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Abstract

Diagnosing melanocytic lesions is one of the most challenging areas of pathology with extensive 

intra- and inter-observer variability. The gold standard for a diagnosis of invasive melanoma 

is the examination of histopathological whole slide skin biopsy images by an experienced 

dermatopathologist. Digitized whole slide images offer novel opportunities for computer programs 

to improve the diagnostic performance of pathologists. In order to automatically classify such 

images, representations that reflect the content and context of the input images are needed. In 

this paper, we introduce a novel self-attention-based network to learn representations from digital 

whole slide images of melanocytic skin lesions at multiple scales. Our model softly weighs 

representations from multiple scales, allowing it to discriminate between diagnosis-relevant and 

-irrelevant information automatically. Our experiments show that our method outperforms five 

other state-of-the-art whole slide image classification methods by a significant margin. Our 

method also achieves comparable performance to 187 practicing U.S. pathologists who interpreted 

the same cases in an independent study. To facilitate relevant research, full training and inference 

code is made publicly available at https://github.com/meredith-wenjunwu/ScATNet.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/
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I. INTRODUCTION

Invasive melanoma, with more than 100,000 estimated new cases in 2021, is one of the 

most commonly diagnosed cancers in the U.S [1]. The ‘‘gold standard’’ for diagnosis 

of skin biopsy specimens relies on the visual assessments of pathologists. Unfortunately, 

diagnostic errors are common, and even expert pathologists may not reach consensus on 

diagnostically challenging cases in many areas within pathology [2]–[5]. For instance, 

pathologists disagree in up to 60% of melanoma in situ and stage T1a invasive cases [6]. 

Variability in diagnostic decisions is a serious problem and can cause substantial patient 

harm. A computer-aided diagnostic system can act as a second reader and help pathologists 

reduce classification uncertainties.

For a reliable diagnostic system, it is important to obtain representations that reflect both 

the content and context of the input biopsy image. This paper introduces a self-attention-

based deep neural network called the Scale-Aware Transformer Network (ScATNet) for 

classifying melanocytic skin lesions in digital whole slide images (WSIs). ScATNet, shown 

in Figure 1, extends the standard transformer model of Vaswani et al. (2017) to learn 

representations from biopsy images at multiple input scales. The key idea is to learn 

patch-wise representations independently for each input scale using a convolutional neural 

network (CNN), and then learn inter-patch and inter-scale representations from concatenated 

multi-scale contextualized patch embeddings using transformers. This allows our system 

to learn diagnostic class-specific representations at different scales and helps improve the 

performance. Also, each WSI contains multiple tissue slices, while usually only one or two 

tissue slices help pathologists in diagnosis. We introduce a soft-label assignment method 

to (1) reduce the ambiguity between different tissue slices in a WSI and (2) improve the 

diagnostic classification performance.

We demonstrate the effectiveness of ScATNet on a skin biopsy image dataset [6]. 

Experimental results show that ScATNet outperforms state-of-the-art methods by a 

significant margin. For example, ScATNet is 8% more accurate than the method proposed 

by Chikontwe et al. [7] and 6% more accurate than the method proposed by Hashimoto et al. 
[8]. Importantly, ScATNet delivers comparable performance to 187 practicing pathologists 

who interpreted the same test set cases in an independent study.

To summarize, the main contributions of this paper are: (1) a novel self-attention-based 

end-to-end framework for classifying WSIs at multiple input scales (Section III-B), (2) a soft 

label assignment method to reduce ambiguities that arise by assigning the same label to all 

tissue slices in a WSI (Section III-C), and (3) experimental results, along with comparisons 

with state-of-the-art methods and practicing U.S. pathologists, demonstrating ScATNet’s 

competitive performance (Section IV).
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II. RELATED WORK

ScATNet was inspired by the success of several works in the area of WSI image 

classification and transformers. We briefly discuss these approaches in the following sub-

sections.

A. MULTIPLE INSTANCE LEARNING (MIL)

Convolutional neural networks (CNNs) are the de facto machine learning-based method for 

image classification, including WSIs [9]–[11]. Unlike the images in standard datasets (e.g., 

ImageNet [12]), WSIs are orders of magnitude larger and cannot be processed in an end-

to-end fashion using CNNs. The MIL framework has been widely studied for classifying 

different types of WSIs, such as lung [11], kidney [13], and breast [14]. In general, the input 

WSI is divided into instances (or patches) and the same classification label is assigned to 

all instances during training. During evaluation, methods such as averaging and majority 

voting are used to aggregate the information from all instances in an image and produce 

an image-level classification label. Though these approaches are effective, they learn local 

instance-wise representations. This work extends the MIL framework with the transformers 

of Vaswani et al. (2017) to learn global representations in an end-to-end fashion. In our 

experiments, we compared our method to the MIL methods of Chikontwe et al. [7] and 

Hashimoto et al. [8]. In addition, we compared our system to a standard patch-based CNN 

classification framework. Details of these methods are described in section IV-D.

B. PATCH-BASED FEATURE AGGREGATION

Patch-based methods provide a solution to the gigapixel size of WSIs, while only requiring 

slide-level labels. However, learning robust instance representations is challenging due to 

the ambiguity in instance-level labels. To address this, many recent methods [11], [15] 

adopt a two-step approach that consists of (1) training an instance encoder for obtaining 

a prediction score or low-dimensional features, and (2) learning a model that aggregates 

the features extracted by the learned instance encoder to form instance-level information 

for slide-level prediction. Although this approach has had some success, it often suffers 

from worse performance when noisy labels are present, causing the features to not be 

representative of their given labels. In our experiments, we compared our method with a 

CNN-based deep-feature-aggregation framework developed by Mercan et al. [15]. Details of 

this method are described in section IV-D.

C. SEGMENTATION-BASED METHODS

These approaches use semantic information about tissues in a WSI to produce an image-

level decision [16]–[20]. Typically, these approaches have three steps: (1) produce a tissue-

level semantic segmentation mask using CNNs for an input WSI, (2) extract features, 

such as distribution of tissues, from these semantic masks, and (3) produce an image-level 

decision using the features extracted from the semantic masks. These approaches learn 

global representations (information from segmentation masks) and have been found to be 

more effective than plain patch- and MIL-based approaches. However, one key challenge 

with these approaches is that they require tissue-level segmentation masks whose collection 

is challenging, because (1) domain experts are required for annotations and (2) pixel-
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wise annotations on images of gigapixel order is very time consuming. In contrast, this 

work introduces a method for learning global representations from histopathological WSIs 

without the need for tissue-level segmentation masks.

D. END-TO-END LEARNING

Recent attempts at WSI classification focus on designing a single neural network that 

aggregates information from the entire image in a single shot [21], [22]. These methods 

extend the MIL-based approach with gradient check-pointing and advanced feature-fusion 

methods, such as self-attention. Inspired by model-level parallelism [9] and gradient check-

pointing [23], these approaches break down the WSI classification pipeline into multiple 

stages and cache the intermediate results of CNN layers during forward and backward 

passes, allowing the systems to learn representations in an end-to-end fashion. For example, 

Mehta et al. [21] uses the transformers of Vaswani et al. (2017) to aggregate the information 

from all instances in a breast biopsy image, while Pinckaers et al. [22] stitches the instance-

wise feature maps of a prostate cancer image at a very low-spatial resolution obtained 

from a CNN to produce an image-level feature map. ScATNet extends these approaches for 

classifying skin biopsies. Unlike these approaches that use WSIs at a single scale (typically 

at a zoom-level of 10×) for classification, this work proposes a scale-aware transformer 

that adapts to and uses the representations from multiple input scales to achieve higher 

classification performance. In our experiments, we compared our method with a CNNbased 

end-to-end WSI classification framework developed by Pinckaers et al. [22], details of this 

which are described in section IV-D.

E. VISION TRANSFORMERS

The transformers of Vaswani et al. [24], initially introduced for the task of machine 

translation (e.g., [25], [26]), are being explored for modeling images and computer vision 

tasks (e.g., [27], [28]). Transformers use self-attention, which allows the inputs (e.g., words 

in a sentence) to interact with each other and learn global representations. Carion et al. [29] 

extended the standard encoder-decoder network of Vaswani et al. [24] for the task of object 

detection. Recent work has extended transformers using a patch-based approach to image 

recognition at a large scale [27], [28]. Concurrent work has also utilized transformers and 

self-attention to medical image segmentation [30]–[33] and classification [34].

Motivated by (1) the success of transformers in vision, (2) the methods for learning 

representations from different input scales [35]–[37], and (3) the importance of input scales 

for diagnosis in clinical settings [38], [39], we propose a scale-aware transformer model that 

adapts to the information from different input scales using self-attention and predicts the 

classification label.

III. METHOD

This section first reviews the architecture of transformers and then elaborates on the details 

of the proposed method, scale-aware transformers (Section III-B), that allows our system 

to learn representations from histopathological images at multiple scales in an end-to-end 

fashion. In Section III-C, a soft-labeling method is discussed that reduces the ambiguity in 
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instance-level (patches) labels and improves the learning of representations from skin-biopsy 

images. The software associated with this work will be made available.

A. TRANSFORMERS

The transformer unit, shown in Figure 2, is comprised of two modules: (1) self-attention 

and (2) feed-forward. The self-attention module allows the inputs to interact with each other 

and learn contextual relationships. This layer applies three projections, with each projection 

branch having multiple linear layers to the input I ∈ ℝn × e to produce query (Q), key (K), 

and value (V) embeddings, where n is the number of inputs and e is the input dimensionality. 

A dot-product between query (Q) and key (K) is computed to produce an n×n matrix to 

which a row-wise softmax is applied to encode relationships between the n inputs. Finally, a 

weighted sum is computed between the resultant n × n matrix and V.

Self‐attention Q, K, V = softmax Q ⋅ KT ⋅ V (1)

The feed-forward module stacks two linear layers, and is responsible for learning wider 

representations. The first linear layer projects the input to a high-dimensional space, while 

the second linear layer projects from the high-dimensional space to the same dimensionality 

as that of the input. This work extends the transformers model to learn scale-aware 

representations from skin biopsy images.

B. SCALE-AWARE TRANSFORMERS

Patch-based CNNs are state-of-the-art WSI classification methods that allow computer 

systems to learn representations from gigapixel size images (e.g. [11], [13], [14], [16], [40]). 

One of the main limitations of such systems is that they learn local representations, since 

the context capturing ability of such systems is limited to the patch-level. Another challenge 

is learning representations from multiple input scales. Because of limited GPU memory and 

the sheer size of these images, training multi-scale classification systems is computationally 

intractable. For example, the average size of a WSI (11K × 9.5K) in our dataset is 2000 

times larger than the standard image classification dataset: the ImageNet [41] (224 × 224).

Motivated by the recent advancements in computer vision, especially vision transformers 

and the importance of input scales in clinical settings, this paper introduces scale-aware 

transformers in ScATNet, which allows our system to learn local and global representations 

from multiple input scales in an end-to-end fashion. Figure 1 shows the overview of 

ScATNet, which has three main steps: (1) learn local patch-wise embeddings using a 

CNN for each input scale, (2) learn contextualized patch-embeddings for each input scale 

using transformers, and (3) learn scale-aware embeddings across multiple input scales using 

transformers. These steps are described below.

1) PATCH EMBEDDINGS—The input WSI image Xsc ∈ ℝW × H at scale sc with width 

W and height H is divided into m non-overlapping patches Xsc = x1
sc, …, xmsc , where xisc is 

the i-th patch with width W
m  and height H

m . Patch-wise feature representations, referred 
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to as patch embeddings, are obtained using an off-the-shelf CNN. The patch embedding 

PEi
sc ∈ ℝe for the i-th patch xisc is thus:

PEi
sc = CNN xisc (2)

2) CONTEXTUALIZED PATCH EMBEDDINGS—The patch embeddings PEsc ∈ ℝm × e

are produced independently for each patch. In other words, these embeddings PEsc do 

not encode inter-patch relationships. These embeddings PEsc are fed to a transformer to 

learn inter-patch relationships. Similar to vision transformers [27], patch-wise sinusoidal 

positional embeddings PPEsc ∈ ℝm × e are added to PEsc to encode the position of input 

patches. The resultant embeddings are then fed to a transformer to produce contextualized 

patch embeddings CPEsc ∈ ℝm × e.

CPEsc = Transformer PEsc = PPEsc (3)

These contextualized embeddings CPEsc ∈ ℝm × e are then averaged along the m-dimension 

to produce an e-dimensional embedding vector CPEsc ∈ ℝe . CPEsc encodes the local (from 

CNN) and global (from Transformer) information in an image Xsc.

3) CONTEXTUALIZED SCALE EMBEDDINGS.—The embedding CPEsc encodes the 

information in an image Xsc at scale sc. Let us assume that we have S scales. For each 

sc ∈ 0, …, S S, we produce embedding vector CPEsc and concatenate them to produce 

scale-level embeddings SE = Concat CPE1, …, CPES . These embeddings SE ∈ ℝS × e do not 

encode information about the relationships between the different scales. To learn scale-aware 

representations while retaining positional information about each scale, scale-level learnable 

positional embeddings PSE ∈ ℝsc × e are added1 to SEsc×e. The resultant embeddings are 

then fed to another transformer to produce contextualized scale embeddings CSE ∈ ℝS × e.

CSE = Transformer SE+PSE (4)

For predicting the diagnostic class, ScATNet first flattens the scale-aware embeddings 

CSE ∈ ℝsc × e to produce a (sc·e)-dimensional vector and then classifies it using a linear 

classifier into C diagnostic categories.

C. SOFT-LABELS FOR SKIN BIOPSY IMAGES

Skin biopsy images often contain multiple tissue slices on a single WSI, as shown in Figure 

4. In general, the representative regions-of-interest (ROIs; shown in red in Figure 4) that 

1Unlike the number of patches m, the number of scales S is fixed. Therefore, we learned the positional embeddings for each scale 
using torch.nn.Embedding in PyTorch. Compared to sinusoidal positional embeddings, learned embeddings improve the performance 
by about 0.5–1.0%.
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helped pathologists in diagnosis belong to one or two tissue slices, while the other tissue 

slices may correspond to other diagnosis categories. Assigning the same diagnostic label to 

all tissue slices (similar to MIL-based approaches) results in more false tissue-label pairs 

and hinders learning representations. To address this, we propose a soft labeling method, as 

illustrated in Figure 3.

Given a dataset D with N training WSIs along with representative ROIs for each WSI 

(each WSI contains multiple slices) that helped in diagnosis, we aim to assign soft labels 

to tissue slices that do not have ROIs. Tissue slices from each WSI are extracted and then 

categorized into one of the two sets: (1) tissue slices R with an ROI and (2) tissue slices 

NR without an ROI. Since each slice in R has a representative ROI, we further split R
into C subsets, R = R1, …, RC , based on the diagnostic category, where Ri represents the 

subset for diagnostic category i and C denotes the number of diagnostic categories. Next, we 

compute the mean singular value vector si for each subset Ri as:

si = 1
n j = 1

n
si

j (5)

where si
j is the d-dimensional singular-value vector obtained after applying singular-value 

decomposition (SVD) to the j-th tissue slice in Ri. The idea is to use these vectors to 

represent the appearance of the diagnostic categories. We used singular values because 

of their uniqueness and robustness properties [42]–[45]. However, other dimensionality 

reduction methods could also be used.

For the j-th slice in NR, the C-dimensional soft label vector yj is computed as:

yj = softmax s ⋅ sj
(6)

where sj is a d-dimensional singular value vector obtained after applying SVD to the j-th 

tissue slice in Nℛ and s = s1, …, sC .

Tissue slices without an ROI do not help in the diagnosis decisions. Clinically, such slices 

can often belong to lower diagnostic categories than the category assigned to the WSI 

they are part of. We incorporate this diagnostic constraint in our soft labeling method. 

For a four-class dataset (1: MMD, 2: MIS, 3: pT1a, and 4: pT1b), suppose that a WSI 

corresponding to class k has m tissue slices and one of the tissue slices has an ROI, as 

shown in Figure 4. Soft label vectors yj for the jth slices without ROI (j ∈ [0,m − 1]) can 

be obtained from equation 6. Then, to take one step further, diagnostically constrained soft 

label vector yj = y1
j , …, yC

j  is computed as:
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yc
j = yc

j

c = 0
k yc

j , if c < k

yc
j = 0 if c ≥ k

(7)

Figure 4 illustrated an example WSI corresponding to class 3 (pT1a), which has three tissue 

slices, and one of the tissue slices has an ROI. If the soft label vectors yj for these two slices 

without ROI are [0.46,0.39,0.08,0.07], [0.21,0.54,0.1,0.15], the resulting soft label vectors 

with the diagnostic constraint yj are [0.54,0.46,0,0], and [0.28,0.72,0,0] respectively.

IV. EXPERIMENTAL RESULTS

A. DATASET AND EVALUATION

1) SKIN BIOPSY DATASET AND GROUND TRUTH CONSENSUS—The data used 

for this study was acquired as a part of the MPATH study (R01CA151306) and consists 

of 240 skin biopsy images with hematoxylin and eosin (H&E) staining [6]. The study 

was approved by the Institutional Review Board at the University of Washington with 

protocol number STUDY00008506. These biopsy images were interpreted by a consensus 

panel of three experienced dermatopathologists using the modified Delphi approach [46]. 

The consensus panel assessments were grouped into five different MPATHDx (Melanocytic 

Pathology Assessment Tool and Hierarchy for Diagnosis) [47] simplified categories based 

on perceived risk for progression. These five classes were regrouped to four diagnostic 

classes for the classification task in this paper due to limited sample size in Classes I and II 

and because the clinical risk for progression of both Class I and Class II is extremely low. 

The diagnostic terms we use for each class are as follows: 1) Class I-II: mild and moderate 
dysplastic nevi (MMD), which is very low risk to low risk, 2) Class III: melanoma in situ 
(MIS), which is higher risk than MMD, 3) Class IV: invasive melanoma stage pT1a (pT1a) 

which is higher risk for local/regional progression, and 4) Class V: invasive melanoma 
stage ≥pT1b(pT1b)which is the greatest risk for regional and/or distant metastases. We 

randomly split 240 WSIs into 102 training, 23 validation and 115 test WSIs (see Table 1). 

Additionally, the consensus panel of three experienced dermatopathologists marked in total 

240 regions of interest (ROIs) that best defined the diagnostic classification of each case 

during the review process. Information about these ROIs was used to produce soft labels for 

the training set (Section III-C).

2) OUTCOME METRICS—The performance of ScATNet is evaluated in terms of the 

following standard quantitative metrics: (1) classification (or Top-1) accuracy, (2) F1 score, 

(3) sensitivity, (4) specificity, and (5) area under receiver operating characteristic curves 

(ROC-AUC). The values of these metrics range between zero and one, and higher values of 

these metrics mean better performance. Multi-class F1 and specificity have the same value 

as accuracy.

3) ACCURACY DATA FROM U.S. PATHOLOGISTS—To compare the results from 

ScATNet with the interpretations of practicing U.S. pathologists, we used data from a prior 
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clinical study in which 187 pathologists interpreted the same WSIs [6]. Each pathologist 

interpreted a random subset of 36 cases, and their diagnoses were classified into the 

same four diagnostic categories. This resulted in 10 independent diagnostic labels (on an 

average) per slide and provided a way to compare the classifications performed by human 

pathologist to ScATNet. These interpretations are only used for independent evaluation. 

The ground truth diagnosis of each slide is the consensus diagnosis of three experienced 

dermatopathologists.

B. IMPLEMENTATION DETAILS

1) EXTRACTING TISSUE SLICES FROM WSIs—The original WSIs were collected 

at a zoom level of 40×. Because WSIs at 40× require extensive computational resources, we 

extracted WSIs at lower zoom levels of 7.5× (average size 8348 × 7202), 10× (average size 

11130 × 9603), and 12.5× (average size 13913 ×12003). These zoom levels were selected 

based on previous work on histopathological image classification for different tissues [11], 

[16], [40], since they provide a good tradeoff for 1) capturing sufficient local context 

without including irrelevant details and 2) providing variable local information without 

losing similar correlation. We refer to different zoom levels as ‘‘input scales’’ in this work. 

Each WSI has multiple tissue slices with a background region between the slices that does 

not aid in diagnosis (Figure 4). Therefore, individual tissue slices were extracted using a 

histogram-based segmentation method of Otsu [48] followed by morphological operations 

(opening-closing and hole filling) and contour-related operations available in OpenCV.

2) SOFT-LABELS—To assign soft labels for tissue slices without an ROI, SVD is 

applied to obtain d-dimensional singular-value vectors as described in the Methods section. 

In this study, d is set to 50.

a: ARCHITECTURE: We use MobileNetv2 [49] pretrained on the ImageNet dataset 

[41] as our CNN for extracting patch-wise embeddings. MobileNetv2 was chosen, because 

it is light-weight, fast, and delivers state-of-the-art performance across different machine 

vision tasks, such as classification, detection, and segmentation. ScATNet is not limited to 

a particular CNN and other CNNs, such as VGG [50] and ResNet [10] may also be suitable 

for extracting patch-wise embeddings.

MobileNetv2outputs1280-dimensionalpatch-wiseembeddings after global average pooling. 

ScATNet projects these patch-wise embeddings linearly to a 128-dimensional space 

(e = 128) and then learns contextualized patch-wise and scale-wise embeddings using 

transformers. For learning contextualized patch-wise and scale-wise representations, a stack 

of two transformer units is used. Also, in each transformer unit, the number of heads in the 

self-attention layer is set to 4, and the feed forward network dimension is set to 512.

C. TRAINING DETAILS

ScATNet is trained for 200 epochs in an end-to-end fashion using the ADAM optimizer with 

a linear learning rate warm-up strategy and step learning rate decay. The learning rate is first 

warmed up from 10−6 to 5 × 10−4 in 500 steps. In the next 50 epochs, the model is trained 

with a learning rate of 5 × 10−4. After that, the learning rate is reduced by half at the 100-th 
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and 150-th epochs. Because of the large size of these images, extensive computational 

resources are required. To learn representations with limited computational resources, we 

freeze the convolutional layers in a CNN and train only the transformer networks. Our 

models are trained on a single NVIDIA GeForce 2080 GPU with 10 GB GPU memory. 

Similar to other medical imaging datasets, our dataset is small. Therefore, to improve its 

robustness against stochastic noise, we average best 3 and best 5 model checkpoints within 

a single training process [51] and select the one that performs best on the validation set. 

We then evaluate it on the (unseen) test set. A WSI in a test set may contain multiple 

tissue slices. To predict the final diagnostic label, we use max-voting. This choice is inspired 

by pathologists’ diagnosing behavior, i.e., if one of the tissue slices in a WSI is invasive 

melanoma, then the entire WSI corresponds to invasive melanoma and cannot be MMD or 

MIS.

D. BASELINE METHODS

ScATNet’s performance is compared with five recent whole slide image classification 

methods.

1) PATCH-BASED CLASSIFICATION—The first method is a standard patch-based 

CNN classification framework that was built following saliency-based methods, related to 

the work of Hou et al. [11] and that of Mercan et al. [39], (R1 and R2 in Table 2). This 

method treats each patch independently and assigns the same diagnostic label to all patches 

in the WSI during training. During evaluation, majority-voting is used for predicting the 

slide-level diagnostic label. Similar to the use of ScATNet, Mobilenetv2, pretrained on the 

ImageNet dataset was used as the CNN model.

2) WEIGHTED FEATURE AGGREGATION—The second method is a CNN-based 

deep feature extraction framework developed by Mercan et al. [15] that builds slide-level 

feature representations via weighted aggregation of the patch representations (R3 and R4 in 

Table 2). Under this framework, feature extraction is performed in three steps: (1) using 

a CNN (e.g. VGG16) to extract features on a patch-by-patch basis; (2) concatenating 

the weighted instances of the extracted feature activations using either penultimate layer 

features (penultimate-weighted) or hypercolumn features (hypercolumn-weighted) to form 

patch-level feature representations; and (3) fusing the patch-level representations via average 

pooling to form the slide-level representation.

3) ChikonMIL—The method of Chikontwe et al. (ChikonMIL) (R3 in Table 2) [7] first 

selects the top-k patches, and then uses these patches for instance- and bag-representation 

learning. This method also uses a center loss that reduces intra-class variability and a soft 

assignment to learned diagnostic centroid for final diagnosis.

4) MS-DA-MIL—Multi-scale Domain-adversarial Multiple-instance (MS-DA-MIL) CNN 

developed by Hashimoto et al. [8] (R7 and R8 in Table 2) is a framework that learns from 

groups of patches extracted at different scales (x10 and x20) with attention mechanism. 

However, in contrast to the proposed end-to-end learning framework, MS-DA-MIL-CNN 
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first trains a single-scale MIL network to classify for each scale. Then, a multi-scale network 

is trained using the features extracted using pre-trained single-scale MIL networks.

5) STREAMING CNN—Streaming CNN is a work of Pinckaers et al. [22] (R4 in Table 

2). This method uses a patch-based approach with gradient checkpointing and streaming, 

which allows it to classify whole slide images in an end-to-end fashion.

E. RESULTS

1) HARD vs. SOFT LABELS—The performance of our soft labeling method (Section 

III-C) is compared with three other labeling methods. For illustration, for the four classes in 

our dataset (1: MMD, 2: MIS, 3: pT1a, and 4: pT1b), we use a WSI corresponding to pT1a 
(class 3; shown in Figure 4) with 3 slices, one having a ROI.

• Hard labels: Similar to MIL-based approaches, all tissue slices in the WSI are 

assigned the same diagnostic label. For the above example, each tissue slice will 

have a label of [0, 0, 1, 0] (one-hot vector encoding).

• Label smoothing: The label smoothing method of Szegedyet et al. [52] produces 

soft labels that are a weighted average of the hard labels and the uniform 

distribution over labels. It regularizes the network and helps improve the 

performance [53]. For the same example, the soft labels for each of these slices 

would be [0.033, 0.033, 0.9, 0.033] with a label smoothing value of 0.1. In other 

words, the label for class 3 is smoothed from 1 to 0.9 and the remaining mass of 

0.1 is equally distributed among the remaining three classes.

• Constrained label smoothing: This extends the hard labels and label smoothing 

methods by incorporating the diagnostic constraint that tissue slices without a 

ROI should belong to lower diagnostic categories. For example, if the WSI has 

a hard label of pT1a (i.e. class 3), then the tissue slices without a ROI can 

only belong to lower diagnostic categories (i.e., MMD and MIS). For the same 

example as above, the slice with an ROI will have a label of [0, 0, 1, 0] while the 

slices without an ROI will have constrained labels of [0.5, 0.5, 0, 0].

Figure 4a contrasts our soft labeling method with these methods while quantitative 

comparison between these methods is given in Figure 4b. These experiments demonstrated 

that our soft labeling method is more effective as compared to these existing methods. In 

subsequent experiments, we use our soft labeling method.

a: IMPACT OF NUMBER OF PATCHES m: Figure 5 compares the performance of 

single scale ScATNet with different numbers of crops m at three different input resolutions 

(7:5×, 10×, and 12:5×). Using fewer crops at larger resolution (e.g., 25 crops at a resolution 

of 12:5×) and more crops at smaller resolutions (e.g., 81 crops at a resolution of 7:5×) 

hurts the performance. This is likely because MobileNetv2, the CNN used in this work, 

is pre-trained on the ImageNet dataset at a fixed image size of 224 × 224. With very 

large (fewer number of crops at larger image resolution) or very small (larger number of 

crops at smaller image resolution) patch sizes, the CNNs may have difficulty in capturing 

representative features and yield poor patch embeddings, which hurts the performance. 
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We note that scaling patch size alone may not be an optimal solution and future studies, 

especially compound model scaling in EfficientNet [54], may help improve the performance.

In the rest of the experiments, we used m = 25 for 7.5× input resolution, m = 49 for 10× 

input resolution, and m = 81 for 12.5× input resolution, as these had the best performance.

b: Single vs. MULTIPLE INPUT SCALES: Figure 6a compares the overall performance 

of ScATNet across different metrics on single- and multi-scale inputs, while class-wise 

accuracy is given in Figure 6b. With inputs at multiple scales, we observe improvements 

in overall as well as class-wise performance. Notably, we observe significant improvement 

with multiple scales (two and three scales) in the pT1b invasive melanoma cancer category. 

Compared to two scales, the overall performance with three scales remains the same. 

However, with three scales, the performance across all diagnostic classes (Figure 6b) is 

much more evenly distributed, which is not seen in all other combinations.

c: COMPARISON WITH BASELINE METHODS: Figure 2 compares the 

classification performance of ScATNet with existing methods on the test set. ScATNet 

outperforms all five existing methods to which it was compared by a significant margin 

across different metrics. Furthermore, compared to the ChikonMIL method [7] and the 

MS-DA-MIL method [8] with multi-scale input, which delivered the two best performances 

among the five baseline methods, ScATNet delivered better performance across all 

diagnostic categories (see Figure 7), except the pT1b category. This is likely because the 

ChikonMIL method samples more relevant patches corresponding to the pT1b category as 

compared to other diagnostic categories, while the MS-DA-MIL method uses an input at 

higher resolution (x20), which might yield more information at the cellular level that helped 

to distinguish the pT1b category. We believe that complementing the proposed method 

with the patch sampling method of Chikontwe et al. (2020) would further improve the 

performance. We will investigate such methods in the future.

d: COMPARISON WITH U.S. PATHOLOGISTS: Table 3 shows that ScATNet 

achieves similar performance to practicing U.S. pathologists who interpreted these same 

cases in overall accuracy (pathologists vs. ScATNet: 0.65 vs. 0.64), suggesting its potential 

as a second reader to help pathologists in clinical settings for reducing classification 

uncertainties.

V. DISCUSSION

Previous studies on computer-aided skin lesion analysis have been mainly focused on 

using dermoscopic images due to its inexpensiveness and availability [55]–[57]. Although 

dermoscopic images showed improvement for diagnosis of skin cancer compared to 

bare visual inspection, the gold standard for the diagnosis of melanocytic lesions is the 

interpretation of histopathology slides. There has been limited application of deep learning 

techniques in whole slide skin biopsy images due to their gigapixel size and the lack of 

large public datasets. Earlier studies analyzing whole slide skin biopsy images using deep 

learning have focused on dermis and epidermis segmentation, as well as two- or three-class 

classification problems. For example, Phillips et al. [58] explored segmentation of dermis 
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and epidermis as well as tumor segmentation using convolutional neural network with a 

dataset of 50 WSIs (Training/validation/test: 36/7/7). Hekler et al. [59], [60] studied the 

binary classification of nevi vs. melanoma with a dataset of 695 WSIs (Training/Test: 

595/100). Similarly, Lu and Mandal [61] and Xu et al. [17] 17 melanocytic nevi, and 32 

superficial spreading melanoma) performed a three-way classification task (17 normal skin, 

using 66 WSIs. Note that the dataset used by Lu and Mandal et al. [61] and Xu et al. [17] 

is much smaller than ours and limited to only two of our classes, making direct comparison 

impossible.

Unlike these studies, this work classifies the full spectrum of melanocytic skin biopsy 

lesions ranging from mildly atypical nevi and more advanced atypical pre-cursor lesions, to 

melanoma in situ to invasive melanoma. Our dataset consists of 240 WSIs, including 115 

WSIs in an independent test set (Table1). An independent test set allows us to demonstrate 

the generalization ability of ScATNet. A key strength of our work is that we were able 

to compare the diagnostic classification of ScATNet with the performance of actively 

practicing U.S. pathologists who interpreted the same cases (test set) in an independent 

study.

Although the proposed method has shown great potential for automated melanocytic lesion 

classification, limitations are recognized. Our study is only relevant to melanocytic lesions, 

while only about one in four skin biopsies have melanocytic cells [62]. Moreover, despite 

having an independent test set, ScATNet was evaluated on only 115 WSIs. In order to 

demonstrate its application in clinical settings, ScATNet should be tested on a larger test 

set. Also, in this paper, we only studied skin biopsies. However, we believe that ScATNet is 

generic and can be extended to other types of biopsy images, such as breast and lung.

VI. CONCLUSION

Diagnosis of melanocytic lesions is among the most challenging areas of pathology. 

Previous studies indicate that diagnostic errors occur frequently [3]–[5]. False positive 

readings for suspected melanoma range from 6% to 17% [63], [64]. Diagnostic errors may 

lead to inappropriate treatment decisions and harm to patients. With FDA approval, digitized 

whole slide imaging systems show great potential for improving the diagnostic performance 

of pathologists. In this paper, we introduce the scale-aware transformer network ScATNet 

for learning representations from variably-sized whole slide skin biopsy images at multiple 

scales. Compared to existing methods, ScATNet delivered better performance. Importantly, 

ScATNet also delivered comparable performance to practicing U.S. pathologists who 

interpreted the same cases. The implementations of the models we use and algorithms we 

introduce are available at https://github.com/meredith-wenjunwu/ScATNet.

ACKNOWLEDGMENT

The funders had no role in the design and conduct of the study, collection, management, analysis, and interpretation 
of the data, preparation, review, or approval of the manuscript, nor decision to submit the manuscript for 
publication. (Wenjun Wu and Sachin Mehta are co-first authors.)

Research reported in this study was supported by grants R01CA200690 and U01CA231782 from the National 
Cancer Institute of the National Institutes of Health, 622600 from the Melanoma Research Alliance, and 

WU et al. Page 13

IEEE Access. Author manuscript; available in PMC 2022 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/meredith-wenjunwu/ScATNet


W81XWH-20–1-0798 from the United States Department of Defense. The funders had no role in the design 
and conduct of the study, collection, management, analysis, and interpretation of the data, preparation, review, or 
approval of the manuscript, nor decision to submit the manuscript for publication.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures 
and protocols was granted by the University of Washington under Application STUDY00008506.

Biographies

WENJUN WU received the B.S. degree in biomedical engineering from the Georgia 

Institute of Technology, Atlanta, USA, in 2017. She is currently pursuing the Ph.D. degree in 

biomedical informatics with the University of Washington, Seattle, Washington, USA.

Since 2018, she has been a Research Assistant, advised by Linda Shapiro at the University 

of Washington. Her research interests include intersection of biomedical image analysis, 

machine learning, and computer vision.

SACHIN MEHTA (Member, IEEE) received the Ph.D. degree from the University of 

Washington, Seattle, Washington, USA.

He is currently an Affiliate Assistant Professor with the University of Washington and also 

an AI/ML Research Scientist with Apple Inc. His research interests include intersection 

of computer vision, NLP, and machine learning, especially in designing fast, light-weight, 

power efficient, and memory efficient neural architectures that can be used for modeling 

visual and textual data on resource-constrained devices across different domains, including 

computer vision for accessible technologies and health care.

SHIMA NOFALLAH (Graduate Student Member, IEEE) received the B.Sc. and M.Sc. 

degrees in biomedical engineering from the Amirkabir University of Technology, Tehran, 

Iran. She is currently pursuing the Ph.D. degree in electrical and computer engineering with 

the University of Washington, Seattle, WA, USA.

WU et al. Page 14

IEEE Access. Author manuscript; available in PMC 2022 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Her research interests include computer vision, machine learning, and medical image 

processing.

STEVAN KNEZEVICH received the degree from the University of Toronto Medical 

School, Ontario, Canada, in 2004, and the Ph.D. degree in pathology from the University of 

British Columbia, in 1999.

Then, he spent an additional year as a Post-doctoral Fellow at Lymphoma Research. His 

Residency and Surgical Pathology Fellowship were completed at Washington University 

in St. Louis, MO, USA, and Dermatopathology Fellowship at Stanford University. He 

worked at the VA Medical Center and worked as an Assistant Professor at the University 

of Washington, Seattle, prior to joining Pathology Associates, in July 2014. He is board 

certified in anatomic pathology, clinical pathology, and dermatopathology.

CAITLIN J. MAY received the M.D. degree from the School of Medicine, University of 

Washington, in 2013.

She received the Dermatology Residency and the Dermatopathology Fellowship at 

the University of Washington, in 2017 and 2018, respectively. She currently works 

as a Dermatopathologist at Dermatopathology Northwest, Bellevue, WA, USA, and a 

Teledermatologist at the VA Seattle Medical Center. She is a Collaborator on Dr. Elmore’s 

NIH funded grant, IMPACT, which utilizes novel computational methods to analyze whole 

slide digital images to improve the diagnosis of melanoma and related skin lesions. She also 

has ongoing projects with her research team that involve evaluating trends in immune her to 

chemical and molecular testing among U.S. pathologists in their diagnoses of melanocytic 

lesions. Her main research interest includes the diagnostic challenges associated with the 

histopathologic diagnoses of melanocytic lesions.

WU et al. Page 15

IEEE Access. Author manuscript; available in PMC 2022 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



OLIVER H. CHANG received the B.A. degree at the University of Illinois Urbana–

Champaign, in 2005, and the M.D. degree from the University of Illinois Chicago College of 

Medicine, in 2010.

He completed a residency at the University of Washington Medical Center, in 2015, and 

is board certified in anatomic pathology, clinical pathology, and dermatopathology. He is 

currently an Assistant Professor with the Department of Laboratory Medicine, University 

of Washington, where he serves as the Director for Medical Student Clerkships and Post-

Sophomore Fellowship. His clinical practice is at the VA Puget Sound Hospital, Seattle, WA, 

USA. His research interests include medical education in pathology, melanocytic lesions, 

and AI/Machine learning.

JOANN G. ELMORE received the Medical degree from the Stanford University School of 

Medicine.

Her residency training in internal medicine at Yale-New Haven Hospital, with advanced 

epidemiology training from the Yale School of Epidemiology and Public Health and the 

RWJF Clinical Scholars Program. In addition, she was a RWJF Generalist Physician 

Faculty Scholar. She is board certified in internal medicine and serves on many national 

and international committees. She conducts scientific research on diagnostic accuracy of 

screening and medical tests and AI/machine learning to develop computer aid tools for the 

early detection of high-risk cancers. She previously held faculty and leadership positions 

at the University of Washington, Fred Hutchinson Cancer Research Center, Group Health 

Research Institute, and Yale University.

Dr. Elmore has been an Associate Director and a member of the National Advisory 

Committee for of the Robert Wood Johnson Clinical Scholars Program at Yale University 

and the University of Washington. She is the Rosalinde and Arthur Gilbert Foundation 

Endowed Chair at Health Care Delivery, a professor of medicine at the David Geffen School 

of Medicine, UCLA, and the Director of the UCLA National Clinician Scholars Program. 

She is the Editor-in-Chief of primary care at UpToDate and enjoys seeing patients as a 

primary care internist and teaching clinical medicine to students and residents.

WU et al. Page 16

IEEE Access. Author manuscript; available in PMC 2022 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



LINDA G. SHAPIRO (Life Fellow, IEEE) received the B.S. degree in mathematics from 

the University of Illinois, Urbana, in 1970, and the M.S. and Ph.D. degrees in computer 

science from the University of Iowa, Iowa City, in 1972 and 1974, respectively.

She was an Assistant Professor of computer science at Kansas State University, Manhattan, 

from 1974 to 1978; an Assistant Professor of computer science, from 1979 to 1981; and 

an Associate Professor of computer science at Virginia Polytechnic Institute and State 

University, Blacksburg, from 1981 to 1984. She was the Director of intelligent systems at 

Machine Vision International, Ann Arbor, from 1984 to 1986. She is currently a Professor 

of computer science and engineering and electrical engineering with the University of 

Washington. She has coauthored three textbooks, one on Data Structures and two on 

Computer Vision. Her research interests include computer vision, image database systems, 

artificial intelligence, pattern recognition, and robotics.

Dr. Shapiro is a fellow of the IAPR. She is the Past Chair of the IEEE Computer 

Society Technical Committee on IEEE TRANSACTIONS ON PATTERN ANALYSISAND 

MACHINE INTELLIGENCE and currently an Editorial Board Member of Computer Vision 
and Image Understanding and Pattern Recognition. She has served as the Editor-in-Chief 

for CVGIP: Image Understanding, an Associate Editor for IEEE TRANSACTIONS ON 

PATTERN ANALYSIS AND MACHINE INTELLIGENCE, the Co-Program Chair for the 

IEEE Conference on Computer Vision and Pattern Recognition, in 1994, and the General 

Chair for the IEEE Workshop on Directions in Automated CAD-Based Vision, in 1991, and 

the IEEE Conference on Computer Vision and Pattern Recognition, in 1986. She was the 

Co-Chair of the Medical and Multimedia Applications Track of the International Conference 

on Pattern Recognition for 2002 and 2008 CVPR. She has also served on the program 

committees of numerous vision and AI workshops and conferences.

APPENDIX

A. OUTCOME METRICS

The following metrics were used to evaluate the performance of ScATNet [65]:

• Classification (or Top-1) accuracy counts the number of times the predicted label 

is the same as the ground truth label and is defined as:

Accuracy = TP
TP+FP + TN + FN

where TP, FP, TN, and FN denotes the true positive, false positive, true negative, 

and false negatives respectively.

• F1-score is a harmonic mean of precision P and recall R and is defined as:

F1‐score = 2PR
P + R
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where P = TP
TP+FP  and R = TP

TP+FN .

• Sensitivity measures proportion of the positive cases that are correctly classified 

and is defined as:

Sensitivity = TP
TP+FN

• Specificity measures the proportion of the negative cases that are correctly 

classified and is defined as:

Specificity = TN
TN+FP

• Area under receiver operating characteristics curve (ROC-AUC) is a graph 

obtained by varying the threshold for diagnostic decision, illustrating the 

discrimination ability of the classifier. We use a One-vs-rest scheme, which 

computes the AUC of each class against the rest [66].

The values of these metrics range between zero and one, and higher values of these metrics 

mean better performance.

B. SALIENCY ANALYSIS

Saliency analysis using gradients helps identify relevant areas in an input image that 

contributed to the prediction [67]. Figure 8 shows that both 7.5× and 10× contributed to 

the decision in the cases of MMD and pT1a, while 12.5× contributes more in the cases 

of MIS and pT1b. This pattern illustrates that depending on the input whole slide image, 

diagnosis-specific features exist at different input scales and ScATNet learns to weigh these 

features automatically.

C. ROC CURVES

In Figure 9, we compared the Receiver Operating Characteristic (ROC) curves of the 

proposed method with different numbers of input scales. With a single scale, the overall 

area under the curve (AUC) score as well as the class-wise AUC score of invasive cancer 

categories (pT1a and pT1b) improve with larger input scale. With two scales, we observed 

the best performance in the combination of the smallest and the largest scale (7.5× and 

12.5×).

e: COMPARISON OF BASELINE METHODS

In Figure 10, we compared ROC curves of the baseline methods. The MS-DA-MIL method 

of Hashimoto et al. [8] delivered the best AUC score, compared to the weighted feature 

aggregation method by Mercan et al. [15], ChikonMIL method by Chikontwe et al. [7], 

the patch-based classification method [11], [39] and the Streaming CNN method [22]. With 

multiple input scales, the patch-based method did not show significant improvement in AUC 

score, but the performance across all classes is more evenly distributed.
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FIGURE 1. 
Overview of ScATNet for classifying skin biopsy images. To learn representations from 

these large WSIs at multiple input scales in an end-to-end fashion, ScATNet factorizes 

the classification pipeline into three steps. The first step involves learning local patch-

wise embeddings using an off-the-shelf CNN for each input scale independently. In the 

second step, ScATNet learns inter-patch representations using transformers and produces 

contextualized patch embeddings for each input scale. In the last step, ScATNet learns 

inter-scale representations from concatenated multi-scale contextualized patch embeddings 

using another transformer network and produces scale-aware embeddings, which are then 

classified linearly into diagnostic categories.
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FIGURE 2. 
The transformer network stacks L transformer units sequentially. Each transformer unit 

consists of self-attention and feed-forward modules.
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FIGURE 3. 
Overview of Soft labels calculation. Diagnostically constrained soft labels are calculated for 

tissue slices without an ROI using singular value decomposition (see Section III-C).
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FIGURE 4. 
(a) shows different labeling methods, including our soft label method, for an pT1a skin 

biopsy image with three tissue slices and one representative region of interest (red box) 

that helped expert pathologists in diagnosing the image. (b) compares the performance of 

different labeling methods. Our soft labeling method is simple and effective; it reduces the 

ambiguity that arises during training because of multiple tissue slices in a WSI that do not 

have a ROI and helps improve the performance. In (b), we do not report sensitivity and 

specificity, because their values are the same as accuracy.
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FIGURE 5. 
Effect of number of crops (m) on the performance of ScATNet (single scale) for inputs at 

three different scale levels (7.5x, 10x, and 12.5x).
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FIGURE 6. 
Effect of single and multiple input scales. For single and multiple input scales, we 

compared the overall performance of ScATNet across different metrics in (a) while in 

(b), we compared the class-wise accuracy. With multiple input scales, overall and class-

wise performance, especially in invasive cancer categories (pT1a and pT1b), of ScATNet 

improved across all evaluation metrics. Diagnostic terms are defined as the following: mild 
and moderate dysplastic nevi (MMD), melanoma in situ (MIS), invasive melanoma stage 
pT1a (pT1a), invasive melanoma stage ≥pT1b (pT1b).
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FIGURE 7. 
Comparison of class-wise accuracy with state-of-the-art WSI classification methods on the 

test set. Diagnostic terms are defined as the following: mild and moderate dysplastic nevi 
(MMD), melanoma in situ (MIS), invasive melanoma stage pT1a (pT1a), invasive melanoma 
stage ≥pT1b (pT1b). Overall, ScATNet delivered better performance across all diagnostic 

categories except the pT1b category.
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FIGURE 8. 
Visualization of gradient in ScATNet. The left column shows original whole slide images 

in all diagnostic categories: mild and moderate dysplastic nevi (MMD), melanoma in situ 
(MIS), invasive melanoma stage pT1a (pT1a), invasive melanoma stage ≥pT1b (pT1b). The 

right two columns are the corresponding gradient maps calculated from 7.5x and 12.5x input 

scales. All examples shown were correctly classified into their diagnostic categories. Colors 

from purple to yellow are assigned to values between 0 and 1.

WU et al. Page 30

IEEE Access. Author manuscript; available in PMC 2022 February 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 9. 
Receiver operating characteristic (ROC) curves of ScATNet with different numbers of input 

scales. For a single scale (a-c), the performance improves with the input scale, especially 

for invasive cancers. For two scale combinations (d-f), we do not observe significant gains. 

However, a combination of smaller and larger input scales (7.5x and 12.5x) delivered good 

performance across all diagnostic classes. Diagnostic terms are defined as the following: 

mild and moderate dysplastic nevi (MMD), melanoma in situ (MIS), invasive melanoma 
stage pT1a (pT1a), invasive melanoma stage ≥pT1b (pT1b).
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FIGURE 10. 
Comparison of ROC curves with state-of-the-art WSI classification methods on the test set. 

Here, SSC denotes single input scale (10 ). MSC denotes multiple input scales (7.5x, 10x, 

12.5x), while MSC* denotes 10x, 20x. Overall, the MS-DA-MIL method of Hashimoto et 
al. [8] delivers the best performance of all other existing methods. Diagnostic terms are 

defined as the following: mild and moderate dysplastic nevi (MMD), melanoma in situ 
(MIS), invasive melanoma stage pT1a (pT1a), invasive melanoma stage ≥pT1b (pT1b).
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TABLE 1.

Statistics of skin biopsy whole slide image (WSI) dataset. The average WSI size is computed at a 

magnification factor of 10x. Diagnostic terms for the dataset used in this study are as follows: mild and 
moderate dysplastic nevi (MMD), melanoma in situ (MIS), invasive melanoma stage pT1a (pT1a), invasive 
melanoma stage ≥pT1b (pT1b).

Diagnostic Category
Number of WSIs

Average WSI size (in pixels)
Training Validation Test Total

MMD 26 6 29 61 11843 × 10315

MIS 25 5 30 60 9133 × 8501

pT1a 33 6 34 73 9490 × 7984

pT1b 18 6 22 46 14858 × 12154

Total 102 23 115 240 11130 × 9603

IEEE Access. Author manuscript; available in PMC 2022 February 23.
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TABLE 3.

Comparison of ScATNet with pathologists’ (PG) performance. Pathologists’ performance data is from a prior 

independent clinical study of 187 pathologists [6] who interpreted these same 115 cases in our test set (Table 

1). Diagnostic terms are defined as the following: mild and moderate dysplastic nevi (MMD), melanoma in 
situ (MIS), invasive melanoma stage pT1a (pT1a), invasive melanoma stage ≥pT1b (pT1b).

Diagnostic Category
Accuracy F1 Sensitivity Specificity

PG Ours PG Oars PG Ours PG Ours

MMD 0.92 0.79 0.71 0.75 0.92 0.79 0.76 0.89

MIS 0.46 0.40 0.49 0.44 0.46 0.40 0.85 0.84

pT1a 0.51 0.65 0.62 0.63 0.51 0.65 0.95 0.84

pT1b 0.72 0.77 0.72 0.74 0.78 0.77 0.97 0.92

Overall 0.65 0.64 0.65 0.64 0.65 0.64 0.88 0.88
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