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* RELATIVISTIC SPIN-ZERO WAVE EQUATION 

Joseph V. Lepore and Robert J. Riddell, Jr. 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

June 15, 1971 

ABSTRAC'r 

We have studied the solutions of a wave equation which d~-

scribes a spin-zero particle in the Coulomb field of a nucleus. An 

interesting feature of this equation is that the kernel is not of the 

Fredholm type. The behavior of the momentum space wave function ·for 

large momentum is not determined solely by the angular momentum state 

but, as in the cases of the Dirac and Klein-Gordon equations, it 

depends on the electric charge as well. Our analysis of the a,symptotic 

properties is based on a Mellin transformation of the momentum space 

equation. This leads to a singular integral equation with a Cauchy-

type kernel which may be treated by standard methods. The equation is 

shown to have unique solutions. 
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I. INTRODUCTION 

When we began a phenomenological analysis of pion alpha­

?article scattering sometime ago we were faced with the problem of 

choosing a wave equation incorporating two-particle relativistic 

We wished to describe both electromagnetic and strong inter­

At first, the Klein-Gordon equation appeared to be a likely 

possibility, but it has no probability interpretation so we were led 

effects. 

actions. 

~o consider the problem of Coulomb scattering for two spin-zero 

.particlesfrom the field theoretic point of view. 

This led us to the following wave equation for two free 

p3.rticles of mass ~, ~ and. momenta ~l' ~2 

[(~12 + ~ 2 
)1/2 + (~2 2 

+ m,} l/2 ) 1/r(~1' ~) 

where PO· is the total energy, and we choose 11 = c = 1. If the 

:oulomb interaction is included, an additional term, 

describing the Coulomb interaction, V, appears. 

This equation is a member of the class derived on the basis of 

general relativistic principles by Bakamjian and Thomasl almost two 

decades ago. Such an eqllil.tlon has been known 2 even longer. The 

~elationship between this equation and the Klein-Gordon equation has 

oeen discussed by Feshbachand Villars. 3 More ·recently, Zemach 4 has 

analyzed the relation between this equation and thit for the two-body 

~r I fun t· 5 d . _ een s c ~on ef~ned by Schwinger. 

The Bakamjian-Thomas equation has been studied by a number of 

6 
authors during the p3.st few years. They have concerned themselves 
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with the case of short-range interactions. In the following pages we 

present the theory of the equation for the case of an interaction which 

is the time component of a vector field. In this case the resulting 

integral equation is not of the Fredholm type. Its solutions may be 

shown to behave as 
-s 

p for large momentum where the specific value 

of s depends on the angular momentum state and the strength of the 

interaction. Because of this behavior a Mellin transformation of the 

momentum space wave function seemsp3.rticularly appropriate. When such 

a transformation is carried out, the kernel of the new equation is 

found to have a Cauchy-type singularity. The choice of a contour of 

integration for· the inverse l-1ellin transformation is made by demanding 

that the wave function be integrable for large momenta and that the 

transformed kernel be Iermitian. The integral equation may then be 

reduced to a Fredholm equation by a standard method which we describe 

in detail. We are thus able to prove the existence of unique solutions 

for both bound state and scattertng wave functions. 

II. THE BAKAMJIAN-THOMAS m,UATION FOR COULOMB SCATrERING 

We consider two spin-zero fields p, X of masses m and M, 

respectively, interacting through a Coulomb interaction. The 

Schroedinger representation is employed. Free particle states are 

normalized by 

where is the free particle energy and is the Dirac delta 

flmction. This implies commutation relations of the form 

(2 ) 



for the operators aCE)' beE) and A(E)' B(E) associated with the 

fields ¢ and X, respectively. For ¢ we write 

1 f d3~ . 1~'~. +. -i~'£ 
f,(r)" 3/2 1/2 P ra(p)e' +b;(p)e ] 

... (21t) (2 ) 0 l' ... ... 
and correspondingly for X{r). If 1\1 (l!I9;) . is a f'unction of the 

w.riables ;e and!a~eferring to two different I6rticles, we. may 

1nt:eoduce a tvo-particle state vector Iv by writing 

Where to} is the vacuum statevectal'. One f1iids 

1~ ( i.3
p

.€0· d: ~. . .. 1 2 <.i If)' ,. J ""U '1/I(p, q) I· . 

'ihe Schroedinger equa~ion.wh1ch we seek is just 

(4) 

(6) 

where H is the lJam1l.tonian of the system. The noninteraction part of 

[ 
2 2 1/2 2 -2 1/2] H contributes (E + m ) + (~ + M") 1\I(E' ~) to the lef't-· 

band sideCif this equat'ion, and the Coulcmb interaction term; is 

'. 2f Pln{~) ~(;tt) 3 3 
Hc ~ .Ze . lid t d t' , 

r - r' 

where Pm and ~ are the charge densities of .the'tvo fields. In 

terms of the charges e and. Ze . for the ¢ and X fields (~?e' 

p:u-ticles "a" and "All have charges e and Ze, resPectively) 

P ,. 
m 

i e(It~+.. 1t¢), 
~. 

where 1t, 1t + are the fields canonic8llyconjugate to ¢, ;/, 

(8 ) 

.. ~4-

, 

respectively. The representation of the 1t(r) field is: 

i . 1 f 3 [+ -ip.r ip·r ] 
1t(t) = 3/2 -:;-t;:;l'" d P a (p)e ....... - b(p)e ...... • 

. (21t) 2~~ ...... ... 

Similar expressions describe ~ and the X field.· The evaluation 

of the Couloli:J.b contribution is straightforward. One .finds 

(10) 

Since we were immediately interested in pion-helium scattering 

where m,,« "1te we were led to the approx1mte equation for the case 

of an intinite4r massive field X. If Po now denotes only the 

energy of the ~icle of finite mass we find. 

ell) . 

This is the equation we will study. 

III. SOLUl'IONS OF THE BAKAK1lAN-TlIDMAS COULOMB ~UATION 

This aect10n will. be devoted to a study of the general. properties 
T 

of Eq. (11), when the interaction is attractive. This restriction .will 

be relllOved later. A I6rtial-wave decomposition yields 

2· 21/2 ze21Q)' (Po+Po') (l+p'2) 
(p + m ). 1\I,(p) + ":rc dp' i p'Q. 1\I •. (p') 

v c p Po v 2pp' ~ 
o 

where Qt is the Legendre function of the second kind and 1/1 t (p) is 

... 



.' 

• 
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the new wave function. If we try to write Eq. (12) in standard 

integral equation form the resultingkerne1 is not symmetric. To find 

an equation with a symmetric kernel one may introduce 

{ 
, }1/2 ... '/2." ~ • [po - (0" n

2)1/2] 
'!'he new equation is t~, 

Ze,2 J (X) dp I 
2:1( , 

o 

s 
'lit by 

2 1/2] 1/2' 
+ m) , 

(14) 

P4,uatiou (14) ll.eiB a kernel which is not of the Fredholm t;Y1l€. 

To S;ee this, we consider the integral of the square of the kernel. (the 

Fredholm norm):, 

1-= 
2 2 {ro roo 

(~~ ) Jo dp Jo dP' 

(PQ + Po' )2 

Po Po' 

;< Ih- (i + .2)'/2j [po - (p,2 + m2)1f2]i"" 

(15 ) 

'l'he kernel; will be non-Fredholm if the energy, PO' is in the, 

scattering regi~n, Qe~se the energy deno~tors can thel'vanili!h. 

This difficulty is cOmmon to scattering integral equations and can be 

readily remoVed,8 so we will ignore it. If we set 'p' = ap and take 

account of the symmetry in P and p' we find 

(16) 

As p tends to zero the integral. is well-behaved; when p becomes 

large, however, the integral diverges logarithlnicaJ.l:y, The integrand 

is positive definite and for any nonzero region in a the logarithmic 

divergence is present. (Note tbatwhen a'" 1 no trouble arises 

since Qt diverges only logarithmically and is therefore integrable.) 

It should be noted that if we had considered the interaction appropriate 

to the time component of a ve.etor me'son field of mass f.I. the argument 

of the function Qt would be replaced according to 

2 2 222 
P + p' ~ p + p' + f.I. 

2pp' 2pp' 

but similar arguments to those above would show the kernel still not to 

be of the Fredholm type. Since the non-Fredholm nature of the kernel is 

related to its large momentum behavior, our next task is to study the 

behavior of the equation for large momenta. For this purpose it is 

convenient to use the UIl,Symmetrt-c fOl!Ol of the integral equation, Eq. (12) 
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Thus for Po » Po' 

2 r (p + p '), 2 2 ... Ze ,0 0 ~ p + p' , 
tt{P) = - 2n ,dp" I p Qt( 2pp' ) 't(p ) • 

, PoPo ' 
0' 

The integral representation for Qt' i.e., 
. 1 

Qt(Z) = ~ f'" dt :t~t~ , 

;'1 

,imq then be used to gbe 

00 

Ze2 (p +p ,) 
,0" 0 c t (P) 

t - 2i""" f dt p.{tJ J dp' 
PoPo 

i, fl- +~i2 - 2pp't) 
-1 0 

lie now conjecture that solutions of this' equation ,behave as 

large p. We are thus led to ,examine the two integrals 

2 f' 1 r - ~p" dt P t (t) , ' 

-1 0 

dp' (pt )2-~ 

, 2 
Ze 

- 21( (dt 
-1 

, fOO (p'l-~ 
pt(t) , ' '2' 2 

p '(p + p' - 2pp't) o ' o , 

-~ p 

(20} 

for 

(21.) 

~ integrals may be evaluated by standard contour integration methods. 

:&th have branch points at the origin; 12 has additional branch points 

at ± 1m .' We thus find that 

,.~",-8-

where we have set 

t = cos 9 , 

anq. 'C is a contour.:fran +00 to +00 taken aroUDd the' ,od.g~ ~ tba 
. .' . . 

counterclockwise d1l:'act1on below and above the branch cut which ·has been 

taken along the real axis :from the CIl!lgia to ,+00 as shown in Fig. 1. 

The integrals in Eq. (21) are well defined in the neighborhood of, the 

origin and at 00 it ' 

1<~<2. (24) 

The integral 11 may be evaluated by the method of residues. 

The integrand bas poles at arg p' = 9, 2n - e (the last value 

obtains since we may not plss through the branch cut along the real axis; 

',s~ Fig,. 1,.); 'One fulds for, 11, if 9 is less than "n/2 , 

I, " Z~2 st!! f' de p.(cos eJ Sin[(2 - 1)(, - eJ] . 

o 

The integral 12 may be treated in a similar manner except that account 

must be taken of the additional branch cuts from 1m' to 00 and -1m 

to -00 • If e is aga,inassum.ed to be less than n/2 and if 12B 

'. ' 

'. 
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represents the contribution from the branch cuts, one has, in the limit, 

p » m, 

~ = 2 -~ [ J - Z~ ~ de pt(cos e) sin [ (1 - s)(~ - 0) . 

o 

(26) 

Let us now consider the integral over the branch cuts,. I2B '. 

Since we are dealing with a square root singularity, it follows that we 

need only integrate over the portions of the contour which lie in the 

left plane providing we double the result. Next let us consider an 

:integral, 12B " of the integrand over the J;6th C' in Fjg. 1, which 

ll.es in the left half plane and which connects the branch points t im. 

Clearly 

o . 

'ftre contour for I2B I may be taken along the imaginary axis, except for 

a small indentation of radius p to the left of the origin which allows 

Ze 2 1~ 

(m2 2 
+p 

e
i

(3-s)a da I 
2:ia 1/2 ia iO ia ' -iO 

e ) (p e - p e )(p e - p e ) 

(28 ) 

,-10-

The last integral in Eq. (28) vanishes as p ~ 0 for Re s < 3. Thus 

one finds in the limit p'" 00 : 

,'" zl 
'" - ----"~2---

2~ P sin ~§ r ( 2 2 )1/2 
m - y 

2-s y dy 

o 

,.2 
Therefore I2B behaves as p so under the restrictions in Eq. (24) 

I2B does not contribute to the asymptotic bebS.Vior. Thus 

(30) -

If II and 12 are now combined, one finds that for self-consistency 

a solution whose asymptotic form is p·S requires that 

This may also be written as 

t 2 [ (.1) Ze de pt(cos e) 
sin ~s 

o 

sin ~ cos(s - 3/2)e 1 . 

The integral vanishes as s ~ 2, as it should, since otherwise there 

would be a pole in either II ~, 12 in contradiction to the condition 

(24). 
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The integrals in Eqs. (31) and (32) may be evaluated in a 

straightforward manner. 9 When t is even, we find 

2 t (t) Zoe \"' B(t _ 
2lr Lk 

k=0 . 

8DIl when t is odd, 

:2 
Ze 
~ t(:) B(t-'k + ~ k +~) ~ cot ~~/2 tan ~s/2 

2, 2 \('_ 2k + 2 _ {.. t _ 2k + 1 _ 

k=0 

In these expressims the symbal. (k'. )'" is .the usual binomial. coefficient 

am B(x,y) is the beta f'unction of x,y. 

The asymptotic behaVior just developed strongly suggests that 

the Eakamjia:n-Thoinas equation be studied by using a Mellin trans';;, 

10 formation. . We now turn to that task, which will verify rigorously 

that the asymPtotic behavior is indeed given by a solution ofEq. (33) 

or Eq. (34), and, further, will lead to a method for obtaining a unique 

sol.~tion of, the singular equation, Eq. (12). 

equations 

and 

The Mellin transformation and its inverse are defined by the 

11 

*t(s) [ .*t (p) 
s-l p dp 

0 

L 11Ft (p) 
1 11Ft (s) p-s ds,-

2rri 
C 

wher.e C goes from· --ioo to ioo. The contour C muSt be, chosen 

appropriately in prder to effect a solution. We nqte that fr.om Eq'. (36) 

.i t f'ollow~ tba. 1:;:( the ~as~ot:ic behavior _ of V.r,:(iP)' as ~_ v m: ' is. __ 

4!tetmined! 'by the sirigula.rlty in_ tt (6) ;:wlth the 8J11a'llest"Re(s}::, 1m.,' 

Mre right of Cj , :w:~~:;tq.e b~haviQ1.:':as,<p-> o ":'-'isi"deteI'8lilled bt-the 

;?ci,ngula.rlty with the '\~:¢~sti" Re (s) to tlle. l~ ,1:iif', C._F1:pDr theje;-
. . f' ".:. .!j. 

Z"gI.ations one f"inds the transfo:z;uied integral equation: 

t.Cs) " ~ [x,(S' ,') t,(") ds' , 

C 

where the ~l K.e.€s, s') 1s given by: 

-1I_-~ ~. ")pl 

(PO -PO) PO' p 

The conditions for the existence of Kt (s, s I) must now be examined. A 

consideration that the intllgt'alS over p and p' be convergent at both 

limits of integration giveS the requirements: 

, . 
As p -+ 0 , Re(s) > _t • 

As p.-+oo, Re(s) < t + 2. 

As p'-+O, Re(s 1)<0: t + 3. 

As p' -+ 00, Re(s ') > -t ;:. 1. 

)
-1 It may be noted that the factor (Po - Po may be exp3.nded in 

an appropriate manner according to whether IpJpo.1 is greater or less 

thanl. and tbaot such an ex:p;Lllsion will not alter our c0nclu8io~ about 

• 



• 
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the domain of existence of K since each successive term is as well 

"bel::!aved.aii the, origi!i a,nd isl>ett~,behaved at, infinity tban:.the,}()ne for 

which Po = O. 

Alternatively if the kernel, K, is divided into two pl.rts, the 

:Nrst of which, ie, is obtained by sett~ Po = 0 in' K, and the 

second is simply the difference between K aDd ~'by such ,an expansion 

argument for Ul.rge p as has just been given one sees that the domain 

of existenee for K is the same as that for K. We find 

Ze
2'.r [" s-2 (,p.O+PO') +1 ~2 + ,2) I .(, , 

) -s Q,' P', ,P 
" " ' t 2pp' • ,- 2~, dp , dpp ~:....,....::;...- P --

'0 0 ,PoPo 
(40) 

To carry out the integrals we again repUl.ce Q,tby its int~l 

representation, Eq.(19), to get 

it (s,s') _ Ze
2 L:re 

2lt 

() 

"n. dO p,(oo, 0)[ dp r dp' 

o 0 

s-l 
p 

Consider now the integral: 

II (s, s ' ) f'" dp r dp' 

o 0 

, i9 i9 
PO(p' - P e )(p' - p e- ) 

i:res' e 
2i sin :res' foo ~ [ dp' (p' r s

'4Q 
,'PO ~(p~;~_~p-e~i~~~)(~p-'-_-p--e~-i~e~) 
'0 C 

(41) 

(42 ) 

,,14-

This is one of the terms in Eq. (41). The contour C is the same as 

that in Eq. (22). We integrate first over p' and then over p to 

avoid the branch cut associated with Po at the first integration. The 

other term in the integrand of Eq; (41) is treated by integrat1ngfirst 

over p and then over p' • Denoting this second term by 1
2

, we have 

-isTe r 
=2~ sin :res 

o 

dp' 

:re 
sin lts 1 

( 
t )-s '+2 5-1 

-p - ' ' p 

(p' r s '+2 ,jd
P 

ps-l' 
Po ' -----'~f~:e..--' ---i-e"-- • 

(p - p'e' )(p-p'e- , ) 
C 

(44) 

If this integral is to converge we see that C must be chosen so that 

Re(s) < Re(s') < Re(s + 1) • 

The remaining integration can then be performed to give' 

:re sin fi2 - s')( It Q )] (m \S-S ' s' s 
- sin Q-- ,'2) B(T' s'-s+l). 2 sin :res' 

(46) 

The second term, 12, may be evaluated in the same way. The result is 

12 (5, s' ) 2 sin :res 
sin[(l - s)(:re - Q )J (!!!. ,-s' B(S' -s 

'sine '2) 2' s-s'+l). 
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In the last two equations B denotes the beta function. Equations (46) 

aDd (47) may now be used to evaluate the expression for Kt (s, s I.): 

2 ~S-Sl , - Ze m S'-S 
Kt(S,S') = "'4" \2 B(-2-' 

, 1( 

8-,'+1) L de ",(eos 0) 

[
sin[(a - sl)~n - ~)] 

)( sin1Cg , 
sin[ (1 - s)(1( - 9)] ',J . 

sin 1(S , , 

We thus find, when t is even, 

t 

Kt,(S,S')= ~ (~'5-s' B(S';S, s~s'+l) L 

x [ tan ns'/2 
t - 2k + 2 - s' 

aDd when t' is odd, 

- Ze m 2 ~ )-S" Kt{s, s I) = 4n2' 

k=O 

, cot 1(6/2 - ,], 
t, ,;.. 2k + 1 - S ' 

t (:) 
k=O 

S' s B(T-' s-s '+1) 

,x' [ cot 1(S' 12 
t - 2k + 2 -

tan 1(s/2 J s,- t - 2k'~ 1 - s 

, (48) 

Poles of the beta functions relate to the conditions of Eq. (45~ 

The reader may note that the even-odd alternative forms for Kt (s, s' ) 

have terms which produce poles 'for values of s or s' in the regions 

which are not excluded by the inequalities in Eq. C~9). These poles are 

cancelled when the entire series in k is included., For example, when 

- t = 1, we find: 

is.(S,SI) a! cot 1(s'/2 [(3 -slrl + (1 - slrl] 

- tan 1(s/2 [(2 - s)-l - s-l} (51) 

The poies at s' = 2 and s = 1 f'ran the cotangent and tangent are 

thus ca.ncEf:u~ by the zeroes in the brackets at these values. Hence 

Kt (s, s I) f'or t = 1 is a:c.aJ.ytic for -1 < Re s < 3, and 

o < Re s' < 4. 

We are now in a position- to begin a determination of the 

contour of integration, c. Firstly, the contour may be taken to run 

pu-allel to the imagin&.ry axis from -ioo to ioo. It is to be noted 

tli!!.t tbe conditions for the existence of Kt(S,s') do not at first lead 

us to an integral equation of t~e usual type for t t (s ), since webave 

deriVed an equation,which relate~_ ft(~).1- to values of l',f.(S" lihere 

the set of Val~es of s is different f'r~ the set of s I va],ues 

because of the reqUirement iil. Eq. (45). However, we may deform the s' 

contour by shifting it to the left so that it half encircles the pole 

contained in the beta function at s I = S or we may increase Re (s ) to 

Re(s I), again taking the contour to half encircle the pole at s I = s. 

In the neighborhood of this pole 

_ '" Rt(s) 
K. (s,s ,) =.-- , 
"', s - s 

where is given by 

t 

L 
k=O 

(kt) B(t - k +~, k + ~) 

[ 

't!9.n trs/2 

"', t - 2k + 2 - s 
cot 1(s/2 , J 

t-2k+l-s 

• 
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when t is even,' and by 

t (:) B(t - k + ~ k+'J 

k=O [ cot rts/2 
)( t - 2k + 2 - s 

tan rts/2 J 
t-2k+l-s 

when tis odd. 

We may now write the kernel Kt(s,s') as 

+ ~'(S'S'J -:~(:Js) . 
where the kernel 

is not singular at s' = s. 

This leads to the singular integral equation 

{iOO 
s-ioo 

* t (s') ds' , 

where P' denotes a principal ~lue integral. 

"'a.ssociate" integral equation to Eq. (57): 

There is also an 

where 

1 
+ 2rti 

p 
- 2rti 

-18-

j
S+ioo 

ds' 

s-ioo 

'[,+iOO 
ds' 

s-ioo 

Our method of solution of Eq. (57) consists of first investigating 

solutions of a singular equation, the "dominant equation." We then 

derive a new integral equation for the problem which incorporates ~t' 

This new equation is of the Fredholm type; its de:velopnent will be given 

later iiLth:l6 sect.i6n~ 

We shall conclude this section with a qualitative discussion 

of the solutions of the Bakamjian-Thomas equation. For simplicity, we 

consider the case when t = O. In this case, Eq. (53) then becomes 

(when we drop angular momentum subscripts) 

R(s) = Ze2 [tan rts/2 _ 'cot rts/2 ] 
2 2 - s 1 - s 

If we write f(s) for the term involving ~ we have 

{+iOO 
ds' ili:.L. 

s' - s 
f(s) • (60) 

s-iro 

This equation can' be written as KO", = f, where 
o K is defined to be 

the dominant part of the, origi.nal kernel K. 
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An equation of this form was first treated by Car1emann and is 

. ~ ~ 
extensively discussed in the books by Muskhel1shvilli and Pogorzelski. 

We follow the discussions given by these authors. First, we introduce 

t.be 1'unction 

H(s) . 1 J Y(E!') dS' 
2d ' s' '- s ' 

(61) 

C . 

'li!rere the contour C goes fraul -ioo to i(J(}.. We ca.n look at H(s) ·as 

a· single-valued function in the s plane, cut along C. If we denote 
, + 

t.Iire region to the left of the contour by S and that to the right by 

* + S-, we can obtain two i'unct1ons,. H (s), analytic in S- respectivel.y, 

+ -. according to -whether' s lies in' S or S. These two functions can 

tJi!enbe analytically continued beyond the cut, C. Because of Cauchy's 

theQrem the contour C canbevar1ed without affecting H+(s) or 

]I-(s) tmless a singularity in the integrand is encountered on C: 

i.e., t(s') is s1ngul.ar, or C· };asses thr()ugh s. If C is chosen 

to pass through s, we 'have 

0s - €) - H(s + €})e-oQ - H+(s) - H-(s) 

. ~(. - ,) + .(s + '0O<Q' '+(sj + .-(s) Lf- t~s' }ds' 
11:i s - s 

, 14 
'!hese relations reduce Eq. (60) to an algebraic equation: 

~ solve this equation we begin by considering the solution of the 

equation with f S 0 and, denote the solutions by 
+ so- . We have'. 

(62 ) 

.L -20-

(64) 

or 

1 

1 - R(s) 

Upon taking the 1Qgarithm of both sides one finds .' 
(66):r 

If one now introduces 

J 'n[ .. ;~(:')], 
C 

this effeCts a solution of the discontinuity Eq. (64) far the hOlllOgeneous 

equation.1~ FromEq. (67) one sees that 110 ±(s ) are neither singular 
+. . 

nar zero in the regions S-, respectively. 

A sol.ution of the inhOmogeneous problem is achieved by using 

Eq. ' (64) to replace 1- R in Eq. (63). Thus 

H:"(s) + f(s), 

or (68) 

H+(s) _ !Chl.. .. 
Ha+(s) HO-(s) 

If we now introduce 

(69) 

we obtain 

(10) 

• 



'" 

• 
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which can be formally solved by 

F(s) 
. f(s') ds' 

(s· -s)HO-(S) 

+ + 
and we see that F-(s) are regular in the regions S-, respectively. 

'll'1:ue solution of our equation for 1jr is then obtained using Eqs. (62) 

We now continue consideration of the choice of contour for our 

problem. For the t = 0 case we have the conditions 

O<H£!(s)<2, Re(s) < Re(s') < Re(s + 1), 1<Re(s')<3. 

At the various limiting values for s, s I there are singularities in 

EB(s,s'), of which the pole at s = s I ,has already been made explicit 

in the singulS.r integral, equation; Eq. (57). Wenote that 1 - R(s) 

16 
can be given an infinite product representation in the forn 

1 - R(s) 11,00 (,~~ 
I 5 - n ' 

sfuC~ R(s) 

far each n 

as In I .... 00, 

s -n 

! 
n=-oo 

has poles at all integers, R(s) -'1 as 11m 81-. 00, and 
17 

there is an s = t such that R(s ) = 1 Further, 

one finds 

Ze2 
n ~;m- , 

;'n . n 

(74) 

which guarantees that the infinite product converges. Finally, R(s) 

is symmetric about s = 3/2, so that 

R( ~ + t) = R( ~ - t) . (75 ) 
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Thus the complex s plane shows a pattern of poles and zeroes as 

indicated in Fig. 2 (for Ze
2 

< 0 ) • 

Let us now note the following facts: 

analytic and nonzero in in analytic and nonzero in 

S-. All three contours, Co' Cl ' and C2' of Fig. 2 satisfy the 
18 

conditions on s'. We do not consider contours i~ which Re (s) < 3/2, 

because such contours can either be distorted so that Re(s) > 3/2 or 

there will be a singularity in 1jr(s) for Re 5 < 3/2 The former case 

is of no interest, while the latter one would lead· to a wave function in 

momentum space which is not square integrable, and is therefore excluded. 

If we consider Co J we then find from Eq. (67), that 

H (O)+(s) -o -

and (76) 

while for c2 ' 

and (77) 

11 (~~ !n) 
n=-oo 

On the other hand, for contour C
l 

the integral in Eq. (67) is singular, 

since the phase of the logarithm does not go to zero as 1m s .... 00, so 

HO(s) cannot be defined by Eq. (67). One could attempt to use 
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(s - 2) 11 
n=; 

(78) 

(s -~) 

since this sepu-ation of 1 - R(s) satisfies Eq. (65). In this case, 

if we consider the "solution" of the. homogeneous equation for W(s), 

lie see that, as 11m sH -+ co, 
. r 

w(s)· -+ (~- 2). But this 

asymptotic behavior is not allowed, since then the principle vaiue 

integral iil Eq. (60) 'is not well-defined; in fact, we will show that 

the contour S. is not acceptable,. If Ze
2 > 0, the relative positions 

of the poles, n, and zeros, S ~ in 1 - R(s) are reversed. In this 
n 

case we obtain a valid solution of the homogeneous equation using Cl , 

in which 

1 
(s - S ) 2 

1 
'(s - 2) 

fif(;': ~) 
ri=; ~ n 

1 ( ) 
. s - S ~. _n .. 
.1 IT s - n . 
n=-oo . 

(80) 

~ the' ~lut1on for' W(s) will not be unique, because an arbitrary, 

amount of the solution of the homogeneous equation can always be added 

to a particular solution. 'We will return to a further consideration 

of CO' C2 subsequently. 

As was seen from Eq. (;6), the. behavior of W(p) for' P -+ co 

is determined by the properties of 1/1(s) in S-. In this region 

,,, -24-

HO-(S) and F-(s) are analytic, so it is convenient to express the 

solutions in terms of them. In S- it is convenient to represent 

H+(s) as 

1 - R(s) 

Thus if 1 - R(s) vanishes, w(s) will have a pole; i.e., at Points. 

s = ~n .. By construction we also know that f(s) has a: pole at s = n, 

but here R(s) also has a pole which cancels the singularity, so that 

,(s) is regUl.a.r at 11' Thus the asymptotiC behavior of 1/1(p) will be 

dominated by the smallest Sn' 
.. min 

. -Sn 
wt(p) ~ p 

p-+co 
We now come to the decisive part of our investigation, the 

complete solution of Eq. (57). This depends on the existence of 

solutions of our equations,19 which in turn can be determined using the 

20 . Vekua theory of singular integral equations, which we will now 

briefly recapitulate. Vekua's theorem states that, .under certain, 

conditions, each singular integral equation of the form 

K ~ '= A(s) ~(s) + 1:. IdS' N(S',S')f(S') = f(s) 
. ni s - s 

. C 

is equivalent to a Fredholm equation with a completely continuous 

21 kernel. The conditions which must be imposed are the HO~der relations: 

• 



• 
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IA(s)'- A(s')1 < const. Is _ s· In, 

If(s) - f(s 1)1 < const •. ls _ s' In , 

IKes,s') - K(s",s"')1 < const.[ls _s"l
n + Is' _ s"'l

n
} , 

wbere ° "", n ,~ 1.. Of" central importance in tl:le Vekua theory is 

(84) 

Here, 

B(s) == N(s,s) (85 ) 

8.!ld the notation ~ is, meant to indicate the total change in phase of 

(A - B)/(A + B) as we traverse the entire contour C. In our case, 

A(s) = 1 - ~ R(s) and B(s) = - ~ R(s), and the contours Co and, C2 
2 > give K = O,whlle C

l 
gives K = ±l according to whether Ze < O. 

, 2 
We have seen that only for Ze > 0 and the contour C;L is there a 

solution of the homogeneous equation, KO¢ = 0, in which ¢(s) -+ 0 as 

bm P I -+ 00. In order to effect the reduction of the singulB.r equation 

to Fredholm form, the "dominant" operation 

i'¢ = A(s) ¢(s) + B(s)P ,I d ' n:i s (86) ~ 
s· - s 

, 22 
and its "associate" operation' 

- 1:. IdS' n:i 

C 

0" 
K ¢ = A(s) ¢(s) 

B(s') ,6{s') 
s' - s ' 

are introduced. If I( ic? the index of KO, then. It is said to be the 

index of. the original equation. Since .the sign of the imaginary unit 

o· has been changed in Eq. (87), -I< is the index of K A theory of 

Eq. (82) was first developed by Oarlemann.23 If the index of Eq. (82) 

is K and 

K > 0, (88) 

there are It linearly independent solutions of the homogeneous equation 

of the form 

where P (6) is a. polynomial in s of degree I( ~. ,On the other hand, 
It 

for I( 3 ° the associate operation in Eq. (87) has a K ~ OJ and 

there are then no nonva.n1shing solutions of K~' ~ = ° which tend to 

zero at irifinity. 

',' 21 
It can be shown, by ,use of the Fbincare-Bertrand transformation 

that KO' is a "regularizing" operator for the kernel K; that is, the 

kerne.l KG' K ('0;; KO' (" , ") Ii:(, ", , • )ds 7 1, ."""""'ely .=tinuous, 

although K is not. Thus if K ~ 0, solutions of the equation K/J = f 

can be sought via the regularized equation 

for which the usual Fredholm theorems apply. 0' 
Since K 'f = ° has no 

nontrivial solutions, no extraneous solutions are introduced. 

If, on the other hand, K is negative, one may define 

(91) 

and form the equation 
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which may be shown to have a completely continuous kernel. The solution 

of the original Eq. (82) is then obtained by quadrature from the 

solution of this equation. 

The relevance of the above theorem to our work depends on the 

following theorems.. W~ first note that for any kernel K and its 

adjOint, if we have solutions ~ .. ,,.. such that 

and 

K' '" = 0., 

then the general relation .. r. K¢ d, d,' J ¢ K' • d, d,' 

requires 1.hat 

I'" f ds= O. 

~93) . 

(95 ) 

(96) 

This is, of course, just the generalization of the familiar property 

which is known from. the theory of Fredholm operators; that is, a 

necessary and sufficient condition for the solution of an inhomogeneous 

Fredholm equation is that the driving term be orthogonal to the eigen­

functions of the transposed operator (or Hermitian conjugate operator 

if orthogonality includes complex conjugation). We now remark that, in 

anB.logy to the Fredholm case, the condition, Eq. (96), is also sufficient. 

to guarantee a solution of Eq. (93): First, suppose that It is positive 

or zero. We consider the solution, (l), of the Fredholm equation 

o 

or, equivalently, 

K' KO 
(l) = O. (98 ) 

Since the solutions of Eq. (98) always satiSfy Eq. (94), o K (l) must be 

a linear combination of the W's. According to the Fredholm theory, 

however, a necessary and sufficient condition that there be a solution 

of an inhanogeneous Fredholm equation is that the inhomogeneous term be 

orthogonal to all solutions, (l), of the homogeneous equation, with 

transposed kernel. Thus a sufficient condition for the solution of 

Eq. (90) is 

Fr!" f .. 

ThUs if Eq. (96) ho1ds there is a solution of Eq. (90) and hence of 

Eq. (93), aDd sufficiency is proved. 

If It is negative, we introduce the solutions ., of the 

transposed Fredholm equation 

(99) 

0' ' (K K ) ., o (100) 

or, equivalently, 

o • (101) 

The Fredholm theory shows here that if 

f rd, • 0 (lCE) 

one may find· a solution of Eq. (92). This allows one to construct IJ 

by quadrature[Eq. (91)]. Since the dominant equation for It negative 

has no nontrivial solutions, those of Eq. (101) must be linear combina­

tions of those, of the homogeneous associate equation, Eq. (89), Thus 

the condition of Eq. (96) is sufficient in this case also. 

A further theorem bas been proved by Vekua: The difference 

between' the number k of linearly independent solutions of the singular 

• 

• 
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equation ~ = ° and the corresponding number, kl, for Kl~ = ° is 

equal to the index K ,of the first equation. This can be shown as 

f'olJ.ows: We assume tmt t< ~O without loss of generality, since, if 

t< < ° the roles of Kand Kl can simply be interchanged. Then we 

kDaw that the equation 

K~ = ° (103) 

is completely equivalent to 

(104) 

a.ml therefore the latter a1so'has k linearly independent solutions. 

F.!rom the Fredholm theory we know tba t then 

bas k1inear1y independent ·sol.utions as well. Since KOt = ° has 

E 1inearl.y ~ependent solutions, it fo1l.ows that k 1 = k - K • 

Let us now a:ppl.y the foregoing analysis to our equation. As 

ms been seen, the choice of contour C affects the, resul.ting ,It • We 

note that if It is positive or zero, except for certain eigenvalues 

1l;here"are no nonzero solutions of the, homogeneous adjoint eqUation. 

Hence there are no restrictions on the function f as indicated by 

Eq. (4). If It is negative, however, f cannot be arbitrary. Thus 

the contour must be chosen so that It is positive or zero. Thus, if 

Ze
2 > ° the path C1 must be excluded s1D.ce there will not general.ly 

be a sol.ution of the equation. On the other band, if Ze
2 < ° , for 

physical reasons C1 again is excl.uded s'ince the sol.utions in this 

case woul.d not be unique. Thus we are left with the possible contours 

Again let us consider t = 0. The generalization to arbitrary 

is simple. We have seen that the behavior of '4r(p) as p'" ° is 

determined by the highest singul.arity in S+. Thus it is convenient to 

(60) ,I,(S), in terms of ,H'+ and, F+: express the ~olution of Eq. , ~ -0 

+ +) '4r(s) = R(s) HO (s) F (s + f(s) • (l.06) 

The sUlgularities of i(s) in S+ are then ,found either in R(s) or 

f(s), or in both. Thus there:osy be"-pot;ei1i~ t(s)l a"t"&ll oif 

the integers to the left of C. If' Eq.(37) is ,used to cOntinue '4r(s), 
, , 

however, it is seen that onl.y the singularity in s associated with 

K(s, s ') produces a singul.a.rity in '4r(s), and hence if Co is chosen, 

there will be a pole in .(s') at s = ° (and at the negative even 

integers). on the other band, if C2 is chosen, it is convenient to 

first let Re(s) ... Re(sl) on C
2

, since we have the analytic continua­

tionexplicity of K(s, s 1 ) for Re s ~ 2, and then obtain a solution 

of the equation on C2, aDd final.ly use Eq. (57) to, continue back to 

s = 2. We thus find a pole at s = 2, and 

-2 
P 

This behavior is not acceptable, however, since the wave fullction woul.d 

not be normal.izabl.e, and so we exclude the path C2 from:further 

consideration, and we have a unique solution to the singular equation, 

Eq. (12). Since we are thus restricted to the path, CO' we may ask 

whether there is some especi.all.y appropriate path. It is shown in 

Appendix A that if Re (s) = Re (s 1) = 3/2, the kernel of the integral 

equation satisfies a hermiticity condition, and so this choice seems to 

be called for. 
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We shall close this section by noting that there is a maximum 

value for _Ze
2 

for which a unique solution of Eq. (12) is possible. 

Again for t = 0, it is easily seen that R(s) is real for 1m s = 0, 

arid for Re s = 3/2. In the latter case 

[' - 1f 

",,,,lex ,onj.J zl i tanh 2" 6
1 1 

R(s) + 2 1f 1 , 
1 + i tanh 2" s1 2" - i 8 t (108) 

wflere s = :>/2 + i sr' As lSI I -+ 00, 

R(s) '" zl .- (109) 

On the IBth along which R(s) is real going from s = 2 to either 

s = 3/2 ± ioo, IR(s) I is a monotonic decreasing functlongOiIlg from 

00 to 2 
0, and if Ze < 0, there will be a point S2 on the IBth at 

1 • (110) 

This Point S2 will only have Im(s) 0 if 

(111) 

tltat is, 

/Ze
2

/ < 1/2 • (112) 

If this condition is not satisfied, the points Sl and S2 become 

complex conjugate IBirs and the contour C and solution 1jr(s) are 

not unique. The situation is completely analogous to that with the 

Dirac equation,_ for which there are too many acceptable solutions also 

2 26 
:i1'" Ze ' is too large. The problem raised _here -is only CI'f mathematical 
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interest, however, since a large Z nucleus would necessitate a form 

factor to describe its spatial extent and the potential for large p 

WOUld 'be cut off, in contradistinction to the point ];articles dealt with 

here. Thus we will not pursue this case further. 

The Dirac equation may also be dealt with using the Mellin 

transf01'U8tion technique. In that case. it is found .that R(s) is a 

quB.dratic fUnction of s and there are only two possible Si's. A 

brief account of_the treatment of the Dirac equation is given in 

Appendix B. 

v. MOMENTUM SPACE INTERPRETATION OF THE Ka· KERNEL 

In the preceding s-edtion, we have provided an analysis of ,the 

non-Fredholm Bakamjian-Thomas equation which leads to a unique solution. 

Although this provides a mathematically satisfactory solution, its 

significance is probably somewhat obscure. In the present section we 

will provide an alternative momentum sIBce treatment which is closely 

related to the Carlemann approach in Mellin sIBce, but which gives 

direct insight into the above results. 

Since the non-Fredholm behavior of the equation is associated. 

with high momenta, one might, try to se];arate the kernel into an 

asymptotic ];art and a remain~er. Thus we write Eq. (12) a.s 

= _ Ze
2 r- d' (p L p') Q (l + P ,2) U(p') 1jr (p I ) 

1jr t (p) 21f P 2 t, 2pp I t 
P 

o 

+ ze
2
[ p' 

2n: 

,0 

-.. 

• 
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.. -here U(p) is zero for p < 1, and is one for p => 1. Let us consider 

~ kernel in the first integral to be KO(P,P'), and the balance of the 

right-band side as if it were an inhomogeneous term, f(p). Wethus 

leak for solutions of the equation 

.(p) • J dp' "o(p,p') "p') + f(p) • (114) 

'lbe step function, U, must be introduced because othenrise there would 

be no solution of Eq. (li4) because of. the behavior as p,p'-+ O. 

Clearly the kernel KO is of such form that we can write 

r dn' n 
*t(p) = p. F(~, ) *t(p') + f(p) • (115) 

1 

'1'l!tis equation can be solved in two ways: If.a new variable x;! tn p 

:is introduced, Eq. (115) is converted into a W;l.tmer-Hopf equation Which 

can be solved by known techniques ~ 27- On the other band, . if a Mellin 

transformation is carried out as in Sec. IV, we get 

1 
21fi J Os' 

C 

F(s) Vt(s') 
---=--- + f(s) 

s' - s 
(116) 

1IIbereRe(s' - s) > O. This. equation can be brought to the form of 

ti ilq. (57), and is easily seen to be identical to it. Thus the Carlema.nn 

solution of this equation corresponds to finding a solution of the 
( ., 

inhomogeneous Eq. (114) to remove the non-Fredholm term, KO(p,pl). 

In obtaining Eq. (113) we essentially took the asymptotic form 

:of' the kernel for p, p' ... 00, and then multiplied the kernel. unsymmetri-

cally by U(p'). If, on the other hand, we bad multiplied by U(p), the 

only change which would occur would be that in Eq. (116), F(s') would 

appear iI?-stead of F(s).' 

VI. CONCLUSION 

In this paper we have given arguments which lead to an 

approximate wave equation for spin-zero particles. This equation has 

been studied for the case of an interaction which is the time component 

of a vector field. A simplification was afforded by assuming one of 

the particles to be infinitely massive. Because of the nature of the 

interaction the Schroedinger integral equation is, singular so that the 

FredhOlm theory does not immediately apply. We have given a simple 

discussion of the nature of the solutions to be expected for our 

eq-uation and have then gone on to rigorously .show that a unique solutioI 

may be achieved if the potential is repulsive or the coupling constant 

is not too large. We have also gone beyond the considerations of this 

paper to construct explicit numerical solutions for both bound state 

and scattering problems for the case when t = O. Because of the 

length and complexity of this paper and the special techniques which 

are required to effect a numerical solution we will report these re sult I 

elsewhere. 
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APPENDIX A. H:E:RMITICITY OF THE MELLIN TRANSFORMED EQUATION 

In this section we shall show that the kernel in the Mellin 

tr.ansformed integral equation is Hermitian if the contour C is taken 

to, ,lie along Re(s') = 3/2. For this development, we divide the kernel 

into twop:l.rts: 

CAl) 

where [see Eq. ( 40 ) ] 

Ze2 n' (PO + PO') (2 ,,2) 
Ke{p,p') ~ - ~ Q. P +P 
~ 2fi" P Po PO" " 2pp' 

(A2) 

[

(PO po')~ J 
- 1 - --"::;""";1:::"-'--1 Kt(P,P') 

(PO - P )2"(p _ P ')2" 
00 0 

This division separates Kt into a p:l.rt which bas a Mellin transform 

that is regular at s = s' , and a singular IRrt, 

vtdch we already have the transform explicity. The singularity in . 

Kt (s, s') for s ... s' arises from the asymptotic behavior of Kt (p, p') .' 

f'or large p,p'. If we set P' = ap in Eq. (41), we find 

2J:n: Ze ' 
- 2fi",' dQ sin e pt(cos 

. 0 

x [dPr' 
o 

[ 
2 2_1. 

(p + m ) 2 + ( 2 2 2 )-~ ] a p + m • (A4) 

'Ji'hus, the integral over p diverges as p'" co, unless Re(s - s') < O. 

:If' we use the same approach to 'KtR(S,s'), however, as P:+ co the terms 

involving Po and p , 
o 

is regular at s = s'. 

are now of order -2 R 
P J and hence Kt (s,s') 

To investigate the hermiticity condition for the kernel, we 

convert the transformed integral equation to one in real variables. 

Thus we set 

s 

and 

s' + i' '. ~, 

(A5) 

so that the integral equation becomes (we do not explicitly exhibit the 

dependence on ~j .which now becomes a 1,JU"8meter in the. equation) : 

P 
+ 2:n:i 

+ ;. r d'r'i f.;., (1B:" 
-00 

r -co 

iiSI ')] 1j!t CSI')· 

(A6~ 

Th 
R . 

e. K1t IRrt of the kernel considered as a function of sI' sI' can 

easily be shown to be Hermitian for ~ = 3/2. We begin by noting that 

the transform can be written as 

']}("R + 1'r' "R' + 1'r') • [dP r dp' 
o 0 

sR+iSI-1 -s -is '+2 
x p (p') R I· F t (pp ') , 

(A7) 
where, 
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~ ( ,) , ,* "t p, p = F t (p, P) • (A8) 

(We only consider bound states, so PO< m.J Then we find. 

R *.' [r 2-~+il! s -is '_1 
KJ..(Ba+i:Si",sR;+iPI)·=: ,dp dp'Jl ~_' I(p.)R I Ft(p,p') 

o 0 
(A9) 

in which Eqs. (A 7) ~nd ~A'8) have been used, and the dUlllllJ;Y variables 

bP' have been interchanged. / 
28 

Thus, if .Ba = 3 2we see that .as a 

fUnction of the real variables 

~ .R( "21 + is
I

, 1 + is ') = K.. R ( 3 + i" 3 i'~ ~.. 2 I~'lt 2" sI' 2" +sI) , (AlC) 

so· t "'.- t K... • R 1s' Hermitian. W t ~ C'lv e mus now look more closely at the 

sil!lguJ.ar kernel. We consider the ~se in which t is even. Choosillg 

sa = 3/2, we then find 'f'rDlll Eq. (49); 

11:8 '. E i tanh _1_ 

k + ~)li-" -:-1-; -ta-,e-b.h-... -11:";;;'-I" 
1 

- k *~.t 

'. 11:S
r 

i~] 
l+itanh- 1 

+ 
. 2 

11:S 
- 2k + !. + 

, 
1 - i tanh-I t 

2 2 

1 

1 t - 2k + - -is! 2 I 

(Ail) 

in which the second term in the bracket is obtained from the cot 11s/2 

term in Eq. (49) by interchanging k and .e. -.k in the summation over 

k. From Eq. (116) one can easily see that 

(A12) 

and that Ret (sr)' wh1c~ is the residue of Kt in the pole of the beta 

function at s I = s is real. Thus we have a lfermitian kernel for the 

equation. It may be mentioned here that the Fredholm kernels obtained 

in the Vekua theory do not satisfy the hermiticity requirement. This 

occurs because of the lack of symmetry in the choice of K
O

' for 

exaJIIl>le, nat from the s~ity at s I = S. 
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APPENDIX B. MOMENTUM SPACE ANALYSIS OF THE DIRAC EQUATION 

In this appendix we apply the Mellin transformation technique 

to the solution of the familiar Dirac equation for a spin-l/2 particle 

in a Coulomb field. The conventional discussion2? is based on a stu;l.y 

of the indicial equation of the differential equation for this pioblem 

1a coordinate space and involves boundary conditions at ,the origin. 

Let us now consider the nature' of the solutions of this equatiOn 

in momentUlil space: 

(a·p + ~m) ~(p) 
........ 

(Bl) 

The usual solutions of the D1racequation invoive the operator 

k = ~(~.~ + 1) , 

,vhich hls the eigenvalues ±(j + ~), since it commutes with the Dirac 

HAmiltonian. If we write 

Eq. (Bl) becomes 

We choose 

_ '(01',)', Pi - , 

1 ° 

~(p' ) .... 

cr'P = ........ 

(:~) 

(2'~ 0), 
° 2'P 

(B3) 
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where each of the elements in a matrix is a 2 x 2 matrix, and the 

corresponding cr's are Fauli spin matrices. 

An angular' momentum decomposition can be achieved by setting 

(B4) 

m where Y j t is an eigenf'wlction of total and orbital angular momentum 

of eigenvalues j and t, respectively; aIid or jz = m"and ep is 

a unit vector int~ direction of ~. In the first place this f'unc11on 

is an' eigenfunCtion of k, since
30 

m 
Now consider :the effect of the operator 2'~ on the state Yj,t 

We set 

To characterize this state we note that 

(;i2, ~.~) o , 

(J
3
, cr"p) 0, 

.... '" 

(L2, ~.~) 2 £'~ + 2 ~.~ ~.~ . 

Since 

cr·L ? _~ L2 - 314 , .... '" 

we find that 

(B5) 

(136) 

(BB) 



r J l2j(j + 1) - t(t + 1) + ~ y • 

If 

~ = j -t , 

the new eigenvalue is j + ~ , and when 

the new one is 

, .!. 
.. = j - 2. 

Choosing the conventional Clebsch-Gordon coefficients, we may write 

(BIO) 

m 
p Yjj~ 

If we now substitute Eq. (B4) into the Dirac equation (~) we 

A 

have, denoting a unit vector by p, 

(Bll) 

m ;. * 
To eliminate the angular functions we multiply by y .. .!.(p) and 

·JJ-2 

integrate over solid angle. We use the relations 

)
-1 

(z - t . 

jm' 

CD 
~ (2t + 1) Qt(z) pt(t) , 

t=O 

and the normalization condition. The interaction term in the first 

member of Eq. (Bll) is 

'", r·n,. m (A)* ~dP' drpd.Qp ' Yjj_~ P 

o 

Qt,(~) 
2pp' 

j 't 'm' 

2, [ 
, (2 ,2) ~ dp' Q P +p F.(p'). 

P . t 2pp' J 
(B13) 

We thus obtain the equations 

"'3(P) + m F/p) + z:2 [ 

o 
and 

Ze 2 lCD +­:n: 

f dp' Qj_~(p:;~;2) Fj(p')= Po Fj(p) 

(BI4) 

~ dp' Q 1(l+pI2\ G (pI) -= Po Gj(p) . 
P j+2" 2pp '., j 

o 
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Equation (Bl4) may be rewritten as 

Fj(P) 
2 r p'dp' [ . 

z: . 2 2 (po + m)Qj_l. F. 
p(p _ P ) 2 J 

_0 0 0 

Gj(p) 
2

1
00 

Ze 
:n: 

o 

'I'lie arguments of the Legendre fUnction have been suppressed. 

and 

We now make a Mellin transformation on Eq. 

F. (s) 
J [ 

s-l () . P F j P 

o 

[ 
s-l () P Gj P . 

o 

(Bl.5) : 

(B15) 

(Bl6) 

For convenience we use theswne symbols for the fUnctions and their 

transformS. In matrix notatiqp this leads to the integral equation 

t(,) " ~ I «,,5') ,(,') ds', 

C 

where 

. z2[ r(s,s') = "7-
~ 0 

dP[dP' 
. 0 

pQj 1 -"2 

(Bl8) 
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The integrals may be evaluated by the methods used in the foregoing 

paper. If K is conventionally labelled according to the scheme 

we find the following: If -1 < Re(s - s') < l, and 

-j + t < Re s' < j + ~, we find 

KUj(s,s') 

where we set 

s.(s') .. J . 

j-l 

I 
k=O 

(

j - ~). B(j-k, k+i) 

. k (.j - 2k + t -s') 

and 

(_l)j-i[l - (_l)j-i cos :n:s'] 

sin :n:a' 

(B19) 

(B20) 

(B21) 

(B22) 

Thus, if j - i is even, Cj(s') = tan ltS '/2 , and if j - i is odd, 

C.(s') = -cot lts'/2. The other elements of K are easily obtained 
J 

from KU
j 

(s, s'). Thus 

J 



~l(S+l, s' )/(PO + m) , 

(

p - m) .0 ~~l( ') --- -u 5,S. 
Po + m . 

It is seen that the integral equation .is of the singular type since it 

bas a pole at s = st. 

In analogy to the B-Tequation, the integral equation can be 

written 

[1 -R~,q .(,) " 2;1 f.~~'l'(8' )ds' 

C 

where IS. is a regular;.~ >.< 2 matrix,· and R(s) is tlie'-residue. 

of K ats' = s. A singularity in w(s) will now occur if the 

matrix [1 - R(s)] is singular; Le., it has a zero determinant. From 

Eqs. (:feO) and (B23), we find that only lS.2 arid 1<21 have poles at 

s = s', so that; 

= Ze
2 

~(s) :J( 

j+i 

Cj +l (s) I 
k=O 

(j
+l.) 

2 . 1 . 
B(j - k.+ 1, k + 2) 

k (j - 2k + ~ - s) 

and similarly for R
2l

(s), where j + 1 ~ j. The condition that 

det(l - R) = 0 is thus 

1 (":,2; OJ (8) 0j+1 (8) S /sl Sj+1 (,) 

_(":,2) S/8)Sj+1(8). 

(B26) 

We see that S,(s) 
J 

has poles at s = j + i ' J
' 1 + 2" ,.'., , 5 

-J + 2" ' 
and hence SjSj+l can be expressed as a. sum of poles times reSidues, 

which will now be evaluated. 

We first consider the residue of the Poles at s = j +t - 2k, 

where 
, . 31 

k is an integer. For. this purpose we note that 

The factor in the square br.ackets is just 2, and the integral can be 

written as: 

[ 
p, l.(cos e) sin(j -2k + ~)e de • 
J-2. . 

o 

(B28) 

Further, [(j-2k~)/2] 

I a p, 1 2 (cosQ), m J-2- m . sin(j -2k + ~)e sin e· 

m=O 

so the integral vanishes unless k = 0 'or k = j +~. Similarly, one 

gets zero for .all of the residues associated with poles in C j • Thus 

the product of Sj (s) Sj-H{S)'0~Y7haS poles at s =j + t and 

3 5 s = 2" - j. At s = j + 2"' we find 

~ r(j + ~) r(~)Jr(j + 1) , (B29) 

and at s = ~ - j , the result is the same except for a change in 

sign. We finally obtain 
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1 
{ze2~2 ~ .1 + 

1 ) (23 + 1) + 2. _ s .3 j ;- + s 
2 ;:: 2 

(B30) 

From this one easily finds the singul.a.r .. values in S 

1 

[

. 1 2 22J2 
= .. 2.: (j + 2)· .,. (Ze) . • (B31) 

. . 
These are the analog of the well-known result in coordinate s];8ce for 

the indicial equation. 
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FIGURE CAPl'IONS 

Fig. 1. Structure of the pI plane together with contours used in 

evaluating integrals. 

Fig. 2. Structure of R'(s}; poles are represented by x , zeroes by 

o. At first sight CO' C
l

, C2 represent possible contours 

of integration but only Co is really allowed. 

) 

< .. 
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