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Abstract

Stratified sequential nonparametrics: inferential validity by design, any way you slice
it

by

Jacob Spertus

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Philip Stark, Chair

Modern statistical practice has taken an Icarian flight in its embrace of model-
based inference. Models are underwritten by sophisticated assumptions about the
origins of data, involving hypothetical populations that conveniently follow parametric
distributions. These assumptions are abstract and often demonstrably false, providing
ample grounds for skepticism of model-based findings. Models are also obscure—
requiring a high degree of mathematical sophistication to understand and interpret—
which serves to preclude deliberation between researchers, prevent scrutiny by diverse
stakeholders, and obfuscate underlying normative values and possible weaknesses.
They support the gathering of professional statisticians and scientists into a priestly
class, empowered to steer a technocratic state through the appearance of knowing.
They do not support a healthy science—one that knows its limits, ascertains the
truths it can, and earns public trust.

The design-based philosophy of statistics might do better. In design-based theory
and practice, emphasis is placed on the physics of how the data were collected.
Hypotheses are posited in terms of sharply defined, real-world quantities and all
assumptions necessary to link the data to those hypotheses flow from the design.
The assumptions are generally simple and justified so that the output is rigorous
and transparent. Those qualities help ensure conclusions are usually true. They also
support inter-subjective belief (i.e., trust) that a given conclusion is true. Moreover,
the design-based view clearly circumscribes the kinds of problems that are amenable
to rigorous statistics: those with a known or sharply hypothetical (as-if) design. If
widely adopted, design-based statistical thinking may engender the circumspection
and humility currently lacking under the influence of model-based data science.

This dissertation develops methods for design-based statistics. The chapters
are particularly focused on design-based inference from surveys and experiments,
motivated by applications in risk-limiting post-election audits (Chapters V, VI, and
VII) and soil carbon sequestration (Chapters II, III, and IV). Risk-limiting audits
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are fundamentally survey problems. They map a sharp question of interest—who
won this contest?—to a collection of null hypotheses about the means of lists of
bounded numbers, which represent populations derived from cast ballots. Providing
rigorous and transparent evidence that reported election results are accurate is
critical to supporting trustworthy elections. Adherence to the design-based paradigm
when developing and implementing risk-limiting audits ensures such evidence can be
furnished.

The science of soil carbon sequestration involves a large array of statistical problems
that can be classified as either surveys (e.g., carbon stock measurement) or experiments
(e.g., management experiments) and handled by a design-based approach. Often,
studies involve a survey (sampling soil cores from plots) embedded in an experiment
(randomly assigning plots to treatment), or vice versa. Soil carbon sequestration is a
trending topic for its hypothesized potential to offset emissions and mitigate climate
change. Failure to rigorously measure sequestration and provide transparent evidence
of its efficacy could squander resources, cause shortfalls in emissions reductions, and
shake public confidence in coordinated efforts to fight climate change. The regular
practice of design-based statistics in soil science could support effective action and
accurate carbon budgets.

The technical emphasis of this dissertation falls on valid inference in the presence
of two major design elements: sequential sampling (Chapters IV, V, VI, VII) and
stratification (Chapters III, VI, VII). Sequential sampling is a natural, necessary,
or expedient feature of many real-world data collection procedures. While most
traditional inference procedures compute a single inferential statistic (e.g. a P -value)
on a batch of n data points, a sequential procedure returns a valid statistic at any time
during an iterative process of sampling (e.g., one-at-a-time as each data point comes,
or periodically as rounds of data are collected). Sequential analysis thus allows data
collection to expand as needed until there is sufficient evidence to draw a conclusion
about a hypothesis of interest. We leverage various old and new ideas from probability,
game theory, and statistics in developing and implementing efficient methods for
sequential analysis. Chapter IV suggests some uses in soil carbon measurement,
especially for adaptive experimental designs. In Chapter V we use the theory of Kelly
optimality to develop efficient sequential tests for risk-limiting comparison audits.
By minimizing the expected number of ballots needed to confirm the winner(s) of a
contest, the tests reduce the cost of implementing risk-limiting audits. In Chapter VI
we compare sequential tests constructed from betting test supermartingales to tests
constructed from exponential test supermartingales. We find the former to be more
efficient for risk-limiting comparison audits. Chapter VII builds on and generalizes
Chapter VI, proposing new definitions of optimality and constructing sequential tests
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for population means when the population is also stratified.
Stratification is widely used in design-based statistics to accommodate logistical

constraints, increase statistical efficiency, and lower the costs of sampling. Stratifica-
tion entails partitioning a population into disjoint strata and drawing some number
of samples from each stratum uniformly, with or without replacement, and indepen-
dently across strata. Traditionally, a batch sample of fixed-size nk is drawn from
stratum k and inference on the population mean proceeds using Gaussian theory
and finite-population asymptotics. Chapter III explores this strategy for measuring
soil carbon stocks at a single time or verifying stock change over time. Chapter VI
constructs finite-sample nonparametric tests for risk-limiting audits that are both
stratified and sequential (see above). Chapter VII builds a general framework for
sequential stratified testing and develops optimal and efficient tests for the mean
of a stratified bounded population. The tests are valid (i) sequentially, (ii) in finite
samples, (iii) without parametric assumptions, (iv) under any stratification, (v) and
with all probabilities flowing from the design.
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Chapter 1

Introduction

Statistics plays a large and expanding role in knowledge formation and decision
making across science, industry, and government. Data are proliferating, as are
new techniques for accessing, processing, and interpreting them. In policy making,
quantitative data are seen as inherently rigorous or objective and given priority over
qualitative evidence, deliberation, or direct experience [Saltelli and Giampietro, 2017].
In research, there is pressure to publish at a high rate and to use pre-existing or
easily-attainable data (e.g., from convenience samples) to answer complex (though
not always empirically sharp) scientific questions.

These factors have bent statistical theory and practice towards a model-based
paradigm, wherein distributional assumptions proliferate. For a simple and classical
example, a modeler might assume a population of interest was drawn from a Gaussian
superpopulation with unknown mean and variance. For a more complex example,
the modeler might assume the data came from a population drawn from a hierarchy
of various parametric probability distributions, the parameters drawn in turn from
known prior distributions or mapped from known functions of independent variables.
It is often left ambiguous what exactly the population represents, what the super-
population represents, why the population can be modeled as a random draw from a
superpopulation, or why that superpopulation would have a known parametric form.

The traction of model-based assumptions and the authority of model-based results
rests on the inter-subjective accord of researchers within a particular discipline, not on
how closely the assumptions track with the physical world. Furthermore, randomness
in a hypothetical sampling mechanism is epistemic—in the sense that it exists only
in the mind, as an expression of belief about the population and where the data came
from [Sterba, 2009]. Model-based frequentist statistics shares this use of probability
and randomness with Bayesian statistics. Personal probabilities need not be tied to
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any real sampling mechanism, disconnecting the data and its origins from the theory
being tested [Berk and Freedman, 2003]. This can blunt the capacity for deliberation
or critique: models can be arbitrarily complex mathematical objects involving various
assumptions about physics and randomness that are difficult to reason about or relate
to scientific subject-matter.

As a result, the model-based paradigm is conducive to hierarchies of authority. A
modeler is not constrained in their ability to weigh in on scientific questions given a
set of data, sufficient willingness to make heroic assumptions, and the assent of others
in their field, which may be a function of reputation and interpersonal dynamics
more than reasoned agreement with the method. When target quantities are vague
and modeling assumptions arcane, the interpretations, advice, and predictions of
experts who rely on them need not track with reality. In this paradigm, experts
may be vested with substantial political power, while lacking the insight necessary to
make good decisions. Thus, the model-based paradigm supports technocracy without
justifying it: power concentrates while truth does not. The resulting system is both
unjust and unstable.

The design-based paradigm offers a way out. In design-based statistics, the
population is a well-defined (often finite) list of units corresponding to real-world
quantities, and the target parameter is a deterministic function of that list (e.g.,
its mean). Inference and estimation proceed with minimal assumptions on the
population; for example, that it is supported on an interval [a, b], with a and b
known. Probability assumptions center on the eponymous design—the (as-if) random
process by which data were drawn from the population—and are aleatory, arising
from inherent properties of a physical system like the roll of a die. Design-based
statistics uses aleatory randomness to ensure that the data are representative of the
target population in a structured, probabilistic way,1 one amenable to meaningful
probability statements and long-run error control. The design is either exactly known

1There are two other broad uses of aleatory randomness that precede statistics. (i) Mantic
experiments (tarot, I Ching, bone divination, etc) use aleatory randomness to create meaning, often
as prophecy and in a religious context. While scientific experiments are intended to establish causality,
mantic experiments generate meaning, possibly through the interaction between coincidence and the
human mind [Diaconis and Mosteller, 1989, Jung, 2010]. Divinatory practices emphasizing expert
(i.e., priestly) interpretation over aleatory randomness (haruspicy, augury, etc), may have been
replaced by more transparent oracles (e.g., dice) precisely due to suspicion of the mediating human
element [Hacking, 2006]. (ii) Games of chance use aleatory randomness to generate excitement.
Gambling is thought to be among the first inventions of human society [David, 1955], and provided
the basis for the development of probability theory in the 17th century [Hacking, 2006]. The concept
of Luck allows aleatory probability to be as personal as epistemic probability. Girolamo Cardano’s
committed belief in Luck may have delayed an earlier formalization of probability in his 16th century
gambling manual Liber de Ludo Alea [Gigerenzer et al., 1989, Cardano, 1966 (originally 1525].
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to the researcher (as in a probability survey or randomized experiment) or unknown
(as in observational causal inference) but requiring relatively simple, transparent, and
falsifiable assumptions on the unknown design compared to a more inscrutable model
on nature [Rosenbaum, 2002]. This dissertation is about applications in and methods
for design-based inference, with an emphasis on problems where the data come from
a known design.

Some History

The gulf between model-based and design-based statistics stems from controversies
at the foundation of statistics. The earliest statistical analyses—of mortality data in
the 17th century—spurred debate over reasonable assumptions on the relationship
between age and death. The stakes were high, with substantial financial ramifications
for states hinging on the proper price of annuities [Gigerenzer et al., 1989, Hacking,
2006]. The majority of mathematicians at the time—including Graunt, Halley, and
De Moivre, all of whom assumed mortality followed a simple arithmetic progression—
tended to believe in nature’s proclivity for simple and universal laws: their thinking
was model-based. The Dutch mathematician Nicholas Struyck raised a rare dissent,
warning ”nature doesn’t listen to our suppositions” [Gigerenzer et al., 1989].

The degree of researcher control over the data generating process plays a key role
in determining where the emphasis is placed—on the design or on the model of nature—
when making probabilistic assumptions. Without a known design, a hypothetical
model is required to make any general claims from the data. Early mortality data was
purely observational—coming from convenience samples or censuses—and could not
lend itself to the development of a design-based statistics. By the mid-19th century
experiments were expanding out of the laboratory and into real-world situations
attended by a much higher degree of variability.2 This was particularly true in
agriculture, where aggregate farm yields were of great economic significance to the
nation and experiments promised to discover new ways of maximizing production
[Gigerenzer et al., 1989]. Johnston [1849] laid out many of the open problems in
agricultural science, and in experimental design more generally. He noted the need
for comparison, but failed to realize the importance of replication and randomization.

Starting in the late 19th century, British professionals established the groundwork
for the expansion of statistical theory and practice throughout the 20th century.
Many of the founders were committed eugenicists, interested in furnishing scientific

2In the laboratory sciences, it had been possible to experiment on pure substances, theoretically
constrain possible causes, and exercise nearly complete control over all potentially relevant conditions
[Gigerenzer et al., 1989].
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justification for colonial hierarchy during the twilight of the British empire and for
a domestic social order empowering a small professional intellectual class over both
the traditional working classes and the aristocracy [MacKenzie, 1981]. Common
statistical models were developed during this period, with Galton theorizing and
employing the bivariate Gaussian distribution and ordinary least squares to study
human populations and provide an allegedly empirical basis for eugenicist theories.
Pearson later built on multiple regression and the theory of the correlation coefficient
to formalize biological arguments for socialist eugenics [Pearson, 1895].

After Pearson, Fisher laid critical groundwork for both the mathematics and ap-
plied practice of classical statistics. Working in an agricultural context at Rothamsted,
he developed a theory of statistical design that recognized the centrality of replication,
randomization, and control [Fisher, 1925, 1935]. He also formulated finite-sample
valid methods for nonparametric hypothesis tests, including in the famous “lady
tasting tea” experiment presented in Fisher [1935]. Despite his pathbreaking work on
experimental design and agnostic analysis, Fisher was also instrumental in cementing
the centrality of the model-based view [Lehmann, 2011]. Indeed, Fisher [1922] posits:

This object is accomplished by constructing a hypothetical infinite popu-
lation, of which the actual data are regarded as constituting a random
sample. The law of distribution of this hypothetical population is specified
by relatively few parameters which are sufficient to describe it exhaustively
in respect of all qualities under discussion.

Fisher’s setup is a succinct summary of the model-based paradigm: a scientific theory
is expressible purely in terms of hypothetical populations, and the data to hand
furnish evidence for or against the theory via a hypothetical sampling mechanism.

The design-based paradigm was developed primarily by Jerzy Neyman. Neyman
[1923] introduced a design-based theory of causal inference, showing that scientific
theories can be sharply represented by urns containing a finite amount of fixed numbers
(potential outcomes). Randomized experiments draw potential outcomes from the
urns at random, and probabilistic inference on well-defined causal parameters (e.g.,
the average treatment effect) is justified solely by the random design. In the context
of surveys, Neyman [1934] presents a strong argument for random sampling and
design-based inference over purposive sampling and modeling, then common at the
time. Neyman encourages a random sampling design to guarantee that probabilistic
assumptions are met and the sample is representative, potentially in conjunction with
tools like stratification to accommodate logistical challenges or increase estimation
and inferential efficiency.
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Contributions of this dissertation

This dissertation is interested in applications and methods in a design-based framework.
The applications have a classical flavor: they are surveys and experiments where a
finite population of units is sampled or randomly assigned to treatments according
to a known design. As a further historical connection, two chapters are applications
to agricultural problems, in which the theory of randomized controlled trials was
pioneered by Johnston, Fisher, and Neyman. Breaking with their primary concern of
maximizing farm yields, our problems pertain to studies of soil carbon sequestration
as a climate change mitigation strategy. The other applications are in risk-limiting
audits (RLAs) to verify that reported winners of elections really won. RLAs are,
fundamentally, instances of survey sampling from non-standard finite populations.
The methods we develop solve a very fundamental problem: conducting inference
on a population mean with guaranteed validity. In our development, we borrow
from both historical work (especially Wald [1945]) and recent advances (especially
Waudby-Smith and Ramdas [2023]) in finite-sample, nonparametric, and sequential
inference.

Chapter II reviews practical aspects of measuring soil organic carbon stock,
including data collection via random field sampling and laboratory assay, both of
which are prone to error. It derives a variance-optimal ratio of sampling to assay (a
trade-off allowed by compositing and replication), assuming a fixed budget and linear
costs. The theory is applied using errors and costs either taken from the literature
or computed on data from the Marin Carbon Project. Compositing samples and
assaying them by dry combustion is found to minimize estimation variance at a fixed
budget.

Chapter III concerns statistical methods to measure soil organic carbon stock
and stock change. It is concerned with sources of variability in estimation under
simple random and stratified sampling, as well as with finite-sample validity in the
weak3 two-sample problem: wherein the null posits only that two populations share
a common mean. The power of tests using simple random or stratified samples is
evaluated using soil data gathered from rangeland (Paicines Ranch) and multiple
croplands around California.

Chapter IV builds on this work, presenting methods for design-based causal
inference about soil carbon sequestration. The chapter reviews practical uncertainties
including core-level assay variability, plot-level spatial heterogeneity, study-level
variation in potential outcomes, and uncertainties involved in generalizing from a

3The strong two-sample problem posits that the two populations are equal in distribution. It is
readily solved with permutation tests.
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study to a population. It is especially focused on estimation and inference on the
population average treatment effect, on identifying moderators that can be used to
predict how a plot will respond to treatment, and on making optimal policy decisions
for a population of farms.

Chapter V is about optimal sequential inference for risk-limiting comparison audits
using betting test supermartingales (TSMs). The chapter maximizes the efficiency
of sequential tests using the theory of Kelly optimality in order to reduce workloads
for ballot-level comparison audits, which are the most efficient form of risk-limiting
audit. It derives the theoretically optimal “oracle” tests, which are not empirically
identified, and provides predictable approximations of the oracle tests that can be
used in practice, analogous to Stark [2023] on efficient ballot-polling audits.

Chapter VI develops methods for stratified RLAs, wherein the sample of ballots is
drawn by a stratified and sequential design and the inference must be anytime valid.
The methods leverage the betting TSMs of Waudby-Smith and Ramdas [2023] and
the union-of-intersections tests idea proposed in Ottoboni et al. [2018] for sequential
stratified inference. They are substantially more efficient than the previous state-
of-the-art for stratified RLAs [Ottoboni et al., 2018]. The chapter also presents a
computationally scalable risk measure that uses exponential supermartingales [Howard
et al., 2021], reducing the union-of-intersections test to a linear program that can
accommodate audits with any number of strata.

Chapter VII generalizes and improves on the ideas in Chapter VI, developing a
broad theory for stratified sequential testing and providing practical and efficient
strategies based on betting supermartingales and union-of-intersections tests. The
theory generalizes Kelly-optimality from the sequential to the stratified sequential
setting, wherein sequences of bets and a sequence of stratum selections determine the
efficiency of a test. We provide an implicit construction of the Kelly-optimal bets
under any simple alternative, and an explicit construction for a few parametric simple
alternatives (e.g. Bernoulli distributions within strata). Computing the P -value can
be challenging. We provide a few ways to implement these strategies in real-world
problems and demonstrate their efficiency compared to existing methods.
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Chapter 2

Optimal compositing for soil
carbon estimation

2.1 Introduction

Climate change is likely to put enormous strain on nature and human societies in
the coming decades. It is largely driven by the release of atmospheric carbon dioxide
(CO2) that was once sequestered in the earth, either in fossil fuels or as soil carbon.
Since the cultivation of soils began, soils have lost about 50-70% of their carbon to
the atmosphere. Soil still accounts for the 2nd largest store of carbon on Earth after
the ocean, containing about 7.5 times that of the atmosphere [Lal and Stewart, 2018].
However, agriculture is now one of the largest contributors to global carbon emissions.

In pursuit of solutions, a growing movement of farmers and other advocates are
highlighting “regenerative agriculture” as a way to make agriculture a net sink, rather
than a source, of carbon – drawing CO2 from the atmosphere and sequestering it in
the land as soil organic carbon (SOC). Regenerative agriculture provides a variety of
ecosystem services including water use efficiency, biodiversity, and overall soil health.
These may be sufficient to support its use, but to pay for regenerative agriculture on
the basis of SOC sequestration, decision makers need to know how much carbon is
sequestered by different strategies.

In order to measure SOC sequestration, at a minimum scientists must be able
to measure how much SOC is in a given plot of land at a given point in time. This
task is referred to as “SOC stock estimation.” Soil scientists accomplish SOC stock
estimation by collecting multiple cores of soil from a given plot, preparing/processing
the samples, and analyzing (assaying) their SOC concentration by a number of
different techniques. SOC is either presented on its own, as a concentration, or it is
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converted to stock using soil bulk density measured on nearby intact cores. Both
sampling and assay of SOC concentration are subject to uncertainties and both
become expensive at the volumes necessary to overcome these uncertainties. All
else equal, increasing the number of samples and the number of assays will reduce
uncertainty while driving up costs. A process called compositing allows investigators
to reduce cost by mixing together sampled cores and assaying the mixture(s), but
compositing incurs additional error when there is uncertainty in the assay.

Figure 2.1 sketches this trade-off in an example where 100 cores have been collected,
and the investigator must now choose how much to composite before assaying the
composited samples. Parameters and costs are taken from a survey of California
rangelands, detailed later in this paper (Section 2.9). Fig 2.1a shows that, across the
range of possible composite sizes, the cost increases by a factor of 7. Correspondingly,
Fig 2.1b shows a 5-fold decrease in standard error. Clearly, compositing has substantial
implications for both uncertainty and cost.

(a) Cost by composite size (b) Error by composite size

Figure 2.1: Costs (a) and error (b) associated with estimating SOC concentration across
a range of possible composite sizes. Decreasing the size of composites (taking more assays)
yields a tradeoff: estimation error will decrease, but costs will increase. These assay costs
and error reflect assay of California rangeland topsoils with loss-on-ignition. For details
see Sections 2.7 and 2.9, especially Table 2.2. SOC = soil organic carbon; USD = United
States Dollars.

In this paper we resolve this trade-off by presenting sampling and assay as an
optimization problem. Given a fixed budget, we derive the sampling and assay sizes
that minimize estimation uncertainty. Conversely, given a fixed estimation precision
we’d like to achieve, we derive the optimal sizes to minimize the budget. The solutions
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depend on the heterogeneity and mean SOC concentration of the plot(s) under study,
the assay error, and the costs associated with sampling and assay.

Our paper is organized as follows. In Section 2.2 we situate our work in the
soil science and statistics literature. In Section 2.3 we formalize the objectives of
SOC estimation. We then turn to the logistics and statistics of estimation, covering
sampling in Section 2.4, compositing in Section 2.5, sample preparation in Section
2.6, and assay in Section 2.7. Section 2.8 contains our main results: optimal sample
and assay sizes to maximize precision under budget constraints. Scientists, farmers,
and policy-makers can use these results to design their own efficient sampling and
compositing strategies. To facilitate practical use of our methods, we demonstrate
their use by applying them to data from a soil survey in California in Section 2.9.
We derive optimal assay strategies and composite sizes in this setting. Section 2.10
discusses additional nuances, challenges, and extensions of stock estimation, and
provides recommendation for practice. All of our work is supported by R software,
available at https://github.com/spertus/soil-carbon-simulations.

2.2 Other Relevant Literature

As part of this paper we review the components of stock estimation and the processes
of sampling, compositing, and assay. We focus on estimating the average concentration
of SOC in a plot. In order to make minimal assumptions about the plot under study
and for our results to be as general as possible, we take the design-based perspective on
estimation. Thus, the model of SOC concentration in the plot is minimal. Specifically,
we do not make any assumptions about the spatial distribution of SOC concentration.
Inference proceeds from random sampling, while SOC concentration is unknown but
fixed. Webster and Lark [2012] and de Gruijter et al. [2006] provide accessible reviews
of soil sampling, inference, and optimization from the design-based perspective.

The design-based perspective contrasts with the model-based or “geostatistical”
perspective, originally developed to map gold mines [Krige, 1951]. The geostatistical
approach to SOC stock estimation conceptualizes SOC content as random or at
least well approximated by a random process. Geostatistics is especially useful for
estimating an entire function of a soil property, i.e. for mapping. We do not examine
the model-based approach in detail here. Diggle and Ribeiro [2007] and de Gruijter
et al. [2006] are good references on geostatistics and its applications to natural resource
monitoring.

Patil et al. [2011] provides a detailed accounting of the statistics of compositing,
and includes an analysis of compositing with additive assay error. The benefits
of compositing depend on the relative size of the plot heterogeneity to the assay
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error. Lark [2012] analyzes properties of various compositing schemes alongside a
geostatistical model for spatial variation. The author shows that compositing nearby
cores improves the precision of an SOC map, compared to taking a single core at
each location. Kosmelj et al. [2001] analyzes compositing alongside a cost model in
the context of soil sampling for zinc or calcium, solving an optimization problem
for compositing over subplots without considering assay error. In a case study, they
found that optimal compositing could reduce costs by around 50% while maintaining
estimation precision.

We analyze three laboratory assay methods used to measure SOC concentration
in soil samples: loss-on-ignition (LOI), dry combustion in an elemental analyzer (DC-
EA), and mid-infrared spectroscopy (MIRS). LOI involves measuring the difference in
mass before and after heating samples in a furnace. The heating cooks off the organic
matter in the soil – along with an unpredictable amount of “mineral” or structural
water. The amount of mass lost can be mapped to the SOC concentration in the
sample using ordinary least squares regression [Nayak et al., 2019, De Vos et al.,
2005]. DC-EA combusts small aliquots of soil at high temperatures in an elemental
analyzer that measures the amount of CO2 released during the burn. DC-EA machines
vary in their specifics, but are generally considered the gold-standard for precise
determination of SOC concentration [Nayak et al., 2019, FAO, 2020, Smith et al.,
2020]. MIRS assays carbon by shining infrared light on samples and recording the
wavelengths absorbed. These wavelengths (“spectra”) can then be closely mapped to
SOC concentration (determined by DC-EA) using machine learning methods. MIRS
requires a considerable upfront investment both in the machinery and in developing a
large spectral library that links wavelength signatures to SOC concentrations within
a region of interest (e.g. a country or state). MIRS and vis-NIRS could become
highly cost-effective assay strategies as prices come down and spectral libraries expand
[England and Viscarra Rossel, 2018, Nayak et al., 2019, Wijewardane et al., 2018].
LOI and MIRS are “high-throughput” methods, as many samples can be analyzed
quickly and cheaply. However these methods offer less precision than DC-EA, and
may be prone to biases.

The core contribution of this paper is similar in spirit to a classical power analysis,
which determines how many samples are needed to estimate quantities to within a
desired precision or to run a hypothesis test at a desired power. Kravchenko and
Robertson [2011] presents basic methods and an application of power analysis to
detecting SOC change in tillage experiments. Pringle et al. [2011] derived sample
sizes necessary to detect changes in SOC stocks on Australian rangelands. A 2019
report by the Food and Agriculture Organization of the United Nations also includes
a section on conducting power analysis [FAO, 2020]. These power analyses do not
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consider the effects of compositing or assay error, nor do they consider the costs of
sampling and assay. In our work we provide a framework to derive optimal composite
sizes given a cost model. In the process, we characterize budgets that are needed to
achieve reasonable precision when estimating SOC concentration.

There is a precedent for analyzing optimal designs in soil science, but most of
this work has been done in the geostatistical literature and generally concerns how
to optimally distribute samples given an assumed model. If scientists have access to
a reliable variogram describing the spatial distribution of SOC, then the sampling
design can be optimized to minimize estimation or prediction variance van Groenigen
et al. [1999], Brus et al. [2006]. If SOC exhibits any spatial auto-correlation, well-
spread random samples can increase efficiency compared to uniform independent
random sampling. Traditionally, grid or transect sampling is often used, but these
designs may be biased and don’t yield accurate standard errors Webster and Lark
[2012], Wolter [1984]. Investigators may also use auxiliary variables, like management
type, topography, or vegetation, to yield more efficient sampling designs. de Gruijter
et al. [2016] presents a recipe to estimate SOC concentration or stock at the farm
scale. That paper focuses on reducing costs through an optimally-stratified sampling
design, while compositing receives less attention. Other modern design approaches
aim to improve spatial coverage or auxiliary variable balance through sophisticated
random sampling. Well-spread random samples can be achieved by a kind of nested
stratification, as in the generalized random tessellation stratified design [Stevens and
Olsen, 2004], or by the cube or local pivotal method, wherein samples repel each other
spatially [Tillé and Wilhelm, 2016]. All of these papers seek to optimally distribute
sample points and do not account for assay error.

New ways of measuring SOC stocks continue to emerge at a rapid pace, driven by
advances in technology and data science. Assay can now be accomplished directly
in the field using techniques like mobile infrared spectroscopy, eddy covariance
assay, inelastic neutron scattering, and laser-induced breakdown spectroscopy. These
techniques tend to involve far more assay error than laboratory analyses [Chatterjee
et al., 2009a, Nayak et al., 2019, England and Viscarra Rossel, 2018]. Additionally,
an active area of research seeks to combine various assays and remote sensor data
using machine learning and geostatistics [Wadoux et al., 2019, Padarian et al., 2019,
England and Viscarra Rossel, 2018]. A few of these new technologies do not involve
randomly sampling cores, and are thus outside the context of this work. The rest
apply readily to framework we present here.
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2.3 Estimation Goals

SOC concentration (e.g. percent SOC or grams of SOC per kg of soil) is a (non-
random) three-dimensional function in latitude, longitude, and depth. In this paper,
we are interested in estimating the average concentration, µ, in a bounded area of land
to some fixed depth; or the total stock of SOC T in the area. Typically, estimation
occurs within fixed depth profiles, which can then be aggregated to whole-profile stock
or concentration estimates. The equivalent soil mass method provides an important
alternative strategy wherein profiles are defined to some predetermined mass, not
depth [Wendt and Hauser, 2013].

We follow the convention of estimating concentrations and stocks within profiles
defined by depth or mass. We thus suppress dependence on depth as we develop
our ideas. For concreteness, the reader may imagine we are only discussing top-soil
concentration or stock in what follows, though our analysis applies to any profile. We
also stress that the maximum depth of the survey is very important. Many physical,
chemical, and biological mechanisms can move SOC downward or cause soil loss at
depth. Long-term management can impact deep soil SOC, so concentrations and
stocks may need to be estimated down to a meter or more to accurately account for
the SOC sequestration of different management strategies [Tautges et al., 2019, Luo
et al., 2010].

If we are only interested in average concentration, it suffices to estimate µ. If
we want to estimate the stock T , we also need the bulk density in grams per cubic
centimeter d, the area of the plot in square meters A, and the length of the profile in
meters L. Assuming that bulk density is constant within depth, the total amount of
carbon within the depth profile is

T ≡ 104 × L×A× µ× d.

The factor 104 includes conversion of %SOC to gram per gram, and bulk density
to grams per cubic meter. Different factors may be applied to report SOC in tons
per hectare (Mg ha−1).

In reality, SOC is never exactly the same across a study area. The degree of
heterogeneity can be expressed as the plot variance, σ2

p, which is the average squared
distance of SOC concentration from the mean µ (for a definition in symbols see Section
A.1 in the Appendix). If every point in the plot has the same SOC concentration µ,
then σp = 0. On the other hand, if the SOC concentration is highly variable across
the plot then σp will be large. The maximum value, σp = 50, is attained when half
the plot is 0% SOC and the other half is 100% SOC. Along with the assay precision,
the plot heterogeneity σp allows us to characterize the uncertainty in estimates of µ.
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2.4 Sampling

Investigators typically estimate µ by sampling relatively small amounts of soil from
the plot under study. Soil samples can be taken using an auger, a corer, or by digging
a pit. An augers can mix soil horizons, while with a corer horizons are typically
kept distinct. Compaction can occur with either method, which may skew depths or
density estimates. Digging a pit and drawing samples from the side may yield the
best samples, with clear horizons and no compaction, but is relatively destructive and
very labor intensive. In what follows, we typically refer to a distinct (uncomposited)
sample as a “core,” though in principle it could be drawn by any of the above
methods. Taking cores at randomly sampled locations can ensure that estimates
of µ are unbiased. In this section, we describe three random sampling approaches
that are regularly used in practice: uniform independent random sampling, stratified
sampling, and cluster sampling.

Uniform independent random samples (UIRSs) are generated by sampling n points
uniformly — no particular locations are favored — and independently — the location
of a particular core does not affect the location of any other. In the soil science
literature, UIRSs are sometimes equated with “simple random samples” Webster
and Lark [2012]. However, in statistics simple random sampling denotes uniform
sampling without replacement from a discrete, finite population. We use the more
cumbersome UIRS to avoid confusion. Sometimes, plots are conceptually “discretized”
by mapping the continuous surface to a fine grid, which then becomes the finite
sampling frame so that simple random sampling is equivalent to uniform independent
random sampling (UIRSing). UIRSs can provide unbiased estimates of µ no matter
how SOC is distributed in the plot. UIRSs also yield unbiased estimates of the
heterogeneity σp. This allows researchers to characterize the precision of the estimate
and thus to conduct hypothesis tests or construct confidence intervals based on a
UIRS.

Stratified sampling can be used to take advantage of auxiliary information about
the distribution of SOC, which can yield more precise estimates. For example, in
rangeland the distribution of SOC may be driven by topography, vegetation type,
mineralogy, microclimates, or land-use history [Pringle et al., 2011, Webster and
Lark, 2012]. Strata and sample sizes per strata can be selected using algorithms that
predict SOC concentrations in order to maximize the expected precision given a fixed
overall sample size [de Gruijter et al., 2016]. Like UIRSs, stratified samples can yield
unbiased estimates of µ, σp, and the variance of estimators.

Finally, cluster random samples are drawn by first choosing a point at random
and then deterministically sampling along a regular transect or grid extending from
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the original point. Cluster random samples with a single random starting point
are sometimes called “systematic random samples” in the soil science literature
[de Gruijter et al., 2006]. Cluster random samples have the advantage of automatically
distributing samples evenly across part of a plot. Logistically, this makes samples
relatively easy to collect, since cores can be efficiently taken by moving regular
distances along the transect or grid. Statistically, this reduces the variance of sample
means from cluster random samples when SOC is positively correlated in space, a
standard geostatistical assumption. However, sample means from cluster random
samples are not inherently unbiased and do not have a simple variance. Both of
these properties depend on further assumptions about how SOC is distributed within
the plot [de Gruijter et al., 2006, Webster and Lark, 2012, Wolter, 1984]. If these
assumptions are not met, cluster random samples may yield biased or imprecise
estimates. Periodicity of the property under study (due to row cropping, for example)
can lead to poor inferences.

In this paper, we assume that cores are gathered by UIRSing. This makes our
results quite general, and covers the wide range of applied cases where UIRSing is
used. Furthermore, the variance of sample means from a stratified or cluster sample
is typically lower than that of a UIRS — lower variance is the main reason why more
sophisticated designs are used. Thus our results can be interpreted as a providing
an upper bound on the uncertainty of these other sampling designs. Finally, if we
assume that SOC is distributed completely randomly in a given plot (i.e. with no
spatial correlation), then the properties of estimates based on a UIRS are equivalent
to those based on stratified or cluster random sampling.

There are, however, certain land types or surveys where UIRSing can be logistically
infeasible. For example, in row crop studies, only treated rows can be sampled, which
is typically much easier to achieve using cluster sampling. Furthermore, note that
there is a logistically optimal way to collect n cores by UIRSing. First, sample all n
points from the plot, find the shortest path through all n points, and move along that
path collecting cores at the sampled points. This is called the “traveling salesman
problem” in computer science. The length of the shortest path through a UIRS of size
n generated in a plot of area A tends to be about 0.72

√
nA [Arlotto and Steele, 2016].

Even compared to this shortest path, cluster random samples can have much shorter
paths: a transect sample for a rectangular a× b plot is no longer than

√
a2 + b2 for

any n. For example, in the experiments conducted by [Tautges et al., 2019] the plots
are 64 × 64 meters and 10 cores were collected per plot. A = 4096 square meters
and the shortest path through n = 10 randomly generated points is expected to be
about 146 meters. On the other hand, a transect through such a plot is about 91
meters. This makes the transect path length only 60% of the expected length of the
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best UIRS path.

2.5 Compositing

Compositing is the practice of combining cores together from a particular profile
in order to capture variability in the plot while reducing assay costs. Where we
call n the number of cores, sampled from the field, k is the number of samples left
after compositing. Edge cases are n = k, when we do no compositing, and k = 1,
when we composite down to one sample. We assume here that each composited
sample is comprised of equal proportions of the constituent cores. We also assume
that n is divisible by k and that each composited sample is comprised of exactly
n/k cores. For example, we might take a UIRS of n = 30 cores from a plot and
composite down to k = 6 composited samples of size n/k = 5 constituent cores.
We also assume that samples are perfectly homogenized after compositing, so that
equal parts of constituent samples are present in any given aliquot of the composited
sample. Perfect homogenization may be difficult to achieve in some types of soils, like
soils with high clay content that tend to clod, which can compromise the validity of
compositing. Our final assumption is compositing additivity, which implies that the
SOC concentration in a composited sample is equal to the mean SOC concentration
of its constituent cores. Compositing additivity is met for SOC, but not for other
properties like pH, which needs to be considered if investigators plan to measure such
properties using the same samples.

There are two reasons why more compositing is not always better. First, assay
error leads to (hopefully) unbiased but still variable assays, which needs to be reduced
by assaying multiple cores or else by assaying a single core multiple times. Second,
compositing is itself an error prone process. It can be very difficult to achieve exactly
equal proportions and perfect homogenization, especially in heavy clay soils. These
challenges can be alleviated and the errors are hedged by assaying more, smaller
composite samples. Finally, in order to do inference we typically need to estimate the
plot heterogeneity σp, which can only be estimated when k ≥ 2, a topic we return to
in Section 2.8.3.

Logistically, compositing is almost always done in the field to reduce the labor
of transporting all n cores to the laboratory. A drawback is that it may be more
difficult to achieve good homogenization in field using crude tools on field-moist soil.
Furthermore, it is generally important to composite at random. If nearby cores are
composited together, which can arise naturally if compositing is done sequentially
along a transect or shortest UIRS path, the properties of the sample variance of
composited samples may be different. For example, suppose that nearby points
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tend to have similar SOC concentrations and that nearby points are systematically
composited together. In this case the sample variance of composited samples of
nearby samples will underestimate σ2

p, which will lead to over-optimistic conclusions
about the precision of an estimate of µ [Patil et al., 2011].

2.6 Preparing Samples for Assay

Sample preparation affects both the cost and precision of estimates of µ, and generally
depends on the assay method (see Table 2.1). For dry combustion in an elemental
analyzer (DC-EA), samples must be air dried at room temperature. For loss-on-
ignition (LOI), samples should be dried in an oven at 105 degrees Celsius, as they
must completely dry. The composition of the soil can also determine the proper
drying temperature. Salts present in some soils will hold onto water at temperatures
higher than 105 degrees, so Chatterjee et al. [2009a].

After drying, samples are passed through a 2mm sieve, which helps remove large
bits of organic material (e.g. large roots) and rock. Nevertheless, it can be challenging
to differentiate between aggregates and rocks, and to make sure that all > 2mm
aggregate material makes it through the sieve. In particular, some soils are too hard
once they dry and must be broken up with a mortar and pestle before they can be
sieved. Roots may also be picked out by hand. Some studies aim to isolate and
separately quantify root fractions. Furthermore, when comparing plots (e.g. in an
experiment), carbon in roots can overshadow differences in SOC content [Ryals et al.,
2014, FAO, 2020].

After drying, samples are ground to a fine powder (e.g. in a ball mill), which
helps ensure homogenization and accurate assay. MIRS can be very sensitive to the
size and uniformity of the grind [England and Viscarra Rossel, 2018]. On the other
hand, LOI does not require soils to be ground.

Finally, many elemental analyzers (EAs) used for DC-EA cannot distinguish
between SOC and soil inorganic carbon (e.g. carbonates). For such machines, assays
give the concentration of total carbon, not just organic carbon. Soils must be checked
in advance for inorganic carbon before assay. If the pH is greater than 7.4, ground
samples may be treated with hydrochloric acid to remove carbonates [Nayak et al.,
2019]. Methods like LOI don’t get hot enough to combust carbonates, while MIRS
can usually distinguish between organic and inorganic carbon in spectra.
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2.7 Assay

In this section, we review the three major methods for assaying SOC concentration
before introducing the concept of assay error. For more details on these assay methods,
as well as newer in situ methods see the recent reviews by Nayak et al. [2019] and
England and Viscarra Rossel [2018].

DC-EA is the gold standard for SOC assay. EAs are expensive to purchase,
maintain, and run, but they measure carbon directly and at a fairly high throughput.
EAs combust aliquots of soil at high temperatures (around 1000◦ C) in a pure oxygen
environment, and assay the CO2 released using gas chromatography. DC-EA is
generally the most precise and expensive assay method for SOC, but the precision
and cost per analysis will vary by EA model.

To assay a sample by LOI, investigators measure the mass of dried soil samples,
bake them at around 550◦ celsius in a muffle furnace, and then measure how much
mass was lost during baking [Chatterjee et al., 2009a, FAO, 2020]. This process
(ideally) cooks off all the organic matter in the soil, some fraction of which is SOC.
The fraction of organic matter that is SOC is determined by calibrating the LOI
assays to DC-EA assays using linear regression, or by using a fixed conversion factor
of 0.58 [Chatterjee et al., 2009a]. However, the nature of the relationship between
LOI and DC-EA is often site specific, depending in particular on the vegetation,
texture, and residual water content in the soil [De Vos et al., 2005, Nayak et al., 2019].
The site level differences make LOI especially tricky for comparing different plots, as
opposed to the same plot at different times, because water content and mineralogy
may differ substantially. This makes 0.58 suspect as a universally valid fraction. It
is well-known that LOI is relatively imprecise, even in the ideal scenario where it is
calibrated to soils using DC-EA. However, LOI is considerably cheaper than DC-EA
both in terms of upfront costs and costs per sample, and allows investigators to assay
many more samples per assay rep than DC-EA [De Vos et al., 2005].

MIRS works by shining light in the mid-infrared range (4,000-400 cm−1 or 2500-
25,000 nm) on dried samples and measuring the wavelengths that are absorbed [Nayak
et al., 2019, Reeves, 2010, Wijewardane et al., 2018, Bellon-Maurel and McBratney,
2011]. MIRS is a high-throughput technology that requires even less resources than
LOI. It has the further logistical advantage of simultaneously assaying SOC and soil
inorganic carbon (SIC), alongside many other soil properties like pH, texture, and
cation exchange capacity [Wijewardane et al., 2018]. MIRS is thus a promising new
assay method despite the considerable upfront costs of units. Similar to LOI, MIRS
must be initially calibrated to DC-EA assays. A database of samples that contains
both spectra and DC-EA SOC assays is called a spectral library. Spectra are unique
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to soils, so spectral libraries must be constructed within a region of interest and
do not transfer well to new regions [Wijewardane et al., 2018]. Furthermore, unlike
LOI, the relationship between spectra and SOC content is not simple, necessitating
the use of more complex prediction methods that need to be rigorously validated
[Bellon-Maurel and McBratney, 2011, Wijewardane et al., 2018]. Calibrations are
also highly sensitive to sample prep procedures: samples must be well dried and
ground to a consistent size for precise assay [Wijewardane et al., 2018]. Labs can
expect to pay a significant upfront cost for purchasing a MIRS unit and establishing
a spectral library, but after the initial investment MIRS is cost effective to run, and
can be quite precise with proper user training and sample preparation, making it an
appealing alternative to DC-EA.

Table 2.1: A table of sample preparation procedures, their costs per sample, and whether
they are needed for assay with LOI, DC-EA, or MIRS. Asterisk denotes that sample
preparation may vary depending on specific details of the assay technology or soils. IC
= inorganic carbon; LOI = loss-on-ignition; DC-EA = dry combustion in an elemental
analyzer; MIRS = mid-infrared spectroscopy.

Procedure LOI DC-EA MIRS
Transportation ✓ ✓ ✓

Oven Drying ✓ ✗ ✗

Air Drying ✗ ✓ ✓

Sieving ✓ ✓ ✓

Grinding ✗ ✓ ✓

Check for IC ✗ ✓∗ ✗

From a statistical perspective, the assay process is important because additional
random error is introduced into the data. Unbiased assays are centered on the
true SOC concentration of the (composited) sample. Biased assays systematically
overestimate or underestimate the SOC concentration. It is not guaranteed that
assays are unbiased (see Bellon-Maurel and McBratney [2011]), though we will assume
that they are here. Even when assays are unbiased, they add error to SOC estimation
as measurements will not be exactly the same for two or more assays run on the same
sample. This variability can be due to errors in weighing, slight differences in aliquots
taken from the same sample (especially if homogenization is poor), instrumental drift,
or error in predictions or calibrations (especially for LOI and MIRS). We conceptualize
assay error on a multiplicative scale so that the amount of error is proportional to
the true SOC concentration. Unbiased multiplicative errors are centered at 1, but
realizations vary around 1 depending on a variance σ2

δ , which is roughly the expected
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percent error in assay. We detail how to estimate σ2
δ in Sections A.3.1 and A.3.2 of

the appendix.
As an example, a realized assay error of 1.1 will cause a true SOC concentration

of 1% to appear as 1.1% and a true SOC concentration of 5% to appear as 5.5%. A
precise assay method has a small σ2

δ so realizations tend to be close to 1, and the
measured SOC concentration is close to the true SOC concentration. Note that we
will sometimes use an additional subscript to refer to a specific method, e.g. σδ,DC-EA

is the assay error variance of DC-EA.

2.8 Optimal Sampling and Assay

In this section we highlight our main results. We provide a formula for the precision
of estimates of µ given a sample size n and a number of assays k. We derive the
optimal n and k that will maximize precision while maintaining a given budget.

2.8.1 Estimation Error

Suppose we have a UIRS of size n and that composites are formed randomly from n/k
samples in equal proportions and with perfect homogenization, so that k assays are
taken. Suppose S∗

i is the assayed SOC concentration of the ith composited sample.
Our estimator is the mean of these assayed composite samples:

µ̂ =
1

k

k∑
i=1

S∗
i .

This is an unbiased estimator of µ, so that E[µ̂] = µ. Its variance is

V(µ̂) =
σ2
p(1 + σ2

δ )

n
+

µ2σ2
δ

k
. (2.1)

If there is no assay error, this reduces to the usual formula for the variance of
a UIRS mean: σp/n. Because the estimator is unbiased, it’s expected error (mean-
squared error) is also equal to (2.1). In order to reduce the error, we can either gather
more samples n or make more assays k. The optimal allocation of samples and assays
will depend on the plot parameters σp and µ, the assay error variance σ2

δ , and a cost
model for sampling and assay.
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2.8.2 Optima

We now introduce such a cost model. Call costc the cost of sampling a single
core, costP the cost of sample preparation, and costA the cost of assaying a single
composited sample. Note that these costs depend on the sampling and assay methods
employed. For example, costA under LOI is considerably lower than costA under
DC-EA. We assume that the cost of compositing itself is negligible, but it could easily
be included in costc. Finally, we assume a fixed cost of the study cost0, which doesn’t
vary over n and k. The total cost is:

cost0 + n · costc + k · (costP + costA). (2.2)

We ultimately want to choose both an optimal n and k, which we call nopt and
kopt respectively, as well as a sample prep and assay method. We first consider the
sample prep and assay methods to be fixed, optimizing only for n and k, and then
discuss how to choose among strategies.

Given the cost model along with the plot and assay parameters, the composite
size that minimizes the error in Equation (2.1) is:

nopt

kopt

=
σp

√
1 + σ2

δ

µσδ

×
√

costP + costA
costc

. (2.3)

The optimal composite size thus depends on the ratio of plot heterogeneity σp and
the degree of assay error σδ. It also depends on the ratio of assay and sampling costs,
though it is less sensitive to small changes in cost due to the square root applied
to this ratio. Note that there are two boundary conditions that are not reflected in
Equation (2.3). Namely, if we initially find kopt < 1 then we take kopt = 1 with the
implication that all cores should be fully composited to 1 composite sample. On the
other hand, if we find kopt > nopt, then set kopt = nopt with the implication that all
sampled cores should be assayed without compositing. Ultimately, there are only
gains to compositing if

σ2
p(1 + σ2

δ )(costP + costA) > µ2σ2
δcostc.

Otherwise no compositing should be done.
Given a fixed budget B, we can compute the optimal variance V(µ̂)opt. The

optimal variance can be difficult to interpret. Taking the square root yields the
optimal standard error SE(µ̂)opt we can achieve at budget B:

SE(µ̂)opt =
σp

√
(1 + σ2

δ )costc + µσδ

√
costP + costA√

B − cost0
(2.4)
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The optimal standard error is on the same scale as the estimate (i.e. percent SOC).
Finally, different sample prep and assay methods involve trade-offs between the

costs and the assay error. Clearly, if a method is both cheaper and less erroneous, it
is preferred. But how much error should we tolerate for a cheaper assay? The relative
efficiency of different methods is the ratio of the minimum errors they are able to
achieve, per Equation (2.4). The relative efficiency of method 1 over method 2 is:

SE(µ̂)opt,1
SE(µ̂)opt,2

=
σp

√
(1 + σ2

δ1
)costc + µσδ1

√
costP1 + costM1

σp

√
(1 + σ2

δ2
)costc + µσδ2

√
costP2 + costM2

(2.5)

A relative efficiency close to 1 suggests a near toss-up between different sample prep
and assay strategies. On the other hand, a large relative efficiency suggests that
method 2 is more efficient than method 1, and vice versa for a small relative efficiency.
The upshot is that for any budget, we can achieve substantially more precise estimates
when the relative efficiency is far from 1.

Alternatively, given a maximum variance V that we can tolerate, we might ask
for a minimum budget over all ways of allocating the budget to samples and assays.
This is the inverse of the previous problem. The expressions for the optimum n and
k are fairly complicated. We provide details in Section A.2.2 in our appendix.

2.8.3 Variance estimation

So far we have assumed that we know the parameters σδ and σp. In practice, these
quantities must be estimated with gathered data or, when planning a survey, based
on physical reasoning and past studies.

An unbiased estimator of the plot variance σ2
p is the usual sample variance with

an adjustment factor for the size of composites:

σ̂2
p =

n

k

[
1

k − 1

k∑
i=1

(S∗
i − µ̂)2

]
,

where as above, µ̂ = 1
k

∑k
i=1 S

∗
i As previously noted, this formula will underestimate

the sample variance if composite samples are systematically more homogeneous than
the plot itself. This can happen, for example, when composites are grouped together
by distance instead of randomly.

We can estimate σδ using replicated assays, detailed in Section A.3.1 of our
appendix. For methods like LOI or MIRS that involve calibration, the additional
error due to calibration must be taken into account. See Section A.3.2.
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Putting these pieces together, we can estimate the overall standard error of µ̂ by:

ŜE(µ̂) =

√
σ̂2
p(1 + σ̂2

δ )

n
+

µ̂2σ̂2
δ

k

2.8.4 A Confidence Interval

If the sample size n is not too small, then an asymptotic confidence interval based on
the the t-distribution with n− 1 degrees of freedom will be approximately correct.
Specifically, denote t(1−α/2) as the (1− α/2) quantile of the t-distribution with n− 1
degrees of freedom. The interval[

µ̂− t(1−α/2) × ŜE(µ̂), µ̂+ t(1−α/2) × ŜE(µ̂)
]

bounds the true mean µ with about 95% probability. Checking if a particular value
of µ (say µ0) is in this interval is equivalent to a level α t-test of the null hypothesis
H0 : µ = µ0. Often, a researcher will set α = .05 to yield a 95% confidence interval:
[µ̂ − 1.96 × ŜE(µ̂), µ̂ + 1.96 × ŜE(µ̂)]. In instances where the confidence interval

includes values less than 0, in particular if 1.96 × ŜE(µ̂) > µ̂, it is valid to set the
lower confidence limit equal to 0.

2.8.5 Estimating a difference

Often, investigators aim to estimate the difference between average SOC concentra-
tions, either between two plots at the same time or within the same plot at different
times. Let µ1 and µ2 be the mean SOC concentrations in plot 1 and plot 2. Then the
parameter of interest is µ1 − µ2. Let µ̂1 and µ̂2 be estimators of µ1 and µ2, as above.
Then the difference in means, ∆̂1,2 = µ̂1 − µ̂2, is an unbiased estimator of µ1 − µ2.
Furthermore, assuming independent UIRSing in each plot, the standard error is:

SE(∆̂1,2) =
√

V(µ̂1) + V(µ̂2).

The optimum SE of the difference can be attained by separately optimizing V(µ̂1)
and V(µ̂1), as above, yielding sampling and assay sizes of n1, k1 for plot 1 and n2,

k2 for plot 2. A reasonable estimate of the SE is ŜE(∆̂1,2) ≡
√

V̂(µ̂1) + V̂(µ̂2). An

approximate (1− α) confidence interval on the difference is:[
∆̂1,2 − t(1−α/2) × ŜE(∆̂1,2), ∆̂1,2 + t(1−α/2) × ŜE(∆̂1,2)

]
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where t(1−α/2) is now the (1 − α/2) quantile of the t-distribution with min(n1, n2)
degrees of freedom.

If sample sizes are fairly small, say n1, n2 < 30, the difference-in-means will
generally not have a normal distribution. In this case, a permutation test should
be used to test for a difference between µ1 and µ2. Permutation tests provide an
exact level α test at any sample size, without assumptions about the distributions of
the samples. Permutation confidence intervals can be derived by testing a range of
hypotheses over a grid of effect sizes. The corresponding 1− α confidence interval
contains all effect sizes that are not rejected at level α. Pesarin and Salmaso [2010b]
and Good [2005] are good references for the theory and implementation of permutation
tests.

2.9 Application

In this section we demonstrate a practical application of our analysis. We draw on a
variety of sources to estimate parameters and costs. We stress that the results are not
intended to provide universal guidance on sampling, sample prep, and assay—they
are highly sensitive to the inputs. The open-source software and web tool we provide
are intended to enable investigators to draw their own conclusions from their own
inputs.

2.9.1 Data

We combine data from multiple sources to estimate σδ for DC-EA, LOI, and MIRS:
σδ,DC-EA, σδ,LOI, and σδ,MIRS, respectively. σδ,DC-EA is estimated from assays on samples
taken from rangeland soils in Marin County, California by the Silver Lab at UC
Berkeley, referred to here as the Marin data. The samples were run in duplicate on a
Carlo Elantech Elemental analyzer at UC Berkeley. We use the method presented in
Section 2.8.3 to compute σ̂δ,DC-EA,i on each sample and took the median across samples
to get σ̂δ,DC-EA. We applied the methods presented in detail in Section A.3.2 of our
appendix to estimate the additional assay error in LOI and MIRS callibrated to DC-
EA assays. Briefly, we derived the validation root mean squared error (RMSEv) for
LOI by regressing LOI assays on DC-EA assays taken at the Agricultural Diagnostic
Laboratory at the University of Arkansas (ADL). These assays were taken on samples
from several sites in Colorado collected by the Wainwright Lab at Lawrence Berkeley
National Laboratory. We estimated σδ,MIRS using the RMSEv provided in table 4 of
England and Viscarra Rossel [2018]. They computed this estimate from a median of
MIRS RMSEv values reported in a range of studies. These errors were then divided by
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our estimates of µ̂ and added to the DC-EA error variance estimate to approximate
their overall assay error variance on a multiplicative scale. We also computed the
SE assuming no assay error and no cost to assay, which represents a typical power
analysis and provides a lower bound on the SE across assay methods.

We used the Marin data to get estimates of σp and µ in the topsoil (0-10 cm) and
in deep soil (50-100 cm). Within depth profiles, we computed the sample mean and
standard deviation at each site and then took the median over sites as our estimates
σ̂p and µ̂. The samples were collected using transect sampling, not UIRSing, but
should provide reasonable estimates.

2.9.2 Results

Inputs

All inputs are summarized in table 2.2. Using the Marin data, we estimated the
topsoil plot heterogeneity as σ̂p = 0.54 and the mean as µ̂ = 3.61. We estimated the
deep soil heterogeneity as σ̂p = 0.12 and the deep soil mean as µ̂ = 0.48. Based on
the duplicated DC-EA assays, we obtained the estimate σ̂δ,DC-EA = 0.02. The RMSEv

for LOI was 0.31 in the range of the Marin data assays. Dividing by µ̂ and combining
this with the DC-EA error, we estimated an error variance for LOI of σ̂δ,LOI = 0.11
in the top soil and σ̂δ,LOI = 0.67 in deep soil. England and Viscarra Rossel [2018]
reported a median RMSEv of 0.11 for MIRS, yielding an estimate of σ̂δ,MIRS = 0.05 in
the top soil and σ̂δ,MIRS = 0.25 in deep soil.

The cost of sampling and the fixed costs of the survey are not well constrained.
We set the fixed cost at cost0 ≡ 200 and costc at 5, 20, or 40 USD to reflect cheap,
medium, and expensive sampling. We assumed a transport cost of 2.00, a cost of
4.00 for oven drying, 1.00 for air drying, 2.00 for sieving, 4.00 for grinding, and 2.00
for acid testing for inorganic carbon. Without root picking, this puts the cost of
sample prep at 8.00 for LOI, 11.00 for DC-EA, and 9.00 for MIRS. The assay costs
for DC-EA and MIRS were estimated in [O’Rourke and Holden, 2011]. That paper
reported a cost of about 15 USD per sample for DC-EA and 1.30 USD per sample
for MIRS. The 12:1 price ratio of DC-EA to LOI reported in De Vos et al. [2005]
yields an assay cost of 1.25 USD per sample for LOI. Adding costP and costA for
each method yields costDC-EA = 26.00 USD, costLOI = 9.25 USD, and costMIRS = 10.30
USD.
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Table 2.2: Inputs to optimization problem as estimated from Marin and LBL data. σ̂δ,DC-EA

is the assay error of DC-EA; σ̂δ,LOI is the assay error of LOI; σ̂p is the plot heterogeneity
(standard deviation); µ̂ is the plot mean concentration; costDC-EA is the cost of DC-EA
assay plus the costs of associated sample prep; costLOI is the cost of LOI plus the costs of
associated sample prep; costMIRS is the cost of MIRS plus the costs of associated sample
prep. costc is the cost of sampling.

Description Notation Value(s)
DC-EA assay variance σ̂δ,DC-EA 0.02
LOI assay variance σ̂δ,LOI 0.11, 0.67
MIRS assay variance σ̂δ,MIRS 0.05, 0.25
Plot heterogeneity σ̂p 0.68, 0.12
Plot mean µ̂ 3.57, 0.48
Fixed cost cost0 200
Cost of DC-EA assay costDC-EA 26.00
Cost of LOI assay costLOI 9.25
Cost of MIRS assay costMIRS 10.30
Cost of taking a core costc 5, 20, 40

Outputs

Figure 2.2 plots the optimal SE of estimation attainable for each assay method across
a range of budgets. Figure 2.3 plots the same results but rescaling SEs to coefficients
of variation. The output indicates that DC-EA is the best assay method in both
topsoil and deep soil, yielding the most precise estimate at any given budget. In
terms of relative performance, the assay method is more important in the deep soil
than in the topsoil: DC-EA represents a major improvement over the other methods
in deep soil, while the precision is essentially a toss-up in top soil. Under our inputs,
DC-EA gets close to achieving the lower bound implied by no assay error.

Optimal composite sizes are provided in Table 2.3 across the range of sampling
costs and depths. Compositing is more valuable as the assay method becomes more
precise and expensive, with large gains to compositing under DC-EA and essentially
no gain under LOI. Compositing is also more valuable if samples are cheap to gather
and the plot is heterogeneous, in which case it becomes beneficial to focus budgets
on sampling rather than assay.

Relative efficiencies are given in Table 2.4. Relative efficiencies for topsoil assays
are fairly close to 1. For deep soil, DC-EA is at least twice as efficient as LOI — all
relative efficiencies are less than 0.5 — and at least 30% more efficient than MIRS for
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any sampling cost.

Table 2.3: Optimal composite sizes for the three assay methods. Sampling costs are set at
5, 20, or 40 USD (top row). Soil parameters are determined from the topsoil (first three
columns) or deep soil (last three columns). An optimal composite size of 1 suggests that no
compositing should be done, i.e. that all cores should be measured.

Topsoil (0-10 cm) Deep Soil (50-100 cm)
5 USD 20 USD 40 USD 5 USD 20 USD 40 USD

DC-EA 20 10 7 26 13 9
MIRS 5 3 2 2 1 1
LOI 2 1 1 1 1 1

Table 2.4: Relative efficiencies of different assay methods compared to DC-EA at different
profiles (first column) and sampling costs (second column). A relative efficiency significantly
less than 1 suggests DC-EA is more efficient than the alternative method at any given
budget, and vice versa for a relative efficiency greater than 1. A relative efficiency near 1
suggests little difference between methods.

Soil Profile Sampling Cost SEDC-EA / SELOI SEDC-EA / SEMIRS

Topsoil (0-10 cm) 5 USD 0.70 0.90
Topsoil (0-10 cm) 20 USD 0.79 0.93
Topsoil (0-10 cm) 40 USD 0.83 0.95

Deep Soil (50-100 cm) 5 USD 0.25 0.48
Deep Soil (50-100 cm) 20 USD 0.36 0.61
Deep Soil (50-100 cm) 40 USD 0.42 0.67

2.10 Discussion

In this paper, we statistically formalized the sampling and assay processes to character-
ize the precision of SOC concentration estimation while making minimal assumptions.
We derived optimal composite sizes to maximize precision under a fixed budget.
Although we did not discuss it extensively, we also solved the inverse problem of
minimizing costs given a fixed precision (see section A.2.2 of our appendix).

We applied our method to data from a California rangeland, bringing in costs
and errors of measurement from other studies [De Vos et al., 2005, England and
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Figure 2.2: Optimal standard errors for estimating µ given parameters in Table 2.2. The
x-axis is the budget in US dollars, the y-axis is the standard error in %SOC attained at the
given budget. Different colored lines correspond to different assay methods. The cost of
sampling varies across rows, and the depth varies across columns. The line labels indicate
the combined costs of sample prep and assay for each method. DC-EA = dry combustion
in an elemental analyzer; LOI = loss-on-ignition; MIRS = mid-infrared spectroscopy; USD
= United States dollars.
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Figure 2.3: Optimal coefficients of variation for estimating µ given parameters in Table 2.2.
The x-axis is the budget in US dollars, the y-axis is the coefficient of variation: SE(µ̂)opt/µ.
Different colored lines correspond to different assay methods. The cost of sampling varies
across rows, and the depth varies across columns. The line labels indicate the combined
costs of sample prep and assay for each method. DC-EA = dry combustion in an elemental
analyzer; LOI = loss-on-ignition; MIRS = mid-infrared spectroscopy; USD = United States
dollars.
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Viscarra Rossel, 2018, O’Rourke and Holden, 2011]. There are a number of interesting
implications from our results.

First, we found assay error to be a significant source of uncertainty in SOC
estimation that is usually not taken into account. Indeed, many analyses in the SOC
literature compute uncertainty estimates accounting only for plot heterogeneity (or in
some cases, only inter-plot heterogeneity). We found that incorporating assay error
and costs can double the uncertainty (in terms of standard error) compared to the
conventional approach of not incorporating assay error.

Furthermore, the depth of soil under study was an especially important considera-
tion for the assay method employed. We found that efficiencies varied much more
across the assay methods when attempting to quantify deep soil concentrations rather
than top soil. In terms of the coefficient of variation, top soil can be quantified by any
assay method to within about 5% of the mean at a budget of 1000 USD. On the other
hand, DC-EA seems far better at accurately quantifying deep soil concentrations
than other methods despite its high cost. Equation 2.4 reveals that when the plot
heterogeneity σp is high the estimation error will be driven largely by the cost of
sampling while the cost and precision of assay have little effect. Intuitively, we need
many samples to characterize the heterogeneity within the plot, and cheaper, less
precise assay methods generally allow many samples to be collected and assayed.
Conversely, if the plot heterogeneity is low, it is better to collect a few samples that
accurately represent the average plot concentration and focus the budget on assaying
them as precisely as possible.

We also found that with our inputs, the benefits of compositing were quite
variable. Compositing many cores together is beneficial when the assay method is
fairly expensive and precise (e.g. DC-EA), while sampling is fairly cheap (e.g. 5.00
USD per core). Equation 2.3 reveals that compositing may also be resourceful when
the plot heterogeneity is large compared to assay error.

We did not incorporate bulk density into our analysis. Estimating bulk density
is critical to converting from concentrations to stocks. Estimating SOC stock is
especially necessary in studies of carbon sequestration and climate change mitigation,
while SOC concentration is typically the parameter of interest from a soil health and
functioning perspective. As with SOC concentrations, bulk density tends to vary
substantially across a landscape. However, investigators frequently take only one bulk
density sample and bulk density is also prone to assay error [Walter et al., 2016b].
Thus converting from concentration to stock will incur substantial additional error,
which should ideally be reflected in confidence intervals on stock estimates. Our results
on the error in concentration estimation can be seen as a lower bound on the error in
stock estimation, i.e. assuming no error in bulk density estimation. In addition to
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including error in bulk density, future work should incorporate more general sampling
schemes that can improve efficiency, like stratified sampling or well-spread sampling,
and optimize over the sampling design as well as the assay method. Considering the
sampling design alongside the compositing and assay strategy will allow investigators
to design economical soil surveys that achieve their desired precision.

2.11 Conclusion

When assays introduce error into an estimation process, compositing samples may
have major ramifications for both the precision and cost of estimates. In this paper
we detailed the processes involved in soil organic carbon estimation and derived
optimal composite sizes to maximize estimation precision when assays are subject to
multiplicative errors. An analysis of data from California rangeland indicated that
DC-EA would yield more precise estimates than LOI or MIRS, and that, for any
given budget, compositing samples before assay would yield more precise estimates
than assaying individual samples. Optimal composite sizes and assay methods will
depend on parameters of the plot under study and on the costs of sampling, sample
preparation, and assay. Thus, our results are not meant to provide universal guidance.
We hope that the framework we presented here will be useful to investigators aiming
to design efficient soil surveys for soil organic carbon concentration and stock.
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Chapter 3

Valid soil organic carbon
measurement

3.1 Introduction

Interest in measuring soil organic carbon (SOC) is expanding dramatically because
agricultural interventions that sequester C in soil may help to mitigate climate change.
Recent policy initiatives and emerging soil C markets designed to accelerate man-
agement transitions require practical methods to measure SOC with low uncertainty
or they may often reward false positives and fail to reward genuine sequestration.
Indeed, the high uncertainty of SOC measurements likely contributed to the 2011
collapse of the Chicago Climate Exchange, the only prior U.S. voluntary C market
[Gosnell et al., 2011].

In practice, the accuracy of SOC measurements is limited by spatial heterogeneity,
sampling design, variability in bulk density, and variation in soil processing methods
and laboratory assays. Reliably detecting and accurately quantifying changes in SOC
stocks is challenging because, compared to these sources of variation and uncertainty,
the annual changes produced by agricultural management interventions are often
small [Bai et al., 2019, Minasny et al., 2017], for instance ranging from < 0.1 %
absolute change for conversion to no-till [Franzluebbers, 2005] to approximately 0.5
% with biochar application [Jones et al., 2012, Majumder et al., 2019]. Methods for
estimating SOC must be precise and powerful enough to detect such small changes in
a heterogeneous medium [Ellert et al., 2002, Homann et al., 1998, Lehmann et al.,
2007, Robertson et al., 1997]. Minimizing the errors that arise in each of the many
steps in SOC measurement (see SI 1 and SI Table 1 for a full description) is especially
important in the context of C offset markets. Only accurate estimates of SOC
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sequestration with transparent levels of uncertainty should be used for generating
credits and allowing governments and industries to offset greenhouse gas (GHG)
emissions.

Yet protocols currently being used by C markets for measurement, reporting
and verification (MRV) of SOC sequestration may be inadequate [Necpalova et al.,
2014, Oldfield et al., 2021]. Importantly, many MRV protocols recommend but do
not require—or else make no mention of—powering measurement campaigns using
representative spatial heterogeneity information. Agricultural soils used to generate C
credits have varying degrees of spatial heterogeneity and require different sample sizes
to detect a given absolute or relative change in SOC. For example, spatial heterogeneity
is typically higher on rangelands than croplands due to diverse topography, rocky
soil horizons, low and patchy soil fertility, and patchiness of grazing and manure
deposition. Rather than tailoring sample size requirements to expected levels of
heterogeneity, many protocols (including the Climate Action Reserve Soil Enrichment
Protocol, Australian Carbon Methodology, and Verra VM0021) simply set a minimum
sample size within designated areas (e. g., 3 samples per stratum). If the MRV
protocol does not require determining the number of samples necessary to detect a
reasonable level of SOC sequestration, it could fail to reward legitimate sequestration
or have a large chance of erroneously rewarding nonexistent sequestration.

Addressing knowledge gaps associated with sampling design—including sample
placement, stratification, and compositing—could further reduce the measurement
uncertainties of SOC offsets. For example, C market protocols often encourage the use
of systematic sampling, but samples collected by simple or stratified random sampling
are less likely to bias SOC estimates and allow more rigorous statistical analysis. While
stratifying soil sampling into more homogeneous land subunits can increase the power
to detect SOC sequestration, many protocols lack quantitative guidance for defining
strata and some do not require field sampling at all, relying instead on model output
[Oldfield et al., 2021], with notable exceptions (e.g. Australian Carbon Methodology).
Compositing—combining samples to reduce analysis costs—is a common practice
allowed in MRV protocols (e.g. Climate Action Reserve Soil Enrichment Protocol,
Australian Carbon Methodology), though the impact on measurement error is often
unknown [de Gruijter et al., 2016]. At one extreme, all samples collected within
an experimental unit can be combined into a single sample for analysis (i.e., full
compositing) [Carey et al., 2020, Tautges et al., 2019], making it impossible to estimate
spatial heterogeneity and substantially increasing measurement error [Spertus, 2021].

The impact of compositing on measurement error depends in part on the error
of laboratory analyses. The extent to which dry combustion assays contribute to
overall error in measuring SOC from either intra-lab (replicated measurements on
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the same instrument) or inter-lab (measurements on different instruments) analytical
variability is not well known [Chatterjee et al., 2009b, O’Rourke and Holden, 2011],
limiting the ability to optimize sampling campaigns and the reliability of estimates
and inferences. Compositing and subsequent laboratory analyses can be optimized
to minimize contribution to error within a given budget, given estimates of spatial
heterogeneity, analytical error, and laboratory costs [Spertus, 2021]. To our knowledge,
such an analysis has never been done to inform soil-sampling campaigns.

Lastly, the choice of statistical methods for data analysis also influences the
likelihood of false positives (Type I errors)—generating C offsets when SOC wasn’t
sequestered—and false negatives (Type II errors)—failing to generate C offsets when
SOC was sequestered. In a C market, Type I error can lead to allocation of payments
without actual SOC sequestration, and possibly even increase net C emissions; while a
Type II error can fail to generate C offsets when SOC is sequestered [Sanderman and
Baldock, 2010]. Both types of error undermine the utility of C markets, leading to
missed opportunities for climate change mitigation. When the assumptions required
of common statistical methods are not met (e.g., SOC is not normally distributed),
standard hypothesis tests can have Type I error rates that greatly exceed their nominal
significance level (e.g., 5 %), and confidence intervals can have coverage probabilities
far lower than nominal (e.g., 95 %) [Lehmann and Romano, 2005]. For example,
the two-sample Student t-test is often used to assess changes in SOC stocks [Brus
and de Gruijter, 2011, de Gruijter et al., 2016, Kravchenko and Robertson, 2011].
Student’s ttest assumes that SOC at both measurement times is normally distributed
with the same variance. Since SOC generally does not have a normal distribution [Yan
et al., 2011] and because agricultural management interventions can redistribute SOC
without changing the total [Chappell et al., 2012], Student’s t confidence intervals
can have true coverage probabilities far lower than the nominal confidence level
(e.g., 95 %), and Student’s t-tests can have true Type I error rates that greatly
exceed the nominal significance level (e.g., 5 %) [Lehmann and Romano, 2005]. This
undermines the validity of many standard methods for inference—including ANOVA,
mixed effects models, geostatistical models, bootstrapping, Wilcoxon rank-sum tests,
permutation tests, and Bayesian models. Quantifying the chance of false conclusions
about whether and how much SOC has been sequestered is crucial for SOC offsets.

Lesser-known statistical methods can strictly limit the Type 1 error rate and
increase reliability. For example, there are nonparametric tests and confidence
intervals that are valid for any SOC distribution [Anderson, 1969, Learned-Miller
and Thomas, 2019, Romano and Wolf, 2000, Stark, 2009e, 2023, Waudby-Smith and
Ramdas, 2023]. These methods are conservative or exact: the probability of Type I
errors is not larger than the nominal significance level (e.g., 5 %), and the chance that
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confidence intervals include the true amount of SOC sequestered is not less than the
nominal confidence level (e.g., 95 %). Suitable nonparametric tests and confidence
intervals can produce reliable inferences about SOC stocks and changes, though their
widespread adoption has been hindered by their relatively low power.

Below, we investigate these uncertainties and knowledge gaps and how they affect
the cost and reliability of SOC sequestration measurements. Using new, on-farm data
from California crop and rangelands, we 1) evaluate the relative impact of spatial
heterogeneity, analytical variability, and compositing on measurement precision and
power; 2) use simulations to examine the validity and power of common statistical
tests to detect SOC sequestration using different sampling designs on high and low
heterogeneity agricultural landscapes; and 3) compare the validity and power of the
t-test to those of a new nonparametric method across a range of sample sizes and SOC
changes. Based on our findings, we make straightforward recommendations, targeted
toward SOC markets, to improve the accuracy and reliability of SOC sequestration
measurements, yield more trustworthy C credits, and support progress towards climate
change mitigation goals.

3.2 Methods

3.2.1 Collecting SOC data: Rangeland and cropland sam-
pling and laboratory analysis

We leverage new data collected from two intensive field sampling campaigns on
California crop and rangelands. While these samples were originally collected for
other purposes, we use them to study field-level spatial heterogeneity and to provide
an empirical basis for simulations. We outline our sampling methods briefly below,
with more details SI 2.1.

Rangeland samples were collected in December 2019 from a ranch in Paicines,
California. The data were collected to quantify spatial heterogeneity of SOC in a
constrained, field-scale setting, controlling for soil type, catenal position, slope aspect,
and vegetation—not to quantify SOC stock for the whole ranch. We used soil survey
information within the ranch boundaries to identify Auberry Fine Sandy Loam soils.
Samples were collected using a stratified transect design with five 100 m transects
on two adjacent hillslopes stratified by slope position: summit/shoulder (1 transect),
backslope (2 transects), and footslope (2 transects). Soils were sampled down to 100
cm, or the point of refusal, and divided into 5 depth ranges (0–10 cm, 10–30 cm,
30–50 cm, 50–75 cm and 75–100 cm). We attempted to collect 33 samples along each
transect, but time constraints limited us to 25 samples at one transect. In all, we
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attempted to collect 785 samples, but bedrock or rock obstructions limited the depth
of sampling at some locations (mostly along the summit position), resulting in 662
total samples. Each sample was air-dried and sieved to 2 mm. Visible plant materials
were removed, and soils were ground using a ball mill (SI 2.1; Retsch, Newtown, PA).

Cropland soil samples were collected in September and October 2019, from
seven farms across Southern California (SI Fig. 1) representing various soil types
and cropping systems, including two orchards, a vineyard, two intensive cropping
systems, and two diversified farms (full soil taxonomy in SI Table 2). Samples were
collected along 50 m transects. At each site, transect locations were selected based
on the dominant soil type (Soil Survey Geographic (SSURGO) Database, United
States Department of Agriculture, Natural Resource Conservation Service), consistent
historic and current management, and cropping system. The number of transects
ranged from two at the small, diversified farms to six at one of the larger cropland
sites. Depth ranges were defined slightly differently at different sites based on tillage
depths (0–10, 10–20 cm vs 0–15, 15–30 cm) and genetic horizon in the subsurface.
In all, 455 samples were collected from the seven farms. Samples were airdried and
sieved to 2 mm; visible plant materials were removed; and then soils were oven-dried
at 60 C and ground using a ball mill.

Bulk density (BD) samples for croplands and rangelands were collected using
the pit method [Walter et al., 2016a]. Cores were collected from the center of each
depth increment used for bulk soil samples. For sampling depths greater than 10 cm,
multiple cores were collected to ensure samples were representative. At the rangeland
site, three 1.5 m deep soil pits were dug along each transect (one at each end, and one
in the center at 50 m) using an excavator, a total of 15 pits. At the cropland sites,
one soil pit was dug at the central location of each transect to 1.5 m or the point of
refusal. Bulk density samples were oven-dried at 105 degrees C until their weight no
longer decreased. Visible rock fragments were removed before weighing the samples
and submerged in water to measure their volume. Rock volume was subtracted from
core volume in estimating soil density. We used bulk density and TC% to calculate
SOC stocks for each depth increment.

Two different dry combustion analyzers were used to measure C concentrations
(TC%) of prepared samples. All cropland soils were analyzed with a Costech ECS
4010 elemental analyzer (Costech, Valencia, CA)—a widely used instrument for dry
combustion analysis. Rangeland samples were analyzed on an Elementar soliTOC cube
(Elementar, Ronkonkoma, NY; see [Natali et al., 2020]), a relatively new instrument
designed to improve precision by combusting higher sample masses (up to 3 g of
soil vs 50 mg) while separating total organic C (TOC), residual organic C (ROC),
and total inorganic C (TIC) via a temperature ramping method, DIN19539. The
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ECS 4010 measures only the mass of total C (TC), and thus we compare only TC%
between the two instruments.

To quantify the precision and bias of each instrument, we reanalyzed 15 rangeland
and 22 cropland samples that had the minimum, median, and maximum TC% for
each depth and land-use category (SI Fig. 2). Five analytical replicates of each
sample were measured on each instrument. Samples with high TIC (greater than0.1
measured by the soliTOC, were treated with HCl to remove TIC and reassayed on
the ECS 4010 (SI Figs. 2 and 3). Finally, we ran 25 additional replicates of two soil
standards with known TC% on each instrument (SI Fig. 4).

3.2.2 Assessing spatial heterogeneity of SOC and bulk density

To visualize the relative heterogeneity of TC% by land use, depth, and transect, we
used histograms, sample means, and coefficients of variation (CV). While TC% of
the non-rocky component of the soil is the focus of this study, we also examined the
variability of BD measurements by comparing the CV across depths for rangeland
and cropland site 7, which had substantially more BD samples than other cropland
sites. To assess differences in spatial heterogeneity across land uses, depth, strata
(transects), and sites, we tested the hypotheses that population TC% distributions
were equal across depths and transects on rangeland soils, or depths and sites on
cropland soils using a nonparametric test called permutation ANOVA, a way of
calibrating the ANOVA test statistic to control the rate of false rejections without
any assumption about the distribution of SOC [Pesarin and Salmaso, 2010a]. Details
of how the permutation ANOVA was performed are in SI 2.2. Code is available at:
github.com/spertus/soil-carbon-statistics.

3.2.3 Evaluating analytical variability

We repeated analyses of the same samples to estimate the variability of laboratory
assays. For each sample and instrument, analytical error was quantified by the
estimated relative error (see SI 2.3 for the formula), which is approximately the CV.
We report the median estimated relative error for each instrument. (The estimated
relative error measures variability but not bias; we estimated bias using measurements
of known standards.) To evaluate whether there were systematic differences in
measurements between the two instruments (SoliTOC and ECS 4010), we used
permutation tests for the two-sample problem, which asks whether the difference
between two samples would be unlikely if the samples were created by randomly
partitioning their pooled values into the two groups. We used the difference in means
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as the test statistic and simulated 10,000 draws from the permutation distribution
using the R package permuter (see SI 2.3 for more details).

3.2.4 Quantifying relative uncertainty from spatial and ana-
lytical heterogeneity

We quantified the contributions of analytical variability and spatial heterogeneity to
uncertainty in estimates of the population mean TCusing the delta method [Goidts
et al., 2009], which decomposes the total uncertainty into a sum of the contributions
from analytical variability and spatial heterogeneity (SI 2.4). If the ratio of the
contribution from spatial heterogeneity to total uncertainty is close to 1, spatial
heterogeneity contributes more than analytical variability to overall uncertainty, vice
versa if the ratio is closer to 0. If the ratio is 0.5, analytical and spatial heterogeneity
contribute equally to total uncertainty. To assess how compositing affects the relative
contributions to uncertainty, we computed the proportion of total uncertainty due to
spatial heterogeneity without compositing, and the corresponding proportion when 90
cores are composited to one analytic sample (an extreme degree of compositing). We
computed these ratios within depths for both land use types and both instruments.

3.2.5 Comparing how sources of error affect statistical power

We studied how spatial heterogeneity, assay variability, and compositing affect the
ability to detect changes in average TC%. Specifically, we approximated the power of
the unpaired two-sample t-test when samples are drawn by simple random sampling
and there is no compositing, optimal compositing (derived in Spertus [2021], or full
compositing. We only examined the power for relatively large sample sizes (n ≥ 90
cores) because Student’s t-test is especially unreliable for small sample sizes (see
below). Comparing compositing strategies requires a budget; if money were no object,
assaying every sample separately (i.e., not compositing) minimizes error. Compositing
involves a tradeoff between various costs and errors. To explore the tradeoff, we took
the marginal cost of collecting a single soil core in the field to be $20 USD and the
cost of laboratory analysis (including sample preparation) in an elemental analyzer
to be $13.60 USD per sample, the average price charged by five commercial labs for
TC% analysis. Given these unit costs, the cost to collect, prepare, and analyze 90
cores (without compositing) is $3,024 USD. Using the same total budget, we explored
what the uncertainty would have been had the money been used to take more cores
and composite some of them (optimal compositing, which maximizes power within
the budget) or all of them (full compositing) instead of assaying them individually.
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The power calculations use the estimates of land-use specific TC% average and spatial
heterogeneity (averaged across sites for cropland) and instrument-specific median
relative error to approximate the power to detect a change of a given magnitude.

3.2.6 Power and validity of tests for detecting TC% change

We performed two simulations to estimate the true significance level and power
of different two-sample hypothesis tests. The “validity simulation” estimated the
significance level (i.e., Type 1 error rate) of two tests—the chance a test erroneously
rejects the null hypothesis when there is no change in total SOC—in four scenarios.
The two tests were the usual two-sample Student t-test and a nonparametric test
that uses a pre-specified upper bound on TC concentration (See SI 1.6 for details).
We set this bound at 10% or 20% TC, established TC ranges in mineral soils. In
each of the four scenarios, SOC means were set exactly equal, but the shapes of the
SOC distributions could differ in ways that might plausibly result from agricultural
interventions, inferred from our empirical crop and rangeland TC data. In the
“unchanged normal distribution” scenario, both distributions were normal with SDs
of 0.5%; in the “tilled cropland” scenario, the distribution at the first time was
the actual topsoil TC% samples from cropland site 5 (right-skewed, Figure 3.1)
and the distribution at the second time was normal with SD 0.5 “change in skew”
scenario, the distribution at time 1 was rangeland topsoil samples (right-skewed) and
the distribution at time 2 was the same but multiplied by -1 (left-skewed); in the
“extreme hotspot” scenario, the distribution at time 1 had 99% of its mass in a normal
distribution centered at 2.8 % TC (SD: 0.05 %) and 1 % as a point-mass centered at
about 20 % TC [Beem-Miller et al., 2016, Miller et al., 2016]. At the second time, the
distribution was normal (SD: 0.05 %). We ran both tests at a nominal 5 % level 5000
times with sample sizes ranging from 5 to 150 at each epoch and recorded the rate of
(false) rejections. We compared these simulated significance levels to the nominal 5 %
significance level (Fig. 6). The “power simulation” estimated the chance of detecting
increases in SOC of various magnitudes with sample sizes 10, 30, 90, and 200 using the
Student’s t-test with unstratified sampling, Student’s t-test with stratified sampling,
and the nonparametric test with unstratified sampling. (Stratified nonparametric
tests are in development.) The reference population distributions (at time 1) were
taken to be the empirical distributions of samples from the rangeland site or from
cropland site 5, which had median spatial heterogeneity and the most samples among
the cropland sites. The hypothetical change in TC% was an additive shift of the
reference distribution, with shifts ranging from 0 % (no change) to 60 % of baseline.
For example, the baseline average TC % across our cropland sites was 2.7 % TC, so the
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simulated TC% at time 2 ranged from 2.7 % to 4.32 %. The stratified Student t-test
was used only on rangeland samples because the cropland transects were not stratified
and there were few samples per transect. For the purpose of this simulation, we
treated each of the 5 transects as if it were a random sample from a distinct stratum.
Under this assumption, samples from a transect are representative of the distribution
of %TC within the corresponding stratum. This assumption is probably false in a
way that favors the stratified Student t-test—within-transect heterogeneity is likely
lower and between-transect variation higher than the corresponding quantities in an
actual stratified random sampling design. The simulations sampled independently
with replacement from each distribution (either pooled or stratified by transect),
conducted the tests at nominal significance level 5 %, and recorded whether the null
was rejected. The nonparametric test requires the user to specify an upper bound on
the concentration: smaller bounds leads to more powerful tests, but misspecification
can make the test invalid. We ran nonparametric tests with upper bounds of 10
%, which exceeds the maximum in any of our data (7.8 % TC), and 20 %, the
established bound on TC in mineral soils. We also ran the nonparametric tests at
a significance level of 10 examine how raising the significance level increases power.
We ran each simulation 500 times, with 10, 30, 90, or 200 samples drawn from
the population at each epoch. For stratified sampling, sample sizes were allocated
proportional to “size,” measured by the number of samples in the original transect.
All statistical analyses were conducted in R (version 3.6.1). Code is available at:
https://github.com/spertus/soil-carbon-statistics.

3.3 Results

3.3.1 Spatial heterogeneity of SOC and bulk density

In both rangeland and cropland soils, TC% generally decreased with depth (Figure 3.1).
In rangeland soils, mean TC% varied from 3.77 % in topsoils (0–10 cm) of the
summit/shoulder transect to 0.47 % at 75–100 cm of the footslope transect. Mean
TC% in cropland soils varied from 4.31 % at 0–15 cm (at CROP3) to 0.10 % at
60–100 cm (at CROP7). Permutation ANOVA found that variations in mean TC%
were statistically significant across transects (p < 10−4) and depth (p < 10−4) in
rangeland soils and across sites (p < 10−4) and depth (p < 10−4) in cropland soils.
Mean TOC% at the rangeland site was similar to TC% (SI 10): most samples had low
TIC%. The spatial heterogeneity of TC% varied with land use, depth, and geographic
location (transect and site; Table 3.1). Heterogeneity of TC%, as measured by the
coefficient of variation (CV), was higher in the rangeland site than in the cropland
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CROPLAND
Depth (cm) CROP1 CROP2 CROP3 CROP4 CROP5 CROP6 CROP7 Total
DFS Vineyard Orchard Crop Crop DFS Orchard
0–15 2.45 (0.26) 0.82 (0.26) 4.31 (0.26) 2.37 (0.21) 2.74 (0.25) 0.94 (0.20) 0.64 (0.21) 2.04 (0.24)
15–30 1.21 (0.19) 0.56 (0.41) 3.05 (0.31) 1.14 (0.15) 2.03 (0.21) 0.73 (0.27) 0.17 (0.36) 1.27 (0.25)
30–60 0.73 (0.39) 0.36 (0.58) 2.36 (0.34) 0.88 (0.13) 1.60 (0.22) 0.50 (0.42) 0.10 (0.44) 0.93 (0.31)
60–100 0.42 (0.77) 0.25 (0.62) – 0.56 (0.21) 1.22 (0.21) – 0.12 (1.14) 0.52 (0.38)

RANGELAND
Depth (cm) Bx By Mx My T Total
0–10 1.55 (0.27) 1.63 (0.32) 2.02 (0.36) 1.63 (0.32) 3.77 (0.36) 2.16 (0.54)
10–30 0.67 (0.48) 0.90 (0.27) 0.99 (0.32) 0.86 (0.20) 1.99 (0.36) 1.11 (0.56)
30–50 0.60 (0.66) 0.64 (0.28) 0.82 (0.33) 0.71 (0.39) 1.32 (0.48) 0.78 (0.53)
50–75 0.59 (0.75) 0.53 (0.41) 0.75 (0.51) 0.59 (0.36) 1.41 (0.63) 0.71 (0.70)
75–100 0.65 (1.17) 0.47 (0.27) 1.01 (0.71) 0.94 (0.61) 0.96 (0.34) 0.84 (0.75)

Table 3.1: Estimates of TC% means and coefficients of variation (CV; in parentheses) for
cropland and rangeland. Mean and CV for rangeland sites are listed by transect. Mean
and CV for croplands are listed by site. Cropland depths were not always consistent by
site. For example, the second sampling depth ranged from 15–30, 15–35, and 15–40 in some
cases. We used the most common depth increments here.

sites. The CV increased with depth in every rangeland transect and in cropland sites
with diversified or perennial farming systems (vineyards and orchards), but not in
conventionally managed croplands. Bulk density was highly variable with land use
and across sites but generally not with depth. Heterogeneity was particularly high in
the rangeland soils, where CV ranged from 0.08 at 30–50 cm and 75–100 cm to 0.16
at 0–10 cm and 50–75 cm. Heterogeneity within the cropland sites was lower with CV
ranging from 0.04 at 0–15 cm and 15–30 cm to 0.07 at 60–100 cm. Within a given
depth, BD varied substantially across rangelands (15 soil pits) and the CROP7 site
(16 soil pits), but no consistent patterns emerged (Figure 3.2). BD for the six other
cropland sites combined is plotted in SI Fig. 12. Rangeland SOC stocks were 30.3,
31.6, 22.5, 25.9, and 30.4 Mg C/ha at 0–10, 10–30, 30–50, 50–75, and 75–100 cm,
respectively. Whole profile stocks (0–100 cm) were 141.7 Mg C/ha, SE: 6.7 (SI Table
3). Like most SOC stock estimates, the estimated SE does not reflect uncertainty
and variability of bulk density (although we argue below that those uncertainties
should be taken into account). In croplands, whole profile SOC stocks varied by site
from 32.6 Mg C/ha (0–100 cm for CROP7) to 230.0 Mg/ha (0–70 cm for CROP3)
(SI Table 4).
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Figure 3.1: Histograms of TC% by transect and depth in rangeland soils (left panel) and
site and depth in cropland soils (right panel). Transect labels in (a) refer to catental positions
and replicates: Bx (footslope, replicate X), By (footslope, replicate Y), Mx (backslope,
replicate X), My (backslope, replicate Y), and T (summit/shoulder, no replication). Site
labels in (a) refer to cropland sites: CROP1 is a diversified farming system, CROP2 is a
vineyard, CROP3 is an orchard, CROP4 and CROP 5 use conventional cropping, CROP6 is
a diversified farming system, and CROP7 is an orchard. Depth increments differed between
rangeland and cropland sampling schemes. Plotted values are TC%, which is equal to
TOC% in samples with zero TIC.

3.3.2 Analytical variability

We compared measurements of 25 analytical replicates of two standard soils on the
soliTOC and ECS 4010 dry combustion analyzers. Both instruments showed low
variance and a small but consistent positive bias (SI Fig. 4). Based on analytical
replicates of 36 samples measured on both instruments, the estimated median relative
errors of the measurements were 0.024 for the soliTOC and 0.061 for the ECS 4010
(Figure 3.3). Permutation tests generally found little evidence of systematic differences
between the instruments in replicated TC% measurements, except for samples with
TIC% greater than 10 % of TC%. In the most extreme case, average replicated
TC% measured on the soliTOC was nearly triple that of ECS 4010 for a rangeland
sample with 90 % of TC% as TIC%. Removing inorganic C with HCl improved the
agreement of measured TOC% between the two instruments (SI Fig. 2).
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Figure 3.2: Empirical distributions of bulk density (BD) samples across 16 soil pits on
CROP7 (left column) and 15 rangeland soil pits (right panel) by depth (in rows).
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Figure 3.3: Histogram of relative error of replicated assays computed for each sample run
on soliTOC (blue) and ECS 4010 (orange). Histograms bins are 1% relative error wide and
stacked. The samples with relative error above 20% on ECS 4010 had high proportions of
inorganic C.
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3.3.3 Sources of uncertainty and their effects on statistical
power

In general, spatial heterogeneity contributes much more uncertainty than analytical
variability does, both for rangelands and croplands (Figure 3.4). However, com-
positing can mitigate or exacerbate the relative contributions to uncertainty from
spatial heterogeneity and analytical variability. With no compositing, analytical
variability contributes little to the overall uncertainty (Figure 3.4). If all n = 90
cores are composited to k = 1 analytic sample (“full compositing”), analytical error
becomes a major component of the uncertainty in estimates of TC% for cropland
soils, especially for the less precise ECS 4010 analyzer (Figure 3.4). The theoretical
power of Student’s t-test under various compositing schemes reflects this tradeoff
(Figure 3.5). The power of Student’s t-test to detect TC% change generally depends
more on spatial heterogeneity than analytical variability for both instruments, except
for full compositing with the ECS 4010, which had much less power (Figure 3.5).

There was relatively little difference in power between optimal compositing and no
compositing for every land use and analytical instrument. When spatial heterogeneity
is high (e.g., in rangeland) and lab analysis is precise (e.g., with soliTOC), power is
maximized by allocating more of the budget to sampling and using some compositing
to reduce the number of assays. On the other hand, when spatial heterogeneity
is low (e.g., in cropland) and lab analysis is imprecise (e.g., ECS 4010), accuracy
is maximized by allocating more of the budget to assays and reducing or avoiding
compositing.

3.3.4 Power and validity of tests for detecting TC% change

The nominal significance level of Student’s t-test can greatly understate its actual
chance of making a Type I error, i.e., of erroneously rejecting the null hypothesis when
the hypothesis is true (Figure 3.6). In the validity simulations, the true significance
level of Student’s t-test was always larger than its nominal level, except when the
distributions were both normal. In the “tilled cropland” and “change in skew”
scenarios, the level was close to 10 % at very small sample sizes, but approached its
nominal 5 % at larger sizes. In the “extreme hotspot” scenario, the true significance
level was always many times higher than the nominal significance level, and remained
above 20 % for a sample size of 150. In contrast, the nonparametric test never
erroneously rejected the null hypothesis.

Our “power” simulation compared the power of the unstratified Student t-test,
stratified Student t-test, and a nonparametric test for detecting SOC shifts, for
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Figure 3.4: Contributions to the variance of the sample mean from assay uncertainty
and compositing. Proportion of variance (y-axis) reflects assaying either all field samples
individually (“No Compositing” panels) or 90 field samples together (“Full Compositing”).
Different panels correspond to different land uses (in columns) and instruments (in rows).
Field heterogeneity is estimated using data from the rangeland site or averages across
cropland sites, at various depths (x-axis). Assay variability is estimated either on ECS
4010 (top panels) or soliTOC (bottom panels) elemental analyzers. Cropland depths vary
slightly by site (see Figure 3.1).
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Figure 3.5: Theoretical power of Student’s t-test to detect changes in topsoil TC% (if
TC% is normally distributed) for two levels of compositing, for a budget that covers the
cost of 90 cores and 90 laboratory analyses without compositing, or 150 cores and one
laboratory analysis for full compositing. The X-axis shows the relative change in average
TC% from baseline (2.16 TC% for rangeland or 2.04 TC% for cropland); the Y-axis is
power. Different panels correspond to different land types (in columns) and instruments (in
rows). Colors correspond to the compositing scheme. Optimal compositing for the same
budget uses 140 cores composited to 19 analytic samples (SI 1.4).
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Figure 3.6: Simulated significance levels of two nominal 5% level tests: the two-sample
Student t-test and a nonparametric test. Each panel reflects 5000 simulations at each sample
size (x-axis); random samples were drawn independently from each of two distributions
that had identical means. The y-axis plots the rate of false rejections of the null hypothesis
(the Type I error rate). The solid black line is the nominal 0.05 significance level, which
both curves should be at or below.
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sample sizes of 10, 30, 90, and 200 from each time (Figure 3.7). Both Student t-tests
appear to have more power than the nonparametric test to detect shifts in TC% at
all sample sizes; the stratified Student t-test was more powerful than the unstratified
test at the same level. (Stratified nonparametric tests would presumably have higher
power than the unstratified nonparametric test; they are the subject of ongoing
research.) However, comparing Student’s t-test and the nonparametric test can be
misleasing: Student’s t-test rejects more often than the nonparametric test when the
null hypothesis is false, but it also rejects more often than it should when the null
hypothesis is true. Student’s t-test at (nominal) significance level 5 % does not limit
the true Type I error rate to 5 % unless the population has a normal distribution. In
general, when the population distribution is not normal, the true Type I error rate
of Student’s t-test rate cannot be determined unless the population distribution is
known. The power of the nonparametric test improved as the population bounds
were tightened and as the level was relaxed: the nonparametric test with 10 % max
TC and significance level 0.10 was the most powerful among the nonparametric tests.
For example, to have 80 % power to detect a relative change of 20 % from baseline
average TC% on rangeland soils requires about 30 samples with the stratified Student
t-test, 90 with the unstratified Student t-test, and 200 with the nonparametric test
with 10 % max TC and/or a relaxed significance level of 0.1. All tests had more
power to detect small changes in cropland soils than in rangeland soils due to lower
spatial heterogeneity in croplands. For example, the power of the unstratified Student
t-test to detect a 10 % change with 90 samples was 80 % for cropland soils but only
about 30 % for rangelands.

3.4 Discussion

3.4.1 Crop and rangelands are spatially heterogeneous

Given the rapid development of C markets, accurate detection and quantification
of the impact of management interventions on SOC changes are more important
than ever. Our study demonstrates how tailoring sampling and analytical decisions
to the high spatial heterogeneity often found in managed lands could improve the
reliability and efficiency of SOC sequestration estimates and their associated C credits.
As expected, SOC at the rangeland site was more heterogeneous than at the seven
cropland sites, with roughly twice as large a CV at every depth (Table 3.1). This is
consistent with other surveys of California rangelands, though differences in depths,
spatial scales, and measures of variability limit quantitative comparisons ([Carey
et al., 2020, Devine et al., 2020, Silver et al., 2010]). This is also consistent with the
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Figure 3.7: Simulated power of three two-sample hypothesis tests (Student’s t-test for
unstratified and stratified samples and a nonparametric test for unstratified samples based
on Learned-Miller and Thomas [2019] to detect relative changes in TC% with sample sizes
10, 30, 90, or 200 from each of two populations. The first population distribution is the
empirical distribution of TC% measurements for CROP5 (left column) or the rangeland
site (right column) topsoil. The second population distribution is the same as the first, but
each value was shifted by 0 % to 60 % of the mean of the first population, 2.7 % TC for
the cropland samples and 2.2 % TC for the rangeland samples. Unstratified samples were
simple random samples with replacement from the populations. Stratified samples from
rangeland were simple random samples with replacement within transects, independent
across transects, with sample sizes proportional to the original number of data in each
transect. Stratified samples from cropland were not explored because there were no natural
strata in the original data. Four curves are presented for the nonparametric test by varying
pre-specified upper bounds on the population (10 % TC or 20 % TC) and the nominal
significance level (5 % or 10 %); both the Student t-tests used a nominal significance of 5
%, which may understate the chance of false positives. NP = nonparametric.
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general notion that rangeland SOC is typically more heterogeneous than croplands
because of variation in topography, presence of rock fragments, and patchiness of
grazing and manure deposition. This makes accurately estimating SOC change on
rangelands more challenging.

Deep sampling is critical for making reliable conclusions about C sequestration
and greenhouse gas mitigation [Kravchenko and Robertson, 2011, Kuzyakov and
Blagodatskaya, 2015], especially since SOC gains near the surface may be offset by
losses at depth [Poffenbarger et al., 2020, Slessarev et al., 2021, Syswerda et al.,
2011, Tautges et al., 2019]. The CV of SOC in our study tended to increase with
depth, while standard deviations decreased. Hence, a given relative change (e.g., 10
% gain from baseline TC%) is harder to detect in subsurface soils than in topsoil,
but a given absolute change (e.g., 0.5 TC% gain) may be easier to detect. Since
detecting an equivalent absolute change in the subsurface requires fewer samples,
topsoil heterogeneity should generally guide decisions around sample size.

Though we have emphasized TC% measurements, high variability of BD within
sites (Fig. 2), especially in rangelands, contributes additional uncertainty to SOC
stock estimates [Walter et al., 2016a]. Even where TC% is relatively homogeneous,
variability in BD could lead to large uncertainties in estimates of SOC stocks and of
SOC stock changes, and ultimately prevent the reliable detection of these changes
[Slessarev et al., 2021]. Failing to account for BD variability (e.g., treating BD
estimates as fixed) underestimates uncertainty and may lead to erroneous conclusions
about SOC stock change. See SI 4.1. for further discussion on combining BD and
TOC% uncertainties for SOC stock estimates.

3.4.2 Analytical variability contributes little to measurement
error

Variability in assay measurements contributed far less to measurement error than spa-
tial heterogeneity of SOC, except when samples were highly composited (Figure 3.4).
Replicated measurements show that both the soliTOC and ECS 4010 analyzers have
estimated median relative error below 0.07.

TC%, however, differed substantially between instruments for samples with high
TIC%, (see also SI Fig. 3). re-analysis on the ECS 4010 after TIC removal improved
agreement between TC% measurements on the ECS 4010 and TOC% on the soliTOC,
indicating that TIC should be removed when using elemental analyzers like the
ECS 4010. Larger sample masses ( 10–20x the mass of traditional dry combustion
instruments) may explain the higher precision of the soliTOC, which had about
one-third the median relative error of the ECS 4010 (Fig. 3). Larger analytical
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subsamples should better represent the entire sample and reduce variability inherent
to small subsamples. In the case of the ECS 4010, increased analytical replication
may be necessary. SOC monitoring schemes could mitigate analytical error by using
the same instrument, ideally in the same lab, for repeated analysis, and by including
standards with comparable amounts of TIC, when analyzing samples known to contain
TIC.

3.4.3 Measurement protocol recommendations to reduce un-
certainty

Spatial heterogeneity is likely to dominate measurement uncertainty in many scenarios.
We recommend three ways to for measurement protocols to reduce uncertainty in
SOC estimates and increase the reliability of C credits: provide stratified sampling
guidance, minimize compositing, and, most importantly, require larger sample sizes.

Stratification on variables such as catenal position, soil type, topography and
historical management can increase the power of detecting SOC sequestration and
generally reduces uncertainty for a given total sample size on heterogeneous landscapes
[Devine et al., 2020, de Gruijter et al., 2016]. Our simulations provide further
evidence that stratification can be a useful sampling strategy: stratified sampling
had higher power to detect increases in TC% at the rangeland site than simple
random sampling (Figure 3.7). Without stratification, far larger sample sizes are
required to reliably detect and quantify SOC changes. While current protocols
such as Climate Action Reserve’s (CAR) Soil Enrichment Protocol and Verra’s
VM0021 allow and encourage stratification, they do not provide straightforward and
quantitative stratification guidance. Preliminary field surveys, geospatial information
regarding soil and landscape features, and expert pedological knowledge are useful
for defining strata in research settings [Post et al., 2001]. C market protocols
should look to incorporate algorithmic stratification [Devine et al., 2020, de Gruijter
et al., 2016], digital soil mapping, and user-friendly software tools (e.g. Stratifi;
https://www.quickcarbon.org/tools), to help standardize and ease barriers to
stratification for SOC measurement.

Compositing can be optimized to minimize uncertainty within a cost budget,
given estimates of the analytical precision, spatial heterogeneity, and the (marginal)
unit cost of collecting, preparing, and analyzing a sample [Spertus, 2021]. Without
such estimates, it is best to avoid compositing (especially when collecting base-
line samples), because it reduces information on spatial heterogeneity, complicates
sampling designs and analyses, and increases the contribution of analytical error
(Figure 3.5). Compositing also tends to reduce power by decreasing the effective
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sample size. Compositing is most helpful when SOC is highly heterogeneous, the
cost of each laboratory assay is high, and the budget is small. In such cases, in-
vestigators should consider optimal, rather than full compositing [Spertus, 2021].
We’ve developed a web app for investigators (including for use in soil C measurement
protocols) to help determine optimal compositing schemes, which is accessible at:
https://scf.berkeley.edu/shiny/bosf/soil-carbon-statistics/.

Finally, many current sampling designs for the sale of C credits use sample sizes
that are too small to allow any statistical test to have a reasonable chance of detecting
moderate changes in SOC [Necpalova et al., 2014] or quantifying SOC changes on
heterogeneous landscapes on relevant timescales. To illustrate, assume that compost
application on rangelands increases relative TC% by 20 % (as per Ryals et al. [2014]
after 3 years of application). Based on the spatial heterogeneity we observed in
rangeland soils, in order to have 80 % power to detect such an increase (using
stratified sampling and Student’s t-test) would require collecting and analyzing nearly
100 soil samples at baseline and another 100 samples after the compost was applied,
with no compositing (Figure 3.7).

Most rangeland management interventions, however, such as improved grazing
practices, are expected to produce much smaller C gains. For instance, Conant et al.
[2017] found a relative increase of 10 % from grazing improvements. The smaller the
anticipated change in SOC, the larger the sample size must be to reliably detect and
quantify the change. Similarly, using nonparametric tests—which may be needed to
properly control the false positive rate—require larger sample sizes. For instance, it
would require more than 200 samples to have an 80 chance of detecting a 10 % relative
increase in SOC using either the unstratified Student t-test or the nonparametric
test (Figure 3.7). No matter the sampling design or statistical test, the sample sizes
typical in current campaigns and protocols (e.g., 8 samples for USDA GRACEnet; 9
samples composited to 1 for CDFA Healthy Soils Program; minimum of 3 samples for
the Australian Carbon Credits Methodology; [Davis et al., 2017]) are far too small to
have sufficient power to detect and quantify changes in rangeland SOC (Figure 3.7).

Our simulations suggest that detecting SOC changes in croplands may be easier
than rangelands, but common sample sizes are still inadequate. Nonparametric tests
have little chance of detecting reasonable changes with only 10 samples, and Student’s
t-test is likely to be misleading for such small samples and to lack sufficient power
to detect realistic changes. With only 10 cropland samples, a relative increase of
30%—a very large change—would be needed for Student’s t-test to have 80% power
[Saby et al., 2008]. At the CROP5 site, Student’s t-test required about 90 samples to
have an 80% chance of detecting a 10 % relative change in TC%.

Given that sampling campaigns are routinely underpowered, we suggest a priori
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power analyses to determine site-specific minimum sample sizes [Kravchenko and
Robertson, 2011]. This could include conducting a power analysis either by collecting
and analyzing reconnaissance samples, or with regional and relevant spatial hetero-
geneity information (e.g., from prior studies or soil survey information). We also
suggest routinely conducting post hoc power analyses to determine whether studies
that find no effect of management on SOC had sufficient power to detect expected
differences.

3.4.4 Tests must be valid to provide credible evidence of
carbon change

Even when sampling is well-designed and executed, statistical analysis matters.
Student’s t-test and its relatives may erroneously conclude C was sequestered when it
was not, at a much higher rate than the nominal significance level. As shown in Fig. 6,
this occurs when even one of the TC distributions is skewed. The false positive rate for
Student’s t-test is particularly high when there are SOC hotspots or the distribution
of TC (but not its mean) changes over time. Some management interventions
redistribute SOC and create or destroy C hotspots [Baker et al., 2007, Kuzyakov and
Blagodatskaya, 2015, Marin-Spiotta et al., 2014]. For example, establishing perennial
intercrops or hedgerows and spreading high-C inputs such as biochar and compost can
create SOC hotspots. Valid inference is crucial to measure SOC sequestration credibly;
Student’s t-test and related tests and confidence intervals likely often understate the
chance of false positives and have an inordinately large chance of false negatives.

How can monitoring and verification campaigns ensure that estimates and in-
ferences are reliable? An important consideration is whether the soil population of
interest might have skewed SOC, including from SOC hotspots. If so, it might be
possible to stratify the sample so that SOC distributions within strata are not severely
skewed. Skewness in the population distribution makes Student’s t-test behave partic-
ularly poorly. While transformations (e.g. logarithmic) are possible, skewness in the
population that can undermine parametric statistical inferences may not be evident
for realistic sample sizes. Larger sample sizes improve the approximations Student’s
t-test relies on, but in general, it is not possible to determine how large the sample
must be for the approximation to have a particular level of accuracy [Cochran, 1977].

If hotspots might exist but their locations are unknown prior to sampling, Student’s
t-test should not be used. In our simulations, nonparametric tests were less powerful
than Student’s t-test, but they control the false positive rate for every SOC distribution
(Figures 3.6 and 3.7), while Student’s t-test can fail for some SOC distributions.
Thus, Student’s t-test may appear more powerful, but it is wrong more often. Our
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simulations show that using prior geochemical knowledge to bound TC more tightly
(e.g. 10 % instead of 20 %) can increase the power of nonparametric tests, as can
testing at a higher significance level (e.g. 10 % instead of 5 %). Deriving more
powerful nonparametric tests is an active research area in Statistics [Romano and
Wolf, 2000, Waudby-Smith and Ramdas, 2023], which we hope to extend to stratified
soil samples (e.g., Wendell and Schmee [1996a]). We have written an R package to
facilitate wider use of nonparametric tests, which can be installed from the R console
by running devtools::install github(\spertus/nptests").

3.4.5 Study limitations and future research

Our analyses relied on soil samples that were collected using common approaches,
rather than the sampling protocols we recommend here (systematic rather than
random samples). This could understate overall spatial heterogeneity, making our
findings conservative, if SOC is spatially autocorrelated. However, we found little
evidence of spatial autocorrelation in our rangeland samples (SI Figs. 5–9). These
simulations are a starting point; other changes to SOC distributions and deeper
soil depths should be examined. The geographic extent of the soil sampling was
also limited and thus does not fully represent the heterogeneity of croplands and
rangelands worldwide, but we expect the qualitative differences in heterogeneity
between them will be more broadly applicable.

3.4.6 Broader implications for research, C markets, and pol-
icy

There have been numerous calls to standardize protocols for measuring SOC [Bispo
et al., 2017, Davis et al., 2017, Jandl et al., 2014], but complete standardization
may not be practical given differences among project needs and budgets, landscape
heterogeneity, and lab constraints. In particular, given the large contribution of
spatial heterogeneity to the uncertainty of SOC estimates, protocols that require
fixed sample sizes or generate C credits on the basis of a fixed, small, minimum
number of samples are not appropriate. For instance, sampling designs optimized
to detect SOC changes for croplands may have little chance of detecting similar
changes on rangelands, which typically require larger samples because they are more
heterogeneous. Instead, sampling design processes should be standardized, such as
the use of algorithmic stratification and a priori power analyses to select sample sizes
adequate to detect plausible changes. In the case of C markets, verifiers should ensure
that the sample size was adequate to detect and quantify SOC sequestration prior to
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generating and selling C offsets.
The consequences of inaccurate estimates of SOC for C markets are large. Current

verification sampling protocols used to quantify and generate C credits for C markets
cannot reliably estimate SOC sequestration, especially on heterogeneous agricultural
lands. This could result in SOC offsets having little connection to the true extent of
sequestration [Jackson Hammond et al., 2021]. Verification protocols for croplands
include Climate Action Reserve’s (CAR) Soil Enrichment Protocol, Verra’s VM0021,
Australia’s Carbon Credits Methodology (ACCM), and the Food and Agriculture
Organization’s (FAO) Global Soil Organic Carbon (GSOC). All four protocols require
a minimum of only three or more samples per stratum, far fewer than required to
estimate the impact of management changes on a timescale of years. Some—though
not all—protocols also lack details on how to stratify and analyze the resulting data
to estimate SOC stocks and stock changes. Especially because they sanction such
small sample sizes, these protocols may often reward “false positives” and fail to
reward genuine sequestration. We recommend revising each of these protocols to
require substantially more samples tailored to land-specific spatial heterogeneity, and,
following ACCM as an example, provide much more detailed and useful guidelines for
participants on when, where, and how to sample to minimize uncertainties. While
governments, companies, and society must decide what level of confidence suffices
to demonstrate SOC sequestration (e.g. the ACCM accepts SOC sequestration with
only 60 % confidence, to encourage participation), protocols must actually be able to
deliver that level of confidence.

For some purposes, instead of estimating SOC stock changes on each participat-
ing farm or ranch, it might suffice to estimate the aggregate change across many
farms/ranches, collecting few samples from each, to minimize costs. Alternatively,
one might conduct intensive sampling on a random sample of sites or a network of
regional research monitoring sites (which could be supported by the development
of funding programs like AgARDA or through increases in funding to LTERs or
Climate Hub networks). Limiting sampling efforts to a smaller number of dedicated
sites representing a range of climates, soil types, and cropping systems could allow
for more intensive sampling—with higher power to detect SOC stock changes. This
intensive sampling could then be used to calibrate, validate, and improve models such
as MEMS 2.0 (Microbial Efficiency-Matrix Stabilization) [Zhang et al., 2021] that
can estimate SOC change across broader landscapes and generate SOC credits for
similar farms and ranches. This may be a more efficient use of resources and could
drive more accurate verification in the long-term. However, both strategies represent
a shift from paying for results to paying for practices that are expected—but not
guaranteed—to produce results.
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3.5 Conclusions

Spatial heterogeneity of SOC is a primary obstacle to accurately measuring changes
in SOC stocks, even with careful sampling design and execution, accurate assays,
and rigorous statistical analysis. Attempting to measure or verify SOC sequestration
using too few samples, poor sampling design, imprecise laboratory instruments, or
inappropriate statistical analysis can undermine climate change mitigation goals. We
highlighted errors, quantified uncertainties, and demonstrated potential improvements
in design and analysis, using data from California croplands and rangelands. There
are several straightforward ways that sampling schemes can be improved, especially
for C markets. Collecting information on the degree and pattern of heterogeneity
before a comprehensive sampling campaign can make it possible to use stratified
sampling to advantage. Such information also makes it possible to perform power
calculations and identify optimal compositing approaches, ensuring that the campaign
has sufficient statistical power to detect anticipated changes in. In general, reliable
inferences about the short-term effect of management interventions on soil C require
larger sample sizes and less compositing than is commonly used. We demonstrate
that Student’s t-test has highly inflated false-positive rates in scenarios that may
be common in the field and suggest caution when using Student’s t-tests and its
relatives for verifying changes, especially when sample sizes are small. Nonparametric
statistical methods can control false positives for any sample size, without assumptions
about SOC distributions; providing more reliable, trustworthy results. The power
of nonparametric tests can be increased using transparent, verifiable assumptions
(e.g. geochemical constraints on the maximum SOC). Careful planning and continued
collaboration between soil scientists and statisticians will help improve accuracy and
precision of SOC measurements.

Supplementary Information

Data and code are available at https://github.com/spertus/soil-carbon-statistics.
Supplementary tables and figures are available at https://www.sciencedirect.com/
science/article/pii/S0016706122006309#m0005.
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Chapter 4

Soil organic carbon sequestration
potential and policy optimization

4.1 Introduction

Global soils contain approximately double the amount of carbon stored in the at-
mosphere [Le Quéré et al., 2018], despite significant declines since the expansion of
industrial agriculture [Sanderman et al., 2017]. If some soil organic carbon (SOC)
could be restored, it would reduce the amount of CO2 in the atmosphere. Because
negative emissions are necessary to curtail the effects of climate change, governments
and scientists have stepped up research into sequestering SOC as a “natural climate
solution” [Bossio et al., 2020]. This in turn has fueled enthusiasm in a stewardship
philosophy and cluster of agricultural management techniques collectively called
“regenerative agriculture.” Regenerative agriculture aims to improve ecosystem and
soil health in a holistic sense, with SOC sequestration as a (potential) co-benefit
[Lal, 2020]. A large and growing body of empirical work aims to evaluate these
claims, inquiring into the effects of land management changes (e.g., no-till agriculture,
cover cropping, management-intensive grazing, etc) on SOC levels. Such research
informs billions of dollars in policy investment [University, 2021, Minasny et al., 2017].
To incentivize regenerative agriculture in service of sequestration1 policy-makers
must attribute SOC increases to management interventions and, ideally, tailor these
interventions for maximum impact.

However, several knowledge gaps currently jeopardize the effectiveness of policies
aimed at SOC sequestration. In particular, the amount of SOC that could be

1Other benefits should not be overlooked, and may justify considerable public investment on
their own.
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sequestered2 in a given soil after a given intervention is unknown. This sequestration
potential is critical to understand because it determines what a proposed policy can
accomplish, including the amount of C sequestered, the rate of drawdown, and the
longevity of the sequestered C. Sequestration potential is an inherently causal concept,
involving a comparison of the effects of two or more courses of action on the same
soil.

To illustrate, suppose a hypothetical policy-maker is tasked with deciding whether
to pay for a policy implementing no-till agriculture across cropland in the US corn
belt (the target population). Ideally, they would know the total amount of SOC
in the top 1 m of soil in each farm in (say) 5 years, both if that farm adopted
no-till agriculture and if that farm were tilled annually. These quantities, only one
of which can ever be observed on a given plot, are called potential outcomes3. As a
function of time, potential outcomes are called potential trajectories (Figure 4.1). If
the policymaker knew all the potential trajectories within a population of farms, they
could take nuanced actions to optimize sequestration over time given farm-specific
costs and benefits of each intervention. Our primary goal is to approximate optimal
policy decisions defined in terms of potential trajectories.

4.2 Interventions

Interventions intended to sequester SOC can take many different forms, and a brief
taxonomy seems useful. Interventions may be conceptualized as policy changes or
as physical changes: incentivizing a farmer to make a change is not the same as
making the change, since the farmer may not comply. The former concept is more
important to real-world policy decisions and sequestration potential, while the latter is
likely interesting to scientists (who seek to understand mechanism) and to individual
farmers (who are directly in control of their operation).

A study may examine a point-in-time treatment (e.g., a bolus of an input) or a
pattern of treatment continuing over time (e.g., yearly application of inputs). Some
interventions (e.g., land-use change or adoption of conservation tillage) involve a

2Sequestration should be distinguished from storage: while sequestration refers to net removal of
CO2 from the atmosphere, storage refers to the gross increase in SOC in the soil without accounting
for inputs (e.g. fossil fuel use or C-rich amendments) [Chenu et al., 2019]. They can be distinguished
empirically by accounting for inputs.

3Potential outcomes were first described by Jerzy Neyman in his seminal 1923 paper on agricultural
experiments [Neyman, 1923]. Hurlbert [1984] provides a non-technical overview of terminology and
issues in experimental design. [Imbens and Rubin, 2015] is a good reference on causal inference with
potential outcomes.
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Figure 4.1: An illustration of four idealized population-level potential trajectories (colored
lines) in terms of additional SOC sequestered (y-axis) over time (x-axis). From the point a
decision is implemented, each course of action leads to a different trajectory of total SOC
sequestered across the population. The trajectories are smoothed and do not reflect short-
term variation like seasonality. A policy-maker with access to all potential trajectories and
a target sequestration timeline could make optimal decisions under budgetary constraints.
By definition, potential trajectories are equal at baseline (left most point on x-axis). The
baseline SOC level is denoted by the dashed line. Under the green trajectory, SOC
approaches a new equilibrium after the change has occurred, as theorized in Stewart et al.
[2007] Under the blue and red trajectories, equilibrium is not achieved by the end of the
time span plotted. The red trajectory displays a linear loss of SOC, as found, for example,
in the study of Sanford et al. [2012]. Under the orange trajectory there is a reversal, a
major concern of policies aiming to sequester SOC as a negative emissions strategy [Smith,
2005, Thamo and Pannell, 2016]. Researchers will often need to assume that trajectories are
monotone, equilibrium is reached and maintained, and/or there are no future sequestration
reversals when defining outcomes, designing studies, and interpreting results to make policy
decisions.
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phase transition that may or may not continue over time. To avoid ambiguity, is best
to explicitly define the timing of the intervention when designing and interpreting
studies (e.g., does “conservation tillage” entail merely a switch at baseline or indefinite
maintenance of the practice?).4 In any event, in this paper we will assume that the
intervention is fully defined at baseline either as a point-in-time or a pattern over
time.

Interventions can be conceptualized as quantities, discrete categories, or both.
Quantitative interventions include amendments like compost, manure, or biochar
application, which are readily summarized in terms of the amount applied (in total,
per hectare, and/or per unit time). Categorical interventions include conversion
tillage, adaptive multi-paddock (AMP) grazing, and land-use change. Sometimes
interventions under study can include both, for example when comparing manure to
compost at different levels or compost application to AMP grazing.

Interventions are often framed in terms of their levels of C input, which may
be more or less abstract. In particular, the level of C input may be empirically
constrained for some quantitative interventions (e.g. biochar) but rarely for categorical
interventions. It is nevertheless useful to conceptualize interventions simply in terms
of their C input, especially when comparing across treatment types and theorizing
relations between treatment intensity (understood in terms of C input) and response.
Such relations are an important element of sequestration potential.

4.3 Sequestration potential and saturation

The effectiveness of interventions is determined by the mechanisms that govern SOC
sequestration. Interventions change SOC levels by changing the amount of C input to
the soil and by changing the biological, chemical, and physical conditions that fix C.
Broadly speaking, sequestration occurs when C input exceeds loss from decomposition,
which varies as a function of environmental factors and soil properties. When C inputs
and losses are balanced, SOC is at equilibrium [Chenu et al., 2019]. After an external
change, SOC tends toward a new equilibrium over time (Figure 4.1). Sequestration
potential thus depends on both the nature of the management intervention (influencing
the C input rate and potentially the decomposition rate) and on the capacity of
a given soil volume to retain additional SOC under that intervention. Critically,
the starting concentration of SOC in a given soil may influence the decomposition
rate, and hence the soil’s capacity to store new C after an intervention. In the most

4Such questions are related to the concept of policy or intervention reversal, which could cause a
reversal of sequestration. We discuss this further in Section 4.8.
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extreme manifestation of this pattern, soils would have no additional capacity to store
additional SOC under any intervention after the SOC level has reached a maximum
amount: the SOC saturation hypothesis [Hassink, 1997]. In its original form, this
hypothesis states that soils have a finite capacity to store SOC because SOC is
protected from decomposition by complexation with silt and clay sized minerals; once
the available mineral surface area is exhausted, no additional C can be stored [Hassink,
1997]. The precise dynamics depend on a complex interplay between the minerality
and microbial biology of the soil, which can themselves change as a function of time
and inputs. Empirical evidence for the SOC saturation hypothesis remains debated
[Slessarev et al., 2023, Begill et al., 2023].

Regardless of the exact mechanism, C saturation is expected to result in dimin-
ishing storage of additional SOC as C inputs increase, with an eventual plateau once
the soil is fully saturated [Stewart et al., 2007]. Conversely, if saturation does not
occur, increasing C inputs might yield a linear increase in SOC storage. Different soil
types may exhibit behavior in response to different types of treatment and/or the
intensity of quantitative treatment. For example, drier mineral soils could exhibit
saturation while organic wetland soils could exhibit linear returns to inputs [Gorham,
1991]. Alternatively, the reality for a given soil may be intermediate between these
two extreme cases, with gains in SOC diminishing but not plateauing as C inputs
increase. Four possibilities are presented in Figure 4.2.

However, not all interventions can be quantified in terms of C inputs, nor does
total input sufficiently characterize the impact of any given intervention on SOC
dynamics. In particular, additional complexity is necessary to theorize saturation when
interventions are discrete (e.g., tillage vs no-till or conventional vs regenerative grazing)
or when comparing quantitative C inputs applied in different forms (e.g., compost vs
manure vs biochar). In canonical formulations of the saturation hypothesis, a discrete
intervention may create a threshold–an effective stabilization capacity–below the
absolute saturation limit by altering the decomposition rate of the soil [Stewart et al.,
2007]. For instance, conventional tillage and no-till strategies may produce different
effective stabilization capacities, both of which lie below the saturation threshold.
The actual saturation threshold is then defined by a counterfactual scenario in which
C inputs are maximized and disturbance is minimized (as in a native or wild state).

If the saturation hypothesis is true, management interventions are expected to
have less impact on fields near their saturation threshold. Thus, all else being equal,
baseline SOC levels may moderate the effect of interventions on SOC sequestered,
proxy sequestration potential, and predict treatment effects. Fractionating mineral
soils into mineral associated organic carbon (MAOC) and particulate organic carbon
(POC) could yield better empirical proxies to long-term sequestration potential: the
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MAOC pool is hypothesized to be both more stable and more susceptible to saturation
than the POC pool [Cotrufo et al., 2019, Begill et al., 2023].

Proxies for sequestration potential–total baseline SOC, baseline MAOC, or other
features–could play two key roles in policy decisions. First, they could improve effect
estimates for policies applied to whole populations, which remain poorly constrained
[Georgiou et al., 2022, Viscarra Rossel et al., 2024]. Such estimates are critical to
regional, national, and international C accounting and mitigation projections within
larger portfolios of positive and negative emissions [e.g., International Energy Agency
[2023]]. However, real-world policy decisions involve more refined actions than treating
or not treating an entire population: resources are constrained and usually only a
limited number of plots in a population can be treated. In this context, proxies of
sequestration potential would help determine which plots to treat and how in order
to maximize the overall impact of a policy.

In the remainder of this paper, we address challenges that currently hinder
empirical measurement of SOC and present a strategy to optimize sequestration given
empirical proxies for sequestration potential. The next section lays out the hierarchy
of uncertainties inherent to quantifying the effects of interventions on SOC stock.
Then we formalize the overall policy objective of maximizing SOC sequestration across
a population. We then provide a strategy for estimating sequestration potential and
the optimal policy using empirical data. In a simulation study based on data from a
study of compost application on California rangelands, we compare the effectiveness
of our proposed methods against various alternatives. We conclude with a discussion
of additional uncertainties, limitations of our methods, policy implications, and
directions for future research in this area.

4.4 Measuring the effects of management interven-

tions

Sequestration studies aim to evaluate whether and how much a proposed treatment
will increase SOC stock. They are subject to a hierarchy of uncertainties–at the core,
plot, study, and population scale–all of which must be controlled and, when possible,
quantified in uncertainty estimates like confidence intervals. Additional uncertainties
arise when translating study interventions to policy interventions. We begin our
exposition at the most granular of SOC uncertainties–the core-level–and zoom out
from there.
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Figure 4.2: SOC at equilibrium (y-axis) as a function of C inputs from the intervention
(x-axis) for various response possibilities (colors). C inputs may be thought of as a single
pulse for a point treatment, or a total or average over time for a continuing treatment.
The plot assumes all underlying potential trajectories reach equilibrium (see Figure 4.1).
The red curve demonstrates complete saturation, wherein increasing inputs cannot increase
equilibrium SOC above a certain point, the saturation threshold (dotted line) [Stewart
et al., 2007]. The orange curve represents partial saturation, wherein there are diminishing
returns to inputs but returns do not encounter a threshold. This possibility could arise
under partial saturation, whereby a soil can be partitioned into two pools, one of which
saturates entirely while the other does not [Hassink, 1997, Stewart et al., 2007, Cotrufo
et al., 2019] The green curve entails no saturation whatsoever: returns are linear at any
level of input. Peat soils are an instance of linear storage, as anaerobic conditions prevent
decomposition [Gorham, 1991]. Note that when all inputs come from the intervention, this
scenario implies perfect storage but no sequestration. Finally, the blue curve represents
increasing returns to inputs, which could occur, for example, if a dead soil is progressively
restored as inputs are increased.
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4.4.1 Core-level uncertainties

To measure SOC stock, investigators take soil cores and measure them for SOC
concentration (%SOC) and dry bulk density (BD) or equivalent soil mass (ESM;
see next section). At the core level, uncertainties in %SOC arise from laboratory
sample preparation protocols, human error, subsampling variability, and instrument
error, which we collectively call assay variability. Assay variability can be addressed
through careful laboratory work, including the use of precise instruments (e.g.,
elemental analyzers) and analytical replicates to control and estimate subsampling
and instrument error. BD measurements are also subject to core-level uncertainties,
including compression of soils during sampling, the presence of coarse fragments (e.g.,
gravel) in BD cores, and residual moisture. All of these factors need to be controlled
through clear protocols, careful field work, and accounting. Finally, when MAOC
is used to proxy saturation, the soil fractionation process requires a specific range
of shaking or ultrasonic intensities to release the fine fraction without breaking up
the coarse fraction and thereby contaminating the MAOC measurement with POC
Amelung and Zech [1999], Six et al. [2024].

4.4.2 Plot-level uncertainties

Plot-level uncertainties are often more substantial than core-level [Stanley et al., 2023].
The main source of plot-level uncertainty is the variability of %SOC and BD across
space–spatial heterogeneity–which can be estimated by random sampling. When
heterogeneity is high, no single core is representative of the total stock in a given plot.
Larger samples are needed to detect and quantify realistic stock changes when spatial
heterogeneity is high, and typical sample sizes may be far too small [Kravchenko
and Robertson, 2011, Stanley et al., 2023]. In some cases, stratification or balanced
sampling can help to control spatial heterogeneity while keeping sample sizes and costs
relatively low [de Gruijter et al., 2016, Potash et al., 2023]. Compositing sampled cores
before assay may also reduce costs or increase precision, but the potential benefits
are sensitive to the costs and errors associated with sampling and assay; compositing
also introduces more opportunities for user-error [Spertus, 2021, Stanley et al., 2023].
BD change contributes uncertainty to stock change measurements depending on how
sampling depth is determined. In particular, if samples are taken to a fixed depth,
changes in BD (e.g., from soil compaction) can impact the measured SOC stock, even
when the true SOC stock has not changed. The equivalent soil mass (ESM) procedure
[Wendt and Hauser, 2013], attempts to navigate this issue, but changes the subject
somewhat: stock change is expressed on a mass-mass basis, with BD measurements
used only to determine the depth window over which the mass-mass average is taken.
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ESM also introduces a modeling uncertainty, as the cumulative soil mass to SOC
mass relationship must be estimated using a cubic spline.

Other sources of plot-level uncertainty are often overlooked but may be substantial.
One such source is the presence of large rocks (i.e. boulders) in plots (especially
on rangelands) that affect the volume of actual SOC-bearing soil. When rocks are
not taken into account, stock estimates may be biased upwards and estimates of
change may be attenuated. Unfortunately, precise accounting for large rocks–those
larger than a soil corer or bulk density ring–is difficult and is not done in most
studies, but at the very least their presence should be noted. Another source of
uncertainty in volumetric5 SOC measurement is negative correlation between %SOC
and BD, which necessitates joint core-wise estimates of the two quantities across
a plot. The common practice of estimating plot-level BD at a single pit using the
ring method does not produce the data necessary to avoid this bias. Accurate,
unbiased plot-level stock estimates require %SOC and BD to be measured on each
core, volumetric concentrations to be computed at the core level, and the average of
these concentrations to be taken as the average stock estimate (the estimate of the
total being scaled according to the volume of soil).

4.4.3 Study-level uncertainties

Study-level uncertainties arise when multiple plots are involved in an observational
study6 or in a randomized controlled trial (RCT), which assigns different interventions
to different plots at random and (ideally) measures SOC stock before and after the
interventions are applied. For now, assume the study is an RCT with n equal-area
plots enrolled and only two interventions: n1 plots are assigned to treatment and
n0 = n − n1 are assigned to control. Every plot in the study has two potential
outcomes (as above, a slice in time of a potential trajectory) recording what its
stock would be after some years if it received treatment and if it received control. In
symbols, let Yi(1) denote the SOC stock of plot i at the end of the study if it received
treatment, and Yi(0) denote its stock if it received control. Ideally, we would know
both potential outcomes for every plot, and could compute any causal summary of
interest, including the individual plot treatment effect

τi = Yi(1)− Yi(0),

5The ESM procedure of Wendt and Hauser [2013] does not have this issue since BD is not
explicitly measured and ESM depths are determined separately for each core.

6Including cross-sectional “space-for-time” studies, as well as longitudinal studies without ran-
domization.
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which captures the amount of SOC sequestered in plot i by the end of the study
attributable to treatment. In reality, we can only ever observe one potential outcome
for each plot. If a plot is assigned to treatment, its potential outcome on treatment
is observed while its outcome on control is counterfactual; vice versa if the plot is
assigned to control. This means we cannot estimate any individual plot treatment
effect i without entirely assuming its counterfactual (e.g., that Yi(0) is equal to
baseline SOC), which is rarely justifiable. While we cannot estimate τi, we can draw
conclusions about study-level causal parameters. In particular, randomized treatment
assignment allows us to make unbiased estimates and valid inferences for the study
average treatment effect (SATE):

τ =
1

n

n∑
i=1

τi =
1

n

n∑
i=1

[Yi(1)− Yi(0)].

The SATE records the utility of treatment in the study. For example, a SATE of 5
Mg SOC ha−1 indicates that 5 Mg of additional SOC per hectare would have been
sequestered during the duration of the study had all plots been treated.

Even if there were no plot-level uncertainty, the SATE and other study-level causal
parameters would be unknown (because only one potential outcome is observed for
each plot), and estimates of them would be subject to random noise. In particular,
inter-plot variability contributes uncertainty to estimates of the SATE. Inter-plot
variability arises from spatial heterogeneity in %SOC and BD across plots, and from
potentially variable responses of plots to treatment. It is thus critical for studies to
enroll enough plots to estimate and control inter-plot variability. This can balloon
the cost of the study, especially when attempting to detect relatively small treatment
effects on a short time horizon. Control measures like blocking or pairing plots based
on underlying features (e.g., location, soil type, historical land use, topography, etc)
can help constrain inter-plot variability and improve precision without expanding the
size of a study. Such design choices must be reflected in the method of data analysis.

There are important sources of study-level uncertainty beyond inter-plot variability.
One such source is interference of treatment assignment between plots, wherein one
plot’s treatment assignment affects another plot’s outcome. For example, interference
may arise if two plots are adjacent to each other on a topographic gradient, so that C
inputs on a treated plot (e.g. compost amendments) run-off onto the adjacent control
plot. Another study-level uncertainty is adherence to protocol and its antithesis,
noncompliance, wherein treatment received is not identical to treatment assigned. For
example, noncompliance occurs when a plot assigned by the design to receive treatment
(e.g. management intensive grazing) actually receives control (e.g. conventional
grazing) for any reason (e.g. economic contingencies that incentivize a land manager
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to deviate). Noncompliance can bias estimates of treatment effects, and is difficult
to account for at the analysis stage. It should be kept to a minimum as much as
possible, and any deviations from protocol recorded.

4.4.4 Population-level (generalization) uncertainty

Population-level uncertainties arise when study results are generalized across space
or time, which is a necessary step in interpreting findings, designing new studies,
and informing policy decisions. To generalize across time typically requires assuming
that potential trajectories have a particular shape; for example, that sequestration
continues along a linear trajectory or reaches a plateau (equilibrium) and does not
reverse. The linear trajectory assumption is implicit in the common practice of
reporting change in terms of Mg C ha−1 y−1 and multiplying by years to extrapolate
total sequestration over time, but is rather dubious. Reaching and maintaining
a new SOC equilibrium is more likely on theoretical grounds, and reversals are
possible. Furthermore, the trajectories cannot depend on the absolute time at which
a management change occurs: they are assumed to be stationary. For example, a
stationary treatment effect implies that switching the population from control to
treatment now would create the same trajectory as making the same switch in 20
years. This assumption is reasonable in the absence of major changes in a population
over time, but such changes could be caused (for example) by long-term climate
change, which usually can’t be entirely ruled out. Unfortunately, there is no way to
account for non-stationarity in the design if it does exist, but results can be checked
for their sensitivity to the stationarity assumption. On the other hand, generalizing
across space–also called upscaling–can be made more or less rigorous by design. To
ensure external validity, the plots enrolled in a study should be representative of
the larger population to which the findings will be applied. The ideal strategy in
this regard is to randomly sample plots from the population of interest and enroll
them into an RCT. Such random enrollment is rarely feasible in practice, and studies
more often enroll plots by systematic or convenience samples. When enrollment
is done in this way, generalization must be based on informal reasoning, though
auxiliary data may help. Such data record features of the plot and the population
of interest that could influence the effect of treatment, such as climate, topography,
soil type, or land use history. In some cases, quantitative data may be used to
add precision and estimate uncertainty in the generalization [Egami and Hartman,
2023]. Quantitative methods for generalization may use inverse probability weighting
[Cole and Stuart, 2010], outcome modeling [Nguyen et al., 2017], or doubly-robust
estimation [Dahabreh et al., 2019]. All of these estimators require accounting for
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treatment effect moderators like baseline SOC or MAOC fraction.

4.5 Causal model of sequestration

There is a population of N volumes or plots of soil, each defined by a geographic area
and a depth. For example, a plot could be all the soil to 1 meter on a particular ranch
or a particular field, and the population could be all fields classified as California
rangeland. In our setup, only a subset of n ≤ N plots in a given population will be
randomly enrolled into the study and randomly assigned to treatment. Data from
the study will be used to draw inferences about the population. In particular, we are
interested in identifying an optimal or near optimal policy—one that will sequester
the most SOC across the population given a fixed budget.

Throughout this section we will generally use lowercase to indicate fixed quantities
and calligraphic font for sets (random or fixed). Exceptions are matrices, which will
be bold and uppercase without italics (e.g., A) but may be fixed or random, and
N—the size of the population. Vectors will be bold and defined using square brackets,
e.g. x = [x1, ..., xN ] for a fixed vector and X = [X1, . . . , XN ] for a random vector.
Scalar multiplication is denoted ax, while the dot product between two vectors is
x · y =

∑
i xiyi. If A is a collection, |A| is its cardinality. Collections may contain

multiple copies of the same element (technically, they are multisets or bags). Totals
over collections or vectors will generally be denoted using bars—e.g., x̄ :=

∑N
i=1 xi—in

contrast to their typical use to denote averages.

4.5.1 Potential trajectories and outcomes

For each possible treatment z taking a value in the set Z, each plot i in the population
has a fixed potential trajectory of soil organic carbon stock denoted yi(z, t), where
t ∈ R+ indicates time from the application of treatment. Implicitly, by writing a
potential trajectory in this way, we have assumed (i) no interference—the treatment
plot i receives does not affect any potential trajectory of plot j if j ≠ i—and
(ii) temporal stationarity—the response may depend on the time since the treatment
was applied, but the absolute time is irrelevant: yi(z, 10) is identical whether the
experiment started, for example, in 1980 or in 2000.

We define baseline time to be t = 0 and baseline stock to be yi(z, 0). By definition
yi(z, 0) = yi(z

′, 0) for any two treatments z, z′ ∈ Z. We will express time in years,
so yi(z, 5) is the carbon stock in plot i 5 years from baseline if it received treatment
z. A potential outcome (PO) yi(z) is derived from a potential trajectory by fixing
time. So, for example, we might define yi(z) := yi(z, 5) for all i to be the stock
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on treatment z after 5 years. To simplify notation we will generally work with
potential outcomes rather than trajectories, with the understanding that trajectories
are relevant to extrapolating in time. For example, a 10 year study can only assess
permanence to 100 years by making assumptions about the potential trajectory, such
as yi(z) := yi(z, 10) = yi(z, 100).

The universe of possible treatments Z may be binary, categorical, or continuous.
In all cases, we will assume that 0 ∈ Z corresponds to a control treatment. For
example, if we are interested in comparing between management intensive and
conventional grazing, Z is binary and we use z = 0 to denote conventional grazing.
Soil amendments like compost or manure may be continuous, expressed in Mg Ha−1,
in which case Z is a positive real number. Different amendments are sometimes put
on the same scale by translating them to carbon inputs, though this may hide genuine
differences among treatments: a ton of carbon from compost may have an effect on
SOC quite different from that of a ton of carbon from biochar.

4.5.2 Agents and Goals

There are countless actors—human and nonhuman—who stand to gain or lose from
actions taken on any given plot of land, let alone across a population of N plots. We
reduce this network to N + 1 unique agents: a land manager for each plot i, and a
policy-maker in charge of managing the population.

As an individual agent, the manager of plot imay wish to maximize yi(zi) alongside
additional outcomes, costs, and constraints (financial, environmental, biological, social,
aesthetic, etc.) by choosing among possible actions zi ∈ Z. This is a complex goal
requiring fine-grained knowledge and experience, perhaps only accessible to managers
in close relationship to lands over long periods of time (i.e. a smallholder or indigenous
community) [Scott, 1999].

This paper instead focuses on the role of a policy-maker with the narrow goal of
finding a course of action that will approximately maximize (over all possible courses
of action) the total amount of SOC stored in the population some number of years
after the action is taken. This is the goal of SOC sequestration considered purely as
a means of sinking atmospheric CO2 to mitigate climate change. We will suspend
normative judgements of that goal and, taking it as a given, focus on the practicalities
of identifying effective policies. Along the way, we will also discuss how to quantify
average treatment effects, which are important target parameters in scientific studies
and policy decisions. Empirical proxies of sequestration potential may be useful for
estimating both average treatment effects and optimal policies.
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4.5.3 Parameters

Let z := [z1, . . . , zN ] ∈ ZN be a treatment regime, such that zi is the treatment
received by plot i. Let w := [w1, . . . , wN ] be the known relative areas of each plot
such that

∑N
i=1 wi = 1. Under a given treatment regime z, the population average

potential outcome (z-PAPO) is

ȳ(z) :=
N∑
i=1

wiyi(zi),

the average mass of SOC in the population after some years under treatment regime
z. We note that the total SOC sequestered is just

∑N
i=1 yi(zi), and that estimation

and inference on the average and on the total are equivalent up to the known factor
N . We will work with the average to avoid the arbitrary scaling by N . We will
also assume plots are of equal size (implying ȳ(z) = 1

N

∑N
i=1 yi(zi)) to avoid carrying

around the weight vector w.
The canonical goal of causal inference is to estimate contrasts between aggregate

potential outcomes. Under treatment regime z, the population average treatment
effect (z-PATE) is:

τ(z) := ȳ(z)− ȳ(0) =
1

N

N∑
i=1

(yi(zi)− yi(0)) =
1

N

N∑
i=1

τi(zi)

where τi(zi) = yi(zi) − yi(0) is the individual treatment effect (ITE) for plot i on
treatment zi. In this definition, the control treatment level (z = 0) always serves as a
baseline for the contrast. Often, interest centers on z-PATEs with z := 1z, under
which every plot in the population receives the same treatment.

For example, consider the important case when Z is binary. The ITEs are
τi = yi(1)− yi(1). If every plot must receive the same treatment the (only) z-PATE
is written

τ := ȳ(1)− ȳ(0) =
1

N

N∑
i=1

τi,

and denotes the additional mass of SOC in the population after some years if all plots
were treated, compared to if they were all on control. We call the 1-PATE simply
the PATE and evaluate various estimators of it below. A positive PATE is usually
taken to mean that treatment should be favored over control as a blanket policy, but
if the ITEs {τi}Ni=1 vary—if there is treatment effect heterogeneity—then the PATE
may be substantially lower than the best z-PATE over all z ∈ {0, 1}N . That is, a
policy may have higher bang for its buck when treatments are allowed to vary across
the population compared to when the treatment must be the same for all units.
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4.5.4 Optimal treatment regimes

Let y(z) := [y1(z1), . . . , yN (zN )] record the POs for all plots in the population under
treatment regime z. The objective of the policymaker is to maximize the PTPO over
z under resource constraints. Assume each treatment incurs a plot-specific cost ci(zi)
with c(z) := [c1(z1), . . . , cN(zN)], and that costs are additive across plots (e.g., there
are no economies of scale in applying the same treatment to nearby plots) so that
the total cost of implementing z is 1 · c(z). The policy has overall budget C0. Define
the treatment portfolio:

P := {z : z ∈ ZN ,1 · c(z) ≤ C0}.

It is the set of all treatment regimes that meet the budgetary constraint. The optimal
PTPO is

ȳ∗ := max
z∈P

ȳ(z) = max
z∈P

1 · y(z)/N.

An optimal regime z∗ is a treatment regime z∗ that achieves the optimal PTPO,
satisfying ȳ∗ = ȳ(z∗). If y(z) was a known and simple (e.g., linear) function of z,
finding the optimal regime would be straightforward. However, the set {y(z)}y∈P is
inherently unknown7 since only one PO can be observed per unit.

A common way to simplify the problem is to consider only policies within a
restricted treatment portfolio:

R := {z : z = 1z for z ∈ Z,1 · c(z) ≤ C0} ⊂ P ,

and search for the optimum
max
z∈R

ȳ(z) ≤ ȳ∗.

When Z is discrete, this only requires estimating the |Z| values {ȳ(z1)}z∈Z , and is
a well-studied problem in the causal inference, survey sampling, and multi-armed
bandit literatures. However, when there is high TEH, the best single treatment may
perform much worse than the best vector of (possibly different) treatments: treating
all plots the same is far from the optimal regime if plots exhibit substantially different
benefits to different treatments.

4.5.5 Predicting stock and predicting treatment effects

To better approximate ȳ∗, we can employ additional information about individual
plots in the form of covariates. Previous work on SOC measurement has leveraged

7Unlike in a usual survey problem, where the population(s) could be enumerated by census.
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covariates to stratify or balance sampling designs [de Gruijter et al., 2016, Potash
et al., 2023], to increase the precision of total stock estimates [Viscarra Rossel et al.,
2016, Särndal et al., 1992, Brus, 2000], or to make local predictions of stock (i.e.,
to construct a map) [Padarian et al., 2019, Devine et al., 2020]. In these contexts,
covariates are effective when they predict SOC measurements. For example, when
using ordinary least squares, a higher R2 of the regression of measurements on
covariates corresponds to a more precise stock estimate or a more accurate SOC map.
Predictive and accessible covariates may include geography, topography, soil series,
land-use history, wetness, and spectral data captured by satellite or drone. Crucially,
the use of covariates in a working model does not necessitate that the model is correct
in the sense that it accurately captures a “true data generating process.” Rather,
in a model-assisted approach [Särndal et al., 1992], estimation of total SOC stock is
more precise if covariates are predictive, but inferences about SOC are asymptotically
valid only under random sampling, which can be guaranteed by the study design.

Our strategy is similar to model-assisted stock estimation, but instead of a single
population of actual mean SOC stock we are targeting:

1. The |Z| − 1 mean differences ȳ(z)− ȳ(0) representing z1-PATEs under uniform
treatment

2. The |P| population means {ȳ(z)}z∈P representing z-PAPOs under different
treatment regimes.

Both tasks can be accomplished by positing a regression model for each restricted
regime population y(z) with z ∈ R or a combined model with treatment-covariate
interactions [Freedman, 2008a,b, Lin, 2013, Ding et al., 2019, Künzel et al., 2019].

4.5.6 Decomposing potential outcome populations

Let xi be a length-p vector of covariates for plot i with constant term 1 in the first
index. For any z ∈ Z, a unit-level PO can be decomposed into:

yi(z) := β(z) · xi + εi(z)

where

β(z) := arg min
a∈Rp

N∑
i=1

(yi(z)− a · xi)
2

is the finite-population least squares linear regression coefficient of y(z1) on the
matrix of covariates X := [xT

1 , . . . ,x
T
N ]

T ∈ RN×p, and εi(z) := yi(z) − β(z) · xi is
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idiosyncratic variation in the POs. By definition
∑N

i=1 εi(z) = 0, so the variance

of the idiosyncratic effects is σ2
ε(z) :=

∑N
i=1 ε

2
i (z). Since everything so far is at

the population level, all these quantities are fixed (not random variables) and no
distributional or parametric assumptions are involved in the decomposition above.

Considering a fixed z ∈ Z, a closed-form solution for β(z) is available through
standard linear regression theory. Assuming the columns ofX are linearly independent
we have

β(z) := (X TX )−1X Ty(z1).

While the covariance matrix X TX is fully known, y(z1) is not, so β(z) is unknown.
However β(z) can be consistently estimated under random sampling and random

treatment assignment, as we will show. Given such an estimate β̂(z) of β(z), we can

estimate each population PO by ŷi(z) := β̂(z) · xi of yi(z). Then, letting

ŷ(z) := [ŷ1(z1), . . . , ŷN(zN)],

we estimate the optimal regime z∗ by

ẑ∗ := argmax
z∈P

1 · ŷ(z). (4.1)

While ẑ∗ is fully identified statistically, the optimization may be computationally
challenging depending on the nature of P. A full treatment of that optimization
is outside the scope of this paper, but we provide the solution when P is entirely
unrestrictive (i.e., when P = ZN) and discuss more general solutions in Section 4.8.
We next describe the study design and estimation procedure.

4.6 Data, estimation, and inference

4.6.1 Study design

Suppose plots are enrolled in the study by simple random sampling from the population.
Let S = {S1, . . . , Sn} be a collection of n random indices recording the enrolled plots.
Then the POs for plots in the study are {yi(z)}i∈S = {Yi(z)}ni=1. We emphasize that
Yi(z) involves a random re-indexing so that Yi(z) ̸= yi(z), but instead Yi(z) = ySi

(z).
The expected value of a potential outcome in the sample is E[Yi(z)] = ȳ(z). A
length-p random vector of covariates X i is also observed for each unit.

From here we will assume that treatment is categorical 8 withK levels. Generically,

8Naturally continuous treatments can be handled in this framework by discretizing them to
an arbitrarily fine grid. The design and analysis of studies while maintaining the continuity of
treatments requires additional assumptions beyond the scope of this paper.
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let Z := {0, . . . , K − 1}. Treatment is assigned as in a completely randomized
experiment, so that nk plots are assigned to treatment k uniformly across plots with∑K−1

k=0 nk = n. Denoting treatment assignments Z := [Z1, . . . , Zn], we have

P(Z = [z1, . . . , zn]) =

((
n

n1

)(
n− n1

n2

)
. . .

(
n−

∑K−2
k=1 nk

nK−1

))−1

That is, all ways of partitioning the n plots into the K treatments with fixed group
sizes [n0, n1, . . . , nK−1] are equally likely.

4.6.2 Observed data

After the study, we observe the outcome Yi := Yi(Zi) for each experimental plot
i ∈ {1, . . . , n}. Take Y k := [Yi]i:Zi=k and Xk := [X i]i:Zi=k to be the observed
outcomes and covariates for treatment group k. Under simple random sampling of
plots and completely random assignment of treatments, the data (Y k,Xk) are a
simple random sample of size nk from the population (yi(k),xi)

N
i=1. The samples are

also dependent across k because they are necessarily for mutually exclusive sets of
plots. Both dependencies are trivial when n << N . Pooling across k and appending
the vector of assigned treatments, the observed data are denoted (Y ,X,Z). The
data suffice to estimate treatment effects and the optimal policy.

4.6.3 Estimation and inference for the PATE

When Z is binary, we can estimate the PATE τ using the observed outcomes and
(potentially) the covariates. Denote a generic estimator of τ by τ̂ . We describe
three possibilities for τ̂ : the difference-in-means, difference-in-differences, and an
OLS-adjusted estimator. Each has a consistent or conservative variance estimator
V̂[τ̂ ], which allows for asymptotically valid Wald-style equal-tailed (1− α) confidence
intervals:

τ̂ ± Φ−1(α/2)

√
V̂[τ̂ ],

where Φ−1(α/2) is the α/2 quantile of the normal distribution, about 1.96 for α = 0.05.
The intervals may not achieve their nominal (1− α) coverage in small studies. We
evaluate their true coverage in some simple settings in our simulations, and discuss
the possibility of using nonparametric methods with guaranteed finite-sample validity
in Section 4.8.

The unbiased difference-in-means (DiM) estimator is:

τ̂DiM := Ȳ1 − Ȳ0,
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where Ȳk = 1
nk

∑
i:Zi=k Yi is the sample mean of Y k. If σ2

0 is the variance of the

control population POs y(0) and σ2
1 is the variance for the treatment population

POs y(1), then the variance of τ̂DiM is V(τ̂DiM) = σ2
0/n0 + σ2

1/n1. It can be estimated
without bias by plugging in the sample variances:

V̂(τ̂DiM) = σ̂2
0/n0 + σ̂2

1/n1,

where σ̂2
z := (nz − 1)−1

∑
i:Zi=z(Yi − Ȳz)

2.
Now suppose one of the measured covariates is baseline SOC Bi, and let Di =

Yi −Bi be the difference between observed followup and baseline SOC. Also let B̄z

and D̄z be the sample means of Bi and Di, respectively, in treatment group z ∈ {0, 1}.
The difference-in-differences (DiD) estimator is:

τ̂DiD := D̄1 − D̄0 = (Ȳ1 − B̄1)− (Ȳ0 − B̄0).

Like the DiM, the DiD is unbiased for τ . It has variance V(τ̂DiD) = σ2
D0/n0 + σ2

D1/n1,
where σ2

Dz is the variance of the population of differences {di}Ni=1 where di := yi(z)−
bi. When bi tends to be close to yi(z), the variance of the differences σ2

Dz is less
than the variance of the raw POs σ2

z and the DiD is more efficient than the DiM:
V(τ̂DiD) < V(τ̂DiM). Letting, σ̂2

Dz = n−1
z

∑
i:Zi=z(Di − D̄z)

2 be the sample variance of
the differences in treatment group z, the variance estimate

V̂(τ̂DiD) = σ̂2
D0/n0 + σ̂2

D1/n1

is unbiased.
The final estimator of τ we consider is the OLS-interaction estimator of Lin [2013].

The OLS-interaction estimator τ̂OLS is the coefficient on Zi in the OLS regression
of Yi on Zi, X i, and the interaction Zi(X i − X̄), where X̄ are the column means
of X. Lin [2013] shows that τ̂OLS is consistent and asympotically normal, has lower
asymptotic variance than τ̂DiM, and may be substantially more precise in finite-samples.
However, the estimate has a small finite-sample bias of order 1/n. The “sandwich”
variance of the OLS coefficient estimates provides a consistent estimate for V[τ̂OLS].
Lin [2013] demonstrates that Wald-style intervals with this variance estimate achieve
their nominal coverage in simulations of a relatively small experiment (n1 = 58,
n0 = 99). The sandwich covariance estimator is not necessary in balanced binary
experiments, where n1 = n0; the usual covariance estimate suffices. We primarily
consider OLS-interaction strategy when X i = [1, Bi] includes the single covariate
Bi, representing baseline SOC (or another one-dimensional proxy of sequestration
potential). In this case, the estimator can be written

τ̂OLS := (Ȳ1 − (β̂B + β̂mod)B̄1)− (Ȳ0 − β̂BB̄0),
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where β̂B estimates the association of Bi with Yi among the control group (the

coefficient on Bi in the interacted OLS), and (β̂B + β̂mod) estimates the association

of Bi with Yi in the treatment group (β̂mod is the coefficient on Zi(Bi − B̄)). The
resemblance to τ̂DiD is apparent: τ̂DiD fixes these coefficients to 1, analogous to an
unbiased fixed-slope estimator in survey sampling [Cochran, 1977]. Thus, compared
to τ̂DiD, the OLS estimator τ̂OLS sacrifices a small finite-sample bias for a potential
gain in asymptotic precision [Lin, 2013].

4.6.4 Estimation of the optimal policy

Now suppose that, in addition to the observed study data (Y ,X,Z), we have the
covariate matrix X for the entire population of interest. We can estimate the
coefficients β(k) using the study data, and impute POs for the entire population

using X and β̂(k). That is, we propose to estimate each yi(k) by ŷi(k) := xT
i β̂(k)

for i ∈ {1, . . . , N}, and plug these fitted values in to (4.1).
When there are no budgetary constraints on the treatment portfolio (C0 = ∞), the

estimated optimal regime ẑ∗ can be found by separately maximizing each ŷi(k), i.e.,
by letting k̂∗

i := argmaxk∈Z ŷi(k) and ẑ∗ := [k̂∗
1, . . . , k̂

∗
N ]. When there are budgetary

constraints and varying costs of treatment, the estimates are inputs to an optimization
routine. Under the cost-additivity assumption, the optimal regime could be found by
linear programming. We return to the plausibility of that assumption and the linear
programming solution in our discussion. We will also suggest some uses for inference
on z∗ and some possible avenues to construct confidence sets in our discussion, but
implementing them is outside the scope of this paper. Hence, in what follows we will
evaluate only the quality of point estimates of the optimal policy and compare them
to the business-as-usual scenario of using the DiM estimate of the PATE to choose
the policy, which is equivalent to optimizing over the restricted treatment portfolio
R. The restriced optimal policy estimate is thus ẑ∗

R := (argmaxz∈Z Ȳz)1. It sets
the treatment for every unit in the population equal to the treatment that gives the
largest observed mean in the study.

4.7 Simulations

4.7.1 Simulated populations and design

The populations in our simulations were based on data from an RCT of compost
application conducted at multiple sites around California, representing a range of
soil types, climates, biologies, and land use histories. The data was collected as
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part of an initiative for the Natural Resources Conservation Service (NRCS) and
described in Silver et al. [2018]. The NRCS study enrolled pairs of 30m × 62.5m
plots at 14 different sites. Within each pair one plot was chosen at random to
be treated with 0.64cm of compost, while the other plot was an untreated control.
Plots were measured for %TC by drawing 5 soil cores along a diagonal transect to
a depth of 10cm. Cores were assayed for %TC by dry combustion in an elemental
analyzer. BD was not measured, so all our results are expressed in terms of %TC on
a mass-to-mass basis. This entire measurement procedure was done pre-treatment
in 2016 and repeated every subsequent year after the application of treatment until
2019. We took followup SOC to be the 2019 measurements and baseline SOC to be
the 2016 measurements.

Using the NRCS data to inform population parameters (see Table 4.1), we
simulated populations with plots as units recording average baseline SOC (bi), 3-year
followup SOC under treatment (yi(1)), and 3-year followup SOC under control (yi(0)).
The latter two quantities are potential outcomes, while bi is the covariate proxying
sequestration potential. There were N = 2480 plots in each population. For each
plot, baseline SOC was generated by drawing (independently of other plots) from
a normal distribution with mean equal to the empirical mean %TC in 2016 in the
NRCS Data (µb; pooled across treatment and control plots) and SD equal to the
empirical across-plot SD in %TC in 2016 (σap

b ). Follow-up SOC on control was equal
to baseline SOC plus random noise:

yi(0) = bi + ε0i,

where ε0i was generated by drawing from a normal distribution with mean equal
to the empirical average of the change between 2016 and 2019 for control plots in
the NRCS data (∆0) and SD equal to the empirical across-plot SD of the change
between 2016 and 2019 for control plots (σap

∆0
). Thus, control potential outcomes

randomly differed from baseline according to the variation observed in the NRCS
data. Treatment potential outcomes were drawn from the linear model:

yi(1) = yi(0) + τ + βmod × b̃i + ε1i,

where τ is the ATE, reflecting how effective treatment is on average; ε1i is random
noise drawn from a normal distribution with mean 0 and variance σ2

ε1
, parameterizing

idiosyncratic variation in the individual treatment effect; b̃i := (bi− b̄)/(N−1
∑N

i=1(bi−
b̄)2), i.e. baseline SOC standardized to have mean 0 and variance 1; βmod is the
moderator effect, parameterizing the association between standardized baseline SOC
and the individual treatment effect for plot i. A negative value of βmod implies higher
baseline SOC is associated with a lower treatment effect.
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We simulated populations for a range of parameter settings {τ, βmod, σ
2
ε1
} from

null to large values of each parameter. Specifically, we let τ ∈ {0, 0.05, 0.1, 0.3}/σ2
ap

where σ2
ap = 0.66 is the empirical baseline across-plot standard deviation in the NRCS

data; βmod ∈ {0,−0.1,−0.5}; and σ2
ε1
= {0, 0.1}. For each combination of parameter

values, a single population was generated by the process described above.
Then for each of 200 simulation replicates, we drew study data by enrolling

n = {10, 100, 1000} plots into a balanced RCT, randomizing half to treatment and
half to control according to a completely randomized design. The observed data
(Yi, Bi) also involved independent measurement error from sampling δij ∼ N (0, σ2

δ )
for i ∈ {1, ..., n}, j ∈ {1, 2} with δi1 representing the measurement error added to
baseline:

Bi = bSi
+ δi1,

and δi2 representing the measurement error added to the follow-up observation:

Yi = Yi(Zi) + δi2.

The degree of measurement error was set at σδ ∈
{
σwp

b /
√
5, σwp

b /
√
30, σwp

b /
√
100
}

where σwp

b = 1.02 is the empirical average within plot variance (spatial heterogeneity)
in the 2016 NRCS data. The measurement noise was thus computed assuming 5, 30,
or 100 samples were taken within each plot. Additional variability due to assay was
assumed negligible and not included.

4.7.2 Parameters, estimators, and evaluation criteria

We were interested in estimators of the PATE τ , the moderator effect βmod, and the
optimal policy z∗. For the ATE, we evaluated estimates and corresponding Wald
confidence intervals of the difference-in-means (DiM), difference-in-differences (DiD),
and ordinary least squares adjusted (OLS) estimators. For the moderator effect, we
evaluated the estimator β̂mod taken from the estimated coefficient on the interaction
Zi(Bi − B̄) of the OLS estimator. For the optimal policy, we assumed there was no
budgetary constraint and compared the optimal PTPO ȳ∗ = ȳ(z∗) to the PTPO
using the estimated optimal regime ȳ(ẑ∗) and to the PTPO using the estimated
restricted optimal regime ȳ(ẑ∗r1) where ẑ∗r = argmaxzȲz is just the larger of the two
observed means.

For each estimator we recorded the estimate and 95% Wald confidence interval
for each simulation. Using the replicate simulations, we estimated the bias, root
mean squared error (RMSE), confidence interval (CI) coverage, and expected CI
width. The bias is the difference between the expected value of the estimator and the
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parameter. Some of our estimators (DiM, DiD) are known to be exactly unbiased,
while some (OLS) can have a small finite-sample bias. The RMSE captures the
expected deviation of an estimate from the parameter, taking into account both the
bias and variability of an estimator. The CI coverage reflects the validity of inference
using that procedure: a valid 95% CI should cover the parameter in around 95% of
the simulations or more. Finally, the expected CI width measures the “perceived”
error of the estimator. Smaller CI width is preferable (the method has higher power),
conditional on the coverage being near 95% (the method is valid).

4.7.3 Simulation results

Summaries of the parameters estimated from the NRCS data and used in the simula-
tions appear in Table 4.1.

Parameter Value (TC%)
Baseline average (µb) 2.34
Baseline within-plot SD (σwp

b ) 1.02
Baseline across-plot SD (σap

b ) 0.47
Average control change (∆0) 0.16
Across-plot SD control change (σap

∆0
) 0.14

Table 4.1: Parameters estimated from NRCS data and used to simulate populations. TC%
= percent total carbon.

The performance of the PATE estimators is tabulated at a few trial sizes n in
Table 4.2. The results are averaged across the population settings described in
Section 4.7.1. None of the estimators had any finite-sample bias to two decimal
places. However, in small trials (n ≤ 10) the 95% Wald CIs were not strictly valid
for any method, since they only cover the PATE in around 90% of simulations. All
CIs achieved their nominal coverage by n = 100. The OLS estimator τ̂OLS had the
best performance in terms of RMSE and CI width. At n = 100, τ̂OLS could resolve
the PATE to 0.4 TC% on average, while τ̂DiM could resolve it to 0.5 TC%. The
performance of τ̂DiD was in between. In Figure 4.3 we plot the CI width as a function
of the trial size, the number of samples drawn per plot, and the moderator effect
for each estimator. The OLS estimator τ̂OLS always had the shortest CIs on average,
while the CI width of τ̂DiD and τ̂DiM depended on the moderator effect and the samples
per plot. The DiD estimator τ̂DiD was better when the moderator was positively
associated with the treatment effect (βmod = 0.5) and when there were more samples
per plot. This is because (a) τ̂DiD needed to estimate both baseline and follow up
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averages, and incurred more error in those estimates when there are fewer samples per
plot; and (b) when the moderator effect was negative, baseline SOC was correlated
positively with control POs but negatively with treatment POs, so the treatment
group differences Y 1 −B1 are more variable than the raw values Y 1, increasing the
standard error of τ̂DiD.

In terms of the optimal policy, the average oracle value ȳ(z∗) across the simulated
populations was 2.63 TC%. On average the return under the estimated optimal policy
ȳ(ẑ∗) was 2.61 TC%, with a loss of 0.02 TC% compared to the oracle value. The
return under the restricted optimal policy estimate ȳ(ẑ∗

R) averaged to 2.50 TC%,
with a loss of 0.13 TC%. As expected, the differences were driven primarily by
the moderator effect. We observed the relation ȳ(ẑ∗) ≥ ȳ(ẑ∗

R), with the inequality
holding strictly when and only when βmod ̸= 0.

n Estimator Bias CI Width CI Coverage RMSE
10 Difference-in-differences 0.00 1.42 0.91 0.37

Difference-in-means 0.00 1.49 0.90 0.39
OLS-adjusted 0.00 1.36 0.89 0.37

100 Difference-in-differences 0.00 0.46 0.95 0.12
Difference-in-means 0.00 0.49 0.94 0.13
OLS-adjusted 0.00 0.41 0.94 0.11

1000 Difference-in-differences 0.00 0.15 0.95 0.04
Difference-in-means 0.00 0.16 0.96 0.04
OLS-adjusted 0.00 0.13 0.95 0.03

Table 4.2: Simulation results for various estimators (described in Section 4.6.3) of the
PATE τ . Results are averaged over the range of populations described in Section 4.7.1
and over 200 studies with random sampling and treatment assignment simulated on each
population. The width and true coverage of nominal 95% confidence intervals is shown. CI
= confidence interval; RMSE = root mean-squared error; OLS = ordinary least squares.

4.8 Discussion

We provided an integrated review of uncertainties in studies targeting SOC seques-
tration along with a design-based causal model for estimating treatment effects and
optimizing sequestration across a population of interest.

We found that the regression adjusted estimator of the population average treat-
ment effect tended to have marginally lower error and confidence interval width than
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Figure 4.3: Confidence interval widths (y-axis) at a range of trial sizes n (x-axis) for
various estimators (line colors). The columns demarcate different numbers of samples per
plot (5, 30, or 100); more within-plot sampling reduces the uncertainty due to within-plot
spatial heterogeneity. The rows denote different moderator effects βmod. DiD = difference-
in-differences; DiM = difference-in-means; OLS = ordinary least squares adjusted; TC% =
percent total carbon.
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the difference-in-means or difference-in-differences on average across a wide range of
simulation settings. Our proposed estimate of the optimal policy also improved on
using the standard, restricted estimate based on uniformly applying treatment to the
group with the larger estimated effect, especially when there was treatment effect
heterogeneity described by an observed moderator (i.e., sequestration potential). In
the rest of this section, we will discuss additional considerations for sequestration
studies and policies, limitations of our work here, and directions for future research.

4.8.1 Other study designs and potential pitfalls

We assumed a very particular study design: a randomized controlled trial (RCT)
with units sampled uniformly at random from a broader population of interest. This
setup represents an ideal wherein the internal and external validity of all estimates
and inferences are rigorously justified by the design alone. Rarely, if ever, is such a
design feasible in real-world soil science experiments. Some of the assumptions can
be relaxed.

The assumption of simple random sampling into a completely randomized experi-
ment is not necessary: there exist estimators that retain unbiasedness and inferential
validity under a much broader range of designs, including non-uniform sampling
and assignment, stratification or blocking, rerandomization, and cluster sampling or
treatment assignment [Aronow and Middleton, 2013, Imbens and Rubin, 2015, Egami
and Hartman, 2023, Li and Ding, 2020]. Furthermore, the plots in the experiment may
constitute a convenience sample from the larger population or may not be embedded
in a population at all. In that case all inferences may be confined to the experiment
itself. There is a rich literature on such randomization inference dating back 100 years
ago to early agricultural statistics [Neyman, 1923], which continues to flourish today
[Lin, 2013, Ding et al., 2019]. The internal validity of such experiments is guaranteed
by the design alone, but the experiment has no immediate external validity: nothing
can be said about a larger population without further assumptions. Section 4.4.4
mentioned a few ways to support external validity. We emphasize the importance of
careful consideration of the population to which results are being extrapolated, and
of replicating studies. Replication is the strongest way to establish that causal effects
generalize across contexts.

Purely observational studies are more problematic, requiring hypothetical popula-
tions and sampling designs premised on unverifiable assumptions. The design-based
view of observational causal inference aims to explicitly approximate a hypothetical
RCT and to use simple methods for statistical analysis, which are relatively inter-
pretable and transparent so that weaknesses in the study can be easily identified
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[Rosenbaum, 2002]. In contrast, the model-based and Bayesian views tend towards
intricate distributional and functional assumptions that are often obscure, strained,
and highly sensitive to misspecifications [Berk and Freedman, 2003].

All the designs discussed above assume a longitudinal study. An RCT is inherently
longitudinal since the response must be observed some time after the application of
treatment. However, some observational studies in soil science are cross-sectional or
“space-for-time”, involving measurement at only one time point Walker et al. [2010].
Such studies are vulnerable to vagueries and delicate assumptions. For example, when
the exact land-use history is unknown, it may be difficult even to precisely define the
intervention under study or to ensure that plots within a group received the same
intervention. Longitudinal observational studies and RCTs are subject to similar
challenges. For example, the longterm Highfield ley-arable experiment at Rothamsted
regularly collected data for nearly 75 years, but the treatment of assigned plots and
even the study population evolved over that time [Blyth et al., 2023]. Nevertheless, as
a rule of thumb, space-for-time studies are likely to be less rigorous than longitudinal
observational studies, which are likely to be less rigorous than RCTs.

Finally, some studies may not rely on empirical data at all or use empirical
data as simple inputs to a mechanistic model. The CENTURY and DAYCENT
biogeochemical models [Parton, 1996] are commonly used as part of theoretical
studies of SOC sequestration and may be used to inform policy decisions as well,
especially to extrapolate measurements over space and time [Silver et al., 2018] or
as part of sequestration crediting protocols [Mathers et al., 2023]. The reliability of
the output of such models needs to be distinguished from that of empirical results.
In particular model results are a lesser form of evidence because their validity is
premised on accurately capturing all relevant aspects of the complex, multi-causal,
physical mechanisms governing SOC sequestration. The models greatly simplify
these mechanisms and must, given that the physics of SOC sequestration (including
saturation) remain poorly constrained and highly variable under real-world conditions.
The models must be calibrated empirically and tested for their ability to predict
SOC changes and causal effects in a wide-range of contexts [Necpálová et al., 2015].
Properly conducted randomized trials can rigorously estimate causal effects without
the need to understand or control all the physics, which is currently impossible.

4.8.2 Saturation in a causal context

The method we developed can be used to furnish empirical evidence for the saturation
hypothesis. A large body of past work has failed to provide such evidence, in large
part because saturation has not been couched in a causal model, which has led
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to confusion when analyzing and interpreting the data [Slessarev et al., 2023]. In
short, investigators have used baseline SOC Bi and followup SOC Yi, computed the
difference Di := Yi −Bi, regressed Di on Bi, and interpreted a significantly negative
regression coefficient as evidence that baseline SOC is negatively associated with
change. This is not a meaningful result: the difference between any two independent
random variables will be correlated with either one of the original random variables.
Slessarev et al. [2023] note this as an instance of regression to the mean, and propose
a correction.

Our approach instead suggests formalizing the saturation hypothesis in a causal
model, with the phenomenon manifesting either as moderation by baseline SOC or
as diminishing returns to inputs. In the binary treatment case, baseline moderation
is equivalent to a nonzero value of βmod from Section 4.6.3. More treatment levels
and multivariate or non-linear moderating effects can be estimated using the general
framework in Section 4.5.6. On the other hand, an empirical study of saturation in
terms of diminishing returns might estimate the effects of a continuous treatment at
varying levels of intensity, as in a dose-response design or analysis [Holland-Letz and
Kopp-Schneider, 2015, Efron and Feldman, 1991]. Combining ideas of moderation
and dose-response in the design and analysis of studies targeting sequestration is an
interesting area of future research, which could help to shed light on the saturation
hypothesis and to improve the efficacy of SOC sequestration policies.

4.8.3 Cost model and optimization

In characterizing the available treatment portfolio P, we assumed that the overall
cost of a policy was a linear and additive function of the costs of each individual
treatment. This assumption creates a linear constraint set, which allows the optimal
policy to be computed readily: the optimization is a linear program, for which fast
algorithms exist at any scale [Karmarkar, 1984].

In many cases, a linear cost model is not appropriate. For example, policies
are likely to exhibit economies of scale, so that marginal costs diminish as more
plots receive a given treatment. Roughly speaking, diminishing marginal costs would
suggest a more parsimonious and balanced treatment regime, where only a few
intervention levels are prescribed in relatively equal proportions. In the extreme, it
suggests treating all plots the same, i.e., choosing a treatment from R. Furthermore,
the real costs of interventions will often depend on geography, especially for treatments
involving shipping costs: it is cheaper to spread x amount of an amendment on the
same plot than to distribute x/2 to two plots (depending on the distance between
them).
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These considerations could make the optimization much more complex and poten-
tially intractable, even if the population potential outcomes {y(z)}z∈ZN were fully
known. Brute-force solutions are generally impossible, since they involve enumerating
|Z|N averages ȳ(z). If geography is a primary concern, the population could be
partitioned into G clusters with all plots in a cluster constrained to receive the same
treatment, reducing the burden of enumeration to |Z|G. Defining an accurate cost
model and finding tractable routines for optimization is an important area for further
research.

We also note that the true costs and benefits of different courses of action are
not strictly internal to the project. Externalities are generally very difficult if not
impossible to account for. Policy costs are not incurred in isolation, but in relation to
other existing and potential policies. For example, converting a corn field to native
grasses requires resources, but those resources may be diverted from an existing policy
(e.g., a corn subsidy). An existing practice may impose a wide range of costs on
nature or society—environmental, social, medical, etc—that are difficult to capture
in a cost model and compare to a counterfactual action. Many costs are not even
quantifiable for an individual, let alone universally.

4.8.4 Valid inference with non-normal data, complex target
parameters, and sequential designs

The inference methods we proposed in this paper are asymptotically valid: the level
of a confidence interval or hypothesis is approximately correct in large samples. How
large a given sample must be for the approximation to be close is generally unclear.
In our simulations of small studies (n = 10), Wald-style confidence intervals had
true coverage probabilities below their nominal level (90% true vs 95% nominal).
Those simulations drew the populations from normal distributions and we expect
the coverage would be worse in populations that depart from normality, especially
those with strongly varying skew [Stanley et al., 2023]. For skew to vary strongly
across potential outcome populations, there must be a high heterogeneity of the
treatment effect. If the treatment effect is constant, the PATE can be bounded with
a guaranteed level using a randomization test [Ding et al., 2016] and furthermore
the restricted optimal policy is the optimal policy (since all units respond the same
to a given treatment). That assumption is generally implausible in the context of
SOC sequestration, and is incongruous with all versions of the saturation hypothesis.
Conservative confidence intervals for the PATE can be constructed by adapting the
nonparametric method of Stanley et al. [2023] to the context of an RCT, though
that may entail a subsantial loss in power compared to Wald-style intervals. Another
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option is to target the quantiles of the treatment effects {τi}Ni=1 and bound them
using the permutation-based method of Caughey et al. [2023]. That method may
provide additional insight into treatment effect heterogeneity, but changes the subject
somewhat from this paper since it does not immediately bound average or total
sequestration.

Another open problem is inference about the optimal policy z∗. Earlier we
suggested a method that bases the policy decision only on the estimate ẑ∗. However,
if the average ȳ(z) is relatively flat around z∗, there are many approximately optimal
solutions, some of which may have considerably lower cost than ẑ∗. Incorporating
the uncertainty of ẑ∗ is thus a valuable goal. To that end, a (1− α) confidence set
Cz∗ might contain all policies z for which the hypothesis

H0(z) : max
z′∈P

ȳ(z) ≥ ȳ(z′)− ϵ

does not reject at level α. In other words, Cz∗ is a set of policies that are potentially
nearly optimal. The decision maker might then choose the least costly z such that
z ∈ Cz∗ . The setup is similar to the null hypothesis in a bioequivalence problem
[Westlake, 1979], inference on optimal average treatment effects [Kasy and Sautmann,
2021], and problems in multiple testing, especially procedures for multiple comparisons
with the sample best [Hsu, 1996]. Constructing Cz∗ may be challenging.

Finally, SOC studies could be fruitfully embedded in a sequential design. While
myriad details would need to be worked out, in essence the enrollment of plots and their
assignment to treatment could take place on a rolling basis, with covariate and outcome
data collected regularly over time. Treatments for an individual plot need not be fixed
in advance (as a point treatment or pattern over time), but could change in response
to measurements or other decisions. The sequential setup is more complex, but
tracks more closely with how agriculture is usually practiced, may improve theoretical
frameworks for SOC sequestration policy, and may lead to better practical studies if
carefully implemented. Furthermore, some long running agricultural RCTs are best
understood as sequentially evolving over time, including examples at Rothamsted
Blyth et al. [2023]. The relevant literature includes adaptive clinical trials and policy
experiments [Pallmann et al., 2018, Kasy and Sautmann, 2021], multi-armed bandits
(especially contextual bandits) [Slivkins, 2024], reinforcement learning [Sutton and
Barto, 1998], and dynamic treatment regimes [Chakraborty and Murphy, 2014]. In
these settings, recent advances in sequential inference could be leveraged to ensure
finite-sample and sequential validity without parametric assumptions [Howard et al.,
2021, Ramdas et al., 2023, Waudby-Smith et al., 2024].
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4.8.5 Uncertainties at the policy level

In our review of measurement in Section 2, we did not address uncertainties that
arise specifically around policy design. These include additionality, permanence,
and leakage. Additionality is often defined to mean that the policy creates SOC
sequestration that would not have occurred otherwise, but this generally assumes the
effectiveness of interventions [Indigo Agriculture, 2024]. Separating the implemen-
tation of an action from its effectiveness, we define additionality to mean that the
policy stimulates an action that would not have occurred otherwise. For example,
when a land manager is paid to stop tilling, they do, and they would not stop if
they were not paid: the policy causes the management change to occur. In this
respect, additionality is closely related to compliance in the experimental setting,
and may be evaluated by considering existing regulatory, financial, physical, and
social (dis)incentives to adopt an intervention as well as by recording information
about compliance in a study. While the scientific effects of an intervention are best
estimated if there is strong pressure to comply, additionality and policy effects are best
estimated if the study measures the level of compliance when the policy is applied
to a wider population. That is, while spatial generalization calls for plots to be
representative of the population, determining additionality calls for the experimental
intervention to be representative of the policy intervention. Additionality of a policy
evokes the well-established tension between internal and external validity [Bates and
Glennerster, 2017].

Permanence often refers to the longevity of additional sequestered SOC in a
population Indigo Agriculture [2024], Smith [2005], Thamo and Pannell [2016], where
a return to baseline SOC before 100 years is called a reversal. We differentiate between
(a) the permanence of an intervention and (b) the permanence of sequestered SOC.
Concept (a) is an additional population-level policy concern and uncertainty, which,
like additionality, can be evaluated by monitoring cross-over in a longitudinal study
with an externally-valid intervention. Concept (b) is a more complex question that
needs to be addressed in the context of the specific intervention and its permanence
(i.e. (a)), in addition to scientific knowledge about the SOC trajectory after the
intervention is implemented. Such knowledge needs to be generated at the study-level
and generalized across time and space, as above, before being tied to (a).

Finally, leakage refers to the externalities of a particular intervention in terms of
its greenhouse effect. An intervention that stores SOC but releases a large amount
of methane exhibits leakage (e.g., in flooding fields for conversion to rice cultivation
[Minami, 1994, Nitta, 2022], as does an intervention that burns fossil fuel as part
of a supply chain (e.g., in transporting compost long-distances [Silver et al., 2018]).
Sequestration is storage minus leakage, and need not be positive even when storage
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is positive. Hence, it is critical to account for leakage through life-cycle assessment,
tracking on-farm fossil fuel use, and measuring externalities like methane, nitrous
oxide, and nitric oxide production [Minami, 1994, Pilegaard, 2013, Ryals and Silver,
2013]. Again, comparison to appropriate counterfactual scenarios is crucial and can
be formalized using potential outcomes.
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Chapter 5

Optimal sequential risk-limiting
comparison audits

5.1 Introduction

Machines count votes in most American elections, and (reported) election winners
are declared on the basis of these machine tallies. Voting machines are vulnerable to
bugs and deliberate malfeasance, which may undermine public trust in the accuracy
of reported election results. To counter this threat, risk-limiting audits (RLAs) can
provide routine, statistically rigorous evidence that reported election outcomes are
correct—that reported winners really won—by manually checking a demonstrably
secure ballot trail [Lindeman and Stark, 2012]. RLAs have a user-specified maximum
chance—the risk limit—of certifying a wrong reported outcome, and will never
overturn a correct reported outcome. They can also be significantly more efficient
than full hand counts, requiring fewer manually tabulations to verify a correct reported
outcome and reducing costs to jurisdictions.

There are various ways to design RLAs. Data can be sampled as batches of
ballots (i.e. precincts or machines) or as individual ballot cards (hereafter, we refer to
cards simply as “ballots”). Sampling individual ballots is more statistically efficient
than sampling batches. In a polling audit, sampled ballots are checked directly
without reference to machine interpretations. Ballot-polling audits sample and check
individual ballots. In a comparison audit, manual interpretations of ballots are
compared to their machine interpretations. Ballot-level comparison audits check each
sampled ballot against a corresponding cast vote record (CVR)—a digital receipt
detailing how the machine tallied the ballot. Not all voting machines can produce
CVRs, but ballot-level comparison audits are the most efficient type of RLA.
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Ideally, RLAs will simultaneously check multiple (potentially all) contests within
a jurisdiction—a task made considerably more efficient by targeting samples with
card-style data [Glazer et al., 2021]. Card-style data are most feasibly derived from
CVRs, in which case each contest can be audited using ballot-level comparison.
Because the overall workload of the audit is aggregated across contests, optimizing
the efficiency for individual contests can provide substantial workload reductions for
the audit as a whole. Thus, constructing sharper ballot-level comparison audits is
paramount to the implementation of real-world RLAs auditing multiple contests.

The earliest RLAs were formulated for batch-level comparison audits, which are
analogous to historical, statutory audits [Stark, 2008a]. Subsequently, the maximum
across contest relative overstatement (MACRO) was used for comparison RLAs [Stark,
2009b,d, 2010, Ottoboni et al., 2018], but its efficiency suffered from conservatively
pooling observed errors across candidates and contest. SHANGRLA [Stark, 2020]
unified RLAs as hypotheses about means of lists of bounded numbers and provided
sharper methods for batch and ballot-level comparisons. Each null hypothesis tested
in a SHANGRLA-style RLA posits that the mean of a bounded list of assorters is
less than 1/2. If all the nulls are declared false at risk limit α, the audit can stop.
Any valid test for the mean of a bounded finite population can be used to test these
hypotheses, allowing RLAs to use a wide range of risk-measuring functions.

Betting supermartingales (BSMs)—described in Waudby-Smith et al. [2021] and
Stark [2023]—provide a particularly useful class of risk-measuring functions. BSMs
are sequentially valid, allowing auditors to update and check the measured risk
after each sampled ballot while maintaining the risk limit. They can be seen as
generalizations of risk-measuring functions used in earlier RLAs, including Kaplan-
Markov, Kaplan-Kolmogorov, and related methods [Stark, 2009b, 2020]. They have
tuning parameters λi called bets, which play an important role in determining the
efficiency of the RLA. Previous papers using BSMs for RLAs have focused on setting
λi for efficient ballot-polling audits; betting for comparison audits has been treated
as essentially analogous [Waudby-Smith et al., 2021, Stark, 2023]. However, as we
will show, comparison audits are efficient with much larger bets than are optimal for
ballot-polling.

This paper details how to set BSM bets λi for efficient ballot-level comparison
audits, focusing on audits of plurality contests. Section 5.2 reviews SHANGRLA
notation and the use of BSMs as risk-measuring functions. Section 5.3 derives optimal
“oracle” bets under the Kelly criterion [Kelly Jr., 1956], which assumes knowledge of
true error rates in the CVRs. In reality, these error rates are unknown, but the oracle
bets are useful in constructing practical betting strategies, which plug in estimates of
the true rates. Section 5.4 presents three such strategies: guessing the error rates
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a priori, using past data to estimate the rates adaptively, or positing a distribution
of likely rates and diversifying bets over that distribution. Section 5.5 presents two
simulation studies: one comparing the oracle strategy derived in Waudby-Smith et al.
[2021] for ballot-polling against our comparison-optimal strategy, and one comparing
practical strategies against one another. Section 5.6 sketches some extensions to
betting while sampling without replacement and to social choice functions beyond
plurality. Section 5.7 concludes with a brief discussion and recommendations for
practice.

5.2 Notation

5.2.1 Population and parameters

Following SHANGRLA [Stark, 2020] notation, let {ci}Ni=1 denote the CVRs, {bi}Ni=1

denote the true ballots, and A() be an assorter mapping CVRs or ballots into
[0, u]. We will assume we are auditing a plurality contest, in which case u := 1,
A(bi) := 1 if the ballot shows a vote for the reported winner, A(bi) := 1/2 if it
shows an undervote or vote for a candidate not currently under audit, and A(bi) := 0
if it shows a vote for the reported loser. The overstatement for ballot i is ωi :=
A(ci) − A(bi). Āc := N−1

∑N
i=1A(ci) is the average of the assorters computed on

the CVRs. Finally, the comparison audit population is comprised of overstatement
assorters xi := (1 − ωi)/(2 − v), where v := 2Āc − 1 is the diluted margin: the
difference in votes for the reported winner and reported loser, divided by the total
number of ballots cast.

Let x̄ := N−1
∑N

i=1 xi be the average of the comparison audit population and

Āb := N−1
∑N

i=1A(bi) be the average of the assorters applied to ballots. Section 3.2
of Stark [2020] establishes the relations

reported outcome is correct ⇐⇒ Āb > 1/2 ⇐⇒ x̄ > 1/2.

As a result, rejecting the complementary null

H0 : x̄ ≤ 1/2 (5.1)

at risk limit α provides strong evidence that the reported outcome is correct.
Throughout this paper, we ignore understatement errors—those in favor of the

reported winner with ωi < 0. Understatements help the audit end sooner, but will
generally have little effect on the optimal bets. We comment on this choice further
in Section 5.7. With this simplification, overstatement assorters comprise a list of
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numbers {xi}Ni=1 ∈ {0, a/2, a}N where a := (2− v)−1 > 1/2 corresponds to the value
on correct CVRs, a/2 corresponds to 1-vote overstatements, and 0 corresponds to
2-vote overstatements. This population is parameterized by 3 fractions:

• p0 := #{xi = a}/N is the rate of correct CVRs.

• p1 := #{xi = a/2}/N is the rate of 1-vote overstatements.

• p2 := #{xi = 0}/N is the rate of 2-vote overstatements.

The population mean can be written x̄ = ap0 + (a/2)p1.

5.2.2 Audit data

Ballots may be drawn by sequential simple random sampling with or without replace-
ment, but we first focus on the with replacement case for simplicity. Implications for
sampling without replacement are discussed in Section 5.6. We have a sequence of

samples X1, X2, . . .
iid∼ F , where F is a three-point distribution with mass p0 at a, p1

at a/2, and p2 at 0.

5.2.3 Risk measurement via betting supermartingales

Let Ti := 1 + λi(Xi − 1/2) where λi ∈ [0, 2] is a freely-chosen tuning parameter that
may depend on past samples X1, . . . , Xi−1. Define M0 := 1 and

Mt :=
t∏

i=1

Ti =
t∏

i=1

[1 + λi(Xi − 1/2)].

Mt is a betting supermartingale (BSM) for any bets λi ∈ [0, 2] whenever (5.1) holds
because

x̄ ≤ 1/2 =⇒ E[Xi | Xi−1, ..., X1] ≤ 1/2 =⇒ E[Mt | Xt−1, . . . , X1] ≤ Mt−1

where the first implication comes from simple random sampling with replacement.
Intuitively, Mt can be thought of as the wealth accumulated by a gambler who

starts with 1 unit of capital at time t = 0 and at time t = i stakes proportion λi of
their current capital on observing Xi > 1/2. If λi = 0, they stake nothing and can
neither gain nor lose capital on round i. If λi = 2, they stake everything and can lose
all their capital if Xi = 0. For any bets that depend only on past data, the gambler
cannot expect to accumulate wealth by betting that Xi > 1/2 when (5.1) is true.
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Ville’s inequality [Ville, 1939] then guarantees that it is unlikely that the gambler’s
wealth ever becomes large:

P(∃ t ∈ N : Mt ≥ 1/α) ≤ α.

For example, when (5.1) holds, the probability that the gambler ever accumulates
more than 20 units of wealth is no more than 0.05.

As a matter of risk measurement, Ville’s inequality implies that the truncated
reciprocal Pt := min{1, 1/Mt} is a sequentially-valid P -value for the complementary
null in the sense that P(∃ t ∈ N : Pt ≤ α) ≤ α when x̄ ≤ 1/2 for any risk limit
α ∈ (0, 1). More details on BSMs are given in Waudby-Smith and Ramdas [2023],
Waudby-Smith et al. [2021] and Stark [2023]. To obtain an efficient RLA, we would
like to make Mt as large as possible (Pt as small as possible) when x̄ > 1/2.

5.3 Oracle betting

We begin by deriving “oracle” bets by assuming we can access the true error rates p0,
p1, and p2 and optimizing the expected growth of the logarithm of the martingale
under these rates. We call these oracle bets because they are exactly optimal for this
objective, but depend on unknown parameters and hence cannot be implemented
in practice. However, oracle bets can be approximated to run efficient comparison
audits with the practical betting strategies discussed in Section 5.4.

5.3.1 Error-free CVRs

In the simple case where there is no error at all in the CVRs, p0 = 1 and xi = x̄ = a
for all i. When computing the BSM, it doesn’t matter which ballot is drawn:

Ti = 1 + λi(a− 1/2) and Mt = [1 + λi(a− 1/2)]t.

Because (a− 1/2) > 0, the best strategy is to bet as aggressively as possible, setting
λi := 2. Under such a bet, Mt = (2a)t. Setting this equal to 1/α yields the stopping
time:

tstop =
log(1/α)

log(2a)
=

− log(α)

log(2)− log(2− v)
(5.2)

where v is the diluted margin. Ignoring understatement errors, (5.2) is a deterministic
lower bound on the sample size of a comparison audit when risk is measured by a
BSM. Figure 5.1 plots this as a function of the diluted margin and risk limit.
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Figure 5.1: Deterministic sample sizes (y-axis; log10 scale) for a comparison audit of a
plurality contest with various diluted margins (x-axis) and risk limits (colors), with no error
in CVRs and a maximal bet of λ = 2 on every draw.

5.3.2 Betting with CVR Error

Usually CVRs will have at least some errors, and maximal bets are far from ideal
when they do. We now show why this is true before deriving an alternative oracle
strategy. In general,

Ti =


1 + λi(a− 1/2) with probability p0

1 + λi(a/2− 1/2) with probability p1

1− λi/2 with probability p2.

If we fix λi := λ and try to maximize Mn by maximizing the expected value of each
Ti, we find EF [Ti] = p0[1 + λ(a− 1/2)] + p1[1− λ(1− a)/2] + p2[1− λ/2] = 1+ (ap0 +
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a
2
p1 − 1/2)λ. This is linear with a positive coefficient on λ, since ap0 +

a
2
p1 = x̄ > 1/2

under any alternative. Therefore, the best strategy seems to be to set λ := 2 as
before. However, unless p2 = 0, Mt will eventually “go broke” with probability 1:
Ti = 0 if a 0 is drawn while the bet is maximal. Then Mt = 0 for all future times and
we cannot reject at any risk limit α. In this case, we say the audit stalls: it must
proceed to a full hand count to confirm the reported winner really won.

To avoid stalls we follow the approach of Kelly Jr. [1956], instead maximizing the
expected value of log Ti. The derivative is

d

dλ
EF [log Ti] =

(a− 1/2)p0
1 + λ(a− 1/2)

+
(a− 1)p1

2− λ(1− a)
+

p2
2− λ

. (5.3)

The oracle bet λ∗ can be found by setting this equal to 0 and solving for λ using a
root-finding algorithm.

Alternatively, we can find a simple analytical solution by assuming no 1-vote
overstatements and setting p1 = 0. In this case, solving for λ yields:

λ∗ =
2− 4ap0
1− 2a

(5.4)

Note that λ∗ > 0 since ap0 > 1/2 under the alternative, and λ∗ < 2 since a > 1/2.

5.3.3 Relation to ALPHA

There is a one-to-one correspondence between oracle bets for the BSM Mt and oracle
bets for the ALPHA supermartingale, which reparameterizes Mt. Note that the
list of overstatement assorters {xi}Ni=1 is upper bounded by the value of a 2-vote
understatement, u := 2/(2 − v) = 2a. Section 2.3 of Stark [2023] shows that the
equivalently optimal η for use with ALPHA is:

η∗ := 1/2(1 + λ∗(u− 1/2)) =
1− 2ap0
2− 4a

+ 2ap0 − 1/2.

Naturally, when p0 = 1, η∗ = 2a = u, which is the maximum value allowed for η∗

while maintaining ALPHA as a non-negative supermartingale.

5.4 Betting in Practice

In practice, we have to estimate the unknown overstatement rates to set bets. We pro-
pose and evaluate three strategies: fixed, adaptive, and diversified betting. Through-
out this section, we use p̃k to denote a generic estimate of pk for k ∈ {1, 2}. When the
estimate adapts in time, we use the double subscript p̃ki. In all cases, the estimated
overstatement rates are ultimately plugged into (5.3) to estimate the optimal bets.
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5.4.1 Fixed betting

The simplest approach is to make a fixed, a priori guess at pk using historic data,
machine specifications, or other information. For example, p̃1 := 0.1% and p̃2 := 0.01%
will prevent stalls and may perform reasonably well when there are few overstatement
error. This strategy is analagous to apKelly for ballot-polling, which fixes λi based on
an a priori estimate of the population assorter mean (typically derived from reported
tallies). However, Waudby-Smith et al. [2021] and Stark [2023] show that apKelly
can become quite poor when the estimate is far from correct. This frailty motivates
more sophisticated strategies.

5.4.2 Adaptive betting

In a BSM, the bets need not be fixed and λi can be a predictable function of the data
X1, . . . , Xi−1, since we condition on these data when establishing Mt as a martingale.
Intuitively, the gambler can adapt their bets based on outcomes of previous rounds and,
if the null is true, still cannot expect to gain capital in the next round. This fact allows
us to estimate error rates based on past samples in addition to a priori considerations
when setting λi. We adapt the “truncated-shrinkage” estimator introduced in Section
2.5.2 of Stark [2023] to rate estimation. For k ∈ {1, 2} we set a value dk ≥ 0, capturing
the degree of shrinkage to the a priori estimate p̃k, and a truncation factor ϵk ≥ 0,
enforcing a lower bound on the estimated rate. Let p̂ki be the sample rates at time i,
e.g., p̂2i = i−1

∑i
j=1 1{Xj = 0}. Then the truncated-shrinkage estimate is:

p̃ki :=
dkp̃k + ip̂k(i−1)

dk + i− 1
∨ ϵk (5.5)

The rates are allowed to learn from past data in the current audit through p̂k(i−1),
while being anchored to the a priori estimate p̃k. The tuning parameter dk reflects
the degree of confidence in the a priori rate, with large dk anchoring more strongly
to p̃k. Finally, ϵk should generally be set above 0 to prevent stalls.

At each time i, the truncated-shrinkage estimated rate p̃ki can be plugged into
(5.3) and set equal to 0 to obtain the bet λi. Fixing p̃1i := 0 allows us to use (5.4), in
which case λi = (2− 4a(1− p̃2i))/(1− 2a).
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5.4.3 Diversified betting

A weighted average of BSMs:

B∑
b=1

θb

t∏
i=1

[1 + λb(Xi − 1/2)],

where θb ≥ 0 and
∑B

b=1 θb = 1, is itself a BSM. The intuition is that our initial capital
is split up into B pots, each with θb units of wealth. We then bet λb on each pot at
each time, and take the sum of the winnings across all pots as our total wealth at
time t. Waudby-Smith and Ramdas [2023] construct the “grid Kelly” martingale by
defining λb along an equally spaced grid on [0, 2] and giving each the weight θb = 1/B.
Waudby-Smith et al. [2021] refine this approach into “square Kelly” for ballot-polling
RLAs by placing more weight at close margins.

We adapt these ideas to the comparison audit context by parameterizing a discrete
grid of weights for p1 and p2. We first note that (p1, p2) are jointly constrained by
the hyperplane ap2 + (a/2)p1 ≤ a− 1/2 under the alternative, since otherwise there
is enough error to overturn the reported result. A joint grid for (p1, p2) can be set up
by separately constructing two equally-spaced grids from 0 to v/k, computing the
Cartesian product of the grids, and removing points where ap2 + (a/2)p1 ≥ a− 1/2.
Once a suitable grid has been constructed, the weights at each point can be flexibly
defined to reflect the suspected rates of overstatements. At each point (p1, p2), λb is
computed by passing the rates (p1, p2) into (5.3) and solving numerically; the weight
for λb is θb. Thus a distribution of weights on the grid of overstatement rates induces
a distribution on the bets.

Figure 5.2 illustrates two possible weighted grids for a diluted margin of v = 10%,
and their induced distribution on bets {λb}Bb=1. In the top row, the weights are
uniform with θb = 1/B. In the bottom row, the weights follow a bivariate normal
density with mean vector and covariance matrix respectively specified to capture
a prior guess at (p1, p2) along with the uncertainty in that guess. The density is
truncated, discretized, and rescaled so that the weights sum to unity.

5.5 Numerical evaluations

We conducted two simulation studies. The first evaluated stopping times for bets
using the oracle comparison bets in (5.4) against the oracle value of apKelly from
Waudby-Smith et al. [2021]. The second compared stopping times for oracle bets and
the 3 practical strategies we proposed in Section 5.4. All simulations were run in R
(version 4.1.2).
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5.5.1 Oracle simulations

We evaluated stopping times of oracle bets at multiple diluted margins and 2-vote
overstatement rates when sampling with replacement from a population of size
N = 10000. At each combination of diluted margin v ∈ {0.05, 0.10, 0.20} and 2-vote
overstatement rates p2 ∈ {1.5%, 1%, 0.5%, 0.1%, 0%} we ran 400 simulated comparison
audits. We set p1 = 0: no 1-vote overstatements.

The bets corresponded to oracle bets λ∗ in Equation (5.4) or to λapK := 4x̄−2, the
“oracle” value of the apKelly strategy in Section 3.1 of Waudby-Smith et al. [2021]
and Section 2.5 of Stark [2023]1, which were originally derived for ballot-polling. λapK

uses the true population mean instead of an estimate based on reported tallies. In
each scenario, we estimated the expected and 90th percentile workload from the
empirical mean and 0.9 quantile of the stopping times at risk limit α = 5% over the
400 simulations. To compare the betting strategies, we computed the ratios of the
expected stopping time for λ∗ over λapK in each scenario. We then took the geometric
mean across scenarios as the average reduction in expected workload.

Table 5.1 presents the mean and 90th percentile (in parentheses) stopping times
over the 400 simulations. BSM comparison audits with λ∗ typically require counting
fewer than 1000 ballots, and fewer than 100 for wide margins without CVR errors.
On average, betting by λ∗ provides an enormous advantage over λapK: the geometric
mean workload ratio is 0.072, a 93% reduction.

5.5.2 Practical simulations

We evaluated oracle betting, fixed a priori betting, adaptive betting, and diversified
betting in simulated comparison audits with N = 20000 ballots, a diluted margin
of 5%, 1-vote overstatement rates p1 ∈ {0.1%, 1%}, and 2-vote overstatement rates
p2 ∈ {0.01%, 0.1%, 1%}.

Oracle bets were set using the true values of p1 and p2 in each scenario. The
other methods used prior guesses p̃1 ∈ {0.1%, 1%} and p̃2 ∈ {0.01%, 0.1%} as tuning
parameters in different ways. The fixed method derived the optimal bet by plugging in
p̃k as a fixed value. The adaptive method anchored the truncated-shrinkage estimate
p̃ki displayed in equation (5.5) to p̃k, but updated using past data in the sample. The
tuning parameters were d1 := 100, d2 := 1000, ϵ1 = ϵ2 := 0.001%. The larger value
for d2 reflects the fact that very low rates (expected for 2-vote overstatements) are
harder to estimate empirically, so the prior should play a larger role. The diversified
method used p̃k to set the mode of a mixing distribution, as in the lower panels of

1λapK implies a bet of ηi := x̄ in the ALPHA parameterization.
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Stopping times
DM 2-vote OR apKelly (λapK) Oracle (λ∗)
5% 1.5% 10000 (10000) 1283 (2398)

1.0% 10000 (10000) 482 (813)
0.5% 7154 (7516) 242 (389)
0.1% 4946 (5072) 146 (257)
0.0% 4559 (4559) 119 (119)

10% 1.5% 2233 (2464) 177 (323)
1.0% 1705 (1844) 131 (233)
0.5% 1346 (1429) 83 (116)
0.1% 1130 (1167) 65 (60)
0.0% 1083 (1083) 59 (59)

20% 1.5% 339 (371) 52 (78)
1.0% 304 (335) 42 (57)
0.5% 272 (289) 35 (61)
0.5% 249 (258) 30 (29)
0.0% 245 (245) 29 (29)

Table 5.1: Mean (90th percentile) stopping times of 400 simulated comparison audits run
with oracle bets (λ∗) or apKelly bets (λapK) under a range of diluted margins and 2-vote
overstatement rates. DM = diluted margin; OR = overstatement rate.

Figure 5.2. Specifically, the mixing distribution was a discretized, truncated, bivariate
normal with mean vector (p̃1, p̃2), standard deviation (σ1, σ2) := (0.5%, 0.25%), and
correlation ρ := 0.25. The fact that σ2 < σ1 reflects more prior confidence that 2-vote
overstatement rates will be concentrated near their prior mean, while ρ > 0 encodes
a prior suspicion that overstatement rates are correlated: they are more likely to be
both high or both low. After setting the weights at each grid point according to this
normal density, they were rescaled to sum to unity.

We simulated 400 audits under sampling with replacement for each scenario.
The stopping times were capped at 20000, the size of the population, even if the
audit hadn’t stopped by that point. We estimated the expected value and 90th
percentile of the stopping times for each method by the empirical mean and 0.9
quantile over the 400 simulations. We computed the geometric mean ratio of the
expected stopping times of each method over that of the oracle strategy as a summary
of their performance across scenarios.

Table 5.2 presents results. With few 2-vote overstatements, all strategies performed
relatively well and the audits concluded quickly. When the priors substantially
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underestimated the true overstatement rates, the performance of the audits degraded
significantly compared to the oracle bets. This was especially true for the fixed
strategy. For example, when (p1, p2) = (0.1%, 1%) and p̃2 = 0.01%, the expected
number of ballots for the fixed strategy to stop was more than 20 times that of
the oracle method. On the other hand, the adaptive and diversified strategies were
much more robust to a poor prior estimate. In particular, the expected stopping
time of the diversified method was never more than 3 worse than that of the oracle
strategy, and the adaptive method was never more than 4 times worse. The geometric
mean workload ratios of each strategy over the oracle strategy were 2.4 for fixed, 1.3
for adaptive, and 1.2 for diversified. The diversified method was the best practical
method on average across scenarios.

5.6 Extensions

5.6.1 Betting while sampling without replacement

When sampling without replacement, the distribution of Xi depends on past data
X1, ..., Xi−1. Naively updating an a priori bet to reflect what we know has been
sampled may actually harm the efficiency of the audit.

Specifically, recall that, for k ∈ {1, 2}, p̂ki denotes the sample proportion of the
overstatement rate at time i. If we fix initial rate estimates to p̃k, then the updated
estimate at time i given that we have removed ip̂k(i−1) would be

p̃ki =
Np̃k − ip̂k(i−1)

N − i+ 1
for k ∈ {1, 2}.

This can be plugged into (5.3) to estimate the optimal λ∗
i for each draw. Fixing

p̃1i = 0 and using equation (5.4) yields the closed form optimum:

λ∗
i =

2− 4ap̃2i
1− 2a

∧ 2,

where we have truncated at 2 to guarantee that λ∗
i is even a valid bet. This is

necessary because the number of 2-vote overstatements in the sample can exceed
the number Np̃2 hypothesized to be in the entire population. If this occurs, the
audit will stall if even one more 2-vote overstatement is discovered. More generally,
this strategy has the counterintuitive (and counterproductive) property of betting
more aggressively as more overstatements are discovered. To avoid this pitfall we
suggest using the betting strategies we derived earlier under IID sampling, even when
sampling without replacement.
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5.6.2 Other social choice functions

SHANGRLA [Stark, 2020] encompasses a broad range of social choice functions
beyond plurality, all of which are amenable to comparison audits. Assorters for
approval voting and proportional representation are identical to plurality assorters,
so no modification to the optimal bets is required. Ranked-choice voting can also be
reduced to auditing a collection of plurality assertions, though this reduction may
not be the most efficient possible [Blom et al., 2019]. On the other hand, some social
choice functions, including weighted additive and supermajority, require different
assorters and will have different optimal bets.

In a supermajority contest, the diluted margin v is computed differently depending
on the fraction f ∈ (1/2, 1] required to win, as well as the proportion of votes for the
reported winner in the CVRs. In the population of overstatement assorters error-free
CVRs still appear as a = (2− v)−1, but 2-vote overstatements are (1− 1/(2f))a > 0
and 1-vote overstatements are (3/2−1/(2f))a. So that the population attains a lower
bound of 0, we can make the shift xi − (1 − 1/(2f))a and test against the shifted
mean 1/2− (1− 1/(2f))a. Because there are only 3 points of support, the derivations
in Section 5.3.2 can be repeated, yielding a new solution for λ∗ in terms of the rates
and the shifted mean.

Weighted additive schemes apply an affine transformation to ballot scores to
construct assorters. Because scores may be arbitrary non-negative numbers, there can
be more than 3 points of support for the overstatement assorters and the derivations
in Section 5.3.2 cannot be immediately adapted. If most CVRs are correct then most
values in the population will be above 1/2, suggesting that an aggressive betting
strategy with λ := 2− ϵ will be relatively efficient. Alternatively, a diversified strategy
weighted towards large values of λ ∈ (0, 2] can retain efficiency when there are in fact
high rates of error. It should also be possible to attain a more refined solution by
generalizing the optimization strategy in Section 5.3.2 to populations with more than
3 points of support.

5.6.3 Batch-level comparison audits

Batch-level comparison audits check for error in totals across batches of ballots, and
are applicable in different situations than ballot-level comparisons, since they do not
require CVRs. SHANGRLA-style overstatement assorters for batch-level comparison
audits are derived in Stark [2023]. These assorters generally take a wide range of
values within [0, u]. Because they are not limited to a few points of support, there is
not a simple optimal betting strategy. However, assuming there is relatively little
error in the reported batch-level counts, will again place the majority of the assorter
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distribution above 1/2. This suggests using a relatively aggressive betting strategy,
placing more weight on bets near 2 (or near the assorter upper bound in the ALPHA
parameterization).

Stark [2023] evaluated various BSMs in simulations approximating batch-level
comparison audits, though the majority of mass was either at 1 or spread uniformly
on [0, 1], not at a value a ∈ (1/2, 1]. Nevertheless, in situations where most of the
mass was at 1, aggressive betting (η ≥ 0.9) was most efficient. Investigating efficient
betting strategies for batch-level comparison audits remains an important area for
future work.

5.7 Conclusions

We derived optimal bets for ballot-level comparison audits of plurality contests and
sketched some extensions to broader classes of comparison RLAs. The high-level
upshot is that comparison should use considerably more aggressive betting strategies
than polling in practice, a point made abundantly clear in our oracle simulations.
Our practical strategies approached the efficiency of oracle bets, except in cases where
p2 = 1%. Such a high rate of 2-vote overstatements is unlikely in practice, and would
generally imply something has gone terribly wrong: votes for the loser should not be
flipped to votes for the winner.

Future work should continue to flesh out efficient strategies for batch-level compari-
son, and explore the effects of understatement errors. We suspect that understatements
will have little effect on the optimal strategy. If anything, they imply bets should be
even more aggressive, but we already suggest placing most weight near the maximal
value of λi = 2, diversifying or thresholding to prevent stalls if 2-vote overstatements
are discovered. We hope our results will guide efficient real-world comparison RLAs,
and demonstrate the practicality of their routine implementation for trustworthy,
evidence-based elections.

Code

Code implementing our simulations and generating our figures and tables is available
on Github at https://github.com/spertus/comparison-RLA-betting.
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Figure 5.2: Plots showing two mixture distributions over overstatement rates (left column;
y-axis = 2-vote overstatment rate, x-axis = 1-vote overstatement rate; point size = mixture
weight) and their corresponding induced distributions over the bets (right column; x-axis
= bet, y-axis = density). The diluted margin of 10% constrains possible overstatement
rates. The upper row shows a uniform grid of weights over all overstatement rates (left
column) and its induced distribution on λ (right column). The bottom row plots discretized,
truncated, and rescaled bivariate normal weights with parameters (µ1, µ2) = (.01, .001),
(σ1, σ2) = (.02, .01), and ρ = 0.25 (left column) and its induced distribution on λ (right
column).
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True ORs Prior ORs Stopping Times
p2 p1 p̃2 p̃1 Oracle Fixed Adaptive Diversified

0.01% 0.1% 0.01% 0.1% 124 (147) 125 (119) 124 (147) 131 (152)
1% 124 (147) 125 (147) 125 (147) 131 (154)

0.1% 0.1% 125 (147) 129 (151) 131 (151) 133 (155)
1% 127 (147) 132 (153) 130 (152) 135 (157)

1% 0.01% 0.1% 174 (229) 167 (229) 166 (229) 177 (236)
1% 168 (229) 172 (229) 167 (229) 180 (235)

0.1% 0.1% 176 (229) 169 (232) 175 (262) 181 (262)
1% 159 (205) 174 (233) 180 (265) 184 (264)

0.1% 0.1% 0.01% 0.1% 146 (256) 153 (338) 159 (350) 149 (271)
1% 151 (256) 154 (174) 150 (147) 145 (154)

0.1% 0.1% 147 (256) 152 (256) 146 (182) 153 (259)
1% 149 (256) 151 (244) 147 (256) 152 (265)

1% 0.01% 0.1% 209 (351) 227 (420) 225 (460) 214 (400)
1% 200 (324) 240 (457) 232 (500) 211 (378)

0.1% 0.1% 204 (351) 208 (364) 210 (358) 208 (344)
1% 208 (324) 205 (324) 205 (341) 219 (371)

1% 0.1% 0.01% 0.1% 526 (996) 13654 (20000) 1581 (3517) 888 (2090)
1% 525 (984) 12685 (20000) 1585 (3731) 739 (1708)

0.1% 0.1% 528 (1032) 9589 (20000) 1112 (2710) 812 (1982)
1% 534 (985) 7247 (20000) 915 (2294) 686 (1586)

1% 0.01% 0.1% 999 (1908) 15205 (20000) 3855 (7811) 2637 (5873)
1% 1110 (2002) 15641 (20000) 3477 (7529) 1803 (4331)

0.1% 0.1% 1030 (1868) 13113 (20000) 2795 (5996) 2064 (4884)
1% 1127 (2256) 13094 (20000) 2437 (5452) 1604 (3758)

Table 5.2: Mean (90th percentile) stopping times over 400 simulated comparison audits
with diluted margin of v = 5% and varying overstatement rates at risk limit α = 5%. The
true overstatement rates are in the first two columns. The second two columns contain the
prior guesses of the true overstatement rates, used to set bets differently in each strategy
as described in Section 5.5.2. The oracle strategy uses the true rates to set the bets, so
all variation over (p̃1, p̃2) in the results for that strategy is Monte Carlo variation. Monte
Carlo variation also accounts for any differences in the fixed and oracle strategies when
(p̃1, p̃2) = (p1, p2), since the bets are identical. Note that some stopping time distributions
are highly skewed, e.g. the 90th percentile is lower than the mean for fixed bets with
(p̃1, p̃2) = (p1, p2) = (0.1%, 0.01%). OR = overstatement rate.
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Chapter 6

Stratified risk-limiting audits

6.1 Introduction

Most U.S. jurisdictions use computers to tabulate votes. Like all computers, vote
tabulators are vulnerable to bugs, human error, and deliberate malfeasance—a fact
that has been exploited (rhetorically, if not in reality) to undermine trust in U.S.
elections [Levine, 2020, Chaitlin, 2020, Kahn, 2020, Baker and Haberman, 2020].

To deserve public trust, elections must be trustworthy, despite relying on untrust-
worthy software, hardware, and people: they should provide convincing affirmative
evidence that the reported winners really won [Stark and Wagner, 2012, Appel et al.,
2020, Appel and Stark, 2020]. Risk-limiting audits (RLAs) are a useful tool for con-
ducting such evidence-based elections. RLAs have a specified maximum chance—the
risk limit α—of not correcting the reported outcome if it is wrong, and never change
the reported outcome if it is correct. Below we present methods to reduce the number
of ballots that must be manually inspected in an RLA when the reported outcomes
are correct, for stratified audit samples.

In a ballot-level comparison RLA, manual interpretations of the votes on randomly
sampled ballot cards are compared to their corresponding cast vote records (CVRs),
the system’s interpretation of the votes on those cards. In a ballot-polling RLA, votes
are read manually from randomly selected cards, but those votes are not compared to
the system’s interpretation of the cards. All else equal, ballot-level comparison RLAs
are more efficient than ballot-polling RLAs, but they require the voting system to
export CVRs in a way that the corresponding card can be uniquely identified. Not
all voting systems can.

Stratified random sampling can be mandatory or expedient in RLAs. Some
states’ laws require audit samples to be drawn independently across jurisdictions
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(e.g., California Election Code § 336.5 and § 15360), in which case the audit sample
for any contest that crosses jurisdictional boundaries is stratified. Stratifying on the
technology used to tabulate votes can increase efficiency by allowing hybrid audits
[Ottoboni et al., 2018, Howard et al., 2019], which use ballot-level comparison in
strata where the voting technology supports it and ballot-polling elsewhere. Another
reason to use stratification is to allow RLAs to start before all ballots have been
tabulated [Stark, 2019].

The next section briefly reviews prior work on stratified audits. Section 6.3
introduces notation and stratified risk measurement, then presents our improvements:
(i) sharper P -values from new risk-measuring functions; (ii) sequential stratified
sampling that adapts to the observed data in each stratum to increase efficiency; and
(iii) a computationally efficient method for an arbitrary number of strata. Section 6.4
evaluates the innovations using case studies and simulations. Section 6.5 discusses
the results and gives recommendations for practice.

6.2 Past Work

The first RLAs involved stratified batch comparison, using the maximum error across
strata and contests as the test statistic [Stark, 2008a,b, 2009a, Hall et al., 2009], a
rigorous but inefficient approach. Higgins et al. [2011] computed sharper P -values for
the same test statistic using dynamic programming. SUITE [Ottoboni et al., 2018,
Howard et al., 2019] uses union-intersection tests to represent the null hypothesis that
one or more reported winners actually lost as a union of intersections of hypotheses
about individual strata; it involves optimization problems that are hard to solve when
there are more than two strata.

More recently, SHANGRLA [Stark, 2020] has reduced RLAs to a canonical form:
testing whether the means of finite, bounded lists of numbers (representing ballot
cards) are all less than 1/2, which allows advances in statistical inference about
bounded populations to be applied directly to RLAs. Stark [2020] showed that
union-intersection tests can be used with SHANGRLA to allow any risk-measuring
function to be used in any stratum in stratified audits.

Stark [2023] provided a new approach to union-intersection tests using nonnegative
supermartingales (NNSMs): intersection supermartingales, which open the possibility
of reducing sample sizes by adaptive stratum selection (using the first t sampled
cards to select the stratum from which to draw the (t+ 1)th card). Stark [2023] does
not provide an algorithm for stratum selection or evaluate the performance of the
approach; this paper does both.
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6.3 Stratified audits

We shall formalize stratified audits using the SHANGRLA framework [Stark, 2020],
which unifies comparison and polling audits. We then show how to construct a
stratified comparison audit using SHANGRLA, how to measure the risk based on
a stratified sample, and how adaptive sequential stratified sampling can improve
efficiency.

6.3.1 Assorters and assertions

Ballot cards are denoted {bi}Ni=1. An assorter A assigns a number A(bi) ≡ xi ∈ [0, u]
to ballot card bi [Stark, 2020] and the value A(ci) to CVR i. The value an assorter
assigns to a card depends on the votes on the card, the social choice function, and
possibly on the machine interpretation of that card and others (for comparison audits).
Stark [2020] describes how to define a set of assorters for many social choice functions
(including majority, multiwinner majority, supermajority, Borda count, approval
voting, all scoring rules, D’Hondt, STAR-Voting, and IRV) such that the reported
winner(s) really won if the mean of every assorter in the set is greater than 1/2.
The claim that an assorter mean is > 1/2 is called an assertion. An RLA with risk
limit α confirms the outcome of a contest if it rejects the complementary null that
the assorter mean is ≤ 1/2 at significance level α for every assorter relevant to that
contest.

In a stratified audit, the population of ballot cards is partitioned into K disjoint
strata. Stratum k contains Nk ballot cards, so N =

∑
k Nk. The weight of stratum k

is wk := Nk/N ; the weight vector is w := [w1, ..., wK ]
T . For each assorter A there is

a set of assorter values {xi}Ni=1. Each assorter may have its own upper bound uk in
stratum k.1 The true mean of the assorter values in stratum k is µk; µ := [µ1, ..., µK ]

T .
The overall assorter mean is

µ :=
1

N

N∑
i=1

xi =
K∑
k=1

Nk

N
µk = wTµ.

Let θ = [θ1, ..., θK ]
T with 0 ≤ θk ≤ uk. A single intersection null is of the form µ ≤ θ,

i.e., ∩K
k=1{µk ≤ θk}. The union-intersection form of the complementary null that the

outcome is incorrect is:

H0 :
⋃

θ:wT θ≤ 1
2

K⋂
k=1

{µk ≤ θk}. (6.1)

1The notation we use does not allow u to vary by draw, but the theory in Stark [2023] permits it,
and it is useful for batch-comparison audits.
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From stratum k we have nk samples Xnk
k := {X1k, ..., Xnkk} drawn by simple

random sampling, with or without replacement, independently across strata. Sec-
tion 6.3.3 shows how to use single-stratum hypothesis tests (of the the null µk ≤ θk)
to test (6.1). First, we show how to write stratified comparison audits in this form.

6.3.2 Stratified comparison audits

In SHANGRLA, comparison audits involve translating the original assertions about
the true votes into assertions about the reported results and discrepancies between
the true votes and the machine’s record of the votes [Stark, 2020, Section 3.2]. For
each assertion, the corresponding overstatement assorter assigns ballot card bi a
bounded, nonnegative number that depends on the votes on that card, that card’s
CVR, and the reported results. The original assertion is true if the average of the
overstatement assorter values is greater than 1/2.

We now show that for stratified audits, the math is simpler if, as before, we assign
a nonnegative number to each card that depends on the votes and reported votes,
but instead of comparing the average of the resulting list to 1/2, we compare it to a
threshold that depends on the hypothesized stratum mean θk.

Let uA
k be the upper bound on the original assorter for stratum k and ωik :=

A(cik)−A(bik) ∈ [−uA
k , u

A
k ] be the overstatement for the ith card in stratum k, where

A(cik) is the value of the assorter applied to the CVR and A(bik) is the value of the
assorter for the true votes on that card. Let Āb

k, Ā
c
k, and w̄k = Āc

k − Āb
k be the true

assorter mean, reported assorter mean, and average overstatement, all for stratum k.
For a particular θ, the intersection null claims that in stratum k, Āb

k ≤ θk. Adding
uA
k − Āc

k to both sides of the inequality yields

uA
k − ω̄k ≤ θk + uA

k − Āc
k.

Letting uk := 2uA
k , take Bik := uA

k −ωik ∈ [0, uk] and B̄k := 1
Nk

∑Nk

i=1Bik. Then {Bik}
is a bounded list of nonnegative numbers, and the assertion in stratum k is true if
B̄k > βk := θk + uA

k − Āc
k, where all terms on the right are known. Testing whether

B̄ ≤ βk is the canonical problem solved by ALPHA [Stark, 2023]. The intersection
null can be written

B̄k ≤ βk for all k ∈ {1, . . . , K}.

Define u := [u1, . . . , uK ]
T . As before, we can reject the complementary null if we can

reject all intersection nulls θ for which 0 ≤ θ ≤ u and wTθ ≤ 1/2.
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6.3.3 Union-intersection tests

A union-intersection test for (6.1) combines evidence across strata to see whether any
intersection null in the union is plausible given the data, that is, to check whether
the P -value of any intersection null in the union is greater than the risk limit.

Consider a fixed vector θ of within-stratum nulls. Let P (θ) be a valid P -value for
the intersection null µ ≤ θ. Many functions can be used to construct P (θ) from tests
in individual strata; two are presented below. We can reject the union-intersection
null (6.1) if we can reject the intersection null for all feasible θ in the half-space
wTθ ≤ 1/2. Equivalently, P (θ) maximized over feasible θ is a P -value for (6.1):

P ∗ := max
θ

{P (θ) : 0 ≤ θ ≤ u and wTθ ≤ 1/2}.

This method is fully general in that it can construct a valid P -value for (6.1) from
stratified samples and any mix of risk-measuring functions that are individually valid
under simple random sampling. However, the tractability of the optimization problem
depends on the within-stratum risk-measuring functions and the form of P used to
pool risk. So does the efficiency of the audit.

We next give two valid combining rules P (θ). Section 6.3.6presents some choices
for within-stratum risk measurement to construct P (θ).

6.3.4 Combining Functions

Ottoboni et al. [2018] and Stark [2020] calculate P for the intersection null using
Fisher’s combining function. Let pk(θk) be a P -value for the single-stratum null
H0k : µk ≤ θk. Define the pooling function

PF (θ) := 1− χ2
2K

(
−2

K∑
k=1

log pk(θk)

)
,

where χ2
2K is the CDF of the chi-squared distribution with 2K degrees of freedom. The

term inside the CDF, −2
∑K

k=1 log pk(θk), is Fisher’s combining function2. Because
samples are independent across strata, {pk(θk)}Kk=1 are independent random variables,
so Fisher’s combining function is dominated by the chi-squared distribution with
2K degrees of freedom [Ottoboni et al., 2018]. The maximum over θ, P ∗

F , is a valid
P -value for (6.1).

2Other combining functions could be used, including Liptak’s or Tippett’s. See Chapter 4 of
Pesarin and Salmaso [2010a]
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6.3.5 Intersection supermartingales

Stark [2023] derives a simple form for the P -value for an intersection null when
supermartingales are used as test statistics within strata. Let Mk

nk
(θk) be a super-

martingale constructed from nk samples drawn from stratum k when the null µk ≤ θk
is true. Then the product of these supermartingales is also a supermartingale under
the intersection null, so its reciprocal (truncated above at 1) is a valid P -value [Stark,
2023, Waudby-Smith et al., 2021]:

PM(θ) := 1 ∧
K∏
k=1

Mk
nk
(θk)

−1.

Maximizing PM (θ) (equivalently, minimizing the intersection supermartingale) yields
P ∗
M , a valid P -value for (6.1).

6.3.6 Within-stratum P -values

The class of within-stratum P -values that can be used to construct PF is very large,
but PM is limited to functions that are supermartingales under the null. Possibilities
include:

• SUITE, which computes P ∗
F for two-stratum hybrid audits. The P -value in

the CVR stratum uses the MACRO test statistic [Stark, 2009c]; the P -value
in the no-CVR stratum takes a maximum over many values of Wald’s SPRT
indexed by a nuisance parameter representing the number of non-votes in the
stratum. The maximations in MACRO and over a nuisance parameter in the
SPRT make SUITE less efficient than newer methods based on SHANGRLA
[Stark, 2020].

• ALPHA, which constructs a betting supermartingale as in Waudby-Smith
and Ramdas [2023], but with an alternate parameterization [Stark, 2023]. Such
methods are among the most efficient for RLAs [Waudby-Smith et al., 2021,
Stark, 2023], but the efficiency depends on how the tuning parameter τik is
chosen. Stark [2023] offers a sensible strategy based on setting τik to a stabilized
estimate of the true mean µk. We implement that approach and a modification
that is more efficient for comparison audits. Both P ∗

M and P ∗
F can be computed

from stratum-wise ALPHA supermartingales. However, finding the maximum
P -value over the union is prohibitively slow when K > 2.
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• Empirical Bernstein (EB), which is a supermartingale presented in Howard
et al. [2021] and Waudby-Smith and Ramdas [2023]. Although they are generally
not as efficient as ALPHA and other betting supermartingales [Waudby-Smith
and Ramdas, 2023], EB supermartingales have an exponential analytical form
that makes logPM(θ) or logPF (θ) linear or piecewise linear in θ. Hence, P ∗

M

and P ∗
F can be computed quickly for large K by solving a linear program.

We compare the efficiency of these risk-measuring functions in Sections 6.4.1 and
6.4.2.

6.3.7 Sequential stratum selection

The use of sequential sampling in combination with stratification presents a new
possibility for reducing workload: sample more from strata that are providing evidence
against the intersection null and less from strata that are not helping. To set the
stage, suppose we are conducting a ballot-polling audit with two strata of equal size
and testing the intersection null θ = [0.25, 0.75]T . We have drawn 50 ballot cards
from each stratum and found sample assorter means of [0.5, 0.6]T . Given the data, it
seems plausible that drawing more samples from the first stratum will strengthen the
evidence that µ1 > 0.25, but additional sampling from the second stratum might not
provide evidence that µ2 > 0.75: to reject the intersection null, it might help to draw
disproportionately from the first stratum. Perhaps suprisingly, such adaptive sampling
yields valid inferences when the P -value is constructed from supermartingales and
the stratum selection function depends only on past data. We now sketch why this is
true.

For t ∈ N and a particular vector of hypothesized stratum means θ, let

κt(θ) ∈ {1, ..., K}

denote the stratum from which the t-th sample was drawn for testing the hypothesis
µ ≤ θ. We call κ(θ) := (κt(θ))t∈N the stratum selector for null θ. Crucially, κ(θ) is
a predictable sequence with respect to (Xt)t∈N in the sense that κt(θ) can depend on
X t−1 := {X1, . . . , Xt−1} but not on Xi for i ≥ t; it could be deterministic given X t−1

or may also depend on auxiliary randomness.
For example, a stratum selector could ignore past data and select strata in a

deterministic round-robin sequence or at random with probability proportional to
stratum size. Alternatively, a rule might select strata adaptively, for instance picking
a stratum at random with probability proportional to the current value of each
within-stratum supermartingale, so that strata with larger Mk

tk
(θk) are more likely to
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be chosen—an “exploration–exploitation” strategy. In what follows we suppress the
dependence on θ except when it is explicitly required for clarity.

Now, let Mκ
t (θ) :=

∏t
i=0 Zi be the test statistic for testing the null hypothesis that

the vector of stratumwise means is less than or equal to θ. This is a supermartingale
if the individual terms Zi satisfy a simple condition. Let Z0 = 1 and Zi ≥ 0 for all i.
If

Eθ[Zt|X t−1] ≤ 1, (6.2)

then (Mκ
t (θ))t∈N0 is a nonnegative supermartingale starting at 1 under the null. By

Ville’s inequality [Ville, 1939], the thresholded inverse (1∧Mκ
t (θ)

−1)t∈N0 is an anytime
P -value sequence when µ ≤ θ.

Condition (6.2) holds if the Zi are terms extracted from a set of within-stratum
supermartingales using a predictable stratum selector: Let

νκ
t := #{i ≤ t : κi = κt} (6.3)

be the number of draws from stratum k as of time t. Suppose that for k ∈ {1, . . . , K},
Mk

t (θk) :=
∏t

i=1 Y
k
i (θk) is a nonnegative supermartingale starting at 1 when Xik is

the ith draw from stratum k and the kth stratum mean is µk ≤ θk. Then if

Zi := Y κi
νκi
(θκi

), (6.4)

condition (6.2) holds and the interleaved test statistic Mκ
t (θ) is an intersection super-

martingale under the null. We compare two stratum selection rules in Section 6.4.1.

6.4 Evaluations

6.4.1 Combination and allocation rules

We simulated a variety of two-stratum ballot-level comparison audits at risk limit
α = 5%, with assorters defined as in Section 6.3.2. The strata each contained
Nk = 1000 ballot cards, all with valid votes. Cards were sampled without replacement.
The stratum-wise true margins were [0%, 20%], [0%, 10%] or [0%, 2%], corresponding
to global margins of 10%, 5%, and 1%, respectively. Stratum-wise reported margins
were also [0%, 20%], [0%, 10%] or [0%, 2%], so error was always confined to the
second stratum. Each reported margin was audited against each true margin in 300
simulations. Risk was measured by ALPHA or EB combined either as intersection
supermartingales (P ∗

M) or with Fisher’s combining function (P ∗
F ), with one of two

stratum selectors: proportional allocation or lower-sided testing.
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In proportional allocation, the number of samples from each stratum is in propor-
tion to the number of cards in the stratum. Allocation by lower-sided testing involves
testing the null µk ≥ θk sequentially at level 5% using the same supermartingale
(ALPHA or EB) used to test the main (upper-sided) hypothesis of interest. This
allocation rule ignores samples from a given stratum once the lower-sided hypothesis
test rejects, since there is strong evidence that the null is true in that stratum. This
“hard stop” algorithm is unlikely to be optimal, but it leads to a computationally
efficient implementation and illustrates the potential improvement in workload from
adaptive stratum selection.

Tuning parameters were chosen as follows. ALPHA supermartingales were specified
either with τik as described in Stark [2023, Section 2.5.2] (ALPHA-ST, “shrink-
truncate”) or with a strategy that biases τik towards uk: (ALPHA-UB, “upward
bias”). The ALPHA-UB strategy helps in comparison audits because the distribution
of assorter values consists of a point mass at uk

A = uk/2 and typically small masses
(with weight equal to the overstatement rates) at 0 and another small value. This
concentration of mass makes it advantageous to bet more aggressively that the next
draw will be above the null mean; that amounts to biasing τik towards the upper
bound uk. Before running EB, the population and null were transformed to [0,1] by
dividing by uk. The EB supermartingale parameters λik were then specified following
the “predictable mixture” strategy [Waudby-Smith and Ramdas, 2023, Section 3.2],
truncated to be below 0.75. Appendix B.1 gives more details of the ALPHA-ST and
ALPHA-UB strategies and the computations.

Sample size distributions for some combinations of reported and true margins are
plotted in Figure 6.1 as (simulated) probabilities of stopping at or before a given
sample size. Table 6.1 gives estimated expected and 90th percentile sample sizes for
each scenario and method. Table 6.2 lists aggregate scores, computed by finding the
ratio of the workload for each method over the smallest workload in each scenario,
then averaging over scenarios by taking the geometric mean of these ratios.

Intersection supermartingales tend to dominate Fisher pooling unless the stratum
selector is chosen poorly (e.g., the bottom-right panel of Figure 6.1 and the last row
of Table 6.2). Stratum selection with the lower-sided testing procedure is about as
efficient as proportional allocation for the ALPHA supermartingales, but far more
efficient than proportional allocation for EB. The biggest impact of the allocation
rule occurred for EB combined by intersection supermartingales when the reported
margin was 0.01 and the true margin was 0.1: proportional allocation produced
an expected workload of 752 cards, while lower-sided testing produced an expected
workload of 271 cards—a 74% reduction. Table 6.2 shows that ALPHA-UB with
intersection supermartingale combining and lower-sided testing is the best method
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overall; ALPHA-UB with intersection combining and proportional allocation is a
close second; EB with intersection combining and lower-sided testing is also relatively
sharp; ALPHA-ST with Fisher combining is least efficient.

We also ran simulations at risk limits 1% and 10%, which did not change the
relative performance of the methods. However, compared to a 5% risk limit, a 10%
risk limit requires counting about 17% fewer cards and a 1% risk limit requires about
38% more, on average across scenarios and methods.

6.4.2 Comparison to SUITE

SUITE was used in a pilot RLA of the 2018 gubernatorial election in Michigan [Howard
et al., 2019]. Three jurisdictions—Kalamazoo, Rochester Hills, and Lansing—were
audited, but only Kalamazoo successfully ran a hybrid audit. We recalculated the
risk on audit data from the closest race in Kalamazoo (Whitmer vs Schuette) using
ALPHA with the optimized intersection supermartingale P -value P ∗

M , ALPHA with
the optimized Fisher P -value P ∗

F , EB with P ∗
F , and EB with P ∗

M , and compared these
with the SUITE P -value. Because we could not access the original order of sampled
ballots in the ballot-polling stratum, we simulated P -values for 10,000 random ballot
orders with the marginal totals in the sample. We computed the mean, standard
deviation, and 90th percentile of these P -values for each method.

To get the ALPHA P -values, we used ALPHA-UB in the CVR stratum and
ALPHA-ST in the no-CVR stratum. For EB P -values, we used the predictable
mixture parameters of Waudby-Smith and Ramdas [2023] to choose λik, truncating
at 0.75 in both strata. Sample allocation was dictated by the original pilot audit:
8 cards from the CVR stratum (5,294 votes cast; diluted margin 0.55) and 32 from
the no CVR stratum (22,732 votes cast; diluted margin 0.57).

Table 6.3 presents P -values for each method. For ALPHA, the mean P ∗
F is about

half the SUITE P -value; for P ∗
M , the mean is more than an order of magnitude smaller

than the SUITE P -value. The P -value distributions for ALPHA are concentrated
near the mean. On the other hand, the EB P ∗

M and P ∗
F P -values are both an order of

magnitude larger than the SUITE P -value and their distributions are substantially
more dispersed than the distributions of ALPHA P -values.

6.4.3 A highly stratified audit

As mentioned in Section 6.3.6, many within-stratum risk-measuring functions do not
yield tractable expressions for PF (θ) or PM(θ) as a function of θ, making it hard
to find the maximum P -value over the union unless K is small. Indeed, previous
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implementations of SUITE only work for K = 2. However, the combined log-P -value
for EB is linear in θ for P ∗

M and piecewise linear for P ∗
F . Maximizing the combined

log-P -value over the union of intersections is then a linear program that can be solved
efficiently even when K is large.

To demonstrate, we simulated a stratified ballot-polling audit of the 2020 pres-
idential election in California, in which N = 17, 500, 881 ballots were cast across
K = 58 counties (the strata), using a risk limit of 5%. The simulations assumed that
the reported results were correct, and checked whether reported winner Joseph R.
Biden really beat reported loser Donald J. Trump. The audit assumed that every
ballot consisted of one card; workloads would be proportionately higher if the sample
were drawn from a collection of cards that includes some cards that do not contain
the contest. Sample sizes were set to be proportional to turnout, plus 10 cards,
ensuring that at least 10 cards were sampled from every county. Risk was measured
within strata by EB with predictable mixture λik thresholded at 0.9 [Waudby-Smith
and Ramdas, 2023]. Within-stratum P -values were combined using P ∗

F (P ∗
M did not

work well for EB with proportional allocation in simulations). To approximate the
distribution of sample sizes needed to stop, we simulated 30 audits at each increment
of 5,000 cards from 5,580 to 100,580 cards. We then simulated 300 audits at 70,580
cards, roughly the 90th percentile according to the smaller simulations.

In 91% of the 300 runs, the audit stopped by the time 70,580 cards had been
drawn statewide. Drawing 70,580 ballots by our modified proportional allocation
rule produces within-county sample sizes ranging from 13 (Alpine County, with the
fewest voters) to 17,067 (Los Angeles County, with the most). A comparison or
hybrid audit using sampling without replacement would presumably require inspecting
substantially fewer ballots. It took about 3.5 seconds to compute each P -value in
R (4.1.2) using a linear program solver from the lpSolve package (5.6.15) on a
mid-range laptop (2021 Apple Macbook Pro).

6.5 Discussion

ALPHA intersection supermartingales were most efficient compared to the SUITE
pilot audit in Michigan and in simulations. Lower-sided testing allocation was better
than proportional allocation, especially for EB. Fisher pooling limits the damage that
a poor allocation rule can do, but is less efficient than intersection supermartingales
with a good stratum selection rule. For comparison audits, it helps to bet more
aggressively than ALPHA-ST by using ALPHA-UB or EB. However, EB was not
efficient compared to SUITE when replicating the Michigan hybrid audit due to poor
performance in the ballot-polling stratum.
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Our general recommendation for hybrid audits is: (i) use an intersection su-
permartingale test with (ii) adaptive stratum selection and (iii) ALPHA-UB (or
another method that can exploit low sample variance to bet more aggressively) as
the risk-measuring function in the comparison stratum and (iv) ALPHA-ST (or a
method that “learns” the population mean) as the risk-measuring function in the
ballot-polling stratum. When the number of strata is large, audits can leverage the
log-linear form of the EB supermartingale to quickly find the maximum P -value, as
illustrated by our simulated audit spread across California’s 58 counties.

In future work, we hope to construct better stratum allocation rules and character-
ize (if not construct) optimal rules. The log-linear structure of the EB supermartingale
may make it simpler to derive optimal allocation rules.

While stratum selection is not an instance of a traditional multi-armed bandit
(MAB) problem, there are connections, and successful strategies for MAB might
help. For instance, stratum selection could be probabilistic and involve continuous
exploration and exploitation, in contrast to the “hard stop” rules we used in our
simulations here.

Data and code

All code used in this paper is available at https://github.com/spertus/sweeter-
than-SUITE. SUITE was applied to the Michigan RLA data in a Jupyter notebook
available at https://github.com/kellieotto/mirla18. Reported results from Cali-
fornia’s 2020 presidential election are available at https://elections.cdn.sos.ca.gov/
sov/2020-general/sov/csv-candidates.xlsx.
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Figure 6.1: Probability that the audit will stop (y-axis) at or before different given
sample sizes (x-axis) under different allocation rules (indicated by line color: orange for
lower-sided testing and blue for proportional allocation) for different combining functions
(indicated by line type: solid for Fisher’s combining function and dashed for the intersection
supermartingale) at risk limit α = 5%. The true margins are in the rows (1% or 5%) while
the reported margin is always 10%. Overstatement errors are confined to one stratum.
ALPHA-ST = ALPHA with shrink-truncate τik; ALPHA-UB = ALPHA with τik biased
towards uk.
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Reported supermartingale Combination Allocation True margin
margin rule 0.01 0.05 0.1

Mean 90th Mean 90th Mean 90th
0.01 ALPHA-ST Fisher Lower-sided test 1970 1970 1011 1274 338 506

Proportional 1970 1970 1009 1274 338 540
Intersection Lower-sided test 1940 1940 558 848 181 284

Proportional 1940 1940 554 835 182 298
ALPHA-UB Fisher Lower-sided test 1402 1402 544 754 252 360

Proportional 1402 1402 548 748 248 354
Intersection Lower-sided test 1106 1106 344 504 149 238

Proportional 1106 1106 342 510 148 232
Empirical Bernstein Fisher Lower-sided test 1438 1438 649 768 384 498

Proportional 1438 1438 647 782 376 464
Intersection Lower-sided test 1102 1102 478 652 271 378

Proportional 1102 1102 982 1856 752 1728
0.05 ALPHA-ST Fisher Lower-sided test 1973 1986 908 908 305 426

Proportional 1972 1984 908 908 298 412
Intersection Lower-sided test 1930 1980 428 428 145 212

Proportional 1933 1982 428 428 151 228
ALPHA-UB Fisher Lower-sided test 1769 1970 428 428 217 292

Proportional 1769 1972 428 428 217 288
Intersection Lower-sided test 1611 1884 256 256 122 176

Proportional 1651 1962 256 256 122 180
Empirical Bernstein Fisher Lower-sided test 1882 1986 448 448 306 356

Proportional 1870 1986 448 448 304 354
Intersection Lower-sided test 1610 1858 296 296 199 234

Proportional 1924 1982 296 296 302 376
0.10 ALPHA-ST Fisher Lower-sided test 1971 1990 1088 1536 240 240

Proportional 1974 1990 1080 1509 240 240
Intersection Lower-sided test 1910 1991 694 1312 112 112

Proportional 1894 1988 755 1347 112 112
ALPHA-UB Fisher Lower-sided test 1904 1984 696 1107 180 180

Proportional 1914 1984 715 1263 180 180
Intersection Lower-sided test 1756 1968 521 1046 98 98

Proportional 1804 1990 534 1079 98 98
Empirical Bernstein Fisher Lower-sided test 1968 1988 716 987 238 238

Proportional 1974 1988 686 928 238 238
Intersection Lower-sided test 1697 1901 487 799 154 154

Proportional 1939 1990 1000 1846 154 154

Table 6.1: Expected and 90th percentile sample sizes for various risk-measurement
functions, reported margins, and true margins, estimated from 300 simulated audits at
risk-limit α = 5%. The best result for each combination of reported margin, true margin,
and summary statistic is highlighted. Comparison audit sample sizes are deterministic when
there is no error, so the expected value and 90th percentile are equal when the reported
and true margins are equal.
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supermartingale Combination Allocation Score
ALPHA-ST Fisher Lower-sided test 2.11

Proportional 2.10
Intersection Lower-sided test 1.35

Proportional 1.37
ALPHA-UB Fisher Lower-sided test 1.47

Proportional 1.48
Intersection Lower-sided test 1.01

Proportional 1.02
Empirical Bernstein Fisher Lower-sided test 1.73

Proportional 1.71
Intersection Lower-sided test 1.25

Proportional 1.78

Table 6.2: Score for each method: the geometric mean of the expected workload over the
minimum expected workload in each scenario. A lower score is better: a 1.00 would mean
that the method always had the minimum expected workload. The best score is highlighted.
A score of 2 means that workloads were twice as large as the best method, on average,
across simulations and scenarios.

P -value
Method Mean SD 90th
SUITE 0.037 * *
ALPHA P ∗

F 0.018 0.002 0.019
ALPHA P ∗

M 0.003 0.000 0.003
EB P ∗

F 0.348 0.042 0.390
EB P ∗

M 0.420 0.134 0.561

Table 6.3: Measured risks (P -values) computed from the 2018 Kalamazoo MI audit data.
For SUITE, the original P -value is shown. For replications, the mean, standard deviation
(SD), and 90th percentile of P -values in 10,000 reshufflings of the sampled ballot-polling
data are shown.
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Chapter 7

Sequential stratified inference

7.1 Introduction

A ubiquitous problem in applied statistics is to make inferences about the mean µ
of a population X , a bag (multiset) of real numbers that could be finite, countable,
or uncountable. It is straightforward to construct an unbiased estimate of µ from
any probability sample from X , but constructing a valid hypothesis test—one with
a Type I error rate guaranteed not to exceed α—is harder. Common methods for
inference about the mean involve parametric assumptions about the joint probability
distribution of the data or rely on asymptotic arguments. In practice, these methods
can have true significance levels much greater than their nominal levels.

For instance, Student’s t-test is invalid for general X at any finite sample size
[Lehmann and Romano, 2005]. Absent some restriction on X , there is no finite-sample
valid test with power exceeding its significance level [Bahadur and Savage, 1956],
but it is enough to assume that there are known bounds for each element of X . A
one-sided bound (e.g. non-negativity) suffices for a one-sided test. Past work has
used such bounds to construct conservative alternatives to Student’s t-test when the
data are drawn as a uniform independent (with replacement) random sample (UIRS)
or a simple (without replacement) random sample (SRS) from X either of fixed
size [Hoeffding, 1963, Anderson, 1967, Bickel, 1993, Fienberg et al., 1977, Romano
and Wolf, 2000, Maurer and Pontil, 2009] or sequentially expanding [Kaplan, 1987,
Waudby-Smith and Ramdas, 2023, Orabona and Jun, 2022, Stark, 2023].

Many applications use stratified sampling, wherein X is first partitioned into
disjoint strata and a UIRS or SRS is taken from each stratum, independently across
strata. Stratified sampling is often employed to accommodate logistical constraints
or to reduce the variance of unbiased estimates. In particular, variance reduction is
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Figure 7.1: Estimated significance level of a stratified, one-sample t-test of the null
hypothesis H0 : µ ≤ 1/2 at nominal significance level 5%, for a stratified sample from a
population with mean µ = 1/2, as a function of the (fixed) sample size from each stratum.
The strata are equal in size and have the same distribution: a mixture of a point mass at
0 (total mass 1%) and a point mass at 0.5050505 (total mass 99%). IID samples of the
same size were drawn from the two strata independently. The true significance level was
estimated at each sample size using 10,000 simulations. The solid black line is the estimated
significance level (y-axis) of the test for a range of sample sizes within each stratum (x-axis).
For example, when 50 samples are taken from each stratum (total sample size 100) the
nominal 5% significance level test has true level ∼ 35%. If the test were valid, the solid line
would never be above 5% (dashed line).

possible when strata are more homogeneous than the population as a whole.
Stratification complicates inference. Canonical texts on stratified surveys and

experiments suggest using a stratified version of Student’s t-test, which approximates
the distribution of a weighted sum of stratum-wise sample means by Student’s t-
distribution [Neyman, 1934, Kish, 1965, Cochran, 1977]. The approximation is good
when X is approximately normal within strata, but the test can be anti-conservative
when the within-stratum distributions are skewed. For example, Figure 7.1 plots the
true significance level at various sample sizes of a nominal level 5% stratified t-test
for a skewed population with two strata. The t-test is anti-conservative even when
hundreds of samples are drawn from each stratum. The upshot is that for many
real-world problems in stratified inference standard methods are invalid: they do
not have a known level over the class of possible populations to which the problem
belongs. Bounded populations are one such class.
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7.1.1 Nonstandard distributions, gauranteed validity, and
auditing

Methods with guaranteed finite-sample validity for bounded populations have been
motivated largely by applications in auditing. Audits typically involve (i) high-stakes
decisions with a premium on Type I error control; (ii) bounded, but highly skewed
populations, for which asymptotic methods are inaccurate; (iii) probability sampling
under the control of the auditor, including stratified and/or sequential sampling.

Financial audits aim to determine whether the stated value of a set of assets or
invoices materially1 overstates the total true value [Panel on Nonstandard Mixtures
of Distributions, 1988], and to draw inferences about the total overstatement. Large
sums of money are often involved. For example, the United States Center for Medicare
and Medicaid Services relies on random sampling [US CMS, 2023] to estimate and
recover billions of dollars in overpayments [Bittinger et al., 2022]. The populations
involved are bounded because the amount by which the value of an asset or the
amount of an invoice has been overstated is at most the stated value of the asset or
invoice. Stratified random sampling is often employed in financial audits [US DHS,
2020] and may dramatically lower the cost of the audit itself [Fienberg et al., 1977].

Election audits are mathematically similar to financial audits, but with a
different notion of materiality: the total error is material if it caused any losing
candidate to appear to win. If there is a trustworthy, organized record of the votes
(see [Appel and Stark, 2020] for steps to establish whether the record is trustworthy),
risk-limiting audits (RLAs) can provide evidence that reported winners of an election
really won—or ensure a high probability of correcting the reported results if the
reported winners did not really win [Stark, 2008a, 2020, 2023]. Elections have high
stakes, and RLAs using a trustworthy paper trail provide a sound basis for public
confidence in the democratic process [National Academies of Sciences, Engineering,
and Medicine, 2018]. For RLAs that compare human reading of individual ballots
to the machine interpretation of the same ballots, the population is bounded by the
amount that machine error in the interpretation of a ballot could have overstated
the margin between a reported winner and a reported loser—in the case of plurality
elections, at most two votes when the audit samples individual ballots, or at most the
difference between the reported tally in each cluster and a unanimous tally for the
loser when the audit samples clusters of ballots [Stark, 2008a,b, 2020]. The population
of errors is generally skewed because nonzero errors are typically rare. For audits of
plurality contests that use the human reading of votes but do not compare that to

1Materiality is often defined indirectly as an amount that would cause a decision maker to decide
differently; in practice, it often taken to be a fixed percentage, e.g., 10%.
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the machine interpretation, the population is bounded by the maximum number of
votes or points that a ballot can award any candidate; other bounds apply to other
social choice functions [Stark, 2020]. Stratification may be used to accommodate
legal or logistical constraints (e.g., California law requires ballots to be sampled
independently by each county2) or to increase efficiency (e.g., when heterogeneous
voting equipment is involved). Ballots or batches of ballots are drawn one-at-a-time
or in larger “rounds.” The (sequentially valid or multiplicity-adjusted) P -value of
the hypothesis that one or more reported winners actually lost is calculated from
the sample. If the P -value is less than the risk limit, the audit stops; otherwise, the
auditors may continue sampling or opt to conduct a full hand count. The process
proceeds until either the hypothesis has been rejected (i.e., there is strong statistical
evidence that the outcome is correct) or there has been a full hand count (which
reveals the correct outcome).

7.1.2 Contributions and outline of this paper

This paper introduces methods to make conservative, non-asymptotic inferences
about µ from stratified samples, without relying on parametric assumptions. The
tests are sequentially valid : the analyst may check results as each sample arrives and
decide whether to stop sampling or continue gathering data. We call such methods
SFSNP-valid (sequential, finite-sample, nonparametric). Audits are our lead example,
but the methods are also useful for stratified surveys or blocked randomized controlled
trials in many regulatory or scientific applications. It is straightforward to construct
SFSNP-valid inference by summing confidence sequences constructed within each
stratum, but this approach is unnecessarily conservative. Our central goal is to
develop a more efficient method—one that requires fewer overall samples to meet a
given level of evidence.

In broad brush, the new method works as follows: the “global” null hypothesis
H0 : µ ≤ η0 is represented as a union of intersection hypotheses. Each intersection
hypothesis specifies the mean in every stratum and corresponds to a population
mean not greater than η0. The union is over all such intersections. The global
null hypothesis is rejected if every intersection null hypothesis is rejected. For a
given intersection null, information about each within-stratum mean is summarized
by a test statistic that is a nonnegative supermartingale starting at 1 if the the
stratum mean is equal to its hypothesized value—a test supermartingale (TSM). The
test supermartingales for different strata are combined by multiplication and the
combination is converted to a P -value for the intersection null. We explore how the

2California Elections Code § 15360.
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choices of test supermartingales and the interleaving of samples across strata jointly
affect the computational and statistical performance of the test.

The next section reviews the literature on stratified sampling, sequential sampling,
finite-sample inference, and inference in the presence of nuisance parameters. Sec-
tion 7.3 introduces notation and foundational concepts including sequential stratified
sampling and TSMs. By Ville’s inequality [Ville, 1939], the reciprocal of a TSM is
a P -value. We review how to test intersections of hypotheses by combining tests of
the individual hypotheses. Section 7.4.1 presents perhaps the simplest strategy for
stratified inference, based on summing independently constructed confidence bounds
across strata, each with a confidence level adjusted for multiplicity. That method is
easy to conceptualize and implement, but is unnecessarily conservative. Section 7.4.2
describes a sharper approach: union-of-intersections tests. Section 7.5 defines notions
of consistency and efficiency for sequential-stratified inference. We describe tests
that are theoretically optimal but not identified under a composite alternative, and
tests that are approximately optimal under the composite alternative. We describe
strategies for computation in Section 7.6. Section 7.7 compares the efficiency of
different strategies via a few simulation studies. Section 7.8 discusses our results and
sketches future directions for research.

7.2 Background and related work

In the early days of statistics Cournot [1843] showed that, for binary populations,
stratified sampling with proportional allocation is never less precise than simple ran-
dom sampling. Tchouproff [1923] was first to derive the optimal stratum-wise sample
allocation strategy (for mean squared error) based on stratum sizes and variances,
now known as Neyman allocation. Neyman independently built on Tchouproff [1923]
in a seminal paper on survey sampling, arguing for random sampling over purposive
sampling, which was common at the time [Neyman, 1934, Fienberg and Tanur, 1996].
Neyman [1934] addressed both estimation and inference, including confidence intervals
for means of stratified populations. Even though Neyman elsewhere codified strict
level control as a basic goal in statistical inference [Lehmann, 1993], Neyman [1934]
suggests that asymptotic normal-theory confidence intervals are sufficient for applied
problems when the sample is not smaller than 15. Foundational textbooks on survey
sampling—including Hansen et al. [1953], Kish [1965], and Cochran [1977]—have
echoed this idea, promulgating asymptotic tests and confidence intervals for various
designs. Those methods can have arbitrarily poor coverage depending on the true
shape of the population distribution (Figure 7.1 and Lehmann and Romano [2005]).

On the other hand, finite-sample nonparametric inference procedures for fixed-size,
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unstratified samples from bounded or nonnegative populations have been around
for some time. Early versions of such procedures include Hoeffding’s bound [Ho-
effding, 1963] for bounded distributions and Anderson’s bound [Anderson, 1967] for
nonnegative distributions. These methods found particular use in auditing, where
heavily-skewed population distributions clearly invalidate normal-theory inference,
but can be very conservative [Bickel, 1993, Fienberg et al., 1977]. Romano and Wolf
[2000] proposed a confidence interval that is conservative and has asymptotically
optimal width. A simpler, “empirical Bernstein” bound was derived in the computer
science literature by Maurer and Pontil [2009].

Recently, online applications have rekindled interest in sequential inference, lever-
aging pioneering results by Ville [1939], Wald [1945], and Robbins [1952] to signifi-
cantly advance SFSNP-valid inference for unstratified sampling [Howard et al., 2019,
Waudby-Smith and Ramdas, 2023, Orabona and Jun, 2022, Stark, 2023]. Essentially
every fully sequential method uses TSMs and applies Ville’s inequality [Ville, 1939]
to yield an SFSNP-valid P -value, from which confidence sets can be derived through
the usual duality. While Wald [1945] proved the validity of the sequential probability
ratio test without explicitly relying on TSMs or Ville’s inequality, it is in fact a special
case; see also Kaplan [1987].

Exponential supermartingales constitute a large class of TSMs that includes
sequential analogues of the Hoeffding and empirical Bernstein bounds [Howard et al.,
2021]. Foundational work on E-values (nonnegative random variables with expected
value 1 under the null) by Shafer and Vovk [2019] and recent contributions by Waudby-
Smith and Ramdas [2023], Cho et al. [2024], and Orabona and Jun [2022] applying
TSMs to construct confidence sequences have simplified, unified, and sharpened
SFSNP-valid inference. That body of work has encouraged interpreting E-values and
TSMs in the intuitive framework of betting. In particular, betting TSMs correspond
to the fortune of a gambler in a sequence of bets. The gambler starts with a bankroll
of 1 unit of currency and is allowed to wager a fraction of their current fortune on the
outcome of the next round, at odds that are fair or unfavorable under the null, but is
not allowed to go into debt. Tests based on betting TSMs can take advantage of the
outcomes of previous rounds to adapt bets, increasing efficiency by increasing future
wagers on games where the bettor has made money. 3 This paper extends betting
TSMs to stratified inference.

Despite their importance, conservative methods for inference from stratified
samples have received fairly little attention. A basic method, proposed in Wright
[1991] and applicable to small populations with binary elements, sums multiplicity-
corrected confidence bounds constructed separately within each stratum. Wendell

3See Ek et al. [2023] for an example in election audits.
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and Schmee [1996b] improved on Wright’s method for small binary populations by
testing the composite hypothesis using as the P -value the maximum P -value over the
simple hypotheses whose union comprises the composite hypothesis. That method
inspired the “stratified union-of-intersections tests of elections” (SUITE) approach of
Ottoboni et al. [2018], further generalized by Stark [2020], as well as the EESI method4

for binary populations with an arbitrary number of strata. Both SUITE and EESI
use Fisher combining to pool evidence across strata. Following on that work, Stark
[2023] proposed using union-of-intersections tests with product combining of TSMs for
SFSNP-valid inference in stratified risk-limiting audits. Vovk and Wang [2021] prove
that product combining dominates other methods of combining independent E-values
when none of the E-values is less than 1. Spertus and Stark [2022] investigated sample
sizes for a range of combining functions, TSMs, and allocation strategies for stratified
comparison audits. Cho et al. [2024] use betting TSMs for best arm identification
and other hypotheses of interest in multi-armed bandits. Their method is designed
to test composite hypotheses about means of multiple data streams under adaptive
sampling and could be applied to stratified sampling. We suspect their use of average
combining and a particular betting rule may sacrifice statistical efficiency compared
to the methods for sequential stratified inference presented here.

Currently, no general theory characterizes desirable properties for stratified tests
nor constructs optimal tests. We provide that theory below. Consistent intersection
and union-of-intersection tests are those that eventually reject a false null as the
sample size increases. We give some examples, noting that many tests are consistent in
this sense. In the fixed-size setting, power and relative asymptotic efficiency [Lehmann
and Romano, 2005] are common desiderata. Sequential testing has analogous notions,
typically defined in terms of minimizing the expected stopping time [Wald, 1945] or
the expected P -value at a given time [Kelly Jr., 1956]. These criteria lead to the same
strategy: maximize the expected log growth rate of the underlying TSM [Breiman,
1961]. Tests that maximize expected log growth rate have been called Kelly-optimal
under simple alternatives [Waudby-Smith and Ramdas, 2023] or (more generally)
growth-rate optimal (GRO) under composite alternatives [Grünwald et al., 2023].
Chapter V above used the theory of Kelly-optimality to derive efficient bets for risk-
limiting comparison audits. We generalize these definitions to the sequential stratified
setting, in which the Kelly-optimal test involves two coupled multi-dimensional tuning
parameters: an optimal betting strategy and an optimal stratum allocation rule. We
also note that a more general framing of efficiency in terms of minimal regret and
optimal portfolios is possible, and may yield sharper sequential tests in some cases
[Cover and Thomas, 2006, Orabona and Jun, 2022].

4See https://github.com/pbstark/Strat.
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Union-of-intersections tests are useful for stratified inference and more broadly to
make inferences in the presence of nuisance parameters. In stratified inference, the
population mean µ is a scalar parameter of interest, a linear function of the full vector
of stratum-wise means [µ1, . . . , µK ]; the problem thus involves a (K − 1)-dimensional
nuisance parameter. Real-world statistical problems often involve such projections of
the parameter space. For instance, Student’s t-test was originally devised to conduct
inference about a Gaussian mean, treating the standard deviation as a nuisance
parameter [Student, 1908]. The t-test uses a pivotal statistic—one whose distribution
does not depend on the nuisance parameter—to finesse the issue, but pivotal statistics
do not exist for most problems. More generally, nuisance parameters can be dealt
with by maximizing a P -value over the possible values of the nuisance parameter
or over a confidence set for the nuisance parameter [Tsui and Weerahandi, 1989,
Berger and Boos, 1994, Silvapulle, 1996]. In frequentist inference, maximizing the
likelihood over nuisance parameters leads to a profile likelihood for the parameter of
interest. In Bayesian inference, the marginal likelihood, which integrates over nuisance
parameters, plays an analogous role. In some cases, such as the Cox proportional
hazards model, partial likelihoods obviate the need to estimate a high dimensional
nuisance parameter (e.g., the baseline hazard) [Cox, 1975]. Union-of-intersections
tests leverage the simplest of these ideas, maximizing a P -value over the possible
values of the nuisance parameter. Our contribution can be viewed as developing
a method for rigorous inference in the presence of a multi-dimensional nuisance
parameter in a nonparametric problem.

7.3 Preliminaries and notation

7.3.1 Population and parameters

We use calligraphic font for sets and bags, and bold font for vectors (and sometimes for
tuples). Tuples are denoted using parentheses, e.g., (X1, . . . ,Xn); finite-dimensional
vectors are denoted using square brackets, e.g., [x1, . . . , xn]. If x and y are two vectors
with the same dimension K, we write x ≤ y iff xk − yk ≤ 0, k = 1, . . . , K; and we
define the dot product x · y :=

∑
k xkyk. The vector of all zeroes is 0 and the vector

of all 1s is 1, with dimension implicit from context. The set of nonnegative integers
including 0 is N. If I is a set or a bag, then |I| is its cardinality. For two scalars a
and b, we denote their minimum as a ∧ b and their maximum as a ∨ b.

The population of interest is a bag of real numbers X := HxiIi∈I . The development
below takes X to be a finite population, with I := {1, . . . , N}, but the results apply
with few changes when I is countable or uncountably infinite. As noted above, only

127



one-sided bounds on the population are needed to get one-sided confidence bounds or
one-sided tests; however, for simplicity of notation, we assume that each element of
the population is in [0, 1].5 The population mean is µ = µ(X ) := N−1

∑
i∈I xi, and

we would like to test the global null hypothesis:

H0 : µ ≤ η0, (7.1)

for global null mean η0. A lower confidence bound can be obtained by inverting tests
of H0 as η0 varies. If there are upper bounds for each element of the population, an
upper one-sided test can be obtained by subtracting each element from its upper
bound and then using a lower one-sided test, mutatis mutandis.

Let N := [N1, . . . , NK ] denote the vector of stratum sizes. The symbol XN :=
(Xk)

K
k=1 denotes a stratified population, a tuple ofK bags with Nk items in the kth bag,

Xk, so that N =
∑

k Nk. The symbol ℵN represents all K-tuples of bags of numbers
in [0, 1] such that the kth bag, Xk, has Nk items; that is, ℵN denotes all stratified
[0, 1]-valued populations with the requisite number of items in each stratum. We use
xki to denote a generic element of the kth stratum, e.g., Xk = HxkiINk

i=1. The vector of
stratum-wise means is µ = µ(XN ) := [µ(X1), . . . , µ(XK)]., where µ(Xk) =

∑
i xki/Nk.

The vector of stratum weights is w := [w1, . . . , wk], where wk := Nk/N . The mean of
a stratified population XN is

µ = µ(XN ) := µ(∪kXk) = w · µ(XN ).

Let ℵ0
N := {Y ∈ ℵN : µ(Y) ≤ η0} denote the set of null populations; the global

null hypothesis can be written H0 : XN ∈ ℵ0
N . Also let ℵ1

N := {Y ∈ ℵN : µ(Y) > η0}
denote the set of alternative populations. Together, ℵ0

N and ℵ1
N partition ℵN . An

intersection null hypothesis is the assertion

µ(XN ) ≤ η

for the intersection null mean η ∈ [0, 1]K . In words, the intersection null hypothesis
posits that each stratum-wise mean µk is below a corresponding stratum-wise null
mean ηk. The global null hypothesis can be written as a union of intersection null
hypotheses:

H0 :
⋃
η∈E0

{µ(XN ) ≤ η} (7.2)

5Any known lower bound on elements can be accommodated by shifting: if xi ≥ ai then
yi := (xi − ai) ≥ 0. If all the elements have the same upper and lower bounds a and b, they can
be rescaled to [0, 1] with an affine transformation yi := (xi − a)/(b − a) ∈ [0, 1]; the mean of the
resulting population HyiI is the same affine transformation applied to the original mean.
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where
E0 := {ζ : w · ζ ≤ η0, 0 ≤ ζ ≤ 1} (7.3)

is the set of all intersection nulls for which the global null is true6.

7.3.2 Sampling design

We consider samples drawn uniformly at random within strata, with or without
replacement, but generalizations to sampling with probability proportional to a
measure of “size” are straightforward [Stark, 2023]. Recall that a fixed-size stratified
sample consists of K independent (unordered) samples (HXkiInk

i=1)
K
k=1, where the

sample from stratum k, HXkiInk
i=1, is drawn by uniform random sampling with or

without replacement. When draws are with replacement, the data are IID uniform
draws from Xk. When draws are without replacement, HXkiInk

i=1 is uniform over all
subsets of size nk from Xk.

Sequential stratified samples. Unlike the fixed-size case, sequential stratified
samples have an order within and across strata, which necessitates a more detailed
specification. Let (Xki) be a sequence of random variables representing sampling
sequentially from stratum k. For sampling without replacement, i can run from 1
to Nk and (Xki)

Nk
i=1 is a random permutation of the stratum values HxkiINk

k=1. For
sampling with replacement, i runs from 1 to ∞ and the elements of (Xki)

∞
i=1 are IID.

Regardless, the variables {Xki} are exchangeable for each k and the sequences (Xki)
and (Xji) are independent of each other for k ̸= j.

The hypothesis tests we consider are constrained to use samples from each stratum
in the order in which those samples are drawn. But in general, tests of different
intersection nulls may interleave the samples across strata differently.

An interleaving of samples across strata is a stochastic process (Yt) indexed by
“time” t; Y t := (Yi)

t
i=1 is the t-prefix of (Yi)i∈N. Each interleaving is characterized

by a stochastic process, the stratum selection St: the item in the tth position in the
interleaving comes from stratum St. Let S

t := (Si)
t
i=1. The variable St is predictable—

meaning that it can depend on past data Y t−1 but not on Yi for i ≥ t—and may also
involve auxiliary randomness. We emphasize that it does not depend on Yt, and its
value is observed before Yt is observed: it specifies the stratum from which the tth
sample will be drawn. For k ∈ {1, . . . , K}, let

pkt := P
(
St = k | Y t−1, St−1

)
, (7.4)

6If there are constraints on the support of each stratum (e.g., that each element is 0 or 1), that
information can be used to sharpen inferences. See Section 7.4.2 below.
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Figure 7.2: Depiction of sequential stratified sampling without replacement. The popula-
tion depicted consists of K = 2 strata, each a bag of Nk numbers in [0, 1]. Each stratumwise
sample is a random permutation of its corresponding bag. The stratum selectors (pt)
then determine the selections (St), which interleave the stratumwise samples into a single
sequence of data (Yt).

and define pt := [p1t, . . . , pKt], t ∈ N. Naturally, for each t, 0 ≤ pt ≤ 1 and 1 · pt = 1.
If for each t, pt has one component equal to 1 and the rest equal to zero (i.e., pt is
one-hot), the stratum selection is deterministic (conditional on the past). We refer to
pt as the stratum selector. To summarize, the stratum selection (St) is a stochastic
process taking values in {1, . . . , K} while the stratum selector (pt) is a vector-valued
stochastic process taking values in RK , specifying the chance that the next draw will
be from each of the strata, given the sampling history so far.

As of time t, the number of items in the interleaving Y t that came from stratum
k is Tk(t), and X

Tk(t)
k := (Xki)

Tk(t)
i=1 are the data from stratum k. Thus, the tth item

in the interleaving,
Yt = XStTSt (t)

,

is the TSt(t)th item drawn from stratum St, so Y t = (XSiTSi
(i))

t
i=1.

7.3.3 SFSNP-valid hypothesis tests

Our goal is to construct an SFSNP-valid test of the global null H0 : µ(XN ) ≤ η0, i.e.,
XN ∈ ℵ0

N .

Definition 1 (SFSNP-valid P -value). Let (Pt)t∈N be a [0, 1]-valued stochastic process.
Then (Pt) is an SFSNP-valid P -value for the global null hypothesis if for all q ∈ [0, 1],

PXN
(∃ t ∈ N : Pt ≤ q) ≤ q when XN ∈ ℵ0

N .
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If (Pt) is an SFSNP-valid P -value, then rejecting the null hypothesis if Pt ≤ α
for some t is a SFSNP-valid hypothesis test with significance level α. The random
variable τ := inf{t ∈ N : Pt ≤ α} is the stopping time of the test.

Finding SFSNP-valid tests such that τ is small in expectation when the global null
is false is the primary goal of this paper. Minimizing stopping times for sequential
tests is analogous to maximizing power in the usual fixed-sample, Neyman-Pearson
theory of testing. We return to this idea in Section 7.5, where our primary concern is
efficient SFSNP-valid tests of H0.

7.3.4 Test supermartingales

In recent years, martingales—fundamental objects in probability theory with close
connections to betting—have been used to construct efficient sequential tests and
confidence intervals. One can construct an SFSNP-valid P -value from any statistic
that is a nonnegative supermartingale starting at 1 when H0 is true; such statistics
are called test supermartingales [Waudby-Smith and Ramdas, 2023]:

Definition 2 (Test supermartingale (TSM)). The stochastic process (Mt)t∈N is a
test supermartingale (TSM) for H0 if, when H0 is true, (Mt)t∈N satisfies

1. E[Mt|M t−1] ≤ Mt−1

2. P{Mt ≥ 0} = 1

3. M0 = 1.

TSMs are linked to SFSNP-valid P -values by the following special case of a result
of Ville [1939].

Proposition 1 (Ville, 1939). Let Mt be a TSM for H0. Then if H0 is true, for all
q ∈ [0, 1]

P{∃ t ∈ N : Mt ≥ 1/q} ≤ q.

Ville’s inequality is analogous to Markov’s inequality, but holds uniformly over
t ∈ N, allowing sequentially valid inference. The truncated reciprocal of a TSM,
1 ∧ (1/Mt) ∈ [0, 1], is an SFSNP-valid P -value. Vovk and Wang [2021] show that
1 ∧ (1/Mt) is essentially the only admissible mapping from TSMs to P -values.
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Constructing TSMs from random samples

We start by considering a single stratum, generically stratum k. The within-stratum
null mean is ηk. We construct a process (Mkt)t∈N that is a TSM with respect to
(Xkt)t∈N for the stratum null µ(Xk) ≤ ηk. Recall that Tk(t − 1) is the sample size
from stratum k at time t − 1. The conditional stratum-wise null mean ηkt is the
implied average of the values remaining in Xk at time t if µk = ηk, given that we have
already observed (Xki)

Tk(t−1)
i=1 . There are two cases we consider:

• Sampling with replacement, in which case ηkt := ηk.

• Sampling without replacement, in which case

ηkt :=
ηk −

∑Tk(t−1)
i=1 Xki

Nk − Tk(t− 1)
.

A generic form for a within-stratum TSM for the null µk ≤ ηk is

Mktk(ηk) :=

tk∏
i=1

Zki(ηk),

where Zki(ηk) is any term such that E[Zki(ηk) | X i−1
k ] ≤ 1 when µk ≤ ηk. We will use

statistics of the form
Zki(ηk) := 1 + λki(Xki − ηki),

which defines Mktk(ηk) as a betting TSM. Waudby-Smith and Ramdas [2023], Orabona
and Jun [2022] show that for suitable choices of λki, betting martingales provide
sharper inferences than many other options for Zki(ηki), such as exponential super-
martingales [Howard et al., 2021]. The TSM within stratum k at time t can be
written:

Mkt(ηk) :=

Tk(t)∏
i=1

[1 + λki(Xki − ηki)].

We next discuss how to combine the K within-stratum TSMs to form a single P -value
for an intersection null.

Intersection test supermartingales (I-TSMs)

Consider a particular intersection null η. Define the intersection TSM (I-TSM):

Mt(η) :=
K∏
k=1

MkTk(t)(ηk) =
K∏
k=1

Tk(t)∏
i=1

Zki(ηk) =
t∏

i=1

Z̃i,
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where Z̃i := ZSiTSi
(i)(ηSi

) is the TSi
(i)th term of the within-stratum TSM for stratum

Si. By commutativity, the I-TSM at time t can be written as an interleaving of terms
Z̃i from the within-stratum TSMs, where the (possibly random, but predictable)
interleaving is defined by the selections (St). Because the selections are predictable,
the I-TSM is indeed a TSM under the intersection null η:

E[Mt(η) | Y t−1] = E

 K∏
k=1

Tk(t)∏
i=1

Zki(ηk) | Y t−1, St


= Mt−1(η)E

[
Z̃t | Y t−1, St

]
= Mt−1(η)E

[
Z̃t | X

TSt (t−1)

St

]
≤ Mt−1(η).

The 3rd equality holds because samples from different strata are independent, and the
inequality in the 4th line holds by construction of the within-stratum TSMs paired
with the fact that µk ≤ ηk under the intersection null.

The truncated reciprocal of Mt, Pt(η) := 1 ∧ 1/Mt(η) is a sequentially valid
P -value for the intersection null η. Employing betting within-stratum TSMs leads to
the betting I-TSM :

Mt(η) :=
K∏
k=1

Tk(t)∏
i=1

[1 + λki(Xki − ηki)].

7.4 Stratified inference with TSMs

In this section, we describe two methods for stratified inference that leverage I-
TSMs. The first method is a weighted sum of TSM-based, sequentially valid lower
confidence bounds for the K stratum-wise means. This is akin to Wright’s method for
conservative stratified inference on binary populations [Wright, 1991]. We show that
(perhaps surprisingly) using TSMs avoids the need to explicitly adjust for multiplicity.
The second method forms an I-TSM for every intersection null η ∈ E0 and takes the
smallest. The second method is trickier to implement, but has less slack than the
first method.
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7.4.1 Simple stratified inference: combining confidence se-
quences

We use a linear combination of independent lower confidence sequences (LCBs) for
the K stratum-wise means {µk} to form a global LCB for µ. The weights in the
linear combination are the stratum weights w. If the linear combination is above the
global null mean, the test rejects. For a level α global test, the individual LCBs must
be simultaneously valid at level α, controlling the family-wise error rate. If each LCB
were generic, we might use Šidák’s correction for independent tests, constructing each
LCB at level (1− α)1/K . This incurs a steep penalty as K increases, nearly equaling
the α/K penalty of a Bonferonni correction.

However, we are basing each LCB on a TSM. The following lemma, which is
proved in Appendix C.2.1, shows that by using a TSM in each stratum we can avoid
the multiplicity penalty.

Lemma 1 (Validity of TSM confidence sequences). For a within-stratum TSM
Mkt(ηk), define the lower (1− α) lower confidence sequence (LCB) in stratum k by
(Lkt), where

Lkt := sup
ηk∈[0,1]

{ηk : Mkt(ηk) > 1/α}.

Then:

1. {(Lkt)}Kk=1 are separately valid, in the sense that when XN ∈ ℵ0
N :

sup
k∈{1,...,K}

PXN
(∃ t ∈ N : Lkt > µk) ≤ α.

2. {(Lkt)}Kk=1 are simultaneously valid, in the sense that when XN ∈ ℵ0
N :

PXN

(
∃ (t1, . . . , tK) ∈ NK :

K⋃
k=1

{Lktk > µk}

)
≤ α.

The first result simply states that we can construct confidence sequences from TSMs,
which follows immediately from the duality of tests and confidence sets [Lehmann
and Romano, 2005], as used extensively in [Waudby-Smith and Ramdas, 2023]. The
second result is stronger and follows from the closure principle of Marcus et al. [1976],
which was employed by Vovk and Wang [2021] to adjust E-values for multiplicity.
The surprising result is that LCBs constructed from TSMs are simultaneously valid
without the need for an explicit multiplicity correction.
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Proposition 2. Let LkTk(t) be a (1 − α) LCB constructed from a TSM with Tk(t)
samples from stratum k at time t, k ∈ {1, . . . , K}. Consider the stratum-weighted
sum

Lt :=
K∑
k=1

wkLkTk(t).

Since {Lkt}Kk=1 are simultaneously and sequentially valid LCBs for {µk}Kk=1, whenever
XN ∈ ℵ0

N ,

PXN
(∃ t ∈ N : Lt > µ) = PXN

(
∃ t ∈ N :

K∑
k=1

wkLkTk(t) >
K∑
k=1

wkµk

)

≤ PXN

(
∃ t ∈ N :

K⋃
k=1

LkTk(t) > µk

)
≤ α.

Thus Lt is an SFSNP-valid (1−α) LCB for µ, and a test that rejects H0 when Lt > η0
is an SFSNP-valid level α test with stopping time τ(Lt) := min{t ∈ N : Lt > µ0}.

The proof is contained in the theorem statement; the final step applies Lemma 1.
This approach is easy to implement when computing the LCBs {LkTk(t)}Kk=1 is straight-
forward and efficient; Waudby-Smith and Ramdas [2023] and Orabona and Jun [2022]
describe a number of possibilities. The selection rule pt will influence the efficiency
of the bound.

There are two sources of slack in using Proposition 2 to test H0. One is due
to the second inequality in Proposition 2: the LCB method bounds each of the K
components of µ separately, but we only need to bound wTµ. The other source of
slack is in controlling for multiplicity using closed testing, which requires each of the
K TSMs to reach 1/α. In contrast, to test the intersection null η, we only need the
product of the stratum-wise TSMs to reach 1/α. In particular, the test could reject η
with all K TSMs equal to α−1/K , a lower hurdle in every stratum. We now develop a
test of H0 that avoids these two sources of slack.

7.4.2 Union-of-intersections test statistic (UI-TS)

Definition 3 (Union-of-Intersections Test Statistic). A stochastic process (Ut)t∈N
is a Union-of-Intersections Test Statistic (UI-TS) for the composite null hypothesis
H0 : XN ∈ ℵ0

N if for all XN ∈ ℵ0
N ,

PXN

(
∃ t ∈ N : Ut ≥ 1/α

)
≤ α.
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Equivalently, (Ut) is a UI-TS if its thresholded-reciprocal Pt := 1∧1/Ut is an anytime-
valid P -value for the null H0.

A UI-TS need not be a supermartingale under H0, but it is an E-process [Shafer,
2021, Vovk and Wang, 2021, Ramdas et al., 2023, Grünwald et al., 2023].

Recall the union-of-intersections form of the global null in Equation (7.2) and the
definition of E0 in Equation (7.3). As shown in Section 7.3.4, we can test a particular
η ∈ E0 using an I-TSM. We can reject H0 if the P -value for every η ∈ E0 is less than
α, i.e., if the smallest I-TSM evaluated over E0 is at least 1/α. Therefore,

Mt := min
η∈E0

Mt(η) (7.5)

is a UI-TS for H0. When every Mt(η) is a betting I-TSM, Mt is a betting UI-TS.

The boundary of E0
In this paper, we consider only betting UI-TSs based on TSMs Mkt(ηk) that are
monotone decreasing in ηk, so that the I-TSM Mt(η) is componentwise monotone in
η. As a result, the minimum of Mt(η) occurs on the boundary of E0. The boundary
depends on the support of each stratum population, which in general will be unknown.

Specifically, let Ωk be the set of all possible means µk in stratum k. For example,
if stratum k is binary, then Ωk = {0, 1/Nk, . . . , (Nk − 1)/Nk, Nk}. Let Ω =

∏K
k=1Ωk

be the Cartesian product of all possible stratumwise means µ. The boundary of E0 is

B := {η ∈ Ω : w · η ≤ η0 and Ω ∋ ζ > η =⇒ w · ζ > η0}.

For the TSMs we consider,7 the value of η that minimizes Mt(η) is in B. Futhermore,
define

C := {η : w · η = η0, 0 ≤ η ≤ 1} ⊂ E0. (7.6)

Because of the componentwise monotonicity, optimizing over the set C rather than
B gives a conservative result. In what follows, we will generally define Mt =
minη∈C Mt(η). The set C is a polytope, the intersection of the K-cube with the
hyperplane w · η = η0. The geometry of C is important for the computational
tractability of some UI-TSs (see Appendix C.3).

7For the TSMs we consider, if η ∈ E0 \ B, then there is some point η′ ∈ B with η < η′ for which
we enforce that Mt(η) uses the same selections and bets as Mt(η

′). As result, Mt(η
′) < Mt(η) for

all t because of the monotonicity of the stratumwise TSMs in ηk.
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Global stopping time and global sample size

Before we discuss efficiency, we draw some distinctions between the stopping time of
a UI-TS and its workload measured by the number of samples it requires to stop. To
do so, we embellish the notation to highlight dependence on the intersection null η.
For each η ∈ C, denote the selections by (St(η))t∈N, the selection rule by (pt(η))t∈N,
and the stratum-wise sample sizes by {Tk(t,η)}Kk=1. The stopping time of the level α
test induced by UI-TS Mt at η is

τ(Mt;η) := min{t ∈ N : Mt(η) ≥ 1/α}.

This is the number of samples needed to reject intersection null η using the constituent
I-TSM Mt(η), and the quantity τk(Mt;η) := Tk(τ(Mt;η),η) is the number of samples
needed from stratum k.

Now, we define the global stopping time as in Section 7.3.3 and note some equiva-
lences:

τ(Mt) := inf{t ∈ N : Mt ≥ 1/α}
=sup

η∈C
τ(Mt;η)

= sup
η∈C

K∑
k=1

τk(Mt;η).

The global stopping time τ is simply the sample size needed for the “last” I-TSM,
considered on its own, to hit or cross 1/α.

On the other hand, the global sample size nτ is the total number of samples drawn
across all strata when H0 is rejected:

nτ (Mt) :=
K∑
k=1

sup
η∈C

τk(Mt;η).

Because nτ is the sum of stratumwise maxima, nτ (Mt) ≥ τ(Mt). However, for a broad
class of tests, nτ (Mt) = τ(Mt)— for instance, when St(η) = St. In what follows,
when Mt is clear from context, we will drop it from the notation.

7.5 Desirable properties: consistency and efficiency

This section defines consistency and efficiency for sequential stratified inference.
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7.5.1 Consistency

Loosely speaking, a test is consistent if, with probability 1, it eventually rejects the
global null at every fixed level α ∈ (0, 1] when the global null is false. We first define

consistency for intersection nulls, then global consistency. Let
PXN−→ denote convergence

in probability, where the randomness arises from sampling from the population XN ,
including any randomness in the stratum selection.

Definition 4 (Intersection consistency). Consider a test of the intersection null η,
and let Pt(η) denote the P -value for that test at time t. The test is intersection
consistent iff

Pt(η)
PXN−→ 0

whenever µ(XN ) ̸≤ η.

An intersection-consistent test has finite stopping time τ(η) with probability
1 when µ(XN) ̸≤ η, i.e., when at least one element of µ(XN) is greater than the
corresponding element of η. An intersection-consistent test can be constructed from
an I-TSM that, with probability 1, grows without bound whenever µ(XN) ̸≤ η.
Constructing such an I-TSM requires protecting against two failure modes. First, we
must ensure that in at least one stratum in which µk > ηk, the stratumwise TSM
Mkt(ηk) grows.

8 Second, we must ensure that the stratumwise TSM for any strata
in which µk ≤ ηk do not drive the I-TSM towards zero. That can be accomplished
either by curtailing sampling in strata where there is evidence that µk ≤ ηk or by
reducing the bets in those strata to zero.9

Definition 5 (Global consistency). Consider a test of the global null µ ≤ η0, and let
Pt denote the P -value for that test at time t. The test is globally consistent iff

Pt

PXN→ 0

whenever µ(XN ) > η0.

8Recalling a classic example, suppose that in each stratum the population is binary and we are
using the Bernoulli SPRT as the TSM. It is well known that, even when µk > ηk, if the tuning
parameter corresponding to the suspected alternative mean is incorrectly specified, the stratumwise
TSM Mkt(ηk) has a positive probability of never crossing 1/α. Predictably estimating the true
mean or mixing over a prior distribution can remedy this issue (c.f. [Robbins, 1952, Stark, 2023,
Waudby-Smith and Ramdas, 2023]).

9Instead of combining stratumwise TSMs by multiplication, we could combine them by averaging
[Cho et al., 2024]; or instead of combining stratumwise TSMs into an I-TSM, we could combine
the (independent) stratumwise P -values derived from the TSMs into a single P -value, for instance,
using Fisher’s combining function [Ottoboni et al., 2018, Spertus and Stark, 2022].
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With probability 1, a globally consistent test has a finite stopping time τ and finite
sample size nτ when the global null is false (i.e., it is a test of power one). For a
UI-TS using I-TSMs Mt(η) that are monotone in η, we have

Pt := max
η∈E0

Pt(η) = max
η∈C

Pt(η).

So if every P -value in the set {Pt(η) : η ∈ C} is intersection consistent, the test
defined by Pt is globally consistent. In theory, we can use any set of tests that are
intersection-consistent for all η ∈ C to construct a globally consistent test this way.
In practice, C is in general uncountably infinite, so maximizing Pt(η) over η ∈ C
may be intractable unless Pt(·) has special structure. Furthermore, even if a test is
consistent, it might require an impractical sample size nτ .

7.5.2 Efficiency

Our main objective is to test the global null µ(XN ) ≤ η0 against the global, composite
alternative µ(XN ) > η0. These hypotheses do not completely specify the population,
only its mean. In contrast, a simple alternative completely specifies a stratified popu-
lation XN ∈ ℵ1

N . Considering simple alternatives allows us to construct theoretically
optimal tests that can be approximated in practice.

An efficient test keeps nτ “as small as possible” in some sense. In general, no
method is best for all XN ∈ ℵ1

N ; moreover, nτ is random. One could consider
minimizing a summary of the distribution of sample sizes for different XN ∈ ℵ1

N , for
instance, the supremum (over XN ∈ ℵ1

N ) or a weighted average expected sample size.
One might also define admissibility with respect to some summary of sample size. For
example, we might define a test to be inadmissible with respect to expected sample
size if there is a second test such that for every XN ∈ ℵ1

N the expected sample size of
the second test is not greater than that of the first test, and there is some XN ∈ ℵ1

N

for which the expected sample size of the second test is strictly less than that of the
first test.

We have not identified an admissible test for any summary of nτ over all XN ∈ ℵ1
N .

To construct tests that perform reasonably well—albeit not necessarily optimally—we
begin by constructing tests that minimize EXN

[τ ] for a simple alternative XN ∈ ℵ1
N .

Such tests are called Kelly optimal, and we construct Kelly optimal rules for both
I-TSMs and UI-TSs. A Kelly-optimal test maximizes the expected log growth of
the corresponding test statistic; by Wald’s identity [Wald, 1944], this minimizes the
expected stopping time EXN

[τ ]. Since EXN
[τ ] ≤ EXN

[nτ ] for any test, the expected
stopping time of a Kelly optimal test is a lower bound on the optimal expected sample
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size. The growth of a particular I-TSM under a simple alternative depends on the
selection strategy (pt(η)) in addition to the betting rule (λt(η)).

Then, we characterize (a) Kelly-optimal strategies for known XN ; (b) approxi-
mately Kelly-optimal strategies that do not assume XN is known, instead “learning”
how to bet from the sample; and (c) computable approximations to (b). In practice,
XN is not known and neither the composite alternative µ(XN) > η0 nor the inter-
section alternative µ(XN ) ̸≤ η completely specifies XN . While we can characterize
(b) implicitly, constructing examples is challenging absent constraints on the betting
and allocation strategies. Instead, Kelly optimality provides a benchmark that we
hope to approximate with the predictable, computationally tractable strategies of
(c). The computations are dramatically simpler when selections are restricted to be
fixed across η ∈ E0, i.e., when St(η) = St. For non-adaptive St, EXN

[τ ] = EXN
[nτ ],

so minimizing the expected stopping time minimizes the expected sample size.

Definitions of efficiency

The simplest definition of efficiency is efficiency at a point: it is the ratio of the
expected sample size of the test that minimizes the expected global sample size when
XN = X 1

N to the expected sample size of the test in question when XN = X 1
N .

Definition 6 (Relative efficiency at X 1
N ). Consider testing the composite null H0 :

XN ∈ ℵ0
N against the simple alternative XN = X 1

N ∈ ℵ1
N . Given two UI-TSs for H0,

Mt and M ′
t, the relative efficiency of Mt to M ′

t at X 1
N (for expected sample size) is

0 ≤
EX 1

N
[nτ (M

′
t)]

EX 1
N
[nτ (Mt)]

.

The efficiency of a test Mt at XN is its relative efficiency to any level-α test M∗
t that

minimizes the expected sample size.

Another possible metric of test performance is regret, which measures the shortfall
from the best method as the gap in expected sample size at the simple alternative.

Definition 7 (Regret at X 1
N). Consider testing the composite null H0 : XN ∈ ℵ0

N

against the simple alternative XN = X 1
N ∈ ℵ1

N . Let Mt be any UI-TS for H0. Its
regret is:

EX 1
N
[nτ (M

∗
t )]− EX 1

N
[nτ (Mt)],

where M∗
t is a test that minimizes the expected sample size at X 1

N over all tests.
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Minimizing regret and maximizing efficiency are equivalent. Efficiency is a common
metric in statistics [Wasserman, 2004, Lehmann, 1999, Wald, 1945], while regret is
more common in computer science and especially in the multi-armed bandit literature
[Lai and Robbins, 1985, Berry and Fristedt, 1985, Auer et al., 2002]. However, regret
has roots in statistics. It was first proposed by Savage [1951] as a less pessimistic loss
measure than the unnormalized quantity −EX 1

N
[nτ (Mt)], which was at the forefront of

Wald’s pioneering work in decision theory [Wald, 1950]. The distinction is equivalent
to that between REGROW and GROW in the context of E-values [Grünwald et al.,
2023]. We will primarily discuss performance in terms of efficiency.

Sometimes efficiency can be computed or bounded theoretically. For instance, Wald
[1945] proves that the SPRT essentially minimizes the expected sample size for testing
a point null against a point alternative (for any pre-specified sequential sampling
design, e.g., for the stratified case, the stratum selection cannot be adaptive). In
other words the SPRT is efficient. He derives a general formula for EXN

[nτ ] = EXN
[τ ]

for the SPRT and provides explicit formulas for IID Bernoulli and normal data. That
theory does not apply to stratified sampling with adaptive stratum selection. In
particular, finding an analytical formula for the expected sample size of a UI-TS is
intractable even for basic parametric alternatives (e.g. binomials) and simple betting
and allocation rules (e.g. round-robin allocation and fixed bets λt(η) := λ). Thus,
we primarily assess the efficiency of various methods through simulation.

Before analyzing efficiency and Kelly optimality for UI-TSs, we note that we
can generalize the above definition in two ways. First, while Definition 6 took a
simple alternative X 1

N , we may summarize efficiency over the composite alternative
ℵ1
N . There are two standard approaches. (1) Summarize the efficiency by a weighted

average over the composite alternative (the weights might correspond to a Bayesian
prior on the alternative). This is analogous to the GRO criterion in Grünwald et al.
[2023]. (2) Summarize the efficiency by its minimum over the composite alternative
(this is like the maximum ‘loss,’ which a minimax method minimizes). This is
analogous to the REGROW criteria of Grünwald et al. [2023]. Efficiency can be
also be generalized by considering functionals of the distribution of nτ other than
its expected value. For example, efficiency could be defined with respect to the 80th
percentile of nτ . Such a definition would bring sequential efficiency more in line with
the traditional, fixed-size notion of power, reflecting the sample size at which the
test has a high probability of rejecting the null. While stopping-time percentiles
can be evaluated using simulations, it is difficult to characterize them theoretically.
Efficiency with respect to expected sample size is more tractable.
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Kelly-optimality and efficiency

A Kelly-optimal test maximizes the expected log growth rate, while an efficient test
minimizes the expected sample size. The following lemma links the expected log
growth to the expected stopping time.

Lemma 2 (Wald [1945]). Consider testing the composite null H0 : XN ∈ ℵ0
N at level

α using the UI-TS Mt. Let EXN
[log∆Mt] be its expected log growth and EXN

[τ(Mt)]
its expected stopping time under the true population XN ∈ ℵ1

N . We have:

EXN
[τ(Mt)] =

− logα

EXN
[log∆Mt]

.

Because Kelly-optimal tests maximize EXN
[log∆Mt], they minimize EXN

[τ(Mt)].
Kelly-optimal tests are efficient precisely when τ = nτ , which holds for the important
subclass of UI-TS with fixed selections St(τ ) = St. Furthermore, the expected
stopping time of the Kelly-optimal test always lower bounds the expected sample size
of the efficient test.

Kelly optimality for a composite null and simple alternative

Definition 8 (Kelly-optimal betting UI-TS). A betting UI-TS M∗
t for the composite

null H0 : µ(XN) ≤ η0 is Kelly-optimal for the simple alternative XN ∈ ℵ1
N if its

expected log-growth under that alternative is maximal among all betting UI-TSs for
H0. That is:

EXN
[log∆M∗

t ] = sup
Mt

EXN
[log∆Mt],

where ∆Mt := Mt/Mt−1 = minη∈C Mt(η)/minη∈C Mt−1(η). Identifying a particular
betting UI-TS with its collection of bets and selection rules {(λt(η),pt(η))}η∈C, the
supremum is taken over all such collections. The expectation is taken with respect to
random sampling from X 1

N and the stratum selections St(η).

We show below how to construct a Kelly-optimal UI-TS; there may be more than
one. To do so, we first define Kelly-optimality for an I-TSM for the intersection null
η ∈ C with respect to a simple alternative.

Definition 9 (Kelly-optimal betting I-TSM). A betting I-TSM M∗
t (η) for the in-

tersection null η is Kelly-optimal for the simple alternative XN ∈ ℵ1
N if its expected

log-growth is maximal among all betting I-TSMs for η:

EXN
[log∆M∗

t (η)] = sup
Mt(η)

EXN
[log∆Mt(η)],
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where ∆Mt(η) := Mt(η)/Mt−1(η) =
∑K

k=1 1{St(η) = k}ZkTk(t)(ηk) is the change in
the I-TSM at time t. The supremum is taken over all choices of bets and selection
rules (λt(η),pt(η)). The expectation is with respect to the random sampling from XN

and the stratum selections St(η).

With these definitions in hand, we construct the Kelly-optimal betting I-TSM.
We can achieve this by finding the Kelly-optimal bets (λt(η))t∈N and selection rules
(pt(η))t∈N that uniquely parameterize M∗

t (η). The optimal bets λ∗
t (η) do not depend

on the selection rule pt(η). The following Lemma, proved in Appendix C.2.2, yields
the Kelly-optimal I-TSM.

Lemma 3 (Construction of the Kelly-optimal I-TSM). Fix an intersection null η ∈ C
and simple alternative XN ∈ ℵ1

N .

1. Bets: for every selection rule pt(η), the Kelly-optimal bets are

λ∗
t (η) := [λ∗

1t(η), . . . , λ
∗
Kt(η)]

where
λ∗
kt(η) := argmax

λ∈[0,1/ηkt]
E {log[1 + λ(Xkt − ηkt)]}

is the Kelly-optimal bet for the within-stratum TSM Mkt(ηk).

2. Selection rules: Let A := argmaxj∈{1,...,K} EXN
[logZjt(ηj)] be the set of strata

with maximal expected log-growth under the alternative XN for the bets λt(η).
The Kelly-optimal selection rule is

p∗
t (η) := [p∗1t(η), . . . , p

∗
Kt(η)]

where
p∗kt(η) := 1{k ∈ A}/|A|.

Through Zjt(ηk), pt(η) depends on the bets λt(η), and selects a stratum with
the highest expected log-growth for that vector of bets.

The I-TSM M∗
t (η) that uses λ∗

t (η) and p∗
t (η) is Kelly-optimal.

If the sampling is with replacement (the draws from each stratum are IID), then
the Kelly-optimal bets λ∗(η) and selection rules p∗(η) are both fixed across time.

Kelly optimality for I-TSMs provides a recipe for constructing a Kelly-optimal
UI-TS.
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Lemma 4 (A Kelly-optimal UI-TS). For each η ∈ C, let M∗
t (η) be Kelly-optimal

I-TSM for η when the true alternative is XN . The UI-TS:

M∗
t := min

η∈C
M∗

t (η)

is globally Kelly-optimal for XN . It is identified with the collection of intersection
Kelly-optimal bets and selection rules {(λ∗

t (η),p
∗
t (η))}η∈C.

The proof is essentially self-evident: any TSM underH0 is of the form minη∈C Mt(η);
we can always maximize the growth of the minimum by maximizing the growth of
every I-TSM in C, which is achieved by using the Kelly-optimal strategy M∗

t (η)
for every η. Even when XN is known, it is very difficult to explicitly construct
a Kelly-optimal UI-TS, except in very simple cases. We give such an example in
Appendix C.1, where the population consists of two point mass strata (xik = µk for
all i). For more general simple alternatives, M∗

t could be constructed numerically,
but this will not work when the alternative is composite. We now describe a strategy
that achieves efficiency by “learning” aspects of XN that allow us to approximate the
Kelly-optimal solution.

Approximate Kelly optimality under the intersection-composite alternative

Consider again a fixed intersection null η ∈ C and the intersection-composite alter-
native µ ̸≤ η. Within stratum k, the alternative Xk is not specified, so we cannot
directly apply Lemma 3. Instead, we borrow from Waudby-Smith and Ramdas [2023],
who provide predictable betting methods that approximate the Kelly-optimal strategy
using past data. Waudby-Smith and Ramdas [2023] call these methods “growth
rate adapted to the particular alternative” (GRAPA) and “approximate GRAPA”
(aGRAPA). GRAPA betting directly estimates the Kelly-optimal bet at time t using
the data available at time (t− 1). Because GRAPA involves solving nonlinear equa-
tions, Waudby-Smith and Ramdas [2023] propose aGRAPA, based on a Taylor series
approximation. Within stratum k, the aGRAPA bet is

λaG

kt (ηk) := 0 ∨
µ̂k(t−1) − ηk

σ̂2
k(t−1) + (µ̂k(t−1) − ηk)2

∧ c

ηk
,

where µ̂k(t−1) and σ̂2
k(t−1) are the lagged empirical mean and variance, and c ≤ 1 is a

user-specified truncation parameter. When the empirical mean is above the null mean
and the variance is relatively small, aGRAPA bets more aggressively: the data give
confidence that the next draw will be above ηk and the bet will make money. The
truncation at 0 ensures the bet is 0 in strata where the empirical mean is below the
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null; the truncation at c/ηk prevents bets from becoming too aggressive (c < 1 ensures
that Mt > 0 for all t). Using aGRAPA bets in each stratum λaG

t (η) := [λaG
kt (ηk)]

K
k=1

provides a fairly efficient betting strategy under η and the intersection-composite
alternative.

The bandit literature offers a range of potential options for pt(η). For example,
we could pull from the stratum with the largest upper confidence bound on E[Zkt(ηk)]
(a UCB algorithm [Lai and Robbins, 1985]) or according to a posterior probability
that E[Zkt(ηk)] is largest for an assumed prior (a Thompson sampling algorithm
[Thompson, 1933]). All of these strategies approximate the Kelly-optimal solution
when XN is unknown.

Other betting strategies

We propose two additional betting strategies that, when paired with fixed stratum
selections St := St(η) have some nice computational properties (compared to aGRAPA
and other approximately Kelly-optimal bets). We present the strategies now and
discuss computation in the next section.

The first strategy uses the same bet for all η:

λt(η) := λt.

The bet may vary over time as a predictable function of past data, but the bets must
be identical for every I-TSM {Mt(η)}η∈C. Let X̄kTk(t) denote the sample mean in
stratum k at time t. The second strategy is

λnE

kt (η) := exp
(
X̄kTk(t−1) − ηk

)
.

The superscript “nE” stands for negative exponential, the functional dependence of
the bet on ηk. The bet λnE

t (η) = [λnE
1t (η), . . . , λ

nE
Kt(η)] varies smoothly as a function

of η. It bets more when the running sample mean in stratum k is further above the
null mean in stratum k.

7.6 Computational Tractability

The results of Section 7.5.2 in principle allow one to construct an approximately
optimal I-TSM for every η ∈ C; Lemma 4 then suggests an efficient UI-TS under the
global-composite alternative µ > η0. In practice, this is computationally infeasible.

The computational tractability of a UI-TS depends on how the constituent I-
TSMs are constructed and in particular how they depend on η. We classify I-TSMs
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accordingly. The term η-aware refers to betting and selection strategies that depend
on η; η-oblivious refers to strategies that do not. Similarly, we call a predictable
strategy adaptive if it explicitly depends on past data, and nonadaptive otherwise.
A strategy may be adaptive but η-oblivious, non-adaptive but η-aware, etc. The
strategies proposed in Section 7.5.2 are adaptive and η-aware. A UI-TS is called
η-oblivious only if both the stratum selectors and bets are η-oblivious.

Small K, small N , discrete support: Recall from Section Section 7.4.2 that B
is the (possibly finite) boundary of E0. If the support of ℵ0

N is small and known (e.g.,
XN is known to be binary), if there are few strata (e.g., K ≤ 3), and if the strata are
small (e.g., maxk Nk ≤ 1000), it is feasible to enumerate B. That makes it feasible to
use an arbitrary η-aware strategy {(λt(η),pt(η))}η∈B by brute-force minimization
over B. We discuss the complexity of enumerating B in Appendix C.3.

Small K: When the strata are large or when the support is unknown, it is not
possible to minimize over B by brute force. In Appendix C.3.2 we show that the
I-TSM Mt(η) is log-concave over η ∈ C when the bets and selections are η-oblivious.
As a result, when bets and selections are η-oblivious over a convex subset of C,
the I-TSM is log-concave over that subset. In turn, log-concavity implies that the
minimum over a convex subset must occur on one of its extreme points. If C is
partitioned into G convex subsets within each of which the bets and selections are
η-oblivious.

This strategy is illustrated in Figure 7.3, which divides the regions into convex
bands and evaluates the I-TSM at their vertices. It requires specifying G bets and
selections (λt(ηg), St(ηg))

G
g=1. The number of I-TSM evaluations required depends

on the number of bands that share each vertex. The evaluation point ηg for each
band’s betting and selection rule might be set as the centroid of the band intersected
with C. We focus on the case K = 2, in which case the bands can be defined by
a grid of G + 1 points along the line C. The resolution of the grid will affect how
much the I-TSMs can adapt to η and (we conjecture) the efficiency of the UI-TS. We
demonstrate this by varying G when K = 2. We do not evaluate the band method
for K > 2, because it is difficult to set up and because we expect it to scale poorly in
K: the resolution decreases as K increases with G fixed.

Moderate K: The coarsest banding strategy is to set G = 1, which returns the
η-oblivious approach using the same bets and selections for every {Mt(η)}η∈C. The
resulting I-TSM Mt(η) is log-concave in η over all of C, and its minimum is attained
at a vertex of the polytope C: we can compute Mt by evaluating Mt(η) at the set of
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vertices V . The number of vertices scales combinatorially in K, as |V| =
(

K
K/2

)
when

K is even and stratum-sizes are equal. Enumerating the vertices is tractable for any
N and any support if the number of strata is not too big (e.g. K ≤ 16).

Arbitrary K: If we use η-oblivious selects St(η) := St, the η-aware negative
exponential betting strategy λnE

t (η) leads to an I-TSM Mt(η) that is smooth and
log-convex in η (see Appendix C.3.3). The minimum generally occurs on the interior
of C and can be found numerically. In particular, we have a convex objective with
a convex constraint and can use projected gradient descent to find the UI-TS for
arbitrary N and K. While we do not provide an implementation of that idea here,
we evaluate the statistical efficiency of negative exponential bets computed using the
banding strategy.

In the next section, we use the banding strategy to evaluate the statistical
performance of various methods.

7.7 Simulations

In this section we evaluate the efficiency of our proposed methods in three simulation
studies. The first set of simulations examines behavior on distributions that are point-
masses within strata. This simulation is an idealization of some common auditing
populations (e.g. risk-limiting comparison audits), wherein the vast majority of values
are concentrated at a single point reflecting correctly reported values, with a small
outlying mass reflecting errors. Point-masses are thus analogous to error-free auditing
populations. The second set of simulations models applications to binary populations
by drawing samples from Bernoulli distributions with varying µk, the probability of
observing a 1 in stratum k. The third set draws population values from truncated
Gaussian superpopulations within strata. The Gaussians are specified with a range
of means and standard deviations, and are truncated to [0, 1]. This constitutes a
more traditional simulation study, modeling a range of applications with continuous
populations.

7.7.1 Point-mass simulations

We evaluated methods on populations with stratum sizes N = [200, 200] and point-
masses as within-stratum distributions, so that xik := µk for i ∈ {1, . . . , 200} and
k ∈ {1, 2}. We defined populations with global means µ = 1

2
(µ1+µ2) ranging between

0.51 and 0.75, and gaps between strata of either 0 (i.e., µ1 = µ2 = µ) or 0.5 (i.e.,
µ1 = µ2 − 0.5).
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Figure 7.3: A, illustration of the banding strategy for computing the UI-TS when G = 7,
K = 2, N1 = N2, and η0 = 1/2. The space of intersection nulls is plotted with η1 on the
x-axis and η2 on the y-axis. The feasible null E0 is represented by the entire right triangle,
and split into bands over which bets and selections are fixed. Element-wise monotonicity of
Mt(η) implies the minimum must occur on the boundary C, represented by the blue line.
Along that boundary, Mt(η) is log-concave when bets and selections are η-oblivious. Since
they are fixed over bands, Mt(η) is log-concave within the intervals demarcated by the red
dots, and the minimum over all E0 (i.e., Mt) is attained at one of the red dots.
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The method for inference was either global lower confidence bounds (LCBs) as
in Section 7.4.1 or UI-TSs. The banding strategy discussed in Section 7.6 was used
with an equally-spaced grid, and we explored settings for G ∈ {3, 10, 100, 500}. Bets
were specified as aGRAPA described in Section 7.5.2, the fully fixed strategy with
λki := 0.75, or the negative exponential approach described in Section 7.5.2. The
allocation rule was specified as η-oblivious, nonadaptive “round robin,” alternately
drawing from each stratum, an η-aware and adaptive strategy “predictable Kelly”
strategy using a UCB-style algorithm on every η ∈ C, or an η-oblivious “greedy”
strategy using the UCB-style algorithm iteratively on the minimizing η at the last
time t to produce a single selection for all I-TSMs. In more detail, for each η ∈ C,
each stratum k, and each time t, the predictable Kelly strategy computed the
average of the past terms Z̄k(t−1) and the standard error of that average ŜEk(t−1),

estimated as the sample standard deviation of the terms divided by
√
Tk(t− 1). For

each k, an upper confidence bound (UCB) on the expected gain was computed as

Z̄k(t−1) +2ŜEk(t−1), and the next sample was drawn from the stratum with the largest
UCB. This predictable Kelly strategy was only implemented for the UI-TSs, since
the LCB approach cannot use η-aware allocation strategies. The greedy strategy was
similar, but instead of varying over each η ∈ C, it implemented the UCB-algorithm
for η∗

t−1, the most recent minimizer.
We tested each combination of inference method, betting strategy, and allocation

strategy on each population and recorded the stopping time. Because the populations
are point masses, there is no randomness whatsoever so that the sample sizes only
needed to be computed once. The sample sizes for UI-TSs with aGRAPA bets at
various G—averaged across populations and selection rules—appear in Table 7.1. As
expected, the efficiency of an adaptive UI-TS using the banding strategy increases as
G increases. In this case the efficiency gains level off around G = 100. Sample sizes at
G = 100 appear in Figure 7.4. UI-TSs are always more efficient than the LCB method.
The gap can be considerable (the y-axis is on the log scale). However, UI-TSs are
highly inefficient when used with both η-oblivious bets and allocations. It seems most
important to make the betting strategy η-aware, as evidenced by the performance
of aGRAPA and negative exponential bets. The greedy allocation rule was slightly
more efficient than round robin for aGRAPA bets, but they exhibited identical
performance using the negative exponential bets. Finally, despite its theoretically low
stopping times, the predictable Kelly rule led to poor sample sizes because different
selections were used for each intersection null. This highlights the importance of
using η-oblivious selections when aiming to minimize the global sample size nτ .
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Figure 7.4: Sample sizes (y-axis, log scale) for various sequential stratified tests (line
colors and types) of the global null H0 : µ ≤ 1/2 for 2-stratum point-mass alternatives with
varying global means (x-axis) and between-stratum spread (columns). For example, when
the global mean is 0.6 and the spread is 0.5, the within-stratum means are µ = [0.35, 0.85].
UI-TSs were computed using the banding strategy, with G = 100. Note that the round
robin (blue) and greedy Kelly (red) lines are overlapping in many panels. All methods
assumed sampling was with replacement, but sample sizes were capped at 400: a sample
size of 400 should be read as 400 or greater. LCB = lower confidence bound; UI-TS =
union-intersection test statistic.
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G Average sample size
3 179.7
10 90.1
100 48.3
500 46.8

Table 7.1: Sample sizes at various G, the number of grid points used in the banding
strategy for computing a product UI-TS using aGRAPA bets, averaged across point-mass
populations with K = 2 strata. The efficiency of the resulting UI-TS increases as G
increases, but exhibits diminishing returns: the difference between G = 100 and G = 500 is
trivial.

7.7.2 Bernoulli simulations

We drew 2-stratum populations of size N = [200, 200] from Bernoulli distributions
with stratum-wise success probabilities µ = [µ, µ] or µ = [µ − 0.25, µ + 0.25] and
population-level success probability µ ranging from 0.51 to 0.70. We tested the global
null H0 : µ ≤ 0.5 against these alternatives and recorded the sample sizes for the
same methods described in Section 7.7.1. For this simulation we added two new
betting strategies based on Kelly optimality for Bernoulli populations. Within each
stratum, the “shrink-trunc Bernoulli” strategy took the mean estimate µ̂kt described
in Section 2.5.2 of Stark [2023],10 and transformed it into a bet λST-Bern

t (η) as described
in Section 2.3 of that paper. In detail, the apriori estimate of the alternative was
set at (ηk + 1)/2 for each stratum and null mean; the anchoring factor was d := 20
so that the sample mean quickly dominates the estimate; the estimate is truncated
to ηk + 1/(2

√
d+ Tk(t)− 1). This mean estimate µ̂kt was transformed to a bet by

taking λST-Bern
kt (ηk) = (µ̂kt/ηk − 1)/(1− ηk). This is akin to using the Bernoulli SPRT

with a plug in estimate for the alternative mean [Wald, 1947]. We used the same
method with the true alternative mean in each stratum. This is the Kelly-optimal
method bet. While not usable in practice since the alternative is unknown, it provides
a lower bound on the expected stopping time of a UI-TS using a given selection rule.
We replicated each simulation of each population and method 1000 times, and took
the empirical mean sample sizes as an estimate of the expected sample size.

Results for round robin allocation and stratum gap equal to 0.5 appear in Figure 7.5.
The other allocation rules were comparable in terms of performance to the results in
Figure 7.4 and removing them simplifies the plot. The UI-TSs were nearly always

10The notation in Stark [2023] is essentially flipped from ours. It uses ηt for our µ̂kt (the alternative
mean estimate) and µt for our ηt (the null mean).
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sharper than any LCB method, except when fixed bets were used. The Kelly optimal
bets corresponding to the Bernoulli SPRT with the true alternative had the lowest
expected sample size, followed by the negative exponential bets and the ALPHA-ST
bets. Perhaps surprisingly, aGRAPA was not nearly as efficient as the other strategies,
though it was still much better than fixed betting.

7.7.3 Gaussian simulations

We drew finite populations of size N = [200, 200] from truncated Gaussian super-
populations within each stratum. The true grand mean µ ranged along a discrete
grid from 0.5 to 0.7. Before truncation, the superpopulation Gaussians had standard
deviations σ1 = σ2 = σ with σ ∈ {0.01, 0.05, 0.1}. The means were allowed to vary
across strata according to a parameter δ ∈ {0, 0.2} specifying the distance between
the strata so that µ = [µ− 0.5δ, µ+ 0.5δ]. We truncated the Gaussians by redrawing
samples that landed outside [0, 1], which was rare since for all simulation settings the
within-stratum means were bounded away from {0, 1} and σ was relatively small.

We implemented the same methods as the point mass and Bernoulli simulations,
and used the banding strategy with G = 100 to compute the UI-TSs. For this
simulation we also implemented a betting TSM drawing unstratified samples from
the pooled population. That method served as a benchmark that could be used
in practice if the statistician had control over the design. In each simulation of
each superpopulation scenario, we drew a new finite population from the truncated
Gaussian superpopulation, ran each method on the finite population, and recorded
the sample size. If the method did not stop by the time the finite population had
been consumed, we recorded a stopping time of 400. We replicated the simulations
500 times, and recorded the empirical mean stopping times as a conservative estimate
of the true expected stopping times of each method on each population.

The estimated expected stopping times for σ = 0.05 and round robin allocation
are plotted in Figure 7.6. To simplify the plots we do not include other allocation
strategies and σ, as variation across these factors is unsurprising. In particular,
the allocation strategies had similar performance to the point mass and Bernoulli
simulations, with predictable Kelly producing considerably higher stopping times
than round robin and greedy Kelly producing slightly lower stopping times when
the strata were spread apart (δ = 0.2). The methods’ performance was similar for
different σ as well, with expected stopping times slightly lower for σ = 0.01 and
higher for σ = 0.1.

UI-TS with fixed bets and LCB (regardless of the betting strategy) required the
most samples to stop. The unstratified TSM generally had the lowest expected sample
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Figure 7.5: Expected global sample sizes E[nτ ] (y-axis; log10 scale) for the global null
H0 : µ < 0.5 for Bernoulli populations with various true means (x-axis) and gaps between
strata (columns). The LCB and UI-TS methods (linetypes) were used with various settings
for the bets (line colors). The allocation strategy is round robin. Expected sample sizes are
taken as the empirical average sample size to stop at level α = 0.05 over 1000 simulations.
All methods assumed sampling was with replacement, but sample sizes were capped at 400,
so the expected sample size estimates may be biased downwards. LCB = lower confidence
bound; UI-TS = union-intersection test statistic.
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size (especially when used with aGRAPA bets), but the UI-TS had comparable
performance when used with negative exponential or aGRAPA bets. When the
stratum means were spread apart and the alternative was close to the null, the UI-TS
was slightly sharper than unstratified sampling. This is in keeping with the classical
theory of stratification in terms of MSE: stratification improves efficiency when
between-stratum variation is large compared to within-stratum variation [Neyman,
1934, Cochran, 1977].

7.8 Conclusions

UI-TSs are considerably more efficient than the simple approach of combining confi-
dence bounds for sequential stratified inference. Our results apply to a large range of
applied problems, including auditing, measurement, survey sampling, and randomized
controlled trials. We extended the criterion of Kelly optimality to stratified sampling
in order to construct efficient tests. However, because it targets stopping time, the
Kelly optimal UI-TS is not necessarily the most efficient in terms of sample size when
selections can vary across η ∈ C. We navigated this issue by examining heuristic
η-oblivious selection strategies: round robin or “greedy” selection, targeting the
growth of the smallest I-TSM. These rules had comparable performance; we generally
found that the bets mattered much more to efficiency than the selections.

That said, finding the Kelly-optimal η-oblivious selections or the η-aware selections
that minimize the expected sample size (rather than the expected stopping time) is an
important open challenge for sequential stratified inference. We conjecture that the
former problem will be easier to solve than the latter. Another interesting direction
for research is to examine the performance of TSMs targeting regret rather than
Kelly-optimality [Orabona and Jun, 2022] and leveraging optimal portfolio theory
[Cover and Thomas, 2006]. We primarily considered predictable betting methods to
construct efficient UI-TSs. When a prior on the alternative is available, the method
of mixtures can be used to construct the GRO E-value for unstratified sampling
[Grünwald et al., 2023]. The correctness of the prior determines the efficiency but not
the frequentist validity of the test. Generalizing the method of mixtures to stratified
inference may lead to efficient UI-TSs when the alternative is decribed by a prior.
Finally, it may be fruitful to consider combining functions beyond the product when
combining UI-TSs. While product combining is dominant for E-values larger than 1
[Vovk and Wang, 2021], this can be a difficult condition to ensure when bets cannot
be arbitrarily η-aware (e.g., in large K problems). Alternative combining functions
(like Fisher combining or average combining) may allow for consistent inference in
these cases without much additional fuss [Spertus and Stark, 2022]. Indeed, Cho et al.
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Figure 7.6: Expected sample sizes (y-axis; log10 scale) of various tests (line colors and
types) of the null H0 : µ ≤ 1/2 for 2-stratum populations drawn from truncated Gaussian
distributions with varying global means (x-axis) and gaps between stratum-wise means
(columns). Populations consist of N1 = N2 = 200 units within each stratum, drawn from
truncated Gaussian distributions with standard deviation σ = 0.05. Stratum selections
were round robin for all stratified methods. LCB = lower confidence bound; TSM = test
supermartingale; UI-TS = union-of-intersections test statistic
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[2024] show that average combining can lead to a test of power 1 and computationally
tractable optimization over C. However, in initial simulations comparing different
combining functions, we found product combining tended to dominate except when
the betting rule and selection rules were chosen very poorly (i.e. if bets were fixed and
selections were round robin). Further comparing strategies for constructing UI-TSs is
an interesting area for future research.
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C. Chenu, D.A. Angers, P. Barré, D. Derrien, D. Arrouays, and J. Balesdent. In-
creasing organic stocks in agricultural soils: Knowledge gaps and potential in-
novations. Soil and Tillage Research, 188:41–52, May 2019. ISSN 0167-1987.
doi: 10.1016/j.still.2018.04.011. URL https://www.sciencedirect.com/science/
article/pii/S0167198718303738.

B. Cho, K. Gan, and N. Kallus. Peeking with PEAK: Sequential, Nonparametric
Composite Hypothesis Tests for Means of Multiple Data Streams, February 2024.
URL http://arxiv.org/abs/2402.06122. arXiv:2402.06122 [cs, stat].

W.G. Cochran. Sampling Techniques. John Wiley & Sons, Inc., New York, 3rd
edition, 1977.

S.R. Cole and E.A. Stuart. Generalizing evidence from randomized clinical trials to
target populations: The ACTG 320 trial. American Journal of Epidemiology, 172
(1):107–115, July 2010. ISSN 1476-6256. doi: 10.1093/aje/kwq084.

R.T. Conant, C.E.P. Cerri, B.B. Osborne, and K. Paustian. Grassland management
impacts on soil carbon stocks: a new synthesis. Ecological Applications, 27:662–668,
2017. doi: 10.1002/eap.1473.

M.F. Cotrufo, M.G. Ranalli, M.L. Haddix, J. Six, and E. Lugato. Soil carbon
storage informed by particulate and mineral-associated organic matter. Nature
Geoscience, 12(12):989–994, December 2019. ISSN 1752-0908. doi: 10.1038/
s41561-019-0484-6. URL https://www.nature.com/articles/s41561-019-0484-
6. Publisher: Nature Publishing Group.

A.A. Cournot. Exposition of the Theory of Chances and Probabilities. NG Verlag,
1843. URL https://arxiv.org/pdf/1902.02781. Translated by Oscar Sheynin
(2013).

161

https://doi.org/10.1080/07352680902776556
https://www.sciencedirect.com/science/article/pii/S0167198718303738
https://www.sciencedirect.com/science/article/pii/S0167198718303738
http://arxiv.org/abs/2402.06122
https://www.nature.com/articles/s41561-019-0484-6
https://www.nature.com/articles/s41561-019-0484-6
https://arxiv.org/pdf/1902.02781


T.M. Cover and J.A. Thomas. Elements of Information Theory, 2nd Edition.
Wiley Series in Telecommunications and Signal Processing. Wiley-Interscience,
New York, 2006. ISBN 0471241954. URL http://www.amazon.com/exec/obidos/
redirect?tag=citeulike07-20&path=ASIN/0471241954.

D. R. Cox. Partial likelihood. Biometrika, 62(2):269–276, 1975. ISSN 00063444. URL
http://www.jstor.org/stable/2335362.

I.J. Dahabreh, S.E. Robertson, E.J. Tchetgen, E.A. Stuart, and M.A. Hernán.
Generalizing causal inferences from individuals in randomized trials to all trial-
eligible individuals. Biometrics, 75(2):685–694, June 2019. ISSN 1541-0420. doi:
10.1111/biom.13009.

F.N. David. Studies in the history of probability and statistics i. dicing and gaming
(a note on the history of probability). Biometrika, 42:1–15, 1955.

M. Davis, B. Alves, D. Karlen, K. Kline, M. Galdos, and D. Abulebdeh. Review
of soil organic carbon measurement protocols: A us and brazil comparison and
recommendation. Sustainability, 10:53, 2017. doi: 10.3390/su10010053.

J.J. de Gruijter, D.J. Brus, M.F.P. Bierkens, and M. Knotters. Sampling for Natural
Resource Monitoring. Springer-Verlag, Berlin Heidelberg, 2006. ISBN 978-3-540-
22486-0. doi: 10.1007/3-540-33161-1. URL https://www.springer.com/gp/book/
9783540224860.

J.J. de Gruijter, A.B. McBratney, B. Minasny, I. Wheeler, B.P. Malone, and U. Stock-
mann. Farm-scale soil carbon auditing. Geoderma, 265:120–130, 2016. doi:
10.1016/j.geoderma.2015.11.010.

B. De Vos, B. Vandecasteele, J. Deckers, and B. Muys. Capability of Loss-
on-Ignition as a Predictor of Total Organic Carbon in Non-Calcareous For-
est Soils. Communications in Soil Science and Plant Analysis, 36(19-20):2899–
2921, October 2005. ISSN 0010-3624. doi: 10.1080/00103620500306080. URL
https://doi.org/10.1080/00103620500306080. Publisher: Taylor & Francis
eprint: https://doi.org/10.1080/00103620500306080.

S.M. Devine, A.T. O’Geen, H. Liu, Y. Jin, H.E. Dahlke, R.E. Larsen, and
R.A. Dahlgren. Terrain attributes and forage productivity predict catchment-
scale soil organic carbon stocks. Geoderma, 368:114286, 2020. doi: 10.1016/
j.geoderma.2020.114286.

162

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471241954
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471241954
http://www.jstor.org/stable/2335362
https://www.springer.com/gp/book/9783540224860
https://www.springer.com/gp/book/9783540224860
https://doi.org/10.1080/00103620500306080


P. Diaconis and F. Mosteller. Methods for studying coincidences. Journal of
the American Statistical Association, 84(408):853–861, 1989. doi: 10.1080/
01621459.1989.10478847. URL https://www.tandfonline.com/doi/abs/10.1080/
01621459.1989.10478847.

P. Diggle and P.J. Ribeiro. Model-based Geostatistics. Springer Series in Statistics.
Springer-Verlag, New York, 2007. ISBN 978-0-387-32907-9. doi: 10.1007/978-0-
387-48536-2. URL https://www.springer.com/gp/book/9780387329079.

P. Ding, A. Feller, and L. Miratrix. Randomization inference for treatment effect
variation. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
78(3):655–671, 2016. ISSN 13697412, 14679868. URL http://www.jstor.org/
stable/24775356.

P. Ding, A. Feller, and L. Miratrix. Decomposing Treatment Effect Varia-
tion. Journal of the American Statistical Association, 114(525):304–317, Jan-
uary 2019. ISSN 0162-1459. doi: 10.1080/01621459.2017.1407322. URL https:

//doi.org/10.1080/01621459.2017.1407322. Publisher: Taylor & Francis eprint:
https://doi.org/10.1080/01621459.2017.1407322.

B. Efron and D. Feldman. Compliance as an Explanatory Variable in Clinical Trials.
Journal of the American Statistical Association, 86(413):9–17, 1991. ISSN 0162-1459.
doi: 10.2307/2289707. URL https://www.jstor.org/stable/2289707. Publisher:
[American Statistical Association, Taylor & Francis, Ltd.].

N. Egami and E. Hartman. Elements of External Validity: Framework, Design,
and Analysis. American Political Science Review, 117(3):1070–1088, August
2023. ISSN 0003-0554, 1537-5943. doi: 10.1017/S0003055422000880. URL
https://www.cambridge.org/core/journals/american-political-science-
review/article/elements-of-external-validity-framework-design-and-

analysis/2D0914404C84B3F169732FF1D5E39420.

A. Ek, P.B. Stark, P.J. Stuckey, and D. Vukcevic. Adaptively Weighted Audits
of Instant-Runoff Voting Elections: AWAIRE, page 35–51. Springer Nature
Switzerland, 2023. ISBN 9783031437564. doi: 10.1007/978-3-031-43756-4 3. URL
http://dx.doi.org/10.1007/978-3-031-43756-4 3.

B.H. Ellert, H.H. Janzen, and T. Entz. Assessment of a method to measure temporal
change in soil carbon storage. Soil Science Society of America Journal, 66:1687–
1695, 2002. doi: 10.2136/sssaj2002.1687.

163

https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.10478847
https://www.tandfonline.com/doi/abs/10.1080/01621459.1989.10478847
https://www.springer.com/gp/book/9780387329079
http://www.jstor.org/stable/24775356
http://www.jstor.org/stable/24775356
https://doi.org/10.1080/01621459.2017.1407322
https://doi.org/10.1080/01621459.2017.1407322
https://www.jstor.org/stable/2289707
https://www.cambridge.org/core/journals/american-political-science-review/article/elements-of-external-validity-framework-design-and-analysis/2D0914404C84B3F169732FF1D5E39420
https://www.cambridge.org/core/journals/american-political-science-review/article/elements-of-external-validity-framework-design-and-analysis/2D0914404C84B3F169732FF1D5E39420
https://www.cambridge.org/core/journals/american-political-science-review/article/elements-of-external-validity-framework-design-and-analysis/2D0914404C84B3F169732FF1D5E39420
http://dx.doi.org/10.1007/978-3-031-43756-4_3


J.R. England and R.A. Viscarra Rossel. Proximal sensing for soil carbon accounting.
SOIL, 4(2):101–122, May 2018. ISSN 2199-3971. doi: https://doi.org/10.5194/soil-
4-101-2018. URL https://www.soil-journal.net/4/101/2018/.

FAO. Measuring and modelling soil carbon stocks and stock changes in livestock
production systems: Guidelines for assessment, 2020. URL http://www.fao.org/
3/ca2934en/CA2934EN.pdf.

S.E. Fienberg and J.M. Tanur. Reconsidering the Fundamental Contributions of
Fisher and Neyman on Experimentation and Sampling. International Statistical
Review / Revue Internationale de Statistique, 64(3):237–253, 1996. ISSN 0306-7734.
doi: 10.2307/1403784. URL https://www.jstor.org/stable/1403784. Publisher:
[Wiley, International Statistical Institute (ISI)].

S.E. Fienberg, J. Neter, and R.A. Leitch. Estimating total overstatement error in
accounting populations. J. Am. Stat. Assoc., 72:295–302, 1977.

R. A. Fisher. On the mathematical foundations of theoretical statistics. Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, 222:309–368, 1922. ISSN 02643952. URL
http://www.jstor.org/stable/91208.

R.A. Fisher. Statistical methods for research workers. Oliver and Boyd, 1925.

R.A. Fisher. The design of experiments. Oliver and Boyd, 1935.

A. Franzluebbers. Soil organic carbon sequestration and agricultural greenhouse gas
emissions in the southeastern usa. Soil & Tillage Research, 83:120–147, 2005. doi:
10.1016/j.still.2005.02.012.

D.A. Freedman. On regression adjustments in experiments with several treat-
ments. Annals of Applied Statistics, 2(1):176–196, March 2008a. ISSN 1932-
6157, 1941-7330. doi: 10.1214/07-AOAS143. URL https://projecteuclid.org/
euclid.aoas/1206367817. Publisher: Institute of Mathematical Statistics.

D.A. Freedman. On regression adjustments to experimental data. Advances
in Applied Mathematics, 40(2):180–193, February 2008b. ISSN 0196-8858.
doi: 10.1016/j.aam.2006.12.003. URL https://www.sciencedirect.com/science/
article/pii/S019688580700005X.

164

https://www.soil-journal.net/4/101/2018/
http://www.fao.org/3/ca2934en/CA2934EN.pdf
http://www.fao.org/3/ca2934en/CA2934EN.pdf
https://www.jstor.org/stable/1403784
http://www.jstor.org/stable/91208
https://projecteuclid.org/euclid.aoas/1206367817
https://projecteuclid.org/euclid.aoas/1206367817
https://www.sciencedirect.com/science/article/pii/S019688580700005X
https://www.sciencedirect.com/science/article/pii/S019688580700005X
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Empire of Chance. Cambridge University Press, 1989.

Amanda K. Glazer, Jacob V. Spertus, and Philip B. Stark. More Style, Less Work:
Card-style Data Decrease Risk-limiting Audit Sample Sizes. Digital Threats:
Research and Practice, 2(4):1–15, December 2021. ISSN 2692-1626, 2576-5337. doi:
10.1145/3457907. URL https://dl.acm.org/doi/10.1145/3457907.

E. Goidts, B. Van Wesemael, and M. Crucifix. Magnitude and sources of uncertainties
in soil organic carbon (soc) stock assessments at various scales. European Journal
of Soil Science, 60:723–739, 2009. doi: 10.1111/j.1365-2389.2009.01157.x.

P.I. Good. Permutation, Parametric, and Bootstrap Tests of Hypotheses. Springer
Series in Statistics. Springer-Verlag, New York, 3 edition, 2005. ISBN 978-0-
387-20279-2. doi: 10.1007/b138696. URL https://www.springer.com/gp/book/
9780387202792.

E. Gorham. Northern Peatlands: Role in the Carbon Cycle and Probable Responses to
Climatic Warming. Ecological Applications, 1(2):182–195, 1991. ISSN 1939-5582. doi:
10.2307/1941811. URL https://onlinelibrary.wiley.com/doi/abs/10.2307/
1941811. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.2307/1941811.

H. Gosnell, N. Robinson-Maness, and S. Charnley. Profiting from the sale of carbon
offsets: A case study of the trigg ranch. Rangelands, 33:25–29, 2011. doi: 10.2111/
1551-501X-33.5.25.

P. Grünwald, R. de Heide, and W. Koolen. Safe testing. Journal of the Royal
Statistical Society, B: Statistical Methodology, in press, 2023.

I. Hacking. The Emergence of Probability. Cambridge University Press, Cambridge,
second edition, 2006.

165

https://www.nature.com/articles/s41467-022-31540-9
https://dl.acm.org/doi/10.1145/3457907
https://www.springer.com/gp/book/9780387202792
https://www.springer.com/gp/book/9780387202792
https://onlinelibrary.wiley.com/doi/abs/10.2307/1941811
https://onlinelibrary.wiley.com/doi/abs/10.2307/1941811


J.L. Hall, L.W. Miratrix, P.B. Stark, M. Briones, E. Ginnold, F. Oakley, M. Peaden,
G. Pellerin, T. Stanionis, and T. Webber. Implementing risk-limiting post-
election audits in California. In Proc. 2009 Electronic Voting Technology Work-
shop/Workshop on Trustworthy Elections (EVT/WOTE ’09), Montreal, Canada,
August 2009. USENIX. URL http://www.usenix.org/event/evtwote09/tech/
full papers/hall.pdf.

M.H. Hansen, W.N. Hurwitz, and W.G. Madow. Sample survey methods and theory,
volume 1: method and applications. Wiley, 1953.

J. Hassink. The capacity of soils to preserve organic C and N by their association with
clay and silt particles. Plant and Soil, 191(1):77–87, April 1997. ISSN 1573-5036. doi:
10.1023/A:1004213929699. URL https://doi.org/10.1023/A:1004213929699.

M.J. Higgins, R.L. Rivest, and P.B. Stark. Sharper p-values for stratified post-election
audits. Statistics, Politics, and Policy, 2(1), 2011. URL http://www.bepress.com/
spp/vol2/iss1/7.

W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Am.
Stat. Assoc., 58:13–30, 1963.

T. Holland-Letz and A. Kopp-Schneider. Optimal experimental designs for
dose–response studies with continuous endpoints. Archives of Toxicology, 89
(11):2059–2068, 2015. ISSN 0340-5761. doi: 10.1007/s00204-014-1335-2. URL
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655015/.

P.S. Homann, P. Sollins, M. Fiorella, T. Thorson, and J.S. Kern. Regional soil
organic carbon storage estimates for western oregon by multiple approaches.
Soil Science Society of America Journal, 62:789–796, 1998. doi: 10.2136/
sssaj1998.03615995006200030036x.

L. Howard, R.L. Rivest, and P.B. Stark. A review of robust post-election audits:
Various methods of risk-limiting audits and Bayesian audits. Technical report, Bren-
nan Center for Justice, 2019. https://www.brennancenter.org/sites/default/
files/2019-11/2019 011 RLA Analysis FINAL 0.pdf.

S.R. Howard, A. Ramdas, J. McAuliffe, and J.S. Sekhon. Time-uniform, nonparamet-
ric, nonasymptotic confidence sequences. The Annals of Statistics, 49(2), apr 2021.
doi: 10.1214/20-aos1991. URL https://doi.org/10.1214%2F20-aos1991.

J. Hsu. Multiple Comparisons: Theory and Methods. Chapman and Hall, London,
1996.

166

http://www.usenix.org/event/evtwote09/tech/full_papers/hall.pdf
http://www.usenix.org/event/evtwote09/tech/full_papers/hall.pdf
https://doi.org/10.1023/A:1004213929699
http://www.bepress.com/spp/vol2/iss1/7
http://www.bepress.com/spp/vol2/iss1/7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655015/
https://www.brennancenter.org/sites/default/files/2019-11/2019_011_RLA_Analysis_FINAL_0.pdf
https://www.brennancenter.org/sites/default/files/2019-11/2019_011_RLA_Analysis_FINAL_0.pdf
https://doi.org/10.1214%2F20-aos1991


S.H. Hurlbert. Pseudoreplication and the Design of Ecological Field Experiments.
Ecological Monographs, 54(2):187–211, 1984. ISSN 0012-9615. doi: 10.2307/1942661.
URL https://www.jstor.org/stable/1942661. Publisher: Ecological Society of
America.

G.W. Imbens and D.B. Rubin. Causal Inference for Statistics, Social, and Biomedical
Sciences: An Introduction. Cambridge University Press, Cambridge, 2015.
ISBN 978-0-521-88588-1. doi: 10.1017/CBO9781139025751. URL https:

//www.cambridge.org/core/books/causal-inference-for-statistics-
social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB.

Indigo Agriculture. Additionality. https://www.indigoag.com, 2024. Accessed:
2024-04-19.

International Energy Agency. Net Zero Roadmap: A Global Pathway to
Keep the 1.5 °C Goal in Reach – Analysis, September 2023. URL
https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-
keep-the-15-0c-goal-in-reach.

A.A. Jackson Hammond, M. Motew, C.D. Brummitt, M.L. DuBuisson, G. Pinjuv,
D.V. Harburg, E.E. Campbell, A.A. Kumar, P. Stanley, et al. Implementing
the soil enrichment protocol at scale: opportunities for an agricultural carbon
market. Frontiers in Climate, 3, 2021. doi: 10.3389/fclim.2021.686440. URL
https://doi.org/10.3389/fclim.2021.686440.

R. Jandl, M. Rodeghiero, C. Martinez, M.F. Cotrufo, F. Bampa, B. van Wesemael,
R.B. Harrison, I.A. Guerrini, D.D. Richter, L. Rustad, K. Lorenz, A. Chabbi,
and F. Miglietta. Current status, uncertainty and future needs in soil organic
carbon monitoring. Science of The Total Environment, 468–469:376–383, 2014. doi:
10.1016/j.scitotenv.2013.08.026.

J.F.W. Johnston. Experimental Agriculture: Being The Results Of Past, And Sug-
gestions For Future Experiments In Scientific And Practical Agriculture. William
Blackwell and Sons, 1849. ISBN 978-1-4368-4219-8.

D.L. Jones, J. Rousk, G. Edwards-Jones, T.H. DeLuca, and D.V. Murphy. Biochar-
mediated changes in soil quality and plant growth in a three-year field trial. Soil
Biology and Biochemistry, 45:113–124, 2012. doi: 10.1016/j.soilbio.2011.10.012.

C.G. Jung. Synchronicity: An Acausal Connecting Principle. Princeton University
Press, Princeton, 2010.

167

https://www.jstor.org/stable/1942661
https://www.cambridge.org/core/books/causal-inference-for-statistics-social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB
https://www.cambridge.org/core/books/causal-inference-for-statistics-social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB
https://www.cambridge.org/core/books/causal-inference-for-statistics-social-and-biomedical-sciences/71126BE90C58F1A431FE9B2DD07938AB
https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
https://www.iea.org/reports/net-zero-roadmap-a-global-pathway-to-keep-the-15-0c-goal-in-reach
https://doi.org/10.3389/fclim.2021.686440


C. Kahn. Half of Republicans say Biden won because of a ’rigged’ election:
Reuters/Ipsos poll. Reuters, November 2020. URL https://www.reuters.com/
article/us-usa-election-poll-idUSKBN27Y1AJ.

H.M. Kaplan. A method of one-sided nonparametric inference for the mean of a
nonnegative population. The American Statistician, 41:157–158, 1987.

N. Karmarkar. A new polynomial time algorithm for linear programming. Combina-
torica, 4:373–395, 1984.

M. Kasy and A. Sautmann. Adaptive Treatment Assignment in Experiments for
Policy Choice. Econometrica, 89(1):113–132, 2021. ISSN 1468-0262. doi: 10.3982/
ECTA17527. URL https://onlinelibrary.wiley.com/doi/abs/10.3982/
ECTA17527. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.3982/ECTA17527.

J. L. Kelly Jr. A new interpretation of information rate. Bell Sys-
tem Technical Journal, 35(4):917–926, 1956. doi: https://doi.org/10.1002/
j.1538-7305.1956.tb03809.x. URL https://onlinelibrary.wiley.com/doi/abs/
10.1002/j.1538-7305.1956.tb03809.x.

L. Kish. Survey Sampling. John Wiley & Sons, Inc., New York, 1965.

K. Kosmelj, A. Cedilnik, and P. Kalan. Comparison of a two-stage sampling design
and its composite sample alternative: An application to soil studies. Environmental
and Ecological Statistics, 8(2):109–119, June 2001. ISSN 1573-3009. doi: 10.1023/A:
1011378431085. URL https://doi.org/10.1023/A:1011378431085.

A.N. Kravchenko and G.P. Robertson. Whole-profile soil carbon stocks: The danger
of assuming too much from analyses of too little. Soil Science Society of America
Journal, 75(1):235–240, 2011.

D.G. Krige. A statistical approach to some basic mine valuation problems on the
Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy,
52(6):119–139, December 1951. ISSN 0038-223X. URL https://journals.co.za/
content/saimm/52/6/AJA0038223X 4792. Publisher: Southern African Institute
of Mining and Metallurgy.

Y. Kuzyakov and E. Blagodatskaya. Microbial hotspots and hot moments in soil:
Concept & review. Soil Biology and Biochemistry, 83:184–199, 2015. doi: 10.1016/
j.soilbio.2015.01.025.

168

https://www.reuters.com/article/us-usa-election-poll-idUSKBN27Y1AJ
https://www.reuters.com/article/us-usa-election-poll-idUSKBN27Y1AJ
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA17527
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA17527
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1956.tb03809.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.1956.tb03809.x
https://doi.org/10.1023/A:1011378431085
https://journals.co.za/content/saimm/52/6/AJA0038223X_4792
https://journals.co.za/content/saimm/52/6/AJA0038223X_4792


S.R. Künzel, J.S. Sekhon, P.J. Bickel, and B. Yu. Metalearners for estimating heteroge-
neous treatment effects using machine learning. Proceedings of the National Academy
of Sciences, 116(10):4156–4165, March 2019. doi: 10.1073/pnas.1804597116. URL
https://www.pnas.org/doi/full/10.1073/pnas.1804597116. Publisher: Pro-
ceedings of the National Academy of Sciences.

T.L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances
in Applied Mathematics, 6(1):4–22, 1985. ISSN 0196-8858. doi: https://doi.org/
10.1016/0196-8858(85)90002-8. URL https://www.sciencedirect.com/science/
article/pii/0196885885900028.

R. Lal. Regenerative agriculture for food and climate. Journal of Soil and Water
Conservation, 75(5):123A–124A, September 2020. ISSN 0022-4561, 1941-3300.
doi: 10.2489/jswc.2020.0620A. URL https://www.jswconline.org/content/75/
5/123A. Publisher: Soil and Water Conservation Society Section: A Section.

R. Lal and B. A. Stewart. Soil and Climate. CRC Press, September 2018. ISBN
978-0-429-48726-2. doi: 10.1201/b21225. URL https://www-taylorfrancis-

com.libproxy.berkeley.edu/books/e/9780429487262.

R.M. Lark. Some considerations on aggregate sample supports for soil inven-
tory and monitoring. European Journal of Soil Science, 63(1):86–95, 2012.
ISSN 1365-2389. doi: 10.1111/j.1365-2389.2011.01415.x. URL https://

onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2389.2011.01415.x. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2389.2011.01415.x.
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A.1 Mathematical Framework

We have a plot P ⊂ R3. An element of P is a 3-tuple (x, y, z). x denotes longitude or
x-axis distance from an origin (e.g. the lower left hand corner of a rectangular plot),
y denotes latitude or y-axis distance, and z denotes depth.

At (x, y, z) the soil has some concentration of SOC, which we will denote by
c(x, y, z) ∈ [0, 100] with units in percent or equivalently grams SOC per hectogram
of soil. Note that sometimes SOC concentration is reported in grams per kilogram.
Note also that c(x, y, z) is best conceptualized as an average over a small window
centered at (x, y, z). Taking the design-based perspective, we consider c(x, y, z) to be
fixed but unknown.

To convert to grams SOC per volume of soil, take d(x, y, z) to be the density of
the soil at point (x, y, z), e.g. in grams per cubic centimeter. This is called the “bulk
density” in soil science. The amount or stock of carbon in a small area centered at
point (x, y, z) is thus c(x, y, z)× d(x, y, z). The total amount or stock of carbon in a
plot is:

T =

∫
P
c(x, y, z)× d(x, y, z)dP =

∫ xmax

0

∫ ymax

0

∫ zmax

0

c(x, y, z)× d(x, y, z) dz dy dx

Assuming constant bulk density means that d(x, y, z) = d and the total carbon
becomes:

T = d

∫
P
c(x, y, z)dP = d× µ

where µ :=
∫
P c(x, y, z)dP is the population average SOC concentration—the key

parameter to be estimated through soil sampling. The bulk density d must also be
estimated.

The population variance of a plot is formally:

σ2
p =

∫
P
[c(x, y, z)− µ]2 dP

The population variance is a measure of heterogeneity that is instrumental in deter-
mining the precision of estimates of µ.

The mean µ and variance σ2
p are estimated using sampled cores. The plot is

often sliced into profiles along depth, and positions (x, y) locations are randomly
sampled within depth. From here on we will assume we are sampling within a profile
and ignore depth. Randomly sampled positions are denoted {(Xi, Yi)}ni=1 and the
n corresponding cores are denoted {c(Xi, Yi)}ni=1, or {C1, ..., Cn} when the location
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is not important. We suppose here that these cores are selected by a UIRS. The
properties of the sample mean of cores from a UIRS, C̄ = 1

n

∑n
i=1 Ci, are simple and

well-understood: C̄ is unbiased (E[C̄] = µ) and has variance V[C̄] = σ2
p/n.

Given a UIRS {C1, ..., Cn} compositing bins the cores into k groups of size n/k.
The groups are denoted by a set of indices {g1, ..., gk}, where g1 = {1, ..., n/k}, g2 =
{n/k+1, ..., 2n/k}, etc. The cores in each group are physically mixed together to form
composite samples {S1, ...Sk}. Under compositing additivity, we have Si =

k
n

∑
j∈gi Cj .

Note also that the above notation covers the case where no compositing is done, with
k = n and Si = Ci.

Under equal proportions compositing of cores from a UIRS, it follows immediately
that the sample mean of the composited cores is an unbiased estimate of µ:

E
[
1

k

k∑
i=1

Si

]
= E

[
1

k

k∑
i=1

∑
j∈gi

k

n
Cj

]
= E

[
1

n

n∑
i=1

Ci

]
= µ

Furthermore, because the sample mean of the composite samples is equivalent to the
sample mean of the constituents, its variance is also

V
[
1

k

k∑
i=1

Si

]
= V

[
1

n

n∑
i=1

Ci

]
=

σ2
p

n
.

Assay error is drawn from an unknown distribution with positive support and
denoted δi. Measured samples are S∗

i = Siδi. We assume assays are unbiased so
that E(δi) = 1 and E(S∗

i ) = Si where the expectation is with respect to the assay
error only (not the sampling distribution). We also assume that the assay error has
constant variance V(δi) = σ2

δ , that does not depend on Si.
Our estimator is the mean of k measured samples composited from n cores:

µ̂ = 1
k

∑k
i=1 S

∗
i . Under our assumptions, µ̂ is an unbiased estimator:

E[µ̂] = E

[
1

k

k∑
i=1

Siδi

]
=

1

k

k∑
i=1

[∑
j∈gi

k

n
E[Cj]

]
E[δi] =

1

k

k∑
i=1

[∑
j∈gi

k

n
µ

]
= µ. (A.1)
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Its variance is:

V [µ̂] =
1

k2

k∑
i=1

V[Siδi]

=
1

k2

k∑
i=1

(
V[Si]V[δi] + E[Si]

2V[δi] + E[δi]2V[Si]
)

=
1

k2

k∑
i=1

(
k

n
σ2σ2

δ + µ2σ2
δ +

k

n
σ2

)
=

σ2(1 + σ2
δ )

n
+

µ2σ2
δ

k

A.2 Optimizations

A.2.1 Minimum error with a fixed budget

For a budget B, fixed in advance, we seek the solution to the optimization problem:

V(µ̂)opt =min
M,P

min
n,k

σ2
p(1 + σ2

δ )

n
+

µ2σ2
δ

k
(A.2)

s.t. cost0 + n · costc + k · (costP + costA) ≤ B (A.3)

k ≥ 1 (A.4)

k ≤ n (A.5)

where as above cost0 is the fixed cost, costc is the cost of sampling a single core,
costP is the cost of sample prep, and costA is the cost of assay. A and P additionally
denote the assay and sample preparation schemes, which affect costs and σδ.

For a fixed A and P , the inner optimization problem can be solved in closed form
using a Lagrange multiplier for the constraint. The optimal sampling and assay sizes
are then:

nopt = (B − cost0)
σp

√
1 + σ2

δ

[σp

√
(1 + σ2

δ )costc + µσδ

√
costP + costA]

√
costc

(A.6)

kopt = (B − cost0)
µσδ

[σp

√
(1 + σ2

δ )costc + µσδ

√
costP + costA]

√
costP + costA

. (A.7)
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This solution ignores the constraints k ≥ 1 and k ≤ n. If we find kopt < 1, then set
kopt = 1 and nopt = (B − cost0 − costP − costA)/costc. If we find kopt > n∗

P,M then set
kopt = nopt = (B − cost0)/(costc + costP + costA). To obtain integer solutions while
staying under budget, nopt and kopt should be rounded down.

A.2.2 Minimum cost for a given precision

Given a maximum variance V that we can tolerate, we seek the minimum budget
over all ways of allocating the budget to samples and assays while achieving that
precision. Formally:

Bopt =min
M,P

min
n,k

cost0 + n · costc + k · (costP + costA) (A.8)

s.t.
σ2
p(1 + σ2

δ )

n
+

µ2σ2
δ

k
≤ V (A.9)

k ≥ 1 (A.10)

k ≤ n. (A.11)

The solution of the inner optimization (for fixed M and P ) is:

nopt =

[(
costc · σ2

p(1 + σ2
δ )

costP + costA

)1/2

+ 1

]
µ2σ2

δ

V
(A.12)

kopt =
σ2
p(1 + σ2

δ )

V

(
1−

[(
costc·σ2

p(1+σ2
δ )

costP+costA

)1/2
+ 1

]−1
) . (A.13)

The constraints k ≥ 1 and k ≤ n are not respected by these solutions. If we find
kopt < 1, then set kopt = 1 and nopt = σ2

p/V (obtained, for example, when there is no
assay error). If we find kopt ≥ nopt, then set kopt = nopt = (σ2

p(1 + σ2
δ ) + µ2σ2

δ )/V . To
get integer solutions nopt and kopt should be rounded up.

A.3 Estimating σ2
δ

A.3.1 Replicate assays

Suppose we have r replicated, unbiased assays for the ith sample. The replicates
are denoted {S∗

i1, S
∗
i2, ..., S

∗
ir}, where S∗

ij = Siδij is the true SOC concentration in
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composite sample i multiplied by an independent, mean 1 assay error. The sample
mean over replicates is S̄i =

1
r

∑r
j=1 S

∗
ij, which is an unbiased estimate of Si with

variance V[S̄i|Si] = V[S∗
ij|Si]/r. An unbiased estimate of S2

i is the squared sample
mean minus its variance, i.e. S̄2

i − 1
r(1−r)

∑r
j=1(S

∗
ij − S̄i)

2. Thus we might estimate σ2
δ

by plugging in the unbiased estimators of V[S∗
ij|Si] and S2

i :

σ̂2
δ =

1
r−1

∑r
j=1(S

∗
ij − S̄∗

i )
2

(S̄∗
i )

2 − 1
r(r−1)

∑r
j=1(S

∗
ij − S̄∗

i )
2
. (A.14)

This is not necessarily unbiased. If the numerator and denominator were independent,
then Jensen’s inequality would make the estimate conservative in expectation: E[σ̂2

δ ] >
σδ. We used this replicated measurement technique to estimate the error of DC-EA.

The assay variance estimate σ̂2
δ can be computed on any sample that is replicated

2 or more times. One strategy to estimate σδ is thus to duplicate every sample (r = 2)
and then take the average or median, though the variance of estimates may be high.
Plotting σ̂2

δi against S
∗
i should indicate potential violations of the constant assay error

variance assumption. Another strategy is to replicate a single sample some large
number of times, say r = 30, but this will not provide information about the constant
variance assumption. A good balance is to measure a few samples along a grid of S∗

i

values some moderately large number of times, say r = 5. Under constant assay error
variance, the estimates σ̂2

δi should be fairly close and there should not be a trend in
S∗
i .

A.3.2 Prediction Methods

Suppose we have a method that is calibrated to an unbiased assay (e.g. DC-EA)
by regression, like LOI or MIRS. There are two sources of error in the estimate.
First, there is the assay error of the calibration assay which can be estimated directly
through replication as per Section A.3.1. Second, there is the error in the calibration
itself, i.e. prediction error. We discuss two ways to estimate the prediction error. To
approximate the total error of a prediction method we recommend simply adding the
pieces together.

Prediction methods typically assume an additive error model and estimate the
variance of the additive error out of sample. We will call this estimate RMSEv for
validation root mean squared error. Now, if SOC concentration has been first trans-
formed to the log scale, then the model implicitly assumes that error is multiplicative
on the original scale, our estimate of the error in prediction is then exp(RMSEv). On
the other hand, if SOC is modeled directly (i.e. without a log transformation) then
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we can approximate the error on a multiplicative scale by assuming that the additive
error pertains to the average SOC assay, which suggests dividing by the average assay.

Thus we estimate the prediction error by RMSEv

µ̂
.

In our application, LOI and MIRS were calibrated both to DC-EA assays. For
both of these methods, we had an RMSEv of SOC modeled on the original scale
(without a log transform) so we estimated the error of these methods as

σ̂δ,LOI = σ̂δ,DC-EA +
RMSEv,LOI

µ̂

σ̂δ,MIRS = σ̂δ,DC-EA +
RMSEv,MIRS

µ̂

A.4 Shortest path through random points in P
Recall that the area of plot P is A. Finding the shortest path through n points is
known as the traveling salesman problem. If the n points are generated randomly and
independently with density f(x) then the Beardwood-Halton-Hammersley theorem
for R2 says that the length of the shortest path converges to:

Ln/
√
n → β2

∫
R2

√
f(x)dx

β2 is an unknown constant, but analytical bounds and numerical simulations have
pegged it at about 0.714 [Arlotto and Steele, 2016]. For a UIRS, f(x) = 1

A on P and

0 elsewhere. The integral thus evaluates to
√
A.
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B.1 Computational details

The following describes details of the allocation simulations in Section 6.4. Within
each stratum, we computed null means along an equispaced grid of (2max{N1, N2})
points1 for θ1 ∈ [ε1, θ/w1 − ε1] with θ2 = (θ − w1θ1)/w2. The null means were then
adjusted to β1 := θ1 + 1− Āc

1 and β2 := θ1 + 1− Āc
2. The conditional null means βi1

and βi2 were computed as:

βik =
Nkβk −

∑i−1
j=1Xik

Nk − (i− 1)

Tuning parameters for ALPHA-ST were chosen as in Stark [2023, Section 2.5.2]
with dk = 20 and the initial estimate τ0k set to uA

k = 1, the expected mean when
there is no error in the CVRs. For ALPHA-UB, we set

τUB

ik :=
(dkτ0k +

∑i−1
j=1 Xjk)/(dk + i− 1) + fkuk/σ̂

2
ik

1 + fk/σ̂2
ik

.

The first term in the numerator of τUB
ik is truncated shrinkage estimator ALPHA-ST.

The second term biases τUB
ik towards uk with a weight proportional to the inverse

running sample variance σ̂2
ik. The constant of proportionality fk is a tuning parameter

set to fk := .01; higher fk would bias τik towards uk more aggressively. The variance-
dependent bias amounts to betting more when the population variance is low, which it
tends to be in comparison audits when the voting system works properly. Truncation
keeps τik within its allowed range.

For both ALPHA strategies, τik was truncated to be in [βik + εk, uk(1− δ)], where
εk := 1/2Nk was the minimum value of one assorter and δ = 2.220446 × 10−16

was machine precision. If βik + εk ≥ uk, we set the corresponding terms in the
supermartingale to 1: that (composite) null is true.

Each stratum selection rule was applied to every supermartingale. For proportional
allocation, there was no additional selection: samples were gathered round-robin
across strata, omitting any strata that were fully exhausted. For lower-sided testing,
the sampling from a stratum ceased when the lower-sided test rejected at level
.05. This was implemented by setting all future terms in the supermartingale
equal to 1 after rejection. The stratumwise supermartingales were then multiplied
to produce 2max{N1, N2} intersection supermartingales and their minimum (over
nulls) was found at each sample size. The reciprocal of this minimized intersection

1The cardinality was chosen so that a null mean was computed for every possible (discrete) value
of θk. A finer grid is unnecessary; a coarser grid may not find the true minimum.
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supermartingale was a sequence of P -values corresponding to P ∗
M under a particular

sample allocation rule. The same strategy, but using Fisher pooling, was used to find
P ∗
F . The sample size at risk limit α = 5% is the sample size for which the P -value

sequence first hits or crosses 0.05, summed across both strata.
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Appendix C

Supplementary materials for
chapter 7
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C.1 Example: Kelly-optimality for a point mass

population

We find the minimum expected stopping time EXN
[τ ∗] when the alternative is XN ∈

ℵ1
N ∩ℵδ

N , where ℵδ
N contains all stratified populations of size N with xki = µk for all

k and i. That is, the population distribution consists of point masses within strata.
The procedure that achieves that minimum is a Kelly-optimal UI-TS, constructed by
applying Lemma 3 and Lemma 4. Since τ ≤ nτ , EXN

[τ ∗] immediately yields a lower
bound on the minimum expected sample size EXN

[n∗
τ ]. We assume sampling is with

replacement so the Kelly-optimal rules do not depend on time.
To begin, consider the betting rule

λk(η) =
1{µk > ηk}

ηk
.

It is clearly Kelly-optimal when the within-stratum distributions are point masses: it
bets the maximum amount 1/ηk if xik = µk > ηk, in which case the bet is certain to
succeed, and 0 otherwise. Following Lemma 3, the Kelly-optimal selection rule always
pulls the strata with the largest log-growth (with ties broken arbitrarily). This gives
us an explicit formula for the Kelly-optimal I-TSM at η:

M∗
t (η) := max

k

t∏
i=1

[1 + η−1
k (µk − ηk)] = max

k

(
µk

ηk

)t

,

where we have dropped the indicator because there is always at least one stratum
with µk > ηk since the alternative is true. The Kelly-optimal UI-TS is thus:

M∗
t = min

η∈C
max

k

(
µk

ηk

)t

.

Further specialize to K = 2, w1 = w2, and η0 = 1/2. Letting η := η1 so
(1− η) = η2, we can write

M∗
t = min

η∈[0,1]

(
µ1

η
∨ µ2

1− η

)t

,

which is minimized when the two terms inside the parentheses are equal. That is, the
minimizer satisfies

µ1

η∗
=

µ2

1− η∗
=⇒ η∗

1− η∗
=

µ1

µ2

.
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This nonlinear equation can be solved numerically for any (µ1, µ2). The stopping
time is the point at which M∗

t crosses 1/α. This point solves:(
µ1

η∗

)t

= α−1

⇐⇒
t(log µ1 − log η∗) = − logα

⇐⇒

t =
logα

log η∗ − log µ1

,

and the Kelly-optimal stopping time is τ ∗ = ⌈t⌉. In Figure C.1, we plot the stopping
time of a Kelly-optimal UI-TS at level α = 0.05 over a range of µ1 and µ2 in the
alternative.

C.2 Proofs

C.2.1 Proof of Lemma 1

Part 1 of Lemma 1, on the separate validity of the lower confidence bounds (LCBs),
follows immediately by inverting level α tests constructed from within-stratum betting
TSMs. Indeed, Lkt is precisely the ηk that yields a within-stratum TSM of size
1/α: Mkt(Lkt) = 1/α. The corresponding within-stratum P -value is Pkt(Lkt) :=
1/Mkt(Lkt) = α, which implies each Lkt is a (1− α) LCB satisfying the first claim.
This topic is covered extensively in Waudby-Smith and Ramdas [2023].

Part 2 of Lemma 2 follows from an application of the closed testing principle.
Specifically, recall that the family-wise error rate for a collection of partial hypotheses
{H0k}Kk=1 is controlled by testing every intersection hypothesis corresponding to
possible subsets of {H0k}Kk=1. Take each partial (marginal) hypothesis to be

H0k : µk ≤ Lk,

which corresponds to a TSM of Mkt(Lkt) = 1/α, and note that {Mkt(Lkt)}Kk=1 are
mutually independent under stratified sampling. Every intersection hypothesis can be
tested by taking the product of two or more within-stratum TSMs, and the resulting
product will always be above 1/α. For example, the 2-way intersection H0k ∩H0j is
tested byMkt(Lkt)Mjt(Ljt) = 1/α2 > 1/α. As a result, every higher-order intersection
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Figure C.1: Kelly-optimal stopping times (color, log10 scale) at level α = 0.05 under
sampling with replacement from a range of stratified point mass populations with means µ1

(x-axis) and µ2 (y-axis). The global null is H0 : µ ≤ 1/2 and the dotted line indicates the
boundary of the null ℵ0

N . All populations here satisfy µ > 1/2 + 0.005, and so are in the
interior of the alternative ℵ1

N . The stopping times lower bound the workload of any test
since EXN

[τ ] ≤ EXN
[nτ ].
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hypothesis will be rejected, the P -values {Pkt(Lkt)}Kk=1 are simultaneously valid by
closed testing, and the LCBs {Lkt}Kk=1 are simultaneously below the stratum-wise
means {µk}Kk=1 with probability 1− α.

C.2.2 Proof of Lemma 3

We can write the expected log-growth as

E [log∆Mt(η)] = E

[
log

K∑
k=1

1{S(t) = k}Zkt(ηk)

]

= E

[
log

K∏
k=1

Zkt(ηk)
1{S(t)=k}

]

= E

[
K∑
k=1

1{S(t) = k} logZkt(ηk)

]

=
K∑
k=1

pkt(ηk)E[logZkt(ηk)]

Given any allocation strategy (pt)t∈N, the overall expected log-growth is a convex
combination of the expected-log growth within-strata, and is maximized when each
E[logZkt(ηk)] is maximized. This is ensured by using the Kelly optimal bet λ∗

k =
argmaxλ∈[0,1/ηk] E[logZkt(ηk)] within each stratum. Now, assume we use the bets λ∗

so that each term E[logZkt(ηk)] is maximized. The allocation probabilities

p∗kt(η) := 1{k = argmax
j

E[logZjt(ηj)]}

maximize E[log∆Mt(η)] because they always choose the stratum with the largest
expected log growth.

C.3 Computational properties

In this section, we evaluate the computational tractability of finding Mt. Finding
the minimum over C is a hard problem when the betting and allocation rules can
be arbitrarily η-aware. We examine the possibility of finding a solution by brute
force in small populations with discrete support and few strata. We then show
how constraining the rules can ease the computational burden and allow Mt to be
computed in more general settings.
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C.3.1 Brute-force search in discrete, finite populations

Let Uk denote the set of possible unique values of elements of Xk. In general, Uk ⊆ [0, 1]
and |Uk| may be uncountably infinite (e.g., when Uk = [0, 1]). However, when |Uk| is
finite (e.g., when Uk is binary), µk can take only finitely many values. In that case B
is a finite set, and |B| may even be small enough to enumerate and compute every
Mt(η) by brute force, no matter if Mt(η) is non-convex, multimodal, non-smooth,
etc over η.

Let Ωk be the set of all possible means µk in a single stratum. In general the
number of possible length-Nk bags with elements in Uk is:(

Nk + |Uk| − 1

|Uk| − 1

)
,

which follows from Feller’s bars and stars argument, partitioning the Nk numbers
into |Uk| (possibly empty) bins according to which value in Uk each number takes.

However, in many practical applications (e.g., stratified risk-limiting comparison
audits), the size of Ωk is reduced because elements of Uk have a relatively small least
common multiple. For example, if Uk = {0, 0.5, 1} then

Ωk = {0, 0.5/Nk, 1.0/Nk, 1.5/Nk, . . . , 1},

and
|Ωk| = 2Nk + 1.

In general, we have

Ωk ⊆
{
0,

1

ckNk

,
2

ckNk

,
3

ckNk

, . . . , 1

}
,

for

ck = LCM

({
1

x
∀ x ∈ Uk

})
,

where LCM represents the least common multiple of the reciprocals. This implies
that |Ωk| = ckNk + 1, a significant reduction in |Ωk| when the elements of Uk are
multiples of each other.

Now, the size of C depends on the number of possible intersection means µ lying
on the hyperplane µ ·w = η0 defined by H0. The size of C is loosely bounded by the
number of possible within-stratum means

|C| ≤
K∏
k=1

|Ωk| ≤
K∏
k=1

(ckNk + 1).
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Going by this upper bound, C is not feasible to enumerate for large K, N , or |Xk|.
In particular, even in the unique case that the strata are of equal size (Nk = N/K)
and all binary (Xk = 2), the complexity reduces to:

|Ω| = (N/K)K .

Even this is intractable for moderate N and K > 2.

C.3.2 Vertex enumeration under η-oblivious selection and
betting

The class of η-oblivious bets and selections comprise an important class of tuning
parameters for a betting UI-TS. When such strategies are used the computational
burden is eased substantially because the minimum must occur on a limited set of
points. We show this here, and characterize the number of points that must be
searched to compute Mt under such strategies.

Suppose λt(η) := λt and pt(η) := pt are η-oblivious. We aim to show that
the minimum of Mt(η) occurs on a vertex of the polytope C representing the set of
intersection nulls. We will accomplish this by establishing that Mt(η) is log-concave
in η. To that end, the first two partial derivatives of logMt(η) are:

∂

∂ηk
logMt(η) = −

Tk(t)∑
i=1

λki

1 + λki(Xki − ηk)

∂2

∂ηkηj
logMt(η) = 0 ∀ k ̸= j

∂2

∂η2k
logMt(η) = −

Tk(t)∑
i=1

[
λki

1 + λki(Xki − ηk)

]2
.

All the mixed partials are 0, while the second partials are all semi-negative, and
strictly negative as long as λki > 0 for some i and all k. Thus, the Hessian of logMt(η)
is negative semi-definite, logMt(η) is concave in η, and Mt(η) is log-concave and
has a unique maximum at η† (since we wish to find the minimum, the direction of
convexity is the opposite of what we may hope). Mt(η) is decreasing in any direction
moving away from η†. Because we want to minimize Mt(η), we can do so by moving
away from it’s maximum. Without knowing the best direction, we know that the
farthest we can get from η† while remaining in C is on a vertex of C. Thus the
minimizer occurs in V , the set of vertices of C. If |V| is small enough, we can compute
Mt by enumerating the values of Mt(η) for all η ∈ V and choosing the smallest.
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The number of vertices of C

We derive |V| in an important special case: strata of equal size and global null
η0 = 1/2. Accordingly, suppose w = 1

K
1. Then, if K is even, the elements of V are

all K-vectors with K/2 elements equal to 1 and the rest equal to 0:

|V| =
(

K

K/2

)
.

If K is odd, an examplar element of V is a K-vector with (K − 1)/2 values equal to
1, exactly one value equal to 1/2− K−1

2K
, and the rest equal to 0. That is:

|V| = K

(
K − 1

(K − 1)/2

)
.

When the strata vary in size, there can be fewer or more vertices than this. The
vertices can be enumerated, e.g., using the python package pypoman, which provides
rapid enumeration for K ≤ 16 or so. When K = 15, η0 = 0.5, and Nk = N/K,
we must compute |V| = 51480 I-TSMs each of length N . As K grows, the vertex
enumeration approach eventually becomes infeasible.

C.3.3 Convexifying η-aware bets

If we can choose λki as a function of ηk, then we can improve the computational
tractability of Mt. In particular, if Mt is convex in η and Tk(t) is fixed over η, then
we can find the minimum of Mt over η and derive a sampling strategy to maximize
the growth of the worst null. In particular, we consider λki = exp(X̄k(i−1) − ηk) where
X̄k(i−1) is the lagged running sample mean in stratum k. This allows bets to be larger
when the sample mean is larger in a particular stratum. We first note that λki is a
valid bet:

0 < λki = exp(X̄k(i−1) − ηk) ≤ exp(1− ηk) ≤ 1/ηk

for all ηk ∈ [0, 1].
Then, we prove that

lnMt(η) :=
K∑
k=1

Tk(t)∑
i=1

ln(1 + exp(X̄k(i−1) − ηk)(Xki − ηk))

is convex. We prove this by showing λki = exp(a− bηk) for any constants a and b ≥ 1
makes the objective convex. For simplicity, we denote hi(ηk) = λki. We observe that
h′
i(ηk) = −bhi(ηk).
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To show this, we first compute the Hessian of lnMt. The first derivative becomes:

∂ lnMt(η)

∂ηk
=

∂

∂ηk

Tk(t)∑
i=1

ln(1 + hi(ηk)(Xki − ηk))

= −
Tk(t)∑
i=1

hi(ηk)(b(Xki − ηk) + 1)

1 + hi(ηk)(Xki − ηk)
.

We observe that the mixed partials are 0 since Mt(ηk) does not depend on any ηj
where j ̸= k. Thus, we only calculate the diagonal values of the Hessian.

∂2 lnMt(η)

∂η2k
= − ∂

∂ηk

Tk(t)∑
i=1

hi(ηk)(b(Xki − ηk) + 1)

1 + hi(ηk)(Xki − ηk)
= −

Tk(t)∑
i=1

gf ′ − fg′

g2
,

where

g(ηk) = 1 + hi(ηk)(Xki − ηk),

g′(ηk) = h′
i(ηk)(Xki − ηk)− hi(ηk)

= hi(ηk)(−b(Xki − ηk)− 1)

f(ηk) = hi(ηk)(b(Xki − ηk) + 1)

f ′(ηk) = h′
i(ηk)(b(Xki − ηk) + 1) + hi(ηk)(−b)

= −bhi(ηk)(b(Xki − ηk) + 2)

Now, in order for this to be positive, we need

−[gf ′ − fg′] ≥ 0.

Without loss of generality, we analyze a single index i of the summation; since
this holds for any term, this must also hold for the summation. In particular, the
function is convex if

−[(1 + hi(ηk)(Xki − ηk))(−bhi(ηk)(b(Xki − ηk) + 2))

− (hi(ηk)(b(Xki − ηk) + 1))hi(ηk)(−b(Xki − ηk)− 1)] ≥ 0.

Simplifying the expression yields

bhi(ηk)(1 + hi(ηk)(Xki − ηk))(b(Xki − ηk) + 2) ≥ hi(ηk)
2(b(Xki − ηk) + 1))2,

⇐= b(1 + hi(ηk)(Xki − ηk)) ≥ hi(ηk)(b(Xki − ηk) + 1),

⇐⇒ b+ bhi(ηk)(Xki − ηk) ≥ bhi(ηk)(Xki − ηk) + hi(ηk),

⇐⇒ b ≥ hi(ηk),
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which is always true for any b ≥ 1 by the bounds on hi(ηk). Thus, since the second
partials are non-negative, the Hessian is positive semi-definite for any Xki, ηk and
the objective is convex.

C.4 Stratified sequential testing of a simple null

Suppose we wish to test a simple null Hs
0 : XN = X 0

N against a simple alternative
XN = X 1

N . While we are generally interested in the composite null XN ∈ ℵ0
N in this

paper, a simple null provides a simple optimal strategy: the SPRT of Wald [1945].
Specifically, let X 0

k be the null population in stratum k. Analogously, X 1
k is the

within-stratum alternative. Furthermore, let f(x,X ) denote the probability density
at x under uniform sampling with or without replacement from X . Following the
construction of the SPRT within each stratum, form the terms

Zki :=
f(Xki,X 1

k )

f(Xki,X 0
k )

.

The running product
∏Tk(t)

i=1 Zki measures evidence against the simple null within
stratum k, and the product across strata:

K∏
k=1

Tk(t)∏
i=1

Zki

is a martingale when Hs
0 is true. Furthermore, Wald [1945] shows that this choice of

Zki maximizes EX 1
N
[logZki], i.e., that it is Kelly-optimal. The growth rate optimality

of the SPRT is analogous to the power optimality of the likelihood ratio in the
fixed-sample case, as in the canonical lemma of Neyman and Pearson [1933].

If the null is simple and the alternative is composite, the SPRT is still valid
with denominator f(Xki,X 0

k ). However, there is no uniquely optimal choice for the
numerator. One option is to form predictable estimates of the parameters of Xk and
plug them into the numerator [Ramdas et al., 2023]. The method of mixtures leads
to a consistent test, and is GRO (in the terminology of Grünwald et al. [2023]) when
the mixing distribution is a generative prior, from which the alternative was drawn.
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