

(a) The workflow of deep learning-based individualized alternative splicing prediction. (b) 

iDARTS DNN model extracts the cis-features from sequences with reference allele and 

alternative allele and makes predictions based on trans-features representing tissue-

specificity for reference PSI value and alternative PSI value, respectively. The difference in 

predicted PSI values for alternative and reference is computed as the predicted tissue-
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specific effect of alternative allele on splicing. (c) Performance evaluation of the predictions 

for 23,764 exon skipping events from 635 individuals in 53 tissues. The exon skipping 

events in each individual are binned based on their RNA-seq estimated PSI values. The 

distributions of predicted PSI values are illustrated for each bin in the plot. (d) Tissue-

specific performance of the computational model.   
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Figure 4.2 Tissue-specific evaluations of iDARTS on GTEx and Roadmap project.  

(a) For each tissue other than whole blood, the performance in R-square is generally higher 

with tissue-specific RBP expression profiles than with whole blood RBP expression profiles 

except for cultured fibroblasts cells, EBV-transformed lymphocytes, and esophagus 

muscularis. (b) We evaluated the tissue-specific performances of iDARTS on exon skipping 

events from the Roadmap project.  
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Figure 4.3 Tissue-specific predictions of the genomic effects on exon skipping.  

(a) An example of three variants with significant p-values and predictions by iDARTS for 

the exon skipping event from gene FER1L4 in the stomach. (b) The cumulative percentage 

plot of the predicted |PSI| of sQTLs with p-value < 1e-5 and variants with p-value >= 0.05 

colored as blue and red, respectively. It shows that sQTLs with p-value < 1e-5 were 

predicted to have larger effects than variants with p-value >= 0.05. (c) The proportion of 

sQTLs being ranked first place compared to their nearby variants for all exon skipping 
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events. The x-axis represents the threshold of selecting the exon skipping events with the 

maximum predicted |PSI| for all variants, and the y-axis represents the proportion of 

sQTLs ranked first place for all selected exon skipping events. The red line indicates the 

rank is made by iDARTS, which is higher than the green line for which the rank is randomly 

decided. (d) sQTL direction prediction accuracy generally increases with predicted 

magnitude represented as |PSI|. The x-axis represents the threshold of predicted |PSI| of 

sQTLs. The y-axis of the top figure represents the number of sQTLs given the threshold of 

|PSI|. At least 5 sQTLs for each threshold are analyzed. The y-axis of the bottom figure 

represents the accuracy of predicting the directionality of splicing changes of variants with 

predicted |PSI| >= threshold. Each line indicates each tissue.  

 

 

 

 

 

 

 

 

 

 

 



 

156 

 

Figure 4.4 Genome-wide analysis of the effects of SNVs on splicing.  

(a) 9,991,388 gnomAD variants across 444,240 exon triplets were predicted by iDARTS. 

The x-axis depicts the location of each variant relative to the boundaries of the middle 

exons of all exon triplets. The y-axis illustrates the predicted PSI for each variant. The 

color-coded frequency represents the proportion of variants in each specific region. Most 

variants have no or small effects on splicing, while variants close to the splice sites impose 

a large effect on splicing. (b) The proportion of predicted large disrupted splicing variants 

(LDSVs) with |PSI|>= 0.1 is significantly depleted from extreme variants to common 

variants (fisher-exact test). We divided allele frequency into four bins shown in the x-axis. 

The y-axis shows the proportion of large disrupted splicing variants over all variants with 

allele frequency in the corresponding bin. The p-values were obtained using fisher-exact 

test by comparing the number of LDSVs in each of the first three allele frequency bins with 
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the last allele frequency bin. (c) The proportion of LDSVs is significantly smaller in 

intolerant genes than in tolerant genes (fisher-exact test). 
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Figure 4.5 Predicting the splicing effects of disease variants helps to understand the 

pathogenicity of variants and reduce the number of variants of uncertain 

significance (VUS).  

(a) pathogenic variants were predicted to have significantly larger effects on splicing than 

benign variants. The variants were classified into four different gene features based on 

their locations relative to skipping exons of exon triplets. The variants in dinucleotide are 

the variants found in 5’ or 3’ core consensus splice sites. For the variants not found in these 

splice sites, we characterize them as variants from the splicing window if they are within 

50nt of upstream of and 10nt of downstream of the 3’ splice site, or within 10nt on each 

side of 5’ splice site. The variants located inside and 10nt away from the exon-intron 

boundaries of skipping exons are variants from the exonic region. For the variants in 
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intronic region, they are within 300nt of exon-intron boundaries of skipping exons and are 

not overlapping with the splicing window and the exonic region of either upstream exons 

and downstream exons and regions defined above. The cumulative percentage plots 

illustrate the effects of pathogenic and benign variants on splicing predicted by iDARTS 

with the x-axis being the predicted |PSI|, and the y-axis being the cumulative percentage. 

The significance of differences in predicted |PSI| for two groups was determined by 

Wilcoxon rank test. (b) Predicted splicing disrupt variants are enriched in Pathogenic and 

Likely Pathogenic categories when predicting the pathogenicity of VUS in 2017. The alluvial 

plot shows a time flow from VUS in 2017 to their reclassification in 2021 to the prediction 

results made by iDARTS. From the first blocks to the second blocks, we found around 5.3% 

of VUS could be reclassified in 2021. And the stream flows between the second and third 

blocks exhibit the variants being annotated as splicing disrupt variants (|PSI| >= 0.05) and 

variants with small effects (|PSI| >= 0.05). The widths of the stream flows represent the 

proportion of variants assigned to each of the third blocks.  
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Supplementary Figure 4.6 The architecture of CNN donor and acceptor models.  

(a) The schematic overview of the CNN donor and acceptor models. For both donor and 

acceptor model, the flanking 200nt of nucleotides on each side of the position of interest 

are used as input. The CNN architecture for both donor and acceptor models is composed 

of two convolution layers and one output layer with a sigmoid activation function. The first 

convolution layer is designed with 32 kernels and window size 15 and the second 

convolution layer is designed with 32 kernels with window size 1. (b) Benchmarking the 

performances of CNN donor and acceptor models with window size 40, 80, 200, and 500 

against MaxEnt and SpliceAI.  
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Supplementary Figure 4.7 The change in PSI for every data point containing either 

single substitutions or combinations of multiple substitutions for both iDARTS and 

SPANR.  
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Supplementary Figure 4.8 Genome-wide analysis of the effects of somatic mutations 

on splicing in cancer census genes.  

(a) The predicted large splicing disruption variants (LSDVs) with |PSI|>= 0.1 are strongly 

and significantly enriched at recurrent somatic mutations with odds ratio 1.50 (fisher-exact 

test). (b) An example of one somatic mutation in gene TP53 that appears in many cancer 

types is predicted to affect splicing by 31%.  
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Supplementary Figure 4.9 Benchmarking the performance of iDARTS, SPANR, 

MMSplice, and SpliceAI on predicting the pathogenicity of variants.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

164 

4.6 Table 

Supplementary Table 4.1 Comparison of time requirements between CNN splice 

predictors and SpliceAI for the task of scoring 10,000 splice sites.   

Task Program Time Hardware 

Scoring 
10,000 
donor 
sites 

CNN donor model 32s 
Intel(R) Xeon(R) 

Silver 4110 CPU @ 
2.10GHz 

SpliceAI 32719s 
Intel(R) Xeon(R) 

Silver 4110 CPU @ 
2.10GHz 

Scoring 
10,000 
acceptor 
sites 

CNN acceptor model 33s 
Intel(R) Xeon(R) 

Silver 4110 CPU @ 
2.10GHz 

SpliceAI 32686s 
Intel(R) Xeon(R) 

Silver 4110 CPU @ 
2.10GHz 
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4.7 Appendix 

4.7.1 Construction of splicing strength predictors for splicing donor and acceptor 

We built splicing strength predictors for donor and acceptor separately. To construct a 

training dataset for both donor and acceptor models, we retrieved all splicing junctions 

from GENCODE v26lift37 annotated transcripts as a positive set. Within positive set, 

around 98% of 3’ splice sites have consensus dinucleotide AG and around 97% of 5’ splice 

sites have consensus dinucleotide GT. For the negative set, we randomly selected genomic 

positions that are within 300nt of but not overlapping annotated splice sites. As consensus 

dinucleotide AG and GT are dominant in annotated 3’ splice sites and 5’ splice sites, 

respectively, around 50% of the negative sites were chosen to have AG or GT to increase 

the robustness of the model. Specifically, for each annotated splice site, we randomly 

selected about 6 positions around 300nt of the splice site and 3 of 6 positions were 

required to have consensus dinucleotide GT for 5’ splice sites and AG for 3’ splice sites. In 

total, we had 6 times of negative sites compared to positive splicing sites for training.  

We built a CNN model to predict the splice sites with the input of one-hot encoded 

sequences of window size of 200nt on each side of the position of interest. Following the 

model architectures from previous work32,33, both donor and acceptor models consisted of 

two consecutive convolution layers and one sigmoid output layer shown in 

Supplementary Figure 4a.  
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4.7.2 The performance of the CNN model on identifications of donor sites and 

acceptor sites 

We separated the training sites by chromosomes, in which chr1, chr3, chr7, and chr9 were 

selected for testing the performance of the model, while the remaining chromosomes for 

training based on the configures of training from the previous work33.  

To benchmark the performance of the model, we selected popular splice site 

predictors, named MaxEnt25 and SpliceAI33. We also evaluated the performance of different 

choices of window sizes. We plotted the recall and precision rates at varying thresholds 

and used AUC (area under the precision-recall curve) to evaluate the performances 

(Supplementary Figure 4.1b). We found the donor and acceptor models with window size 

200nt perform as well as those with window size 500nt. And both the donor and acceptor 

models with window size 200nt outperform maxent but performs slightly worse than 

SpliceAI. Furthermore, we compared the time requirements for both donor and acceptor 

models and SpliceAI for scoring 10,000 splice sites, they are 100 times faster than SpliceAI 

(Supplementary Table 4.1). Collectively, the donor and acceptor models built upon CNN 

perform similarly with SpliceAI but run much faster than SpliceAI. Therefore, we used the 

donor and acceptor models for scoring the strengths of splice sites.   
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5 M6A DEPOSITION IS 

REGULATED BY PRMT1-
MEDIATED ARGININE 

METHYLATION OF METTL14 

IN ITS DISORDERED C-
TERMINAL REGION 

5.1 Introduction 

N6-methyladenosine (m6A) is the most abundant internal modification in cellular mRNA1-3. 

This chemical modification has emerged as a key regulator of mRNA metabolic processes, 

including transport, translation, splicing, and decay4-6. In mammals, m6A is deposited by a 

methyltransferase complex consisting of METTL3, METTL14, and WTAP7-9 and is actively 

removed from transcripts by the demethylases FTO and ALKBH510,11. The biological 

functions of m6A are generally carried out by its “reader” proteins, which include the 

YT521-B homology (YTH) domain containing proteins YTHDF1–3 and YTHDC1–212,13. For 
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example, YTHDF1 and YTHDF3 recognize m6A-modified mRNAs and promote their 

translation by recruiting translation initiation factors14,15; whereas YTHDF2 promotes the 

degradation of its target transcripts by recruiting the CCR4-NOT deadenylase complex 16. 

m6A homeostasis is crucial for normal development, and its dysregulation has been linked 

to the pathogenesis of many human diseases, including neurological disorders and 

cancer17,18. During early embryonic development, deposition of m6A provides an “identity” 

to transcripts encoding pluripotency transcription factors, such as Nanog, and promotes 

their expedited decay7,19,20. In neuronal progenitor cells, METTL14 knockout causes 

premature differentiation and delayed specification of neuronal subtypes21,22. In 

hematologic malignancies, METTL3 and METTL14 are both highly expressed, leading to 

increases in m6A and tumor cell proliferation23-25. Additionally, reduced m6A has been 

shown to stabilize the mRNA levels of NANOG and KLF4, the key pluripotency factors 

required for the maintenance of breast cancer tumor-initiating cells26. Together, these 

genetic knockout studies have provided valuable information in understanding the role of 

m6A in mRNA metabolism; however, the molecular mechanisms underlying the regulation 

of m6A are largely unknown.  

 Arginine methylation is a critical post-translational modification (PTM) that 

regulates protein functions in mRNA metabolism27-29. The human genome encodes nine 

protein arginine methyltransferases (PRMTs), which catalyze three types of arginine 

methylation: monomethylation (MMA), asymmetric dimethylation (ADMA), and symmetric 

dimethylation (SDMA)27,28. Proteomic studies revealed that RNA-binding proteins form the 

largest group of PRMT substrates30-32, and motif analysis uncovered a conserved 

arginine/glycine-rich (RGG/RG) polypeptide sequence as the preferred site for 

methylation31-33. These RGG/RG motifs are often located within the unstructured, 

intrinsically disordered regions (IDRs) of proteins and can mediate protein–protein and 

protein–nucleic acid interactions33-36. Arginine methylation of the RGG/RG motifs does not 

neutralize the cationic charge of the arginine residue but removes its potential hydrogen 

bond donors and imparts hydrophobicity of the protein37. Thus, arginine methylation has 

emerged as an important PTM that regulates the biochemical activity and the biological 

function of RGG/RG motif-containing proteins.  
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 Here, we identify PRMT1-catalyzed arginine methylation of the RGG/RG motif-

containing IDR in the C-terminus of METTL14 as a novel molecular mechanism that 

controls m6A deposition in mammalian cells. Specifically, arginine methylation of the IDR 

enhances the interactions of METTL14 with RNA substrates and with RNA polymerase II 

(RNAPII), which are fundamental for catalyzing m6A deposition in vitro and in cells. We 

performed transcriptome-wide m6A analysis in mouse embryonic stem cells and identified 

1,701 arginine methylation-dependent m6A sites located in 1,290 genes that function in 

various cellular processes. We focused on the DNA interstrand crosslink (ICL) repair 

pathway, in which the arginine methylation-dependent m6A sites are significantly enriched, 

and demonstrated that these m6A sites are associated with enhanced translation of DNA 

repair genes. Consequently, mESCs expressing arginine methylation-deficient METTL14 

are hypersensitive to DNA crosslinking agents. Thus, our study reveals arginine 

methylation of METTL14 as a novel molecular mechanism underlying the regulation of m6A 

deposition. 

5.2 Results 

5.2.1 C-terminal IDR of METTL14 is arginine methylated. 

RGG/RG motifs, located in the context of IDRs, are often in multiple copies33. We found that 

the C-terminus of METTL14 harbors an array of RGG/RG motifs, ranging from five in flies to 

ten in humans (Figure 5.1A, Supplementary Figure 5.8). Consistent with the low 

complexity of these motifs, this region of METTL14 is predicted to be highly disordered 

(Supplementary Figure 5.14A and B). To determine the extent to which the C-terminal 

IDR contributes to the RNA methylation activity of the METTL3/METTL14 complex, we 

performed in vitro RNA methylation assays and found that this region is essential for 

catalyzing m6A deposition in vitro (Supplementary Figure 5.14C), consistent with a 

recent report38. As RGG/RG motifs are the preferred methylation substrates for PRMTs33, 

we hypothesized that arginine methylation of the C-terminal IDR regulates the function of 

METTL14 in m6A RNA modification. To test if METTL14 is arginine methylated, we 

performed in vitro methylation assays by incubating recombinant GST-tagged METTL14 
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with PRMTs (PRMT1–8) in the presence of 3H-labeled S-adenosyl methionine (3H-SAM). 

Among the PRMTs tested, we found that METTL14 can be methylated by PRMT1 and, to a 

much lesser extent, PRMT6 and PRMT3 (Figure 5.1B, Supplementary Figure 5.9A). To 

determine if arginine methylation occurs at the C-terminal IDR of METTL14, we performed 

in vitro methylation assays with full-length (FL) and C-terminal IDR-truncated mutant (1-

400) METTL14. The arginine methylation of METTL14 was completely abolished after 

deleting the C-terminal IDR (Figure 5.1C), suggesting that the RGG/RG motifs are indeed 

the sites of methylation. 

To assess METTL14 arginine methylation in vivo, we immunoprecipitated endogenous 

METTL14 from HEK293 cells and confirmed its methylation using an antibody (ASYM26) 

that specifically recognizes ADMA, a modification catalyzed by type I PRMTs, including 

PRMT1, PRMT3, and PRMT6 (Figure 5.1D). Next, we treated HEK293 cells with a potent 

type I PRMT inhibitor MS023 39 to inhibit cellular ADMA. The level of arginine methylated 

METTL14 was dramatically reduced upon treatment with the inhibitor (Figure 5.1E), 

further confirming that METTL14 is arginine methylated in cells. Additionally, METTL14 

arginine methylation can also be detected in various human cancer cell lines, including 

those derived from cervical cancer (HeLa), lung cancer (A549 and H1299), and breast 

cancer (MDA-MB-231 and MCF7), and MS023 treatment reduces METTL14 arginine 

methylation in all cell lines tested (Supplementary Figure 5.9B–D). Importantly, 

consistent with our in vitro methylation results, deleting the C-terminal IDR completely 

abolished METTL14 methylation in vivo, as detected using two different ADMA antibodies 

(Figure 5.1F). Altogether, these results demonstrate that the C-terminal IDR of METTL14 is 

arginine methylated. 

5.2.2 PRMT1 catalyzes METTL14 C-terminal IDR arginine methylation. 

To determine which PRMT methylates METTL14 in cells, we examined the interactions of 

METTL14 with PRMT1, PRMT3, and PRMT6, the PRMTs that execute METTL14 arginine 

methylation in vitro (Figure 5.1B). HEK293 cells were transfected with GFP-tagged 

PRMT1, PRMT3, and PRMT6, and co-immunoprecipitation (co-IP) assays were performed 

by immunoprecipitating endogenous METTL14 and detecting associated GFP-PRMTs. Our 
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results indicate that only PRMT1 interacts with METTL14 (Figure 5.2A). To further 

confirm this interaction, we performed reciprocal co-IP assays using endogenously 

expressed METTL14 and PRMT1. We were able to detect PRMT1 in the METTL14-

immunoprecipitated protein complex (Figure 5.2B, left panel), and METTL14 in the 

PRMT1-immunoprecipitated protein complex (Figure 5.2B, right panel). To determine if 

METTL14 interacts with PRMT1 through its C-terminal IDR, we compared the interaction 

of PRMT1 with full-length (FL) and C-terminal IDR truncation mutant (1–400) METTL14 

using co-IP assays. Deleting the C-terminal IDR completely abolished METTL14 interaction 

with PRMT1 (Figure 5.2C). Furthermore, we also performed GST pull-down assays and 

demonstrated that although full length recombinant GST-METTL14 can pull down PRMT1 

from HEK293 total cell lysates, C-terminal IDR-truncated METTL14 cannot (Figure 5.2D), 

further demonstrating that the C-terminal IDR is essential for METTL14 interaction with 

PRMT1. 

 To assess if PRMT1 catalyzes METTL14 C-terminal IDR arginine methylation in 

vivo, we assessed the level of METTL14 arginine methylation in HEK293 cells with altered 

PRMT1 expression. Overexpressing GFP-PRMT1 increased METTL14 arginine methylation 

(Figure 5.2E), and knocking down the expression of PRMT1, but not PRMT3 or PRMT6, 

using siRNA reduced METTL14 arginine methylation (Figure 5.2F, Supplementary Figure 

5.10A), supporting the role of PRMT1 as a major PRMT catalyzing the arginine methylation 

of the METTL14 C-terminal IDR in cells.  

5.2.3 C-terminal IDR arginine methylation enhances METTL14–RNA interaction 

and METTL3/METTL14 methyltransferase activity. 

To identify the arginine methylation site(s), we performed in vitro methylation assays after 

introducing a series of arginine (R)-to-lysine (K) mutations in the IDR, either individually 

or in various combinations. However, none of the mutations tested significantly reduced 

METTL14 methylation (Supplementary Figure 5.10B), suggesting that multiple arginine 

residues are methylated but the combinations we selected were insufficient to cover them 

all. Thus, we immunoprecipitated METTL14 from HEK293 cells and performed mass 

spectrometry analysis to identify the methylation sites. Although five sites (Arg438, 
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Arg442, Arg445, Arg450, and Arg456) were found to be both mono- and dimethylated 

(Figure 5.3A, Supplementary Figure 5.15A), the mutation of all five arginine residues 

(5RK) only modestly reduced the methylation signal (by ~40%) in vitro and in cells 

(Figure 5.3B and C), suggesting that either additional arginine residues are methylated or 

compensatory methylation occurs when the preferred methylation sites are not available. 

We thus mutated all thirteen arginine residues in the IDR to lysine (13RK), which 

completely abolished METTL14 arginine methylation (Figure 5.3B and C, Supplementary 

Figure 5.10C), and used this RK mutant as the arginine methylation-deficient mutant 

METTL14 in the following studies. 

 RGG/RG motifs can mediate protein–protein and protein–RNA interactions and are 

recognized as the second most common RNA-binding domains in the human genome 33-36. 

Therefore, to investigate the role of METTL14 C-terminal IDR arginine methylation, we 

tested the hypothesis that arginine methylation of the RGG/RG motifs of METTL14 

regulates its interactions with its RNA substrates. Three independent assays were 

performed using recombinant METTL14 proteins purified from HEK293 cells. First, we 

carried out the RNA pull-down assays by incubating recombinant arginine methylated 

(WT), hypomethylated (MS023-treated), and RK mutant METTL14 proteins with biotin-

labeled RNA oligonucleotides harboring the consensus sequence motif for m6A 

modification, GGACU 8. The loss of arginine methylation, caused by either inhibitor 

treatment or by R-to-K mutation, dramatically reduced the interactions of METTL14 with 

the RNA substrates (Figure 5.3D). Next, we performed an Electrophoretic Mobility Shift 

Assay (EMSA) by incubating the 6-carboxyfluorescein (6-FAM)-labeled RNA probe with 

increasing amounts of recombinant METTL14 proteins (as described in Figure 5.3D). Our 

results show that arginine methylated METTL14 exhibits much stronger binding to RNA 

substrates, compared to the hypomethylated and RK mutant METTL14 (Figure 5.3E). In 

addition, METTL14 protein purified from PRMT1 knockdown HEK293 cells also exhibited 

reduced interactions with RNA substrates, further supporting the role of PRMT1 in 

catalyzing METTL14 arginine methylation (Figure 5.15B). Finally, to quantitatively 

compare the RNA-binding affinity of these recombinant METTL14 proteins, we performed 

fluorescence polarization assays, which measure protein binding-induced changes in the 
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polarization of light emitted upon excitation of a fluorescence-labeled RNA probe. Both 

hypomethylated and RK mutant METTL14 exhibited significantly lower RNA-binding 

affinities than arginine methylated METTL14 (dissociation constant [Kd] values of 211.2 

and 227.4 nM for hypomethylated and RK mutant METTL14, respectively, compared to 

49.14 nM for arginine methylated METTL14; Figure 5.3F). Results from these three 

independent experiments demonstrate that C-terminal IDR arginine methylation enhances 

the interactions of METTL14 with its RNA substrates. 

 To assess if altered METTL14–RNA interaction affect the catalytic activity of the 

RNA methyltransferase complex, we compared the RNA methylation activity of the 

recombinant METTL14 proteins in vitro. The arginine methylated METTL14 (in complex 

with METTL3) exhibited significantly (~2 fold) higher m6A methyltransferase activity than 

the hypomethylated and arginine methylation-deficient enzymes (Figure 5.3G). Similarly, 

METTL14 protein purified from PRMT1 knockdown HEK293 cells also exhibited reduced 

RNA methylation activity (Supplementary Figure 5.15C). Note that the reduced RNA 

binding affinity (Figure 5.3D–F) and RNA methylation activity (Figure 5.3G) of RK mutant 

METTL14 was similar to that of the hypomethylated METTL14, suggesting that the effects 

observed were not artifacts caused by the R-to-K mutations. Altogether, these data 

demonstrate that arginine methylation of the C-terminal IDR enhances the activity of the 

METTL3/METTL14 complex, likely by promoting the interaction of METTL14 with RNA 

substrates.  

5.2.4 C-terminal IDR arginine methylation enhances the METTL14–RNAPII 

interaction. 

We next investigate the role of C-terminal IDR arginine methylation on the function of 

METTL14 in cells. To do so, we examined the impact of the loss of C-terminal IDR arginine 

methylation on the subcellular localization of METTL14 and protein–protein interactions 

with its known partners. Immunofluorescence assays showed that neither the removal of 

the C-terminal IDR nor the mutation of the arginine methylation sites affected the nuclear 

localization of METTL14 (Supplementary Figure 5.16A). Furthermore, consistent with 

previous crystal structure studies showing that the C-terminus of METTL14 is not involved 
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in its interaction with METTL3 40-42, we observed that the interactions of METTL14 with 

other components of the m6A methyltransferase complex, including METTL3 and WTAP, 

were also unaffected by C-terminal IDR truncation or RK mutation, as revealed by the GST 

pull-down and co-IP assays (Figure 5.16B-D). 

 Because m6A deposition is co-transcriptional and the RNA methyltransferase 

complex has been shown to associate with RNAPII 43-45, we tested if arginine methylation 

regulates the interaction of METTL14 with RNAPII. First, we performed reciprocal co-IP 

assays of endogenous METTL14 and RNAPII and detected RNAPII in the METTL14-

immunoprecipitated protein complex (Figure 5.4A, left panel), and METTL14 in the 

RNAPII-immunoprecipitated protein complex (Figure 5.4A, right panel), consistent with a 

recent report 43. Next, to determine if C-terminal IDR arginine methylation contributes to 

this interaction, we transfected HA-tagged WT and arginine methylation-deficient (RK) 

mutant METTL14 and compared their interactions with RNAPII. Although the loss of C-

terminal IDR methylation does not affect the interaction of METTL14 with METTL3, its 

interaction with RNAPII was dramatically impaired (Figure 5.4B). Note that the deletion of 

the C-terminal IDR also reduced the METTL14–RNAPII interaction (Supplementary 

Figure 5.16E), indicating that this region contributes to their interaction. Furthermore, we 

treated HEK293 cells with MS023 to inhibit METTL14 arginine methylation and observed a 

similarly reduced interaction between METTL14 and RNAPII (Figure 5.4C), suggesting 

that the METTL14–RNAPII interaction is regulated by C-terminal IDR arginine methylation. 

Because the C-terminal IDR arginine methylation enhances METTL14–RNA interaction 

(Figure 5.3D–F, Supplementary Figure 5.15B), we next tested if RNA is involved in the 

METTL14–RNAPII interaction. We performed the co-IP assays in the presence of RNase A, 

which led to a significantly reduced amount of METTL14-associated RNAPII (Figure 5.4D). 

These results suggest that METTL14–RNA interaction contributes, at least in part, to the 

METTL14–RNAPII interaction. Collectively, these data show that arginine methylation of 

the C-terminal IDR is critical for regulating the association of METTL14 with RNAPII. 
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5.2.5 METTL14 arginine methylation regulates m6A deposition in vivo. 

To investigate the cellular function of METTL14 arginine methylation, we used mouse 

embryonic stem cells (mESCs), a model system in which we confirmed the arginine 

methylation of METTL14 (Supplementary Figure 5.11A). We established three isogenic 

mESC lines by stably transfecting Mettl14 knockout mESCs 20 with human WT METTL14 

(KO+WT), 5RK mutant METTL14 (KO+5RK), and 13RK mutant METTL14 (KO+RK) (Figure 

5.5A, Supplementary Figure 5.17A, Supplementary Figure 5.11B). Polyadenylated 

mRNA was purified from these cells and analyzed using liquid chromatography–tandem 

mass spectrometry (LC-MS/MS). The m6A to A ratio (m6A/A) was reduced by ~40% in 

KO+RK mESCs compared to KO+WT mESCs (Figure 5.5B). Importantly, the reduction in 

m6A correlated with the degree of METTL14 methylation loss, as KO+5RK mESCs exhibited 

a significant but relatively modest (~10%) reduction (Supplementary Figure 5.17B). 

Similar to what has previously been reported for the Mettl14 KO mESCs 7,20, the KO+RK 

mESCs exhibited reduced pluripotency and proliferation compared to WT and KO+WT 

mESCs (Figure 5.5C–E).  

 To identify transcriptome-wide m6A sites that are regulated by METTL14 arginine 

methylation, we performed methylated RNA-IP (RIP) followed by high-throughput 

sequencing (MeRIP-seq or m6A-seq) in WT, Mettl14 KO, KO+WT, KO+5RK, and KO+RK 

mESCs (Supplementary Figure 5.17A). Crosslinking IP (CLIP)-seq analysis of multi-

mapped reads (CLAM) 46 was used to identify m6A peaks using different q-value cut-offs 

(0.05, 0.01, and 0.005). Consistent with our LC-MS/MS-based m6A/A quantification (Figure 

5.5B, Supplementary Figure 5.17B), the number of m6A peaks identified by CLAM using 

all three cut-offs positively correlated with the degree of METTL14 arginine methylation 

(Supplementary Figure 5.17C). Principal component analysis (PCA) of the m6A peaks in 

each cell line demonstrated strong reproducibility (low variation) among three biological 

replicates (Supplementary Figure 5.17D). We choose 0.05 as the q-value cut-off for 

further analysis because the number of m6A peaks identified in WT mESCs using that cut-

off (11,338) was similar to the number reported for mESCs in other studies 7,20,47. De novo 

motif analysis identified the RRACU m6A sequence motif as enriched at m6A sites, and 

distribution analysis revealed that the m6A sites in protein-coding genes are enriched near 
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the stop codon and at the beginning of the 3’ UTR (Figure 5.5F, Supplementary Figure  

5.17E), both as previously described 7,20,47. The comparison of m6A peaks in KO+WT and 

KO+RK mESCs revealed a significant decrease in m6A peak density upon the loss of 

METTL14 arginine methylation (Figure 5.5G). We next performed differential m6A 

analysis and identified 1,701 METTL14 arginine methylation-dependent m6A sites in 1,290 

genes and 10,635 methylation-independent m6A sites in 5,764 genes between KO+WT and 

KO+RK mESCs (Supplementary Figure 5.17F). Although the majority of METTL14 

arginine methylation dependent m6A sites are found near the stop codon and 3’ UTR, some 

of them are located in the internal exons (Figure 5.5H). We found that internal exons 

harboring these methylation-dependent m6A sites are significantly longer than the exons 

harboring methylation-independent m6A sites (Supplementary Figure 5.17G), indicating 

that m6A deposition in long exons is more dependent on METTL14 methylation than m6A 

deposition in short exons, consistent with the preference of m6A enrichment in long 

internal exons 19,20,48. Additionally, RNA sequences in the vicinity of these m6A sites are 

predicted to be more likely to form secondary structures, such as Helix/Stems or multi-

branched loops (Supplementary Figure 5.17H). Although the deposition of m6A has been 

linked to gene expression and mRNA stability, a comparison of the expression of genes with 

vs. without methylation-dependent m6A sites did not reveal any significant differences 

(Supplementary Figure 5.17I). 

 To determine the biological function of arginine methylation-dependent m6A sites, 

we performed Gene Ontology (GO) analysis. Several known m6A-regulated cellular 

processes are significantly enriched, such as stem cell population maintenance and 

regulation of the TGF-  signaling pathway (Figure 5.5I), which might explain the changes 

in the morphology and pluripotency of KO+RK mESCs (Figure 5.5C–E). Unexpectedly, GO 

analysis also revealed a strong enrichment of METTL14 arginine methylation-dependent 

genes in DNA repair pathways, particularly in error-prone translesion synthesis and the 

Fanconi anemia pathway (Figure 5.5I, Supplementary Figure 5.17J). Because the role of 

m6A-mediated RNA metabolism in DNA repair is largely unknown, we aimed to investigate 

how METTL14 arginine methylation-dependent m6A sites function in regulating DNA 

repair. 



 

182 

5.2.6 METTL14 arginine methylation-dependent m6A sites are associated with 

enhanced translation of DNA repair genes.  

As demonstrated in the UCSC Genome Browser custom tracks (Figure 5.6A, 

Supplementary Figure 5.11C), there was a significant reduction in m6A signals in the 

transcripts of error-prone translesion synthesis and Fanconi anemia genes, including Atrip, 

Palb2, Fancm, Blm, Brca1, and Brca2 due to Mettl14 KO or expression of arginine 

methylation-deficient (KO+RK) METTL14. Interestingly, most of these METTL14 arginine 

methylation-dependent m6A sites are located in long internal exons, consistent with the 

transcriptome-wide analysis showing that internal exons harboring arginine methylation-

dependent m6A sites are significantly longer than exons harboring arginine methylation-

independent m6A sites (Supplementary Figure 5.17G). These results were confirmed by 

m6A-IP, followed by quantitative reverse transcription PCR (RT-qPCR) (Figure 5.6B, 

Supplementary Figure 5.11D). Furthermore, consistent with our in vitro data showing an 

important role of arginine methylation in promoting METTL14–RNA interaction (Figure 

5.3D–F), METTL14 RIP-qPCR revealed that arginine methylation deficiency dramatically 

reduced the interactions of METTL14 with m6A-positive regions of the target transcripts in 

vivo (Figure 5.6C, Supplementary Figure 5.11E). Knocking out Prmt1 49 or treating 

mESCs with the type I PRMT inhibitor MS023, which inhibits METTL14 arginine 

methylation (Fig 1E, Fig 2F, Appendix Fig S2B–D), also reduced m6A deposition (Fig 

EV5A) and the interactions of METTL14 with target transcripts (Fig EV5B), further 

supporting the role of PRMT1-catalyzed METTL14 arginine methylation in regulating m6A 

deposition.  

 The deposition of m6A is tightly linked to gene expression 12,13. Therefore, we next 

investigated how changes in m6A deposition due to loss of METTL14 arginine methylation 

affect the expression of DNA repair genes. Western blot analysis revealed that the 

expression of Atrip, Palb2, and Fancm was reduced upon Mettl14 KO or expression of 

arginine methylation-deficient (KO+RK) METTL14 (Figure 5.6D). A similar reduction in 

protein expression was also detected in Prmt1 KO and MS023-treated mESCs 

(Supplementary Figure 5.18C and D). This reduction in protein expression was not due 

to reduced mRNA production (Supplementary Figure 5.12A and B) or increased mRNA 
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degradation (Supplementary Figure 5.12C). Instead, polysome profiling analysis revealed 

a significant reduction in the association of these DNA repair transcripts with 

polyribosomes in KO+RK mESCs compared to KO+WT mESCs, suggesting a reduction in 

protein translation upon the loss of METTL14 arginine methylation (Figure 5.6E and F). 

Together, these results reveal that METTL14 arginine methylation is important for the 

efficient translation of DNA repair genes, likely through an m6A-dependent mechanism.  

5.2.7 Loss of METTL14 arginine methylation sensitizes mESCs to DNA damage. 

The expression of genes involved in error-prone translesion synthesis and the Fanconi 

anemia pathway is essential for the repair of DNA interstrand crosslinks (ICLs), which form 

when both strands of DNA are covalently linked 50. ICLs prevent DNA strand separation, 

blocking DNA replication and transcription, and thus exerting potent biological effects. We 

next examined if METTL14 arginine methylation loss impairs cellular responses to ICLs. 

Consistent with our observation that Mettl14 KO and KO+RK mESCs exhibited reduced 

expression of ICL repair genes (Figure 5.6D), we found that these mESCs were significantly 

more sensitive than WT and KO+WT mESCs to treatment with mitomycin C (MMC) and 

cisplatin, two chemotherapeutic agents that kill cancer cells by inducing ICLs (Figure 5.7A 

and B). Similar sensitivity was also observed in Prmt1 KO and MS023-treated mESCs 

(Supplementary Figure 5.18E and F). However, these cells were not differentially 

sensitive to ionizing radiation, which causes DNA double-strand breaks (Supplementary 

Figure 5.12D). Importantly, increasing the expression of Fanconi anemia pathway genes, 

such as Palb2, by transient transfection can partially reduce the sensitivity of KO+RK 

mESCs to MMC (Supplementary Figure 5.12E).  

5.3 Discussion 

This study identified a unique functional role of arginine methylation in RNA m6A 

modification and gene expression through the regulation of IDR-mediated protein–RNA 

and protein–protein interactions (Figure 5.7C), expanding our current knowledge about 

the role of arginine methylation in RNA metabolism. Considering the widespread impact of 
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m6A-mediated regulation across the human genome, the discovery of m6A regulation by 

METTL14 arginine methylation has broad implications in normal development and human 

diseases. 

5.3.1 Arginine methylation as a regulator of RGG/RG motif-containing IDRs 

Although most protein domains must adopt a well-defined structure to function, a large 

fraction of the proteome consists of IDRs that do not form defined three-dimensional 

structures yet exhibit biological activity 51,52. Specifically, IDR-mediated liquid-liquid phase 

separation (LLPS) has emerged as a fundamental biophysical process governing the 

organization of high-order chromatin architecture 53-55, transcription 56-58, and DNA repair 

59,60, as well as many other membraneless organelles, such as stress granules and P-bodies 

61,62. IDRs exhibit a marked bias in their amino acid composition, including a high 

proportion of charged residues, such as arginine and lysine, and are predicted to be 

enriched for methylation 51. Arginine can mediate multivalent interactions with nucleotides 

and proteins through hydrogen bonding and π-stacking. The RGG/RG motif-containing IDR 

of the METTL14 C-terminus is conserved from flies to humans (Supplementary Figure 

5.8) and is crucial for METTL3/METTL14 RNA methyltransferase activity by contributing 

to RNA substrate binding 38. Although it is yet to be determined if the C-terminal IDR can 

promote METTL14 LLPS, our study reveals, for the first time, that PRMT1 can catalyze the 

arginine methylation of this IDR and regulate METTL14 protein function and m6A 

deposition.   

 Arginine methylation imparts bulkiness and hydrophobicity of a protein and can 

either positively or negatively affect protein–RNA and protein–protein interactions. We 

show that arginine methylation of the C-terminal IDR of METTL14 enhances its 

interactions with RNA substrates and RNAPII (Figure 5.3 and Figure 5.4). Although our 

data suggest that RNA is involved in mediating the METTL14–RNAPII interaction, arginine 

methylation may regulate this interaction through other mechanisms. For example, 

arginine methylation may promote the interaction with methylarginine “reader” proteins, 

such as the Tudor-domain containing protein 3 (TDRD3) and the survival motor neuron 

(SMN) protein, both of which have been reported to interact with RNAPII 63-65. 
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Alternatively, this modification could enhance the interaction of the RGG/RG motif with 

RNAPII, as a recent report demonstrated that hnRNPG can directly bind to the 

phosphorylated carboxy-terminal domain (CTD) of RNAPII through its RGG/RG motifs 66. 

While beyond the scope of this study, testing these two hypotheses will provide additional 

insights into the molecular mechanisms by which arginine methylation regulates METTL14 

function. 

5.3.2 METTL14 arginine methylation and co-transcriptional m6A deposition 

m6A has been identified in chromatin-associated pre-mRNA 45,67, suggesting that its 

deposition is co-transcriptional. However, it is still unclear how transcription machinery 

modulates the activity and specificity of the METTL3/METTL14 methyltransferase complex 

to control m6A deposition. The interaction of the METTL3/METTL14 complex with RNAPII, 

as shown in this study (Figure 5.4) and reported by others 43,44, provides a molecular basis 

for this co-transcriptional RNA modification. Surprisingly, this interaction is dramatically 

reduced upon loss of METTL14 methylation (Figure 5.4B and C), indicating that arginine 

methylation of METTL14 could be an important molecular mechanism regulating co-

transcriptional m6A deposition. Indeed, mESCs expressing arginine methylation-deficient 

METTL14 exhibited a significant reduction in global m6A levels (~40%, Figure 5.5B), 

particularly near the stop codon and at the beginning of the 3’ UTR of protein-coding genes 

(Figure 5.5H). Although the loss of METTL14 arginine methylation reduces its interaction 

with all forms of RNAPII (Figure 5.4B), it is possible that elongating RNAPII (S2-p) prefers 

to interact with hypermethylated METTL14 for m6A deposition in the coding sequence 

(CDS) and the 3’ UTR, because PRMT1, the enzyme that catalyzes METTL14 arginine 

methylation, has been found in the RNAPII elongation complex through interacting with the 

transcription elongating factor SPT5 68. Furthermore, histone H3 trimethylation at lysine 

36 (H3K36me3), a histone mark that is tightly associated with transcription elongation, 

was recently shown to guide co-transcriptional m6A deposition 43. H3K36me3 recruits 

METTL14 through a direct interaction, thus enriches the METTL3/METTL14 

methyltransferase complex at this histone mark. Although the H3K36me3-interacting 

region of METTL14 was mapped to its N-terminal α-helical motif 43, it remains possible that 
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arginine methylation of the C-terminal RGG/RG motif-containing IDR could enhance 

METTL14–H3K36me3 engagement through processes such as LLPS in vivo. Alternatively, 

H3K36me3 could directly or indirectly promote PRMT1-catalyzed METTL14 arginine 

methylation, thus enabling the enrichment of hypermethylated METTL14 in the vicinity of 

this elongation-associated histone mark for enhanced m6A deposition.  

5.3.3 m6A RNA methylation in the regulation of DNA repair  

Loss of METTL14 arginine methylation leads to ~40% m6A reduction on cellular mRNAs 

(Figure 5.5B), an effect likely caused by overall reduced METTL14/METTL3 

methyltransferase activity (Figure 5.3G) and/or uncoupling of co-transcriptional m6A 

deposition (Figure 5.4B). Our GO analysis of METTL14 arginine methylation-dependent 

m6A sites not only identified known m6A-regulated cellular processes, such as stem cell 

population maintenance, but also revealed a previously underappreciated role of m6A in 

regulating DNA repair gene expression (Figure 5.5I). Interestingly, these m6A sites are 

mainly located in the long internal exons of DNA repair genes (Figure 5.6A and 

Supplementary Figure 5.11C). Using polysome profiling analysis, we demonstrate that 

the METTL14 arginine methylation-dependent m6A modification of these transcripts is 

essential for promoting their efficient protein translation (Figure 5.6D–F). It was recently 

reported that m6A in mRNA coding regions can promote translation by recruiting m6A 

reader YTHDC2 69. Therefore, it is possible that YTHDC2 is involved in the translation of 

these DNA repair genes.  

 Although our study uncovered a novel function of m6A in promoting DNA repair 

gene expression, a recent study by Xiang and colleagues reported the rapid, reversible 

accumulation of m6A RNA at the sites of UV irradiation, which recruits DNA polymerase κ 

(POLK) as an early response for DNA repair 70. Interestingly, we found that the POLK 

transcript is also decorated with m6A, and loss of METTL14 arginine methylation caused a 

~50% reduction in its m6A levels, indicating that POLK expression may also be subjected to 

arginine methylation-dependent m6A regulation. Recently, METTL3 was reported to be 

recruited to DNA damage sites through ATM-mediated phosphorylation at S43, which 

enhances m6A deposition on DNA damage-associated RNAs to facilitate DNA repair 71. 
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Together, these studies highlight a crucial function of the m6A RNA modification in the 

regulation of DNA repair through the direct recruitment of DNA repair machinery as an 

early response to DNA damage and the enhancement of DNA repair gene expression as a 

sustained, long-term response.  

 Consistent with these findings, genetic knockout and inhibition of PRMT1, which 

dampens METTL14 arginine methylation, also sensitized mESCs to MMC- and cisplatin-

induced cell death (Supplementary Figure 5.18E-F). Of particular relevance to this 

observation, Musiani and colleagues reported that, in response to cisplatin treatment, 

PRMT1 is recruited to chromatin to activate the transcription of genes involved in the 

senescence-associated secretory phenotype by methylating histone H4 72. This finding 

suggests that PRMT1 functions through multiple pathways to promote cell survival in 

response to DNA damage. Recently, PRMTs have emerged as promising therapeutic targets 

for treating human malignancies, including solid tumors and blood cancers 28,73. Our work 

reveals that deficiencies in the repair of ICLs could be a specific vulnerability of PRMT 

inhibitor-treated cells, suggesting that PRMT inhibition may be a promising strategy to 

sensitize cancer cells to existing chemotherapy drugs.  

5.4 Methods 

5.4.1 Plasmids and antibodies  

Flag-METTL3 (#53739), Flag-METTL14 (#53740), Flag-RNA Pol II (#35175), pMD2.G 

(#12259), and pSPAX2 (#12260) were purchased from Addgene. GST-tagged PRMT1, 

PRMT2, PRMT3, CARM1, PRMT6, PRMT7, and PRMT8, as well as Myc-PRMT5, plasmids 

were used to purify recombinant enzymes and have been described before 74. GFP-tagged 

PRMT1, PRMT3, and PRMT6 were used for mammalian expression and have been 

described before 75. Human METTL14 cDNA was cloned into pGEX-6P-1, pCMV-HA 

(Clontech), p3xFlag-CMV-7.1 (Sigma), and pLV-EF1a-IRES-Blast (Addgene, #85133) 

vectors. All R-to-K mutants of METTL14 were generated using a site-directed mutagenesis 

kit (Agilent Technologies). The sequences of all primers used in this study are listed in 

Supplementary Table 5.1. 
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 The following antibodies were used for either IP or Western blot analysis: anti-

METTL14 (HPA038002, Sigma), anti-METTL3 (A301-567A, Bethyl), anti-PRMT1 (A300-

722A, Bethyl), anti-PRMT6 (IMG-506, IMGENEX), anti-Atrip (A7139, ABClonal), anti-Fancm 

(12954-1-AP, Proteintech), anti-Palb2 (14340-1-AP, Proteintech), anti-Flag (F3165, Sigma), 

rabbit anti-GFP (A6455), mouse anti-GFP (sc9996, Santa Cruz Biotechnology), anti-β-

ACTIN (A5441, Sigma), anti-RNAPII (39097, Active motif), anti-RNAPII S2p (91115, Active 

motif), anti-RNAPII S5p (sc-47701, Santa Cruz Biotechnology), mouse anti-HA (901501, 

Biolegend), rabbit anti-HA (3724S, Cell Signaling Technology), and anti-ADMA (13522S, 

Cell Signaling Technology). The ASYM26 antibody was kindly provided by Dr. Stéphane 

Richard (McGill University). The PRMT3 antibody was kindly provided by Dr. Mark T. 

Bedford (MD Anderson Cancer Center). 

5.4.2 In vitro methylation assays 

For the in vitro protein methylation assay, the reactions were carried out in 30 μl of 

phosphate-buffered saline (PBS; pH 7.4) containing 0.5–1.0 μg substrate, 3 μg recombinant 

enzymes, and 0.42 μM 3H-SAM (79 Ci/mmol from 7.5 μM stock solution; PerkinElmer Life 

Sciences). Each reaction was incubated at 30°C for 1 h, separated by SDS-PAGE, transferred 

to a PVDF membrane, and exposed to film for 1 day at -80°C. After exposure, the membrane 

was washed with methanol and stained with Ponceau S to visualize total protein loaded. 

 For the in vitro RNA methylation assay, reactions were carried out in a 96-well 

Streptavidin FlashPlate (#SM9103001PK, PerkinElmer). In each well, the 20-μl reaction 

mixture contained 200 nM biotin-labeled RNA oligonucleotides 

(5’UACACUCGAUCUGGACUAAAGCUGCUC3’), 20 mM Tris (pH 7.5), 0.01% Triton X-100, 1 

mM DTT, 0.2 U/mL RNasin, 1% glycerol, 420 nM 3H-SAM, and the indicated amounts of 

recombinant Flag-METTL3 and Flag-METTL14. Each in vitro methylation reaction was 

incubated at room temperature for 2 h. Enzymatic activity was measured in counts per min 

using a scintillation counter (PerkinElmer).   
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5.4.3 Immunoprecipitation of arginine methylated proteins 

To detected arginine methylated proteins, cells were either left untreated or treated with 

the methylation inhibitors AdOx (20 μM) or MS023 (10 μM) for 2 days. Cell pellets were 

lysed in 1x RIPA buffer (20 mM Tris-HCl, [pH 7.5], 150 mM NaCl, 1% NP-40, 0.5% sodium 

deoxycholate, 0.1% SDS, and protease inhibitor) for 1 h at 4°C. The lysates were sonicated 

on ice and clarified by centrifugation, followed by pre-clearing with protein G agarose. The 

lysates were subsequently immunoprecipitated with specific antibodies, as indicated. 

Immunoprecipitated proteins were analyzed by Western blot using arginine methylation-

specific antibodies. 

5.4.4 Recombinant protein purification 

GST-tagged proteins were purified from Escherichia coli strain BL21(DE3). A single colony 

of indicated plasmids was picked and cultured in 10ml LB Broth with 100 μg/ml ampicillin 

overnight. 40 ml fresh LB Broth with 100 μg/ml ampicillin was added the next day. The 

protein expression was induced with 1 mM IPTG at 30°C for 4 h. The cells were sonicated in 

PBS on ice and clarified by centrifugation. The lysates were subsequently incubated with 

Glutathione Sepharose 4B resin (GE Healthcare Life Sciences) overnight at 4°C. The GST-

tagged proteins were eluted with 10 mg/ml reduced L-Glutathione in elution buffer (100 

mM Tris-HCl, pH 7.4, with 150 mM NaCl) after washing three times with PBS buffer.  

 For the purification of Flag-tagged recombinant proteins, HEK293 cells were 

transfected with indicated plasmids for 48 h and lysed in Co-IP buffer (20 mM Tris-HCl, [pH 

7.5], 150 mM NaCl, 1% NP-40, and protease inhibitor) at 4°C for 1 h. The lysates were 

briefly sonicated on ice and clarified by centrifugation. The lysates were subsequently 

incubated anti-Flag M2 magnetic beads overnight at 4°C. The Flag-tagged proteins were 

eluted with 200 μg/ml 3xFlag peptide in TBS buffer (50 mM Tris-HCl, pH 7.4, with 150 mM 

NaCl) after washing three times with Co-IP buffer.  
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5.4.5 GST pull-down 

All GST-tagged proteins used in this study were purified from Escherichia coli strain 

BL21(DE3). Cells were lysed in lysis buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM 

NaCl, 0.1% NP-40, and protease inhibitors, and the cell lysates were incubated with 

purified GST-tagged recombinant proteins with gentle rocking overnight at 4°C. 

Glutathione Sepharose beads (GE Healthcare Life Sciences) were added to the protein and 

lysate mixture and incubated with gentle rocking for 2 h at 4°C. The mixture was 

centrifuged, the supernatant was discarded, and the beads were washed three times with 

the cell lysis buffer. After centrifuging again, the pellet was resuspended in 30 μl 2X SDS 

sample buffer and heated at 95°C for 5 min. The samples were loaded on SDS-PAGE gels 

and analyzed by Western blot using the indicated antibodies. 

5.4.6 Co-IP assay  

Cells were lysed in Co-IP buffer (20 mM Tris-HCl [pH 7.4], 150 mM NaCl, 0.1% NP-40, and 

protease inhibitors). After brief sonication, the lysate was centrifuged at 12,000 rpm for 10 

min at 4°C. For each IP, the supernatant was incubated with 2 μg of the indicated antibody 

with gentle rocking overnight at 4°C. The next day, protein A/G beads (Thermo Scientific) 

were added to the antibody–cell lysate mixture and incubated with gentle rocking for 2 h at 

4°C. The immunocomplex was precipitated by centrifugation and washed three times with 

the cell lysis buffer. The samples were loaded on SDS-PAGE gels and analyzed by Western 

blot using the indicated antibodies. 

5.4.7 Immunofluorescence  

The HeLa cells transfected with the indicated plasmids were grown on glass coverslips to 

the desired confluence (85%) before fixation. First, the cells were rinsed with PBS and 

were fixed with ice-cold methanol for 20 min at room temperature. After blocking with 

20% newborn calf serum for 1 h, the cells were incubated with the indicated antibodies at 

4°C overnight. The cells were then stained with a fluorescence-labeled secondary antibody 
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and stained with 4',6-diamidino-2-phenylindole (DAPI). The coverslips were then sealed 

and examined using an Olympus BX50 fluorescence microscope. 

5.4.8 Electrophoretic mobility shift assay (EMSA) 

The 5' 6-FAM labeled ssRNA oligonucleotide (5’UACACUCGAUCUGGACUAAAGCUGCUC3’) 

was incubated with increasing amounts of indicated proteins at 4°C in 10 ul reaction buffer 

containing 50 mM Tris (pH 7.9), 250 mM KCl, 50 mM MgCl2, 0.5mM EDTA, and 0.2 U/mL 

RNasin for 1 h. The reactions were then resolved on 6% native acrylamide gels (37.5:1 

acrylamide:bis-acrylamide) in 0.5xTBE buffer. The mobility shift of oligonucleotides was 

detected using Bio-Rad ChemiDoc Imaging System. 

5.4.9 Identification of METTL14 arginine methylation sites by LC-MS/MS  

Flag-tagged recombinant METTL14 protein purified from HEK293 cells was resolved on an 

8% SDS-PAGE gel and stained with SimplyBlue™ SafeStain (Invitrogen™, cat. no. LC6065). 

The protein band was excised and de-stained, followed by in-gel digestion using 

Trypsin/Lys-C Mix (Promega, cat. no. V5073), according to the manufacturer’s instructions. 

After overnight digestion, the peptides were extracted three times by adding 50% 

ACN/0.1% TFA solution, 60% ACN/0.1% TFA solution, and 80% ACN/0.1% TFA solution to 

the gel pieces. The combined peptide extracts were evaporated using a Savant SpeedVac 

SVC 100H Centrifugal Evaporator. The peptides were dissolved in 1% formic acid (Fisher 

Chemical, cat. no. A11750) and analyzed by reversed-phase LC/MS. The mass spectrometric 

analysis was carried out using a Thermo Scientific Orbitrap Fusion Mass Spectrometer 

equipped with an Easy Spray source and an Easy-nLC1000 system. The raw spectra files 

were searched using both Proteome Discoverer Software with Sequest (Version 2.0) and 

the Mascot algorithm (Mascot 2.5.1). 

5.4.10 Fluorescence polarization assay 

Fluorescence polarization assays were performed in black, low-flange, flat-bottom 384-well 

microplates with a nonbinding surface (Corning, MA). Various amounts of recombinant WT 
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and mutant METTL14 proteins were incubated with 1 nM of a 5' 6-FAM-labeled RNA probe 

(5’UACACUCGAUCUGGACUAAAGCUGCUC3’) in the binding buffer containing 20 mM Tris 

(pH 7.5), 0.01% Triton X-100, 1 mM DTT, 0.2 U/mL RNasin, and 1% glycerol. Binding was 

performed for 15 min at 37°C. Fluorescence polarization was measured using a Biotech 

Synergy H4 plate reader (excitation 485 nm, emission 528 nm), and dissociation constants 

were calculated using GraphPad Prism 8.0.  

5.4.11 Lentivirus packaging and stable mESC line generation 

Lentiviruses were made by co-transfecting each pLV-EF1a-IRES-Blast METTL14 

overexpression vector (WT and RK) with pSPAX2 and pMD2.G at a 4:3:1 ratio into 293T 

cells. The supernatant was harvested 48 h after transfection and filtered through a 0.45 μm 

filter. The virus was concentrated using PEG-it Virus Precipitation Solution (#LV810A-1, 

System Biosciences). Mettl14 KO mESCs, kindly provided by Dr. Jacob H. Hanna (Weizmann 

Institute of Science, Israel), were seeded in 6-well plates and infected with the packaged 

lentiviruses in the presence of 5 μg/ml polybrene (Sigma). 24 h after infection, the mESCs 

were treated with 5 μg/ml blasticidin for one week to select those expressing WT or RK 

mutant METTL14 (KO+WT and KO+RK, respectively). mESCs were cultured under feeder-

free conditions supplemented with mouse leukemia inhibitory factor (GeminiBio). 

5.4.12 RNA m6A quantification by LC-MS/MS 

Total RNA was isolated from the indicated cell lines using TRIzol reagent (Invitrogen). The 

polyadenylated RNA from these cells was isolated using two rounds of purification on oligo 

d(T)25 magnetic beads (Thermo Fisher). 25 ng of poly(A)+ RNA was digested using 

nuclease P1 (1 U, Sigma) in 20 μl of buffer containing 20 mM NH4OAc, (pH 5.5) at 42°C for 

2 h, followed by the addition of FastAP buffer (2.3 µL) and alkaline phosphatase (1 U, 

Thermo Fisher) and incubation at 37°C for 4 h. The sample was then filtered (0.22 μm pore 

size, 4 mm diameter, Millipore), and 5 μl of the solution was injected into a SCIEX Triple 

Quad 6500+ LC-MS/MS system. The nucleosides were separated by reverse-phase ultra-

performance liquid chromatography on a C18 column (Agilent) with online mass 

spectrometry detection performed in positive electrospray ionization mode. The 
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nucleosides were quantified using the nucleoside-to-base ion mass transitions of 282 to 

150 (m6A) and 268 to 136 (A). Nucleoside concentrations were determined by comparison 

to a standard curve obtained from pure nucleoside standards run with the same batch of 

samples.  The m6A/A ratio was calculated based on the calibrated concentrations. 

5.4.13 Colony formation and alkaline phosphatase staining assay 

The mESCs were seeded at a 500 cells/well concentration in a 6-well plate for 7 days. The 

cell culture medium was aspirated, and the cells were washed once with 1 ml of 1x PBST 

(1xPBS containing 0.05% Tween-20). Subsequently, the cells were stained with an Alkaline 

Phosphatase Staining Kit (Biopioneer), according to the manufacturer’s instructions. 

5.4.14 Proliferation and viability assay 

To assess cell proliferation and viability, cells were cultured in 96-well plates and counted 

at the indicated times using a CCK-8 Cell Counting Kit-8 (Dojindo), measuring the 

absorbance on a microplate reader using a 450-nm filter. 

5.4.15 Protein sequence alignment using ClustalW 

The parameters for the alignment using ClustalW were the following: Gap Penalty: 10, Gap 

Length Penalty: 0.2, Delay Divergent Sequence: 30%, Protein Weight Matrix: Gonnet Series 

for multiple alignment parameters. For pairwise alignment: Gap Penalty: 10, Gap Length: 

0.1, Protein Weight Matrix: Gonnet 250. 

5.4.16 MeRIP-seq (m6A-seq)  

Using a modified m6A-seq protocol 76, we profiled the genome-wide m6A methylomes of 

WT, Mettl14 KO, KO+WT, and KO+RK mESCs. For each sample, we analyzed three biological 

replicates using both RIP-seq with an m6A-specific antibody and standard RNA-seq of the 

input control. Total RNA was extracted from the mESCs using TRIzol reagent. Enrichment 

of mRNA from total RNA was performed using a Dynabeads mRNA Purification Kit 

(Invitrogen), according to the manufacturer’s instructions. mRNA samples were chemically 
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fragmented into ~100-nucleotide-long fragments by incubation with 10X RNA 

Fragmentation Reagent (Invitrogen) at 90°C for 90 s. The fragmentation reaction was 

stopped by adding 0.5 M EDTA, followed by standard ethanol precipitation. The 

fragmented RNA samples were resuspended in 10 mM Tris-HCl (pH 7.4). 20 ng of 

fragmented RNA to be used as input control was stored in -80°C in a final volume of 8.5 µl 

in FPF (Fragment, Prime, Finish) mix from the TruSeq Stranded Total RNA Kit (Illumina). 

The remaining RNA was subjected to m6A-seq. Specifically, 2 µg of fragmented mRNA was 

incubated for 2 h at 4°C with 4 µg of affinity-purified anti-m6A polyclonal antibody 

(Synaptic Systems) in m6A-IP buffer (150 mM NaCl, 0.1% NP-40, 10 mM Tris-HCl, [pH 7.4], 

and 0.2 U/µl of RNasin). The RNA–antibody mixture was immunoprecipitated by 

incubation with protein A beads (Millipore) at 4°C for another 2 h. The beads were 

extensively washed with m6A-IP buffer. The bound RNA was eluted with m6A elution buffer 

(150 mM NaCl, 6.7 mM m6A nucleotides, 0.1% NP-40, 10 mM Tris-HCl, [pH 7.4], and 0.2 

U/µl of RNasin) and elution wash buffer (150 mM NaCl, 0.1% NP-40, 10 mM Tris-HCl, [pH 

7.4], 0.2 U/µl of RNasin). The m6A eluate was purified using Agencourt AMPure XP beads 

(Beckman Coulter). The immunopurified RNA and non-IP input control samples were used 

for library generation using the TruSeq Stranded Total RNA Kit (Illumina). Single-end, 50-

nucleotide sequencing was performed on an Illumina HiSeq 4000 platform, according to 

the manufacturer’s instructions.  

5.4.17 Gene expression quantification 

The RNA-seq reads of the input control RNA from WT, Mettl14 KO, KO+WT, and KO+RK 

mESCs were aligned to the mouse genome (GRCm38) with GENCODE annotation (release 

M13) using Kallisto (version 0.43.0) 77. Gene expression was reported in TPM (transcripts 

per million).   

5.4.18 m6A peaks and differential m6A peaks calling procedure 

We mapped the m6A-seq reads to the mouse genome (GRCm38) with GENCODE annotation 

(release M13) using STAR (version 2.5.3a) 78. Only uniquely mapped reads were used for 

m6A peak calling. Then we ran CLAM (version 1.2.0) with local window size w = 100, p-
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value correction using the Bonferroni correction, and m6A peaks were called as significant 

100-bp windows. To call METTL14 arginine methylation-dependent (differential) m6A 

peaks between any two samples, we selected 100-bp windows called as m6A  peaks (peak 

window) in at least one replicate of one sample and compared the average peak window 

intensity signals for each sample (the ratio of reads per kilobase per million mapped reads 

[RPKM] in IP over input control). First, we calculated the fold change between samples for 

each peak window. Then, if the fold change was greater than 1.5 and the average RPKM of 

the peak window in the input controls was greater than 1 for both samples, t-tests were 

performed to compare the peak intensities. Peak windows with p < 0.05 were considered 

as differential m6A sites. To call METTL14 arginine methylation-independent (common) 

m6A peaks between any two samples, we followed a similar procedure as we did for 

differential m6A sites, expect that we required that 1/1.1 < Fold Change < 1.1, and that the 

p-value ≥ 0.1. 

5.4.19 PCA analysis of biological replicates based on m6A peaks 

To investigate the reproducibility (variation) of the m6A peaks among biological replicates 

in WT, KO, KO+WT, and KO+RK mESCs, we performed unsupervised principal component 

analysis (PCA) of m6A peaks. First, we selected the peaks that were called by CLAM in at 

least one sample. Then, for each peak, we assigned 1 to the sample if the peaks were 

present and 0 if not. PCA was conducted via sklearn function in Python. The top two 

principle components that explained the highest percentage of the variance were chosen to 

visualize the m6A profiles of the twelve samples. 

5.4.20 m6A motif finding, topological distribution, and composition analysis  

Motifs were identified in the m6A peak windows for each sample using HOMER 79 with the 

following parameters: motif_len= 5,6,7; size = 100; motif_num = 10. We performed a 

genome-wide analysis to determine the topological distribution of m6A in the 5’UTR, coding 

sequence (CDS), and 3’UTR by splitting each transcript region into 50 bins with equal size. 

The frequency of m6A peaks in each bin was calculated as the number of m6A peaks per 

transcript. We then analyzed the composition of m6A peaks by looking at the proportions of 
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m6A peaks in the 3’UTR, 5’UTR, CDS, other exons, and intron regions. Other exons were 

defined as the exons that could not be mapped to 3’UTR, 5’UTR, or CDS. 

5.4.21 Differential topological distribution analysis of m6A peaks  

Transcripts were first binned into 50 parts for the 5’UTR, CDS, and 3’UTR, respectively. To 

determine which sample of each comparison had more transcripts with m6A, the number of 

transcripts with or without m6A peaks were counted for each bin. Fisher’s exact tests were 

performed to evaluate statistical significance. A stringent FDR threshold of 0.01 was used 

to correct for multiple hypothesis testing. 

5.4.22 RNA secondary structure analysis 

To analyze the likelihood of RNA sequences to form secondary structures, we first obtained 

200-nt RNA sequences covering 100 nt of each putative m6A peak (including the RRACU 

motif), 50 nt upstream, and 50 nt downstream. The RNA secondary structures of 

differential and common m6A sites between the KO+WT and KO+RK mESCs were analyzed 

by using RNAfold (https://github.com/ViennaRNA/ViennaRNA) 80, which predicts RNA 

secondary structures and forgi (https://viennarna.github.io/forgi/graph_tutorial.html), a 

package developed by the RNAfold group to define the structure results predicted by 

RNAfold. Four RNA secondary structures (Helix/Stem, Hairpin loop, Bulge loop + Interior 

loop, and Multi-branched loop) can be identified using the forgi software. 

5.4.23 GO analysis of genes with differential m6A peaks  

The GO annotation file was downloaded from 

ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/MOUSE/. We analyzed the enrichment of GO 

terms among genes with differential m6A peaks and background genes (genes with 

expression levels no less than 1 in both samples) for KO+RK vs. KO+WT. The 

hypergeometric test was performed to identify the significantly enriched GO terms for each 

comparison. 

https://github.com/ViennaRNA/ViennaRNA
https://viennarna.github.io/forgi/graph_tutorial.html
ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/MOUSE/
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5.4.24 Reverse transcription-quantitative PCR (RT-qPCR) 

Total cellular RNA was extracted using TRIzol reagent and analyzed for integrity using the 

Agilent 2100 Bioanalyzer (Agilent Technologies). Total RNA (1 μg) was then used as a 

template to synthesize cDNA using the High-Capacity cDNA Archive Kit (Applied 

Biosystems), according to the manufacturer’s instructions, and qPCR was subsequently 

performed on a CFX96 Real-time System C1000 Touch Thermal Cycler (Bio-Rad). RNA 

levels were normalized to the endogenous control gene Actb (ACTIN). Data analysis was 

performed using the Bio-Rad CFX Manager 3.1. The experimental cycle threshold (Ct) was 

calibrated against the ACTIN control product. All amplifications were performed in 

triplicate. 

5.4.25 RNA immunoprecipitation (RIP)-qPCR 

Cells were crosslinked with 1% formaldehyde for 10 min, and crosslinking was stopped by 

the addition of glycine to a final concentration of 0.25 M for 5 min. Cells were washed twice 

with cold PBS and lysed in RIP buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1% NP-40, 

0.5% sodium deoxycholate, 1 mM PMSF, 2 mM VRC, and protease inhibitors) with 

sonication. The cell lysates were centrifuged, and the supernatant was transferred to a 

clean tube. 2 µg METTL14 antibody was added to the supernatant and incubated overnight 

at 4°C with shaking. Dynabeads were added to the supernatant the next day and incubated 

at 4°C for 4 h with shaking. The beads were washed three times for 5 min with washing 

buffer I (50 mM Tris-HCl [pH 7.5], 1 M NaCl; 1% NP-40, 1% sodium deoxycholate, and 2 

mM VRC) and three times for 5 min with washing buffer II (50 mM Tris-HCl [pH 7.5], 1 M 

NaCl, 1% NP-40, 1% sodium deoxycholate, 2 mM VRC, and 1 M urea). After washing, the 

beads were incubated in 100 μL of elution buffer (100 mM Tris-HCl [pH 8.0], 200 mM NaCl, 

10mM EDTA, 1% SDS, and 0.2 mg/mL Proteinase K) for 1 h at 42°C, followed by 1 h at 65°C. 

RNA was then extracted using TRIzol reagent and reverse transcribed into cDNA using the 

High-Capacity cDNA Reverse Transcription Kit. The primers for RIP-qPCR are listed in 

Supplementary Table 5.1. 
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5.4.26 mRNA half-life 

Cells were treated with 5 µg/ml actinomycin D at different time points (0 h, 3 h, 6 h, and 9 

h) before harvest. RNA was purified using TRIzol reagent and reverse transcribed into 

cDNA using the High-Capacity cDNA Reverse Transcription Kit. The primers for the mRNA 

half-life assay are listed in Supplementary Table 5.1. 

5.4.27 Polysome profiling  

Cells were pre-treated with 100 μg/ml cycloheximide for 5 min at 37°C, followed by 

washing using ice-cold PBS containing 100 μg/ml cycloheximide. Cells were pelleted, lysed 

on ice in lysis buffer, then centrifuged. The supernatant was collected and loaded onto a 

10/50% (w/v) sucrose gradient, followed by centrifugation at 39,000 rpm in an SW40 

rotor (Beckman) for 3 h at 4°C. Sucrose solutions were freshly prepared in cell lysis buffer 

(20 mM HEPES [pH 7.6], 100 mM KCl, 5 mM MgCl2, 1% Triton X-100, and 100 µg/ml 

cycloheximide, supplemented with protease inhibitor and RNase inhibitor). Separated 

samples were fractionated, and OD254 values were measured. An aliquot of the ribosome 

fraction was used to extract total RNA using TRIzol reagent for real-time PCR analysis. 

5.4.28 Statistical analysis 

All experiments were performed at least three times. Statistical comparisons were 

performed using Student’s t-tests. p < 0.05 was considered statistically significant.  

5.4.29 Data availability 

The MeRIP-seq (m6A-seq) datasets produced in this study are available in the following 

database: 

• MeRIP-seq (m6A-seq) data: Gene Expression Omnibus GSE160108 

            https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE160108 
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5.5 Figures  

 

Figure 5.1 METTL14 C-terminal IDR is arginine methylated in vitro and in cells. 

(A) Schematic representation of the domain structure of METTL14. The C-terminal IDR, 

containing an array of RGG motifs, is highlighted. NHM: N-terminal α-helical motif; MTase: 

Methyltransferase domain; IDR: Intrinsically disordered region. (B) METTL14 is arginine 

methylated in vitro. In vitro methylation assays were performed by incubating recombinant 

PRMTs (1–8) with purified GST-tagged METTL14. (C) METTL14 is arginine methylated at 

its C-terminal IDR in vitro. GST-tagged full-length (FL) and C-terminal IDR-truncated (1–

400) METTL14 were incubated with recombinant PRMT1 and PRMT6. (D) METTL14 is 

arginine methylated in cells. Endogenous METTL14 was immunoprecipitated from HEK293 

cells under denaturing conditions and detected using the ADMA antibody ASYM26. (E) 
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Inhibiting type I PRMT activity reduces METTL14 arginine methylation. HEK293 cells were 

treated with the type I PRMT inhibitor MS023 (1 μM, 48 h). METTL14 was 

immunoprecipitated from the cells and detected by Western blot analysis using anti-

METTL14 and anti-ASYM26 antibodies. (F) METTL14 is arginine methylated at its C-

terminal IDR in cells. HEK293 cells expressing Flag-tagged FL or C-terminal IDR-truncated 

(1–400) METTL14 were lysed and immunoprecipitated with an anti-Flag antibody. 

Arginine methylation of immunoprecipitated METTL14 was analyzed by Western blot 

using two different antibodies that recognize ADMA. 
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Figure 5.2 PRMT1 catalyzes METTL14 C-terminal IDR arginine methylation. 

(A) PRMT1 interacts with METTL14 in cells. HEK293 cells expressing GFP-tagged PRMT1, 

PRMT3, or PRMT6 were lysed and immunoprecipitated with an anti-METTL14 antibody, 

followed by Western blot analysis using an anti-GFP antibody. * indicates the location of 
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the IgG heavy chain. (B) Endogenous METTL14 interacts with PRMT1. The reciprocal 

endogenous co-immunoprecipitation (IP) assays were performed using the METTL14 

antibody for IP and the PRMT1 antibody for Western blot detection (left panel) and using 

the PRMT1 antibody for IP and the METTL14 antibody for Western blot detection (right 

panel). (C) The C-terminal IDR of METTL14 is essential for its interaction with PRMT1. 

HEK293 cells were transfected with GFP-tagged PRMT1 and Flag-tagged FL or C-terminal 

IDR-truncated (1–400) METTL14. IP was performed using an anti-GFP antibody, and 

Western blot analysis was performed using anti-GFP and anti-Flag antibodies. (D) GST pull-

down detection of the interactions of PRMT1 with GST-tagged FL and truncated (1–400) 

recombinant METTL14. The black triangles indicate recombinant METTL14 proteins. (E) 

Overexpression of PRMT1 enhances METTL14 arginine methylation. HEK293 cells were 

transfected with either GFP vector or GFP-PRMT1, together with Flag-METTL14. The level 

of METTL14 methylation was detected by IP using an anti-Flag antibody, followed by 

Western blot analysis using an anti-ASYM26 antibody. * indicates the location of the IgG 

heavy chain. (F) Knockdown of PRMT1 expression reduces METTL14 arginine methylation. 

HEK293 cells were transfected with control siRNA (siCtrl) and the siRNA targeting PRMT1 

(siPRMT1). METTL14 was immunoprecipitated from these cells, and its methylation level 

was detected by Western blot analysis using an anti-ASYM26 antibody. * indicates the 

location of the IgG heavy chain. 
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Figure 5.3 C-terminal IDR arginine methylation enhances METTL14–RNA 

interactions and METTL3/METTL14 RNA methylation activity. 

(A) Summary of METTL14 arginine-methylated peptides identified by LC-MS/MS. (B) 

METTL14 IDR arginine methylation occurs at multiple arginine residues within RGG/RG 

motifs. Mutation of five arginine sites identified from mass spectrometry reduces METTL14 

arginine methylation, but only mutation of all arginine residues to lysine completed 

blocked METTL14 methylation. Ponceau S staining shows the loading of the recombinant 
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proteins. The black triangles indicate arginine methylated-METTL14; open triangles 

indicate recombinant METTL14 proteins. (C) METTL14 is methylated at multiple arginine 

residues in cells. HEK293 cells expressing Flag-tagged WT or various R-to-K METTL14 

mutants were lysed and immunoprecipitated with an anti-Flag antibody. Arginine 

methylation of immunoprecipitated METTL14 was detected by Western blot analysis using 

an anti-ADMA antibody. Both short and long exposures of the chemiluminescence signals 

are shown. (D) Arginine methylation of the METTL14 IDR enhances its interaction with 

RNA substrates. RNA pull-down assay was performed by incubating biotin-labeled RNA 

with WT, hypomethylated (MS023), and arginine methylation-deficient (RK) mutant 

METTL14. The pull-down samples were detected by Western blot analysis using an anti-

Flag antibody. The methylation status of the recombinant proteins was confirmed by 

Western blot analysis using an anti-ADMA antibody. (E) EMSA was performed to compare 

the interactions of WT, hypomethylated (MS023), and arginine methylation-deficient (RK) 

mutant METTL14 with 6-FAM-labeled RNA. Arrow indicates the shift of the RNA probe 

caused by the protein–RNA interaction. Coomassie staining shows the increasing amounts 

of recombinant proteins used in the assay. (F) Fluorescence polarization assays were 

performed by incubating 6-FAM-labeled RNA with WT, hypomethylated (MS023), and 

arginine methylation-deficient (RK) mutant METTL14. Each point represents the average 

of three independent replicates and error bars represent standard deviation (SD). The 

dissociation constant values (Kd) were listed as mean ± SD. (G) Arginine methylation of the 

C-terminal IDR enhances the RNA methylation activity of the METTL14/METTL3 complex 

in vitro. In vitro RNA methylation assays were performed by incubating biotin-labeled RNA 

substrates with METTL3/METTL14 methyltransferase complexes containing WT, 
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hypomethylated (MS023), and arginine methylation-deficient (RK) mutant METTL14 in 

various concentrations (10–100 nM). The methylation status of the METTL3/METTL14 

complex was confirmed by Western blot analysis using an anti-ADMA antibody. Coomassie 

staining shows the purification of the enzyme complex. Enzymatic activity was measured in 

counts per minute (c.p.m.) using a scintillation counter. Data from three replicates were 

analyzed by Student’s t-test and shown as mean ± SD. *P < 0.05; **P < 0.01; ns, not 

significant. 
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Figure 5.4 Arginine methylation of the C-terminal IDR enhances the interaction of 

METTL14 with RNAPII in cells. 

(A) Endogenous METTL14 interacts with RNAPII. Endogenous co-immunoprecipitation 

(IP) was performed using the METTL14 antibody for IP and the RNAPII antibody for 

Western blot detection (left panel) and using the RNAPII antibody for IP and the METTL14 

antibody for Western blot detection (right panel). (B) Arginine methylation of the 
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METTL14 C-terminal IDR enhances its interaction with RNAPII. HEK293 cells were 

transfected with HA-tagged WT or arginine methylation-deficient (RK) mutant METTL14. 

IP was performed using an anti-HA antibody, and Western blot analysis was performed 

using the indicated antibodies. (C) Co-IP assays were performed to compare the 

interactions between METTL14 and RNAPII in control and MS023-treated HEK293 cells. 

Cells were treated with either DMSO or MS023 (1 μM) for 48 h before they were lysed. IP 

was performed using control IgG and METTL14 antibodies, respectively. Western blot 

analysis was performed using anti-RNAPII, anti-ADMA, anti-METTL14, and anti-METTL3 

antibodies. (D) Co-IP assays were performed to examine the involvement of RNA in the 

METTL14–RNAPII interaction. Total cell lysates were either left untreated or treated with 

RNase A to remove the RNA component before IP. Western blot analysis was performed 

using anti-RNAPII, anti-METTL3, and anti-METTL14 antibodies. 
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Figure 5.5 Analysis of METTL14 arginine methylation-dependent m6A sites 

(A) Generation of isogenic mESC lines expressing WT and arginine methylation-deficient 

mutant (RK) METTL14. Mettl14 KO mESCs were transfected with Flag-tagged WT or RK 

mutant METTL14 using a lentivirus expression system. The expression of METTL14 and 

METTL3 in these cells was detected by Western blot analysis using anti-METTL14 and anti-
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METTL3 antibodies. ACTIN was used as a loading control. (B) m6A levels are reduced in 

mESCs expressing arginine methylation-deficient (RK) mutant METTL14. The mRNA 

purified from WT, Mettl14 KO, KO + WT, and KO + RK mESCs was subjected to LC-MS/MS 

analysis to quantify m6A levels (presented as the m6A/A ratio). (C) Morphology and 

alkaline phosphatase (AP) staining of mESCs expressing WT, Mettl14 KO, KO + WT, and KO 

+ RK METTL14. Scale bar: 400 µm. (D) Quantification of AP-positive clones in (C). (E) 

Proliferation of mESCs expressing WT, Mettl14 KO, KO + WT, and KO + RK METTL14 over a 

5-day period. Each point represents the average of three independent replicates, and error 

bars represent standard deviation (SD). (F) Sequence motifs of m6A-enriched regions in 

KO + WT and KO + RK mESCs (upper panels). Topological distribution of normalized m6A 

peaks across the 5′UTR, CDS, and 3′UTR of mRNAs (lower panels). (G) Cumulative 

distribution of log2 m6A peak intensity in KO + WT and KO + RK mESCs. Statistical analysis 

was performed using the Wilcoxon test to measure the median difference of peak 

intensities between the two groups. (H) Overlay of m6A distributions across the 5′UTR, 

CDS, and 3′UTR of mRNAs in KO + WT and KO + RK mESCs (upper panel). Statistical 

analysis of differential m6A peaks in KO + RK versus KO + WT mESCs (lower panel). The y-

axis represents the q-value (−log10). The dashed gray line indicates q-value = 0.05. (I) 

Gene Ontology (GO) analysis of genes harboring METTL14 arginine methylation-dependent 

m6A sites. Statistical analysis was performed using Hypergeometric test. The P-value for 

the enrichment of each biological process (GO term) is shown. 
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Figure 5.6 METTL14 arginine methylation-dependent m6A sites are associated with 

enhanced translation of DNA repair genes 

(A) UCSC Genome Browser custom tracks of m6A-seq reads along the indicated mRNAs in 

WT, Mettl14 KO, KO + WT, and KO + RK mESCs. The y-axis represents the normalized 
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number of reads. Blue reads are from non-immunoprecipitated input libraries, and red 

reads are from m6A-IP libraries. Above the custom tracks, the thick blue boxes represent 

the protein-coding regions (CDSs), the thin blue boxes represent the untranslated regions 

(UTRs), and the blue lines represent introns. The bars at the bottom of the custom tracks 

indicate the amplicon locations for MeRIP (m6A-IP)-qPCR assays (B) and METTL14 RIP-

qPCR assays (C) to detect m6A-positive (red) and negative (blue) regions. (B) MeRIP 

(m6A-IP)-qPCR assays were performed for WT, Mettl14 KO, KO + WT, and KO + RK mESCs 

to validate the MeRIP-seq results. m6A-negative regions of the transcripts (blue) were 

included as negative controls. (C) METTL14 RIP-qPCR assays were performed for WT, 

Mettl14 KO, KO + WT, and KO + RK mESCs to compare the binding of WT and RK mutant 

METTL14 to mRNA targets. Primers (red color) that amplify m6A positive regions of the 

transcripts were used. (D) The expression of ICL repair genes is reduced in mESCs 

expressing arginine methylation-deficient mutant (RK) METTL14. Total cell lysates from 

WT, Mettl14 KO, KO + WT, and KO + RK mESCs were subjected to Western blot analysis 

using the indicated antibodies. (E) Polysome profiling was performed for KO + WT and KO 

+ RK mESCs. Whole-cell extracts were fractionated through centrifugation in a sucrose 

density gradient. Optical scans (OD260) of the collected fractions are shown. (F) 

Quantification of ribosome-bound mRNA for the indicated genes from individual fractions 

(as in (E)), relative to the amount of the total mRNA in all fractions. Gapdh was included as 

a negative control. 
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Figure 5.7 Loss of METTL14 arginine methylation sensitizes mESCs to DNA damage 

(A) mESCs expressing arginine methylation-deficient mutant (RK) METTL14 are sensitive 

to ICL damage induced by MMC. WT, Mettl14 KO, KO + WT, and KO + RK mESCs were 
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treated with various concentrations of MMC for 4 days before cell viability was measured. 

(B) Similar to (A), except that mESCs were treated with cisplatin, another ICL-inducing 

chemical, at various concentrations. (C) Proposed model for METTL14 C-terminal IDR 

arginine methylation-mediated regulation of m6A RNA modification and its effects on ICL 

DNA repair. PRMT1-mediated arginine methylation of the C-terminal IDR of METTL14 

promotes its interactions with RNA substrates and RNAPII, which enables efficient m6A 

deposition on transcripts involved in ICL repair. The deposition of m6A enhances the 

translation efficiency of these DNA repair genes, promoting the recovery of mESCs from 

DNA damage. Inhibiting METTL14 arginine methylation using the type I PRMT inhibitor 

MS023 reduces m6A deposition and the protein synthesis of ICL repair genes, thus 

sensitizing mESCs to DNA damage-induced cell death. 
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Supplementary Figure 5.8 METTL14 harbors a conserved arginine/glycine 

(RGG/RG)-rich C terminus.  

The C-terminal intrinsically disordered region (IDR) of METTL14 is conserved among 

species. METTL14 protein sequences from Drosophila melanogaster, Danio rerio, Xenopus 

tropicalis, Gallus gallus, Mus musculus, and Homo sapiens were aligned using ClustalW 

software. Colored strips indicate the conserved protein domains/motifs. The C-terminal 
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IDR, which contains multiple RGG motifs, is conserved in vertebrates, whereas the same 

region in Drosophila harbors a much shorter RGG motif. 
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Supplementary Figure 5.9 Characterization of METTL14 arginine methylation in 

vitro and in vivo.  

(A) In vitro methylation assays were performed to confirm the activities of PRMTs used in 

Figure 5.1B. Recombinant proteins of PRMTs were incubated with their respective 
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substrates, including histone H4 (H4), Polyadenylate-binding protein 1 (PABP1), and core 

histones. The Ponceau staining shows the loading of the recombinant proteins. Black dots 

indicate PRMT enzymes; triangles indicate fluorograph signals from substrate methylation. 

Human cervical cancer cell line HeLa (B), Lung cancer cell line A549 and H1299 (C), and 

breast cancer cell line MDA-MB231 and MCF7 (D) were either left untreated or treated 

with Type I PRMT inhibitor MS023 (1 μM, 48 h). The level of METTL14 arginine 

methylation was detected by IP/Western blot analysis using indicated antibodies. 
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Supplementary Figure 5.10 Identification of PRMT1-catalyzed methylation sites on 

METTL14.  

(A) PRMT1, but not PRMT3 and PRMT6, is responsible for METTL14 arginine methylation 

in vivo. The levels of METTL14 arginine methylation were compared in cells transfected 

with control siRNA (siCtrl), PRMT1-specific siRNA (siPRMT1), PRMT3-specific siRNA 

(siPRMT3), and PRMT6-specific siRNA (siPRMT6). The knockdown efficiency was 

confirmed by Western blot analysis of total cell lysates using indicated antibodies. The 

levels of METTL14 arginine methylation were detected by IP/WB analysis. (B) Selective 
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mutation analysis of single, double, or triple arginine sites does not impair METTL14 

methylation in vitro. The in vitro methylation assays were performed by incubating 

recombinant PRMT1 with purified GST-tagged WT, 1-400 truncation, and various arginine 

to lysine (R-to-K) METTL14 mutants. The Ponceau S staining shows the loading of the 

recombinant proteins used in the exact methylation assay. (C) Schematic representation of 

the mutated arginine residues in each METTL14 mutant constructs used in Figure 5.3B 

and Figure 5.3C. 
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Supplementary Figure 5.11 Characterization of METTL14 arginine methylation-

dependent m6 A sites in mESCs.  
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(A) Detection of METTL14 arginine methylation in mESCs. METTL14 was 

immunoprecipitated from mESCs, and Western blot analysis was performed to detect its 

methylation using anti-ADMA and anti-METTL14 antibodies. (B) Detection of METT1L4 

expression in WT, Mettl14 KO, KO+WT, KO+RK mESCs by immunofluorescence using an 

anti-METTL14 antibody. DAPI staining indicates the cell nucleus. Scale bar: 20 µM (C) UCSC 

Genome Browser custom tracks of m6 A-seq reads along the indicated mRNAs in WT, 

Mettl14 KO, KO+WT, and KO+RK mESCs. The y-axis represents the normalized number of 

reads. Blue reads are from non-immunoprecipitated input libraries, and red reads are from 

m6 A-IP libraries. Above the custom tracks, the thick blue boxes represent the protein 

coding regions (CDSs), the thin blue boxes represent the untranslated regions (UTRs), and 

the blue lines represent introns. The bars at the bottom of the custom tracks indicate the 

amplicon locations for MeRIP (m6 A-IP)-qPCR assays (D) and METTL14 RIP-qPCR assays 

(E) to detect m6 A-positive (red) and negative (blue) regions. (D) MeRIP (m6 A-IP)-qPCR 

assays were performed for WT, Mettl14 KO, KO+WT, and KO+RK mESCs to validate the 

MeRIP-seq results. Four target mRNAs encoded by genes in the Fanconi anemia pathway 

were analyzed. m6 A-negative regions of the transcripts (blue) were included as negative 

controls. Data are shown as mean ± SD from three biological replicates. ***, p < 0.001. (E) 

METTL14 RIP-qPCR assays were performed for WT, Mettl14 KO, KO+WT, and KO+RK 

mESCs to compare the binding of WT and RK mutant METTL14 to the indicated mRNA 

targets. Primers (red color) that amplify m6 A positive regions of the transcripts were used. 

Data are shown as mean ± SD from three biological replicates. *, p < 0.05; **, p < 0.01. (F) 

The amount of METTL14 protein immunoprecipitated in the RIP experiments described in 

Figure 5.6C and Supplementary Figure 5.11E was detected by Western blot analysis. 
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Supplementary Figure 5.12 Examine the impact of METTL14 arginine methylation 

loss on mRNA expression, stability, and cellular response to DNA damage.  

(A) The mRNA levels of Fanconi anemia pathway genes were analyzed by RT-qPCR for 

mESCs expressing WT and RK mutant METTL14. Data are shown as mean ± SD from three 

biological replicates. (B) The mRNA levels of Fanconi anemia pathway genes were analyzed 
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by RT-qPCR for mESCs treated with DMSO (control) or type I PRMT inhibitor (MS023). 

Data are shown as mean ± SD from three biological replicates. (C) mRNA half-life assays 

were performed to compare the mRNA stability of genes involved in the Fanconi anemia 

pathway for mESCs expressing WT and RK mutant METTL14. (D) The viability of WT, 

Mettl14 KO, KO+WT, and KO+RK mESCs was measured on days 3 and 4 after ionizing 

radiation (2 Gy). (E) The KO+RK mESCs transfected with V5-tagged Palb2, as well as 

KO+WT and KO+RK mESCs, were treated with various amounts of MMC. Cell viability was 

measured on day 4. The expression of transfected Palb2 was confirmed by Western blot 

analysis using an anti-V5 antibody. Data are shown as mean ± SD from three biological 

replicates. *, p < 0.05. 
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Supplementary Figure 5.13 The amount of METTL14 protein immunoprecipitated in 

the RIP experiments performed in Prmt1 KO (A) and MS023-treated (B) mESCs, as 

described in Supplementary Figure 5.18B, was detected by Western blot analysis. 
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Supplementary Figure 5.14 The RG-rich C terminus of METTL14 is intrinsically 

disordered and is essential for the RNA methyltransferase activity of 

METTL3/METTL14 complex. 
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(A) Prediction of METTL14 IDRs and disorder probability using PrDOS. Disordered amino 

acids are highlighted in red. FP: false positive. (B) Prediction of METTL14 disorder 

probability using IUPred2A. (C) The C-terminal IDR of METTL14 is essential for the RNA 

methylation activity of the METTL3/METTL14 complex. In vitro RNA methylation assays 

were performed by incubating biotin-labeled RNA substrates with METTL3/METTL14 

methyltransferase complexes containing WT and C-terminal IDR-truncated mutant (1–

400) METTL14. The Coomassie staining shows the purification of the enzyme complex. The 

enzymatic activity was measured in counts per minute (c.p.m.) using a scintillation counter. 

Data from three independent replicates were analyzed by Student’s t-test and shown as 

mean ± SD. ***P < 0.001. 
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Supplementary Figure 5.15 Characterization of the impacts of arginine methylation 

on METTL14–RNA interactions and RNA methylation activity. 

(A) Identification of METTL14 arginine methylation sites by mass spectrometry. LC-MS/MS 

was performed on METTL14 proteins purified from HEK293 cells. Five peptides that are 
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mono- or dimethylated were identified (R438, R442, R445, R450, and R456). (B) 

Recombinant METTL14 proteins purified from PRMT1 knockdown HEK293 cells exhibits 

reduced RNA interactions. Flag-METTL14 was expressed and purified from control 

(shControl) and PRMT1 knockdown (shPRMT1) HEK293 cells. The methylation level of 

METTL14 was detected by Western blot using an anti-ADMA antibody. The amount of 

protein was visualized by Coomassie staining (left panel). EMSA was performed to compare 

the interaction of recombinant METTL14 purified from shControl and shPRMT1 HEK293 

cells with 6-FAM-labeled RNA. Arrow indicates the shift of the RNA probe caused by the 

protein–RNA interaction (right panel). (C) Recombinant METTL14 purified from PRMT1 

knockdown HEK293 cells exhibits reduced RNA methylation activity. In vitro RNA 

methylation assays were performed by incubating biotin-labeled RNA substrates with 

METTL3/METTL14 methyltransferase complexes purified from control (shControl) and 

PRMT1 knockdown (shPRMT1) HEK293 cells. The enzymatic activity was measured in 

counts per minute (c.p.m.) using a scintillation counter. Data from three independent 

replicates were analyzed by Student’s t-test and shown as mean ± SD. *P < 0.05; **P < 0.01. 
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Supplementary Figure 5.16 Localization and interaction analysis of arginine 

methylation-deficient METTL14 in cells. 

(A) Immunofluorescence assays were performed to examine the subcellular localization of 

WT, C-terminal IDR-truncated (1–400), and arginine methylation-deficient (RK) mutant 

METTL14 in HeLa cells. The localizations of all three proteins were detected by using an 



231 

 

 

anti-Flag antibody. DAPI staining was performed to mark the cell nucleus. Scale bar: 10 µm. 

(B) GST pull-down assays were performed by incubating GST-tagged full-length (FL) and C-

terminal IDR-truncated (1–400) METTL14 with HEK293 cell lysate. Western blot analysis 

was performed using an anti-METTL3 antibody. Ponceau S staining shows the loading of 

the recombinant proteins in the pull-down samples. (C) Co-IP assays were performed to 

detect the interactions of WT, C-terminal IDR-truncated (1–400), and arginine methylation-

deficient (RK) mutant METTL14 with METTL3. The methylation of METTL14 protein was 

confirmed by Western blot analysis using an anti-ADMA antibody. (D) Co-IP assays were 

performed to detect the interactions of WT and arginine methylation-deficient (RK) mutant 

METTL14 with GFP-WTAP. The HEK293 cells were transiently transfected with the 

indicated plasmids 48 h before the assays were performed. (E) Co-IP assays were 

performed to detect the interactions of WT, C-terminal IDR-truncated (1–400), and 

arginine methylation-deficient (RK) mutant METTL14 with RNAPII. The methylation of 

METTL14 protein was confirmed by Western blot analysis using an anti-ADMA antibody. 

 

 

 

 



 

232 

 

Supplementary Figure 5.17 MeRIP-seq (m6A-seq) analysis of mESCs expressing WT 

and arginine methylation-deficient METTL14. 

(A) Three isogenic mESC lines were established by re-expressing WT (KO + WT), 5RK (KO 

+ 5RK), and 13RK (KO + RK) mutant METTL14 in Mettl14 KO mESCs through lentivirus 

transduction. The expression of METTL14 in these cell lines was detected by Western blot 

analysis using an anti-METTL14 antibody. ACTIN was used as a loading control. (B) LC-



233 

 

 

MS/MS was performed to quantify m6A levels (presented as the m6A/A ratio) in WT, 

Mettl14 KO, KO + WT, KO + 5RK, and KO + RK mESCs. The total RNA was extracted using 

the TRIzol reagent, and the poly(A) mRNA was purified for LC-MS/MS analysis. Data from 

three biological replicates were analyzed by Student’s t-test and shown as mean ± SD. *P < 

0.05; ***P < 0.001. (C) Summary of the numbers of m6A peaks in WT, Mettl14 KO, KO + WT, 

KO + 5RK, and KO + RK mESCs using different q-value cutoffs. (D) Principal component 

analysis (PCA) plot of m6A peaks in WT, Mettl14 KO, KO + WT, and KO + RK mESCs, each 

with three biological replicates. PC1 and PC2 are the top two principle components that 

explained the highest percentage of the variance. (E) Sequence motifs of m6A-enriched 

regions in WT and Mettl14 KO mESCs (upper panels). Topological distribution of 

normalized m6A peaks across the 5′UTR, CDS, and 3′UTR of mRNAs (lower panels). (F) 

Summary of the numbers of differential m6A peaks and corresponding numbers of genes 

for each pair of comparison among all established mESC cell lines. The differential m6A 

sites and the number of genes harboring these sites compared between KO + RK and KO + 

WT mESCs were highlighted in red. (G) Length comparison between internal exons 

harboring METTL14 arginine methylation-independent and -dependent m6A sites. 

Statistical analysis was performed using the Wilcoxon test to measure the median 

difference between the two groups. (H) Secondary structure prediction of RNA sequences 

harboring METTL14 arginine methylation-dependent and -independent m6A sites. 

Statistical analysis was performed using Fisher’s exact test. (I) Gene expression level 

comparison of genes harboring METTL14 arginine methylation-independent and -

dependent m6A sites in KO + RK and KO + WT mESCs. Statistical analysis was performed 

using the Wilcoxon test. (J) GO pathway analysis using EnrichR (Kuleshov et al, 2016) 
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reveals that genes harboring METTL14 arginine methylation-dependent m6A peaks are 

enriched for the Fanconi anemia pathway. Examples of analysis using two-pathway 

interaction annotation databases (KEGG 2019 mouse and NCI-Nature 2016) are shown. 

Statistical analysis was performed using Fisher exact test, as defined in EnrichR. 
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Supplementary Figure 5.18 METTL14 C-terminal IDR arginine methylation regulates 

m6A deposition on DNA repair genes. 

(A) MeRIP (m6A-IP)-qPCR assays were performed for WT and Prmt1 KO mESCs (upper 

panel), as well as for control and MS023-treated mESCs (lower panel), to detect the impact 

of PRMT1 loss or inhibition on m6A deposition at targeted transcripts. m6A-negative 

regions of the transcripts (blue) were included as negative controls. (B) METTL14 RIP-
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qPCR assays were performed for WT and Prmt1 KO mESCs (upper panel), as well as for 

control and MS023-treated mESCs (lower panel), to detect the impact of PRMT1 loss or 

inhibition on the interactions of METTL14 with targeted transcripts. (C) The expression of 

ICL repair genes is reduced in Prmt1 KO mESCs. Total cell lysates from WT and Prmt1 KO 

mESCs were subjected to Western blot analysis using the indicated antibodies. (D) The 

expression of ICL repair genes is reduced in MS023-treated mESCs. Total cell lysates from 

control and MS023-treated mESCs were subjected to Western blot analysis using the 

indicated antibodies. (E) Knockout of Prmt1 sensitizes mESCs to ICL damage. WT and 

Prmt1 KO mESCs were treated with various concentrations of MMC (left panel) or cisplatin 

(right panel) for 4 days before cell viability was measured. (F) Similar to (E), except that 

mESCs were treated with MS023, to inhibit type I PRMT activity, while they were treated 

with MMC (left panel) or cisplatin (right panel). 
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5.6 Tables 

Supplementary Table 5.1 Primers used in this study 

Primer Name Primer sequence (5’-3’) 

Cloning primers 

GST-METTL14 Forward CGGGATCCATGGATAGCCGCTTGC 
GST-METTL14 Reverse CCGCTCGAGTTATCGAGGTGGAAAG 
GST-METTL14 (1-400) 
Forward 

CGGGATCCATGGATAGCCGCTTGC 

GST-METTL14 (1-400) 
Reverse 

CCGCTCGAGTTAAGGCGATTTTGGTCG 

3xFlag-METTL14 Forward CCCAAGCTTATGGATAGCCGCTTGC 
3xFlag-METTL14 Reverse GGGGTACCTTATCGAGGTGGAAAG 
3xFlag-METTL14 (1-400) 
Forward 

CCCAAGCTTATGGATAGCCGCTTGC 

3Flag-METTL14 (1-400) 
Reverse 

GGGGTACCTTAAGGCGATTTTGGTCG 

GFP-WTAP Forward CCGCTCGAGCTATGACCAACGAAGAAC 
GFP-WTAP Reverse CGGGATCCTTACAAAACTGAACC 
pLV-EF1a-IRES-Blast 
METTL14 
Forward 

CGGGATCCATGGACTACAAAGACCATGA 

pLV-EF1a-IRES-Blast 
METTL14 
Reverse 

CGGAATTCTTATCGAGGTGGAAAG 

HA-METTL14 Forward CGGAATTCGGATGGATAGCCGCTTGC 
HA-METTL14 Reverse CCGCTCGAGTTATCGAGGTGGAAAG 
METTL14 site mutagenesis primers 
METTL14 R408K-Forwrad CAAATCTAAATCTGACAAAGGAGGTGGAGCTCCC 
METTL14 R408K-Reverse GGGAGCTCCACCTCCTTTGTCAGATTTAGATTTG 

METTL14 R414K/R418K-
Forward 

GGAGGTGGAGCTCCCAAAGGTGGAGGAAAAGGTGG 
AACTTCTGC 

METTL14 R414K/R418K-
Reverse 

GCAGAAGTTCCACCTTTTCCTCCACCTTTGGGAGCTC 
CACCTCC 

METTL14 
R425K/R427K/R429K- 
Forward 

GGAACTTCTGCTGGCAAAGGAAAAGAAAAAAATAGAT 
CTAACTTC 

METTL14 
R425K/R427K/R429K- 
Reverse 

GAAGTTAGATCTATTTTTTTCTTTTCCTTTGCCAGCA
GA AGTTCC 

METTL14 R431K/R435K-
Forward 

GGACGAGAAAGAAATAAATCTAACTTCAAAGGAGAAA 
GAGGTGGC 

METTL14 R431K/R435K-
Reverse 

GCCACCTCTTTCTCCTTTGAAGTTAGATTTATTTCTTT
C TCGTCC 

METTL14 R438K/R442K- CTAACTTCCGAGGAGAAAAAGGTGGCTTTAAAGGGG 
GCCGTGGAGGAG 
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Forward 

METTL14 R438K/R442K-
Reverse 

CTCCTCCACGGCCCCCTTTAAAGCCACCTTTTTCTCCT 
CGGAAGTTAG 

METTL14 R445K-Forward GGCTTTAGAGGGGGCAAAGGAGGAGCACACAG 
METTL14 R445K-Reverse CTGTGTGCTCCTCCTTTGCCCCCTCTAAAGCC 
METTL14 R450K-Forward GTGGAGGAGCACACAAAGGTGGCTTTCCACCTC 
METTL14 R450K-Reverse GAGGTGGAAAGCCACCTTTGTGTGCTCCTCCAC 
METTL14 R456K-Forward GGTGGCTTTCCACCTAAATAAGGTACCAGTCG 
METTL14 R456K-Reverse CGACTGGTACCTTATTTAGGTGGAAAGCCACC 
RT-qPCR primers 
Atrip-Forward CTCATAAGGTCCGCCGATTAG 
Atrip-Reverse CTGCTCAGAAGGTGACAAAGA 
Blm-Forward TGTGATTCATGCATCTCTTCCTAAA 
Blm-Reverse CAGCTCGGCCGGATTCT 
Brca1-Forward GGAGATGTTGTGACTGGAAGAA 
Brca1-Reverse GTGAAGGGCTCACAACAATAGA 
Brca2-Forward TCCCCCCTACCATCAGTTTG 
Brca2-Reverse CAGTGGTAGAGTTTGACTTCGTTCTT 
Fancm-Forward GGCAGAACGTGTCCAAGATTG 
Fancm-Reverse GCGGAGCCTTTTCTGATGTT 
Palb2-Forward CTGGTGATGACAGTGAAAAGCAA 
Palb2-Reverse CAGGCCAAGCATAGCTTTTATATCT 
RIP-qPCR primers 
Atrip-Forward ATCTTTAGCAGTGGGTGCTG 
Atrip-Reverse GGTCCAGACTTGTGCAGATAC 
Blm-Forward GGAAGATTTGCTGGCTGGAA 
Blm-Reverse ACGGCCAGGCTTCCTAT 
Brca1-Forward GCTAACTGTGTGCACTGTACT 
Brca1-Reverse GAGGGACGATTTGAGAGACATAC 
Brca2-Forward CAGTGAAACAAGAACTGATGAA 
Brca2-Reverse GATCACTCTCTCTTAGTTCCATTT 
Fancm-Forward TGTGTCTGGAAGGCATTCTG 
Fancm-Reverse GGGATTGGTGATATGGCTCTAC 
Palb2-Forward GAGGTGCGGGCTGATTT 
Palb2-Reverse CCAGGACCTGCTGGAAAG 
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6 CONCLUDING REMARKS 

Since the initiation of the Human Genome Project (HGP), our knowledge of how genes are 

regulated has been drastically expanded. From studying a limited number of protein-

coding genes to deciphering regulatory elements in noncoding regions over the past 

decade, researchers have made tremendous findings and achievements related to the in-

depth understanding of the dynamic and complex regulations of genes. With the advent of 

high-throughput sequencing technologies, multi-omics data including epigenomics, 

transcriptomics, proteomics, and metabolomics has proved to be invaluable for gaining 

biological insights into molecular phenotypes of regulatory elements. Immense efforts from 

consortia provide enormous datasets covering many aspects of biological processes at an 

unprecedented scale and resolution.   

 Continuous and rapid accumulation of sequencing datasets has brought both 

opportunities and challenges to researchers for studying multicellular complexity. 

Developing computational approaches to interrogate the large amount of data has become 

an urgent need. Machine learning shows a promising power for extracting biological 
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knowledge from big data compendia. This dissertation has been focused on developing 

machine learning strategies to study alternative splicing, a crucial gene regulatory 

mechanism. Alternative splicing is a major source of transcriptome diversity. The defects of 

alternative splicing are frequently observed and overlooked in human diseases and 

cancers. Our incomplete understanding of regulatory elements that govern alternative 

splicing limits the ability to interpret the functional consequences of splice-altering 

variants and support precision medicine. To understand the regulatory mechanisms of and 

the effects of genetic variants on alternative splicing, machine learning strategies were 

developed by leveraging large-scale RNA sequencing datasets across diverse biological 

conditions in the following Chapters.  

 In Chapter 2, we developed a Deep-learning Augmented RNA-seq analysis of 

Transcript Splicing (DARTS) framework by utilizing large-scale publicly available RNA-seq 

datasets to infer differential splicing between biological conditions. A key feature for 

DARTS is that it allows the discoveries of differential splicing when sequencing data is 

shallow or the target gene is lowly expressed. Unlike previous computational tools that 

only use RNA sequence features to predict splicing, DARTS adds an additional layer by 

introducing trans RBP levels in the framework. The trans RBP levels inherently 

characterize biological condition-specificity. With the trans RBP features, DARTS can be 

easily extended and generalized to diverse biological systems.  

 In Chapter 3, we developed a computational tool, Systematic Investigation of 

Retained Introns (SIRI), that reliably quantifies intron retention levels as well as a deep-

learning-based computational approach that predicts intron retention regulatory patterns 

at the subcellular level. Conventional transcriptome sequencing captures RNA molecules in 



 

246 

whole cells, thus ignoring subcellular distributions of processed and unprocessed 

transcripts. We generated extensive RNA-seq datasets at subcellular level and 

demonstrated that polyadenylated RNA abundance does not indicate functional gene 

expression from the analysis of switching intron regulatory patterns across cell 

development. These findings recommend future directions of designing subcellular 

transcriptome analyses towards more profound biological discoveries. We expect that SIRI 

coupled with the deep-learning-based computational approach will contribute to new 

discoveries of functional elements that determine subcellular-specific regulations of 

introns under various biological environments.  

 In Chapter 4, motivated by the success of DARTS, we developed a deep-learning-

based framework, individualized Deep-learning Analysis of RNA Transcript Splicing 

(iDARTS), for predicting tissue-specific splicing levels. An inherent limitation of DARTS is 

that it could not make quantitative predictions of alternative splicing in biological samples. 

Therefore, we extended the framework of DARTS to iDARTS that directly models the cis 

elements and trans RBPs determinants of alternative splicing in tissues. iDARTS shows 

accurate, robust, and generalizable behaviours in predicting splicing levels in tissues. The 

unidirectional flow from genomic sequence and trans RBP levels to splicing makes iDARTS 

capable of inferring causality by measuring the effects of variants on splicing, enabling a 

broader application in genetic and clinical studies. A potential future improvement will be 

to incorporate additional co-transcriptional regulations including chromatin marks, 

transcriptional factors, RBP binding profiles, and RNA modifications in the iDARTS 

framework.  
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 In Chapter 5, we studied the regulation of N6-methyladenosine (m6A) modification 

through investigating the functionalities of arginine-methylation of METTL14 on m6A. We 

found that methylation deficient METTL14 negatively impact m6A levels globally. These 

arginine methylation-dependent m6A sites are predicted to show preferences of RNA 

secondary structures such as helix/stem or multi-branched loops. As m6A is reported to 

occur co-transcriptional and impact on splicing, future works will be expected to focus on 

utilizing machine learning strategies to dissect the regulatory elements underlying m6A, 

thereby helping to further understand the regulation of alternative splicing via RNA 

modifications.  

 In the long run, we expect leveraging machine learning strategies to extract 

biological knowledge from multi-omics datasets will be routinely conducted. Emerging 

experimental approaches, such as the third generation long-reads sequencing, and single-

cell sequencing have opened new perspectives on the dynamic and complex regulations of 

genes at single-cell resolution. The ever-growing size of the datasets that profile various 

aspects of biological regulations necessitate the development of machine learning 

strategies to analyse, interrogate, and integrate these large-scale datasets for 

comprehensively and systematically characterizing biological mechanisms. With more and 

more diverse datasets generated, machine learning approaches will become more and 

more accurate in modelling biological complexities. We anticipate the transformed 

biological knowledge from large-scale datasets via machine learning will eventually benefit 

clinical studies and precision medicine.   

 


