
UC San Diego
UC San Diego Previously Published Works

Title
When Coding Meets Biology: The Tension Between Access and Authenticity in a 
Contextualized Coding Class

Permalink
https://escholarship.org/uc/item/7h27k9kr

Authors
Zuckerman, Austin L
Juavinett, Ashley L

Publication Date
2024-03-07

DOI
10.1145/3626252.3630966

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7h27k9kr
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


When Coding Meets Biology
The Tension Between Access and Authenticity in a Contextualized Coding Class

Austin L. Zuckerman
Mathematics and Science Education, UC San Diego

La Jolla, CA, USA
San Diego State University

San Diego, CA, USA
alzucker@ucsd.edu

Ashley L. Juavinett
Neurobiology, UC San Diego

La Jolla, CA, USA
ajuavine@ucsd.edu

ABSTRACT
As programming skills become more demanded in fields outside of
computer science, we need to consider how we should be teaching
these skills to our students. One option is to encourage students
to pursue introductory computer science courses; however, these
courses are often geared towards computer science (CS) majors
and without important discipline-specific context. Other avenues
include short coding modules within disciplinary courses or full
courses that blend CS with another discipline. Guided by insights
from an introductory CS course in the context of biology, we de-
scribe a key tension when coding meets biology: while contextual-
ized programming classes are often perceived as more accessible,
students may also view them as less authentic. Taken together,
these observations point to specific recommendations for educators
who choose to integrate coding and biology in this way. Ultimately,
we conclude that discipline-specific programming education is es-
sential to improve equity in computing education.

CCS CONCEPTS
• Social and professional topics → Computing education;
CS1; Computing literacy; Computing education; CS1; • Applied
computing → Life and medical sciences; Life and medical
sciences.

KEYWORDS
Contextualized coding, CS1, Computing in Biology,
Equity & Inclusion

ACM Reference Format:
Austin L. Zuckerman andAshley L. Juavinett. 2024.WhenCodingMeets Biol-
ogy: The Tension Between Access and Authenticity in a Contextualized Cod-
ing Class. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1 (SIGCSE 2024), March 20–23, 2024, Portland, OR, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3626252.3630966

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630966

1 THE NEED FOR COMPUTING EDUCATION
IN BIOLOGY

In the 21st century, programming is a skill required not only for
computer scientists, but for a wide range of professionals spanning
many different disciplines [28, 30, 38]. In biology in particular, many
have pointed to the increasing need for computational approaches
to analyze large datasets and construct complexmodels of biological
systems [2, 15, 27]. However, undergraduate curricula that include
adequate computational training for life sciences majors remain
elusive, especially for students who pursue such majors without a
computational specialization.

Proposed reasons for the mismatch between the demand and
inclusion of computational skills in biology curricula include in-
structors’ lack of experience, barriers to programming tools, and
challenges in identifying discipline-specific programming needs
[19, 37]. Further, there is limited research about the experiences,
dispositions, and outcomes of students who journey into opportu-
nities to bridge coding and biology. And so, it is unclear how we
should be teaching non-computer science (non-CS) majors how to
code: should we invite them into computer science (CS) courses, or
should we integrate CS education into other curricula? In this expe-
rience report, we draw from our experience teaching a biology CS1
to identify specific considerations when integrating programming
and biology, which can offer transferable implications for other
non-CS fields.

1.1 Considerations when integrating
programming & biology

There are several considerations when inviting non-CS majors into
computer science spaces. Decades of research have shown that
even students choosing to major in CS have preconceived notions
about what it means to learn computer science and who can be a
programmer [7, 14]. For example, one of the most pervasive stereo-
types of programmers – even now – depicts males with singular
focus coupled with an asocial, competitive personality [6, 24]. These
stereotypes are especially held by women and students from mi-
noritized backgrounds because of their continued exclusion in these
fields [8, 14]. Field-specific stereotypes interact with self-identity
effects such as stereotype threat, which can hinder students’ self-
efficacy, sense of belonging, persistence in a field, and ultimately,
their academic performance [17, 21].

In addition to these stereotypes about CS, biology students may
conflate mathematics and computing, further hindering the partici-
pation of students who are math-averse [1, 5, 34]. Women and first

1491

https://doi.org/10.1145/3626252.3630966
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://creativecommons.org/licenses/by-nc-sa/4.0
https://doi.org/10.1145/3626252.3630966
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630966&domain=pdf&date_stamp=2024-03-07


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Austin L. Zuckerman and Ashley L. Juavinett

generation students especially have negative task values (which
summarize interests and perceptions) for mathematics in a biology
context [1]. Our biology students are therefore especially likely
to hold such notions, given that many of them chose their majors
instead of computational or mathematical majors. When we invite
students into CS spaces, we therefore need to acknowledge and
directly address the mindsets students bring with them.

A second barrier in encouraging non-CS majors to develop CS
skill sets is access to relevant coursework. Depending on the uni-
versity, non-CS majors may not be able to enroll in introductory
computer science (CS1) courses: CS1 may be restricted to computer
science or engineering majors or have limited spots for non-majors.
Further, in some cases these courses have prerequisites that non-
majors do not have or may not be counted as courses towards a
student’s non-CSmajor. Non-CSmajors can pursue informal coding
opportunities (such as workshops or bootcamps), but these may not
afford the same professional development or spring boarding into
future computational learning or career paths. Students, colleagues,
and future employers also may not recognize opportunities outside
of the university setting as legitimate [33]. The design of our cur-
ricula therefore communicates a specific message about who can
and should access these skills.

1.1.1 Course vs. Modular Approaches. In response to these chal-
lenges with bringing non-CS students into computing education,
some educators have developed discipline-specific coding oppor-
tunities. One notable example is a biology-based CS1 (CS1-B) at
Harvey Mudd College, which has been taught for over a decade
and has demonstrated that contextualized coding equally prepares
students for future computing coursework [11]. There is also an
important story about gender equity: CS1-B students are more
likely to be female than those in non-biology CS1, demonstrating
that contextualized coding courses recruit student populations not
served by traditional courses [12]. Dodds et al. (2021) argue that
computing is a literacy and means of inquiry that should be shared
by all, and that disciplines such as biology can preserve their iden-
tity while integrating computing. Yet despite the strong example
set by CS1-B, such interdisciplinary courses are rare.

Other educators have pioneered more modular inclusion of com-
puting in biology curricula, predominantly through hands-on labo-
ratory courses that involve computing or bioinformatics modules,
which naturally lend themselves to introductions to computing
[9, 18, 25, 31]. For example, Custer et al. (2021) implemented an
introductory tutorial to statistical programming using R across a va-
riety of courses, including for students majoring in natural sciences
and found that students’ perceptions of R became more favorable
after completing the tutorial [9]. Similarly, Madlung (2018) found
that biology students valued a module with applied bioinformatics
and were interested in receiving such instruction earlier in their
undergraduate biology education [25]. However, students desiring
a deeper, more thorough introduction to computing will still need
access to full courses that cover the primary content of CS1.

2 A CS1 IN THE CONTEXT OF BIOLOGY
Inspired by CS1-B and other contextualized computing courses,
we developed an introductory Python course in biology that was
accessible to non-CS majors. In this section, we provide details

about the course to contextualize our insights into the following
research objectives:

• Q1: Is course enrollment more diverse than would be ex-
pected based on enrollment in CS majors at our university?

• Q2: Do students perceive an CS1 course in biology as more
accessible than a non-biology CS1?

• Q3: How do students perceive computing skills in a biology
context?

2.1 Course Context
“Introduction to Python for Biologists” is taught in a biology de-
partment at a large research-intensive (R1) public institution where
CS1 course enrollments are typically in the hundreds. The course
is open to non-CS majors with no prerequisites and has approval
as an elective course for a variety of non-CS majors.

2.1.1 Participants. There have been three offerings of this course
in the past two years (2022-2023), with 42, 80, and 90 students in
each offering. This course is currently taught by faculty in the biol-
ogy department, one with degrees in neuroscience and the other
with degrees in physics. While this course focused on teaching
applications of Python in biological sciences, students were not
required to be enrolled as biology majors (about half were, and
many other students were chemistry/biochemistry, environmental
science, or cognitive science majors). Certain colleges at our univer-
sity require computing courses, but not all. Student demographics
reported below were collected in a pre-course survey that was not
linked to student grades. Approximately 95% of students filled out
this survey. Institutional demographic data reported below was
obtained from http://ir.ucsd.edu and represents the 2021-22 school
year.

2.1.2 Learning Objectives & Course Content. The learning objec-
tives for the course were as follows:

• Read, write, edit, and run basic Python programs in both
Jupyter Notebooks and the command line, recognizing the
structures used (i.e. variables, conditionals, loops, functions)
and explaining how they work

• Manipulate and create objects in Python, including data
structures and classes

• Visualize and analyze simple datasets in Python
• Implement common algorithms for analyzing biological data
(e.g., time series, images)

The 10-week course covers similar content to a typical CS1, but
with several notable exceptions (Table 1). First, wherever possible,
code examples are related to biology. For example, string slicing is
done with DNA or RNA sequences – for example, finding three-
letter strings in a longer string of nucleotides (’GCTGTCAGTC’)
– to illustrate the relevance of this skill to bioinformatics datasets.
Second, there is a strong emphasis on data wrangling, analysis,
and visualization in the second half of the course, as these are key
skills for biology researchers. Lastly, the final weeks of the course
cover applications that are specific to biology, such as relevant
Python packages for scientific analysis and topics such as image
processing and time series analysis. Although the second half of
the course is biology application-based, it also serves to reiterate
concepts from the first half – for example, in the neuroinformatics

1492



When Coding Meets Biology SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

Table 1: Course Overview

Week Topic
1 Course introduction, tools, Python syntax
2 Data structures (lists, tuples, and dictionaries),

conditionals, and functions
3 Loops
4 Object-oriented programming
5 Scientific computing (NumPy & Data visualization)
6 Data analysis in Pandas
7 Review and preparation for final projects
8 Signal and image processing in Python
9 Neuroinformatics
10 Documentation, version control, code collaboration

module, students need to navigate nested data structures and write
functions. This course was built with biology majors in mind and
was not intended to serve the needs of students who are continuing
into CS education. It is, however, approved as a substitute course
for other introductory Python courses in non-CS majors.

Most of the course content is delivered via partially-completed
Jupyter Notebooks which students complete during interactive live-
coding class sessions. All of the course content can be found on
GitHub (www.github.com/BILD62). Educators who wish to know
more about course specifics are encouraged to reach out to the
corresponding author with questions or suggestions.

2.1.3 Assessment. Throughout the quarter, students completeweekly
problem sets which constitute about half of their grade. Students
are tested on their fundamental programming knowledge with a
multiple choice open-notes exam featuring Parson’s problems and
questions requiring students to describe several lines of code in
their own words. At the end of the course, students complete a final
group project: either a small program (e.g., a biology-inspired Wor-
dle game) or an analysis workflow (e.g., analyzing data collected in
their research lab or a publicly accessible dataset).

2.2 Focus Groups
To address our research questions, we conducted focus group inter-
views with 22 students (3-5 per group) in three different quarters of
instruction. These interviews were conducted towards the end of
the course, engaging students in both summative and retrospective
reflection. Focus groups were conducted by the first author and
within a larger mixed-methods study of student attitudes, which in-
cluded pre- and post-surveys (not discussed here). The focus group
protocol expanded upon the survey’s open-response questions and
broadly explored students’ attitudes towards programming. Tran-
scripts were first iteratively read and then analyzed using an induc-
tive coding scheme. Quotes from these focus groups are included
here to provide student voice to our observations.

2.3 Positionality Statement
A. Zuckerman is a PhD student who operated independently from
the course and was primarily responsible for overseeing the col-
lection and analysis of the focus groups. He does not teach this
course in any capacity. A. Juavinett was the instructor for two it-
erations of the course. Her experiences teaching the course and
interacting with students provided additional anecdotal evidence
that complemented the insights from the focus groups.

3 DISCIPLINE-BASED PROGRAMMING
IMPROVES ACCESS

One of the primary motivations for developing an introductory
computing course in biology was to provide access to these skills
for non-CS majors. After multiple course iterations, we have noted
that our course enrollment is more diverse than the enrollment
in typical engineering and data science courses at our university.
These numerical observations are supported by student comments.

3.1 More diverse course enrollment and higher
retention compared to CS fields

As observed in other discipline-based computing courses [12], we
noted a high enrollment 60%) of female students in our course.
As seen in Figure 1, these numbers are particularly striking when
compared to the number of female students in the computer science
(24%) or data science (29%) degree recipients at our university, and
are on par with how many biology degree recipients identify as
female (65%) and the number of female students in life sciences
more broadly (60%; Figure 1). For broader context, in the United
States and Canada, about 22% of doctoral degree recipients in CS
are female [39], and at our same institution, CS1 enrollment is
typically 19-31% female, depending on whether students are in a
"prior experience" track or not [32]. It is clear from this data that
discipline-based coding, perhaps particularly in biology (which
has many female students), can improve participation for women
despite gendered expectations of coding classes [24].

We also observed higher rates (24%) of students from underrep-
resented racial groups (URM; includes any student who did not
identify as either White or Asian American or did not include a
response) than those who received degrees in either Computer
Science & Engineering (11%; see also [32] for CS1 data) or Data
Science (14%; Figure 1). Further, our course enrollment is more
aligned with Life Sciences major enrollment than Computer Sci-
ence (Figure 1, bottom). It should be noted that participation rates
for URM students in CS doctoral programs are even lower than the
undergraduate statistics shown here (3.9% of CS doctoral recipients
in 2021-22;[39]).

Finally, course retention can speak directly to the accessibility
of a course. Indeed, this course also had very high retention across
all three quarters (92-98%), unlike what is typical for CS1 courses,
which are often in the ballpark of 60-80% [32]).

3.2 Perceived accessibility
Such demographic data raises an important question: why might a
discipline-based coding class be more accessible? Student feedback,
obtained via focus groups, provides several key insights here.

1493

http://www.github.com/BILD62


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Austin L. Zuckerman and Ashley L. Juavinett

Figure 1: Degree recipients (top) and major enrollments (bot-
tom) by gender and race/ethnicity at our institution. Black
dotted line indicates % of female and URM students enrolled
in our course, for comparison. Majors chosen represent the
closest to those of interest that were available in institutional
data; "Computer Science & Engineering" also includes all
fields of engineering. Underrepresented minorities (URM)
include African American/Black, American Indian/Alaska
Native, Chicanx/Latinx, Native Hawaiian/Pacific Islander.

First, participants identified this course as an opportunity to
gain exposure to fundamental programming skills, yet there were
variations in their descriptions regarding the perceived difficulty or
accessibility of the course. Many participants expressed uncertainty
about the course content, but attended to certain aspects of the
course title, “Introduction to Python for Biologists,” when formulat-
ing their impressions about the course’s difficulty and accessibility.
The course’s focus on teaching both fundamental programming
skills and how these skills could be directly applied in biological
applications was particularly inviting to some students:

I felt like it was a little too late to start, since every
coding class I thought about joining had a bunch of
other people who have started since like high school
or middle school. But this one was called, like, Intro to

code, but also for specifically, like bio. And I thought
that was just very welcoming.

This class was designed to specifically recruit biology students,
and many students were biology majors. We were therefore not
surprised that many students highlighted the fact that elements
of the class directly linked to biology: “[The nicest thing] is when
we would learn like the basics in [Jupyter] notebooks and then
later on, we’d see them in the context of a biology problem and
like something you might see in a lab.“ In another student’s words,
"Because I’m a bio major, and it’s bio-centered, I thought it seems a
little bit more accessible than some of the other coding classes."

Some participants were expecting the course to be manageable
because this course specifically focused on learning Python, which
they felt was a more accessible and transferable programming lan-
guage. One participant stated that they “understood Python [as]
the easiest coding language to learn, so [they were] a little less
intimidated by this class.” In contrast, other participants stated that
they expected learning Python to be difficult based on a previous
programming experience, stating that “I had taken math, and part
of the class was to learn Matlab, which is another language, and
that language was really infuriating because I felt like the syntax
was very picky. . . I thought that Python would be the same.”

In addition, we learned that many students were pleased that
aspects of the class were immediately rewarding and relevant to
other coursework, particularly data analysis and visualization:

I didn’t think I’d be able to utilize Python packages
quite the way that we have, like, with Matplotlib I
can generate a plot. And that’s something that I can
actually already go and take into like my recombinant
DNA techniques class. I wasn’t expecting to already
have things that I could visualize and use that quickly.

Another student linked the content to their identity as a learner:
“I’m a visual learner, so I think, like you, says I’m able to create
something that can visualize and like actually understand.”

In sum, the foregrounding of biology applications seems to have
recruited many students into the class and helped retain them by
demonstrating the immediate value of computing skills.

3.3 Perceptions of a normalized error climate in
the classroom

In addition to the perceived accessibility of the course, high reten-
tion may also be attributed to student perceptions of a learning
culture that explicitly normalized errors as a productive part of the
coding process. For example, one participant recalled the course
instructor using the internet in real time to troubleshoot coding
errors. This observation allowed them to see that a universal un-
derstanding of programming concepts was not required to engage
in the coding process.

I think like watching the even the Professor like mess
up in class and being like, oh, it’s okay, I still un-
derstand what I’m doing, even though I messed up
my one line of code and like watching them look up
things online and being like, oh, you know it’s not
that I know everything. [I now] feel confident and
understand how to troubleshoot.

1494



When Coding Meets Biology SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

As another participant described, the course experience gradually
improved their confidence with the coding process, especially as
seeking assistance became a normalized part of this process.

At the beginning, I was very scared. I limited myself
in a lot of the coding process, because I was scared of
the error messages. So as the weeks went on, and then
I started doing more assignments, I kind of became
okay with that error message and I started to like to
see my coding, my code in different ways, in order to
like know why each line was doing and then if there
was an error in that line, how can I fix it by myself
and if I couldn’t fix it by myself, then you know, ask
for help.

These comments indicate that the error climate of this course was
often perceived to be positive and welcoming, especially due to the
collaborative nature of the course. The perceived accessibility that
inspired students to enroll in the course was overall sustained as
students engaged with the course material and learned to persist
through challenges in the coding process.

4 IS CODING IN BIOLOGY CONTEXTS “REAL”
CODING?

One unexpected observation from our focus groups is that students
were grappling with whether the flavor of coding learned in our
course was “real” coding, akin to the kind of programming learned
in a typical CS1 course. In some instances, students viewed coding
in biology as being a different, more applied form of coding from
other types of coding. Part of this skepticism came from the course
materials. Several students cited the fact that the course was taught
in Jupyter Notebooks, which they did not see as “real” coding:

In the sense of like just using Jupyter notebooks which
are almost like a little bit, I think they feel almost like
separate from computer coding because they are like
a separate form or place to code.

Another point of skepticism came from the focus on data analysis,
which some students did not see as synonymous with coding, even
though it involved writing code:

I mean the coding is still there it’s just I thought it’d
be more emphasis on the coding but this has been
more emphasis on what these things do in relation to
data or something like that.

While students acknowledged that basic familiarity with coding is
becoming increasingly essential as a highly demanded skill across
many disciplines, they also perceived that coding skill sets are nar-
rower or more specialized in biology. As one participant noted, the
scope of coding techniques used by professionals in the biotech-
nology industry are narrower and more specialized than in other
programming disciplines:

I think in biotech stuff it’s usually going to be, I think a
lot simpler because there’s usually just small amounts
of code needed to do certain tasks. . . [C]ompared to
like what they do in Google, like fixing bugs and stuff,
you don’t really have to deal with that as much be-
cause I feel like you’re just writing code to do tasks for
you, you don’t really have to worry about having like

something that other people could then work with
and all that stuff.

Another participant described that “with biology, it’s mostly work-
ing with stuff that’s already premade or at least learning how to
use functions and packages, rather than entirely making something
new,” indicating a perception that coding is more scaffolded when
used in biological applications. These student comments suggest
that we should think critically about how we portray authenticity
in applied CS contexts.

5 LESSONS LEARNED FOR FUTURE BIOLOGY
& CODING COURSES

As the above data and observations suggest, teaching coding in a
biology context may lead to two slightly opposed outcomes. On
one hand, contextualized coding may serve a broader population
of students, but on the other hand, students may also perceive that
their learning is less authentic.

5.1 On the question of authenticity
In contemplating the authenticity of computing in the course, stu-
dents made several accurate observations: most biologists who use
code are indeed using packages written by others, often running
scripts with small modifications. In the course, we used partially-
completed Jupyter Notebooks, which may also simulate a biology
researcher receiving a data analysis notebook from a colleague.
However, the observation that students perceived data analysis with
code as qualitatively different than "coding" is alarming, though in
line with other observations about concerns about the legitimacy
of other modes of computational education, such as more visual,
block-based coding [35]. In a recent study on the use of Code.org
block-based coding, one student response particularly resonated
with our observations: "It was fun, yet it didn’t actually teach me
code" [13]. Such beliefs may undermine the stated goals of the
course to improve student attitudes towards coding and ultimately
accessibility; although we did not assess this directly, we speculate
based on other research that the perception of an illegitimate pro-
gramming education could negatively impact their self-identity as
a coder and role as a legitimate peripheral participant in a com-
putational community [16], the opposite effect of incorporating
authentic learning into STEM contexts [4].

While further research is undoubtedly warranted to track how
well our course (compared to traditional CS1) prepares students for
future computational work as well as how persistent this skepticism
about the legitimacy of coding in this context is, we feel it was a
clear enough signal in our observations to permit a recommendation
to other educators: namely, this skepticism needs to be addressed,
in one of several ways. First, instructors could highlight the actual
work of professional data scientists or biology researchers and
ensure course materials are aligned with the community of practice
that we are preparing students to join [16, 23]. Instructors could,
for example, demonstrate the typical code that a biology researcher
may encounter, illustrating that indeed much of their time is spent
working with pre-written packages or wrangling figures.

Further, our insights here dovetail with work in biology educa-
tion which underscores the importance of authenticity in course-
work, particularly lab courses and those that strive to improve data

1495



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Austin L. Zuckerman and Ashley L. Juavinett

literacy [4, 18, 20, 26]. Likewise, in contextualized coding, students
should see and work with real data sets and packages, perhaps even
replicating analyses and figures in published scientific work. To
this end, the final project in this class was designed so that students
could, if they chose, work with real-world data. Indeed, several
students chose to work with data from their own research labs or
publicly-available datasets, such as ones related to COVID-19.

5.2 Additional takeaways
In addition to the specific insights about perceived accessibility and
authenticity of coding in the context of biology, we have gained
several broadly applicable insights into developing these courses.

First, course title matters. In student comments, several high-
lighted the fact that our course title included the word “introduc-
tion.” Students are keen on these details – “introduction” means a
course for beginners, and likely without any prerequisites. Simi-
larly, setting a welcome, inclusive tone for all learners on the first
day of class will reiterate the introductory nature of the course [22].

A second consideration is institutional context. Our course is
taught at a large university to a student body that containsmany stu-
dents on medical tracks. Students are accustomed to lecture-based
classes in which they may never interact with another student and
may indeed be in direct competition with the students around them
for spaces in desirable medical programs. These cultural factors
directly influence the classroom environment. In this class, we im-
plemented live coding and normalized making mistakes, even in
front of other students, a considerable shift in culture from other
classes but a necessary one for overcoming preconceived notions
about the isolating nature of coding. Institutions with more in-
timate classroom cultures may find it much easier to encourage
collaboration in introductory coding courses.

Further, instructors should carefully consider the inclusion of
math (or math prerequisites) in introductory CS courses for non-CS
majors. Although mathematics is often thought of as a prerequisite
for skill building in programming, on the contrary programming
may actually improve students’ self-efficacy and performance in
mathematics [29]. Although mathematics and computer science
share a history and should have considerable cross talk, many life
sciences students are deeply math-averse and wrongly believe that
math and programming are identical skill sets [34]. One strong
signal from the literature is that if math is introduced in computer
science, it should be clearly contextualized [3].

In designing our course, we grappled with the question of how
much mathematics should be taught, especially if we are intro-
ducing algorithms that are commonly used with biological data.
For example, signal filtering is handy for the processing of time
series, and to teach filtering by convolution, instructors can choose
graphical or mathematical means. In most cases, we feel that a
graphical intuition is sufficient for an introductory CS course, and
that this will leave students encouraged to pursue additional, more
mathematically-grounded coursework (a necessary component of
a thorough biology education), rather than discouraged by the
inclusion of topics they were not expecting.

5.2.1 When biology meets generative AI. As we write this, com-
puting education is rapidly changing in the wake of chatGPT and
other large language models. The wide availability of these tools

will (and should) change computational education, as many have
noted [10]. These tools also have specific ramifications for contex-
tualized coding. Students in all disciplines struggle with syntax
and are often frustrated with the detail-oriented nature of writing
code. Generative AI tools can write code with clear instructions
and explain small errors to students, potentially making writing
code de novo obsolete in coding education. While this means that
many of us will need to re-write our assignments and exams such
that they are less likely to be solved by generative AI, it also opens
a welcome opportunity to teach more than just syntax.

Computational thinking, which involves "solving problems, de-
signing systems, and understanding human behavior, by drawing
on the concepts fundamental to computer science," is more than
just replicating syntax [28, 38]. Courses like ours can now spend
less class time on colons and more time on code design and critical
thinking. When we’re not confused as to why our sequence slice
is [’ATG’] instead of ’ATG’, we can ask higher-level questions like
"how do we design robust code for sequences of different lengths?"
In other words, we can move away from programming and towards
computational thinking.

As noted above, many students – especially those who have
been excluded in computational fields – approach CS topics with
apprehension and preconceived notions. It is possible that gener-
ative AI may serve as a "mediating tool" that can help students
engage in authentic coding problems, and therefore should be in-
corporated into introductory contextualized coding education [36].
However, considering the concerns about perceived authenticity,
we also need to be sure to tell students that relying on generative
AI for certain tasks is appropriate and that such tools are indeed
becoming commonplace in the professional workforce as well.

5.3 Conclusion
Contextualized coding courses such as ours serve a great proportion
of students that are typically underrepresented in computational
fields. Therefore, such classes can serve as important curricular
structures for increasing access and equity in computing education.
With these insights, we can adapt discipline-based coding courses
to empower students to see their learning experiences as legitimate.
We hold that it is entirely feasible to teach a contextualized coding
class that is perceived as wholly legitimate and will thoroughly
prepare students for an evolving economy and scientific workforce.
Doing so can help ensure that we are not leaving students behind.

ACKNOWLEDGMENTS
We are thankful to Philip Guo and Catherine Hicks for their feed-
back on this manuscript. We are also grateful to Shannon Ellis and
Tom Donoghue for sharing materials which were adapted for this
course.

REFERENCES
[1] Sarah E. Andrews and Melissa L. Aikens. 2018. Life Science Majors’ Math-Biology

Task Values Relate to Student Characteristics and Predict the Likelihood of Taking
Quantitative Biology Courses. Journal of Microbiology & Biology Education 19, 2
(Jan. 2018), 19.2.60. https://doi.org/10.1128/jmbe.v19i2.1589

[2] Teresa K Attwood, Sarah Blackford, Michelle D Brazas, Angela Davies, and
Maria Victoria Schneider. 2019. A global perspective on evolving bioinformatics
and data science training needs. Briefings in Bioinformatics 20, 2 (March 2019),
398–404. https://doi.org/10.1093/bib/bbx100

1496

https://doi.org/10.1128/jmbe.v19i2.1589
https://doi.org/10.1093/bib/bbx100


When Coding Meets Biology SIGCSE 2024, March 20–23, 2024, Portland, OR, USA

[3] Douglas Baldwin, Henry M. Walker, and Peter B. Henderson. 2013. The roles of
mathematics in computer science. ACM Inroads 4, 4 (Dec. 2013), 74–80. https:
//doi.org/10.1145/2537753.2537777

[4] Margaret E. Beier, Michelle H. Kim, Ann Saterbak, Veronica Leautaud, Sandra
Bishnoi, and Jaqueline M. Gilberto. 2019. The effect of authentic project-based
learning on attitudes and career aspirations in STEM. Journal of Research in
Science Teaching 56, 1 (2019), 3–23. https://doi.org/10.1002/tea.21465

[5] Alicia M. Caughman and Emily G. Weigel. 2022. Biology Students’ Math and
Computer Science Task Values Are Closely Linked. CBE—Life Sciences Education
21, 3 (Sept. 2022), ar43. https://doi.org/10.1187/cbe.21-07-0180

[6] Sapna Cheryan, Allison Master, and Andrew N. Meltzoff. 2015. Cultural stereo-
types as gatekeepers: increasing girls’ interest in computer science and engi-
neering by diversifying stereotypes. Frontiers in Psychology 6 (2015). https:
//www.frontiersin.org/articles/10.3389/fpsyg.2015.00049

[7] Sapna Cheryan, Victoria C Plaut, Paul G Davies, and Claude M Steele. 2009.
Ambient Belonging: How Stereotypical Cues Impact Gender Participation in
Computer Science. Journal of Personality and Social Psychology 97, 6 (2009),
1045–1060. https://doi.org/10.1037/a0016239

[8] Sapna Cheryan, Victoria C. Plaut, Paul G. Davies, and Claude M. Steele. 2009.
Ambient Belonging: How Stereotypical Cues Impact Gender Participation in
Computer Science. Journal of Personality and Social Psychology 97, 6 (2009),
1045–1060. https://doi.org/10.1037/a0016239

[9] Gordon F. Custer, Linda T. A. van Diepen, and Janel Seeley. 2021. Student
perceptions towards introductory lessons in R. Natural Sciences Education 50, 2
(2021), e20073. https://doi.org/10.1002/nse2.20073

[10] Marian Daun and Jennifer Brings. 2023. How ChatGPT Will Change Software
Engineering Education. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1. ACM, Turku Finland, 110–116.
https://doi.org/10.1145/3587102.3588815

[11] Zachary Dodds, Ran Libeskind-Hadas, and Eliot Bush. 2012. Bio1 as CS1: eval-
uating a crossdisciplinary CS context. In Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science education. ACM,
Haifa Israel, 268–272. https://doi.org/10.1145/2325296.2325360

[12] Zachary Dodds, Malia Morgan, Lindsay Popowski, Henry Coxe, Caroline Coxe,
Kewei Zhou, Eliot Bush, and Ran Libeskind-Hadas. 2021. A Biology-based CS1:
Results and Reflections, Ten Years in. In SIGCSE 2021 - Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education, Vol. 21. Virtual Event,
796–801. https://doi.org/10.1145/3408877.3432469

[13] J Du, H Wimmer, and R Rada. 2016. "Hour of Code": Can it change students’
attitudes toward programming? Journal of Information Technology Education:
Innovations in Practice 15 (2016), 52–73.

[14] Allan Fisher and Jane Margolis. 2003. Unlocking the clubhouse: women in
computing. In Proceedings of the 34th SIGCSE technical symposium on Computer
science education (SIGCSE ’03). .23. https://doi.org/10.1145/611892.611896

[15] William Grisham, Barbara Lom, Linda Lanyon, and Raddy L. Ramos. 2016. Pro-
posed Training to Meet Challenges of Large-Scale Data in Neuroscience. Frontiers
in Neuroinformatics 10 (July 2016), 1–6. https://doi.org/10.3389/fninf.2016.00028

[16] Mark Guzdial and Allison Elliott Tew. 2006. Imagineering inauthentic legit-
imate peripheral participation: an instructional design approach for motivat-
ing computing education. In Proceedings of the second international workshop
on Computing education research. ACM, Canterbury United Kingdom, 51–58.
https://doi.org/10.1145/1151588.1151597

[17] Aniko Hannak, Kenneth Joseph, Daniel B. Larremore, and Andrei Cimpian. 2023.
Field-specific ability beliefs as an explanation for gender differences in academics’
career trajectories: Evidence from public profiles on ORCID.Org. Journal of Per-
sonality and Social Psychology (June 2023). https://doi.org/10.1037/pspa0000348

[18] Ashley Juavinett. 2020. Learning How to Code While Analyzing an Open Access
Electrophysiology Dataset. The Journal of Undergraduate Neuroscience Education
19, 1 (2020), 94–104.

[19] Ashley L. Juavinett. 2022. The next generation of neuroscientists needs to learn
how to code, and we need new ways to teach them. Neuron 110, 4 (Feb. 2022),
576–578. https://doi.org/10.1016/j.neuron.2021.12.001

[20] Melissa K. Kjelvik and Elizabeth H. Schultheis. 2019. Getting Messy with Au-
thentic Data: Exploring the Potential of Using Data from Scientific Research to
Support Student Data Literacy. CBE—Life Sciences Education 18, 2 (June 2019),
es2. https://doi.org/10.1187/cbe.18-02-0023

[21] Sophia Krause-Levy, William G. Griswold, Leo Porter, and Christine Alvarado.
2021. The Relationship Between Sense of Belonging and Student Outcomes
in CS1 and Beyond. In Proceedings of the 17th ACM Conference on International
Computing Education Research (ICER 2021). Association for ComputingMachinery,
New York, NY, USA, 29–41. https://doi.org/10.1145/3446871.3469748

[22] A. Kelly Lane, Clara L. Meaders, J. Kenny Shuman, MacKenzie R. Stetzer, Erin L.
Vinson, Brian A. Couch, Michelle K. Smith, and Marilyne Stains. 2021. Making
a First Impression: Exploring What Instructors Do and Say on the First Day of
Introductory STEM Courses. CBE—Life Sciences Education 20, 1 (March 2021),
ar7. https://doi.org/10.1187/cbe.20-05-0098

[23] Jean Lave and Etienne Wenger. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge University Press, Cambridge, MA. https://doi.org/10.
1017/CBO9780511815355

[24] Colleen M. Lewis, Ruth E. Anderson, and Ken Yasuhara. 2016. "I Don’t Code All
Day": Fitting in computer science when the stereotypes don’t fit. In ICER 2016 -
Proceedings of the 2016 ACM Conference on International Computing Education
Research. Association for Computing Machinery, Inc, New York, NY, USA, 23–32.
https://doi.org/10.1145/2960310.2960332

[25] Andreas Madlung. 2018. Assessing an effective undergraduate module teaching
applied bioinformatics to biology students. PLOS Computational Biology 14, 1
(Jan. 2018), e1005872. https://doi.org/10.1371/journal.pcbi.1005872

[26] Irina Makarevitch, Cameo Frechette, and Natalia Wiatros. 2015. Authentic re-
search experience and “big data” analysis in the classroom: Maize response to
abiotic stress. CBE Life Sciences Education 14, 3 (2015), 1–12. https://doi.org/10.
1187/cbe.15-04-0081

[27] Florian Markowetz. 2017. All biology is computational biology. PLOS Biology 15,
3 (March 2017), e2002050. https://doi.org/10.1371/journal.pbio.2002050

[28] Dave Mason, Irfan Khan, and Vadim Farafontov. 2016. Computational Thinking
as a Liberal Study. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education. ACM, Memphis Tennessee USA, 24–29. https:
//doi.org/10.1145/2839509.2844655

[29] Sarantos Psycharis and Maria Kallia. 2017. The effects of computer programming
on high school students’ reasoning skills and mathematical self-efficacy and
problem solving. Instructional Science 45, 5 (Oct. 2017), 583–602. https://doi.org/
10.1007/s11251-017-9421-5

[30] Sarah Monisha Pulimood, Kim Pearson, and Diane C. Bates. 2016. A Study on
the Impact of Multidisciplinary Collaboration on Computational Thinking. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education.
ACM, Memphis Tennessee USA, 30–35. https://doi.org/10.1145/2839509.2844636

[31] Hong Qin. 2009. Teaching computational thinking through bioinformatics to
biology students. In SIGCSE’09 - Proceedings of the 40th ACM Technical Symposium
on Computer Science Education. ACM Press, New York, New York, USA, 188–191.
https://doi.org/10.1145/1508865.1508932

[32] Adrian Salguero, Julian McAuley, Beth Simon, and Leo Porter. 2020. A Longitudi-
nal Evaluation of a Best Practices CS1. In Proceedings of the 2020 ACM Conference
on International Computing Education Research. ACM, Virtual Event New Zealand,
182–193. https://doi.org/10.1145/3372782.3406274

[33] Kyle Thayer and Amy J. Ko. 2017. Barriers Faced by Coding Bootcamp Students.
In Proceedings of the 2017 ACM Conference on International Computing Education
Research. ACM, 245–253. https://doi.org/10.1145/3105726.3106176

[34] Lucas P. Wachsmuth, Christopher R. Runyon, John M. Drake, and Erin L. Dolan.
2017. Do Biology Students Really Hate Math? Empirical Insights into Under-
graduate Life Science Majors’ Emotions about Mathematics. CBE—Life Sciences
Education 16, 3 (Sept. 2017), ar49. https://doi.org/10.1187/cbe.16-08-0248

[35] David Weintrop and Uri Wilensky. 2015. To block or not to block, that is the
question: students’ perceptions of blocks-based programming. In Proceedings of
the 14th International Conference on Interaction Design and Children. ACM, Boston
Massachusetts, 199–208. https://doi.org/10.1145/2771839.2771860

[36] James V. Wertsch. 2017. Mediation. In Introduction to Vygotsky (3 ed.). Routledge.
[37] Jason J. Williams, Jennifer C. Drew, Sebastian Galindo-Gonzalez, Srebrenka

Robic, Elizabeth Dinsdale, William R. Morgan, Eric W. Triplett, James M. Bur-
nette, Samuel S. Donovan, Edison R. Fowlks, Anya L. Goodman, Nealy F. Grand-
genett, Carlos C. Goller, Charles Hauser, John R. Jungck, Jeffrey D. Newman,
William R. Pearson, Elizabeth F. Ryder, Michael El Sierk, Todd M. Smith, Rafael
Tosado-Acevedo, William Tapprich, Tammy C. Tobin, Arlin Toro-Martinez, Lon-
nie R. Welch, Melissa A. Wilson, David Ebenbach, Mindy McWilliams, Anne G.
Rosenwald, and Mark A. Pauley. 2019. Barriers to integration of bioinfor-
matics into undergraduate life sciences education: A national study of US
life sciences faculty uncover significant barriers to integrating bioinformat-
ics into undergraduate instruction. PLOS ONE 14, 11 (Nov. 2019), e0224288.
https://doi.org/10.1371/JOURNAL.PONE.0224288

[38] Jeannette M. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (March
2006), 33–35. https://doi.org/10.1145/1118178.1118215

[39] Stuart Zweben and Betsy Bizot. 2023. 2022 Taulbee Survey Record Doctoral
Degree Production; More Increases in Undergrad Enrollment Despite Increased
Degree Production. (2023).

1497

https://doi.org/10.1145/2537753.2537777
https://doi.org/10.1145/2537753.2537777
https://doi.org/10.1002/tea.21465
https://doi.org/10.1187/cbe.21-07-0180
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00049
https://www.frontiersin.org/articles/10.3389/fpsyg.2015.00049
https://doi.org/10.1037/a0016239
https://doi.org/10.1037/a0016239
https://doi.org/10.1002/nse2.20073
https://doi.org/10.1145/3587102.3588815
https://doi.org/10.1145/2325296.2325360
https://doi.org/10.1145/3408877.3432469
https://doi.org/10.1145/611892.611896
https://doi.org/10.3389/fninf.2016.00028
https://doi.org/10.1145/1151588.1151597
https://doi.org/10.1037/pspa0000348
https://doi.org/10.1016/j.neuron.2021.12.001
https://doi.org/10.1187/cbe.18-02-0023
https://doi.org/10.1145/3446871.3469748
https://doi.org/10.1187/cbe.20-05-0098
https://doi.org/10.1017/CBO9780511815355
https://doi.org/10.1017/CBO9780511815355
https://doi.org/10.1145/2960310.2960332
https://doi.org/10.1371/journal.pcbi.1005872
https://doi.org/10.1187/cbe.15-04-0081
https://doi.org/10.1187/cbe.15-04-0081
https://doi.org/10.1371/journal.pbio.2002050
https://doi.org/10.1145/2839509.2844655
https://doi.org/10.1145/2839509.2844655
https://doi.org/10.1007/s11251-017-9421-5
https://doi.org/10.1007/s11251-017-9421-5
https://doi.org/10.1145/2839509.2844636
https://doi.org/10.1145/1508865.1508932
https://doi.org/10.1145/3372782.3406274
https://doi.org/10.1145/3105726.3106176
https://doi.org/10.1187/cbe.16-08-0248
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1371/JOURNAL.PONE.0224288
https://doi.org/10.1145/1118178.1118215

	Abstract
	1 THE NEED FOR COMPUTING EDUCATION IN BIOLOGY
	1.1 Considerations when integrating programming & biology

	2 A CS1 IN THE CONTEXT OF BIOLOGY
	2.1 Course Context
	2.2 Focus Groups
	2.3 Positionality Statement

	3 DISCIPLINE-BASED PROGRAMMING IMPROVES ACCESS
	3.1 More diverse course enrollment and higher retention compared to CS fields
	3.2 Perceived accessibility
	3.3 Perceptions of a normalized error climate in the classroom

	4 IS CODING IN BIOLOGY CONTEXTS “REAL” CODING?
	5 LESSONS LEARNED FOR FUTURE BIOLOGY & CODING COURSES
	5.1 On the question of authenticity
	5.2 Additional takeaways
	5.3 Conclusion

	Acknowledgments
	References



