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A B S T R A C T

Omics techniques, including genomics, transcriptomics, proteomics, metabolomics, and lipidomics, analyze 
entire sets of biological molecules to seek comprehensive knowledge on a particular phenotype. These ap-
proaches have been extensively utilized to identify both biomarkers and biological mechanisms for various 
physiological conditions in livestock and poultry. The purpose of this symposium was not only to focus on how 
recent omics technologies can be used to gather, integrate, and interpret data produced by various methodologies 
in poultry research, but also to highlight how omics and bioinformatics have increased our understanding of 
poultry meat quality problems and other complex traits. This Poultry Science Association symposium paper 
includes 5 sections that cover: 1) functional annotation of cis-regulatory elements in the genome informs genetic 
control of complex traits in poultry, 2) mass spectrometry for proteomics, metabolomics, and lipidomics, 3) 
proteomic approaches to investigate meat quality, 4) spatial transcriptomics and metabolomics studies of 
wooden breast disease, and 5) multiomics analyses on chicken meat quality and spaghetti meat. These topics 
provide insights into the molecular components that contribute to the structure, function, and dynamics of the 
underlying mechanisms influencing meat quality traits, including chicken breast myopathies. This information 
will ultimately contribute to improving the quality and composition of poultry products.

Introduction

The suffix “-omics” refers to the comprehensive study of entire sets of 
biological molecules within a particular domain (Vailati-Riboni et al., 
2017). For instance, "genomics" encompasses the full array of DNA 
within an organism, "transcriptomics" covers the complete set of RNA 
transcripts, "proteomics" focuses on the totality of proteins, "metab-
olomics" investigates the broad spectrum of metabolites, and "lip-
idomics" examines the entire range of lipids. By analyzing entire sets of 
biological molecules, these approaches help to unravel complex in-
teractions and identify novel biomarkers or therapeutic targets, thereby 
shedding light on the mechanisms driving phenotypic differences 
(Karczewski and Snyder, 2018). Animal scientists have successfully 
identified specific genes, proteins, metabolites, lipids, and pathways 
associated with animal health and production by employing omics 
techniques (Dehau et al., 2022).

Advancements in animal genetics, breeding, and nutrition have led 

to dramatic improvements in the growth rate and efficiency related 
traits in modern broiler chickens (Choi et al., 2023; Zuidhof et al., 2014). 
However, emerging breast muscle myopathies such as wooden breast 
(WB), white stripping (WS), and spaghetti meat (SM) seem to be related 
to the increased growth rate and breast muscle yield of fast-growing 
broilers (Choi et al., 2023; Petracci et al., 2019). The incidence of WS 
and/or WB may cause $200 million and $1 billion economic loss per 
year in the US poultry industry (Barbut, 2020; Kuttappan et al., 2016). 
However, to date, the specific etiologies of muscle myopathies in broiler 
chickens remain unknown. It is critical to understand the specific eti-
ologies of muscle myopathies to develop effective strategies to decrease 
the incidence and mitigate the impact of these myopathies on poultry 
production and meat quality.

Numerous studies have investigated the etiologies and functional 
traits of chicken breast muscle and meat quality in relation to myopa-
thies, particularly in WB and WS (Kong et al., 2024a; Trithavisup et al., 
2024; Z. Wang et al., 2023). Additionally, SM has emerged as a newly 
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recognized muscle myopathy in broiler chickens. The advent of "mul-
tiomics," which integrates multiple types of omics data (Hasin et al., 
2017), has made these investigations more comprehensive and acces-
sible. This paper is derived from presentations in the omics symposium 
held at the 2024 Poultry Science Association Annual Meeting in Louis-
ville, Kentucky to highlight the utilization of various omics technologies 
including genomics, transcriptomics, proteomics, metabolomics, and 
lipidomics in research on meat quality and other complex traits in 
poultry and livestock. The main three themes in this article include: 1. 
Genomic approaches to control complex traits in poultry; 2. Methods of 
mass spectrometry for proteomics, metabolomics and lipidomics; 3. 
Application of multiomics including proteomics, metabolomics, and 
lipidomics to investigate meat quality traits and chicken breast myop-
athies including WB and SM.

Functional annotation of cis-regulatory elements in the genome 
informs genetic control of complex traits in poultry

Huaijun Zhou, Department of Animal Science, University of California, 
Davis

Over the past few decades, poultry production has grown more than 
five-fold, making it the primary meat consumed in the United States 
(USDA-NASS, 2021). One of the key drivers of this growth in poultry 
consumption, compared to other animal products, is the tremendous 
advancements in poultry breeding that have resulted in commercial 
chickens with enhanced genetic potential. Specifically, primary 
breeders, who are responsible for the genetic improvements in poultry, 
have successfully selected birds with superior production traits and 
other economically important characteristics. For example, research has 
shown that modern broilers achieved more than 3.7-4.7 times greater 
body weight and are about four times more feed efficient compared to 
their counterparts from the 1950s, Athens Canadian Random Bred 
(ACRB) (Collins et al., 2014). When utilizing feeds typical for years 1957 
and 2001, it was estimated that 85-90% of this improvement is attrib-
utable to genetics, with the remaining 10-15% to nutrition (Havenstein 
et al., 2003). The net result is greater efficiency at all levels of produc-
tion, leading to a reduced environmental footprint and lower com-
modity prices for consumers.

Poultry remains the most affordable source of protein, and its 
breeding methods are now considered models for other livestock. To 
meet the increasing demands of consumers, the poultry industry must 
continue to improve selection methods in breeding programs. Similar to 
other farm animals, the poultry industry has adopted genomic selection 
(GS) to estimate the breeding value of elite individuals, which, in theory, 
can substantially increase the rate of genetic gain compared to tradi-
tional selection methods. A significant challenge, however, lies in 
identifying the underlying polymorphisms responsible for these large 
genetic gains. Genome-wide association studies (GWAS) have identified 
thousands of quantitative trait loci (QTL) or genomic regions statisti-
cally associated with phenotypic traits of interest (Ren et al., 2024). In 
many instances, the identified variants are not directly ‘causal’ and do 
not directly regulate the target gene. This occurs because, within 

populations, many genetic variants are co-inherited, leading to strong 
correlations between genotypes at different loci (linkage disequilibrium, 
LD) (Gallagher and Chen-Plotkin, 2018). Additional functional annota-
tion of the putative variants is necessary to distinguish between causal 
and merely associated variants. Boyle et al. (2017) proposed the 
“omnigenic” model, suggesting that complex traits are influenced by a 
large number of regulatory variants of small effects active in relevant 
tissues. Further research has suggested that variations in complex traits 
are primarily driven by weak trans-eQTL (expression QTL) that regulate 
thousands of peripheral genes, ultimately affecting the expression of a 
set of core genes (Liu et al., 2019). This observation, coupled with the 
fact that protein-coding gene variants account for only a small propor-
tion of the genetic variance for most complex traits, underscores the 
importance of identifying transcriptional regulatory elements (REs). 
This is further supported by evidence showing that 90% of GWAS 
disease-associated SNPs are located outside of coding sequences 
(Maurano et al., 2012). Therefore, annotating the non-coding regions of 
the chicken genome, particularly regulatory elements, is essential for 
providing functional insights into the putative genetic variants.

Following the successful Human and Mouse Encyclopedia of DNA 
Elements (ENCODE) projects, which functionally annotated regulatory 
elements in human and mouse genomes, the coordinated international 
effort on Functional Annotation of Animal Genomes (FAANG) has made 
significant strides in identifying and annotating regulatory elements in 
the chicken genome. Cis-regulatory elements are regions of DNA that 
regulate the expression of nearby genes and include promoters, en-
hancers, insulators. To accurately determine the positions and roles of 
various regulatory elements in the chicken genome, high-throughput 
epigenomic assays were employed. For the FAANG project, core assays 
include Assay for Transposase-Accessible Chromatin (ATAC-seq) for 
evaluating chromatin accessibility, and Chromatin Immunoprecipita-
tion Sequencing (ChIP-seq) on the four most informative histone mod-
ifications– histone H3 lysine 4 trimethylation (H3K4me3), H3 lysine 27 
trimethylation (H3K27me3), H3 lysine 27 acetylation (H3K27ac), and 
H3 lysine 4 monomethylation (H3K4Me1)—as well as insulator-binding 
protein CCCTC-binding factor (CTCF) (Kern et al., 2021). Active and 
inactive promoters and enhancers, along with insulators, can be char-
acterized based on the combinations of activation marks identified in 
these assays (Table 1).

In the first phase of the FAANG project, a total of 23 tissues were 
collected from the F1 cross of two highly inbred lines: line 6 and line 7, 
maintained in the USDA, ARS, Avian Disease and Oncology Laboratory. 
These tissues were taken from two male and two female birds at the 
adult stage for these assays (Pan et al., 2023). An integrative hidden 
Markov models (HMM) (Kern et al., 2021) was applied to predict a total 
of 15 distinct chromatin states for each tissue. More than 1.57 million 
regulatory elements were identified and characterized in the chicken 
genome. Since enhancers are often located far from their target genes, 
predicting enhancer-gene pairs is crucial for elucidating underlying gene 
regulation. This study predicted about 1.2 million enhancer-gene pairs 
in the chicken genome. Furthermore, these findings were integrated 
with GWAS data on the economically important traits in chickens in 
order to pinpoint putative causal variants. The study found that GWAS 

Table 1 
Identification of promoter, enhancer and insulator elements based on activation marks on ATAC-seq and ChIP-seq.

Regulatory Element Activation Marks

ATAC-seq H3K4me3 H3K27me3 H3K27ac H3K4me1 CTCF

Active Promoter + + − + − +/−
Inactive Promoter + − + − + +/−
Active Enhancer + +/− +/− + + +/−
Inactive Enhancer + +/− +/− − + +/−
Insulator + − − − − +

Note: + indicates peaks on the marks; − indicates no peaks on the marks; +/− indicated poised peaks on marks depends on tissues, developmental or physiological 
status (Cheng et al., 2021).
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linked variants were significantly enriched in biologically related 
tissue-specific regulatory elements. For example, growth rate-associated 
variants were enriched in liver, muscle, intestinal tissue-specific en-
hancers and promoters (Pan et al., 2023). This comprehensive atlas of 
regulatory elements across tissues provides a vital resource for the 
poultry community to study the genetic basis of complex traits and 
bridge the genome-phenome gap by improving genomic prediction.

While the initial landscape of regulatory elements across tissues in 
the chicken genome was generated, further functional annotations on 
context-dependent samples, such as different genetic lines, develop-
mental stages, and physiological states, are warranted. It is well known 
that gene regulation acts on tissue-specific, and more importantly, cell- 
specific manners. Although the cost of single-cell sequencing per sample 
remains prohibitive for large scale assays, future functional annotation 
efforts should focus on at the cellular level.

Mass spectrometry for proteomics, metabolomics, and lipidomics

Austin Quach, Dalton Bioanalytics Inc

Mass spectrometry (MS)-based omics approaches have emerged as 
powerful tools for comprehensive molecular analysis in various fields, 
including poultry science (Cao et al., 2022; Kind et al., 2018). These 
techniques offer unprecedented insights into the complex biological 
systems that underpin avian physiology, health, and production (De 
Baere et al., 2012; Di Luca et al., 2024; Kind et al., 2018). This extended 
abstract provides an overview of proteomics, metabolomics, and lip-
idomics, highlighting their relevance to poultry research and potential 
applications.

The MS-based omics field encompasses three primary approaches: 
proteomics, metabolomics, and lipidomics. Proteomics is the study of all 
proteins within a biological system, allowing researchers to identify and 
quantify numerous proteins simultaneously (Aslam et al., 2017). This 
approach provides insights into cellular processes, signaling pathways, 
and structural components. Metabolomics focuses on all small molecules 
& metabolites present in a biological sample, offering a snapshot of the 
current metabolic state of an organism including exogenous and 
endogenous exposures such as nutrient status and utilization (Liu and 
Locasale, 2017). Lipidomics, the study of all lipids in a biological system, 
is crucial for understanding membrane biology, energy storage, and 
lipid-mediated signaling processes (Han, 2016).

MS provides complementary extra-genomic molecular information 
that is crucial for a comprehensive understanding of biological systems 
(Gstaiger and Aebersold, 2009). While genomics and transcriptomics 

have been cornerstone technologies in biological research, it’s impor-
tant to recognize that mRNA levels do not always correlate directly with 
protein levels or functional outcomes (Liu et al., 2016). MS-based omics 
bridges this gap by directly measuring the molecules that carry out 
cellular functions and transduce the phenotypes of interest (X. Wang 
et al., 2023).

In poultry science, these techniques have several important appli-
cations (Sidira et al., 2024). They can improve our understanding of 
meat quality at the molecular level by revealing changes in muscle 
proteins, metabolites, and lipids that affect texture, flavor, and shelf-life 
of poultry meat products. MS-omics can enhance animal health and 
welfare assessment by identifying biomarkers for various health condi-
tions and stress responses, potentially leading to earlier interventions 
and improved welfare practices (Brugaletta et al., 2022; Zhang et al., 
2023). These techniques can also optimize nutrition and feeding stra-
tegies by analyzing how different feed compositions affect metabolism 
and growth at the molecular level, guiding the development of more 
efficient and tailored feeding regimens (Urgessa and Woldesemayat, 
2023; Zampiga et al., 2018). Additionally, MS-based techniques can 
address food safety concerns by detecting contaminants, residues, or 
pathogens in poultry products with high sensitivity and specificity (Su 
et al., 2024).

The process of MS-omics can be broken down into three main stages: 
sample preparation, data collection and data processing (Fig. 1). Sample 
preparation involves -omics-specific sample processing. Proteomics 
typically involves protein extraction, cleavage of disulfide bonds by 
reduction and alkylation, enzymatic digestion by trypsin, and peptide 
sample cleanup (Su et al., 2024). Metabolomics and lipidomics often use 
simpler preparation procedures such as protein precipitation and 
extraction by solvent addition but may require different solvents or 
extraction techniques depending on the chemical properties of the 
molecules of interest, e.g. biphasic solvent or solid-phase extraction 
(Vuckovic, 2012).

Data collection generally involves liquid chromatography- 
electrospray ionization-MS (LC-ESI-MS). Liquid chromatography sepa-
rates the complex mixture of analyte molecules based on their physical 
and chemical properties, reducing the complexity of the sample entering 
the mass spectrometer (Karpievitch et al., 2010). Electrospray ionization 
then converts the separated molecules into gas-phase ions, which are 
necessary for MS analysis. The mass spectrometer measures the 
mass-to-charge ratio (m/z) and abundance of these ionized precursor 
molecules, and their respective MS/MS fragmentation patterns which 
are subsequently used identification (De Vijlder et al., 2018). The LC-MS 
approaches also differ among the omics types. Proteomics typically uses 

Fig. 1. Overview of the MS-omics workflow. The process begins with sample preparation, where biological samples (biofluids or tissue) undergo either protein 
digestion for proteomics or protein precipitation and extraction for metabolomics/lipidomics. In the data collection phase, prepared samples undergo liquid 
chromatography (LC) separation followed by ionization. The resulting precursor ions enter the mass spectrometer (MS) for analysis. Ions undergo fragmentation for 
MS/MS analysis. Data processing involves integrating precursor intensities and fragmentation-derived identifications for quantification. Data analysis includes 
differential analysis to identify significant changes between sample groups.
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long nanoflow gradients and nanospray ionization for improved sensi-
tivity, identifying and quantifying over thousands of proteins in a single 
run (De Vijlder et al., 2018). Metabolomics and lipidomics usually 
employ shorter microflow gradients and can identify and quantify 
hundreds of metabolites and thousands of lipids in a single analysis 
(Rakusanova and Cajka, 2024).

Data processing involves quantification and identification steps. 
Quantification extracts the peak intensities in the MS data, with the area 
under each peak being proportional to the amount of the corresponding 
molecule in the sample (Alseekh et al., 2021). Identification matches the 
observed fragmentation patterns in the MS/MS spectra to known mol-
ecules using predicted or experimental spectral libraries (Kind et al., 
2018). Data analysis in MS-omics generates large, complex datasets that 
require sophisticated bioinformatics tools. Common analytical ap-
proaches include differential analysis, co-expression module analysis, 
and pathway enrichment analysis. More advanced topics include the 
analysis of post-translational modifications in proteomics, molecular 
networking for improved identification of unknown metabolites in 
metabolomics, and detailed analysis of lipid class and acyl chain 
composition in lipidomics.

Each MS-omics approach provides unique insights into biological 
systems. Proteomics is particularly powerful for understanding biolog-
ical pathways, cell type-specific protein expression, and structural 
composition of tissues (Xiong et al., 2024). Metabolomics excels at 
elucidating metabolic pathways and their regulation, as well as detect-
ing exposures to various compounds including nutrients and environ-
mental toxicants (Chen et al., 2023). Lipidomics provides unique 
insights into membrane biology, lipid-mediated signaling pathways, and 
cellular energetics (D. Wang et al., 2023). For an example of a meat 
pathology, proteomics might reveal increased abundance of extracel-
lular matrix proteins, suggesting altered muscle structure. Metabolomics 
could show elevated levels of glycolytic intermediates, indicating a shift 
in energy metabolism. Lipidomics might identify changes in membrane 
phospholipid composition, potentially affecting muscle cell function. 
The choice of which omics to run will depend on consideration of the 
suspected causal mechanisms, and the options for interventions 
available.

While MS-omics approaches offer powerful tools for poultry science 
research, several challenges should be anticipated. These include the 
need for careful experimental design including upfront statistical power 
analysis, the complexity of data analysis and interpretation, and the 
potential for both false positives and false negatives. Collaboration with 
MS-omics experts and targeted follow-up validation of key findings are 
often necessary to extract meaningful biological insights from the data.

By understanding these principles and capabilities of MS-based 
omics, poultry scientists can leverage these powerful techniques to 
gain new insights into avian biology, improve production practices, and 
address key challenges in the industry.

Proteomic approaches to investigate meat quality

Mahesh Nair, Department of Animal Sciences, Colorado State University

The protein profile of meat influences quality attributes such as 
color, tenderness, and flavor. Meat color is one of the most significant 
attributes influencing consumer meat purchase decisions (Ramanathan 
et al., 2022), whereas tenderness influences consumer eating satisfac-
tion and repurchase decisions (Shackelford et al., 2001; Troy and Kerry, 
2010). Although extensively researched, some of the fundamental 
mechanisms contributing to meat quality differences are not completely 
understood. Developing a clear understanding of these processes at a 
biochemical and molecular level is critical in improving meat quality 
consistently. This section will cover different proteomic and metab-
olomic approaches for evaluating meat quality, both from a fresh and 
purified protein perspective. The focus of this section will be on beef, 
with the idea of developing some opportunities for cross-learning that 

can be applied to the poultry sector.
Previous studies have indicated muscle-specificity in beef quality 

attributes such as color (McKenna et al., 2005; Seyfert et al., 2006) and 
tenderness (Belew et al., 2003; Nair et al., 2019). The variation in 
postmortem metabolism among muscles, influenced by their location, 
physiological function, and muscle fiber characteristics, could be 
contributing to differences in meat quality. For example, longissimus 
lumborum (LL) and psoas major (PM) are two economically important 
muscles in beef with varying color stability. Specifically, beef LL retains 
its bright cherry red color for more than 6 d during retail display, 
whereas PM only maintains a bright cherry red color for a little longer 
than 24 h (Nair et al., 2018). Our initial studies using the novel tandem 
mass tag labeling to identify proteome changes in beef muscles during 
the early postmortem period indicated that greater color stability of beef 
LL compared to PM could be related to increased expression of 
anti-apoptotic proteins and the decreased expression of metabolic en-
zymes and proapoptotic proteins in LL (Zhai et al., 2020).

Like meat color, tenderness is also influenced by the postmortem 
metabolic process, specifically the activity of proteolytic enzymes dur-
ing the postmortem period. Calpains (calpain-1 and calpain-2) are 
endogenous proteolytic enzymes present in muscles that play a crucial 
role in the proteolysis of cytoskeletal and myofibrillar proteins, which 
significantly contribute to the postmortem tenderization of meat. The 
muscle also undergoes severe oxidative stress during the postmortem 
period. The oxidation of mono- and poly-unsaturated fatty acids present 
in the muscle during the postmortem period can lead to the formation of 
various aldehydes and ketones. Previous studies have indicated that the 
enzyme activities in postmortem muscles could be influenced by the 
lipid oxidation products (Zhai et al., 2019). Therefore, we examined the 
effects of lipid oxidation products including hexenal, malondialdehyde 
(MDA), and 4-hydroxy-nonenal (HNE), on calpain-1 function and tried 
to identify the adduction sites. Our results indicated that calpain-1 ac-
tivity was lowered by hexenal and HNE in a concentration-dependent 
manner, whereas there was a slight increase in activity with MDA 
exposure. The MDA adducts were identified on glutamine, arginine, 
lysine, histidine, and asparagine residues through Schiff base formation, 
whereas HNE adducts were found on histidine, lysine, glutamine, and 
asparagine residues through Michael addition. These results are the first 
to demonstrate that lipid peroxidation products can impact calpain-1 
activity in a concentration-dependent manner and may impact the 
development of meat tenderness postmortem (Zhai et al., 2023).

Another meat quality attribute that significantly influences con-
sumer eating satisfaction is flavor. Previous studies have demonstrated 
that postmortem aging could influence beef flavor profile (Garmyn et al., 
2020). Therefore, it is important to develop technologies that can pre-
dict beef flavor. We used Rapid Evaporative Ionization Mass Spec-
trometry (REIMS) to evaluate whether this technology can predict the 
tenderness, juiciness, and flavor of beef samples after aging based on 
samples collected during grading (36 h postmortem). The REIMS data 
was paired with sensory evaluation data obtained after either 3, 14, or 
28 days of aging, and different machine learning algorithms were 
developed to evaluate the ability of REIMS to predict eating quality. 
Overall, the models developed using machine learning algorithms were 
able to predict tenderness, juiciness, and flavor of the beef muscles with 
greater than 80% accuracy (Hernandez-Sintharakao et al., 2023).

In summary, proteomic and metabolomic approaches can be 
powerful tools for understanding changes in biological systems, espe-
cially during the postmortem period. Although the studies described 
above focused on beef, similar approaches could be utilized for poultry 
to examine color, tenderness, and flavor in finished products. In that 
aspect, selecting the appropriate tools/methodologies that align with 
the research question is crucial for obtaining the best results.
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Spatial transcriptomics and metabolomics studies of wooden 
breast disease

Behnam Abasht, Department of Animal and Food Sciences, University of 
Delaware

Wooden Breast (WB) is a myopathy affecting modern broiler 
chickens, characterized by the development of stiff breast muscle tissue. 
This condition has significant economic implications for the poultry 
industry. To better understand the underlying mechanisms of WB, our 
studies have primarily focused on understanding its genetic basis (Lake 
et al., 2021) and role of lipid metabolism and oxidative stress on its onset 
and development (Abasht et al., 2021; Lake et al., 2019; Papah and 
Abasht, 2019; Z. Wang et al., 2023). We have recently used spatial 
transcriptomics to investigate the cellular and molecular changes asso-
ciated with the early stages of WB (Wang et al., 2024). Spatial tran-
scriptomics offers a powerful approach to analyze transcriptional 
patterns within distinct spatial locations of a tissue. By preserving the 
spatial context, this technique enhances our understanding of tissue 
architecture and the molecular interactions underlying histological 
features. While conventional transcriptomics uses whole tissue dissoci-
ation and may cause biases, spatial transcriptomics retains the regional 
integrity of gene expression, providing more accurate insights into the 
organization and function of tissues (Williams et al., 2022). Our spatial 
transcriptomics analysis revealed that perivascular macrophages (Papah 
et al., 2017), a type of immune cell, play a crucial role in the develop-
ment of this condition (Wang et al., 2024). These macrophages exhibit 
altered lipid metabolism, with increased expression of genes involved in 
lipid uptake and storage. Our study also identified changes in the 
expression of genes related to oxidative stress, suggesting a potential 
link between oxidative stress and lipid metabolism in WB (Wang et al., 
2024). Our prior studies (Abasht et al., 2016; Mutryn et al., 2015; Papah 
et al., 2018) provided further evidence for the involvement of oxidative 
stress and metabolic perturbations in WB. We demonstrated elevated 
levels of oxidative stress markers, such as cysteine-glutathione disulfide, 
in the breast muscles of chickens with WB (Abasht et al., 2016). Addi-
tionally, we observed alterations in glucose metabolism, with decreased 
glycolytic activity and increased activity of the pentose phosphate, 
glucosamine and glucuronic acid pathways. These findings suggest that 
metabolic imbalances and oxidative stress contribute to the develop-
ment and progression of WB.

Taking together, our results from metabolomic and transcriptomic 
studies provide a more comprehensive understanding of the patho-
physiology of WB. Perivascular macrophages appear to be key players in 
the disease process, likely contributing to the development of WB 
through altered lipid metabolism. The observed metabolic 

perturbations, including decreased glycolytic activity and increased 
activity of the pentose phosphate, glucosamine and glucuronic acid 
pathways, further highlight the complex interplay between metabolic 
processes and the development of this condition.

These findings have important implications for future research and 
interventions aimed at preventing or mitigating WB. Targeting peri-
vascular macrophages or modulating their function could potentially be 
a promising therapeutic approach. Additionally, strategies to reduce 
oxidative stress and improve metabolic health in broiler chickens may 
also be beneficial. Further research is needed to elucidate the specific 
mechanisms underlying these processes and to develop effective in-
terventions to address this significant health challenge in the poultry 
industry.

Multiomics analyses on chicken meat quality and spaghetti meat

Byungwhi Kong and Brian Bowker, USDA Agricultural Research Service, 
Athens, GA

Spaghetti meat (SM) is an emerging chicken breast myopathy char-
acterized by distinctive macroscopic features displaying impaired mus-
cle integrity leading to a stringy, soft consistency on the ventral-cranial 
portion of the muscle. The incidence rate of SM could be up to 20% 
(Baldi et al., 2021). Due to its recentness, few studies have been con-
ducted on SM (Fig. 2A), and etiologies and quality characteristics of SM 
are not fully understood.

While SM shares histological similarities with white striping (WS) 
and wooden breast (WB) myopathies, SM uniquely exhibits a progres-
sive rarefaction of the endomysium and perimysium, along with the 
deposition of loose, immature connective tissue surrounding thin and 
split fibers (Sanden et al., 2021). These alterations in connective tissue 
may lead to compromised muscle integrity. According to our previous 
study Tasoniero et al. (2020), the SM myopathy compromised meat 
composition by decreasing protein content and impaired functionality 
traits such as water-holding capacity and emulsifying properties. 
Diverse omics analyses could provide valuable insights into the etiol-
ogies and functional traits of SM, offering potential strategies to: 1) 
reduce the incidence and severity of SM, and 2) mitigate the negative 
impact on its functional traits. However, to date, only a limited number 
of omics studies have been published, which have begun to shed light on 
the underlying etiologies and functional characteristics of SM.

In a previously published transcriptomics study (Che et al., 2024), 
SM, WB, and normal breast meat collected at 3 h post-slaughter were 
compared. SM and WB had 4018 and 2323 differentially expressed 
genes (DEGs), respectively, when compared to normal breast meat. 
Interestingly, there were no DEGs when SM directly compared to WB. 

Fig. 2. A) Number of research and review articles related to spaghetti meat. B) Example of spectrogram produced by LC-MS (provided by Austin Quach, Dalton 
Bioanalytics Inc.).
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There were 2111 shared DEGs between the comparisons (SM vs. N and 
WB vs. WB), suggesting that SM may retain similar physiological alter-
ations to WB meat. Of DEGs, fifteen and thirteen collagen related genes, 
which directly related to formation of connective tissues, were upre-
gulated in SM and WB, respectively. Sanden et al. (2021) demonstrated 
that SM may have more immature collagen fibers compared to WB. 
Taken together, these results suggest that SM may have upregulated 
collagen genes, but the immaturity of the collagen fibers may induce the 
detachment of muscle fibers in SM. Che et al. (2024) reported that 
enriched pathways with DEGs showed that DEGs were related to 
extracellular environment, immune response, cytokine–cytokine recep-
tor interaction, and matrix–receptor interaction pathways in both SM 
and WB. SM and WB exhibit shared transcriptomic profiles; however, 
differences in the expression of certain genes may drive the progression 
towards either SM or WB.

A recent study by Wu et al. (2024) utilized LC-MS/MS to conduct a 
multiomics analysis of SM. There were 35 differentially abundant me-
tabolites in SM compared to normal breast meat. The top differential 
metabolites included 14,15-DiHETrE, isotretinoin, L-malic acid, and 
acetylcysteine. These metabolites were enriched in lipid metabolism and 
inflammatory pathways, such as those involving linoleic acid, arach-
idonic acid, phenylalanine, and histidine. Our group recently conducted 
a metabolomics study on SM and WB at 24 hours postmortem to identify 
key differential metabolites in these conditions during the post-rigor 
mortis phase compared to normal breast meat (Choi et al., 2024). A 
total of 3,090 metabolites were identified in the chicken breast meat and 
of those, 617 differential metabolites were identified between SM and 
normal meat. Of differential metabolites, 15-hydroxyeicosatetraenoic 
acid (15-HETE) increased, and D-inositol-4-phosphate decreased in 
both SM and WB, while the abundance of NAD+ hydrogen (H) (NADH) 
was exclusively decreased in SM compared to normal breast meat. Ste-
roid hormone biosynthesis was downregulated in SM compared to 
normal breast meat. This study reveals changes in both shared and 
unique metabolites in SM and WB, suggesting both similarities and 
differences in their underlying etiologies and functional traits.

To date, there are no proteomic studies on SM. To understand 
biochemical alterations occurring in SM, our research group conducted 
multiomics analyses including a LC-MS assay for proteomics, metab-
olomics, and lipidomics (Kong et al., 2024b), which were assessed by a 
single MS assay (Fig. 2B) as described elsewhere in this article. A total of 
2593 molecules were identified and composed of 1903 proteins, 506 
lipids, 181 compounds and 3 electrolytes. There were 632 differential 
molecules based on P < 0.05 composed of 503 proteins (265 up and 367 
down), 76 lipids (25 up and 51 down), 50 metabolites (14 up and 36 
down), and 3 electrolytes (1 up and 2 down). Calponin was the most 

upregulated (fold change = 4.3) differential protein in SM compared to 
the normal breast meat. Pathway enrichment assay showed that differ-
ential proteins were related to carbon metabolism, glycolysis/gluco-
genesis, pentose phosphate pathways, etc. These pathways were 
frequently enriched in WB by using differential genes, proteins, and 
metabolomics in omics studies (Abasht et al., 2019; Choi et al., 2024; Z. 
Wang et al., 2023). Therefore, proteomics results suggest that SM may 
share similar etiologies and functional traits with WB. In addition, 
NAD+, lactic acid, and carnitines were decreased, while triglycerides, 
spermidine, and taurine were increased in SM compared to normal 
breast meat (Fig. 3).

In summary, results from omics studies including transcriptomics, 
proteomics, metabolomics, and lipidomics showed that SM exhibited 
both similarities and dissimilarities in its underlying etiologies and 
functional traits compared to other myopathic phenotypes, such as WB. 
Identified molecules will become mechanistic targets to reduce the 
incidence of breast myopathies.

Conclusion

Multiomics studies provide valuable insights into potential genome- 
wide, transcriptional, and biochemical alterations in complex traits. The 
comprehensive knowledge derived from omics approaches can poten-
tially be applied to develop genetic selection and nutritional interven-
tion strategies to improve performance and product quality. To further 
the discoveries made possible by using multiomics approaches in meat 
research, the authors suggest: 1) continued refinement of methodologies 
will be needed; 2) methodologies to integrate individual results into a 
single mechanistic platform are critical; and 3) spatial approaches using 
vertical- or horizontal areas of tissues or single cells could provide 
further insight.
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