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Abstract

Compartmental model diagrams have been used for nearly a century to depict causal relationships 

in infectious disease epidemiology. Causal directed acyclic graphs (DAGs) have been used more 

broadly in epidemiology since the 1990s to guide analyses of a variety of public health problems. 

Using an example from chronic disease epidemiology, the effect of type 2 diabetes on dementia 

incidence, we illustrate how compartmental model diagrams can represent the same concepts as 

causal DAGs, including causation, mediation, confounding, and collider bias. We show how to use 

compartmental model diagrams to explicitly depict interaction and feedback cycles. While DAGs 

imply a set of conditional independencies, they do not define conditional distributions 

parametrically. Compartmental model diagrams parametrically (or semiparametrically) describe 

state changes based on known biological processes or mechanisms. Compartmental model 

diagrams are part of a long-term tradition of causal thinking in epidemiology and can 

parametrically express the same concepts as DAGs, as well as explicitly depict feedback cycles 

and interactions. As causal inference efforts in epidemiology increasingly draw on simulations and 

quantitative sensitivity analyses, compartmental model diagrams may be of use to a wider 

audience. Recognizing simple links between these two common approaches to representing causal 

processes may facilitate communication between researchers from different traditions.

Introduction

Epidemiology aims to understand disease causation in addition to disease associations 

(Bradford Hill (1965)). Causal directed acyclic graphs (DAGs), developed and popularized 

by Pearl, Robins, Greenland and others (Greenland, Pearl, and Robins (1999), Hernán, 

Hernández-Díaz, Werler, and Mitchell (2002), Glymour (2008), Hogan (2009)), have been 

used broadly in epidemiology since the late 1990s (Joffe, Gambhir, Chadeau-Hyam, and 

Vineis (2012)). This use of Bayes nets to represent causal processes allows for the 

determination of conditional independencies of random variables under a proposed causal 
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structure. Compartmental model diagrams, also known as flow diagrams (Forrester (1970)), 

have long been used to depict causal processes in infectious disease epidemiology (e.g. 

Kermack and McKendrick (1932)). These diagrams explicitly represent the dynamics of the 

variables on a DAG, and implicitly specify their joint distributions. Both types of diagrams 

can depict causal processes (Joffe et al. (2012), Commenges and Gégout-Petit (2009)). The 

correspondence between the two types of diagrams has been underexplored, however, and 

many practitioners do not recognize the link between these two approaches. While causal 

DAGs are useful in reasoning through study design and analytic issues, compartmental 

model diagrams provide a visual but precise representation of a dynamical system. A 

compartmental model diagram is a formal object that represents an underlying dynamical 

system and can also represent a causal structure in the counterfactual framework. We show 

how to use compartmental model diagrams to parametrically express the same concepts as 

DAGs. While DAGs more concisely depict causation, mediation, confounding, and collider 

bias, compartmental model diagrams explicitly depict dynamical relationships and 

interactions. A compartmental model diagram can aid in translating the causal structure in a 

DAG into equations that can be analyzed or programmed, or into code for stochastic or 

deterministic simulation in discrete or continuous time.

Methods and Results

Definitions

Counterfactuals—In the counterfactual framework of causation, each individual has a set 

of counterfactual outcomes corresponding to potential outcomes under each possible 

exposure, where outcomes may be conceived of as either deterministic or stochastic. Only 

the counterfactual outcome corresponding to the exposure received is realized. Suppose 

random variable Y represents the realized outcome under exposure received. We can also 

define the random variable Ya, the counterfactual outcome under treatment a; a is a member 

of some set of treatments and A is a random variable taking on values in this set. ya denotes 

a single realization of Ya. (For example, y1 might denote an individual’s counterfactual 

dementia status in the present if they had diabetes at an evaluation 10 years ago, and y0 

would denote that individual’s counterfactual dementia status in the present if they had not 

had diabetes at an evaluation 10 years ago. If the individual did not have diabetes at an 

evaluation 10 years ago, then y0 corresponds to their realized outcome.) In this framework, a 

causal effect for the ith individual is defined to be yi
a = 1 − yi

a = 0, if outcomes are 

deterministic, and E[Y i
a = 1] − E[Y i

a = 0], if outcomes are stochastic (Greenland et al. (1999), 

VanderWeele and Robins (2012)). Individual-level causal risk differences can be averaged 

over a population to obtain population-level causal risk differences. Equivalently, causal 

effects can be defined in terms of a risk or odds ratio.

DAGs—We briefly review DAGs; a comprehensive review of DAGs and their use in 

epidemiology can be found elsewhere (Greenland et al. (1999), Glymour (2008)). In a causal 

DAG, nodes represent random variables, while arrows represent causal effects. Acyclic 

graphs are used to depict causal relations, because it is assumed that cause precedes effect. 

By convention, when we consider an analysis or sample selection that conditions on a 
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variable, we indicate this in a DAG by putting a box around that variable. Similar graphs are 

frequently used informally to represent conceptual models or statistical patterns, but, with a 

set of formal rules, the diagrams can be much more informative. Specifically, a causal DAG 

has the following features (Hernán and Robins (2016, forthcoming)):

1. The lack of arrow between two nodes indicates a lack of a direct causal effect,

2. All common causes of any pair of variables are on the graph, and

3. A variable is a cause of all of its descendants, where descendant is defined as 

follows: a variable Y is a descendant of a variable X if and only if there is a 

directed path from X to Y, where a directed path is a path in which all arrows 

point in the same direction, and, in this case, towards Y and away from X.

We focus on causal DAGs; non-causal DAGs will not be treated further in this paper.

Figure 1 depicts a DAG in which the random variable A causes the random variable Y. This 

DAG represents the assumption that no common causes of A and Y exist, because none are 

shown. A DAG implies a set of conditional independencies, determined by the d-separation 

criteria, which are defined elsewhere and are used to determine which variables on a DAG 

are statistically independent conditional on other variables (Hernán and Robins (2016, 

forthcoming), Glymour (2008)). A DAG is said to faithfully represent a set of conditional 

independencies if and only if that DAG implies those and only those conditional 

independencies (Hernán and Robins (2016, forthcoming), Spirtes, Glymour, and Scheines 

(2000)).

Single world intervention graphs are elaborations of DAGs that depict counterfactuals and 

thus can be used to infer counterfactual independence relations (Richardson and Robins 

(2013)). A single world intervention graph can be used to show the DAG in figure 1 also 

implies Ya is independent of A, or Ya ⫫A. For dichotomous A, the two groups 

corresponding to A = 0 and A = 1 are said to be exchangeable if and only if Ya⫫A. If, when 

conditioning on a set of confounders C, A and Y are d-separated, then Ya ⫫A|C. For 

dichotomous A, the two groups corresponding to A = 0 and A = 1 are said to be 

conditionally exchangeable on C if and only if Ya⫫A|C (Hernán and Robins (2016, 

forthcoming), Glymour (2008)).

Compartmental Model Diagrams—While the use of Bayes nets to represent causal 

models has become an important part of statistical analysis of epidemiologic data, there is a 

long tradition of compartmental model diagrams (also known as flow diagrams) that can 

represent the values of the joint distributions of the variables in a DAG. Compartmental 

model diagrams are widely used to depict the flow of individuals or objects through different 

possible states (e.g. Forrester (1970)), and can be used to represent many types of 

mathematical structures. We will focus on one of the most common uses: to represent state 

variables (variables corresponding to the number of individuals in a given state, such as 

susceptible, infected, and removed/recovered as a function of time) in a stochastic process. 

State variables are by convention represented as capital letters (e.g. S, I, R) and are functions 

of time. At times, the time dependence is implied: that is, S(t) is simply written S (e.g. Allen, 

Brauer, Van den Driessche, and Wu (2008), Edelstein-Keshet (1988)).
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The compartments, or nodes, in a compartmental model diagram correspond to numbers of 

individuals in each of the possible states an individual in the population can inhabit, and the 

arrows indicate the possible transitions between states. An individual can move from any 

compartment to any other provided an arrow points from one to the other. The arrow labels 

on a compartmental model diagram define the waiting time distribution for the 

corresponding transition. We abbreviate whenever possible: If the diagram represents a 

continuous-time Markov model (jump process), in which an individual’s instantaneous rates 

of transition to other states from a given state are independent of how long the individual 

was in that state and all previous states, arrows will be labeled with per capita flow rates. If 

the waiting times are deterministic, we can label arrows with those waiting times. In the 

remainder of the paper, compartmental models diagrams will depict Markov models unless 

otherwise noted.

Note that while compartmental model diagrams are represented by labeled directed graphs, 

the graphs are not acyclic in general. Compartmental model diagrams in the literature do not 

follow a standardized form: some authors represent states as rectangles (e.g. Kermack and 

McKendrick (1932)), others circles (e.g. Enanoria, Worden, Liu, Gao, Ackley, Scott, Deiner, 

Mwebaze, Ip, Lietman, and Porco (2015)); some label arrows with total flow rates (e.g. 

Ackley, Liu, Porco, and Pepperell (2015)), others with per-capita flow rates (e.g. Andersen 

and Keiding (2002)), and others do not label arrows at all (e.g. Lipsitch, Cohen, Cooper, 

Robins, Ma, James, Gopalakrishna, Chew, Tan, Samore et al. (2003)). In a compartmental 

model diagram, some rates may be the sum of positive and negative quantities, in which case 

they can be conceptualized as flows going in both directions. In addition, rates may be zero, 

in which case the arrow is omitted. Multiple arrows going from one state to another can 

always be combined into a single arrow whose label is the sum of the labels on the original 

multiple arrows, and we assume that any compartmental model diagram has been reduced to 

this form.

Given a state X in a model with some flow rate λ out of that state into another state, the 

corresponding stochastic model is formed by assuming that each individual in state X 
experiences a hazard (i.e. instantaneous flow rate) λ of undergoing the transition to the other 

state. Two or more arrows out of state X, for example an arrow to Y and and arrow to Z, are 

assumed to represent processes, which are conditionally independent given state X (Norris 

(1998)).

Counterfactual waiting times correspond to the amount of time an individual would remain 

in a given state X conditional on transitioning to each of the possible transitions out of X 
(Norris (1998), Gillespie (1977)). We call these waiting times counterfactual waiting times 

since not all corresponding events occur. For an individual in a given state, multiple 

transitions are often possible from that state. For any stochastic realization of the model for 

which an individual is in state X, the transition that occurs is the transition with the shortest 

counterfactual waiting time for that realization. Suppose we have a compartmental model 

diagram, in which individuals in state X can transition to states Y and Z at average per-

individual rates of λ and μ. In such a compartmental model diagram, the probability that an 

individual who transitions experiences a transition to Y is the standard competing risk 

formula λ/(λ + μ). For a stochastic realization, each individual i has counterfactual waiting 
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times corresponding to the waiting times to states Y and Z. If the counterfactual waiting time 

to state Y is shorter than the counterfactual waiting time to state Z, then the individual 

transitions to Y, and if the counterfactual waiting time to state Y is longer than the 

counterfactual waiting time to state Z, the individual transitions to Y.

A simple example compartmental model diagram is shown in figure 2. Consider individuals 

who have been exposed (A = 1) or unexposed (A = 0) to some putative risk factor at 

baseline. We wish to model the occurrence of a binary outcome variable, Y = 0 or Y = 1, 

over time. We define four state variables for this system: NA=a,Y=y for each possible 

combination of a and y, where a corresponds to a specific value of A (0 or 1) and y 
corresponds to a specific value of Y (0 or 1). Individuals with A = 0 proceed from a state 

with Y = 0 (NA=0,Y=0) to a state with Y = 1 (NA=0,Y=1) at an average rate of α, whereas 

individuals with A = 1 proceed from a state with Y = 0 (NA=1,Y=0) to a state with Y = 1 

(NA=1,Y=1) at an average rate of β. These rates imply that, within a small time step Δt, the 

number of individuals who transition from a state with A = 0, Y = 0 to a state with A = 0, Y 
= 1 may be approximated by a binomially-distributed random variable with denominator 

NA=0,Y=0 and probability αΔt, and the number of individuals who transition from a state 

with A = 1, Y = 0 to a state with A = 1, Y = 1 may be approximated by a binomially-

distributed random variable with denominator NA=1,Y=0 and probability βΔt. Compartmental 

model diagrams with time-constant rates will also imply exponentially distributed waiting 

times for individuals to transition from one compartment to another.

Compartmental model diagrams are depictions of a mechanistic process (Commenges and 

Gégout-Petit (2009), Aalen, Røysland, Gran, and Ledergerber (2012)). While the precise 

relationship between mechanism and causation is debated, some have argued that a 

mechanistic understanding implies a causal understanding (Commenges and Gégout-Petit 

(2009), Aalen et al. (2012)): “The interventionist and mechanistic viewpoints are by no 

means entirely separate…. In a sense, mechanisms represent the structure of the world, and 

the aim of human intervention is to gain understanding of this structure to exploit it for some 

purpose. The mechanisms in the structure of the world are present whether humans are there 

to intervene or not, and hence seem to be the more fundamental aspect” (Aalen et al. 

(2012)). In a compartmental model diagram that fully depicts this underlying mechanism, 

moving an individual from one compartment to another implies a new trajectory with a 

potentially different hazard of leaving that compartment. Thus, the compartmental model 

diagram implies the counterfactual definition of causation and thus is a causal diagram. In 

addition, all causes are on the graph, since the underlying mechanism is fully depicted, and 

therefore, all common causes are on the graph. In the practice of epidemiologic modeling, 

compartmental models may omit some real-world causes of transition either because not all 

causes are known or because some factors are not thought to significantly affect dynamics. 

Such a model represents a simplified version of reality that is nonetheless a causal model, 

even if incomplete or incorrect.

In constructing a compartmental model diagram, certain aspects of the process are included 

based on an understanding of the underlying causal process. If the rate describing the 

transition from one state to another is not a function of another variable in the system, then 

we are indicating that that variable is not causal for that transition. For example, if, in figure 

Ackley et al. Page 5

Epidemiol Methods. Author manuscript; available in PMC 2018 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2, α =β, we are indicating that transitions to Y = 1 states are independent of the exposure A, 

but are nonetheless an important part of the dynamical process. However, if α ≠ β, we are 

indicating that values of A are causally related to transitioning to Y = 1 states.

Diagrams Related to DAGs

We focus on DAGs in contrast to compartmental model diagrams, but there are several types 

of causal diagrams related to DAGs that merit exploration: Local independence graphs 
depict marked point processes. Since these graphs are not required to be acyclic, they can 

depict feedback between variables (Didelez (2008, 2007)). Single-world intervention graphs 
display factual and counterfactual random variables on the same graph. These graphs are 

useful in determining the counterfactual independence relations implied by a DAG 

(Richardson and Robins (2013)). Chain graphs are graphs with both directed and undirected 

edges, but do not allow partially directed cycles. Undirected edges are used to model 

simultaneous responses, feedback relationships, non-causal associations, or uncertainty 

about the direction of the causal relationship (Lauritzen and Richardson (2002)). Acyclic 
directed mixed graphs are used to model random variables that have been marginalized over 

undepicted latent variables. These graphs have both directed and bidirected edges, and do 

not allow cycles of directed edges. These graphs are closed under marginalization, whereas 

DAGs are not (Evans, Richardson et al. (2014)). Structural equation models are frequently 

used to model unobserved constructs and can be represented with DAGs where the edges are 

labeled with partial correlation coefficients; such diagrams can useful in parameterizing 

DAGs (Knott and Bartholomew (1999)).

Each of these diagrams is useful, particularly in contexts where DAGs may be insufficient. 

However, all are closely related to DAGs and fundamentally different than compartmental 

model diagrams. In compartmental model diagrams, the nodes represent the number of 

individuals in a given state and not variables corresponding to characteristics of individuals.

Corresponding Compartmental Model Diagrams and DAGs

In many circumstances, the same underlying process can be represented by a compartmental 

model diagram and by a DAG since compartmental model diagrams can represent the values 

of the joint distributions of the variables in a DAG. If a compartmental model diagram and 

DAG both imply the same conditional independencies (for both factual and counterfactual 

variables), we will refer to them as corresponding.

We note that more than one compartmental model diagram can correspond with a given 

DAG for two reasons: First, there are infinite ways to parameterize a single compartmental 

model diagram. Second, structurally different compartmental model diagrams may 

correspond to the same DAG, though some correspondent compartmental model diagrams 

can be ruled out on substantive grounds. For example, the compartmental model diagram in 

figure 2 and a slightly different compartmental model diagram that allowed for the 

acquisition of the exposure at a rate γ with the inclusion of arrows from NA=0,Y=0 to 

NA=1,Y=0 and NA=0,Y=1 to NA=1,Y=1, would both correspond to the DAG in figure 1 equally 

well. Whether the acquisition of the exposure after baseline is implausible and the latter 

compartmental model diagram can be ruled out will depend on the exposure A. In addition, 
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a compartmental model diagram can indicate the distinct causal effects of an exposure on 

both the onset and resolution of disease, which is not easily represented in a DAG. This use 

of compartmental model diagrams can be found in the disability literature (e.g. Bardenheier, 

Lin, Zhuo, Ali, Thompson, Cheng, and Gregg (2016).)

We also note that a compartmental model diagram may correspond with more than one 

DAG, depending how one chooses to define random variables of interest. For example, a 

compartmental model diagram that depicts the rates at which individuals with and without 

dementia die could correspond equally well to a DAG that depicts dementia causing death 

by some fixed time point and a DAG that depicts dementia affecting the waiting time until 

death.

Nonetheless, corresponding DAGs and compartmental model diagrams may have certain 

features. A corresponding compartmental model diagram can be constructed from a DAG as 

follows: for a DAG with n dichotomous variables, a corresponding compartmental model 

diagram could be constructed by depicting 2n compartments that correspond to all of the 

possible states in which an individual could exist. This is trivially extended for 

polychotomous variables where a DAG with n polychotomous variables, where the ith 

variable has mi possible values. A corresponding compartmental model diagram would have 

∏i = 1
n mi states. A compartmental model diagram of a Markov process may depict additional 

intermediate states in order to alter the distribution of waiting times for a transition (Granich, 

Gilks, Dye, De Cock, andWilliams (2009)).

Using counterfactual waiting times, it is possible to prove that the conditional 

independencies implied by a compartmental model diagram are the same conditional 

independencies implied by a DAG if the two diagrams are corresponding. These proofs are 

included in the appendix.

Example Corresponding DAGs and Compartmental Model Diagrams

Using an example from chronic disease epidemiology, we now illustrate corresponding 

compartmental model diagrams and DAGs representing alternate structures linking type 2 

diabetes to dementia. We assume variables of different letters are not equal. While we note 

that hazard ratios can have built-in selection bias (frailty bias) (Hernán, Hernández-Díaz, 

and Robins (2004)) in other settings, the hazard ratios read off a compartmental model 

diagram do correctly characterize the causal effect since all individuals in a compartment are 

exchangeable.

No Causation—We might imagine that there is no causal link between type 2 diabetes 

(abbreviated T2D in diagrams) and dementia (abbreviated D in diagrams). Figures 3(a) and 

(b), respectively, show a DAG and compartmental model diagram corresponding to this 

hypothesis. In the DAG, type 2 diabetes status is independent of dementia status. In the 

compartmental model diagram, individuals develop dementia at a rate α and type 2 diabetes 

at a rate γ. The fact that the rates of developing dementia and diabetes are the same for 

individuals with and without diabetes and dementia, respectively, indicates no causal effects. 
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We now illustrate that this compartmental model diagram implies statistical independence 

for the random variables in the above DAG.

Suppose we are following a cohort of N people with and without diabetes, but without 

dementia, at baseline. Suppose a fraction f do not have diabetes at baseline. Suppose the 

random variables on the DAG in 3(a) corresponds to diabetes and dementia status at some 

specific time t*. Solving the differential equations implied by the compartmental model 

diagram above gives the following for the four state variables at time t:

NT2D = 0, D = 0(t) = fN exp ( − (α + γ)t)
NT2D = 1, D = 0(t) = − fN exp ( − (α + γ)t) + N exp ( − γt)
NT2D = 0, D = 1(t) = − fN exp ( − (α + γ)t) + fN exp ( − αt)
NT2D = 1, D = 1(t) = fN exp ( − (α + γ)t) − N exp ( − γt) − fN exp ( − αt) + N

The causal odds ratio at t =t* is given by 
NT2D = 0, D = 0(t∗)NT2D = 1, D = 1(t∗)

NT2D = 1, D = 0(t∗)NT2D = 0, D = 1(t∗)
= 1, for all t* > 

0.

Causation—Individuals with type 2 diabetes are more likely to develop dementia. One 

possible explanation for this is that type 2 diabetes causes dementia (Crane, Walker, 

Hubbard, Li, Nathan, Zheng, Haneuse, Craft, Montine, Kahn et al. (2013)). Figures 4(a) and 

(b), respectively, show a DAG and compartmental model diagram corresponding to this 

hypothesis. In the DAG, type 2 diabetes has a causal effect on dementia. In the 

compartmental model diagram, individuals without type 2 diabetes progress to dementia at a 

rate α, whereas individuals with type 2 diabetes progress to dementia at a rate β. The fact 

that these rates are specified using different parameters allows for a causal effect of type 2 

diabetes on dementia: individuals with type 2 diabetes develop dementia with a hazard β/α 
times those without type 2 diabetes. However, the rates of developing type 2 diabetes are the 

same (γ) for individuals with and without dementia. Note that the DAG in figure 4 has the 

same form as a local independence graph (see Didelez (2008)).

Mediation—One explanation for why type 2 diabetes might cause dementia is that type 2 

diabetes causes cerebrovascular disease (abbreviated CD in diagrams), which, in turn, causes 

dementia (Ahtiluoto, Polvikoski, Peltonen, Solomon, Tuomilehto, Winblad, Sulkava, and 

Kivipelto (2010)). In the DAG shown in figure 5(a), the causal effect of type 2 diabetes on 

dementia is fully mediated by cerebrovascular disease. In the corresponding compartmental 

model diagram in figure 5(b) we show both causal processes: the development of 

cerebrovascular disease and the development of dementia. We show that individuals with 

type 2 diabetes develop cerebrovascular disease at a rate δ whereas individuals without type 

2 diabetes develop cerebrovascular disease at a rate γ. This indicates a causal effect of type 

2 diabetes on cerebrovascular disease. Individuals with cerebrovascular disease, irrespective 

of type 2 diabetes status, develop dementia at a rate of β, whereas individuals without 

cerebrovascular disease, irrespective of type 2 diabetes status, develop dementia at a rate α. 

This indicates a causal effect of cerebrovascular disease on dementia. We note that the 

controlled direct effect here is null, since individuals with and without diabetes progress to 
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dementia states at the same rate conditional on cerebrovascular disease. We also note that 

since there are no transitions to states with type 2 diabetes, there are no causes of type 2 

diabetes represented in this compartmental model diagram.

Confounding—An alternate explanation for the observed association between type 2 

diabetes and the development of dementia is that some confounding factor is a common 

cause of both. For example, early life socioeconomic status (abbreviated SES in diagrams), 

might increase risk of development type 2 diabetes and may also independently increase the 

risk of developing dementia (Glymour (2013)). In the DAG in figure 6(a), we show that 

early life socioeconomic status is a common cause of type 2 diabetes and dementia. In the 

compartmental model diagram in figure 6(b), we show that within strata of early life 

socioeconomic status, there is no causal effect of type 2 diabetes on dementia since the rates 

of transition to dementia states are described with one parameter. However, early life 

socioeconomic status causes type 2 diabetes since individuals with low socioeconomic status 

develop type 2 diabetes at a rate γ, whereas individuals with high socioeconomic status 

develop type 2 diabetes at a rate δ. Furthermore, this compartmental model diagram 

indicates that early-life socioeconomic status causes dementia, since individuals with low 

socioeconomic status develop dementia at a rate α, whereas individuals with high 

socioeconomic status develop dementia at a rate β.

Collider Bias—It is also possible that differential survival among those with and without 

type 2 diabetes and dementia affects the observed association between type 2 diabetes and 

dementia (Mayeda, Haan, Yaffe, Kanaya, and Neuhaus (2015a), Mayeda, Haan, Kanaya, 

Yaffe, and Neuhaus (2013)). In the DAG in figure 7, we show that type 2 diabetes influences 

survival and that dementia influences survival. Analyses, however, are restricted to 

individuals surviving to the time of our study (a specific way to condition on survival), as 

indicated by the box around survival. In the compartmental model diagram in figure 7, we 

show that type 2 diabetes does not cause dementia and dementia does not cause type 2 

diabetes. This is because rates corresponding to horizontal arrows (the rates of developing 

dementia) are equal, and rates corresponding to vertical arrows (the rates of developing type 

2 diabetes) are equal. However, rates of mortality, μ00, μ10, μ01, and μ11, differ for each 

combination of type 2 diabetes and dementia status. If we then calculated an odds ratio using 

surviving individuals are sampled at a time t = t*, given by 

NT2D = 0, D = 0, S = 1(t∗)NT2D = 1, D = 1, S = 1(t∗)

NT2D = 0, D = 1, S = 1(t∗)NT2D = 1, D = 0, S = 1(t∗)
, we would obtain an odds ratio not equal to 

one, despite the fact that the compartmental model diagram indicates that type 2 diabetes is 

not causal for dementia and dementia is not causal for type 2 diabetes.

Interaction—In the next example, we again consider the situation where type 2 diabetes 

causes dementia. We also consider that therapy given for type 2 diabetes also has a causal 

effect on dementia and that therapy additionally modifies the causal effect of type 2 diabetes 

on dementia (Mayeda, Whitmer, and Yaffe (2015b), Mayeda, Haan, Neuhaus, Yaffe, 

Knopman, Sharrett, Griswold, and Mosley (2014)). By drawing arrows to therapy states for 

individuals without type 2 diabetes, we are allowing for the possibility that some individuals 

without type 2 diabetes are on therapy, perhaps due to misdiagnosis. There is no agreed upon 
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convention to depict interaction in DAGs. Thus, the DAG shown in figure 8(a) is consistent 

with both compartmental model diagrams shown in figures 8(b) and 8(c).

In the compartmental model diagram in figure 8(b), we indicate the causal effect of type 2 

diabetes on dementia by indicating that within strata of therapy the rates of acquiring 

dementia are γ times larger for individuals with type 2 diabetes. Furthermore, we indicate 

that therapy has a causal effect on dementia by noting that, within strata of type 2 diabetes 

status, individuals on therapy develop dementia at a rate of β times those not on therapy. 

Reading off the compartmental model diagram, we can see that there is no interaction on the 

multiplicative scale between type 2 diabetes and therapy in the development of dementia 

since the hazard ratios for the effect of therapy on dementia are the same among those with 

and without type 2 diabetes and the hazard ratios for the effect of type 2 diabetes on 

dementia are the same among those on or off therapy (γ). However, there is necessarily 

interaction on the additive scale.

In the compartmental model diagram in figure 8(c), we indicate the causal effect of type 2 

diabetes on dementia by indicating that in the no therapy group the rate of acquiring 

dementia is γ times larger for individuals with type 2 diabetes and in the therapy group the 

rate of acquiring dementia is βγ times larger for individuals with type 2 diabetes. Thus, 

there is interaction on the multiplicative scale between type 2 diabetes and therapy in the 

development of dementia since therapy modifies the rate of acquiring dementia among those 

with type 2 diabetes, but does not modify the rate of acquiring dementia among those 

without type 2 diabetes. For the same reasons, we expect interaction on the additive scale.

Causation and Reverse Causation—Finally, suppose we want to express the concept 

that type 2 diabetes causes dementia, but also that dementia causes type 2 diabetes, perhaps 

due to decreased self-care among those with cognitive impairment (Fontbonne, Berr, 

Ducimetière, and Alpérovitch (2001)). Since a graph indicating this by drawing an arrow 

from type 2 diabetes to dementia and an arrow back from dementia to type 2 diabetes would 

not be acyclic, we must indicate this relationship with a longitudinal DAG. In figure 9(a), we 

show that dementia status at time 1 affects type 2 diabetes at time 2 and that type 2 diabetes 

status at time 1 affects dementia status at time 2, and so on. The corresponding 

compartmental model diagram shown in figure 9(b), both horizontal and vertical pairs of 

arrows are unequal, indicating that type 2 diabetes causes dementia and dementia causes 

type 2 diabetes, respectively.

Infinitesimal Limit of a Longitudinal DAG

We now show that in certain cases the limit of a longitudinal population-level DAG, as the 

time between successive nodes goes to zero, is a compartmental model diagram. We use a 

simple example of the susceptible-infectious-susceptible (SIS) model of trachoma developed 

by Lietman et al. (Lietman, Gebre, Ayele, Ray, Maher, See, Emerson, Porco, TANA Study 

Group et al. (2011)). In figure 10(a) we show the DAG for this system, where Iτ gives the 

population-level prevalence of infection at time τ. Compartmental model diagrams are 

parametric (or semi-parametric) and thus require additional assumptions to be fully 
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specified. Thus, with specific assumptions, we now show that this DAG in figure 10(a) 

implies the compartmental model diagram for an SIS model in figure 10(c).

Suppose Iτ affects Iτ+1 via two pathways as shown in figure 10(b): first, since individuals 

remain infected over time, some individuals will remain infected from one time step to the 

next. Second, there will be a change in the number infected which is a function of only the 

current number infected. Thus, Iτ an be written as Iτ−1 and a change term:

Iτ = Iτ − 1 + Δτ (1)

where Δτ is defined to be the change in the number infected from time τ−1 to time τ. (While 

the DAG in figure 10(b) represents this, it depicts deterministic relations, which can lead to 

faithfulness violations (Spirtes et al. (2000))). The DAG in 10(b) implies Δτ is a function of 

Iτ−1, but does not specify what that function is. Now suppose individuals are conserved; that 

is, there are no births or deaths and no migration. Therefore, the we can write Sτ, the number 

of susceptible individuals at time τ, as N − Iτ where N is the time invarying size of the 

population. We now have:

Iτ = Iτ − 1 + Δτ
Sτ = Sτ − 1 − Δτ

By convention, rates are non-negative. Thus, the function Δτ might be decomposed into new 

infections Xτ and recoveries Yτ, also functions of Iτ−1, such what Δτ = Xτ −Yτ. Then if we 

assume that Xτ and Yτ are Poisson-distributed random variables, this implies a 

compartmental model diagram with the arrow from S to I labeled with X(t) and an arrow 

from I to S with Y(t), where X(t) and Y(t) are mean rates as a function of time. Xτ and Yτ 
correspond to new infections and recoveries, respectively.

Then, if we assume Xτ and Yτ have means βSτ IτΔt and γIτΔt, respectively, where Δt is the 

time increment between successive measurements, as the time increment goes to zero, this 

implies a compartmental model diagram with average per individual rates of transition βI 
and γ from S to I and from I to S, respectively. Then, in the large number limit, we obtain 

the following set of ordinary differential equations:

dI
dt = βSI − γI
dS
dt = − βSI + γI

Causal Modeling and Faithfulness

Compartmental model diagrams are especially useful for depicting causal processes in 

which violations of faithfulness are plausible, i.e. situations in which there are multiple, 

perfectly or nearly perfectly offsetting mechanisms. Using the example from Koski and 

Noble (2011), suppose the conditional independencies for four random variables x1, x2, x3, 

and x4 are as follows (and that no other conditional independencies hold):
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1. x1 ⫫ x4|{x2, x3}

2. x1 ⫫ x4

3. x2 ⫫ x3|x1

Koski and Noble (2011) show that this system of independencies can not be represented in 

DAG form. An example compartmental model diagram that implies these and only these 

conditional independencies, along with a proof, is given in the appendix.

Non-Markovian Process Models

Compartmental model diagrams may, of course, represent processes more general than 

Markov processes on a finite state space. Many such generalizations are available, ranging 

from partial differential equations (e.g. M’Kendrick (1926)) through agent-based models 

(Macal and North (2010), Galea, Riddle, and Kaplan (2010)). Previous examples were of 

models of Markov processes. We now extend our discussion to semi-Markov processes, in 

which the evolution of successive states follows a Markov chain, but the waiting times are 

not necessarily exponential (Karlin and Taylor (1975)).

In the example given in figure 11(b), arrow labels represent deterministic waiting times. We 

saw earlier in the No Causation example that when waiting times are exponential, the 

process was Markovian and the exposure and outcome were independent at all times. In the 

analogous semi-Markov process depicted above, the transition times are still unconditionally 

independent of the past sequence of states and the waiting times in those states. However, 

the exposure A and outcome Y are no longer independent at all times, necessitating the DAG 

given in 11(a).

Generalized SIR Model

In the SIR model, each individual would be subjected to a (time-varying) jump process from 

S to I and I to R. The SIR model represents the evolving number of people in each of these 

states over time. More generally, a compartmental model diagram may be refined to a model 

featuring a density evolving in time. For example, to extend the SIR model to a continuous 

state space, we might replace the simple jump process at the individual-level with an explicit 

representation of the number of infectious organisms x and immune response y (e.g. 

Rvachev (1972)). In such an approach, each individual would follow a trajectory on the 

phase plane as illustrated in figure 12. The population-level SIR model is then replaced by 

equations representing the evolving population density of individuals in the xy-plane 

(equations not shown) (Metz and Diekmann (2014)).

We can display such a process graphically with a vector field, as shown in figure 12. In this 

diagram, the x-axis gives the number of infectious organisms in a host and the y-axis gives 

the host’s level of immune response. Susceptible corresponds to the origin (blue), removed 

corresponds to the y-axis with y > 0 (red), and infectious corresponds to any point on the xy 
plane such that x > 0 and y ≥ 0. A susceptible individual would be moved to a point on the 

positive x-axis by a transmission event, then be moved within the xy-plane by the immune 

response and pathogen dynamics, and finally end up on the y-axis (recovered). An example 
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trajectory corresponding to a single infectious person is shown in green. The discrete DAG 

would necessarily be replaced by a continuous object of some kind, because individuals 

would not be assigned cleanly into S, I, and R, but rather to a continuous space of states. 

Similar considerations could be applied to other epidemic models, such as the SIS model.

Discussion

Compartmental model diagrams have found widespread use in transmission modeling due to 

the dynamical relationships inherent in infectious disease (Dietz (1992), Bailey (1979), Gao, 

Lietman, and Porco (2015)). They have also been used in chronic disease epidemiology (e.g. 

Murray (2002), Hardy, Dubin, Holford, and Gill (2005)). These models can be used to 

compare competing causal structures (e.g. Smith and Gröhn (2015)). We show that, for a set 

of problems, DAGs and compartmental model diagrams can both express causation, 

mediation, confounding, and collider bias, while compartmental model diagrams can 

explicitly depict interaction and depict feedback cycles.

Process models, as depicted with compartmental model diagrams, confer specific advantages 

for representing certain types of causal structures. First, compartmental model diagrams can 

depict causal processes in the presence of interference, i.e. one individual’s treatment or 

exposure affecting another’s outcome (Halloran, Longini, Struchiner, and Longini (2010)). 

Causal inference techniques and DAGs usually require the assumption of non-interference 

(Glymour (2008), Hernán and Robins (2016, forthcoming)), although attempts have been 

made to extend causal inference techniques and the DAG framework to situations with 

interference (Halloran and Struchiner (1995), Ogburn, VanderWeele et al. (2014), Hudgens 

and Halloran (2012)). Figure 10(c) depicts the SIS model, a simple epidemic model of 

infection followed by recovery. Epidemic models such as this depict the presence of 

interference with a rate that is a function of another state variable; here, the per-capita rate of 

infection is βI, a function of the number infected I. Therefore, interventions to reduce the 

number infected, such as treatment, will affect the the risk of infection for susceptible 

individuals. In contrast, in the diabetes-dementia examples, there is no interference because 

all rates are constant and thus are independent of all state variables. Second, compartmental 

model diagrams can explicitly depict interaction, as shown in figure 8. (DAGs are a non-

parametric method and thus were not designed to represent such features.) In addition, 

compartmental model diagrams can depict causation and reverse causation (time-varying 

confounding), as shown in figure 9.

Simulation is useful for quantifying biases in statistical methods under realistic conditions in 

epidemiology (Bellan, Dushoff, Galvani, and Meyers (2015)) and evaluating whether 

hypothetical causal structures are consistent with observed data under realistic conditions 

(Mayeda et al. (2016)). A compartmental model diagram can aid in translating the causal 

structure in a DAG into equations that can be analyzed or programmed, or into code for 

stochastic or deterministic simulation. As outlined in the proofs in the appendix, it is often 

possible to represent a causal process as a DAG and corresponding CMD that can be proven 

to imply the same set of conditional independencies. We note that DAGs can also be 

parameterized, as in structural equation modeling, to help guide simulations. However, 
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conventional approaches to parameterizing DAGs do not depict interaction, interference, or 

the underlying dynamical process.

Compartmental model diagrams also have some important limitations. They are not 

necessarily parsimonious, especially as the state space becomes large, and reading off the 

conditional independencies is not necessarily trivial (see proofs in Corresponding 
Compartmental Model Diagrams and DAGs in the appendix). Just as DAGs are not 

designed to display interaction, CMDs are not designed to be readable in this manner. In 

addition, while we have shown that compartmental model diagrams can easily depict the 

joint distribution of discrete random variables, these diagrams are not designed to depict the 

joint distributions of continuous random variables. Lastly, a DAG or related non-parametric 

graph might be preferable in situations where one does not wish to develop or parameterize 

a compartmental model diagram.

In this paper, we omitted discussion of several related topics. We focused on the stochastic 

process interpretation of compartmental model diagrams, though these diagrams can be used 

to depict other mathematical structures, such as the ordinary differential equations in Ackley 

et al. (2015) and the deterministic difference equations in Hargrove and Williams (1998). In 

addition, we focused on two commonly used graphical representations in epidemiology—

DAGs and compartmental model diagrams. We only briefly discussed alternative graphical 

approaches related to DAGs, such as local independence graphs, chain graphs, acyclic 

directed mixed graphs, and structural equation models. These graphs can be used to address 

some of the limitations of DAGs: for example, local independence graphs can be used to 

parsimoniously represent feedback cycles and time-varying confounding (see examples in 

Didelez (2008)).

Although DAGs have become commonplace as a training tool in epidemiology, and are a 

near-essential component of modern causal inference literature, compartmental model 

diagrams have predominated in research and training on modeling of the dynamics of 

infectious disease outbreaks. A clear understanding of the correspondence of compartmental 

model diagrams and DAGs will facilitate collaboration and communication between 

researchers in these different traditions. We illustrate that compartmental model diagrams 

can parametrically express the same concepts DAGs can, as well as interaction and feedback 

cycles. As causal inference efforts in epidemiology increasingly draw on simulations and 

quantitative sensitivity analyses, compartmental model diagrams may be of use to a wider 

audience.
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Appendix

Corresponding Compartmental Model Diagrams and DAGs

Using the compartmental model diagrams and DAGs shown in figures 1 and 2, we prove that 

the compartmental model diagrams also imply conditional independence and conditional 

exchangeability, respectively. The proofs for other factual and counterfactual dependency 

relationships implied by the DAGs in figures 1 and 2 follow a similar form and are thus 

omitted.
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Proposition, Conditional Independence

Figure 1. 
Corresponding (a) DAG and (b) compartmental model diagram showing confounding in the 

absence of a direct causal effect.

The DAG in figure 1(a) implies Y ⫫ A|C: Y and A are independent conditional on C.

Proposition—The compartmental model diagram in figure 1(b) also implies Y ⫫ A|C.

Proof—We restrict our discussion of the compartmental model diagram to individuals who 

are in Y = 0 states at the start of observation. Individuals who are in Y = 1 states at the start 

of observation do not yield information on this conditional independency, since these 

individuals all have outcome Y = 1 independent of all other variables in the analysis.

We define the relationship between factual outcomes and counterfactual waiting times in this 

example is as follows: Suppose the random variable representing the counterfactual waiting 

time for transitioning to an Y =1 state for individual i with A = 0 and Y = 0 is given by Ti[Y 
= 1]. The individual transitions to a Y = 1 state if Ti[Y = 1] < t*, where t* is the total 
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observation time. Therefore, the factual outcome Yi for that individual is given by 

ITi[Y=1]<t*, where I is an indicator function taking on the value of one if Ti[Y = 1] < t*, and 

zero otherwise.

Suppose an individual is in an A = 0, C = 0, and Y = 0 state. This individual has a constant 

hazard of α of moving to a Y = 1 state. Suppose an individual is in an A = 1, C = 0, Y = 0 

state. This individual also has a constant hazard of α of moving to a Y = 1 state. Therefore, 

Ti[Y = 1|A = 0,C = 0] = Ti[Y = 1|A = 1,C = 0] = Ti[Y = 1|C = 0]. Similarly, we can show 

Ti[Y = 1|A = 0,C = 1] = Ti[Y = 1|A = 1,C = 1] = Ti[Y = 1|C = 1]. Therefore, by the 

definition of independence, Ti[Y = 1] ⫫ A|C. Since transformations of independent random 

variables are independent (e.g. Stone (1996), chapter 1), Yi ⫫ A|C for each individual i. 
Therefore, Y ⫫ A|C.

Proposition, Conditional Exchangeability

In figure 2(a), with the addition of the arrow from A to Y, we can see that Y ⫫ A|C is false. 

However, this DAG implies Ya ⫫ A|C, where Ya is the counterfactual outcome Y under 

exposure a.

Proposition—The compartmental model diagram shown in figure 2(b) also implies Ya ⫫ 
A|C.

Proof—We use the letter f to denote the probability density function of a continuous 

random variable. We define the random variable T i
a[Y = 1] to be the counterfactual waiting 

time to a Y =1 state for the ith individual setting the exposure to a specific value A = a. The 

distribution of counterfactual waiting times given C = c and setting A = a is given by:

f (T i
a[Y = 1] = t ∣ C = c, Y = 0) = ∑

α ∈ UA

IAi = α f (T i[Y = 1] = t ∣ A = a, C = c, Y = 0) (2)

where UA is the support of A and Ai is the value of A for the ith individual; in this case, UA 

= {0, 1}. In this expression, if for individual i, if Ai = a, then the distribution of 

counterfactual waiting times is the same as the distribution of factual waiting times. If Ai ≠ 

a, then we assign a distribution of counterfactual waiting times as if A = a.
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Figure 2. 
Corresponding (a) DAG and (b) compartmental model diagram showing confounding in the 

presence of a direct causal effect.

Simplifying equation 2, we have

f (T i
a[Y = 1] = t ∣ C = c, Y = 0) = f (T[Y = 1] = t ∣ A = a, C = c, Y = 0) (3)

Thus, the distribution of counterfactual waiting times setting A = a do not depend on factual 

values of A within C = c; they only depend on the value a we set. Therefore,

T i
a[Y = 1] ⫫ A ∣ C (4)

Equation 4 implies that I
(Ti

a[Y = 1] ∣ A = a) < t∗
⫫ A ∣ C. Substituting Y i

a for I
Ti

a[Y = 1] < t∗
, we 

have shown Y i
a ⫫ A ∣ C for all individuals i. Therefore, Ya ⫫ A|C.

Causal Modeling and Faithfulness

We show that there are a set of conditional independencies that cannot be faithfully 

represented with a DAG (Koski and Noble (2011)), but can be represented with a 

compartmental model diagram. The conditional independencies for the random variables x1, 

x2, x3, and x4 are as follows:
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1. x1 ⫫ x4|{x2, x3}

2. x1 ⫫ x4

3. x2 ⫫ x3|x1

Figure 3. 
The DAG in (a) is not faithful to the given conditional independencies. However, for a 

specific set of random variables this compartmental diagram does imply the given 

conditional independencies.

The proof that these conditional independencies cannot be represented with a DAG, and 

specifically the DAG given in figure 3(a), is given elsewhere (Koski and Noble (2011)). The 

compartmental model diagram in 3(b) represents a model in which the probability of 

transition in each time step of length 1 is given by the arrow labels. Suppose all individuals 

start in N0000 or N1000 at time zero. Suppose we define x1 to be a random variable 

corresponding to whether the individual is in a state with a first subscript of 1 at time zero, 

x1 and x2 the second and third subscript at time 1, respectively, and x4 the fourth subscript at 

time 2. We impose the additional constraint that a ≠ b. We now show that this compartmental 

model model diagram implies the above conditional independencies:

1. Probability of progression to states corresponding to x4 = 1 is the same for 

individuals with a given combination of x2 and x3 for both x1 = 0 and x1 = 1. 

Therefore, x4 ⫫ x1|x2, x3.

2. The probability of x4 equal to 1 is given by (a−ab)c+abd +(b−ab)c and is the 

same for individuals starting in N0000 and N1000 states. Thus, x1 ⫫ x4.

3. For x1 = 0, the probability of x2 = 1 is a−ab+ab = a, the probability of x3 = 1 is b
−ab+ab = b. The probability of x2 = 1 and x3 = 1 is ab. This implies x2 ⫫ x3|x1 = 

0. Similarly, we can show x2 ⫫ x3|x1 = 1. Therefore, x2 ⫫ x3|x1.
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We now show that the compartmental model diagram does not imply any other conditional 

independencies. Proofs by contradiction:

1. x1 ⫫ x2

P(x2 = 1|x1 = 0) = a and P(x2 = 1|x1 = 1) = b. Therefore, x1⫫̸x2.

2. x1 ⫫ x3

Proof follows a form similar to 1, replacing x2 with x3.

3. x2 ⫫ x3

P(x2 = 1 ∩3 = 0)
= P(x2 = 1 ∩ x3 = 0 ∣ x1 = 0)P(x1 = 0) + P(x2 = 1 ∩ x3 = 0 ∣ x1 = 1)P(x1 = 1)
= (a − ab)P(x1 = 0) + (b − ab)P(x1 = 1)
= aP(x1 = 0) + bP(x1 = 1) − ab

This cannot be simplified further. Therefore, x2⫫̸x3.

4. x2 ⫫ x4

P(x2 = 1 ∩ x4 = 1)
= P(x2 = 1 ∩ x4 = 1 ∣ x1 = 0)P(x1 = 0) + P(x2 = 1 ∩ x4 = 1 ∣ x1 = 1)P(x1 = 1)
= ((a − ab)c + abd)P(x1 = 0) + ((b − ab)c + abd)P(x1 = 1)
= (a − ab)cP(x1 = 0) + (b − ab)cP(x1 = 1) + abd

This cannot be simplified further. Therefore, x2⫫̸x4.

5. x3 ⫫ x4

Proof follows a form similar to 4, replacing x2 with x3.

6. x1 ⫫ x2|x3

P(x2 = 1 ∣ x1 = 0 ∪ x3 = 0) = a − ab
1 − b = a, and P(x2 = 1 ∣ x1 = 1 ∪ x3 = 0) = b − ab

1 − a = b. 

Therefore, x1⫫̸x2|x3.

7. x1 ⫫ x3|x2

Proof follows a form similar to 6, replacing x2 with x3 and x3 with x2.

8. x1 ⫫ x2|x4

P(x2 = 1 ∣ x1 = 0 ∪ x3 = 0) = a − ab
1 − b = a, and P(x2 = 1 ∣ x1 = 1 ∪ x3 = 0) = b − ab

1 − a = b. 

Therefore, x1⫫̸x2|x3.

9. x1 ⫫ x3|x4

Proof follows a form similar to 8, replacing x2 with x3.

10. x2 ⫫ x3|x4

P(x2 = 1 ∪ x3 = 0 ∣ x4 = 1) = (a − ab)c
(a + b − 2ab)c + abd P(x1 = 0) + (b − ab)c

(a + b − 2ab)c + abd P(x1
= 1)
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P(x2 = 1 ∪ x3 = 0 ∣ x4 = 0) = (a − ab)(1 − c)
1 − (a + b − ab) + (a + b − 2ab)(1 − c) + ab(1 − d)P(x1 = 0)

+ (b − ab)(1 − c)
1 − (a + b − ab) + (a + b − 2ab)(1 − c) + ab(1 − d)P(x1 = 1)

. 

Therefore, x2⫫̸x3|x4.

11. x2 ⫫ x4|x1

P(x2 = 1∩x4 = 1|x1 = 0) = (a−ab)c+abd

P(x2 = 1|x1 = 0) = a

P(x4 = 1|x1 = 0) = (a−ab)c+abd+(b−ab)c

P(x2 = 1∩x4 = 1|x1 = 0) ≠ P(x2 = 1|x1 = 0)P(x4 = 1|x1 = 0). Therefore, x2⫫̸x4|x1.

12. x3 ⫫ x4|x1

Proof follows a form similar to 11, replacing x2 with x3.

13. x2 ⫫ x4|x3

P(x4 =1|x2 =0∩x3 =1)=c and P(x4 =1|x2 =1∩x3 =1)=d. Therefore, x3⫫̸x4|x1.

14. x3 ⫫ x4|x2

Proof follows a form similar to 13, replacing x2 with x3 and x3 with x2.

15. x1 ⫫ x2|{x3, x4}

P(x2 = 0 ∣ x1 = 0 ∩ x3 = 1 ∩ x4 = 1) = b − ab
(a + b − 2ab)c + abd

P(x2 = 0 ∣ x1 = 1 ∩ x3 = 1 ∩ x4 = 1) = b − ab
(a + b − 2ab)c + abd . Therefore, x1 ⫫̸ x2|x3, x4.

16. x1 ⫫ x3|{x2, x4}

Proof follows a form similar to 15, replacing x2 with x3 and x3 with x2.

17. x2 ⫫ x3|{x1, x4}

P(x2 = 1 ∩ x3 = 0 ∣ x1 = 0, x4 = 1) = c
2c + d

P(x2 = 1 ∣ x1 = 0, x4 = 1) = c + d
2c + d

P(x3 = 0 ∣ x1 = 0, x4 = 1) = c
2c + d

∴ P(x2 = 1∩x3 = 0|x1 = 0, x4 = 1) ≠ P(x2 = 1|x1 = 0, x4 = 1)P(x3 = 0|x1 = 0, x4 = 

1))

∴ x2⫫̸x3|{x1, x4}

18. x2 ⫫ x4|{x1, x3}

P(x2 = 1 ∩ x4 = 1 ∣ x1 = 0, x3 = 1) = abd
b = ad

P(x2 = 1 ∣ x1 = 0, x3 = 1) = ab
b = a
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P(x4 = 1|x1 = 0, x3 = 1) = abd + (b − ab)c

∴ x2⫫̸x4|{x1, x3}

19. x3 ⫫ x4|{x1, x2}

Proof follows a form similar to 18, replacing x2 with x3 and x3 with x2.

20. x4 ⫫ x1|x2

P(x4 =1|x2 =1)=P(x1 =0)((a−ab)c+abd)+P(x1 =1)((b−ab)c+abd)

P(x4 = 1|x2 = 1, x1 = 0) = ((a−ab)c+abd)

∴ x4⫫̸x1|x2

21. x4 ⫫ x1|x2

Proof follows a form similar to 20, replacing x2 with x3.
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Figure 1. 
Causal DAG representing that random variable A causes random variable Y, with no 

common causes of A and Y.
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Figure 2. 
Compartmental model diagram showing that individuals with A = 0 proceed from Y = 0 to 

Y = 1 at a rate of α, whereas individuals with A = 1 proceed from Y = 0 to Y = 1 at a rate of 

β.
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Figure 3. 
Corresponding (a) DAG and (b) compartmental model diagram for no causation.
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Figure 4. 
Corresponding (a) DAG and (b) compartmental model diagram for causation.
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Figure 5. 
Corresponding (a) DAG and (b) compartmental model diagram for mediation. 

Cerebrovascular disease is abbreviated CD.
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Figure 6. 
Corresponding (a) DAG and (b) compartmental model diagram for confounding. 

Socioeconomic status is abbreviated SES.
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Figure 7. 
Corresponding (a) DAG and (b) compartmental model diagram for collider bias. S = 1 

indicates surviving, whereas S = 0 indicates dead.
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Figure 8. 
(a) DAG which corresponds equally well to (b) a compartmental model diagram showing no 

interaction on the multiplicative scale or (c) a compartmental model diagram showing 

interaction on the multiplicative scale. Therapy is abbreviated T.
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Figure 9. 
Corresponding (a) DAG and (b) compartmental model diagram for causation and reverse 

causation.
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Figure 10. 
Corresponding (a) DAG, (b) fully specified DAG, and (c) compartmental model diagram for 

an SIS model of trachoma.
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Figure 11. 
Corresponding (a) DAG and (b) CMD depicting deterministic waiting times (semi-

Markovian). Suppose we perform a simulation with transitions occurring after exactly α and 

β time units to Y = 1 states and A = 1 states from entry into a compartment or the start of 

simulation. Suppose α > β. Individuals starting out with A = 0 and Y = 0 take α +β to reach 

a Y = 1 state, whereas individuals starting out with A = 1 and Y = 0 will take β to reach a Y 
= 1 state.
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Figure 12. 
Generalized SIR model showing the trajectory of an infectious individual through the xy-

plane, where x is the number of pathogens and y is the immune response. For example, an 

infected individual might follow a trajectory through the the plane according to the 

following coupled differential equations: x. = 1
2

x
r − 1

10
xy
r  and y. = 1

2
x
r − 1

10
y
r , where 

r = x2 + y2. The origin (blue dot) corresponds to susceptible, the y-axis with y > 0 

corresponds to recovered, and all other points such that x > 0 and y ≥ 0 correspond to 

infectious (example trajectory in green).
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