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Lawrence Radiation Laboratory
University of Californis .

. Berkeley, California 94720

June 15, 1971

ABSTRACT
We have studied the solutions of a wave equatién which de-

scribes a spin-zero particle in the Coulomb field of & nucleus. An

interesting feature of this equation is that the kernel is not of the

Fredholm type. The behavior of the momentum space wave function -for

large momentum is not determined solely by>the éngular moméntum state

© but, as in the cases of the Dirac and Xlein-Gordon equations, it

" depends on the electric charge as well. Our analysis of the asymptotic

properties is'based on a Méllin trénsformation of the momentum space
equation. This leads to a singular integral equation with a Cauchy-
type kernel which may be treated by standard methods. The equation is

shown to have unique solutions.
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I. INTRODUCTION

When we began a phenomenological analysis of pion alpha-
sarticle scattering_eemetime ago we were faced ﬁith the problem of
ehoosing a wave equation incorpbrating two-particle relativistic
sffects.. We wished to deseribe both electfomagnetic and.strong inter-
sctions. At first,.the Klein-Gordon equatioh appeared to be a 1ike1y
gossiﬁility3 but it has no probebility interpretation so we were led
te) eonsider the problem of Coulomb scattering for two spin-zero
.perﬂiclesxfrom tﬁe field theoretic point of view.

This led us to the fe;iowing wave equation far two free

"particles of mass ml; m,2 and momenta pl, p2 ..

{(Pl ! Py ~2 mz_g)l/z} ¥pp ) = B ¥ipys Be)’

where Pb "is the total‘enefgy, and we choose #=c=1. If the

Zoulomb interaction is inclﬁded; an additional term,

o) B, p)adpr. &dp
Vg B By B'p) Vlp'y 275007 R

describing the Coulomb interaction, V, appears.

This eqpatioh is a member of the elass derived on the basis of
general relativistic principles by Bakamjian and Thomasl almost two
decades ago. Such an quggian has been knowna even lonéer. The
relationship between this eeﬁation and the Klein-Gordon equation has
eeen discussed by Feshbach and Villars.3 Mere;recentlyL Zemachu has
enalyzed the relation between this‘equation‘ahd ﬁﬁﬁt for the two-body

5

reen's function” defined by Schwinger.
The Bakamjian-Thomas equation bas been studied by a number of

6
authors during the past few years. They have concerned themselves

o

with the case of.short-range interactions. In the following pages we
present the uneory of the equatlon for the case of an interaction which
is the tlme_component of a vector field. In thls case the resultlng
integral equation is not of the Fredholm type. Its solutions may be
‘shown to behave as p for lafge momentum where the specific value

of s depends on the angular momentum state and the strength of the
interaction._ Because of thls behavior a Mellin ‘transformation of the
momentum space wave function seems partlcularly appropriate. When such
a transformation is carrie& out, the kernel of the new equetion is
found to have a Cauchy-type singularity. The choice of a contour of
‘integration for- the inveree Mellin transformation is made by demanding
%hat the wa&e function be integrable for large momenta and that the
transformed kernel be Hermitian. The integral equation mey then be
feduced to a Fredhoim equation by a standard method which we describe
in detail.- We ere thus able to prove the existence of unique solutions

for both bound state and scatterihg wave functions.

II. THE BAKAMJITAN-THCMAS EQUATION FOR COULOMB SCATTERING
We consider two spin-zero fields b, X of masses m and M,

respectively, interacting through a Coulomb interaction. The

. Bchroedinger representation is employed. Free particle states are

normalized by

!
o

(p* I p) = py8(p" -2, - (1)

where Py is the free particle energy and © is the Dirac delta

functien. This implies commutation relations of the form

[ae) s = 5,502 - 2" @
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for the operators a(p), b(p) and A(p), B(p) associated with the

fields $ and X , respectively. For P we write

1p- ~ -iper
RSN )

: 3
1 | ¥R "
$z) = o o 2[ 35 [a(g)e "~ #bi(ple

and correspondingly-fér_' X(r). 1If \1!(2,,’3) _is a function of the

variables p and g referring to two different particles, we may

intzoduce a two-part:tcle state vectar fi) bjf wri‘i:ing

f ik .—-— w<p,q)a Y (q) o, )

vhere [0) 1s the vacuum state vector. One Tinds

[— = I\l/(p,q) l L (%)

The Schroedinger equatlon which we seek is “Just

wlw&)

e |51 = 12 (pg | B, ' (6)

whére H is the Hamiltonian of the system. The noninteraction part of

2

E contributes [(p + o )]‘/2 + + Me)l/Q] W(p,q) to the left--

hand side of this equation, and the Coulomb interaction term' is
: (b (&) pylc") A : ‘
E = 762 L—-—-—p—”-‘———- &r &r' , , (7

Ik - z’f

where. Pn and Ay are the charge densities of . the two fields. 1In

terms of the charges e and. Ze for the $ and X fields (the

" 1

particles 'a' and "AA" have charges e and Ze, respectively)

m

oy = Lelf's’ - ), : | - ®

where =, 7 are the fields canonically conjugate to #, £,

4,.-)‘.-

respectively. The representation of the ix(r) field‘ is:

-ip.r ip.r
(p)e .- b(p)e ~ ”] .

n(g) = W— —Tf (.9)

Similar expressions describe pM and the X rfield.: The evaluation

of the Coulomb contribution is straightforward. One finds

- 2 [ &p' B | (pre-p'
(palE ) - 2| % —2 (o, ,
palE f¥ o) Bt - (p0+po Nagra,') ® e - g)2*(» ).

(20)"

Since we were immedlately interested in pion-helium scattering .
vhere m <<m, ~we were led to"the_épmumte equation for the case
of an infinitely massive field X . If Po‘ now denotes only the

energy of the particle of finite mass we find

| &'p' ( ")
@ +m)1/2¢<)+-——[ 2 P°+p‘; vie) = Rov(e) . @)
-

This 1s the eguation we will study.

III. SOLUTIONS OF THE BAKAMJTAN-THOMAS COULOMB mUATION’
E[!his sacﬁon will be devoted toa stud,y of the general properties
of Eq (11) when the- interaction is attractive. This restriction will

be remove_d later. A partial-wave decomposition yields

o ® .
24/ ; (py + Py ) P+’
" + w2 Vo (p) + g% ap' __;))To__ P'QL(———-) v(p')
0 EPPI .

= PO VL(P)_: R (12)

where Q, is the Legendre function of the second kind and V,(p) 1is
L : ‘ 3

L
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the new wave function. If we try to write Eq. (12) in standard , This difficulty is common %o scattering integral equations and can be
integral equation form the resulting kernel is not symmetric. To find readily rem0ved,8 so we will ignore it. If we set ‘p' = ap and take
an equation with a symmetric kernel one may introduce _WLS by _ account of the symmetry in p and p' we find
: 1/e ;

/2 . s ' 2 2\fe , 2 ,o 1
P v, = [Po -(p +w") v, () . (i) /op

° B o ST ¥ o= o & s

. L : o ’ ) _ o N 2% ‘ P

The new equation is then S o ; ' , 0 )

o2 (% (p, + D) ‘ , ‘ : - 5] 281 +d°
ﬁ’ls(_P) = §Z:—‘ - ap! go—;%]e*. : ' | _ [ (1 ) (12 * ) ) ( 20 )
- 0 "0 : o 1 1 °
o - 2+201P 2.2
o8 >@2 o [ ¢ Hedl]
i p? S e ?
| Qb('--epp' =) B . S - (16)
x S— ’ e — N . '
[Po ‘7(152: + 1/2 ]1/2 [Po - (P'2 + P )1/2]1_/2 N As p tends to zero the integral is Well-behaved, w’hen P becomes ,
f ' ' - (1) . large, hewever, the integral diverges loge.rithmically The integrand

' Co : ) is positive definite and for any nonzero region in « the logarithmic
Equation(14) has & kernel which is not of the Predholm type. ' ' »

o : ) : : divergence is present. (ﬁote that when @ ~ 1 no trouble arises
To see this, we consider the integral of the square of the kernel (the :

‘ ) since QL diverges only logarithmically and is therefare integrable.)

It should be noted that if we had considered the interaction appropriate

‘2 2 ( ,)2 S . to the time component of & veetor meson fiéld of mass Y the argument
Pyt D ’ :
Ze . Q o "
“2 - ) : _'56"‘53""‘— ) of the function Q, would be replaced according to
' 2 2 2 2
e, ( '2) Brrs LB eele - (1)
YA e’ 2pp’ 2pp’
‘ [Po' - GF b )1/2] {Po - (p? 4+ n° )1/2H but similer arguments to those above would show the kernel still not to

‘(15) be of the Fredholm type. Since the non-Fredholm nature of the kernel is

. _ related to its large momentum bebavior, our next $ask is to study the
The kernel. will be non-Fredholm if the energy, P, , is in the .
g ' o : -0 0 - behavior of the equation for large momenta., For this purpose it is
scattering region, because the energy denomipators can them venish. S
: ' ’ o convenient to use the unsymmetric form of the integral equation, Eq. (12)



Thus for Py > P

2 (py + Py ) o P +p?
o) ¥ -2 -dp'%'l)—rq—g—%( 2] )u(p> (18)

The integral representaﬁ‘i—on for Q'l, s Lloes, -t ‘

) ) DR Y
QL(Z) 5 “® oo : - (29)
-bay then 5e used to give
e T men) 5 a

va(p) o= - g—ﬁ-— at By(t) dp! B 9 Boer-muar: - .

_ : . - PoPo: T (p° + p'" - 2pp't)

=1 : : R
| (20)

We now conjecture. that solutj.ohs of this equation behave as p‘g for

large p. We are thus led to examine the two integrals .

« 1 ’
2 v-N
ze dp'(p')
= - == at p,(t) x
E & | ¢ (0° +2*® - 2pp't)
-1 -

ad o e

2 : 2-t
- -E | arw | —lo .

py' (P + 2" - 2pp't)

EAR
Tre integrals may be evaluated by standard contour integration methods.

_ Both have branch points at the origin; I, has additional branch points

2
at ¥ im .- We thus find that

sée Fig. 1.). One finds for - I

S
2 . dint. 2-§ ’
ze e : ' dp'(p") :
1. = -2 = sin 6 a0 P,(cos 0)
1 2np. 21 sin n 12 ie - :
P el 8 : _ (p' - pe™®)(p'- pe™2®)
0 C
2. dxg . _ . 2-§-
_ 2 & . e ag D dp' (p'-,) -
: 12‘ T T 2n 2isinw E |- sin © .de PL(cos 6) H(p'~ )( y -16)
- ' Jo : - B’ (p" pe*®)(p'-pe
wher e‘we.ha‘ve set
t = cos @, v ‘ - (23)

-and C 1sacontourfrem +oo “to- +oo takenamundtheorigininthe

counterclockwise di.rection 'below a.nd above the branch cut which has bem '
taken along the real axis from the aigin to . +m ag shown in Fig. 1.

The integrals in Eq (21) are wel_l defined in the neighborhood of ‘the -

origin and at o if -

1< ¢ <2, ' : (24)
The‘ integral Il may be evaluated by the method of residues.
'I’he 1n‘begrand has poles at arg p = 6, 21( -9 (the,last_va_lue
obtains since we may no‘t paés th:rough the branch cut along the real axis;’
1 i '@ is less than " n/2 , '

b8

2 -t _ '
I - Z—;— E_i'iPng' - a8 P,(cos @) sin[(? - &)(x - e)] . (25)
0

The integral I,

must be taken of the additional branch cuts from im to o anmd -im.

may be treated in a similar mamner except that account

to -co. If @ is again assumed to be less than /2 and if I,
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represents the contribution from the branch cuts, one has, in the limit.

p >>

zef _p*

I, = IQ'B_- TR a6 P,(cos ) sin [(1 - &)(x - 0)] . (26)

0
. Let us now consider the integral over the branch cuts, . Ly
Since we are dealing with a8 square root singularity, it folldws that we

| need only integrate over the portions of the contour which lie in the
left plane providing we double the résu.'!__t. Next let us consider an

'integral,' 12
tfes in the left half plane and which connects the branch points ¥ im.

BI’ of ‘the integrand over the path C' in Fig. 1, which

‘ Clearly -

Ig * Lgr = 0. (27)

The contour for IEB' may be teken along the imaginary a.icis, except foi‘ ’

a small indentation of radius p +to the left of the origin which allows .

. ome to avoid the branch cut to the origin. We thus have

n
2 . 2 3
L = g—gie—_n-;zf sin @ ae Pf’(cos 9) __JL__.,.Q%
- - | | lae -2

int/2 . '
. e : : 3-€ int
X . - + complex conj| - p e
(y - p X&)y 4 p o 1(8-n/2)y ,
) 5w/ IR 2
= 1/2 R :
ﬂ/z 7 (!!12 + ‘32 eQia) (p eia -p eig)(p eia - pe—lo)
(28)

-10-

The last integral in Eq. (28) vanishes as o~ O for Re £ <3. Thus

one finds in the limit p - o0 :

z6° ' ( ) e
I, ~ = sin @ a8 P,(cos ©
2B on p~ sin n ¢ @ - M2
' 0
eing/e
X ’ +  complex conj. .
(1 .+ ¥ ile-n/2 ))(l X e-i(e-n/e))
b A P
- (29)

: S . '
Therefore I,, behaves as p  so under the restrictions in Eq. (2k4)

B
IEB does not conﬁéribute to the asymptotic behavior. Thus

_ Ze2 13 T ( [ . ] -
I, = - Q—Lsm - @@ P,(cos 8) sin [ (1~ &)(x - ©) . (30)
0 ' ' '

If 11‘ and 12 are now comblned, one finds that for self-consistency
g

a solution whose asymptotic form is p requires that.

Ze2

—_— ae P&(cos 8){sinl (2.~ £){(n -;'e)]- s:l_n{(l - §;(x - e)] = 1.
2 sin ng . :

L : (31)

This mey also be written as

.g-l}% 7e°

a8 P, (cos 8) sin g cos(t - 3/2)8 = 1. (32)
sin n¢ i .

-~

0
The integral vanishes as & = 2, as it should, since otherwise there

would be a pole in either I

1 ez; Ié in coqtré.diction to the condition
(k). '
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The integrals in Eqs. (31) and (32) may be evaluated in a
9

straightforward manner.” When ¢ 1is even, we find

2

2 L - .

Ze~ 208 - 1 1y _tan nt/2 cot ntf2 _

5 Z'k B(¢ k+3 k+3 Took+2- £ T-2k+1-E) ~ 17
=0 \ L , ' (33)

anlwhén t is odd,

. s 2 AN | ' - 5/2 fa. /o

Ze . 1 , L cOt T n it -

2 - ki.B(&’"k"'e’k+2)(&~-2k+2-§;"£-2k+1-§ 1.
k=0 ' ‘ - ' (3%)

¢

Iin these expressions the symbel ) ‘ is the usual binomial coefficient

amd B(x,y) is the beta f‘unetion I;f‘ Y .

The a.symptotic behavior Just developed strongly suggests that
the mkamaian-'l'homs equation be studied by using a Mellin trans<:
foxmtion.lg. We now turn to that tegk, which will verify rigerously
that the asymptotic behavior is indeed given by a solut;ton of Eq. (33)
oar Eq. (34), and, further, will lead to a method for obtaining a unique

solution of the singular equation, Eq. (12).

IV. MELLIN TRANSFORMATION OF THE BAKAMJTAN-THOMAS EQUATION

The Mellin transformation and its inverse are defined by the

equationsll
v,(s) = W) P ap | (35)
0
and _
: 1 ~S .
@) = 53 [ Yy (s) P ds,. , - (36)

: singularity w'ith the Iﬁrgest Re(s) to the l@ﬁ; 151’ Cv Hom thepe:

’
58] D w

yrhei‘_.e C goes from --ico to iqo. The contour C must be chosen
appropriately in order to effect a solution. We note that from Eq. (36)
At follows, that-'-’ the -asymptotic behavior of v&(p) ‘a5 R i is
dete:ﬁnnlned by the singula.rity in: tt(s) -with ’ehe s;nauest ‘Re(s ) b

tthe right of €, while: the behavior 85..p = O "is; detemmed by the

_rela‘dms one finds the transfonhed integral . equa.tion.

1)

Ifli(}ra %)p

‘(P po) By’ ®

2 42
. P+ P’ ’ -5
| (p')" dp' . (38)

The conditions for the existence of K,(s,s') ‘must now be examined. A

‘cons_ideration thet the integrales aver p and p' be convergent at both

1imits of integration gives the requirements:

"As p-~o0, Re(s) > -¢ .
As P~ o, Re(s) < ¢ + 2,
As p'> 0, Re(s')< ¢ + 3,
As o' - o, Re(s') > - + 1.

(39)

It may be noted that the factor (P, - po)'l may be expanded in

an appropriate manner accqrding to whether |P0/p0,| is greater or less

than 1} and that such an expansion will not alter our eonclusions about
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the domain of existence of K since each successive term is as well
bebaved af the origin and is betber .behaved at. infiaity than’the.one for

which P0 = 0.

Al'bernatively if the kernel, X, is divided into two parts, the

. first of whlch, K P is o‘btained by setting P =0 in KX, and the
second is simply the difference between K a.nd K, by such an expans:.on
: argument 'forvl_argev v a,s has just been given Qne sees that the domaiq

of existence for K 1is the same as that for K. We find

o (pyoo") 2, 2
K (s,8') = j’w jm P52 Po Po ( )-s+l Q£<'22_§;'72—-> .

(ko)
To carry. out the integrals we _agaih repiace Q& by its int_egral
" representation, Eq. (19), to get o L
. o % _ ) - po :
: f&(s,’s')r= - éZ:— sin © Q.B PL(»cos O)f dp ’ dp
) e , o 0
: =8t 42-
- 1177+517 e e - ()
o o (P-pe)(P-e-)
Consider now the integral: '
[ oo PS¢ 30 il
I,(s,8') = dp |- dp'-
1 . et : i8 ~-i8
, - Po(p' -pe)(p' -pe )"
0 70
ira! © gt
elﬂs dp . ap! (P') s'42 . ()42)
r} e b L 5 b ] =10
21 sin ns - Py (»' - p 619)(P, -pe )
. o _

~

el

This is one of the terms in Eq. (41). The contour C is the same as
that in Eq. (22). We integrate first over p' and then over p to

avold the branch cut associated with Py at the first integration. The

other term in the integrand of Eg. (41) is treated by integrating first

over p and then over' p' . Denoting this second term by 12, we have

o -s +2 s-1 .
I (S, l) (P ) P
, po'(P ¥y p - p' 719

-is:t 2-s Y42 s—l' ) -
= 21 sin ns 9)(P e 1_9) .

. (53)
Eor, Il’ we find

. coy T s% 2 = s')n - :‘ ' s=g!
IJ.(S’S ) = - sin ns’ ‘-E[éin 9 _)(v 9)] %5 P v (44)

0

If this integral is to converge we see that C must be chosen so that
Re(s) < Re(s') < Re(s + 1) . (45)

The remaining integration can then be performed to give:

I]_(s,s') = - v’r. Sin&e - 8" )(n - 9)] () s s'-s

, s'-s+l1).

(46) -

2 sin ns' sin ©

The second term, 12, may be evaluated :I.n the same way. The fesult is

I2(S,S") = 3 s?.n pyn Sin[(i'i; S)(H - Q)J ( j (s i s S~s'+1) .

6u7)
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In the last two equations B denotes the beta function. Equations (L46)

and (1}7) may now be used to evaluate the expression for Kz(s,s():

: o 7
K&(s,s )y = & ) (S i , s=s'+1) e P&(.c.os 9)
sin[(_B - s )(n - 9)] sin[(l - s)(g - Qﬂ ‘ : . :()_@)

sin ns' sin ns .

We thus find, when ¢ 1s even,

A . .
= ‘ Ze2 m s-s' g'-g i ¢ 1 '
K't(s,s') = 5 (é‘) B(T , s=8'+l) Z X B(4-k+3, k"%)

tan ns'/2
1 -2k +2 - 5"

x

cot rtsle : o o
paml2 @9

abd when ¢ is odd,

. _ | | .
- 72 [(m -8’ g'-s £
Bles) = 3 \§) 3055 s-s'a) Z x
‘ k=0

| B(l-k+3, k+3)

tan :ts/a

cot xs'f2
L-2k+1 -3 * ' (50)

L -2k +2 - st

Poles of the bebg. functions relate to the conditions of Eq. (hs).
The reader may note that the even-odd altermative forms for iz(s,s’) _
have terms which producelpoles 'f§r w)alues of s or s' in the regions
which are not excluded by the inequalities in Eq. (39). These poles are
cancelled when the entire series lin k is V:‘gncl.ud,ed.. For example, when‘

%=1, we find:

-

""‘,};-'-16-
fl(s,s') « cot ns'/2 [(3 - s')":L + (1 - s')-l]

s'l]:'_ (51)

=2 and s=1 from the cotangent and tangent are

- tan ns/2 [(2 - 5)41 -

The poles at s'

_ thus cancelled by the zeroes in the brackets at these values. Hence

Ky(s,s') for t=1 is amalybic for -1 <Res <3, amd

O<Res'<kh

We are now in a position to begin é. ;leterminatioﬁ of ‘l;hé
contour of integration,- C F.irstly‘_, the contour may be taken to run
parellel to the imginary axis from -ico to 1o0. It is to be noted
that the conditiens for the - existence of KL(s,s ) do not at first lead .

us to an 1ntegra1 equation of the usual type for \V&(s), since we bave

_ derived an equa.tion which relates ‘V&‘(a) to values of @4(3 ) vhere
_ the set of values of s is different from thi;e set of s' values.

because of the requirement in Eq. (45). However, we may deform the s'

contour by shifting 1t to the left so that It half encircles the pole
contained in the beta function at s' = s or e may increase Re(s) to
Re(s'), agein taking the contour to half encircle the pole at s' = s.

In the neighbm‘hood of this pole

~ Ryls) - : ‘
- (S,S ) = -sy -8 B4 ) . (52)
" where R,(s) 1is given by
b2 o 4\
Ry(s) - Z= Z Bt-x+3 k+d)
. ﬁ k .
. k=0 ; ’
x | tan 'ﬂs[2 cot ns/2 . (53)

3-2k+2-_s' L -2k +1-8



Ze2 ¢ 1
R,(s) = éﬂ_z B({ -k +3 k+3)

e

when ¢ is even, and by

1

(M

. k
k=0

cot ns/2 o tan ns/2

Lt -2k +2 -8

wmen L is odd.

'We may now write the kermel fi(s,s') as

R(s) /T R (e)
Ki(S,S') = s% i s T (%%(S:S') - s%-i sj) g

where the kernel

RL(s)

s' - 8

B, (ss') = Elss) -

- 1s not singular at  s; = 8.

This leads to the singular integral equation

. s+ioo
R,(s) ¥, (s). - _ :
¥, (s) = ————— +357 K 4 (s8') ¥y(s') as?
‘ ' s=im
: s+ico (
R,(s)
P 4 [ 1
+ m ’ s’ = ‘J/L(S )dS 3
s-im

where P denotes a principal value integral., There is also an

"associate"” integral equation to Eq. (57):

L -2k+1-5s

(54

(55)

(56)

(67)

-~18-

a s+ico
R,(s)V¥, (s) —
Vo) = A as' K ,2(s,8") ¥,2(s")
s-ioo ‘
+i®@ :
: R,(s') .
A a, ,
} 2_:;{ _ as' g Y (87, (58)
' s-ioco
" where
' : R,(s')
— - . A
Klta(S,.S') = K&(S:!;S) + -S"_S.

Our method of solution of Eq. (57) consists of first investigating
solutions of a singular equation, the "dominant equation,” We then

derive a new integral equation for the problem which incorporates ii£ .

This new equation is of the Fredholm type; its dewvelopment will be given

later iﬁ:ih;aisectién:

We shall conclude this section with a gqumlitative discussion
of the solutions of the Bakamjian-Thomaé equation. For simplicity, we‘
»consider the case when ¢ = 0, In this case, Eq. (53) then becomes

(when ve drop angular momentum subseripts)

Re) - K- | Rl sl (59)

If we write f(s) for the term involving K, we mave

s+ico

(é ) Bﬁgl-)_w(s) _R)P as W) £(s) . (60)

2nd © s!' - s

s=im
This equation can be written as pr = f, where Kp is defined to be

the dominant part of the original kernel K .
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An equation of this farm was first treated by Carlemann and is
extensively discussed in the books by Muskhelishv:lllilg and Pogorzelski.l 5
We follow the discussions given by these authors. First, we :Lntfoduce

the function

w0 - [ ﬂ_u_ - (@)

where the contour C goes from -ico to icc. We can look at H(‘s.) as

a single-valued function in the s _plaﬁe‘, cut along C. _If we denote
the regic;n to the le.f‘b.' of the contour ‘by st and that tov't.he"right by
S, we can obtain two functions, Ht(s), amlytic in St respgctivel&,
according 't'é'wiiether' s l1es in' 8° ar S°, These two functions can 7
then be analy‘ticaliy conﬁinued‘bex‘ro"r'xd ‘the cut, C7 .Beca.ufge of Cauch_y'_s
“theorem the contowr C can be varied without affecting H'(s) @«

H (s) unless a singularity in the integrand is encountered on C :

i.e., VY(s') is singulai', or C. passes through s If € is chosen

to pass through Sy we’have . V

((s-e) -H(s+e)>
_ e*0
é(s -€) + H(g + e)>

These relations reduce Eg. (60) to an algebraic equation:_l

(- B - m @] = 10e) + B 5 + 16 SN C )

B'(s) - B (s) = ¥(s)

(&)

m o

E'(s) + B (s)

U

To solve this equation we begin by considering the solution of the

equation with £ & O and denote the solut_ions by Ho . We have.

i <20~

r- R(s)| B,M(s) = B(s), (64)
or
HO+(S) Y ' . .
-, . . . . . o (65)
By (s) X - R(s) ‘
Upon taking the legarithm of both sides one finds -
tn E'(s) - By (s) = .’zn[l -R(s)] . ) @
(e Hy(s) - in By _ /j - - 6)
~ If one now ini;roduées o L ' o ' o
) N l. L - ) N .
tn By(s) = - 51 .—L—L—Zln 1s'hfj;: s - _ (67) :
. “
this effects a solution of the discontinuity Eq_. (614) for the homogeneous .
equa‘bion.lg_ From Eq (67) one sees that Hj (s) are neither singular
. nor zero in the regions S y respectively. ‘
A solution of the inhomogeneous ‘p’roble"m is achieved by using
Eq. (64) to replace 1 - R in Bg. (63). Thus
H -_(s) -
L H'(s) = H(s)+£(s), " .
) Ho (s) . B .
or . R ' S ' (68)
CEY(s) . E(s) .._ _£(s) .
B'(s)  H(s) - E ()
_if we now introduce ' ' . : , -
“H(s) 3 F(s) Hyls) , | (69)
we obtain
Fs) - F(s) - S8l | ()

B, (s)
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which can be formally solved by

__i__lis__ , ’ (71)

s! --s)HO (s)

F(s) =

. jed
and we see that,_F_(s) are regular in the regions S, respectively.

. The solution of our equation for ¥ is then obtained using Egs. (62)

and (69).

We now continﬁe consideration of the choice of contour for our

problem. .For the ¢ = 0 case we have the conditiong

1<Re(;'=)<3 .

0 <Re(s) <2,
: ' (72)

Re(s) < Re(s') <Re(s + 1),
At the various limiting values for s,s' there are singularities in
KO(S’ ), of which the pole at s = s'  has airgady been made_explicit
in the singulsr integral equation, Eq. (57). We note that 1 - R(s)

: ‘ 16 . .
can be given an infinite product representation  in the forr

- § :
- (Z - | ™)
l .

H=-00

1l - R(s

since R{s) bas poles at all integers, R{s) > 1 as |Im s] -~ @, and

o 17
for each n there is an s = £ such that R(gn) =1 . Further,
as .Ini - 00, one finds
' 2
' ~ L& : | n
§n'n_ — 5 ) (7)

which guarantees that the infinite product converges. Finally, R(s)

so that

‘

is symmetric about s = 5/2

R(Z+t) = R(Z-4). " | (15)

conditions on s' .

20w

Thus the complex s plane shows a Iattérn of poies and ieroes as
indicated in Fig. 2 (for ze¢ < 0 ).

Let us now note fhe following facts: The function HO+(s) Ais
analytic and nonzero in st ; while Hb-(s) in analytic and nonzero in
87, A1l three contogrs, CO’ Ci, and Cz, of Fig. 2 §atisfy the
* We do not consider contoursviﬁ which Re(s) <_3/2:
because such contours can either be distorted so that Re(s) > 3/2 or

there will be a singularity in ¥(s) for Re s < 3/2 . The former case

7

is of no interest, while thevlatter one would lead to a wave function in

momentum space which is not square integrable, and is therefore excluded.

If we consider C,, we then find from Eq. (67), that

Hb(O)+(s) <: ;)
n=2
(0)- s - & |
Hy ) (s) /”\1/ <: o, n 5
n=-oo
while for C2 )
0
W - T (::‘é
n=3
and : (17)
, o
2)- s - ¢
o - T <s-nn>'
n=-c

On the other hand, for contour Cl the integral in Eg. (67) is singular,

. since the phase of the logarithm does not go to zero as Im s - o, so

Ho(s) cannot be defined by Eq. (67). One could attempt to use
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no(l)+(s) = (s -2) /\”( (S -
n—} .
and (78)
| e |
5,16 = (s - gz) ’[“( (s . n)
n=<00 .

since this seperation of 1 - R(s) s&i_:isfies Eq. (65). In i;his ogse ,
if we consider the "solution” oi‘ the homogeneous equation for \y(s) y
we see that, as |Im_ s“ -+ oo, (s’)v > (52 -2). But this
asymptotic behavior is not allowed, since then the principle value
jntegral in Eq. (60) is not well-defined; in fact, we will show that
the contowr C; 1is mot acoé_pta»ble;.» If 7e2 > 0, the relative positions
of the poles, n, and zeros, §n ‘,"in 1l - B(s) are rev.'er.sed. .In this

case we obtain a wvalid solution of the homogeneous equation using -Cl 3

B

n-3

in which

I_I°+(S)

! .-t
"_HO-(S) - T‘s‘%—a'i ﬁ '<s -nn ot (80)

= =00

Thus the_;olution for ¥(s) will not be unique, because an arbitrary.
amount of the solution of the homogeneous equation can always be a.dded
to a particuiar solution. We will return to a further consideration
of Co ’ 02 |
As was seen from Eq. ((36), the behavior of ¥(p) for 'p + o

subsequently.

is determined by the properties of V¥(s) in 8 , In this region

-} '

HO-(s) end F (s) are analybic, so it is convenient to express the

solutions in terms of them. In S~ 1t is convenient to represent -

H(s) as
e - 2 e £ (81)
1 -R(s) _'  Hy (s) :

Thus if L - R(s) vanishes, w(s) will have a pole; i.e., at points B

s = gl . construction we also know that f(s) has & pole at’ s = n,
but here R(s) also ha.s a pole which cancels the sing\narity, s0 ‘that

¥(s)  is regular at n. Thus ‘the as_ymptotic behavior of ¥(p) will be
dominated by the smellest & , &, inthe S  reglon; i.e.,

" ;é min S - : '
‘%(P) N P r .

We now come to the decisive part of our investigation, the

complete solution of E‘q. (57).‘ "This depends on the existence of
. : 19 ,

golutions of our equations,”” which in turn can be determined using the

" Vekua tlieory of singu]ar integral ,eq_ua'.‘tions,eo which we will now

briefly recapitulate. Vekua's theorem states that, _uhder certain -

conditions, each singular integral equation of the form .

Kg = Ale) fls) + & [ aor Mepedile!)

= £(s) (82) -
c
is equivalent to a Fredholm equation with a completely coni;inuous

kernel.”> The conditions which must be imposed are the Holder relations:
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fA(s)?- A(s')l < const. ls - s"n',

le(s) ~ £(s*)] < c_bnst.,ls -s'? s

and = e , N -3

Ik(s,s') - X(s",8" )] < const. [Is ;-.__s'f 4+ s - s" ,n] R

where 0°<¢ n £ 1. OFf central importance in the.Vékua theory is

Ky

the index n,.

o s-Bs Als -B v i

Here,

,B(s')sm(s,s), | I (8)

and the notafion AC is meant to indicate the total éhange in phase of

(& - B)/(A + B) as we traverse the entire contour C. In our case,
A{s) =1 -3 R(s) and B(s) = - 3 R(s), and the contours C, and C,
give = 0, while C, glves % = 11 according ‘to whether. Ze2 < o.

We have seen that only for Ze2 > 0 and the contour C is there a

solution of the _homogeneous equation, _K ¢ =.0, in which B(s) » 0 as _

I s' » ®, In order to effect the reduction of the singular equation

to Fred.holm form, the "dominant" operation
b - Ae) Ble) - J—L[ Sl ()

and its associate opertsv.tionz'2

£ 4 - ) Be) - 2

C

B e

are introduced. If & is the index of K°, then x is sald to be the |

i - 6-

index of the original equation. Since the sign of the imaginary unit

. ' v
has been changed in Eg. (87), ~« 1s the index of K . A theory of

Eq. (82) was first developed by Carlemamn.Z’ Tf the index of Eq. (82)

is k& and
s > o, - (88)
there are x linearly. independent solutions of the homogeneous eéuation

. of the form
Bls) = Hy(s) P (s), (89)

where PK('_s) ' T’LS 8 polynomial in s of deéree £ . On the othe.xg band,
for k > O the asséé_mte operation in Eq. (87) has a « < O; and
there are then no :nenvinishjng solutions. of KO’ ¢ = 0 which tend i;o
zero at infinity. ' |

If .cén be 'shown.b& use of the Poincaré{-Bertrand transfcrrmtionel
that . Ko’ is & regularlzing operator for the kernel K ; that is, the
kernel K K ( / é,s") K(s", s’ )ds") is completely continuous,
although X is not. Thus if n 0 , solutions of the equation Kﬁ =f

can be sought via the re,gulariz.ed equation
ot B ' :
K xp = & ¢ _ (90)
. ) - 1 :
for which the ususl Fredholm theorems apply. Since KO ¥ = O has no

nontrivial solutions, no extraneous solutions are introduced.

If, on the other hand, x is negative, one may define
o' s
g = X v o (o)
and form the equation

0t . .
kx® vy =2, ‘ S ()
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which may be shown to have a completely continuous kernel. The solution
of the original Eq. (82) is then obtained by quadrature from the
solution of thio equation. ’

The relevance of the above theorem to owr work deuends on the
following theorems. Wé firot note that for Aany kernel K and its |

adjoint, if we have solutions #-, ¥ such that

kg =t - ' )

Kty = 0, ' (94)

then the general relation

. o | (96)
This s, of course, just the generalization of the familiar property
vhich is knovn from the theory of Fredholm operators; that is, a
necessary and sufficient condition for the solution of an 1nhomogenoous
Fredholm equation is that the driving term be orthogomal to the éigén-'
f\mctions of  the tra.nsposed operator (or Hermitia.n conjugate operator

if orthogonality includes complex conjugation) We now remark that, in

analogy to the Fredholm ca.se, the condition, Eq’. (96), is also sufficient,

to guarantee a solution of Eq. (93): First, suppose that & is positive

or zero. We consider the solution, ® , of the Fredholm equation
1 1 o
® %K) o = o (97)
or, equivalently,

Ko = 0. (98)

[yfx ¥ ds ds' | | (%)
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Since the solutions of Eq. (98) always satisfy Eq. (94), Ko must be
a linear combination of the ¥'s . According to the Fredholm theory,

however, a necessary and sufficient condition that there be a solution

" of an iﬁhdnogeneous_ Fredholm equation is that the mhomogeneous term be

' orthogoml to all solutions, " » of the homogéneous equation, with

transposed kernel. Thus a sufficient condition for the 'solution of

Bg. (90) 1s

o x° ras = £ dds = ['fz a, ¥, ds . (99)

- Thus if Egq.- (96) holds there is a solution of Eq. (90) and hence of

Eq. (93 ), and sufficiency is proved.
If x 1s negative, we 1ntrod_.uce the solutions 7 of the

transposed Fredholm equation

ot : , : -
(Ex ) v = 0 -(100) -
or, equivalently,

¥ k' Yy = 0. : (101)

The Fredholm theory shows here that if

ferdas = o o o ae)
one may find.a solution of Eq. (%2). This allows one to construct §
by quadrature [Eq. (91)] . Since the dominant equation for « negative
has no non‘triviai solutions, those of Eq. (101) n.xust‘be linear combina-~
tions of those of the homogeneous associate equation, Eq (89). Thus
the condi‘ﬁion of Eq. (96) is sufficient in this case also.

A further theorem has been proved by Vekus: The difference

bétween'the pumber k of linearly independent solutioné of the singular
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equation Kﬁ = 0 and the corresponding number, k' , for K'¥ =0 is
egual to the dindex k of the first equation. This can be shown as
follows: . We assume that x > O without los_s of generality, since‘.if
"k €0 the roles of- K and K' ‘can simply be interchanged. Then we

know that the equation

"kp = o . A' o - (o3)

is completely equivalent to . . ‘ o ,
.' N R ) i )
x° K¢=o, oo - (a04)
and therefore the latter also has k linea.rly ind.ependen’c solutions.

From the Fredholm theory we know that then
. 0 S S _
K'K ¥ = 0 : L (105)
hes k linearly independent ‘solutions as well. Since Koq: =0 has
S 'linearl&'ind.ependeht solutions, it follows that k' = k - Ko '
Let us now apply the foregoing analysis to our equation. As -

has been seen, the choice of contour c affects the resulting K . We

note that if K is positive or zero, except for certain eigenvalues

" . there“are ho nonzero solutions of the_ homogeneous adjoint equa.tion.

Hence there are no restrictions on the function f as indicated by
Eg. (u) If &k is negative, howeve_r, £ cannot be arbitrary. Thus
the contour must be chosen so that « 1is positive or zero. Thus, if
- 2ef > 0 the path C; must be excluded since there will not éenere.lly
be a solution of the equation. On the other hend, if Ze- < 0, for
physical feasons Cl again> is exciuded s‘i.nce»the solutions iin this -
. 'ease would x_mt be unique. Thus we are left with the possible contours

Co and Cé'

w50~

Again let us consider ¢ = O, 'The generalization to arbitrary
¢ is simple. We have seen that the behavior of ¥(p) as p—- 0 is
determined by the highest singularity in s*. Thus it is convenient to

express the solution of Eq. (60), ¥(s), in terms of H0+ and F:

We) = A(s) B(E) T ¢ £le) .  e)

The singularities of V¥(s) in 's* are then found 'either.:m R(s) or

£(s), or in both. Thus there 'mxy bes po%esﬁ in ¥is) aﬁ”all of

_the integers to the left of C. If Ea. (37) is ‘used to continue \{f(s),

V

hmfeﬁef, it is seen that only the singularity in s ~associated with
K(s,s') produces a singularity in V¥{s); and hence if C, is chosen,
there will be a pole in ¥{s) at s = O (and at the megative even
integei‘s). On the other hand, if ce' is chosen, it is convenient to
first let Re.(s) -+ Re(s') on C,, since we have the apalytic continua-
tion explicity of K(s,s') for Re s >2, and then obtain & solution
of the equation on Cp, ond fimally use Ea. {37) to continue back to
s = 2 We thus find a pole at s = 2, apd

wWp) ~ 7. ‘ (107)
This b.ehavier‘ is not acceptable, bhowever,v since th_e wave fuxiction would

not be normalizable, and so we exclude the path C2 ~ from further

.congideration, and we have a unlque solution to the singular equation,

Eq. (12). Since we are thus restricted to the path, Co » we may askA
whether ’shere is some especielly appropriate path. It is showm in .

Appendix A that if Re(s) = Re(s') = 3/2 ., the kernel of the integral
equation satisfies & hermiticity coi’dition, and so this choice seems to

be called for.
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We shall close this section by noting that there is a maximum
. 2 o
value for -Ze  for which a unigue solution of Eq. (12) is possible.
Again for % = 0, it is easily seen that R(s) is real for Im s = O,

and for Re s = 3/2. In the latter casé

. 1r
7 5 5 1 .
R(s) = - =- 12‘ L T + complex conj.{ ,
1l + 1 tanh ESI . -2- - i SI ) . ] (108)
‘where s = 3/2 + 1 S5y + As IsIl = 00,
Z .
R(s) ~ === . : (109)

On the path along which R(s) is real going from s = 2 to either
s = 3/2 + i, IR(s)| isa monotonic decreasing function going from

‘oo to O, and if’ Ze2 <'0, there will be a peint §2 on the path at

which25

R(g,) = 1. : . (120)
This point £, will only have Im(s) = 0 if

R(3/2) < 1, ‘ - : (111)
that is,

2 : '

[ze“| < 1/2 . (112)
ygl and §2 become
‘complex conjugate pairs and the contour C and solution V(s) are-

if this condition is not satisfied, the points

not unigue. The situation is completely analogous to that with the

Dirac¢ equation, for which there are too many acceptable solutions also

if' Ze2' is too Large.26 ‘The problem raised here is oniy of mathematical

~ 3o

'

interest, however, since a large 7 nucleus would necessitatéa formv
factor to describe its spatial extent and the potential for large p
woudd ‘be cut off, ih'.contradistinction to the point particles dealt with
here. Thus we will not pursue this case further.

The Dirac equation may also be dealt with using _the Mellin
transformation technique. In thét case. it is found that R(s) is a.
quedratic function of s and there are only two poséible. 3 1'5 A
brief account of the treatment of the Dirac equation is given in

Appendix B.

V. MOMENTUM SPACE INTERPRETATION OF THE K, KERNEL

In the preceding section. we have provided“an analysis of the

’ non-Fredho]mABaka.m';)ian-ThonBs equation which leads> toa un-iq_ue“ solution.

Although thié rovides é. mﬁhémtically satisfé.ctory solution, its
significancé is probably somev'rhaf obscure. '.In the present section we
will provide _a;ﬁ alternafive momentum space tréatment which is 'closely
related to the Carlemann approach in Mellin space, bub which gives
dix-'.ect insight into the above results. .

Siﬁce thé non-Fredholm behm}ior of the equation is associated .
with high 'monienta, one might '_:try to separate the kernel into an

asymptotic part and a reminéier. Thus we write Eq. (12) as

2 . 2 2
o) =-2 1  ap (PP;‘ 2, (2 oot PRCREAY
A . |
- 2 (P. +¥ ’) t 2 12
ze” | oapl| 70 70 &2l o (22, (o
cEl P ey U | el ()
0 L

o . (113)
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where U(p') is zero for p < 1, and is one for P >/1. Let us consider
the kernel in the first integral to be KF (pyp'), and the balance of the
right-hand side as if it were an inhomogeneous term, £(p). 'We +thus

look for solutions of ‘the equation

W) = |ap' Kylpp') ¥+ 2(®) . (114)

The step functlon, U, must be introduced because otherwise there would

" be no solution of Eg. (114) because of the behaviar as p,p'. ~ O.

Clea.rly the kernel K is of such form that we can write -

) - F i, w(E, )%(p)”(p) (115)

This equation can be solved in two ways: If a ne’w'variahle x = ?:n_ P
is introduced, Fq. (115) is converted into a Wiemer-Hopf eguation which
cen be solved by known techniques,2!  On the other hand, if & Mellin
transformation is carried out as in Sec. IV, we get

1 [, Fle)¥(sh) .
¥, (s) = oy ds — £(s) , g (116)
S s' - s . :
c .
where Re(s' - s) > 0. This equation can be brought to the form of
BEg. (57), and is easily seen to be identical to it. Thus the Carlemann
solution off this equation corresponds to finding a solution of the

inhomogeneous Eq. (114) to remove the non-Fredholm term, Ko(p,p‘).

In obtaining Eq. (113) we essentially took the asymptotic form

of the ke;'nel for p,p' —~ oo, and then multiplied the kernel unsymmetri-

celly by U(p'). If, on the other hand, we had multiplied by U(p), the

only change which would occur would be that in Eq. (128), F(s') would

appear instead of F(s).\

3

VI. CONCLUSION _

In this paper we have giveri arguments which lead to an
spproximate wave éq_uation for spin-zerd paﬁicles. This equation has
been studied for the case of an interaction'.wh:.lch is the time componer_it
of a vector field. A simplificétion was afforded by asm.]ming one of
the particles‘to be infinitely massive. >Becaus‘e of the nature of the
interactién tﬁe Schroedinger integral equation 1s\siﬁgulér so that the
:Fredholm theory does not immediately apply. We bave given a simple

discussion of the mature of the solutions to be expected for our

equation and have then gone on to rigorously show that a unigue solutior

may be achieved if the potential is repulsive or the coupling comstant

© ~is not too large. We have also gone beyond the considerations of this

paper to consf.ruct explicit numerical solutions for both bound state
and scattering ﬁroblems_ for the case whén L =0, ﬁeca.use of" the
length a;nd. complexity of this paper and the special techniques which
are reciuired to effect a n\mei'ical solution we wﬂ.l report these result:

elsevhere.
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APPENDTX A. HERMITICITY OF THE MELLIN TRANSFORMED EQUATTON /involving p, end p,' are now of order p , and hence K, (s,s')
In this section we shall show that the kernel in the Mellin : is regular at s = s'.
transformed integral equation is Hermitien if the comtour C is taken To investigate the hermitlcity condition for the kernel, we
to /lié along Rel(s') = 3/2. For this development, we divide the kernel . convert the transformed integral eqwa.tion to one in real va.rlables.
_into two parts: . - o _ Thus we set
; _ ' R _ - . . s. = sR + isI
Ky fp,p') = KL(p,p ) + K, (p,?. ) - (a1) and - E - : (as)
L . . . ‘ ‘ . v .: RS ‘ .
where [see Eq. (40)] _ . . S s = sy o+ s,
E.( ) = . ggi o' (PO * POJ) Q p_+p' ' (A2) o S0 tmf the iﬁtegral eq_uatibn ‘becomes (we do not ,exl.:licitiy'exhibit the
YALZRY 51 p 'p'o' p'o-r — Wy 2pp’ . o . . - }
: ' dependence on SR;’ which now becomes a parameter in the .equation):
ami ' ©
. o _ Rifis,') v;(s.")
3 . s Loy : P L e S A
2 (py 2y )2 '_ _ - Ylsp) = FR(s;) v (sy) + 35 i S
K, (pp') = -] 1- T T | K(op') . (a3) - . - : , ,
o o o (p. - p )2(P_ -p.')2 ’ . : LT i B .
o "0 o o SR , : ;
This division separates K, into a part which hasa Mellin transform 1 sy ; ' R, . :
S TR o _ ~ tha dsp" K.M(isl,; is )+ Ky (18;, :._13_1') ‘Vz(sx')'
that is regular at s = s', K, , and a singular part, X, , for e E,' ’ :
. (A6}
which we already have the transform explicity. . The singularity in . ‘
: o R ; _ |
&(s,s ) for s » 8' arises from the asymptotic behavior of KL(P:P ) 'I'he K1L part of the kernel considered as a function of 8y SI' can
for large Dp,p'. If we set p' = ap in Eq. (ll»l), we find _ - easily be shown to be Hermitian for sg = 5/2 We begin by noting that
L = ® » 25" v the transform can be written as ' '
- 762 . : _ .
K, (s;8") = . 46 sin © P,(cos ©) dex — — . S
. AN eﬁ . ¢ (a _ eie)(a - e ie) . . .
0] - . [¢] . Kl‘aR(SR + i_SI, SRI. + iSI r ) = dp ’ dp'
o : . _ o ' S 0
x | @ [(1‘>2+-me)2 + (@ +M)2}- - (ak)
: ' : ‘ _ +is_-1 -s_-is_'+42
| o Y BT o) BT g (o)
Thus, the integral over p diverges as p - co, unless Re(s - s') <o. _ . xP . L ’
If ve use‘the same approach te ‘KtR(s,s'), ho‘wevgr,’ as p* o the terms where. o v v (a7)

v



¥
,(pp') = F, (5p) . . | ‘ : (A8)

(#e only consider bound states, so Py<m .) Then we find.

; ] -sR+isI sR-isI -1
.dp | dp''p (p*) "

- le( éRi-,J';sI‘? R sR+isI )*= F, (p, p'),

(49)
in which Egs. (A7)- and (A8) have been u'sed,'- and the dummy variables
p,p' have been mtercha.nged. Thus, - if SR 5/2 .we see tl:atzspas a
fzmction of 'bhe real var:ables

sps 5y’

_ 3 "y _ o« R(3 ."2"‘:-" :
‘vK“‘ +is 5+1is') = K, (2+iSI{ 5+ 1s1f, | (A10)
© SO tha’c_ KlLR, is Hermitian. We must now look more .closelj at the

singula.r kernel. We consider the c_aée in which ¢ 1s even. Choesing

| SR= 3/2, we then find from Eq. ,(1;9); '

L i(s -5y i{s.~s_") :
= Ze I "1 :
Kg(SI: SI = ( ) —5> i(,sI - SI'.) + 1 v
,
L. A - melh
A L) 1 1 f1 - 1 tamn -5 1
. B(% -k + 52 k + -) T T ° —
o . \k . B 2'- RN iﬁé.ﬁh ﬂsI ~’?«-2k+%-isl'
k=0 ' 1+ 1 tanh ——
) ‘ sy
1 + i tanh < R .
+ i T s (A11)
1 - 1 tanh TI , L .2k + 5 + iSI

in which the second term in the bracket is obtained from the cot its/e

term in Eq. ()+9) by interchanging k amd ¢ - k in the summation over

-38-
k. From Eg. (116) one can easily see that
KL(SI, s

IENE A CRAES | (a12)

and that R,'(sI ), which is the residue of Kz in the pole of the beta

function at s' = sb is real. Thus we have a Eermitia.n kernel for the

equation. It may be mentioned here that the Fredholm kernels obtained

in the Velkua theory do not satisfy the hermiticity requir‘en;ent/.. This

occurs because of the .1ack of symmetry in the choice of Ko ,' for

'éxam:ble, not from the si_néu.]arity at s' =s.
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APPENDIX B, MOMENTUM SPACE ANALYSIS OF THE DIRAC EQUATION
In this appendix we apply the Mellln transformation technique

to the solution of the familiar Dirac equation for a spin-i/2 particle

in a Coulomb field. The conventional discu'ssion2? iz based on a study

of the indicial equat‘ion of th-e‘ differential equation for this pzfoh_lem

.im coordinate space and involves boundary conditions at the origin.

Let us now consider the nature of the solutions of this equation

in momentum space:

(@p + Bm)¥(p) + 2 /i—~w—§w@) = 2 ¥(p) .
T ~ (®- 2" |

(81)
The asual solutiohs- of the Dirac equation involve the operator
ko= B(gL+1),

which les the eigenvalues *(j + %), since it commutes with the Dirac

mamiltonian. If we write
= 91Kg,

Eg. (Bl) becomes

(py o°p +Bm) w(p) s S (') = P u(p) . ()
-y ~ ~
| p-p
We .chqose
o 1 1 0 g°p 0
pl = 1 ’ R g-g =
1 0 0o -1 0 g°p

¢ 20

where each of the elements in a matrix is a 2 x 2 matrix, and the

corresponding o's are Pauli spin matrices.

An. angular momentum decomposition can be achieved by setting

| vy, 53 &) 7y (p) S
LI R . , ’ | : (’Bh)

m Pz
QIR v(e,P),Gj (p)

'where y 3t is an eigenhmction of total ‘and orbita.l angular momentmn

m, apd e_ is

of eigenvalues J. a.nd L, respectively, and of J p.

a8 unit wvector in the dir_e_ctlon of P In the f:lrst place this funcﬁon )

_is an eigenfunction of 'k » since3

(gg+ 1)y'§,34_.% =33 +2) y?,jf% . S (5)

‘ ' o ' m
Now consider the effect of the operator g-p on the state. Y50

We set

Y = o°p yn.1 | . : | : (36)

Jst

To characterize this state we note that

@@, o) = 0,
(J ,. o'y'P) = O" (B7) .
3. ~ A .
(?, gp) = 29p + 2gpIL-
Since o _
oL = & Y . (38)

we find that -

(e
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.-41;

. r
2y - t23(3+v1)— é(%-gl)+%JY . (B9)

Ir

: Ca
t= J-37,

the new eigenvalue is. j +7% 5 and when

1
&,=j-§_'

ym: 1 = g—‘—g m 1J

FYECE 7 Y54

aod ' (810)
m 9P o
Vi3t T e Vi

If e now substitute Eq. (Bh) 1nto the Dirac eqpation (B2) we

have, denoting a unit vector by p 3

0, (p) yjé_l(p) + mF, (P)ij 1(9) 2 J(p ) yw 1(3")

( -2
= B, F.(p) v, 1(B)
and | ‘0 J Ji-z
d} '
oF. (p) ¥; 1(B) - mG (p) y ;(p) + = [ —=—0.(p") ¥5..2(B")
3 Y55 334z aﬂe (p-p' P 9 SEE- A

= Gj(p) A 3343 1(p)

(B11)

~he -

, L
To eliminate the angular functions we multiply by y?j_%(ﬁ) and

integrate over solid angle. We use the relations

: : 7SN A K YA
2 tle@p) = Z 5 (B) v 8)

Jm "

. © h ‘
(z - e Z (2t + 1) Q,(z) Py(t) »
' - £=0 "
and the normalization 'condition. The interaction term in the first
member of Eq. (Bll) is
pt

N * m- A’.« .
W V3348 1 Yy Tye)

)

: . : : 2 .2
Pl dp' ar mo ey (P_*‘r”_
;- ap' araa, yjj_.é_(p) Z Qg -
o . lelm

. LN ' ~ * N -
X y?.p(p) y?.f,.(p') V358" Fy(p')

. X 2 2 .

R' r ( + B [} . -
2x L oap' o Bt ) ryle) . (813)
\ o ‘ ‘ . .
We thus obtain the equations

72
Ze_ EL. =
pGJ\p) +mF(p) + == o 9P 91 2( 250" ) F (o' ) By 7, (p)
and © _ - (B1k)
7,62 p 2.2y ) .
wy(p) - m o) + 2 | Eapt o g (B2 6,00 = B, 6,00) -

ﬂ N
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Equation (Bll) may be rewritten as

762 p' dp’ '
U ey S R N R
‘o _ L |
G.(p) = — — AF, + -mQ, 1 .
J ™ . p(F - 902,) 2 34t _

The arguments of the Legendre function have been suppressed.

We now make a Mellin transformation on Eq. (B.15)

Fy(s) s F, (p}

(o} -
and . ~ (m6)

s-1 .
P Gj(p) .

Gj.(S) _

0

For convenience we use the same symbols for the functions and their

transforms. In matrix notation this leads to the integral equation
¥s) = g | K(ss') ¥(e') as', | (B17)
o]
where
(Fgtma; 3 My,
. - ~-s'+1
K (s,s') = - ap’ P——ﬁl-)——-—
_ o - Po °) _
PQJ_% (P -m)QJ+_ .

(m18) -

Py T

The integrals may be evaluated by the methods used in the foregoing

paper. If K 1is conventionally labelled according to the scheme

K x

- L | (B19)

K21“j Ko

we find the following: If -1 < Re(s -8') < 1, and

J

-J+-—.< Re s' < J+Z,wefind

s-5'-1
762 (Pom)n

»K]_-Lj(s:s') = 5

cos 22 (é - gt)- CJ(S') SJ(S') ’ (20)

where we set

= f3- £ _ 1
SJ(S') = X \ B(J k, k’*‘E)
k

Lo\ Joe e
| ko= (@2 - POE)E
(-l)j-%‘ [l - (-i)j°% cos Sts'] :
Cj(s') = — - (1322)

sin ng'

Thus, if j - 2 is even, C(s) tanns'/z,a.nd if j - % is odd,

-Cj(sf) = -cot ms'/2 . The other elements of K are easily obtained

from Kll‘](s,s'). Thus
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K es) = Ko, s)/(7y v ),
kelj(s,s') = K_Llj(s+l, S')/(PO»; w) , ,
and - | L @)
S P Fo-mY 5a,
K22..(S:S ) = PO .+m IQ.L‘I. (S.,Sl)A.

It is seen tﬁé.t ‘the intégral equation is of the singular type sin;:é it

has a pole .at g =s"
In anaiogy to the B-T equation, the integral equation can be

written '

[1%—1] ¥(s) = 2}:1 s—,i—lws as' + sh- f K, (55" )¥(s" s,
S (mk)
where K, is a regular .'"2 X. 2" matrix, and- _R(s) - 1is the résidue .

of K at s' =5s. A singularity in ¥(s) will now occur if the

matrix [1 - R(s)] is singular; i.e., it has a zero determinant. From

Egs. (B20) and (B23), we find that only K, end K, bhave poles at
s = s', so that:
itz [3+3

' _.'ge_z_ : VB3 -k+1, k+2)
Male) = % 'Cjﬂ(S) (J;2k+g's)

(B25)
X=0 k -

and similerly for R, (s), where j +1 -~ J. The condition that

det(l - R) = 0 4is thus

1 -Z——>2 0;(s) €, () 8,(s) 8, (s)

N2 (B26)
- _Z;e_2_> s.(s) 8. (s) .
7 =J J+1

It

H6-

We see that Sj(s) has poles at s=j+%, j+%,~-, -j+%,

and hence Sij+l can be expressed as a sum of poles times'residues,

which will now be evaluated.

We first consider the residue of the poles at 8 =j+ g- - 2k,
where k 1is an integer. TFor this purpose we note that "
. : - 4-1
sj(:;#g k) = (1)Jz [1-(1)32cosn(3+2-2k)]
x | By glcos @) stnflx - 0)(ek - j - )] ae .
0 : (B27)

The factor in the square brackets is just 2, and the integral can be

written as:

. .
.(-1)‘4J+2 ' : %(cOs e) sin(.J -2k +3)6 40 . - (2e8)
0
Further, . [(5-2k+2)/2) o
. L = - \
sin(j - 2k + 3)0 = sin © ™ Pj-%_em(cc’s»'g)’
m=0

" so. the integral vanishes unless k=0 or k = j + % Similarly, one

gets zero for all of the residues assoc:_[atéd with poles in C.,. Thus

dJ
the product of S (s) Sj+l(s)‘ -only-has poles at s = J + g and
_2 - 5 ‘
s—z-j. At s—j+2,wefind
5,(3+3) = -FTG+H /G + 1), (B29)
and at s = % - J , the result is the same except for a change in

" sign. We fipally obtain.
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2.2 , .
1 (Ze”)” ; + ; ) (B350)
(23 + l) J + E_- 8 . j;g + s
From this one easily finds the singulan values In s 3
sl p =2 % [(j + 32 1 (2P ] . ' (B31)

These are the analog of the well-known resnlt,in-coordinate space for

the- lndicial equation.
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In carrying out this integration we use the integral representation: 7.
Pz(cos e) = n-lLﬂ (cos ® + i .sin 6 cos t)z at [see Higher
Transcendental Functions, Bateman Manuscript Pro;_eet ) (McGraw-ﬁill,
New York, i953),'vol. I, Eg. (3.7.23)], and note that:
cos © + 1 s5in © coé t = cosz_% . e 4 sin® g Lo

E. C Ti#éhnb.rsh, _T;vntraduct-ion to the 'Tﬁeor_[ of ‘Fourier Integrals
(oxford 'Uﬁivers;ty Press, 1962), p. 60. It is also possible to 1.
meke a Fourier transformation instead of the Nka].iin.tra.nsformatipn.
In this case one is led to a stidy of a Wiener-Hépf' eduation
instead of Eq. (57). . 1
In subsequent equations we will use the same sy'mbo'l‘ for a function
as for its Mellin transform. The two wll_l be distinguished by 20
tvhei;r‘ar;guments,_ P or s; . 2l
N. Muskhelishvili, gi_ggu]m- Integral Equations (P. Nordhoff N. V.,
Gréningen, Holland, 1953). ] e
W. Pogorzelski, Integ@.i Equati_ons and their _Applica'tions V(Pverga.mon 23
Press, Tong Island City, N. Y., 1966). 2h-
The problem of 'finding a function. with a given discontinuity across 2
.a. contour is called the__“Hilbert problem. "
In qxn"partiéula;r case, _R(.sv)_ = O(lﬂsi‘) a8 - [Im s| - ®, and thus
ta Hy(s) » 0 'alsoi".' This implies that Ho(s) -1 as |Ims|-o. 26'_
.‘I'hus, although we have a solution of the discontinuity equation, EZ.

! ' ) 20,

Eq. (64), Ho(s) - cannot be represented in the form of 'Eq. (61).

We thereforé do not have a solution of the original hombgeneous

, equation.

16. |

E. T. Whitaker and.G. N. Watson, Modern Analysis (Macmillan, New

York, N. Y., 1943), p. ;38.
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For L £0, as has béen se_eﬁ, R%(s) has no singularities for
-4+1 < Re(s) < & +2, One also sees that, et least for very
small Zee, the.re. can be no g‘h's near the integers in this region,
either. For small Ze®, the smallest g above 3/2 will be near
¢ +2. Thus a représentation of this form is also available for

¢t £ 0, except that some n values must be excluded. v

For ¢ #0, C, and C, would be chosen between the lowest zero-

1 2
pole pair in R(s) for Ré(s) > 3/2, and to the right of that pair,
respecf.ively. See Footnote 17. _

Tt is to be noted that H(s) mist tend to zero at infinity if

Eq. (61) is £o hold. |
See:Ref. (212)01"*(13). _

The latter kernel heed not be bounded. It is only necessary.that,
for its kernel K,. [ I%(s, S')|2 ds ds' exists. .

The‘ associate to a kergel K(s,s') 4s given by. K'(s,s') = K(s',8).
See Ref. (12). or. (13) ‘

See Ref. (13). _ .

1f ZeS > 0, the point &, _‘11es at Re s >2, and R(s) is’
negative on the entire pa.th discussed here so tha‘_c for a repulsive
potentidl there is no aifficulty.

See K. M, Case, Phys. Rev. 80, 797 (1950).

‘See, é.g., Titchmarsh, loc. cit.

Throughout this analysis v}e have assumed that the integral equation
has an integration weight fa.ctof of p'2 so that the compleﬁe
kernel is p'2 X(p,p'), where i{(p,p') is Hermitian. This factor
can. be modified by & change in the wave function of the form

¥ (p) = & ¥(p), which then introduces a factor V(P'/P)a in the



29.
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kernel. If such a change is made, the hermiticity condition

becomes Sp = % + @, and at the same time the conditions of

Eq. (39) are also shifted by «.

See, e.g., L. I. Schiff, Quantum Mechanics  (McGraw-Hill Book Co.,

‘Inc., New York, N. Y.,?1949), p. 322 £f.

30. We only consider the case in which.the eigenvalue of k is

31. This relation has already been used to obtain Eq. (B20) using the .-

J+ % . The other case can Be similarly treated.

integral representation for QL .

Fig. 1.

Fig. 2.
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FIGURE CAPTIONS

Structure of the p' plane together with_cqntcmrs used in
evaluating integrals.

Structure of. R(s); poles are represenf.ed by x , zeroes by

(S

o . At first sight -CO’ C,, C., represent possible contours

1 2
of integration but pﬁly - Cy 1is really alloved. S a
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This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor -any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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