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Halos, and Galaxies
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aDepartment of Astronomy, University of California, Berkeley, CA 94720, USA
bBerkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720,
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dMcWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213, USA

E-mail: jmsullivan@berkeley.edu, useljak@berkeley.edu, sukhdeep@cmu.edu

Abstract. We update Halo Zeldovich Perturbation Theory (HZPT, [1]), an analytic model
for the two-point statistics of dark matter, to describe halo and galaxy clustering, and
galaxy-matter cross-correlation on nonlinear scales. The model correcting Zeldovich has an
analytic Fourier transform, and therefore is valid in both configuration space and Fourier
space. The model is accurate at the 2%-level or less for Pmm (k < 1 h/Mpc), Phm (k <
1 h/Mpc), Phh (k < 2 h/Mpc), Pgm (k < 1 h/Mpc), Pgg (k < 1 h/Mpc), ξmm (r >
1 Mpc/h), ξhm (r > 2 Mpc/h), ξhh (r > 2 Mpc/h), ξgm (r > 1 Mpc/h), ξgg (r > 2 Mpc/h),
for LRG-like mock galaxies. We show that the HZPT model for matter correlators can account
for the effects of a wide range of baryonic feedback models and provide two extended dark
matter models which are of 1% (3%) accuracy for k < 10 (8) h/Mpc. We explicitly model the
non-perturbative features of halo exclusion for the halo-halo and galaxy-galaxy correlators,
as well as the presence of satellites for galaxy-matter and galaxy-galaxy correlation functions.
We perform density estimation using N-body simulations and a wide range of HOD galaxy
mocks to obtain correlations of model parameters with the cosmological parameters Ωm and
σ8. HZPT can provide a fast, interpretable, and analytic model for combined-probe analyses
of redshift surveys using scales well into the non-linear regime.

1Corresponding author.
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1 Introduction

The goal of large-scale structure (LSS) analysis is to extract cosmological information from
the nonlinear matter density field. Nearly all modern cosmological analyses are built upon
two-point statistics that probe this field [2, 3]. Increasingly precise measurements of two-point
correlators in modern galaxy surveys demand percent-level accuracy of theoretical models of
these correlators. This is especially true on smaller scales where the effect of survey sample
variance is minimal and non-perturbative effects dominate. However, models of two-point
statistics require a tradeoff between the scales they access and the amount of theoretical
control they have.

Perturbation theory (PT) provides an analytic model of the density field on large scales
[4]. Two-point correlators in perturbative models are limited by the scale at which nonlinear
effects dominate the dark matter dynamics which is a much smaller scale than the minimum
scale to which current surveys are sensitive [5]. However, PT models remain attractive due
to the control over theoretical errors they afford in their domain of validity. Extensions of
perturbation theory based on an effective fluid description of the density field (EFT) have
pushed deeper into the quasi-linear regime [6–10]. Such extended perturbation theory models
have recently been used successfully for analysis of cosmological parameters, though with
nuisance parameters that are fitted to numerical simulations (e.g. [11]). However, there is a
limit to any perturbative model, even in the EFT framework, as non-perturbative effects and
nonlinear gravitational evolution dictate the behavior of the density field on scales less than a
few Mpc/h. In fact, it is clear that perturbation theory does not actually converge to the fully
nonlinear result on smaller scales, at least in one dimension, at infinite order [12, 13]. This is
due to the fundamentally non-perturbative nature of small-scale dark matter dynamics.

An alternative analytic model that includes non-perturbative effects in the form of halo
formation is the halo model [14–17]. The halo model assumes that all dark matter is tied up
in gravitationally bound, non-overlapping halos, which have a prescribed density profile and
an abundance set by the halo mass function. Two-point matter correlators are computed by
way of mean halo profiles integrated over the halo mass function and halo bias. The halo
model has seen success in the last few decades, and is used in modern analyses, albeit usually
with some modifications, to model fully nonlinear scales (e.g. [18]). However, the halo model
struggles in the so-called “transition regime” between the one-halo and two-halo terms. The
halo model also fails to ensure large-scale conservation laws are satisfied, and as a result
cannot be completely correct in its original form [19]. Despite the successes of both PT and
the halo model in complementary regimes, it is clear that neither of these analytic models
alone are adequate to fully describe the nonlinear density field.

Without sufficiently accurate analytic models of matter clustering, simulations can in-
stead act as a model of nonlinear dynamics. N-body simulations provide Monte Carlo real-
izations of Newtonian dynamics in the fully-nonlinear regime, producing a nonlinear matter
density field for a given cosmological model. As with PT and the halo model, N-body sim-
ulations are limited by a fundamental assumption - namely that evolution of the matter
distribution is fully described by collisionless cold dark matter obeying Newtonian gravity.
However, this assumption does not limit the scales accessible to the model or the types of
nonlinear structures it can produce, which are constrained only by numerical resolution. Re-
cent advances in computing have led to the rise of large-volume, high-resolution simulations
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(e.g. [20–24]), albeit with questions of convergence at the percent-level [25]. With these have
come approximate methods of simulation that aim to obtain comparable solutions with much
less computation time [26–28]. As redshift surveys push to larger volumes and higher number
density, the intractability of running many sufficiently resolved simulations at multi-Gpc vol-
umes (necessary for capturing large modes and estimating covariance) to produce two-point
statistics has motivated various fitting functions and interpolations of two-point statistics
produced by high resolution simulations (e.g. [18, 29–32]). At the smallest scales probed
by observations, baryonic effects on the matter distribution are also a concern [33, 34], and
to properly simulate their impact on large-scale structure requires a full understanding of
galaxy formation and hydrodynamic simulations that include feedback [35, 36]. There have
been some recent efforts to correct for baryons and mitigate this issue by modifying the output
of dark-matter-only simulations [37–39].

In practice we do not observe the nonlinear matter density field, but instead its tracers.
Modeling the connection between tracers and the underlying density field is a complex task,
and there are several prevailing approaches to this problem. The large-scale bias approach
extends the philosophy of perturbation theory to parameterize the tracer field as a linear com-
bination of locally-leading gravitational observables [5]. These models have been successful
on large scales, but face the same issue of PT for modeling dark matter, namely the presence
of a nonlinear scale that characterizes the dark matter dynamics [40]. On top of this funda-
mental limit, there is an additional limiting scale, the nonlocality scale, which characterizes
the formation of the tracer (e.g. halos/galaxies) and is not necessarily coincident with the
nonlinear scale. Recently, some pragmatic semi-analytic models have partially circumvented
this issue by considering bias with respect to a fitting function for the non-linear matter power
[41], using bias templates measured from simulations [42], or by extending the halo model via
functions fit to simulations [43]. In the halo occupation model approach, luminous tracers
are assigned to a catalog of dark matter halos via a prescription for stochastically populating
the halos - this is the Halo Occupation Distribution (HOD) framework [14, 44, 45]. HOD
models, usually combined with halos found in N-body simulations, are used for some modern
analyses that include small-scale galaxy clustering [18, 46]. There are also more involved
models of the galaxy-halo connection that are less frequently used in cosmological analyses
[47]. Finally, hydrodynamic simulations that include baryonic/gas physics attempt to model
galaxy formation more directly, albeit with stochastic subgrid models mixed in [35]. These
simulations are extremely computationally expensive to run, and typically cannot be run at
the sufficient number of realizations or volume to be relevant for modern redshift surveys.

Given the limitations of existing models for the nonlinear density field and its tracers, a
lofty goal is then to produce an interpretable, analytic model that is accurate across all scales
of cosmological interest. Toward this goal we build upon the hybrid PT-halo model approach
put forward by [48] (MS14) and [1] (SV15) for modeling dark matter two-point correlators
- Halo-Zeldovich Perturbation Theory (HZPT). There have been several other efforts in this
hybrid-modeling direction for dark matter only correlators [19, 49–51]. However, both HZPT
in its original incarnation and these previous works do not account for baryonic effects on the
matter two-point correlators or the more observationally-relevant modeling of general tracer
two-point correlators. We address these shortcomings in this paper.

The purpose of this paper is twofold. First, we aim to provide a fast, analytic, and
accurate model for two-point correlators of matter (accounting for baryonic effects) and trac-
ers on small scales, which necessitates modeling of halo exclusion and satellite galaxies. In
addition, we provide power-law fits for matter correlators, and a joint distribution of cosmol-
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ogy and HZPT parameters for describing LRG-type (mock) galaxies as the foundation for an
emulator-like approach to analysis of two-point statistics. We restrict our attention to real
space correlators, as the most immediate application of HZPT is to projected statistics in a
"3x2pt"-style analysis.

We first describe the N-body simulations and HOD mocks used in this paper in Section
2. We review the HZPT model and outline its basic structures in Section 3. We apply the
model to dark matter correlators and discuss the impact of baryons in Section 4. We apply
the model to halos in Section 5, and provide a detailed discussion of halo exclusion before
moving on to mock galaxies in Section 6 and concluding in Section 7.

2 N-body Simulations and Halo Occupation Distribution

2.1 CrowCanyon simulations and CM HOD mocks

We use particle output and halo catalogs from the CrowCanyon N-body simulations to test
the HZPT model on matter and halo statistics. These simulations were run using FastPM
[26] with Np = 61443 particles, a box size of Lbox = 3200 Mpc/h, a boost factor B = 2 (for a
122883 PM force grid and Nyquist wavenumber kNyq ≈ 12 h/Mpc), using the Planck15 cos-
mological parameters [52] (without neutrino effects). CrowCanyon halos were identified using
the nbodykit FoF halo finder [53] with linking length b = 0.2. We computed simulation power
spectra using nbodykit [54] with a FFT mesh using Nmesh = 2048 (kNyq ≈ 2 h/Mpc) using
a correction for compensation [55], and a Triangular Shaped Cloud interpolation window.
Similarly, we computed correlation functions using FFTs on large scales with Nmesh = 1024,
matched at r = 10 Mpc/h to the result of the corrfunc [56] pair counting algorithm (as in-
cluded in nbodykit) with 100 logarithmically-spaced bins and a maximum bin of 10 Mpc/h.
Power spectra are sample variance cancelled using unitary amplitude (“paired-fixed”) power
spectra [57] at the same random seed as the N-body simulation initial conditions. To compute
the linear theory power spectrum we use CLASS [58]. To quickly compute the Zeldovich power
spectrum we modify a version of the FFTLog-based code employed in [59] and [60]. Fits
are performed using the scipy implementation of the “Trust Region Reflective” optimization
algorithm.

We used the nbodykit [54, 61] implementation of the simple 5-parameter Zheng ’07 HOD
model [62] to populate CrowCanyon halos with galaxies. This implementation modulates the
satellite occupation by that of the centrals, assumes no halo-central mis-centering, and places
satellite galaxies in halos according to an NFW profile. We use 100 sets of HOD parameters
sampled from a symmetric latin hypercube with a number density fixed to near the BOSS
CMASS [63] value (n̄g = 4.2× 10−4 h3 Mpc−3) at z = 0.55 (Fig. 1). The parameter logMmin

is not drawn from the hypercube, and is instead fixed by integrating over the CrowCanyon
halo mass function to reproduce the appropriate n̄g. The ranges of parameters considered are:
α ∈ [0.5, 1.0], logM1 ∈ [13.5, 14.5], logM0 ∈ [11, 13.5], σlogM ∈ [0.01, 0.8]. This results in a
large range of satellite fractions (fsat ≈ 0.01−0.6), which is discussed further in Section 6. We
refer to this HOD mock galaxy sample as the “CM” sample since it approximates the BOSS
CMASS galaxy number density, redshift, and roughly follows the HOD parameterization of
the CMASS analysis of [46].

2.2 Aemulus simulations and LZ HOD mocks

We similarly generate LOWZ-like HOD mock catalogs from the Aemulus simulations [24].
We use 10 different cosmologies (Boxes 0-9) with 20 HODs per cosmology. We use a number
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Figure 1. Halo occupation space. CM refers to the wider HOD sample space corresponding to
the larger-volume CrowCanyon simulations, while LZ refers to the LOWZ-like HOD sample space
corresponding to the Aemulus simulations. R14 and W19 refer to the halo occupations using the
(fiducial) mean constrained HOD parameters (using the model of [62]) for the BOSS CMASS and
LOWZ data from [46] and [18], respectively.

density close to the LOWZ value (n̄g = 3 × 10−4 h3 Mpc−3), and use a snapshot at z =
0.25. Halos are populated according to the 200b mass definition of the NFW radius and
concentration. We computed simulation power spectra using nbodykit [54] with a FFT mesh
using Nmesh = 1024 using a correction for compensation [55], a Triangular Shaped Cloud
window, and interlaced anti-aliasing [64]. We extend the maximum corrfunc pair count bin
to 20 Mpc/h and use an FFTCorr grid of 5122 for correlation function measurements. We
use a similar range of parameters as [18]: α ∈ [0.5, 1.5], M1

Mmin
∈ [2.5, 20.0], M0

M1
∈ [0.0, 0.4],

σlogM ∈ [0.01, 0.8]. For each set of HOD parameters, the minimum halo mass parameter
logMmin is fixed to match the LOWZ number density once all of the other parameters have
been chosen. This value is determined by an integral over the halo mass function - to account
for variation of the mass function with cosmology, we use the Aemulus emulator for the halo
mass function trained on the simulations [65]. We refer to this HOD mock galaxy sample as
the “LZ” sample since it approximates the BOSS LOWZ galaxy number density, redshift, and
HOD parameterization of the LOWZ analysis of [18]. Figure 1 shows the halo occupations
corresponding to these parameters (as well as the same for the CM sample).

3 Review of Halo-Zeldovich Perturbation Theory

In this section, we review the HZPT model for two-point statistics as developed in MS14,
SV15, and [66] (H17), briefly recounting the relevant aspects of the halo model. We discuss
each of the terms, their PT/halo model origin, and the scales at which they are relevant.
Previous iterations of the HZPT model were applied only to matter and halo-matter corre-
lators, and discussion in this section is restricted to these models, though we expand upon
them more generally for tracers in Sections 5 and 6.
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3.1 The halo model

The halo model [14–17] makes the assumption that all matter resides in virialized halos of mass
Mvir = 4

3πR
3
vir∆virρ̄m, and splits the two-point statistics of the matter field into correlations

between halos (two-halo term) and correlations within a single halo (one-halo term):

Pmm(k) = P1h(k) + P2h(k), ξmm(r) = ξ1h(r) + ξ2h(r). (3.1)

The ingredients of the halo model are: the halo mass function dn(M) with n(M) the number
density of halos at fixed mass M , along with halo bias b(M), and the spherically averaged
halo profile ρM (r)(e.g. NFW [67]). The usual halo-model one-halo and two-halo expressions
are then:

P1h(k) =

∫
dn(M)

M

ρ̄
|uM (k)|2, (3.2)

P2h(k) =

(∫
dn(M)b(M)uM (k)

)2

PL(k), (3.3)

with linear power PL(k), and where the configuration space quantities are given by the Fourier
transform of eqns. 3.2 and 3.3. Here uM (k) is the Fourier transform of the density profile
normalized by the mass enclosed in the halo:

uM (k) =
4π

M

∫ Rvir

0
dr r2ρM (r)j0(kr), (3.4)

with j0 denoting the 0th-order spherical Bessel function. The profile is usually parameter-
ized in terms of a characteristic scale radius rs, (which can be written in terms of the halo
concentration cdef(M) = Rdef

rs
):

ρM (r) =
ρ0(

1 + r
rs

)2 (
r
rs

) . (3.5)

We only explicitly compute halo model quantities in Appendix A.3, and in that case use the
NFW concentration-mass relation of Ref. [68] and the 200c mass definition.

3.2 Two-halo - Zel’dovich

The HZPT model replaces the traditional halo model two-halo term (eqn. 3.3) with the
Zel’dovich Approximation (ZA), or the leading-order Lagrangian perturbation theory (LPT)
power spectrum1 [69–72]. The ZA provides a beyond-linear-theory description of large scales,
including large-scale nonlinear bulk flows. A benefit of the ZA is that the IR resummation
that would be necessary in Eulerian perturbation theory (SPT) or in an EFT extension
thereof is not required at several-percent accuracy, [7, 40, 50], as the Baryonic Acoustic
Oscillation (BAO) wiggles are already captured quite well by the ZA [10]. More importantly
for the purpose of this paper, ZA provides a useful ansatz for halo model extension, since
a compensated halo profile added to ZA provides a description which is consistent with
perturbation theory in the regime of its validity on large scales (Section II of SV15). To
address the known deficit in power in the ZA power spectrum on large scales, SV15 matched
the ZA power spectrum to that of SPT to write the amplitude of the one-halo term that also
describes small scales, which we now address.

1Using an alternative perturbative substitute for the two-halo term can also prove fruitful, and we provide
an example in Section 4.2.2, but by default in this paper we stick with the ZA.
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3.3 One-halo - Broadband Beyond Zel’dovich

The central feature of the small-scale HZPT model is the Broadband Beyond Zel’dovich (BB)
term. In its initial formulation (MS14), this term replaces the one-halo term (eqn 3.2) to
express a contribution to the power that is provided by an expansion of the Fourier transform
of the halo profile in even powers of comoving wavenumber k. The coefficients of this expansion
can in principle be obtained by integrating r2n-moments of a prescribed halo profile up to a
chosen “halo radius” at which the profile is truncated, though this was not done in MS14 or
SV15 and these coefficients were simply fitted to simulations (expressions given in Appendix
A). To prevent large-k divergences, SV15 took this expansion in even powers of k and replaced
it with a Padé-type term:

PBB(k) = A0F (k)

∑m=nmax−1
m=0 (kRm)2m∑n=nmax
n=0 (kRnh)2n

(3.6)

The Padé approximation to the the k2 expansion improves the range of validity of the model
greatly by forcing the expansion to smoothly transition to zero as k → ∞. Not only does
this resummation remove high-k divergence due to polynomial terms, but it also increases
the maximum wavenumber k up to which the BB term is a decent approximation to the
Fourier transform of an idealized halo profile, which also transitions to zero for large k. We
note that in the EFT sense, the BB term is not “stochastic”, since we do not enforce that
it is uncorrelated with the ZA term. The two-point correlation function (2PCF) is given by
the Fourier transform of this expansion, which is analytic2, and an expression for which (for
nmax = 0, 1, 2) can be found in Appendix A.

3.4 Compensation

A well-known limitation of the original halo model is that mass and momentum are not
conserved on large scales [19]. In the k → 0 limit, conservation of these quantities requires
limk→0 Pmm ∝ k4 [73]. The violation of this requirement for the halo model arises from the
k0 contribution of the one-halo term, which is due to the Poisson contribution from a finite
number of halos [14]. The HZPT model address this by multiplying the BB Padé expansion
term by a compensation kernel F (k), which suppresses the low-k k0 contribution (though at
leading order this term goes like k2). It is possible to explore more complicated forms of the
compensation kernel (MS14), or to compensate the functional form of the halo profile iteslf
[74], but here we keep with the previous iterations of HZPT and use the simple Lorentzian
kernel with a single parameter R:

F (k) =

(
1− 1

1 + k2R2

)
. (3.7)

SV15 matched to SPT to find a value of the compensation parameter R that was in good
agreement with simulation measurements (R ≈ 26 at z = 0). We discuss compensation for
tracer-matter cross-correlations in Appendix B.3.

3.5 The full model

The contributions to the model from the ZA and different BB terms are shown in Figure
2. The parameters are: A0, which is related to the one-halo amplitude ρ̄−2

m

∫
dn(M)M2 and

2To clarify, we take “analytic” in the sense of closed-form (as in [14]), rather than in the technical sense of
functions.
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does not depend on the profile, the Rnh, which are associated to the r2n-moments of the halo
profile, and the compensation scale R. A detailed discussion of these terms is provided in
Appendix A. There we also provide a full review of the original machinery of MS14 for the
expansion in even powers of k. In the main text we will take a pragmatic approach, always
fitting for the model parameters.
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Figure 2. Left: Illustration of separate components of our model in Fourier space, as well as a
comparison to linear theory. Right: The same components of the model in configuration space.

4 Matter Correlators & Baryons

We present the HZPT model for real-space two-point correlators of matter, including the
effects of baryonic physics, which are most relevant for weak lensing observations. We review
a calculation of MS14 of the profile expansion coefficients in the presence of a single model
of AGN feedback, before performing an expanded calculation in the context of HZPT using
several baryonic physics models. We also present a higher-nmax model that fits down to
k ≈ 8 h/Mpc at the 3% level, as well as a model with an augmented two-halo term that fits
close down to k ≈ 10 h/Mpc at the 1% level.

Before turning to baryons we briefly remark on the use of HZPT as a model of dark
matter two-point correlators. Slightly generalizing the results of SV15, we show the fits over
a range of redshifts (0 ≤ z ≤ 2.5) of the HZPT model to the power spectrum and correlation
function in the CrowCanyon simulations in Figure 3. The fits for Pmm(k)(ξmm(r)) are accurate
to ≈ 2% for k > 1h/Mpc (r < 1Mpc/h) for all but the highest redshift considered.

4.1 Modeling baryonic physics

To avoid biasing inferred cosmological parameters obtained through the matter two-point
correlators, we must account for the effect of baryons on the matter distribution. Baryons
modify the dark-matter-only (DMO) halo profile in several ways, which has been explored in
detail (e.g. [25, 35, 36, 39, 75]). In the presence of baryons, gas and stars must be accounted
for in the halo profile in addition to dark matter. AGN and supernova feedback effects also
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Figure 3. Left: Fits to the CrowCanyon matter power spectrum using the base HZPT model for a
range of redshifts (z = 0− 2.5). Right: The same for the matter correlation function. Colored bands
are at 1% and 2%.

move gas away from the halo center, which redistributes dark matter within the halo profile.
From the perspective of the HZPT model, the effect of baryons should only be to modify the
BB terms (see Appendix A.3 for an illustrative calculation using halo profiles). Baryons should
not affect the large scales relevant for the halo compensation R or the one-halo amplitude A0,
assuming conservation of mass between the DMO and DM+baryon scenarios (up to two-fluid
corrections in the ZA [76–79]). This is the same rationale used to motivate scale cuts (e.g.
[80]). MS14 fitted changes in the power spectrum due to a single AGN model of feedback
in the coefficients for the first three terms of the k2 profile expansion up to k = 0.8 h/Mpc.
They found that the change in A0 (which is the same as our A0 up to small changes due to the
compensation term) is almost an order of magnitude lower than changes in the higher-order
parameters, which change at the ∼ 5% level, and if they fix A0 the change in the other terms
is larger but still effectively captured by the profile expansion.

We achieve a similar but improved result compared to MS14 using a more involved com-
parison. We use a larger k-range, fitting out to k = 1 h/Mpc using the matter power spectrum
from simulations. We also employ a more diverse range of baryonic physics models by mul-
tiplying the dark-matter only CrowCanyon matter power at z = 0 by the ratio Pbaryon/PDMO

for 13 different models from [81]. Figure 4 shows fits to dark-matter-only power spectra and
power spectra including the effects of baryons for several models with A0 and R fixed to
their DMO values. Clearly the Rn,nh parameters are flexible enough to accurately account
for feedback, and marginalizing over them should remove biases in cosmological parameter
constraints. We note that while all models are fit to the 1% level down to k = 1 h/Mpc,
the simulations with the largest deviations in the Rnh parameters from the DMO case are
Illustris and Horizon-AGN. This is the case for Illustris since it has been shown to have an
unrealistically strong feedback model (compared to other hydrodynamic simulations) in terms
of its effects on the power spectrum for k ≤ 1 due to low baryon fraction (compared with
the observed value in galaxy groups) in high mass halos [36]. For Horizon-AGN, there is a
large-scale 1% excess of the Pbaryon/PDMO ratio above unity that causes a relatively large
change in the HZPT Rnh parameters (the source of this deviation is discussed in Appendix
A of [75], and may not be physical).

– 9 –



Figure 4. Top: Residuals for the power spectrum at z = 0 for all baryonic models considered. Shaded
area corresponds to a 1% deviation. Bottom: HZPT parameter values fit for the different feedback
models. DMO fits are denoted by the dotted lines and shaded areas denote rms deviations from the
DMO case.

4.2 Extended power spectrum model

We briefly explore two extended models, which probe smaller scales where the effects of
baryons are stronger, as modern cosmic shear measurements probe angular scales that receive
contributions from these length scales. The first extension focuses on the one-halo term, as
well as cosmology dependence of those parameters, and the second focuses on the two-halo
term. We compute the power spectrum using nbodykit as described in Section 2 but with a
finer mesh in the call to FFTPower with Nmesh = 10240, and additional interlaced anti-aliasing
[64]. This grid corresponds to a kNyq ≈ 10 h/Mpc and using the above settings should be
trustworthy out to this scale [54].
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4.2.1 Extending the one-halo term

We extend the model for Pmm(k) to include one higher-order BB term (nmax = 3) to get
to 3%-level accuracy out to k ≈ 8 h/Mpc. We see an upturn in Figure 5 beginning at
k = 8 h/Mpc which the model fails to fit. We see that the Rnh parameters can account
for the strongest baryonic feedback (Illustris), which is perhaps not surprising given the fact
that we have added two parameters - which are interpretable as the k6 expansion coefficient
reprocessed through the Padé expression.

Figure 5. Fits to the matter power spectrum for dark-matter only in our simulations as well as with
baryonic feedback effects included through the power spectrum ratio Pbar/PDMO for Illustris, the most
extreme feedback model we consider, at z = 0 using the high-k extended model with nmax = 3. We
also show the alternate two-halo HZPT model described in Section 4.2.2 (red line). Colored regions
are shown at 1,2, and 3%.

Following SV15, we here provide fitted power-law dependence of all nmax = 3 parameters
for the Pmm(k) (DMO) model described in the previous section at z = 0 (Eqn. 4.1). To
quickly obtain matter power spectra for cosmologies with different values of the matter density
parameter Ωm and the matter density variance in spheres of 8 Mpc/h σ8, we use CosmicEmu
[30], using 100 randomly generated power spectra with values of Ωcb = ΩEMU

m ∈ [.26, .34] and
σ8 ∈ [.7, .9] and 20 test spectra in the same range (Fig. 6). For the other emulator parameters
we fix h = 0.6774, Ωb = 0.0486, Ων = 0.0014, ns = 0.9667 w0 = −1, and wa = 0

A0 = 777
( σ8

0.8

)4.33
(

Ωcb

0.3

)−1.83

(4.1)

R = 25.3

(
Ωcb

0.3

)−0.58

R1h = 8.56
( σ8

0.8

)2.34
(

Ωcb

0.3

)−2.19

R1 = 7.34
( σ8

0.8

)2.37
(

Ωcb

0.3

)−1.39

R2h = 2.93
( σ8

0.8

)1.56
(

Ωcb

0.3

)−1.24

R2 = 1.99
( σ8

0.8

)1.16
(

Ωcb

0.3

)−0.96

R3h = 1.51
( σ8

0.8

)1.12
(

Ωcb

0.3

)−0.96
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The 3-parameter power law is accurate with rms residuals of 1% or less for the test set
on all scales. In the context of this computation, this level of accuracy is competitive with
state-of-the-art non-linear matter power spectrum models [82] - we provide a comparison to
the right panel of Fig. 6 in Appendix A.4. The few large-k residuals that go slightly past 2%
correspond to the most extreme values of ΩEMU

m at the edge of our range. We find positive
exponents for all parameters with respect to σ8 and generally negative ones for the parameters
with respect to ΩEMU

m . We note that fitted value for the exponent on the compensation scale
R is close to zero (< 10−15), so the value of R is essentially independent of the value of σ8,
and so we treat R only as a function of ΩEMU

m .

Figure 6. Left: Residuals of power law fits in the training set of 100 values of σ8 and ΩEMU
m = Ωcb.

Right: Residuals of power law fits in the test set of 20 values of σ8 and ΩEMU
m . Colored bands show 1

and 2 %. See Fig. 17 for a comparison to HMCode2020.

4.2.2 Alternate two-halo term

As mentioned in Section 3.2, one might consider alternatives to ZA for the two-halo term in
the HZPT model, and we briefly explore such an extension here3. One such alternative is
based on the power due to the linear correlation function shifted by the ZA displacement:

Palt(k) = 4π

∫
dqq2ξL(q)e−kikjAij(q) (4.2)

where ξL is the linear correlation function and Aij(q) is the LPT displacement difference
cumulant [8, 10, 70, 83, 84]. A benefit of taking Palt as the starting point for a new two-halo
term is that it remains easy to compute while preserving many of the advantages of ZA, and
also provides slightly more power than ZA on quasi-linear scales. This modified version of ZA
can be further augmented in a manner similar to the models of [10, 85] by adding a transfer
function style polynomial term multiplying Palt, such that

Palt,HZPT(k) =
(
1 + αk2 + βk4

)
Palt(k) + PBB(k) (4.3)

where α, β are free parameters. This model keeps with the HZPT spirit of an analytic Fourier
transform so long as an exponential cutoff is applied in the Fourier transform of the modified

3We are grateful to Zvonimir Vlah for suggesting the main idea of this section.
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ZA piece4. For nmax = 2, this model has the same number of parameters as the nmax = 3
model described in Section 4.2. The success of this model in fitting the CrowCanyon matter
power spectrum is demonstrated by the red line in Fig. 5. Clearly for the same number
of parameters, Palt,HZPT outperforms the nmax = 3 model, achieving 1% residuals up to
k = 10 h/Mpc. We also find that fixing β = 0 results in similar performance to the nmax = 3
model, with one fewer parameter. This illustrates the power of the form of the HZPT model
and that it is possible to further improve beyond the models we present in this paper within
the HZPT framework by more carefully balancing the work sharing between the HZPT two-
halo and one-halo terms.

We anticipate that using the form of eqn. 4.3 may also improve the accuracy of tracer
HZPT models, and also results in exact expression for tracers using linear bias. We find that
since for tracers we mostlylimit our attention to wavenumbers below 1− 2 h/Mpc, using ZA
alone suffices for our purposes. It would be quite interesting to further explore HZPT models
of tracers based on Palt or other similar two-halo terms.

5 Halos and Exclusion

In this section we present the HZPT model for halo-halo and halo-matter two-point statis-
tics in configuration and Fourier space. While these quantities are not directly observable,
understanding them is key to accurately modeling non-perturbative effects in the transition
regime - namely, the discreteness of the halo field, and halo exclusion.

5.1 Small-scale halo clustering

The HZPT model was successfully applied to halo-matter cross-correlation two-point statis-
tics, but was not applied to halo clustering (auto-correlation) statistics. H17 showed that
fits for the power spectrum and correlation function to simulations were accurate to 2%
to k = 1 h/Mpc (r ∼ 4 Mpc/h) between z = 0 − 1 for several halo mass bins between
1013−1014M�. The model H17 used was the base HZPT model for dark matter with nmax = 2
and with an additional linear bias parameter b1. The HZPT parameters were fixed as fitted
power laws of the linear halo bias b1 and σ8. Allowing all parameters (including b1) to be
free, we find that we can produce fits for these halo-matter correlators that are slightly more
accurate on large scales corresponding to those of H17 (our bins 6-8) and also for a wider
range of halo-mass bins (see Table 2) as shown in the right panels of Figs. 7 and 8. With the
Rnh free we are able to fit down to smaller scales that H17 struggled with in modeling the
correlation function. H17 attributed this failure of the configuration-space model to one-halo
effects since the dependence on profiles cannot be fully described with a simple power law
in b1, and suggested a more complete treatment of nonlinear/nonlocal bias. We examine
where the model fails and succeeds in more detail in the next section, but first turn to the
non-perturbative features present in halo auto-correlations.

Non-perturbative modeling is necessary to accurately capture small-scale halo cluster-
ing. Ref [86] (B13) conducted a detailed study of halo exclusion and halo auto-correlation
stochasticity using N-body simulations. Manufacturing a discrete halo field from the continu-
ous matter field introduces Poisson noise from the finite number of resulting objects in a given
volume. This contributes at zero-lag in configuration space and on all scales in Fourier space
as the well-known “Poisson shot noise” or fiducial stochasticity. In the k → 0 limit, however,

4We find that fits to ξmm using ξalt + ξBB with nmax = 2 are also accurate at the percent level.
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because the tracer field is discrete, there is a constant contribution to the power spectrum
that involves an integral over the correlation function. This means that the constant noise
on all scales in Fourier space may be sub- or super-Poisson. The sub/super-Poisson noise has
been investigated in detail [86–89].

In addition to the scale-independent contribution from discretizing the field, the phe-
nomenon of halo exclusion introduces a scale-dependent contribution to the two-point statis-
tics. Halo exclusion follows directly from the foundational assumption of the halo model -
that all matter is contained in non-overlapping collapsed dark matter halos. If halos are ide-
alized as spherical, the phenomenon of exclusion appears quite straightforward. Since halos
may not overlap, it is not possible for the (spherical) halo field to be correlated on scales
below the sum of halo radii. This is reflected in a discontinuous drop to a value of -1 in the
halo correlation function at the exclusion scale. For this simplified case of spherical halos at
fixed mass, we can write the following expressions of B13 for the discrete (auto) correlation
function for halos:

ξ
(d)
hh (r)− 1

n̄
δ(D)(r) =

{
−1 r < Rexc

ξ
(c)
hh (r) r ≥ Rexc,

(5.1)

or, writing the two-point function, we have ξ(d)
hh (r)− 1

n̄δ
(D)(r) = (ξ

(c)
hh (r) + 1)ΘH(r −R)− 1,

where Rexc = Rexc(M) is the exclusion scale, and in the notation of B13, (d) signifies “discrete”
as to be distinguished from (c) “continuous”5.

For the power spectrum the corresponding expression is:

P
(d)
hh (k) =

1

n̄
+ P

(c)
hh (k)− Vexcl

(
WR(k) +

[
WR ∗ P (c)

hh

]
(k)
)
, (5.2)

where WR(k) is the spherical top-hat window in Fourier space and ∗ is the convolution
operator. We will consider these easily-interpretable toy expressions as conceptual references
in a somewhat more realistic models of exclusion. In these models we introduce the exclusion
scale Rexc as a free parameter.

In reality halos are not spherical, and even for a fixed-mass sampling of the halo field
the scale at which exclusion sets in (the effective “exclusion radius”) must necessarily reflect
the fact that triaxiality leads to a distribution of “true” exclusion scales. However, if one
interprets halos in the context of Lagrangian density peaks, then based on the 1-D findings
of [90] (where no triaxiality can be present) peak exclusion is dominated by dependence on
peak height, bin width, and peak curvature. These results appear to hold in 3-D as well
[91], so the effect of triaxiality on exclusion is likely subdominant. Similarly, [92] found that
triaxiality, substructure, and concentration scatter were negligible in modeling exclusion in
halo two-point correlation functions. We also find it unnecessary to model these effects for
percent-level accuracy. The criterion used to define the halo also has an impact on exclusion,
which we return to in Section 6 and Appendix C.

5.2 Correlation function results

In Fig. 7, we show the correlation functions from simulations (black points for halo-matter,
gray points for halo-halo) as well as various HZPT models for different mass bins (see Ap-
pendix B, Table 2) at z= 0.55. The linearly-biased ZA (black curves) agrees well with the

5Here and in the remainder of this work, we take ξ(c) to contain any nonlinear or non-perturbative clustering
outside the exclusion scale.
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simulations on the largest scales considered here, but significantly underestimates the corre-
lation function at the several percent starting at r = 40− 60 Mpc/h.

The second row of Figure 7 illustrates this deviation from linearly biased Zeldovich, which
is fit by the BB terms. There are at least three scales in the enhancement over Zeldovich in
both the halo-matter and halo-halo correction functions that the BB terms must fit to account
for all halo masses considered here. These scales are 1. a large-scale enhancement (LSE) at
∼ 10 Mpc/h (corresponding to the nmax = 1 parameter) 2. a small-scale enhancement (SSE)
outside the halo exclusion scale (corresponding to the nmax = 2 parameter) and 3. the halo
exclusion scale. These scales are clearly visible in the second row of panels in both halo-matter
and halo-halo (though are more easily seen in halo-halo). We will first describe how these
scales vary with halo mass (as seen in row 2 of Fig. 7) and then will describe how the HZPT
models explicitly account for these scales.

The enhancement in the correlation function over ZA becomes more complicated for
lower mass halos. For the largest halos (M > 1013.5 M�/h, right two columns), there is only
one scale or “bump” visible in the enhancement - the LSE and SSE coincide at several Mpc/h.
Just below this unified scale is the exclusion scale, which presents itself as a vertiginous
climb to profile-dominated scales in the halo-matter CF, and as a precipitous drop to zero
correlation in the halo-halo CF. For smaller halos, the single scale splits into the LSE and
SSE, which are clearly visible at ∼ 5 − 10 Mpc/h and ∼ 1 − 2 Mpc/h, respectively, for
halos with M < 1013 M�/h. Physically, the SSE may be connected to the non-perturbative
enhancement outside the exclusion scale observed in peak clustering observed by Ref. [91],
while the LSE may be more related to nonlinear bias (e.g. [43, 93]). It would be interesting
to consider an expanded hybrid modeling approach in which the LSE is modeled with a more
complex nonlinear biasing model than linearly-biased ZA as the two-halo term.

We reproduce the result of H17 - halo-matter CFs are well-fit by the nmax = 2 model
above scales up to a few times the exclusion scale for all halo masses (green curve). This is
because the nmax = 2 model captures two scales - the LSE and SSE - quite well, and in the
larger halo mass case the values of the Rnh parameters increase and become much closer to
each other, reflecting the unification of the LSE and SSE. We attempt to slightly improve
upon the nmax = 2 model by adding a term to account for the halo profile dominance near
the exclusion scale by adding a second BB term with nmax = 1 (purple dashed curve) without
compensation 6. This model does not show dramatic improvement over the nmax = 2 model,
but does fit the outer portion of the profile dominated region quite well. There are small
deviations in the halo-matter correlation function just outside the exclusion scale for both
models - we speculate that these are the result of a too-simple treatment of halo compensation.

The halo-halo correlation function is well modeled for large masses by accounting only
for the equal LSE-SSE scale and the exclusion scale through a modified nmax = 1 model. To
model the step in the halo (auto)correlators we model the exclusion step in a similar manner
to B13 using the function Fexc(r)

1 + ξ
(d)
hh (r) = Fexc(r)

[
1 + ξ

(c)
hh (r)

]
, (5.3)

where ξ(c)
hh = b1 ξhzpt. The function Fexc(r) is an approximation to a more complete physical

model for exclusion [90, 91] (we further discuss choices for this model in Appendix B.1), and
also return to it in the context of the power spectrum in Section 5.4. This model works quite

6We set the compensation parameter of this additional term to be very large, 109, which is effectively the
same as ignoring it.
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well for the largest two halo mass bins (blue curve), but begins to fail dramatically when the
LSE and SSE diverge at lower halo mass. To address this, we take the same strategy as for
the halo-matter CF and upgrade the BB term to nmax = 2 (red dashed curve). This results
in excellent fits on scales for all halo masses in the halo-halo CF.

Figure 7. Fits to the halo-halo and halo-matter correlation functions in several logarithmic mass
bins. The top panels show the halo-halo and halo-matter correlation functions (multiplied by r2 and
divided by the b21 and b1, respectively), the center panels isolate the correction to ZA by subtracting
it out, and the bottom panels show residuals with a shaded band at 2%. The columns correspond to
increasing halo mass from left to right. Green (purple dashed) lines show the nmax = 2 (nmax = 2+1)
HZPT halo-matter correlation function, while blue (red dashed) lines show the HZPT nmax = 1
(nmax = 2) halo-halo correlation function. Black points show the halo-halo simulation correlation
function, and grey points the halo-matter simulation correlation function. Errors are Fourier trans-
formed diagonal Gaussian+Poisson, which are meant as a visual guide only as errors are correlated.
The number of residual points with errorbars in the bottom panel has been reduced for visibility.
Vertical dotted lines mark the minimum scale used to fit each mass bin, which is roughly the lower
limit of the transition regime for each mass bin (∼ RLag/2).

5.3 Power spectrum results

In Fourier space, the nmax = 2 model is sufficient to capture the halo-matter cross power
spectrum for all halo mass bins at 2% accuracy to k = 1 h/Mpc, and at 1% for almost all
mass bins on the same scales (Fig. 8). For the halo-halo power spectrum, the nmax = 1 HZPT
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Figure 8. Left: Halo-halo power spectra residuals from and the best fit HZPT models at different
halo masses. Thin lines are residuals for the nmax = 1 model with a free shot noise parameter, while
thick lines are due to the model of exclusion with nmax = 2 similar to the best model in Fig. 7. Right:
Fits for halo-matter power spectra using the nmax = 2 model. Colored bands are shown at 1 % and
2 %.

model in Fourier space with an added effective (not necessarily Poisson) shot noise term 1
n̄

appears to be accurate (thin lines in bottom panel of Fig. 8). In this scenario, R1h should be
thought of as a more general k2 term rather than as a moment of the halo profile as is the
case for matter. We discuss the small effect of removing R from the auto-correlation model
in Appendix B.3.

The nmax = 1 model does not explicitly account for the Fourier space effects of exclusion,
but fits quite well down to k = 0.9 − 1 h/Mpc at the 2%. For all halo masses, the scale-
dependent correction due to exclusion is sub-dominant to the constant shot noise, (as seen
in the left panel of Fig. 8), and for lower halo masses the model fails to be accurate at 1-2%
at slightly lower k. This seems consistent with the results of [42], who are able to fit Phh(k)
to lower maximum k using a Lagrangian bias expansion, including a k2 term. However,
exclusion must be properly modeled for percent-level accuracy in both configuration and
Fourier space, and we return to this point in the following section, where we provide context
for interpretation of the quoted accuracies in configuration and Fourier space with regard to
exclusion.

As in the configuration space picture, modeling exclusion (using the Exp model presented
in B.1) as well as the LSE and SSE through the nmax = 2 BB term extends the range of scales
accessible to the power spectrum model. Proper exclusion modeling suppresses the observed
deviations in the (thick) residuals to 1% below k = 2 h/Mpc and eliminates the need for a
free constant shot noise parameter. In the fits shown in the thick residuals in the bottom
panel of Fig. 8, the shot noise is fixed to Poisson, and the correction comes entirely from the
exclusion model. Using the exclusion model with an nmax = 1 BB term suffices at the same
level of accuracy for the highest two mass bins, but (as discussed in 5.2) for the lower mass
bins the results are worse since the SSE and LSE are distinct and must be modeled separately
by something more flexible than the nmax = 1 BB term. While we only go to k = 2 h/Mpc
here, the Fourier space exclusion model is accurate to even smaller scales (see Section 5.4).
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5.4 Transforming the two-point statistics

Exclusion and non-perturbative clustering present themselves differently in configuration and
Fourier space. To better understand how to interpret the accuracy of the HZPT model at
the different scale cuts in k and r, we provide a narrow comparison of models that include
and exclude the non-perturbative effects of exclusion in configuration and Fourier space for a
single halo mass bin (bin 7 - though the result for other bins is similar7) in Fig. 9.

In the left panel of Fig. 9, we show two realistic models for the exclusion step in con-
figuration space - the ErfLog model (solid orange) is the model of B13 (with free σexc, Rexc,
two free parameters total), and the qualitatively similar Exp model (one free parameter Rexc,
green dash-dotted) are both described in Appendix B.1. The Exp model fits the step quite
well, though the shape is not quite right at the smallest scales of the step, and the ErfLog
model clearly captures the exclusion step even better than the Exp model. The ErfLog model
is relatively insensitive to σexc - fixing σexc = 0.1 (similar to B13) only mildly degrades the
accuracy of ξhh(r) in the nmax = 1 model (which is sufficient here for bin 7) with respect
to the shape at the small-scale end (similar to the slight inaccuracy of the Exp model). A
benefit of the Exp form of the exclusion step is that it permits an analytic Fourier transform
of Fexp(r) (see Appendix B.1), which explicitly displays the non-trivial k-dependence of the
exclusion (it is not as simple as k2) and keeps with the spirit of the HZPT model. Clearly
both of these models are capturing the correct features of non-perturbative halo clustering
on the smallest scales.

For comparison, we also show the TH model (blue dashed), which is given by the simple
Heaviside truncation of the nmax = 1 HZPT model fit down to r = 2.5 Mpc/h, as well as
the same model fitted using a larger minimum scale r = 10 Mpc/h (solid purple), which
we refer to as the "ls" (large-scale) model. Similar to the quadratic biasing model of B13,
the ls model describes the LSE but fails to capture both the full extent of the SSE outside
the exclusion scale, and totally misses the exclusion step. The un-truncated TH model (ξ(c))
correctly describes the SSE but fails to account for the exclusion step - by adding the Heaviside
truncation, the TH model provides a qualitatively correct description of both the SSE and
the exclusion step. However, quantitatively the TH model does somewhat worse than the
ErfLog and Exp models by failing to account for the finite width of the step.

Fourier transforming, we look to see what happens under the various treatments of
exclusion in configuration space. The result is shown in the right panel of Fig. 9. Here the
quantity on the vertical axis (top panel) is a measure of the error induced by not treating
the exclusion step and simply using the “continuous model” ξ(c) with fiducial (Poisson) shot
noise 1

n̄ . P (c)(k) is the (analytic) Fourier transform of ξ(c)(r) that is fit up to the peak of
the halo correlation function (TH in the top left panel but without the threshold). The
simulation points in the top-right panel and the red curve in the lower-right panel illustrate
that modeling the SSE but totally ignoring the exclusion step induces a 5% error on scales
between k = 0.1 − 1 h/Mpc, which is actually larger than if we had simply used P (ls), the
Fourier transform of large-scale model ξ(ls). This can be understood from the fact that the
non-Poisson correction in the large-scale limit (k → 0) is given by the integral

∫
d3rξd(r).

The large-scale model ξ(ls) both underestimates ξ(d) on scales where the SSE is relevant and
overestimates it when the discrete correlation goes to zero, resulting in an accidental, but only
partial, cancellation in the integral. This results in the wrong non-Poisson correction, but

7However, for lower mass bins, the large-scale finite-size correction is super-Poisson rather than sub-Poisson,
which is expected from the explanation of B13.

– 18 –



Figure 9. Illustration of (HZPT) contributions to exclusion for bin 7 (logMh ∈ [13.5, 14]. Left: Cor-
relation function with several different exclusion models. ErfLog denotes the model of B13 (with σexc

free), while Exp denotes the model described in Appendix B.1 (that has correction with analytic FT).
TH denotes the simple thresholding of the continuous model, and is clearly not sufficient to capture
the width of the exclusion step. Right: Corresponding power spectra (evaluated via FFTLog). P (c)

denotes the (analytic) continuous model using best-fit HZPT parameters to the correlation function.
TH in this case is equivalent to the window function expression terms of B13 (but without truncating
the expansion). The solid purple curve denotes the large-scale model P (ls) resulting from fitting ξ(ls)

above 10 Mpc/h.

one that produces a smaller residual in the bottom-right panel Fig. 9 than for the continuous
model P (c). P (c) only includes positive contributions to this integral, and produces a too
super-Poisson correction without the negative contributions from the exclusion step. Adding
the simple Heaviside threshold qualitatively accounts for both types of correction and tames
the residuals to be about 2-3%. Using the more accurate exclusion step models produces
negligible error at a fraction of a percent.

We note that these residuals are computed with respect to the discrete power spectrum
(which includes fiducial shot noise), so all errors would be amplified were shot noise sub-
tracted8. Since the effect of ignoring exclusion is scale-dependent, it is not possible to cleanly
relate cutoffs at a particular scale in configuration space with cutoffs at a particular wavenum-
ber k in Fourier space. Furthermore, we see through the comparison of the residuals of P (ls),
P (c), and the step models that starting on quasi-linear scales and fitting a configuration space
model down to progressively smaller scales induces an exclusion correction in Fourier space
that initially increases before decreasing to approach the correct non-Poisson value. It would

8This amplification would of course get worse at higher k as the amplitude of the continuous power spectrum
decreases - in practice quick calculations residuals with respect to the shot noise subtracted power spectrum
for bin 6 can be above 10% at k = 1 h/Mpc
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be interesting to further quantify how this behavior affects other biasing models that stop at
a particular minimum scale rmin such that Rexc < rmin < 10 Mpc/h.

By way of this example, we see that ignoring the effects of exclusion (or stochasticity in
general) as is sometimes done in small-scale biasing models of the tracer correlation functions,
will necessarily result in incorrect behavior over a relatively wide range of wavenumbers in
Fourier space. Coming back to our fits to the power spectrum, this is seen in Fig. 8, where
percent-level excursions are visible in Phh. These excursions seem more pronounced at lower
mass, reflecting the fact that the distinct LSE and SSE identified in the correlation function
are not well-modeled by a single nmax = 1 BB term. The apparently smaller residuals for
higher mass bins is, however, partially a consequence of shot noise constituting a larger
fraction of the total power on small scales due to lower halo number density at higher mass.

Despite the fact that the nmax = 1 fits in Fig. 8 don’t explicitly include exclusion, they
are still relatively accurate since the Fourier space BB term and free shot noise terms are
implicitly modeling exclusion. This may be explained by the fact that at leading order the
nmax = 1 BB term and the simple threshold model scale as k2, so the BB term (or any k2

term) might capture the leading-order behavior of exclusion. However, a more realistic model
of exclusion (e.g. the Exp or ErfLog model) is more complicated than a simple k2 term (see
Appendix B.1 for the form of this expression for the Exp model). These models introduce an
additional parameter Rexc to the HZPT model, but knowledge of this parameter exactly gives
the value of the non-Poisson correction in the large-scale limit, eliminating the need for the
free shot noise parameter in the power spectrum. We conclude that percent-level accuracy of
a model without exclusion in Fourier space is largely due to the relative importance of the
free shot noise term and the leading-order k2 behavior of exclusion, and not due to a correct
model of high-k behavior, which must include the non-perturbative effects associated with
halo exclusion.

6 Galaxies and Satellites

The transition regime for galaxy-galaxy and galaxy-matter correlators is affected by both the
details of satellite occupation and halo exclusion. The model of Section 5 for halos already
includes exclusion, and we build upon that model by accounting for the presence of satellite
galaxies in this section. We consider two different galaxy samples produced according to
the HOD prescriptions presented in Section 2 to test the flexibility of this model. We focus
on configuration space fits and use them to estimate joint density with cosmology but also
provide fits to power spectra. We take a pragmatic approach throughout this section, using
the minimal HZPT model necessary to achieve percent-level accuracy for the galaxy two-point
correlators at k ≈ 1 h/Mpc and r ≈ 1− 2 Mpc/h.

6.1 Small-scale galaxy clustering

The galaxy-matter correlators are analogous to the case of halo-matter correlators, but are
slightly complicated by the presence of satellites. On the largest scales considered here, galaxy-
matter correlators are well-described by linear bias with ZA and compensation. In addition
to the correlation between a particular central galaxy and the matter profile of its host halo,
there is now another contribution from the correlation between matter and satellites. The
satellite fraction will impact the amplitude of the intra-halo correlations, which in turn will
affect the slope and location of the transition feature described in Section 5. The smallest
scale correlations are then completely governed by the halo dark matter and satellite profiles.
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In our simple HOD mocks, satellites are drawn from an NFW profile. However, since the form
of the BB term is profile-agnostic due to the general form of the Padé expression, there should
be no great difficulty in modeling other qualitatively similar profiles (i.e. more complicated
satellite profiles).

The galaxy-galaxy correlation function ξgg is more complicated than the auto-correlation
function for halos. In addition to the steep drop in the correlation function near the effective
exclusion scale that is expected for halos, we must consider the role of satellite galaxies. As
explored in detail by [94] (see their Fig. 1) and H17, there are additional types of correlations:
1. between centrals and satellites in different halos, 2. and centrals and satellites in the same
halo, as well as 3. between satellites in different halos, and 4. satellites in the same halo.
While 2. and 4. essentially serve to change the correlation function on scales relevant to
the satellite profiles (i.e. roughly the combination of the profile and its self-convolution), 1.
and 3. effectively introduce contributions that are versions of the central-central correlation
function (with the exclusion step) that have been smoothed out over the halo scale. This
smoothing of the exclusion scale will serve to broaden the exclusion step present for halos in
the galaxy auto-correlation.

To deal with these complications, we introduce some additions to the HZPT model.
We do not model each of the terms outlined in [94] separately, instead lumping some of them
together into an effective HZPT model for ξgg(r). We allow for the smoothing of the exclusion
step through freeing σexc to be larger than the value (≈ 0.1) that was acceptable for halos.
Additionally, we add a satellite profile term (an additional BB term with nmax = 1) that has
two free parameters (with subscript 1s), since we fix R1s = 103. On these scales, this choice
is the same as providing no compensation for the satellite profile. The A1s and R1s will vary
depending on the details of the satellite occupation, e.g. with the amplitude scaling with the
satellite fraction. So the full equation for galaxies with exclusion (in configuration space) is:

ξ(exc)
gg (r) = ξhh(r) + b1ξ

nmax=1
BB,1s (r)

= b1

[
Fexc

(
ξZA + ξnmax=1

BB

)
+ ξnmax=1

BB,1s (A1s, R1h,1s)
] (6.1)

where the bias b1 is free (not fixed to the halo bias value) and we suppressed arguments except
for the new parameters in the second line. Here the 1s BB term is compatible with the usual
BB interpretation and we can think of it (correctly) as a k2 expansion in the satellite profile.
Adding this term does not ruin the analytic Fourier transform, which will have a form that
is the product of two Lorentzians (as for matter) in Fourier space.

The effects in the transition regime for HOD mock galaxy clustering will necessarily
be more complicated than that of halos (even ignoring satellites) since the HOD applies a
threshold for the central occupation which spans the equivalent of several halo mass bins. This
means that the “cross-stochasticity” (B13, [87]) of exclusion in different bins will contribute
more strongly to the central auto-correlations. However, we find that this is not something
that needs to be modeled explicitly when fitting, which may have to do with the fact that
the cross-stochasticity is either close to constant or of a similar scale dependence to that of
the auto-stochasticity (c.f. H17 Fig 4).

6.2 Two HOD mocks

The CM and LZ samples are produced using two different underlying simulations, and com-
plement each other in the trade-off of resolution and number of simulated cosmologies. The
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CM sample is produced from a simulation with a factor of 10 larger volume than the LZ sam-
ple and allows for a cleaner test of model accuracy due to a reduction in resolution effects.9

Fits to mocks from the LZ sample have increased noise with respect to to CM mocks due to
smaller volume and a resulting smaller number of HOD galaxies, but still allow us to map the
HOD basis of parameters onto the HZPT basis of parameters and provide a joint distribution
of the HZPT parameters and cosmological parameters.

The CM sample covers a wide range of HOD parameters that are centered on the BOSS
CMASS parameter space to illustrate the flexibility of the HZPT model (parameter space
described in Section 2). The parameter space covers a wide range of satellite fractions (fs =
0.01 − 0.65), the highest values of which are still consistent with observed galaxy samples
[96] (though these may differ significantly from BOSS). We emphasize that this choice of
“CMASS” parameters is not to be taken too literally, as we do not enforce that the HOD
mocks reproduce the CMASS clustering, only approximately the CMASS number density
and are produced at a similar redshift. The HOD parameter ranges are based on [46], but are
taken to be more general - and use FoF rather than SO halos. The purpose of this sample
is more illustrative and conceptual - to demonstrate that a wide range of HOD parameters
can expose halo exclusion for certain mock galaxy samples, and that HZPT provides a good
description of two-point correlators even in this case. The LZ sample is more realistic in
the sense that the HOD parameters are close to those favored by LOWZ clustering [97, 98].
These differences mean that a different minimal HZPT model is necessary to reach percent-
level accuracy for each sample at the scales we address in this section.

6.2.1 Configuration space results

The galaxy-matter cross correlators in both the CM and LZ mock samples are well fit by the
same model used for halo-matter cross correlation - the base HZPT model with nmax = 2 with
the linear bias b1. Despite the presence of satellites, the transition regime (including the outer
part of the halo profile for CM) is well-modeled by the Rnh parameters. Fits are performed
from r = 1 − 70 h/Mpc in configuration space (and from k = 0.01 − 1 h/Mpc in Fourier
space). Errors for fits to the LZ power spectra include diagonal Gaussian+Poisson covariance
and variance estimated from repopulating HODs at 10 different random seeds (which we take
as independent of any particular HOD realization), while the CM power spectrum errors are
based only on Gaussian+Poisson covariance.

The nmax = 2 HZPT model is sufficient to attain several-percent accuracy in both the
galaxy-matter and galaxy-galaxy correlation function (generally 1-2%, but this is limited by
uncertainty due to resolution in the case of LZ - the rms error is always less than 1% [2%]
below 40 Mpc/h for ξgm [ξgg]) down to r = 2 Mpc/h for LZ. For CM the nmax = 2 model
is also sufficient for 2%-level accuracy ξgm r = 1 Mpc/h, but for ξgg we require the model
of eqn. 6.1 to capture the complications due to the satellites and exclusion effects present
in this sample to produce an accuracy of 2% above r = 2 Mpc/h. We find that for most
choices of HOD parameters, fits in both gm and gg (with the satellite terms) provide fits
accurate to 1% down to r ≈ 0.5 Mpc/h for the CM sample. However, to be conservative and
accommodate all HOD parameters considered, here we fit ξgg only down to r = 2 Mpc/h.
The galaxy-matter correlation function ξgm is fit to 1 % accuracy down to r = 1 Mpc/h for

9The qualitative features of the exclusion step do not appear to depend much on the use of FastPM.
Using a subset of the same HOD parameters (albeit at a slightly different cosmology) we check the qualitative
features (and scales) of the exclusion feature are similar using FoF catalogs produced by a TreePM code ([95],
described in H17).
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all but three of the highest satellite fraction HODs, in which case the accuracy quoted is 2%
(10). All CM mock HODs with fs > 0.55 (very high for realistic LRG samples even given
the general parameterization used here) have correlators plotted as gray curves in the figures.
There is a downward shift in scale in the transition regime between the two samples, which
we discuss in Section 6.2.3.

Figure 10. Left : Galaxy-galaxy correlation function residuals for the 100 CM HOD mocks. Right :
Galaxy-matter correlation function residuals for the 100 CM HOD mocks. Grey curves correspond
to HOD mocks with fs > 0.55. Colored regions mark 1% (red), and 2% (blue), errors are diagonal
Gaussian+Poisson (these are meant as a visual guide only, and the errors are correlated). The HZPT
model used in these fits is the nmax = 2 model for ξgm and the satellite-enhanced nmax = 1 model
with exclusion (eqn. 6.1) for ξgg.

Figure 11. Left: Residuals for the nmax = 2 model for ξgg for all 200 cosmology and HOD parameter
combinations. (Right:) The same for ξgm. Colored bands show 1 and 2%, and errors (black dashed)
give 1σ Gaussian+Poisson variance (these are meant as a visual guide only, and the errors are corre-
lated), with additional stochastic HOD error added in quadrature to the ξgg error. The HZPT model
used in these fits is the nmax = 2 model for both ξgm and ξgg. The more involved model of eqn. 6.1
is not necessary for percent-level accuracy for the LZ sample.
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6.2.2 Fourier space results

As discussed in Section 5, exclusion in Fourier space is largely suppressed by scale-independent
shot noise, and the nmax = 1 model performs decently well for Pgg(k). We see that for all
but three of the HOD mock power spectra considered, the residuals are always less than 3%,
and are usually less than 1%. Again, gray curves correspond to HOD mocks with fs > 0.55,
and account for the residuals exceeding 2%. The three offending curves correspond to the
fs > 0.5 cases mentioned for the correlation function. From the top panel of Fig. 12, we
can see that these are the highest-biased cases and the wiggle-shape of the excursions in the
transition regime are what would be expected from ignoring exclusion, as we have done here.
Contrary to the case of halos, the number density is fixed in the CM sample, so the fiducial
shot noise is kept fixed as the preference for population of galaxies in halo masses changes.
For the highest mass halos, we would not expect to see the transition wiggle feature due to
the high value of shot noise, but for these high satellite fraction models high-mass halos are
preferred and we essentially reduce to the case of a high-mass halo bin where the exclusion
feature is smoothed and shot noise is reduced (satellites act to up-weight the importance of
the halo correlation with respect to the shot noise).

The fits in the power spectrum should not be taken to mean that exclusion is not
important for an accurate description of two-point statistics, and the lessons of mapping
between configuration space and Fourier space recounted in 5 still apply.

Figure 12. Left : Galaxy-galaxy power spectra and residuals for the 100 CM HOD mocks. Right :
Galaxy-matter power spectra and residuals for the 100 CM HOD mocks. Grey curves correspond to
HOD mocks with fs > 0.55. Colored regions mark 1% (red), and 2% (blue). The HZPT model used
in these fits is the nmax = 2 model for Pgm and the nmax = 1 model without exclusion for Pgg.

We find that the nmax = 2 HZPT model used for the galaxy-matter correlators is suf-
ficient to attain several-percent accuracy (generally 2-3%, as limited by uncertainty due to
resolution - the rms error is always less than 2% over the range of fit) down to k = 1h/Mpc
for the galaxy auto-correlators for the LZ sample. For the LZ HOD mocks, the exclusion fea-
ture is essentially undetected by the fits on the scales we consider (and the feature is totally
absent for 90% of the HOD mock correlation functions) and is not present by eye in Fig. 11.
Thus, the more complicated model including exclusion described above (and necessary for
CM) is totally unnecessary. This is due to the position of the exclusion feature for the LZ
sample, which is at particularly small scales, and which we discuss in the next section.

We find that using an augmented two-halo term similar to the one described in Section
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Figure 13. Left: Residuals for the nmax = 1 model for Pgg for all 200 cosmology and HOD parameter
combinations. Right: The same for the nmax = 2 model (without exclusion) for Pgm. Colored
bands show 1 and 2%, and errors (black dashed) give 1σ Gaussian+Poisson variance, with additional
stochastic HOD error added in quadrature to the Pgg error.

4.2 can result in fits that are accurate at k ≈ 10 h/Mpc with a single transfer function
parameter for Pgm in some HOD realizations. We also find that exclusion modeling in addition
to a k-space version of the satellite profile term similar to eqn. 6.1 can result in improved fits
in Pgg. An extension of the results presented in this section to higher k using an augmented
two-halo term and exclusion is therefore an interesting direction for future work employing
HZPT modeling.

6.2.3 Comparison of mocks

Exclusion is much more prevalent in the CM sample than in the LZ sample. When exclusion
does occur, it does so on scales of 0.6 − 0.7 Mpc/h in LZ10 rather than around 2 Mpc/h
as seems typical for CM. For logM ∈ [13.5, 14] (bin 7), which is completely covered by the
selection of halos populated by the HOD mocks, the CM exclusion step spans 1.3−2.6 Mpc/h,
while for LZ it spans 0.7 − 1.0 Mpc/h. This is consistent with the scales of the dips of the
exclusion features in the galaxy-galaxy correlation function for both samples (Fig. 14). For
the LZ mocks, exclusion is only visible for very low satellite fractions (fs < .05), while for the
CM sample it is present the majority of the time (≈ 80%). For CM, in fact, the only time
the model does not seem to show exclusion is when σlogM is very large - suggesting that the
sharp climb of the halo occupation may to some extent be driving the visibility the exclusion
feature.

A reason for the difference between CM and LZ is that both the choices of halo finder
and halo mass used strongly influence the exclusion feature. The halo catalog for LZ was
produced by ROCKSTAR and uses “strict SO” 200b masses, which includes unbound particles
that are not part of the ROCKSTAR group in a given halo. The CM halo catalog simply uses
FoF (as implemented in nbodykit) masses with linking length b = 0.2. We describe this effect
in further detail in Appendix C.

10This comparison was performed using Box 20 of the Aemulus simulations, which is close to the cosmology
used to generate CM, but for more disparate cosmologies the effect may be significant (already the fact that
some boxes exhibit exclusion and some do not may point in this direction)
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Literature to date focusing on exclusion has relied on both FoF halos (e.g. B13, [91])
and SO halos (e.g. [92]). If one is consistent in a choice of FoF halos or SO halos in a mock-
based analysis using HOD galaxies, the treatment of exclusion will also be consistent. The
LZ implementation is thus more realistic in the sense that the analysis of [46] used a SO halo
finder to obtain the HOD constraints. But even within the context of SO masses, the effect of
SO vs strict SO masses can have an effect on the correlation function due to the rapid growth
of the exclusion feature at small scales (Fig. 21). In HOD-based modeling it is then desirable
to in some sense marginalize over halo definition. Ref. [97] used a free parameter (Rrescale) to
do this, using the justification that the main effect of varying halo definition is the effect on
halo radii as related to matter and satellite profiles. However, as shown here, the impact of
halo definition on tracer correlators is not just through the one-halo term, but also through
the two-halo term via exclusion.

While in Section 5, finding the minimum effective HZPT model that is accurate at the
percent level required careful modeling of non-perturbative halo clustering, for mock HOD
galaxies we find the reality to be more complicated. Depending on the galaxy sample and host
halo definition, exclusion may or may not be an effect that is necessary to model at this level
of accuracy. The CM sample contains HOD populations that often require a more involved
model of halo exclusion and satellite contributions, while the LZ sample only shows exclusion
on scales smaller than 1 Mpc/h, so we can safely ignore them when aiming for percent-level
accuracy above these scales.

Figure 14. Comparison of fits to galaxy correlators for different samples when exclusion is present.
Correlation function for mock galaxies for a single HOD from the CM sample (with satellite fraction
fs = 0.29). Right: Correlation function for mock galaxies for a single HOD from the LZ sample (with
satellite fraction fs = 0.01).

6.3 Correlations with cosmological parameters

We use the LZ sample and the best-fit HZPT parameters for galaxy-matter and galaxy-galaxy
two-point correlators to outline an approach to estimating a joint prior of HZPT model pa-
rameters and cosmological parameters. In particular, we use Sliced Iterative Generator (SIG)
[99] to perform density estimation of the HZPT parameters on the set of 200 LZ correlation
functions. Potential analyses employing HZPT as the model for two-point correlators could
then use such a density as a prior for analysis. Fig. 15 shows projections of a reduced density
(considering only Ωm and σ8) for HZPT parameters that vary significantly with Ωm and σ8.
The fitted R,R2

1, R2h parameters not shown do vary significantly with Ωm and σ8, but have
strong degeneracies with R1h so have been removed for visibility. We also note that, as men-
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Figure 15. Projection of density estimated from the best-fit HZPT parameters for the LZ sample
using 10 of the Aemulus simulations (Ωm, σ8). Best-fit parameters used for training are overplotted
as black points. The R, R2

1 and R2h parameters also fitted are not shown for visibility, and are often
strongly degenerate with the displayed parameters.

tioned in the previous section, we are usually not fitting non-perturbative effects near halo
scales in the LZ sample.

This approach trades interpolation error (as in a standard emulator) for approximation
error (through density estimation) and is more flexible than a typical emulator, as one can
tweak the priors manually without running a new set of expensive simulations. Of course,
there should be a physical reason for shifting or narrowing the priors, but simply broadening
the priors may account for increased uncertainty about a particular galaxy or tracer sample.
We also anticipate that constructing such an emulator-style tool from HZPT would require
fewer training samples evaluated at distinct values of cosmological parameters. This is because
the forms of the HZPT correlators are more restrictive than the form of a typical emulator.

The galaxy-galaxy and galaxy-matter A0 parameters show a negative correlation with
Ωm and a positive correlation with σ8, both of which are consistent with the sign of the power
laws fitted for the matter power spectrum in Section 4 and in SV15 (for σ8). The parameter
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R1h seems to have the opposite relationship, which might at first appear surprising. However,
note the relationship between cosmological parameters shown in the top left panel. This is
a reflection of the design strategy of the Aemulus simulations, which are based on Planck
constraints [24]. Since Ωm increases as σ8 decreases, it is not straightforward to meaningfully
disentangle dependence on Ωm and σ8 individually. In any event, it is clear that the HZPT
parameters shown are not independent of cosmology, and depend strongly on at least some
combination of Ωm and σ8 with scatter that is captured in the density width. We aim to
provide a more quantitative comparison of the effect of different HZPT priors on cosmological
constraining power in future work.

7 Conclusions

In this paper we expand the Halo-Zeldovich Perturbation Theory approach to accurately
model two-point correlators of matter and tracers well into the nonlinear regime. For all
correlators, the models are generally accurate at the percent level down to k < 1 h/Mpc
(r > 2 Mpc/h) in Fourier (configuration) space. A summary of HZPT models used in this
paper is provided in Table 1. An additional benefit of two-point correlators in HZPT is that
the corrections to the (linearly biased) ZA contributions have analytic Fourier transforms,
and we provide expressions and fits for both forms of the correlators. Being analytic, this
model is well suited to fast inference and gradient-based sampling, and we make the model
and gradients available through a lightweight python package11.

Model Parameters (kmax, rmin)

mm : nmax = 2 {A0, R,R1h, R1, R2h} (1, 1)
mm : nmax = 3 {A0, R,R1h, R1, R2h, R2, R3h} (8, ·)

mm : alt + nmax = 2 {A0, R,R1h, R1, R2h, α, β} (10, ·)
hm : nmax = 2 {b1, A0, R,R1h, R1, R2h} (1, 2)
hh : nmax = 1 { 1

n̄eff
, b1, A0, R,R1h, } (1, ·)

hh : nmax = 2 + exc {b1, A0, R,R1h, R1, R2h, Rexc, (σexc)} (2, 2)

gm : nmax = 2 {b1, A0, R,R1h, R1, R2h} (1, 2)
gg : nmax = 1 { 1

n̄eff
, b1, A0, R,R1h, } (1, ·)

gg : nmax = 2 {b1, A0, R,R1h, R1, R2h} (·, 2)
gg : nmax = 1 + exc + 1s {b1, A0, R,R1h, Rexc, σexc, A1s, R1s,1h} (·, 2)

Table 1. A subset of HZPT models used in this paper and their ranges of validity for different
correlators. Free shot noise constants 1

n̄eff
are only applicable for power spectra. Scales are quoted in

units of ( [h/Mpc], [Mpc/h]) in the last column when available. The accuracy of all models in this
table is at least 2%, but see individual sections for details.

We demonstrate that the effect of a wide range of baryonic feedback models on the
matter power spectrum - as implemented by hydrodynamical simulations - can be accounted
for within the HZPT framework. These changes can be understood in terms of the halo model
(see Appendix A.3). We also provide two extended models extending the one and two-halo
terms. The extended two-halo term improves upon the ZA and can reach 1% accuracy out to
k = 10 h/Mpc when paired with the nmax = 2 BB term for dark matter. The extended one-
halo term model is of comparable accuracy to contemporary nonlinear models (Appendix A.4)

11https://pypi.org/project/gzpt/ �
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out to k ≈ 8 h/Mpc for matter (including a high-feedback model of baryonic effects) and we
provide power law scalings to account for variation in dark matter correlators with respect to
the cosmological parameters Ωm and σ8.

Halo-matter and halo-halo correlators are well-described by the HZPT model when the
non-perturbative phenomenon of halo exclusion is accounted for. Halo clustering is char-
acterized in configuration space by a large-scale enhancement above ∼ 10 h/Mpc, a non-
perturbative small-scale enhancement above the exclusion scale, and a sharp step at the
exclusion scale. We provide a one-parameter analytic model for the exclusion step that has
analytic Fourier transform, and the small-scale enhancement is well-modeled by the BB cor-
rection term. Properly modeling halo exclusion in configuration space guarantees the correct
behavior in Fourier space, including exactly accounting for sub/super-Poisson shot noise in
the large-scale limit. Including shot noise in the residuals, the amplitude of the exclusion
contribution with respect to the total halo-halo power spectrum is relevant at the several
percent level for k > 0.1 h/Mpc and the contribution is scale-dependent. We emphasize
that perturbative models of halo bias that attempt to describe small scales are necessarily
incomplete without a (non-perturbative) model of halo exclusion, and will fail dramatically
in configuration space near the exclusion scale. We find that without explicitly modeling ex-
clusion in the power spectrum, we obtain residuals less than 2% below k ≈ 0.7 h/Mpc, as the
nmax = 1 BB term along with a free constant shot noise appears to account for the leading-
order effect of exclusion. However, we warn that perturbative models of halo clustering that
appear accurate in Fourier space at these higher k are in part modeling the scale-dependent
effects of non-perturbative exclusion.

Galaxy-galaxy and galaxy-matter correlators are accurately captured by HZPT in the
context of LRG-like HOD mock galaxies. Exclusion can be relevant in the simulated galaxy-
galaxy correlation function for certain choices of HOD parameters, halo mass, and halo finder.
We provide an estimated density that captures the relation of HZPT parameters with Ωm

and σ8 for HOD mocks that closely resemble the BOSS LOWZ sample. Recently, emulators
for tracer two-point statistics have become extremely popular [18, 29, 31, 97, 100–105], and
have provided useful and effective interpolations of simulation statistics. However, these sur-
rogate models are usually complicated to construct and are often dependent on a number of
hyperparameters, making them opaque to interpretation even beyond the inability to write
down a simulation as a closed-form model. One can easily use HZPT to build a more in-
terpretable tool similar to an emulator through the simple approach outlined in Section 6.3
using estimated priors to quantify uncertainty.

For certain galaxy samples, it is possible that exclusion may stand out in the observed
projected correlation function (depending on satellite fraction, host halo mass, or selection
effects - there is perhaps a hint of this in right panel of Fig. 3 of [106]). Whether or not halo
exclusion is important to include in an effective model for use in analyses is at the very least
an assumption that should be checked, especially as more diverse tracers become widely used
in future surveys.

One aspect of tracer auto-correlations we did not treat in this paper is the effect of
cross-stochasticity, which might be especially relevant for combining populations of tracers
occupying significantly different mass halos. We did not explore the redshift dependence of
the model parameters for tracers, but anticipate it may be fit relatively simply as in H17.
We also have not treated redshift-space distortions or other observational systematics, which
of course are essential for connecting to observed two-point statistics. Finally, assuming
Lagrangian density peaks are the sites of halo formation, halo exclusion will also depend on
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cosmology at some level [90], and so is of particular interest as measurements of cosmological
information through large-scale two-point statistics of LSS are saturated and small scales
remain potentially under-extracted.

HZPT serves to bring analytic descriptions of two-point correlators further into the
transition and nonlinear regimes, and is a fast and interpretable complement to simulation-
based models. The success of HZPT on small scales illustrates the flexibility of Padé-type
expressions for modeling two-point correlators. The form of these expressions is quite simple
compared to multi-loop PT, modified halo and HOD models, and most emulators. We expect
that the small-scale treatment of so-called “3x2pt” analyses can be significantly improved by
leveraging HZPT.
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A Details of Halo-Zeldovich Perturbation Theory

A.1 Full Model (nmax ≤ 2)

Here we provide the full HZPT model in its basic form, with explicit expressions for nmax =
0, 1, 2.

Pmm = PZel + PmmBB (A.1)
P tm = btm(PZel + P tmBB) (A.2)

P tt =
1

n̄t
+ b2tt(PZel + P ttBB) (A.3)

PBB = A0

(
1− 1

1 + k2R2

) nmax−1∑
n=0

k2nR2n
n

nmax∑
n=0

k2nR2n
nh

(A.4)
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nmax = 0

PBB(k) = Fcomp(k) = A0

(
1− 1

1 + k2R2

)
(A.5)

ξBB(r) = Fcomp(r) = −A0
e−

r
R

4πR2
(A.6)

nmax = 1

PBB(k) = PBB = Fcomp(k)
1

1 + k2R2
1h

(A.7)

ξBB(r) = Fcomp(r)

(
1−

(
R
R1h

)2
e
−R−R1h

RR1h
r
)

(
1−

(
R1h
R

)2
) (A.8)

nmax = 2

PBB(k) = Fcomp(k)
1 + k2R2

1

1 + k2R2
1h + k4R4

2h

(A.9)

ξBB(r) = Fcomp(r)
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 , (A.10)

S =
√
R4

1h − 4R4
2h, (A.11)

A =
R2(−2R4

2h +R12(R2
1h − S)) +R4

2h(R2
1h − S) +R2

1(−R4
1h + 2R4

2h +R2
1hS)

2SR4
2h

, (A.12)

B = −
R2(−2R4

2h +R12(R2
1h + S)) +R4

2h(R2
1h + S) +R2

1(−R4
1h + 2R4

2h −R2
1hS)

2SR4
2h

. (A.13)

In this work, we reparameterize R2h as R2h ≡ R1h√
2R12

and vary the parameter R12 in our
fits. We enforce R12 ≥ 1, since otherwise the nmax = 2 correlation function BB term takes
on imaginary values. Analytic gradients in the python package are adjusted accordingly to
be gradients of R12.

We show the BB term gradients for nmax = 1, 2 in Fig. 16.

A.2 Profile expansion

This closely follows Section 2 of MS14. Starting from 3.4, we expand the j0(kr) integral in
its argument:

uM (k) =
4π

M

∫ Rhalo

0
dr r2 ρM (r)

(
1− k2r2

3!
+
k4r4

5!
− ...

)
(A.14)

and the modulus squared of the profile is

|uM (k)|2 = |F0(M)k0 −F1(M)k2 + F2(M)k4 − ...|2 (A.15)
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Figure 16. Gradients of the PBB(k) (left) and r2 ξBB(r) (right). Solid lines are gradients for the
nmax = 2 model, while dashed lines are for the nmax = 1 model. For visibility for PBB the A0 and
R gradients have been multiplied by 100 and 10, respectively. For visibility for ξBB the A0 and R
gradients have both been multiplied by 1000.

where

Fn(M) ≡ 4π

(2n+ 1)!M

∫ Rhalo

0
dr r2(1+n) ρM (r). (A.16)

Then the one-halo term becomes

P1h(k) =

∫
dn(M)

M

ρ̄

(
F2

0k
0 − 2F0F1k

2 + (F2
1 + 2F0F2)k4 − ...

)
, (A.17)

which, for order nmax, has Padé approximant with the same roots as given by the BB term
in the previous section.
Introducing clarifying notation for the first few terms

P1h(k) = A0(1− R̃2
1k

2 + R̃4
2k

4 + ...), (A.18)

where A0 is the same as in the BB term. Explicitly, for nmax = 1, the relation between the
BB parameters and the profile expansion parameters is simply R1h = R̃1, while for nmax = 2
the relations are the following:

R2
1h =

(
R̃2

1R̃
4
2

R̃4
1 − R̃4

2

)
, (A.19)

R4
2h =

(
R̃8

2

R̃4
1 − R̃4

2

)
(A.20)

,

R2
1 =

(
2R̃2

1R̃
4
2 − R̃6

1

R̃4
1 − R̃4

2

)
. (A.21)

For R2
1 ≥ 0, we have R̃1 ≥ R̃2 ≥ R̃1√

2
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A.3 Deriving Rn,nh from the halo model with baryonic effects

To illustrate that it is possible to derive the HZPT Rn,nh profile parameters in the context
of baryonic effects from the halo model, we calculate them for the simple case of the mass
function of [23] (M200c) and NFW profile [67] (with concentration c = 5 for simplicity). We
approximate the impact of baryons on the HZPT parameters via “baryonified” profiles as
modeled in [113] (and constrained by X-ray data). These profiles incorporate the presence of
stellar mass and satellite galaxies, gas that has been pushed by feedback toward the edge of
the halo, and the resulting response of the dark-matter profile to these changes (see Section
2 of [113]). We fix the free parameters of the baryon-matter profile to the best-fit values of
[113] corresponding to the “Model B-avrg” scenario: ηcga = 0.6, ηstar = 0.32 for the stellar
profile, and Mc = 6.6× 1013M�/h, µ = 0.21, θej = 4 in the determination of the gas profile.

Performing the integrals of eqn. A.16, we find, for the dark matter only (dmo) profile,
that (A0,R1h,R2

1,R2h)dmo = (1114 [h/Mpc]3, 6.1 Mpc/h, 35 [Mpc/h]2, 2.9 Mpc/h), and,
for the baryon and dark matter profile (dmb), that (A0,R1h,R2

1,R2h)bdm = (1112 [h/Mpc]3,
5.1 Mpc/h, 24 [Mpc/h]2, 2.6 Mpc/h).

The difference in A0 is negligible, as we would expect since A0 is essentially the one-halo
amplitude (which was fixed in Section 4.1 along with R). However, the relative changes in
the Rn,nh parameters are significant, and are similar to those discussed in Section 4.1 (though
the correspondence is not exact given the idealized setting). Here we may clearly identify the
source of the change in parameters (after translating mass-integrated profile moments R̃n to
Padé parameters Rn,nh). The F1(M) and F2(M) values both grow uniformly in mass with
respect to the dmo case, since in the dmb case the gas is pushed out toward the outskirts of
the halo, where matter contributes more to the r4, r6 moments.

The radius at which to truncate the Fn integrals is somewhat unclear, but here we use a
scale close to the truncation radius of the NFW profile for definiteness (with Rhalo = 9

8εr200c

with ε = 4). This choice of truncation radius results in good agreement in the enclosed masses
of the dmo and dmb profiles, and is small enough to prevent the integrals from being sensitive
to two-halo contributions (as modeled in [113]). There is a very small difference (∼ 0.1%)
in enclosed masses that is the source of the negligible difference in A0 for the two profiles.
Given the uncertain nature of realistic matter profiles (e.g. scatter in the concentration-mass
relation), it remains advantageous to take an agnostic attitude toward halo profile details and
avoid integrating directly as we do in the main text.

A.4 Comparison to HMCode2020

Figure 17 shows residuals of matter power spectrum predictions from HMCode2020 [82] with
respect to the test set drawn from the Mira-Titan CosmicEmu [30]. The HMCode2020 pre-
dictions are as provided through CAMB [111]. Compared with Fig. 6, the residuals are similar
on the largest scales, slightly larger residuals on quasi-linear scales, and very slightly smaller
on the smallest scales. The residuals on quasi-linear scales appear larger than presented in
Fig. 2 of [82], but are consistent with residuals with respect to Mira-Titan quoted in their
Fig. D1 (we have CosmicEmu in the numerator, so our residuals are inverted with respect to
theirs). The largest residuals at low k trend with low-σ8 models and the largest residuals at
0.1 h/Mpc < k < 1 h/Mpc trend with both low-σ8 models and high-Ωcb models. From this
comparison, it is clear that the HZPT model is competitive when varying σ8 and Ωcb.
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Figure 17. Residuals for HMCode2020 with respect to the same CosmicEmu test set shown in the
right panel of Figure 6.

B Halo correlator model components

B.1 Model for ξhh and Phh including halo exclusion

Considering a general configuration-space model for the exclusion step Fexc(r), the two-point
function of the discrete halo field is modeled as

ξdhh(r)− 1

n̄
δD(r) = Fexc(r) [1 + ξchh(r)]− 1 (B.1)

which gives in Fourier space

P dhh(k) =
1

n̄
+ F (Fexc(r) [1 + ξchh(r)]− 1) (B.2)

=
1

n̄
+ [F (Fexc(r)) ∗ F (1 + ξchh(r))] (k)− δ(D)(k) (B.3)

=
1

n̄
+ Fexc(k) +

[
Fexc(k) ∗ P (c)(k)

]
, (B.4)

where we have dropped the zero-lag Dirac delta in the final expression.
We may also write this expression in a slightly clearer way conceptually, conforming to

the convention of B13 (see eqn. B.1). Instead of specializing to the too-simple top-hat model
for the exclusion step (c.f. Figure 9), we assume only that we may write Fexc(r) = 1−W (r),
where W (r) is a function with analytic Fourier transform. Then, the expression is identical
to eqn. 5.2, but we have taken the tiny step of generalizing the top-hat window to something
more realistic:

P dhh(k) =
1

n̄
+ P (c)(k)− W̃ (k)−

[
W̃ ∗ P (c)

]
(k). (B.5)

Also, we may define a finite-size stochastic contribution as the deviation of the true discrete
power spectrum from the continuous model and the fiducial (Poisson) constant arising from
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discreteness:

S(k) = P (d)(k)− 1

n̄
− P (c)(k) (B.6)

= −W̃ (k)−
[
W̃ ∗ P (c)

]
(k) (B.7)

This is the quantity plotted in the right-hand panel of Figure 9, which quantifies the failure
to include a model for exclusion in Fourier space.

As described in Section 5, we consider two effective models for the halo exclusion step,
both of which perform much better than the simple top-hat. The ErfLog model (almost the
same as B13) is:

Fexc(r) =
1

2

erf

 log10

(
r

Rexc

)
σexc

+ 1

 (B.8)

and the Exp model is

Fexc(r,Rexc) =

[
1− exp

(
−
(

r

Rexc

)4
)]2

. (B.9)

The ErfLog model has no analytic Fourier transform, which must be computed numeri-
cally. However, the Exp model has analytic Fourier transform, where the Fourier transform
of the squared quantity is given by (defining the function f):

δ(D)(k) + f(k,Rexc) = δ(D)(k) − R3
exc

3
Γ

(
7

4

)
0F2

(
1

2
,
5

4
;

(
kRexc

4

)4
)

+
k2R5

exc

24
Γ

(
5

4

)
0F2

(
3

2
,
7

4
;

(
kRexc

4

)4
)
, (B.10)

where 0F2 is the generalized hypergeometric function. The full expression is then Fexc(k) =

δ(D)(k)−2f(k,Rexc)+f(k, 2−
1
4Rexc). It is helpful to consider this function from the perspec-

tive of modeling the nonperturbative exclusion effect in Fourier space (i.e. in the context of a
Fourier space analysis), and in clearly disentangling the shape of the terms due to finite halo
size and due to nonlinear clustering. This form of the model is potentially computationally
inefficient, but is presented for conceptual completeness, and convolutions may be sped up
via FFTLog-based algorithms (e.g. [114]).

B.2 Halo mass bins

The halo bins used here are provided in Table 2. We do not show bins 0 and 3 in the main
text since these low mass halos are almost certainly very poorly-resolved. We also show the
halo-matter and halo-halo correlation functions for wider bins that are the combination of
the narrower two bins described in the main text (Fig. 18, Fig. 19). The width of the bins
seems not to adversely affect the accuracy of the model.

B.3 Compensation R for halos

Fixing R for halo auto-correlation to some very large value (1010, essentially infinity for our
purposes) has no real effect (fraction of 1%) on the quality of fit in the halo auto-correlation for
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Bin [logMmin, logMmax]
1 [12.5, 13.5]
2 [13.5, 14.5]
3 [11.5, 12.0]
4 [12.0, 12.5]
5 [12.5, 13.0]
6 [13.0, 13.5]
7 [13.5, 14.0]
8 [14.0, 14.5]

Table 2. Halo mass bins in M�/h

Figure 18. Same as Fig. 7, but for the combined bins.

the nmax = 1 model with free shot noise. For halo-matter, the scale at which the compensation
is relevant is different for different sized halos and increases with halo mass (we find this in
the fitted values of R for halo-matter). Fixing R to any particular value that works well
for a certain mass bin produces significantly worse fits on large scales for other mass bins
- so the compensation is not something that can easily be fixed for the cross correlation.
Disentangling compensation from nonlinear bias is also challenging since we expect both the
physical compensation scale and nonlinear bias to change with halo mass.

C Impact of Halo Finder and Mass Definition on Halo Exclusion

The halo finder used has a significant impact on the scale and amplitude of the exclusion
feature in the halo-halo correlation function. The halo mass definition also has a moderate
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Figure 19. Same as Fig. 8, but for the combined bins.

effect on the scale and significant impact on the amplitude of the feature.
We saw in Section 6 that the exclusion feature presented itself at much smaller scales

(≈ 0.7 Mpc/h) in the LZ correlation functions than in the CM correlation functions (≈
1.5 Mpc/h). To check if this effect is due to the choice of halo finder, we ran FoF on the
Aemulus dark matter particle snapshots that were used to create the ROCKSTAR strict SO
M200b halos provided in the Aemulus halo catalogs. Fig. 20 shows the correlation function
for both FoF halos and ROCKSTAR strict SO (SSO) halos. It is clear that the correlation
function of FoF halos exhibits an exclusion feature at much larger scales that the one for SSO
halos does. To check that this is not an effect unique to the Aemulus simulations, and to

Figure 20. Halo-halo correlation function for the default Aemulus ROCKSTAR “strict SO” (SSO)
M200b halos (includes unbound particles) in green, and for FoF (linking length 0.2) halos in red.

provide a direct comparison of SO and SSO mass definitions using the same halo centers, we
use the publicly available Abacus halo catalogs [20]. The halo catalogs used correspond to
Planck cosmology with box size 1100 Mpc/h at z = 0.5, and details of the FoF and ROCKSTAR
catalogs are provided in [20]. Fig. 21 shows the same as Fig. 20 for the Abacus halos, but with
additional curves for SO virial halos as well as default ROCKSTAR virial halos. We consider
only bin 7 here, but this effect persists for all halo mass bins considered in Table 2 (the only
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real differences being the absolute scales and smoother curves for lower-mass halos due to
increased number density at lower mass).

It appears that for strict SO halos, halo mass definition does not change the exclusion
feature significantly. However, the use of default ROCKSTAR halo masses instead of SSO masses
is already quite different in terms of the exclusion feature. The exclusion features for the
ROCKSTAR halo masses lie in the middle of those of the SSO and FoF halos. The change in
amplitude along with the change in scale is perhaps not that surprising, as it qualitatively
seems to be what would be expected of applying the exclusion step to the continuous model
for ξhh(r) described in Section 5 at a smaller Rexc. Naively this would seem to mean that
the SSO halos display clustering behavior indicative of a smaller exclusion scale (at fixed halo
finder) than that exhibited by the ROCKSTAR halos (and the same goes for FoF halos). This
may be related to the well-known scatter in the relation between FoF (b = 0.2) and M200b
halos (e.g. [115],[116]). It would be interesting to connect this difference with a more intuitive
description of exclusion, perhaps informed by peaks similar to [91]. Figs. 20 and 21 show

Figure 21. Halo-halo correlation function for the Abacus ROCKSTAR default halos (blue), “strict SO”
(SSO) virial halos (orange), SSO M200b halos (green), and for FoF with linking length 0.186 halos
(red).

features that are similar to Fig. A1 of [117] that compares different percolation strategies
in a modified version of ROCKSTAR (but did not investigate ξhh(r) in detail). It would be
interesting to draw clearer connections between the differences in percolation strategies, the
differences we observe here, and the effect on halo exclusion in two-point correlators.
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