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Turbulence elasticity—A new mechanism for transport barrier dynamics
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(Received 4 June 2014; accepted 22 August 2014; published online 2 September 2014)

We present a new, unified model of transport barrier formation in “elastic” drift wave-zonal flow
(DW-ZF) turbulence. A new physical quantity—the delay time (i.e., the mixing time for the DW
turbulence)—is demonstrated to parameterize each stage of the transport barrier formation.
Quantitative predictions for the onset of limit-cycle-oscillation (LCO) among DW and ZF inten-
sities (also denoted as I-mode) and I-mode to high-confinement mode (H-mode) transition are also
given. The LCO occurs when the ZF shearing rate (jhvi0ZFj) enters the regime
Dxk < jhVi0ZFj < s!1

cr , where Dxk is the local turbulence decorrelation rate and scr is the threshold
delay time. In the basic predator-prey feedback system, scr is also derived. The I-H transition
occurs when jhVi0E"Bj > s!1

cr , where the mean E"B shear flow driven by ion pressure “locks” the
DW-ZF system to the H-mode by reducing the delay time below the threshold value. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894695]

Cyclic phenomena appear in many nonlinear dynamical
systems, e.g., biological populations, and ecologies.1 In bio-
logical processes, gestation and maturation times (also called
delay times) play a key role in inducing LCO phenomena.2

In confined plasmas, there are also many experimental obser-
vations of LCO phenomena (also denoted as I-mode) in
spontaneous transport barrier formation, especially the L-H
transition.3 These feature a stable phase lag between DW-
and ZF-intensities (or radial electric field). Besides theoreti-
cal interest, a physical understanding of the LCO is also
practically important to understanding the transition mecha-
nism and to achieving a scaling of L-H transition thresholds
with firm physical basis. Recently, experiments4 with high
spatial and temporal resolution suggest that the floating ra-
dial electric field (associated with the ZF), rather than the
mean electric field (associated with ion pressure gradient), is
central to triggering the transport barrier formation.5 LCOs
often occur in a “intermediate” regime, where the ZF shear
is stronger than the turbulence decorrelation rate, but is not
sufficiently strong to fully quench the DW turbulence.
Though the LCO-like phenomena in DW-ZF system were
noted in the extended predator-prey systems, such as the 2
predator þ 1 prey system composed of ZF (“predator”),
mean shear flow (“predator”), and DW (“prey”),6 the exist-
ing studies are limited to qualitative descriptions, and do not
present predictions, e.g., state under what circumstance the
LCO onset or stop? While zonal shear decorrelation of the
large eddies is widely invoked as the physical mechanism
underpinning the dynamics of the DW-ZF system, most
reduced models of transport treat zonal flows in a rather des-
ultory fashion. As the L-H transitions occur in a strong flow-
shear regime with persistent turbulence, any further unified
understanding of the transition mechanism requires a precise

treating of the wave-flow interaction, e.g., the history de-
pendent DW-ZF coupling, especially in regimes of stronger
shear. The ubiquity of zonal flow LCO phenomena suggest
that a robust mechanism is at work setting the required time
delay.

An important, but not yet appreciated, property of the
DW turbulence is its elasticity,7 which appears as a finite
delay time in the response of the DW turbulence to the zonal
shear. The delay time is a new time scale, which is set by
transport of polarization charge (potential vorticity mixing),
reflects the history of the DW-ZF coupling, and hence is an
essential element in DW-ZF dynamics. It is a ubiquitous and
robust mechanism for a time delay. In contrast to turbulent
viscosity, turbulent elasticity introduces wave-like behavior
to the evolution equation of the ZF, which fundamentally
changes the dynamical structure of the DW-ZF system. The
effect of the turbulent elasticity becomes prominent as the
system enters the strong shear regime (e.g., the Dimits shift
regime8), where the diffusive turbulent momentum flux
ansatz fails and the ZF evolution equation changes from a
diffusion equation to a telegraph equation.7 As turbulent
elasticity features delayed response of DW turbulence to ZF
shear, a straightforward consequence is that it can induce a
phase lag between DW and ZF. If the phase lag is stabilized,
a steady LCO state will form. Motivated by this observation,
here we propose a generic and simple DW-ZF LCO model,
which is relevant to determining the onset of I-phase9,10 as a
step toward the transport barrier formation. An essential in-
gredient of our 2-fields elastic predator-prey (PP) model is
the history dependent DW-ZF coupling, which reflects the
time delay effect. In the new predator-prey feedback system,
we predict and calculate a critical delay time (which also
corresponds to a critical zonal shear). When this time is
exceeded, the DW-ZF system will evolve into a steady LCO
state. The mechanism for entering the LCO state is that once
the delay time exceeds a critical value, both fixed points of
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the DW-ZF system will become unstable, and a stable phase
lag between the ZF and the DW develops. According to the
Poincar"e-Bendixson theorem, the DW-ZF system will then
be “attracted” to a LCO state. This mechanism is analogous
to that for onset of LCOs in ecological systems, where
the gestation time plays a crucial role. We also discuss
the impact of the mean electrostatic field driven by ion
pressure gradient on the dynamics of the DW-ZF system.
We argue that the mean E"B shear can “lock” the
DW-ZF system to the H-mode-like fixed point by reduc-
ing the delay time below its threshold value. This pro-
vides a new robust and unified viewpoint for
understanding the physical mechanism of transport barrier
formation via a cyclic state.

To facilitate the following discussion, we briefly sum-
marize the main results of the conventional 2-fields PP
model,11 which is composed of two first order differential
equations:

@

@t
eD tð Þ ¼ cleD tð Þ ! cnle

2
D tð Þ ! aeZ tð ÞeD tð Þ; (1)

@

@t
eZ tð Þ ¼ !cdeZ tð Þ þ aeD tð ÞeZ tð Þ: (2)

Equations (1) and (2) are the simplest, nontrivial version of
PP model. eD(eZ) is the energy intensity of the DW (ZF), cl is
the linear growth rate of the DW, cnl describes the local cou-
pling between DWs, cd is the ZF frictional damping, and a
describes the nonlocal coupling between DW and ZF. The
sign of the DW-ZF coupling in Eq. (2) is opposite to that in
Eq. (1), so that energy conservation is guaranteed during
DW-ZF interaction. Here “ZF” refers to shear flow driven by
the DW turbulence. The exact forms of these coefficients are
not crucial to the conclusion of this letter, so we simply take
them as given parameters. The two fixed points of Eqs. (1)

and (2) are ðeD; eZÞ ¼ cl
cnl
; 0

! "
and ðeD; eZÞ ¼ cd

a ;
cl
a !

cnlcd
a2

# $
,

which correspond to the L-mode and the H-mode, respec-
tively, and hereafter will be labelled as L-solution and H-
solution. Existence of H-solution requires exceeding a lower
limit on the linear growth rate, cl> cnlcd/a. Once this condi-
tion is satisfied, the L-solution will always be unstable.12 To
analysis the stability of the H-solution, linearizing Eqs. (1)
and (2) near the H-solution, one yields the trace of the corre-
sponding Jacobian matrix

tr JHð Þ ¼ ! cnlcd
a

: (3)

As tr(JH)< 0, the H-solution is always an “attractor.”
Therefore, one obtains a condition of the L-H transition in
the conventional 2-fields PP model,11 which is just cl> cnlcd/
a. A remarkable feature of Eqs. (1) and (2) is that system
tends to be “attracted” to the H-solution in the presence of a
nonzero seed ZF. The reason is that the ZF is modulationally
unstable in the weak shear regime (Dxk > jhVi0ZFj), so that a
seed ZF can be continually amplified until the H-solution is
achieved. In other words, the basin of the attraction of H-
solution is eZ ! (0, 1) and eD ! (0, 1), while the basin of
the attraction of the L-solution is eZ¼ 0 and eD ! (0, 1). As

the H-solution in this model is always an “attractor,” a sus-
tained I-phase does not exist.

In the conventional Predator-Prey model, the DW-ZF
couplings are dependent on the product of eD and eZ at the
same time, i.e., the model assumes an instantaneous response
of the DW turbulence to the ZF.11 However, it has been dem-
onstrated7 that the response/delay time is constrained by the
turbulent relaxation time of the DW-ZF system. In the wave
turbulence picture, turbulent relaxation (or potential vorticity
mixing) is driven by the “collisions” between the DW pack-
ets, which are a function of the local DW-DW scattering (on
the order of the turbulence decorrelation time, Dx!1

k ) and the
DW-DW scattering mediated by the ZFs (on the order of
the ZF shearing time, jhVi0ZFj

!1). Prior to the L-H transi-
tion, the DW-ZF system enters the Dimits shift regime,
when the ZF shearing rate exceeds the turbulence decorre-
lation rate

jhVi0ZFj > Dxk: (4)

In this marginally stable regime, the DW fluctuations are
nearly quenched by the ZFs, so turbulent relaxation is medi-
ated mainly by the DW-ZF scattering, i.e., the delay time s is
set by the ZF shear time,7 s ’ jhVi0ZFj

!1, which is also a nec-
essary condition for having a sustained I-phase. In this sce-
nario of dominance of nonlocal interaction, the dynamical
structure of the conventional 2-fields PP model will be quali-
tatively changed.

Taking account of the delayed response of the DW tur-
bulence to the ZF, the evolution of eD at time t is actually
influenced by the “distortion” field (eZ) at (t ! s), i.e., the
nonlinear coupling between DW and ZF is history dependent.
Correspondingly, the strength of the “elastic force” (here
means the back-reaction of the DW on the ZF) “felt” by the
ZF at time t depends on the deformation of the DW induced
by the ZF at time (t ! s). A standard way to model this time
delay effect2 is to replace eD(t)eZ(t) by eD(t)eZ(t ! s). As the
delay time (i.e., jhVi0ZFj

!1) is much shorter than the period
(x!1

LCO) of the LCO,9,10 the history dependent nonlinear cou-
pling can then be approximated as

eD tð ÞeZ t! sð Þ ’ eD tð ÞeZ tð Þ ! seD
@

@t
eZ; (5)

where @tlneD¼xLCO. Replacing eD(t)eZ(t) in Eqs. (1) and (2)
by Eq. (5), one obtains the elastic 2-fields PP model with his-
tory dependent DW-ZF coupling

@

@t
eD ¼ cleD ! cnle

2
D ! aeZeD ! ascd ! a2seD

1þ aseD
eZeD; (6)

@

@t
eZ ¼ !cdeZ þ aeDeZ

1þ aseD
: (7)

Equations (6) and (7) are the simplest nonlinear system that
incorporates the effect of turbulent elasticity. They are
equivalent to a “projection” of a more realistic system, such
as the 3-fields system composed of the evolution of eD, eZ,
and the turbulent momentum flux. Here, the effect of dynam-
ical evolution of the turbulent momentum flux is “modeled”
by a history dependent DW-ZF coupling. However, the
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reduced model captures the essence (i.e., history dependent
DW-ZF coupling) of the time delay effect, and also is more
analytically tractable. Here, we use the elastic 2-fields PP
model as a paradigm to illustrate the critical role of the delay
time in introducing new dynamical structures to the DW-ZF
system.

In contrast to Eqs. (1) and (2), the time delay effect in
Eqs. (6) and (7) can be interpreted as follows: for the evolution
of eD, the nonlocal coupling coefficient a (constant in time) is
renormalized to a0 ¼ aþ ðascd ! a2seDÞ=ð1þ aseDÞ, which
varies with time. For the evolution of eZ, the inertia of the ZF
is renormalized to (1þ aseD), which is a “shielding effect”
and will induce a phase lag between eZ and eD. As in Eqs. (1)
and (2), the L-solution in Eqs. (6) and (7) is always unstable
in the presence of the H-solution. The positions of the fixed
points of the elastic 2-fields PP model are the same as those of
Eqs. (1) and (2), but the stability of the H-solution can change.
The trajectory of JH of Eqs. (6) and (7) now gives

tr JHð Þ ¼ ! cnlcd
a

þ ascd
1þ scd

cl
a
! cnlcd

a2

% &
: (8)

In Eq. (8), the delay time makes a positive contribution, and
hence tends to destabilize the H-solution. The delay time for
transition is

tr JHð Þ ¼ 0 ) scr ¼
cnl

acl ! cnlcd
: (9)

Once s> scr, both the fixed points in Eqs. (6) and (7)
will become “repellers.” As the delay time s ’ hVi0!1

ZF , the
corresponding critical strength of zonal shear is

jhVi0crj ¼ s!1
cr ¼ acl

cnl
! cd: (10)

To have an unstable H-solution requires that the ZF shearing
rate not be “too” strong, i.e., jhVi0ZFj < jhVi0crj. Combining
with the nonlocality dominance condition (Eq. (4)), one
obtains the condition for the DW-ZF system to enter the
LCO state as Dxk < jhVi0ZFj < jhVi0crj. When this criterion is
met, the Poincar"e-Bendixson theorem implies that the trajec-
tory of the phase point in the phase space of eZ and eD will
then be “attracted” to a closed orbit, i.e., a limit cycle, and
the system will enter a new steady LCO state. In this state,
the DW turbulence is not quenched, but oscillates. The phys-
ical process evolution is sketched in Figure 1. The direction
of the LCO is determined by the causality between eZ and eD.
Here, the ZF gains energy from the DW turbulence, and
hence the system executes a clockwise LCO (Fig. 1). The
nonlinear dynamics of the elastic 2-fields PP model is
numerically illustrated with the following parameters:
cl¼ 0.8, cnl¼ 1, a¼ 2, cd¼ 0.3, and initial phase point (eD,0,
eZ,0)¼ (0.8, 0.3). With these parameters, both L- and H-
solutions exist and they are the H-solution (eZ, eD)¼ (0.15,
0.325) and the L-solution, (eZ, eD)¼ (0.8, 0). The corre-
sponding critical delay time is scr¼ 0.77. In Fig. 2, the delay
time is s¼ 1.8, which exceeds the critical value, and the sys-
tem evolves to a LCO state. The ratio of the delay time to
the period of the LCO is s=x!1

CLO ’ 1:8=50 ¼ 0:036 ' 1,

and hence the use of the expansion in Eq. (5) is also seen to
be valid. This ratio is also consistent with experimental
observations, e.g., s=x!1

CLO ’ 0:01 in Ref. 10. From Fig. 2,
the local turbulence decorrelation rate is estimated as
Dxk ’ cnleD ’ 0:3 ( jhVi0ZFj ’ 1:8!1, and hence the pre-
condition Dxk < jhVi0ZFj is satisfied. A constant phase mis-
match (p/2) between eD and eZ also appears in Fig. 2.

It is widely recognized that the mean electric field
driven by ion pressure gradient plays an important role in the
L-H transition. In the preceding section, we showed the
delay time to be a new parameter, controlling the dynamical
structure of the DW-ZF system. A natural question is how
the delay time is modulated by the mean E"B shear. The
ramping injected power can enhance the turbulent Reynolds
stress, which then drives stronger ZFs. During this process,
the ZF continuously extracts energy from the DW turbu-
lence, and eventually drives the DW-ZF system to a so-
called Dimits shift state and initiates the LCO (I-phase).
Besides driving the DW-ZF system into the strong shear re-
gime, the increased edge ion pressure can also drive a large
mean E"B shear flow. The newly generated mean E"B
shear flow will increase the DW scattering to ZF shear via
the same mechanism. This extra scattering will enhance the
turbulence decorrelation rate and then reduce the delay time.
If the ion pressure profile is steepened sufficiently, the mean
E"B shearing rate will then exceed the ZF shearing rate, so
that the mean E"B shear becomes the dominant turbulence
decorrelation mechanism and the delay time is then deter-
mined by the mean E"B shearing rate, s ) jhVi0!1

E"Bj. In
other words, hViE"B becomes the main “controller” in the
later phase of the L-H transition. Once jhVi0E"Bj > s!1

cr , the
H-solution becomes an “attractor,” so that the DW-ZF
system will transit from the LCO state to H-mode
(e.g., Figure 3). In the process of the L-H transition, the evo-
lution of the ion pressure (or the mean electrostatic field) is
determined by

@

@t
Pi ¼ vi eDð Þ þ vneoð Þ

@2

@x2
Pi þ S; (11)

where vneo is the neoclassical heat conductivity, which is
smaller than the turbulent heat conductivity vi, and S stands
for the injected external power. The turbulent heat

FIG. 1. Sketch of physical mechanism of LCO.
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conductivity scales as vi(!D)) !D. Because eD is participating
in a LCO, vi is oscillating, too. In Eq. (11), the turbulence in-
tensity !D plays the role of reducing the pressure amplitude,
which is opposite to effect on the ZF amplitude. For a con-
stant power injection rate, the fastest rise rate of Pi corre-
sponds to the minimal value of !D. Thus, the turbulence
intensity lags behind the ion pressure by a phase of p/2.
Compared to the LCO among eZ and eD, it is then no surprise
that a counter-rotating LCO among Pi and eD, would occur.5

Taking Pi as passive, which is adequate for the I-phase, we
sketched the counter-rotated limit-cycle in Fig. 4.

This scenario is also consistent with the bifurcation
model of a LCO, where, by employing a model S–curve of
the effective diffusivity of particle density, one can obtain a
LCO solution for the mean radial electric field (or ion pres-
sure).13 Here, the turbulent elasticity induced LCO among
DW and ZF can naturally provide a multi-valued turbulent
diffusivity/conductivity and so cause the oscillation of ion
pressure profile. Finally, one arrives at a unified paradigm
for the spontaneous transport barrier formation as sketched
in Fig. 5. At the beginning, the DW-ZF system is near an
unstable L-mode, and then the ZF starts to grow. When the

FIG. 2. Delay time s¼ 1.8> scr.

FIG. 3. Delay time s¼ 0.5< scr.

090702-4 Guo et al. Phys. Plasmas 21, 090702 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
132.239.66.163 On: Wed, 14 Jan 2015 17:44:02



ZF shearing exceeds local turbulence decorrelation (i.e.,
jhVi0ZFj > Dxk), but is below the critical shearing rate
(jhVi0ZFj < jhVi0crj, the system will be “attracted” a limit-
cycle and enters the I-phase. During the above process, the
mean E"B shear driven by the ion pressure gradient is con-
tinuously increasing, and finally becomes the dominant tur-
bulence decorrelation mechanism (jhVi0E"Bj > jhVi0ZFj).
Once jhVi0E"Bj > jhVi0crj (i.e., s< scr), the DW-ZF system
will evolve into the H-mode state via reverse Hopf bifurca-
tion. Note that the delay time parameterizes each stage of the
transition.

In summary, we propose a new mechanism for the trans-
port barrier formation via a cyclic state. This new mecha-
nism follows from the time history of the DW-ZF coupling,
which originates from the turbulent mixing of the DW turbu-
lence, and hence is general and robust. In the elastic 2-fields
predator-prey feed back system, we predict a critical delay
time scr and show that the LCO occurs for an “intermediate”
strong ZF shear regime, Dxk < jhVi0ZFj < s!1

cr , which is in
agreement with recent experiments9,10,14 and is different
from the Waltz rule for L-H transition,15 jhVi0E"Bj > cl. It is
also found that the oscillating turbulence intensity can result
in a LCO among DW intensity and ion pressure, with oppo-
site rotation direction, in the later phase of the I-mode. Since
the flip of LCO happens during the I-H transition, it is a sig-
nature of the formation of H-mode.5 It is argued that if the

delay time is reduced below a critical value by the mean
shear flow, the DW-ZF system will be “locked” to the H-
solution. Therefore, turbulent elasticity is a critical
“controller” of transport barrier dynamics.
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