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Abstract. Anopheles darlingi Root is the most important malaria vector in the Amazonia region of South America.
However, continuous propagation of An. darlingi in the laboratory has been elusive, limiting entomological, genetic/
genomic, and vector–pathogen interaction studies of this mosquito species. Here, we report the establishment of an
An. darlingi colony derived from wild-caught mosquitoes obtained in the northeastern Peruvian Amazon region of
Iquitos in the Loreto Department. We show that the numbers of eggs, larvae, pupae, and adults continue to rise at least
to the F6 generation. Comparison of feeding Plasmodium vivax ex vivo of F4 and F5 to F1 generation mosquitoes showed
the comparable presence of oocysts and sporozoites, with numbers that corresponded to blood-stage asexual parasitemia
and gametocytemia, confirming P. vivax vectorial capacity in the colonized mosquitoes. These results provide new avenues
for research on An. darlingi biology and study of An. darlingi–Plasmodium interactions.

INTRODUCTION

Anopheles darlingi Root is the most important malaria
vector in the Amazonia region of South America (reviewed
in ref. 1). Numerous observational studies have detailed this
mosquito species’ role in epidemic and endemic malaria
transmission in this region. Previous studies have shown that
laboratory-reared F1 generation An. darlingi derived from
wild-caught mosquitoes are suitable for laboratory-based
studies of Plasmodium–mosquito interactions by both mem-
brane feeding assays and direct feeds.2–7 An important limita-
tion of such studies is the availability of An. darlingi

mosquitoes. Hitherto, there has been an inability to propagate
An. darlingi continuously in the laboratory, hence requiring
human landing catches or alternative sampling methods8 to
obtain sufficient mosquitoes for laboratory-based experimen-
tal study. Despite a report from the 1940s indicating that
An. darlingi could be continuously propagated,9 establish-
ment of a laboratory colony of An. darlingi, coupled with
experimental infection by human-infecting malaria parasites
such as P. vivax, has not been reported.
Malaria transmission in the Peruvian Amazon is seasonal,

with a peak from January to June, which is coincident with the
rainy season.10,11 Similarly, anopheline densities are seasonal,
typically peaking from March to May in the Iquitos region.
Reported human biting rates (HBRs) are as high as 750 bites/
night for An. darlingi, but a lower HBR (~10) has been
detected from August to December (Moreno M and Conn JE,
unpublished data). Recent observations indicate that some
areas of the Peruvian Amazon have infected biting rates
by An. darlingi as high as reported from some parts of sub-
Saharan Africa.12 Therefore, mosquito collections during
the low malaria season limit various research activities, and
the logical approach would be to colonize and maintain
An. darlingi in the laboratory.
In 1947, in British Guiana, the first effective effort to colo-

nize An. darlingi was reported, with success in 35 generations

and natural mating under laboratory conditions.9 Later, some
Brazilian populations of An. darlingi were reported to be
colonized in the laboratory up to 10 years13 as well as for a
shorter period of time.14 Both studies underscored the impor-
tance of cage size and density of specimens per experiment to
obtain fertilized females and avoid the forced mating tech-
nique. Some researchers have suspected that the challenge in
colonizing some mosquito species that might mate in swarms
(eurygamy) is to find the right conditions for successful mating
obtained by non-artificial methods and generation by genera-
tion, select the population for ability to mate in a restricted
space (stenogamy),15 although capture–recapture evidence
has indirectly suggested that An. darlingi is not obligately
eurygamous.16 To date, no An. darlingi colony strain has been
permanently established or is available for research purposes.
Detailed study of An. darlingi biology, genomics (using

inbred, genetically homogenous mosquitoes),17 and mechanis-
tic studies of Plasmodium–An. darlingi interactions, therefore,
have been limited by the hitherto inability to establish the
continued propagation of this key mosquito species in the lab-
oratory. Here, we describe the establishment of anAn. darlingi

colony and show the experimental infection of these colonized
mosquitoes by P. vivax through artificial membrane feeding
using parasitized blood obtained ex vivo from infected humans
in the Peruvian Amazon. The importance of this work is fur-
thered by the lack of known transovarially transferred patho-
gens in this mosquito species; hence, the possible future use of
direct mosquito feeding on infected patients18,19 would be
considered ethical and safe.

MATERIALS AND METHODS

Obtaining field-caught An. darling. In total, 135 adult
females were collected in July of 2013 by human landing catch
in Cahuide (04°13.785¢ S/073°276¢ W), a village located along
the Iquitos–Nauta road 60 km from Iquitos city in the
Peruvian Amazon. This village is on the banks of the Itaya
River, a tributary of the Amazon River, with suitable habitat
for An. darlingi breeding. Mosquitoes were maintained in cups
with 10% sugar solution and transferred to the laboratory;
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then, they were morphologically identified using established
entomological keys.20

Mosquito husbandry. Eggs from each female were placed
into independent round oviposition containers (9-cm diameter,
7-cm deep) lined with wet filter paper. Two days after hatching,
larvae were transferred into a pan (33 + 22 + 5 cm) contain-
ing 200 larvae per tray for larvae stages I and II and 100 larvae
per tray for stages III and IV. Larval food was a mixture (by
weight) of fishmeal (24%), wheat flour (13%), corn flour
(13%), maca powder (Lepidium meyenii; 13%), soybean meal
(24%), and cornstarch (13%; ~30% protein). Food was pro-
vided one time daily for larvae in stages I and II and three to
four times daily for larvae in stages III and IV. Pupae were
removed daily and placed into plastic containers in a screened
cage (46 + 46 + 46 cm) for adult emergence. Adults were
given 10% sugar solution and maintained in controlled condi-
tions at 27°C, 80% relative humidity, and a 12/12-hour day/
night photoperiod.
Standard membrane feeding assay. Subjects presenting

with acute symptomatic malaria caused by microscopically
determined P. vivax infection were the source of parasitized
blood for feeding to mosquitoes as previously described.3 No
P. falciparum asexual or gametocyte forms were seen by light
microscopy. Blood was obtained in citrate and centrifuged;
then, plasma was removed and replaced with an equivalent
volume of plasma pooled from 10 donors with no history
of malaria.
This study was approved by the Human Subjects Protection

Program of the University of California at San Diego
(La Jolla, California) and the Comité de Ética of the
Universidad Peruana Cayetano Heredia (Lima, Peru).
Oocysts were enumerated using light microscopic examina-

tion of unstained dissected midguts. Sporozoites were obtained
by first removing the mosquito head and then cutting and
triturating the region of the upper thorax where the salivary
glands are found. This material was pooled and centrifuged,
and sporozoites were enumerated using a Petroff–Hausser
counting chamber under 400 + magnification.
Induction of natural mating. Previously published protocols

for establishing natural mating of An. pseudopunctipennis

were adapted to induce natural mating of An. darlingi.21,22

Equal numbers of freshly emerged male and female (total of
~1,000) adults were placed into a cage of 46 + 46 + 46 cm,
and the ambient temperature was lowered to 24°C. Either a
blue stroboscopic light source (Opaluz strobe warming light
[30 W])22 or an automated 40 lumens white light flashlight
(Opalux Flash 40 LED)21 was used to shine into the mosquito
cages to induce mating. Each light treatment was carried
out for two cycles of 20 minutes of light on alternated with
10 minutes of light off, which was carried out for 7 consecutive
evenings, just after dusk, between 6:30 and 7:00 PM. On days

6 and 7, commercially purchased warmed chicken blood was
provided through membrane feeders to female mosquitoes;
sugar solution had been withheld for days 4 and 5. After blood
fed, mosquitoes were restarted on sugar water 3 days later.
On day 9 post-emergence, an additional blood meal was pro-
vided. Unfed mosquitoes were discarded. Forty-eight hours
after blood feeding, oviposition was induced by cutting one
wing (with a 21-gauge needle) of ethyl acetate-anesthetized
mosquitoes. Recovering mosquitoes were placed individually
into plastic vials containing a humidified, filter paper-covered
cotton ball.

RESULTS

Establishment of continuous laboratory-based production
ofAn. darling. Previous work from Iquitos, Peru has described
infecting F1 An. darlingi mosquitoes with P. vivax obtained
ex vivo from infected humans in the Peruvian Amazon.3,4 To
start the present colony, F1 generation mosquitoes were
obtained by feeding wild-caught mosquitoes purchased fresh
chicken blood to induce egg laying (Table 1). Alterations in
the light and temperature laboratory conditions as reported
previously for An. pseudopunctipennis21 produced stable and
increasing numbers of An. darlingi eggs, larvae, pupae, and
adults (with expected male to female ratios) through six gen-
erations as of the time of this writing.
Comparison of type of light stimulation with outcome

of An. darlingi mating. Previous experiments with
An. pseudopunctipennis in Bolivia and Mexico have used both
stroboscopic blue light and pulses of white light from a stan-
dard flashlight to attempt to induce this species to mate.21,22

In two experiments with F2 generation mosquitoes, we com-
pared these two types of light on the efficiency of oviposition,
number of eggs laid, and larval hatching. Head to head
comparisons showed no difference in the total number of
ovipositions (N = 159 and N = 110 for white flashlight; N = 121
and N = 231 for blue stroboscopic light). The proportion of
ovipositions with the two conditions was similar: 20% and 26%,
respectively, with the white flashlight compared with 21% and
22%, respectively, with the blue stroboscopic light. The egg
and larval yields did not differ between the two conditions.
Experimental infection of colonized An. darlingi with

P. vivax obtained ex vivo from humans. Because it is possible
that laboratory adaptation of An. darlingi might lead to a
founder effect-related line of mosquitoes refractory to P. vivax

infection—at the level of either oocysts or sporozoites—we
compared experimental infection of F1 with F4, F5, and F6
generations of mosquitoes (Table 2). The key observation is
that both oocysts and sporozoites developed as well in all
three of these generations as in F1 mosquitoes. The number

Table 1

Laboratory-based An. darlingi oviposition and hatching efficiency by generation

Generation Total number of mosquitoes Total number of oviposition (%) Number of eggs laid Number of hatched larvae (%) Number of pupae (%) Number of adults* (% emerged)

F2† 126 22 (17) 1,972 1,542 (78) 1,307 (85) 557/484 (80)
F3 195 32 (16) 2,416 1,756 (73) 1,585 (90) 792/722 (96)
F4 111 49 (44) 4,192 3,027 (72) 2,680 (89) 1,275/1,161 (91)
F5 185 51 (28) 3,203 2,258 (71) 1,718 (76) 789/761 (90)
F6 196 42 (21) 2,564 1,869 (73) 1,719 (92) 1,548 (90)

*Male/female adults.
†Generation F1 arose from wild-caught An. darlingi after blood feeding (chicken blood). Generation F2 was the first entirely laboratory-based generation.
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of oocysts and sporozoites was associated with parasitemia
levels of the donor patients (Table 2).

DISCUSSION

This study adapted two protocols for the successful coloni-
zation of An. darlingi by natural mating under laboratory
conditions, although previously, the stroboscopic light
approach was unsuccessfully tested with An. darlingi

from Bolivia.21,22

Among the different issues encountered in the establish-
ment of an anopheline colony, mating is the most problem-
atic.23 In our case, forced mating techniques with this species
were unsuccessful, with visual forced mating confirmed but
spermathecae found to be negative for insemination when
visualized under dark-field microscope (data not shown).
Environmental modification to simulate field conditions, such
as light changes to simulate natural lighting, temperature, and
humidity, have been described.15,24 However, the evolution of
stenogamy of the Cahuide An. darling-colonized population
needs to be addressed for maintenance and the goal of
obtaining a self-free mating colony. Laboratory adaptation of
An. darlingi will presumably lead to changes in genetic com-
position because of selecting progenies, leading to a homoge-
neous population structure affected by inbreeding, such as
reported for An. gambiae.25,26 Therefore, future analysis will
be focus on signatures of population bottlenecks, potential
founder effects, and genetic drift in the colony. In addition,
different lineages within An. darlingi have been detected by
microsatellites and nuclear markers across its geographic
range.27,28 Thus, an essential question about differences in
transmission arises: is the genetic variation of the mosquito
associated with vector refractoriness, or are there lineages
more susceptible to Plasmodium, for example, such as detected
in the neotropical malaria vector complex An. albitarsis

(reviewed in ref. 29)?
In malaria-endemic regions of the Amazon in South America,

the limiting factor for carrying out laboratory-based studies of
An. darlingi is mosquito availability. Experimental limitations
to studying the biology of P. vivax–Anopheles interactions
include access to the non-cultivatable gametocytes of P. vivax
in the same place and time with competent vector mosquitoes.
Although several studies are focused on the refractoriness

of different anophelines (Cellia or Anopheles subgenus) to
P. falciparum or rodent malaria species, there are very few

reports of the neotropical subgenus Nyssorhynchus, particu-
larly An. darlingi and P. vivax transmission. One of the main
unsolved questions in malaria epidemiology in the Amazon
Basin is the role of the P. vivax asymptomatic parasite carriers
in the transmission of disease. An experiment carried out
in the Brazilian Amazon showed a 1.2% infection rate of
An. darlingi from asymptomatic carriers compared with 22%
from symptomatic carriers.30 A study in the Peruvian Amazon
revealed differences in mosquito infection depending on
gametocytemia from P. vivax-parasitemic patients using F1
mosquitoes obtained from an outbred An. darlingi popula-
tion.3 Here, we report that An. darlingi mosquitoes obtained
from a colony after five generations were successfully infected
with P. vivax by artificial membrane feeding. Additional exper-
iments with subsequent mosquito generations will continue to
be performed to ascertain the progress of Plasmodium sus-
ceptibility of this colony. The appearance of refractory mos-
quitoes would provide the opportunity to carry out crosses to
identify potential refractoriness genes in this species.
The recent publication of the An. darlingi genome17 coupled

with the availability of a colony could help to study critical
aspects related to malaria transmission, such as behavior,1

host–parasite coevolution,3,4 susceptibility to Plasmodium par-
asites,2 testing new drugs against different parasite stages in the
mosquito,31 or genetic determinants of insecticide resistance.32
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Table 2

Infection of colonized An. darlingi by P. vivax

Infection
number

Generation
number

Date of infection
(month/year)

Donor
gametocytemia

Donor asexual parasitemia
number (/mL)

Number of midguts dissected/
with oocysts (%)

Oocyst number
(geometric mean)

Number of sporozoite/
mosquito*

1 F1 9/2013 3,606 3,060 25/36 (69) 57 Not done†
F3 27/31 (87) 54 Not done†

2 F1 9/2013 2,078 14,810 22/35 (63) 34 933
F3 25/34 (74) 39 1,200

3 F1 10/2013 118 186 13/38 (34) 1.4 170
F4 12/36 (33) 1.1 150

4 F1 10/2013 330 2,280 11/20 (55) 1.2 720
F5 9/20 (45) 1.1 540

5 F1 11/2013 300 2,910 17/18 (94) 14.1 1,436
F5 12/14 (86) 10.8 1,260

6 F1 11/2013 360 3,750 15/15 (100) 25.2 7,380
F6 16/16 (100) 28.5 6,300

*Sporozoite counts averaged from pooled mosquitoes.
†Only examined for oocysts.
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