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ABSTRACT OF THE THESIS 

 

Identifying the Orientation of Medical Images in 

the Veterinarian Field Using Computer Vision 

 

by 

 

Yoonho Kim 

Master of Applied Statistics and Data Science 

University of California, Los Angeles, 2024 

Professor Yingnian Wu, Chair 

 

With the expansive amount of data, modern technologies including machine learning and 

deep learning have become extremely complex and accurate. Deep learning models started to 

gaining popularity in the early 2010. AlexNet is a type of Convolutional Neural Network (CNN) 

was first introduced and won the ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC). This model dramatically increased accuracy compared to the previous year by nearly 

ten percent, resulting in many variations of CNN architectures being introduced based upon this 

model.  In the year of 2015, deep learning reached a new milestone because of a new model 

architecture called Residual Network (ResNet), which is another variant of CNN architecture. 

ResNet was trained on ImageNet, a database that contains a wide range of various images, and 

the ability to accurately predict those images started to outperform human’s abilities (Figure 1). 
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Figure 1: Evolution of Computer Vision 

Source: “Application of Deep Learning in Dentistry and Implantology,” Kang & et al. 2020, 

P.151 

This significant improvement in Computer Vision models allows many researchers to 

help implement modern technologies such as self-driving cars and face recognition. After 

gaining its credibility and accuracy from recent state-of-the-art (SOTA) models, various 

domains, including health care, have begun to adapt the methodology to better predict one’s 

medical conditions such as the criticalness of tumor and detect if the malignant or benign from 

medical images including X rays and CT scans. Throughout this paper, we will discuss the 

application of modern Computer Vision techniques in the Veterinary field with the hope of 

reducing the number of canine/feline patients who have serious illness and increasing their 

quality of lives by detecting possible illness in their early stages. 
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1. Overview 

Vetology utilizes modern machine learning techniques in order for individuals to better 

understand the inner symptoms of canine/feline patients. In many cases dogs and cats may suffer 

from underlying symptoms that we may not been keen on picking up, this has resulted in many 

furry family members being untreated or treated too late due to the inability to pick up on early 

symptoms. Vetology aims to help identify and address potential concerns earlier so that vets can 

make informed decisions on treatment plans that could save the life of your furry family member. 

The firm utilizes software that efficiently applies Computer Vision (CV), Natural Language 

Processing, and Large Language Model (LLM) techniques in order to properly predict medical 

input images and diagnose possible illnesses that canine/feline patients might have developed 

internally and generate an Artificial Intelligence (AI) screening report based on the input images.  

Medical images are the main inputs for checking possible illness and generating the 

reports, making extremely important for developers to feed the correct orientation of images for 

this software. Radiologic technicians capture various images and various angles from a specific 

area in order to help medical professionals better understand the circumstance of given patients 

since those professionals can investigate at various angles. However, providing those images into 

a machine learning model can lead to false information as the machine learning model was 

trained on a specific type of inputs. Hence, in order for the model to generate appropriate 

outcomes, it is crucial for developers to feed the correct orientation of input images to the 

machine learning models. 

There are four possible angles from the medical images; zero degrees, which is the 

desired outcome, 90 degrees, 180 degrees and 270 degrees. The goal of this project is to correctly 
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identify the orientation of the given images. By providing the correct orientation, we can provide 

those images to the machine learning model, which helps the machine learning model predict 

possible illness more accurately. This orientation model will also reduce human supervision due 

to its automated process and convert those images to the correct orientation if they are not zero 

degrees. 

 We want to develop a machine learning model that detects the medical inputs orientation 

properly in which we will achieve through experimenting with various data steps including data 

preprocessing, feature engineering, and various model developments throughout this project.  

With the development of this model, we will be able to feed the correct input to the model, which 

helps increase the model performance in the AI generated screening reports.  

2. Methodology 

The goal of this project is to correctly identify the orientation of the medical inputs, 

therefore, the focus of the model development is the accuracy of the model, which meant we did 

not have to emphasize on model expandability. Depending on the potential business issues, there 

are certain cases where we need to consider model interpretability. In these scenarios, it is often 

better to utilize data mining techniques such as linear regression or tree-based models. If the 

problems are more related to how the models accurately predict possible outcomes, we utilize 

deep learning-based models. Since the goal of the project is to correctly predict the orientation of 

the images, we have been implementing various deep learning techniques including Multi-Layer 

Perceptron (MLP), Convolutional Neural Network (CNN) and more advanced CNN based 

architectures such as GoogLeNet or EfficientNet, which are pretrained models that are available 

in the Pytorch libraries in Python, in this project.  
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This project was developed using a programming language called Python, which is the 

most widely used in the machine learning and data science community, and deep learning models 

were developed in the Pytorch library. Converting input images to vectors is performed via the 

Pillow library. Two popular Python data visualization libraries, Seaborn and Matplotlib, were 

implemented. Optuna was used for hyper parameter tuning to improve the model performance by 

changing parameters such as learning rates, batch sizes, or number of layers within the network. 

Pandas and Numpy were also used for basic data manipulation. In this section, we will cover 

input images, data preprocessing and feature engineering.  

2.1 Input Images 

Input images can be defined as features in deep learning which are used for a model to 

extract information and they can come in a variety of mediums. For the purposes of this project, 

we have utilized canine/feline patients’ medical images including Digital Radiographs (DX) and 

Computed Radiographs (CR) as input images. Historical medical images are stored in Vetology’s 

Ubuntu server. Sample data, which was a total of 3,298 jpg files from the server, were provided 

and will be utilized for the deep learning model to learn the specific patterns of each orientation. 

The images are grayscale, which is an important feature for developing deep learning models. 

The size of each image is 1,972 by 3,268. 
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Figure 2: The Distribution of Input Images Based on the Angles 

Angle Count Percentage 

0 1,488 45.12% 

90 874 26.5% 

180 492 14.92% 

270 444 13.46% 

Total 3,298 100% 

 

Table 1: Table of Input Images Based on the Angles 

Figure 2 represents the distribution of images based on their angles and Table 1 analyzes the 

breakdown of each class. Based on the dataset, we could approach business problems in two 

different ways.  

1) Create a binary classification model which predicts if images are at the orientation or not. 
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2) Create a multiclass classification model which predicts 4 different angles.  

The first approach seemed to be easier to implement and might achieve higher accuracy than the 

second method, however, the second approach better aligns with business purpose because the 

model would modify to zero degrees when predicted values are not zero. By applying the second 

approach, we will be able to rotate the input images to zero if they are not fed properly. 

In order to train a machine learning model for Computer Vision, input images such as jpg 

files cannot be trained themselves. Developers need to convert those images as tensors, which 

support the basic arithmetic operations in deep learning. There are various ways for individuals 

to convert images to tensors, but we utilized the Pillow library in Python for data conversion and 

augmentation. Detailed explanations for these input images will be discussed in the next section. 

2.2 Data Preprocessing 

 Data preprocessing is required for us to train a machine learning model. This process will 

ensure the machine learning model to learn properly and efficiently if done correctly. There are 

few considerations needed for the data preprocessing in this project. The first consideration is the 

size of individual inputs. When we train deep learning models, we do not use jpg files directly, 

instead we first convert the jpg files to tensor, which is a multi-dimensional matrix that is used as 

the input for deep learning models. Converting more than three thousand jpg files that have a 

shape of 1,972 by 3,268 will consume a large amount of memory. The second consideration is 

the channel of the image. Unlike MLP architectures, we specify the input channel for the given 

image in convolutional layers in the CNN architecture. For grayscale, the input channel is one, 

while the input channel for Red-Green-Blue (RGB) is three. Although grayscale seemed to be 

logical for building the machine learning model, many advanced models such as GoogLeNet or 
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EfficientNet are trained based on ImageNet, which was based on RGB images. For this reason, 

we developed two different image conversions. The last consideration is the number of inputs in 

the dataset. Within deep learning, it is often beneficial to have more data. This is because deep 

learning models tend to have an extensive number of parameters that need to be trained and 

updated as layers get deeper. Although over three thousand medical images seemed to be 

sufficient, we aimed to produce more data to better help the training process of model. In this 

section, we will cover these obstacles and how to overcome them. 

2.2.1 Defining Inputs 

As mentioned above in section 2.1, individuals cannot directly use actual images by 

themselves to train a machine learning model. By converting those images to tensors, which are 

the fundamental data structure of deep learning that allows fast and efficient mathematical 

calculations, deep learning models can learn and update weights as well as bias from the actual 

outputs and predicted values. In this process, Pillow and Pytorch libraries in Python were 

employed to convert images to tensors.  
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Figure 3: An Example of an Input Image in the Dataset 

Figure 3 above is one of the examples in the input images. Each of the pixels in the image 

is stored as a number in the computer, which typically ranges from zero to 255. The lower the 

number, the darker it represents and Pillow library in Python helps convert the images to tensors. 

For example, after converting the image to a tensor using Figure 3 above, different integer values 

between 0 to 255 will replace each pixel value. After converting the images, it is often beneficial 

to normalize the input data because it will not only help convergence in the optimization process, 

but also utilize all the features equally. The ToTensor method under the torchvision.transfroms 

library helps achieve this goal by changing the images to the tensor forms and normalizing them 

as well.  

2.2.2 Resizing Inputs 

Converting these input images to tensor will be computationally intense and expensive 

since the original inputs typically have higher resolution in our use cases. It is often 

recommended to resize the input images so that we can have better computation power. 

However, there are pros and cons when resizing the input images. Higher input sizes will deliver 

detailed information regarding the inputs but will take more resources to process them which 

might lead to computational inefficiency. Conversely, lower input sizes will be quick to process 

the inputs, but the computer vision model will lose a significant amount of information. To meet 

both retaining sufficient information while computation remains reasonable, proper input images 

resizing should be performed. We developed two different data sources for different models since 

one approach is based on shallow network and the other is related to deeper networks. For the 

shallow network, it will be harder to extract information with higher resolution, while the deeper 

network will gain more information in the proper resolutions.  
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Although higher resolution appears to be better in most scenarios, there is a trade-off 

when resizing the input images. Resizing the input images to higher resolutions will be costly 

and computationally inefficient, while changing the input images to lower resolutions would lead 

to information loss. A recent study in Radiology utilizing deep learning proved these results. The 

author of the paper performed various training process using deep learning models in Radiology 

with various medical inputs. Based on this paper, the model performance improves as resolution 

increases, but it declines after reaching a certain point (Figure 4).  

 

Figure 4: Model Performance Based on Image Resolutions 

Source: “The Effect of Image Resolution on Deep Learning in Radiology,” Sabottke & Spieler. 

2020, P.4 



 9 

Figure 4 proves the pros and cons of resizing input images. The X axis shows various 

resolutions, and the Y axis shows their performance. As the X axis increases, we see that there is 

an upward trend regarding performance. However, after increasing the resolutions over 400 

proves that the model performance does not improve significantly, instead it begins to decline. 

Therefore, it is important to find an optimal resolution for the given data. 

The first dataset was designed for naïve models which often have shallower network 

architectures compared to the pre-trained models. Because these models often have a smaller 

number of parameters to tune due to their simplicity, previous research has proven that lower 

resolution in images can work fine such as LeNet with hand-written digits for classifying 

different numbers from zero to nine. 

The input images for the first dataset were resized from 1,972 by 3,268 to 28 by 28. The 

second dataset was designed for pre-trained models such as GoogLeNet or EfficientNet. Pre-

trained models above often to have more complex model architectures such as a larger number of 

layers, therefore, we need more information for enhanced tuning. In order to achieve more 

resources, we can either gather more data or use a higher resolution in the input images. These 

models were trained in relatively higher resolutions, which both models were trained in images 

that were at least more than 200 by 200. For the second dataset, we changed the channel of the 

input images and resized them to 224 by 224.  

2.2.3 Changing Input Channels 

 Images stored in computers will have few different channels. If they are grey scaled 

images, then the input channel should be one. If they are colored images, then the channel should 

be three. The original input image is grayscale, which means the input channel for the 
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convolutional layer should be one. As mentioned earlier, many pre-trained models were trained 

based on ImageNet, which were three channels, Red-Green-Blue (RGB) images; we wanted to 

increase the size of the input channel. In order to increase the input channel size, two different 

approaches were designed. The first solution was mapping the same image three times so that the 

input channel got converted from one to three. The second solution was to convert the input 

image to RGB using the Pillow library in Python.  

2.2.4 Data Augmentation 

 Data augmentation is a technique where developers transform inputs to generate more 

data, which helps train a deep learning model. “Previous work has demonstrated the 

effectiveness of data augmentation through simple techniques, such as cropping, rotating, and 

flipping input images.” (Perez & Wang, 2017) Although over three thousand images appear to be 

sufficient for training deep learning, it is beneficial for us to have more inputs which allow us to 

obtain higher accuracy or other metrics. Obtaining more data in the field of Computer Vision is 

relatively simple. Using pre-existing data, we can rotate the inputs or change the color of the 

inputs. This process is called data augmentation. Even though we had an option to gain more 

data naturally, we decided to utilize the data augmentation technique since the dataset was 

relatively simple and easy to manipulate.  

Data augmentation in this project was simply created by following these two steps. First, 

images that had zero degrees were selected. Rotated angels were another option to consider, 

therefore, it was easier for us to rotate the zero degreed medical images. Then, we rotated those 

images to 90, 180 or 270 degrees. After the image rotation, we divided the rotated angles by 90 

to convert these angles to more discrete values. With the data augmentation technique, we were 

able to obtain 4,933 more images which helped increase the accuracy of deep learning models. 
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This dataset was mainly used in the pre-trained models as they required more data due to the 

nature of model complexity.  

2.2.5 Train Test Split 

 The goal of machine learning is to better generalize unseen data. In order to achieve this 

goal, we divided the dataset into three different parts: training data, validation data, test data. The 

training data is used for the models to update weights and biases based on the training. The 

validation data works as the new dataset, and we usually test our trained model on the validation 

set to detect overfitting or under-fitting of the model. When testing the results on the validation 

set, it is important to freeze the training process and use learned parameters.  

In this project, 70% of the data was used for training. For validation and test split, we 

utilized different approaches for the original dataset and dataset with data augmentation. Since 

the original dataset does not have sufficient data after the training split, we used 60% of the test 

data as validation and the rest as test data. For the dataset with data augmentation, we were able 

to split 50/50 for the validation and test dataset since we had enough samples. Table 2 represents 

the number of images in each dataset. 

Methods Training Counts Validation Counts Test Counts 

Original 

Dataset 

2,308 594 396 

With Data 
Augmentation  

5,761 1,235 1,235 

 

Table 2: Table of Data Counts in Train/Valid/Test Counts for Different Methods 
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3. Model Development 

The model development occurs after the data preprocessing and feature engineering. This 

is a step where we decide which models to choose for further developments based on the results 

we get from individual models. In order to choose the best model, we tested various models in 

this stage.  

For the baseline models, we developed basic models such as MLP and CNN. We tested 

both dataset methods (Table 2) and the Data Method 1 provided better results for these models. 

After achieving accuracy of 90%, we proceeded the development step with more advanced 

architectures such as GoogLeNet or EfficientNet. We tested various pre-trained models in this 

process, however, those two models tended to have the best results with regards to both the 

training time and model size. Figure 5 represents the model performances regarding respective 

model sizes and training time among various models.  

 

Figure 5: Pre-Trained Models and Their Performances 
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We attempt to find a that requires less memory and training time so that we can deploy 

the best model to software. For testing their performances, the same configurations such as batch 

size and learning rates were used to properly elect the best performing model. Table 3 describes 

all the parameters that we used via the training process for these models.  

With regards to accuracy and loss, all these six models tended to have similar results. 

However, both ResNet50 and VGG-19 appears to have larger sizes than other models. VGG-19 

appears to be extremely inconsistent in training as well. Although DenseNet121 and 

EfficientNet-b1 appear to consume less memory compared to ResNet50 and VGG-19, they 

generally tend to have a longer training time. Therefore, for the pre-trained model, we decided to 

experiment with GoogLeNet and EfficientNet_b0 for possible solutions for future deployment. 

In this section, we will discover the testing process for individual models and their architectures. 

Model Parameters Values 

Batch Size 64 

Learning Rates 0.00001 

Optimizer Adam 

Epochs 15 

Training Times 10 

 

Table 3: Model Parameters for Pre-Trained Models for Testing Model Performances in Training 

Time and the Size of the Model 

3.1 Baseline Models 

 Multi-layer perceptron (MLP) models are the foundation of the SOTA models. These 

models consist of three different layers: input layers, hidden layers and output layers. When 
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inputs are fed into the input layers, weighted sums are calculated and passed to activation 

functions. Then the output layers attempt to predict the results based on the values from the 

previous hidden layers. These predicted values from the output layer will be compared to the 

actual label that we have in the training dataset with the loss function. The loss functions will be 

optimized with proper optimizers that were selected in the training process. The goal of the 

training purpose is to minimize the loss functions, so the training process will be iterated until 

the loss function will reach to the minimum. Figure 6 describes generic structures of MLP as 

well as its training process. 

 

Figure 6: Training Process of Deep Learning 

Source: “A Review on Deep Learning in Minimally Invasive Surgery,” Rivas-Bianco & et al. 

2021, P.3 

Although the backbone of the models is the same including the number of layers and 

neurons, we developed two different MLP models. Both models contain seven layers; one input 

layer, five hidden layers and one output layer. For the classification layer (output layer), it is 

important to match the output features as the number of classes in our dataset. After each hidden 
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layer, Rectified Linear Units (ReLU) activation functions are utilized to introduce non-linearity 

and the output layer utilizes the Softmax activation function to classify the results to different 

classes. The mathematical formula for ReLU is defined as below. 

𝑅𝑒𝑙𝑢(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

Formula 1: ReLU Formula 

As the formula is shown, the ReLU activation often converges quicker and more 

efficiently than other activation functions such as Sigmoid since all negative values will be 

converted to zero. It also helps solve the vanishing gradient descent issue, which happens due to 

the optimization process of deep learning and its complex architecture. However, if many 

activations are below zero, the ReLU will provide zero, which might not be beneficial for models 

to learn from the dataset. Even though there are some disadvantages of utilizing ReLU, this 

activation function is still widely used and performs extremely well, therefore, we decided to use 

ReLU as activation functions.  

For the output layer, different activation functions should be used based on use cases. 

When classifying two different labels (Binary Classification), the Sigmoid function can be 

utilized because this function will provide the results between zero and one, which will be useful 

for probability. However, when we attempt to classify more than three labels (Multi-class 

Classification), the output values for the Sigmoid function will be impractical since they will not 

add up to one, which will be difficult to be considered as probabilities. For multi-class 

classification, we then import the Softmax activation function, which is described below. 

𝜎(𝑧!) =
𝑒"!

∑ 𝑒""#
$%&

   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐾 
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Formula 2: Softmax Activation 

 After completing the activation functions, the weights are initialized, and the loss will be 

calculated based on the predicted values and actual labels. For this step, we utilized the Adam 

optimizer, which is a combination of Momentum and Root Mean Square Propagation 

(RMSProp), since it takes less tuning requirement, consumes less memory and quicker running 

time compared to other optimizers. Setting proper learning rates for the optimizer is a crucial part 

in training deep learning models, therefore, we tried various learning rates with the Adam 

optimizer. We will discover the high-level overview of the model architectures for the MLP 

models, which utilize the techniques listed above.  

 The first model architecture did not utilize any regularization methods, while the other 

model architecture utilized dropout and batch normalization. “Each neuron learns to detect a 

feature that is generally helpful for producing the correct answer given the combinatorially large 

variety of internal contexts in which it must operate. Random “dropout” gives big improvements 

on many benchmark tasks and sets new records for speech and object recognition.” (Hinton & et 

al, 2012) Dropout randomly drops neurons in different layers after specified probabilities, which 

prevents models utilizing all neurons in the architecture. “Batch Normalization allows us to use 

much higher learning rates and be less careful about initialization. It also acts as a regularizer, in 

some cases eliminating the need for Dropout.” (Ioffe & Szegedy, 2015) Batch normalization 

helps normalize the output from the previous layer so that the next layer can receive normalized 

values. With batch-normalization, as the quote suggested, higher learning rates can be utilized. 

This can be beneficial in terms of model training because smaller learning rates will consume 

extensive time and resources which there might be limitations. These two techniques prevent 
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overfitting and help increase the accuracy during the training process as shown in Figure 7 and 8. 

Figures 9 and 10 describe the model architecture for each model.  

 

Figure 7: Error Rates for MNIST Dataset for Various MLP Architectures 

Source: “Improving neural networks by preventing co-adaptation of feature detectors,” Hinton & 

et al. 2012, P.3 
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Figure 8: Test Accuracy on MNIST Dataset and Training Steps with Batch Normalization 

Source: “Batch Normalization: Accelerating Deep Network Training by Reducing Internal 

Covariate Shift,” Ioffe & Szegedy. 2015, P.5 

 

 

Figure 9: MLP Model Architecture without Regularization Methods. 
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Figure 10: MLP Model Architecture with Regularization Methods. 

 Although MLP can provide us adequate results, previous papers and research have 

proven that CNN architectures tend to outperform MLP in the Computer Vision field. The CNN 

architecture assumes that pixels will be similar if they are next to each other which is referred to 

as locality. There are two major parts in the CNN architectures, feature extraction and 

classification. Within feature extraction, kernel, which performs as a sliding window, scans the 

inputs to extract useful information and pooling layers will be applied to lower dimension of the 

input data. After the feature extraction, the MLP architecture is applied so that the model can 

classify different images to individual classes. Figure 11 represents the training process of the 

CNN architecture.  
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Figure 11: Training Process of the CNN Architecture 

Source: “An Introduction to Convolutional Neural Networks,” O’Shea & Nash. 2015, P.4 

Similar to the MLP architectures, we developed two CNN based models. The first CNN 

architecture does not utilize any regularization methods, while the second CNN architecture, 

which is built on top of the first CNN architecture, utilizes batch normalization and drop out to 

ensure that the models will not overfit during the training process. One of the distinctions from 

CNN to MLP is that the CNN architecture perceives the input channel, therefore, developers 

need to specify the number of channels when importing the input features. Figures 12 and 13 

describe the architectures of these two models.  
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Figure 12: CNN Model Architecture without Regularization Methods. 

 

Figure 13: CNN Model Architecture with Regularization Methods. 

After creating model architectures, we attempted to find a model that had the highest 

performance. Using the same parameters in Table 3, Figure 14 describes the model performance 
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with regards to accuracy. The X axis represents epochs, and the Y axis shows the accuracy for 

different models. In general, the accuracy of models is subject to increase as the number of 

epochs increases. We also tried both first and second data methods. The model architectures for 

each data method needed to be modified since input channels are important in terms of training 

the CNN based models. After checking the results, we validated that simpler models (MLP or 

CNN models) tended to perform better with the simpler method (data method 1). For the base 

line models, it was relatively fast to train the model since the data size was small and the model 

architecture was not complex. Thus, computation for updating parameters was relatively low 

compared to pre-trained models. 

 

Figure 14: Training Base Models with Batch Size 64 and Input Channel One. 

Based on the results above, it is evident that the second model in the CNN architecture 

outperformed other models. We proceeded with this model by changing different parameters 

such as learning rates and batch size. Figure 15 describes various learning rates from the second 

CNN model and their accuracy. It appeared that 0.001 as the learning rates provided the best 
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results for our model. “While the use of large mini-batches increases the available computational 

parallelism, small batch training has been shown to provide improved generalization 

performance and allows a significantly smaller memory footprint, which might also be exploited 

to improve machine throughput.” (Masters & Luschi, 2018) In order for us to find an optimal 

batch size, we decided to test various mini batches and monitor their performance. We attempted 

to set a higher number than 200 for testing the optimal batch size, however, GPU did not have 

sufficient computation power. Table 4 shows different batch sizes and their performances. Batch 

size did not seem to play a critical role as learning rates but setting batch size too low would 

impair the model performance.  

 

 

Figure 15: Different Learning Rates and Accuracy Using the Second CNN Model Architecture 
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Batch Size Mean Std Dev 25% 50% 75% Max 

16 0.863165 0.034332 0.855219 0.865320 0.886785 0.914141 

32 0.879158 0.023345 0.870370 0.880471 0.893939 0.920875 

64 0.906094 0.011610 0.897727 0.905724 0.914141 0.934343 

100 0.896768 0.018187 0.890993 0.901515 0.908670 0.924242 

128 0.903367 0.014849 0.897727 0.905724 0.912458 0.927609 

200 0.914781 0.007566 0.910774 0.914141 0.919192 0.934343 

 

Table 4: Table of Different Batch Sizes for the Second CNN Architecture and Summary Statistics 

of Accuracy 

 Table 4 describes performance based on different batch sizes for the CNN architecture 

with regularization. Each model was trained with different batch sizes for 50 epochs to represent 

reasonable results. In terms of increasing the performance of the model, learning rates are the 

most important factor. However, as the table describes, there are some benefits of using different 

batch sizes. Mini batch with 200 seems to provide the best results from both the average and max 

accuracy perspective. It also appears that the mini batch 200 has the least variation compared to 

other batch sizes. For the final base model, we decided to utilize the second CNN architecture 

with batch size as 200, learning rates as 0.001 with Adam optimizer.  

 Although the second CNN architecture provided a reasonable performance with 0.93 

accuracy, the production model needs to be more accurate. In order to achieve this goal, we 

decided to test pre-trained models. These models are trained on a larger dataset which can be 

fine-tuned for specific use cases. As Figure 5 presents, we developed a few different pre-trained 

models under Pytorch libraries. Considering the performance benefits from both memory and 
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training size, we decided to fine-tune GoogLeNet and EfficientNet for the production model. In 

the next section, we will discover the idea behind these models and their architectures. 

3.2 Pre-Trained models 

 GoogLeNet was invented in 2014, which won the ILSVRC 2014 competition. The idea 

of this model was to overcome computational bottlenecks using an Inception architecture. “The 

Inception architecture is based on finding out how an optimal local sparse structure in a 

convolutional vision network can be approximated and covered by readily available dense 

components.” (Szegedy & et al, 2014) When dealing with multi-channel computer vision 

problems, the number of parameters increases dramatically. This leads to not only an issue with 

over fitting the computer vision model, but also with an inefficient usage of computation power.  

In order to overcome these issues, the Inception architecture utilizes 1 by 1 convolutional 

layers which perform as dimension reductions. Utilizing these 1 by 1 convolution layers allows 

the model to minimize the usage of previous layers that have zero weights which will not be used 

in the backpropagation step. In addition to this, the model utilizes dropout before the fully 

connected layer to prevent the model from overfitting. The plot below describes the Inception 

modules in a nutshell (Figure 16). 

 



 26 

Figure 16: Inception Module in a Nutshell 

Source: “Going Deeper with Convolutions,” Szegedy & et al. 2014, P.5 

 EfficientNet is a relatively new architecture compared to GoogLeNet. This model 

architecture won the ILSVRC 2019 competition. As the name represents, the model tries to 

achieve better accuracy and efficiency by utilizing compound model scaling. Previously, other 

scaling methods focused on width and depth sides, while EfficientNet was the first architecture 

to consider the channel side so that larger models can scale up network width, depth and 

resolutions which lead to better model performances.  

Training for EfficinetNet required a longer time frame than GoogLeNet, but the model 

size was smaller. It also appears that EfficientNet seemed to be more consistent and have less 

variance in terms of training. We chose both GoogLeNet and EfficientNet were selected for 

hyper parameter tuning because these models exceled others in the experimental stage (Figure 5). 

The Optuna library was utilized to optimize the number of layers and neurons in the fully 

connected layers along with optimizers, learning rates and batch size. For both models, the range 

for the learning rates was between 0.000001 and 0.1. Batch size was picked between 64 and 200. 

For the optimizer, we selected four different optimizers: Adam, RMSprop, Adagrad and SGD. 

For the fully connected layers, we choose integer values from 500 to 2,400 for the L1 and 

between 300 and 2,400 for the L2 layers. Although we can choose the number of layers as a 

hyper parameter tuning step, we decided to stick with 2 layers since these models provided 

outstanding results even before the hyper parameter tuning step. Below table shows the best 

hyper parameter for each model (Table 5).   
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Table 5: Best Performing Parameters for GoogLeNet and EfficientNet 

4. Model Evaluation 

Evaluation is a critical step for the machine learning cycle since the goal of machine 

learning is to generalize unseen data well. We began this stage after we fine-tuned the model 

architectures of the pre-trained models and performed hyper parameter tunings to get the best 

results. The previous steps utilized train and validation sets and this step utilized test data, 

which acted as unseen data. Both GoogLeNet and EfficientNet were utilized based on the 

results from Figure 5 to test their performance on the test data. Figure 17 presents the best 

GoogLeNet model with optimal parameters and figure 18 shows the best EfficientNet model. 

Table 6 describes the best performance for each model with the hyper parameters tuned. 

Model Best Parameter Best Value 

GoogLeNet 

L1 682 

L2 1,701 

Optimizer Adam 

Batch Size 200 

Learning Rates 0.0001959 

EfficientNet 

L1 1,328 

L2 318 

Optimizer RMSprop 

Batch Size 74 

Learning Rates 0.0005046 
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Figure 17: Confusion Matrix for GoogLeNet (left), and Training and Validation Loss (right) 

 

  

Figure 18: Confusion Matrix for EfficientNet (left), and Training and Validation Loss (right) 

Model Data Accuracy Recall Precision F1 Score 

GoogLeNet 
Training 1.0 1.0 1.0 1.0 

Validation 0.993522 0.993522 0.993535 0.993522 
Testing 0.997571 0.997571 0.997578 0.997573 

EfficientNet 
Training 0.996528 0.996528 0.996541 0.996525 

Validation 0.994332 0.994332 0.994336 0.994330 
Testing 0.992713 0.992713 0.992725 0.992699 
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Table 6: Model Performances for GoogLeNet and EfficientNet 

Both confusion matrix and error plots are great indicators for developers to better understand 

the performance of machine learning models. The confusion matrix presents both actual values 

and predicted output from the given machine learning models. Confusion matrix is essential for 

working with classification models since it is not only verifying the accuracy of the models, but 

also visualizing type one (false positive) and type two (false negative) errors, so that developers 

can modify the threshold which will improve the performance of the models. All the values 

within the plot should sum up to the total number of rows in the testing dataset. The horizontal 

values indicate the actual number of images in each class. For example, based on the 

performance of GoogLeNet, there are 231 medical input images that have zero angle. Out of 

these 231 inputs, the model identified the correct orientation of 230 medical inputs.  

Although both models performed excellently in all data sources, GoogLeNet appeared to 

outperform EfficientNet in our use case. The confusion matrix proved that GoogLeNet correctly 

identified 1,232 out of 1,235 inputs while EfficientNet identified 1,226 images correctly. The 

loss plot also suggested that the loss for GoogLeNet was steady and lower compared to 

EfficientNet. These metrics are useful to analyze the initial performance of each model. For 

classification problems, it is extremely crucial to have proper metrics due to data imbalance. 

Certain fields including medical tend to have higher chances of having imbalance data because 

of the nature of the fields. The percentage of having unique diseases will be extremely rare, 

which will lead to an extreme data imbalance issue. In the case of imbalance data, accuracy will 

not be an ideal indicator. Accuracy does not take the quality of the model into account since it 

ignores type one and two errors. Thus, it is more beneficial to examine other metrics such as 

recall, precision and F1 score. Recall and F1 score for GoogLeNet seemed to surpass 
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EfficientNet’s performance. Therefore, with all this supporting evidence, GoogLeNet was chosen 

for the final development. 

5. Conclusion 

Increasingly, many individuals make furry friends a part of their families but living with 

these companions comes with many responsibilities. Unlike human beings, canine/feline patients 

are unable to communicate their symptoms and hide their pain more effectively. Experienced 

individuals who are educated in vet diseases might be able to catch early symptoms, but it is 

often hard to find internal issues. Technology has increasingly improved catching early signs and 

administering treatment and as technology evolves these symptoms can be addressed at a much 

quicker pace. With the help from deep learning models such as Computer Vision, we hope to 

identify canine/feline patients’ internal issues as early as possible so that they can live happier 

and healthier lives. Preventative care is crucial for living longer healthier lives for both humans 

and pets, so identifying potential concerns early can save the lives of our furry companions. 
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