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Abstract 

Recent work has shown that undergraduates at a major public 
university demonstrate implicit understanding of inverse 
relations between multiplication problems with fractions, as 
evidenced by the fact that solving one problem facilitates 
solving its inverse. The present study investigated whether 
such implicit understanding of mathematical relations is 
related to overall math ability. We found that low performers 
showed relational facilitation only when it was supported by 
perceptual similarity, whereas high performers showed 
relational facilitation on both perceptually similar and 
dissimilar problems. These findings are interpreted in terms 
of novice-expert differences in the representation of 
mathematical relations. 

Keywords: mathematical reasoning, rational numbers, 
relational reasoning, expertise 

Introduction 
Research on expertise has highlighted differences between 
the mental representations of experts and novices. Experts 
and novices not only approach problems differently, but 
also differ in how they allocate attention and relate problems 
to one another (e.g., Chi, Feltovich & Glaser, 1981; Novick, 
1988; Chase & Simon, 1973). These differences have been 
observed in a variety of problem-solving contexts, including 
chess, physics, and mathematics. One important 
consequence of differences between expert and novice 
processing involves transfer between problems or situations. 
For example, Chi et al. (1981) found that expert physicists 
tended to group certain problems together based on the 
physical laws involved in solving each problem. In contrast, 
novices grouped problems based on perceptual similarity, 
rather than on underlying principles. By attending to the 
relational structure governing the problems, expert 
physicists were able to transfer problem-solving strategies 
effectively between problems involving the same abstract 

principles. The perceptual similarities on which novices 
focus are much less effective in supporting transfer. It is 
often difficult for beginning students to ignore surface 
features and encode relational structure, a fact that likely 
contributes to the difficulty in obtaining transfer between 
problems that are analogically similar but perceptually 
dissimilar (e.g., Gick & Holyoak, 1980, 1983, Hayes & 
Simon, 1977; Holyoak & Koh, 1987; Ross, 1987). In 
general, expertise or deep understanding is characterized by 
mental representations that go beyond perceptual similarity.  

In the current study we investigated the extent to which 
perceptual similarity between two relationally-similar math 
problems facilitates the performance of solvers who differ in 
their level of math expertise. 

Expertise in Mathematics: The Case of Rational 
Numbers 
The general pattern of differences between expert and 
novice understanding is found within the realm of 
mathematics (Novick, 1988; Schoenfeld & Hermann, 1982). 
Expert mathematicians (e.g., math professors, or those who 
achieve high scores on a math proficiency test) are more 
likely to judge problems embodying the same mathematical 
structure to be similar, are more likely to apply the same 
problem-solving strategies to relationally-related problems, 
and demonstrate greater transfer after a delay (Novick, 
1988; Novick & Holyoak, 1991). Expertise in mathematics 
is often associated with more rapid solution times (e.g., 
Kellman, Massey & Son, 2010; Stevenson et al., 1990). 

Understanding of rational numbers (fractions and 
decimals) provides a particularly interesting context for 
investigating differences in expert and novice 
understanding. Novice students often inappropriately 
transfer characteristics of whole numbers to fractions, and 
therefore expect fractions to be countable and discrete (Ni & 
Zhou, 2005; Stafylidou & Vosniadou, 2004). These 
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misconceptions persist in adults with lower overall 
competence in mathematics. For example, based on oral 
explanations of fraction concepts, Stigler and colleagues 
(Givvin, Stigler & Thompson, 2011; Stigler, Givvin & 
Thompson, 2010) found that community-college students 
exhibit many of the same misconceptions about fraction 
magnitudes and fraction arithmetic as do middle-school 
students. In contrast, other studies conducted with students 
at highly competitive universities (e.g., Schneider & Siegler, 
2010; DeWolf, Grounds, Bassok & Holyoak, 2014) have 
found that these students, who tend to have greater 
mathematical expertise, are able to represent fraction 
magnitudes with little difficulty.  

Expert-novice differences have been observed in fraction 
arithmetic. In the realm of (positive) whole numbers, 
multiplication yields a larger result and division a smaller 
result, but this is not generally true of rational numbers, 
such as fractions or decimals less than 1. Siegler and Lortie-
Forgues (in press) asked participants from a wide range of 
math backgrounds to perform a simple task involving 
fraction multiplication and division. Participants simply had 
to decide whether problems like 31/56 * 17/42 > 31/56 are 
true. The investigators found that while math and science 
students from a highly competitive university were 
consistently correct, pre-service teachers and middle-school 
students performed at below-chance levels. 

A central issue is that beginning students (and many 
elementary-school teachers) have difficulty understanding 
mathematical operations and how they relate to one another 
(Ma, 1999; Siegler et al., 2011, 2013). For example, fraction 
addition and subtraction require finding common 
denominators, whereas fraction multiplication and division 
do not. Students are often unclear as to when and why it is 
necessary to find common denominators. This lack of 
understanding of procedures may reflect a lack of deep 
conceptual understanding of the relations between operators, 
and of how the division operation within a fraction relates to 
other operations in the problem. 

Understanding Fraction Multiplication and Inverse 
Relations 
This lack of understanding is especially evident in the case 
of the “invert and multiply” strategy in fraction division. 
Early on, students are taught that to complete a fraction 
division problem, all that is required is to invert the second 
fraction in the problem and then proceed with the fraction 
multiplication procedure. But understanding why this 
strategy works is not simple. Tirosh (2000) found that even 
pre-service teachers have little understanding of this 
strategy.  

The reason why the invert-and-multiply strategy works 
involves the reciprocal relationships between the two factors 
in a multiplication problem and their relationship to a 
product.  For example, 5 ÷ 10 is the same as 5/10, which is 
the same as 5 X 1/10 since 10 and 1/10 are reciprocals.  In 
addition, students have to understand that the “bar” in the 
fraction expression denotes a division operation; and as 

such, it can be used to represent a relation within the 
multiplication operation itself. Thus, the same strategy 
applies when multiplying either whole numbers or fractions. 
Performing the operation “2 ÷ 3” is equivalent to “2/3” and 
also “2 X 1/3”. Furthermore, “2 ÷ 3” represents the same 
proportional relation as “4 ÷ 6”. A deep understanding of 
this type of relational structure would allow students to 
move flexibly between any of these equivalent notations. 

Overview of Current Study 
In the current study we sought to better understand the 
differences in understanding of multiplication with rational 
numbers and inverse relations across high- and low-
performing math students. We tested whether adults from 
varying math backgrounds are sensitive to different types of 
similarities between multiplication problems. DeWolf and 
Holyoak (2014) found that participants from a highly 
competitive university showed facilitation in solving a 
multiplication problem when it was preceded by its inverse. 
For example, participants were faster to solve 3 X 4/3 = 4 if 
it was preceded by 4 X 3/4 = 3. College students were 
sensitive to the inverse relation between problems when the 
second multiplier was expressed as a fraction, but not as a 
decimal (e.g., the pair 3 X 1.33 = 4 and 4 X .75 = 3 yielded 
no facilitation of the second problem). Importantly, 
facilitation was found for fraction problems even when the 
inverse relation was less perceptually apparent (e.g., 4 X 6/8 
= 3 preceded by 3 X 4/3 = 4). These college students thus 
showed implicit understanding of the inverse relation 
between fraction multiplication problems. 

This apparent relational transfer might seem surprising in 
light of the evidence discussed above indicating that many 
students have difficulty in understanding fraction 
multiplication, let alone transferring relational knowledge 
between inverse problems. One hypothesis is that this type 
of implicit understanding of inverse relations only emerges 
for relatively expert (or in our study, relatively high-
performing) students.. In order to assess transfer 
performance across a wide range of math ability that would 
span relatively novice and expert levels of performance, we 
recruited participants from two universities in one American 
city. We administered a general math ability test to obtain a 
measure of participants’ overall math ability, and used this 
measure to separate students into high- and low-performing 
groups. Our sample included students who ranged widely in 
overall mathematical ability.   

We varied the degree of perceptual similarity between 
inverse fraction problems. In the high-similarity condition, 
the relationship between the fraction problems was 
perceptually salient (e.g., 3 X 4/3 = 4; 4 X 3/4 = 3). In the 
low-similarity condition, the two fraction multipliers were 
perceptually different but still maintained their relational 
similarity (e.g., 3 X 4/3 = 4; 4 X 6/8 = 3, where 4/3 and 6/8 
are reciprocals of one another). We hypothesized that low-
performing participants may show facilitation in the high-
similarity case, for which a perceptual strategy supports 
relational similarity, but not in the low-similarity case where 
reliance on perceptual similarity is not possible. 
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Method 

Participants 
A total of 89 undergraduates participated in the study for 
course credit. Thirty-four participants were undergraduates 
from California State University, Los Angeles (CSULA) (19 
females) and 55 were undergraduates from University of 
California, Los Angeles (UCLA) (44 females). 

Design, Materials, and Procedure 
Speeded Multiplication Task. This task was an adaptation 
of the multiplication-priming paradigm used by DeWolf and 
Holyoak (2014), which demonstrated implicit relational 
transfer. Participants were shown a series of multiplication 
problems that were either true (correct) or false (incorrect). 
They were simply asked to verify whether the problems 
were true or false. A quarter of the problems were true 
“primed pairs” in which a prime problem was inversely 
related to the successive target problem (e.g., 3 X 4/3 = 4 
primes 4 X 3/4 = 3). Participants were randomly assigned to 
one of three between-subjects conditions in this task: high-
similarity fraction pairs (N = 30), low-similarity fraction 
pairs (N = 29), and decimal pairs (N = 30).  

The high-similarity fractions were identical to the 
“matching fractions” used by DeWolf and Holyoak (2014), 
which afford a variety of perceptually-driven strategies. The 
low-similarity fractions were constructed by mixing the 
prime and target problems from the “matching fractions” 
and “non-matching fractions” conditions in Experiment 2 of 
DeWolf and Holyoak (2014). That is, these primed pairs 
included an expression in which the fraction and whole 
number components matched (e.g., 3 X 4/3 = 4), and an 
expression in which the fraction components did not match 
the whole numbers (e.g., 4 X 6/8 = 3). Priming in this 
condition thus depends on appreciating the inverse relation 
between the successive problems despite the low perceptual 
similarity between them. The prime and target assignments 
within the primed pairs were counterbalanced across 
participants. Importantly, the two fraction conditions were 
identical except for this difference in primed pairs. 
 As in similar previous studies of rational numbers (e.g., 
DeWolf, Bassok & Holyoak, 2015a), a decimal condition 
was included for comparison with fractions. The decimal 
condition used the same values as the fraction conditions, in 
that the second term in the multiplication problem was 
simply the fraction converted to its equivalent decimal 
rounded to the nearest hundredth (e.g., 3 X 1.33 = 4). 

A total of 240 multiplication problems were used, half 
true and half false. Sixty of the 120 true problems were true 
primed problems (30 true primed pairs). Sixty of the 120 
false problems were false primed problems (30 false primed 
pairs); these shared the inverse relation between successive 
problems, but were false. The remaining 120 problems were 
foil problems that were not related to each other in any way. 
These problems were designed to obscure the similarity 
between the primed problems. Besides the pairing of the 

problems within the primed pairs, the overall order of the 
problems was random for every participant.  

The multiplication task was administered using Superlab 
4.5 (Cedrus Corp., 2004), which was used to collect 
accuracy and response time data. Participants were told that 
they would see multiplication problems. They were told to 
press the “a” key if the problem was true or the “l” key if 
the problem was false. Participants were told that the 
answers were shown rounded to the nearest whole number. 
As we were interested in potentially subtle response time 
differences, participants were instructed to respond as 
quickly as possible while maintaining high accuracy. They 
were first given four practice trials that used only whole 
numbers. After the practice trials, participants were given a 
chance to ask questions before starting the test trials. 

 

Explicit General Math Test A second task that participants 
completed was an explicit measure of general math 
knowledge, which was used to split the participants into 
relatively low- and high-performing groups. This task 
involved a total of 25 multiple-choice problems, and eight 
problems requiring a solution (either equations or word 
problems). The test comprised three subsections, each 
designed to assess a domain of mathematical understanding: 
algebra, fractions, and multiplicative understanding. The 
algebra questions (adapted from Booth et al., 2014) included 
basic equation solving questions, word problems, and 
evaluations of algebraic expressions. Fraction problems 
queried participants about equivalent fractions, ratio 
relationships, and the relation between the size of the 
numerator and denominator. Multiplicative questions asked 
about the greatest common factor of two numbers, the 
reciprocals of certain numbers, and lowest common 
multiples of two numbers. These problems were adapted 
from released questions from the 2008 California State 
Standards exam for Algebra I. Successful performance on 
this test would only require a level of understanding 
corresponding to basic high school math.  

This test was administered with paper and pencil. 
Participants were randomly assigned to one of three 
different random orders. They were encouraged to use space 
on the page to write out their work, and were told not to use 
a calculator. 

Results 

Explicit General Math Test 
Because the explicit test consisted of questions that were 
multiple choice, or questions for which there was only one 
correct answer, questions were scored on a 0, 1 basis. Final 
scores for subtests were averaged across questions in a 
relevant subset. 

Overall accuracy on the test across all participants was 
79% (SD = 15; minimum score = 36%, maximum score = 
100%). For the subset of algebra problems, overall accuracy 
was 77% (SD = 17, minimum score = 41%, maximum score 
= 100%). For the subset of fraction questions, overall 
accuracy was 77% (SD = 23, minimum score = 13%, 
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maximum score = 100%). Finally, for the subset of 
multiplicative questions, overall accuracy was 77% (SD = 
17, minimum score = 50%, maximum score = 100%). The 
participants thus ranged considerably in overall math ability, 
providing a high-variance sample to examine differences in 
performance between low- and high-performing 
participants. 

Relation Between Speeded Multiplication and Math 
Expertise 
Accuracy on the speeded multiplication task was computed 
for true1 prime and target trials after dividing participants 
into low- and high-performance groups, based on a median 
split performed separately for each of the three conditions.    
For the high-similarity fractions condition, the high-
performance group achieved significantly higher accuracy 
than the low-performance group (.97 vs. .87; t(24) = 2.53, p 
= .02).  For the low-similarity fraction condition, the high-
performance group showed a non-significant trend for 
higher accuracy than the low-performance group (.91 vs. 
.84; t(27) = 1.33, p = .19). For the decimals condition, the 
high-performance group also showed a non-significant trend 
for higher accuracy relative to the low-performance group 
(.67 vs .54, t(27) = 1.36, p = .18). There was no evidence of 
a priming effect for any of the conditions on the accuracy 
measure, and no evidence of a difference in priming across 
low- and high-performing groups.   
 Figure 1 shows response times for true prime and target 
trials, separated into low- and high-performance groups 
based on the same median split of the explicit task used for 
the accuracy analysis. Response times for error trials and 
those more than three standard deviations from the mean of 
accurate trials were excluded from analyses. The change in 
RT from the average prime RT to the average target RT 
(prime – target) was calculated to assess the speed-up 
attributable to priming for each participant. For the high-
similarity fractions, the average speed-up across participants 
in the low-performing group was significantly larger than 
that for the high-performing group (.73 s vs. .23 s, t(24) = 
3.18, p = .004). Thus when pairs of mathematical problems 
were perceptually similar, as in the high-similarity 
condition, the priming effect held for both high- and low-
performing students, and was actually largest for low-
performing students.  

The priming difference observed in the high-similarity 
fraction condition may in part be related to general 
differences in RT between the low- and high-performing 
groups. Average prime RT for the low-performing group 
was considerably slower than for the high-performing 
group. Also, average target RT for the low-performing 
group was slower than RT for either the prime or target in  

                                                             
1 As in DeWolf and Holyoak (2014), we find that the priming 
effect only held for the true primed trials (high-similarity false 
primes: 4.5 s vs. 4.3 s, t(25) = .91, p = .37; low-similarity false 
primes: 4.9 s vs. 4.5 s, t(28) = 1.93, p = .07). The same pattern of 
results for false primed trials was found after conducting the 
median-split analysis. 

  
Figure 1. Average response times for true prime and target 
trials for each condition, separated by low- versus high-
performing math students. 
 
the high-performing group. Thus, although the speed-up for 
the low-performing group was much larger than that for the 
high-performing group, these differential gains may be 
related to the longer overall response times of the former 
group. 

In stark contrast, for the low-similarity fraction condition, 
the high-performing group had a significantly greater 
average speed-up than did the low-performing group (.27 s 
vs. -.06 s, t(27) = 2.33, p = .03). In fact, the latter group 
showed no priming effect, and, their RTs were slower 
overall compared to those of the high-performing group. 

For the decimals condition, neither high- nor low-
performing students showed any evidence of priming. The 
average speed-up for the low-performing group did not 
differ reliably from that of the high-performing group (.03 s 
vs. .09 s, t(27) = .13, p = .89).  For both groups, RTs on 
decimal trials were slower than on either type of fraction 
trials. 
 

Correlations between Multiplication Task and Math 
Expertise  In order to better understand how the subparts of 
the explicit math test related to performance on the speeded 
multiplication task, we correlated performance on each of 
the subparts of the explicit test (algebra, fraction, 
multiplicative) with overall accuracy and response times for 
each of the three conditions on the multiplication task, for 
all participants (i.e., combining high- and low-performing 
participants).   Table 1 shows the correlations between each 
of the multiplication-task conditions and accuracy on the 
explicit math test (overall and for each subtest).  

For the high-similarity fraction condition, both overall 
accuracy and RT on the multiplication task were 
significantly correlated with overall accuracy on the explicit 
test and with each of the subtests. A similar pattern of 
correlations was observed for the low-similarity fraction 
condition, except that correlations with the multiplicative 
subtest were not reliable. For the decimals condition, 
accuracy was significantly correlated with all but the 
multiplicative test, whereas RT was correlated only with the 
algebra subtest (and overall score). 
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Table 1: Correlations between performance on the speeded 
multiplication task (accuracy and RT) and score on explicit 
math test (overall and each subtest).  
 

 
Multiplication  
Condition 

Overall 
Test 

Algebra 
Subtest 

Fractions 
Subtest 

Multipli-
cative 

Subtest 
High-similarity Fraction 
   Accuracy 
   RT 

.70*** 
-.60*** 

.60*** 
-.59** 

.54** 

-.51** 
.75*** 
-.40* 

Low-similarity Fraction 
   Accuracy 
   RT 

.53** 

-.54** 
.55** 

-.47* 
.50** 

-.57** 
.25 
-.36 

Decimals 
   Accuracy 
   RT 

.55** 
-.37* 

.54** 
-.45* 

.46* 
-.15 

.25 
-.19 

* p<.05; ** p<.01; *** p<.001 
 

The observed pattern of correlations between speeded 
multiplication and explicit math performance suggests that 
across all participants, multiplicative knowledge is not a 
reliable predictor when perceptual cues to relational 
structure are lacking (i.e., in the low-similarity fraction and 
decimal conditions). Especially in a speeded task, 
multiplicative strategies may not be employed without 
obvious perceptual supports (at least for students with lower 
math ability). 

Discussion 
The present study demonstrates clear differences in 
understanding of inverse relations and fraction 
multiplication between low- and high-performing math 
students.  In the high-similarity fraction condition, 
perceptual cues guide attention to relational structure, as the 
numbers in the first problem are simply rearranged in the 
inverse manner in the second problem (e.g., 3 X 4/3 = 4; 4 
X 3/4 = 3). For this pair type, the low-performing group 
showed greater facilitation on response time for target 
problems than did high-performing participants. Low-
performing students were thus able to capitalize on 
perceptual similarity between problems to facilitate transfer. 
 Despite their large decrease in response time on target 
trials, low-performing participants were still slower in 
responding than high-performing participants. Moreover, 
the two groups performed very differently in the low-
similarity fraction condition. In such problems the numbers 
in the successive fractions were different, even though they 
were reciprocals (e.g., 3 X 4/3 = 4; 4 X 6/8 = 3). For these 
low-similarity problems, for which perceptual cues did not 
strongly guide attention to relation structure, only high-
performing students demonstrated facilitation on target 
problems. 

The present findings are consistent with previous work on 
novice versus expert transfer in mathematics and other 
domains, but go beyond previous studies by using the 
speeded multiplication task to provide an implicit measure 
of relational transfer. This implicit measure of transfer 
indicates that individuals with greater math expertise 
process relationally-similar problems more effectively than 
do novices.  

 In general, low math performers were slower and less 
accurate on the speeded multiplication task. In addition, we 
found that while the magnitude of priming for the RT 
measure correlated with all of the subparts of the explicit 
math test, RT in the decimal condition only correlated with 
the algebra subset of questions. Because performance on 
decimal problems largely depends on correctly estimating 
the magnitude of the decimal and the resulting product (i.e., 
there is no possible simplification of the problem as there is 
for fraction problems), the decimal condition is largely an 
estimation task. Thus, the decimal version of the task is 
likely measuring something akin to decimal magnitude 
understanding. Previous work has shown that, at least for 
middle-school Algebra-I students, decimal magnitude 
understanding is a strong predictor of algebra performance 
(DeWolf, Bassok & Holyoak, 2015b). 

Several potential mechanisms may contribute to the 
priming effect we observed in the speeded multiplication 
task.  Perceptual similarity between problems accounts for 
part of the effect, as evidenced by the robust priming effect 
observed in the high-similarity fraction condition for both 
low- and high-performing participants. As observed in other 
relational tasks, reasoning is facilitated by salient semantic 
or perceptual cues that are correlated with more abstract 
relations (Bassok, 1996). 

More interesting, perhaps, are the possible mechanisms 
by which relatively expert adults are able to exploit shared 
inverse relations between fraction problems that lack simple 
perceptual cues to the relational correspondences. Our 
findings suggest that low-performing participants 
understand the inverse relation at some level, but lack the 
abilities in pattern recognition or in simplifying fractions 
that are required to obtain priming in the low-similarity 
condition.  It appears that experts have an advantage in 
recognizing equivalent fractions based on different 
constituent numbers, likely due to the greater fluency with 
which experts are able to reduce or simplify common 
fractions. These high-performing participants may in some 
sense “see” fractions differently.  High-performing adults 
may have greater perceptual expertise with fractions, and in 
connecting alternative simplified or reduced forms of 
fractions (cf. Kellman et al, 2008).  Thus, an expert (or high-
performing student) may have a deeper appreciation for 
relevant relations and operations even at an implicit level. 
Low- and high-performing participants showed little 
difference in accuracy on the simple multiplication 
problems we tested; however, the large differences we 
observed in response times suggest that more expert adults 
benefit from more direct access to inverse relations, 
allowing them to make mappings between problems with 
greater ease. 
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