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We study gradient corrections to the transport equation for energetic light partons in dense QCD
environments. In the diffusion limit, the transport dynamics is solely controlled by small-angle elastic
scatterings, leading to transverse momentum broadening with respect to the parton’s initial direction. Such
a parton propagation is usually considered in the limit of transversely homogeneous matter. The transport
processes admit a classical description and the transverse spatial dependence of the medium properties
emerges only through the jet quenching parameter. In this work, we show that a gradient expansion of the
all-order evolution equation for the partonic Wigner function leads to an evolution equation in the
Boltzmann-diffusion form only up to the leading order in transverse gradients. At the second order in
gradients, the quantum corrections associated with nonlocal interactions give rise to a novel transport that
can be implemented in Monte Carlo simulations. In addition, using our results, we compute the gradient
corrections to the jet quenching parameter in inhomogeneous matter.

DOI: 10.1103/PhysRevD.107.L051503

I. INTRODUCTION

Jets are commonly found in the final state of heavy-
ion collisions (HICs), providing a powerful tomographic
tool to study the evolution of the quark-gluon plasma
(QGP) [1–12]. They evolve in parallel with the hot matter
and are able to probe it at different time and length scales.
Extracting the details of how jet structure is modified by
the matter is a highly nontrivial open problem, both from
the theoretical and experimental points of view [13–15].
For energetic colored particles, the interactions are

dominated by t-channel gluon exchanges. These result in
deflection of partons and consequent inelastic emission of
gluon radiation. Describing these processes in perturbative
QCD, one has to rely on multiple simplifying assumptions.
For instance, treating the parton energy as the largest scale
and assuming the matter to be uniform in the transverse
directions, one can usually make the problem theoretically
tractable in a so-called eikonal expansion, an expansion

in inverse powers of energy. However, in doing so one
further decouples the dynamics of the jets from the
medium evolution, severely diminishing their tomographic
capabilities [6,9,11].
Only recently, it was shown that the hydrodynamic

evolution of the medium can be systematically accounted
for in the parton-matter interactions [6], if one goes
beyond the leading eikonal limit and treats the transverse
variations of the matter properties in a gradient expansion.1

Phenomenologically, the coupling of the parton evolution to
the medium anisotropies reflects itself in the generation of
odd moments of the underlying transverse momentum
distribution, related to the nontrivial azimuthal particle
distribution. So far, only the leading order gradient effects
at the level of the final particle distribution have been
computed [6,9]. In parallel, it was noticed that the same
effects could be explored via the in-medium parton Wigner
function [10]. One advantage of the Wigner function
approach, in contrast with the direct computation of the
particle distributions, is that it offers a direct connection to
the parton evolution equation.
In the case of homogeneous matter and in the limit of

small-angle in-medium scatterings, the corresponding
Wigner function is a solution of the Boltzmann-diffusion
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1For earlier works introducing the hydrodynamic gradient
expansion in the probe-matter interactions, see e.g. [16–21].
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equation [22–25]. Since this regime admits a classical
description, one may expect that accounting for general
anisotropic effects would require a full understanding of the
quantum evolution of energetic partons in the medium. One
has to derive the associated quantum evolution equation
and compute the corresponding Wigner function beyond
the classical limit.
In this work, we derive the partonWigner function, using

the results for the parton broadening in inhomogeneous
matter obtained within the Baier, Dokshitzer, Mueller,
Peigné, Schiff, and Zakharov (BDMPS-Z) approach [9].
We generalize the transport equation to all orders in matter
gradients, and show how it gets modified beyond the
diffusion approximation. Truncating the gradient expansion
up to the second order, we show that matter anisotropies are
responsible for novel quantum corrections to the transport
equation. The resulting equation can be integrated into
commonly used transport models for jet quenching phe-
nomenology [25–30], considerably enhancing their tomo-
graphic capabilities.

II. IN-MEDIUM PARTON WIGNER FUNCTION

In parton energy loss calculations, the QCD medium is
often described with a background color field induced by
stochastic color densities ρ̂aðx; zÞ [11,31]. Then, the lead-
ing interaction of a parton with the matter, in the limit when
no gluon radiation is produced, can be described via a
reduced single-particle propagator,

GðxL; L; x0; 0Þ ¼
Z

xL

x0

Dr exp

�
iE
2

Z
L

0

dτ _r2
�

× P exp

�
i
Z

L

0

dτ taprojv
aðrðτÞ; τÞ

�
; ð1Þ

wherewe have assumed that the sources are in the same color
representation R [9,11], E is the conserved energy of the
parton, L is the longitudinal size of the matter, and
xL and x0 are the initial and final two-dimensional coor-
dinates in the directions transverse to the initial parton’s
momentum. In this picture, the parton-matter interactions
are described by an effective potential vaðx; zÞ ¼R
q e

iq·xvðq2; zÞρ̂aðq; zÞ.2 In turn, the elementary scattering
potential vðq2; zÞ corresponds to the particular matter model,
defining how the in-medium gluon field is screened at large
distances, and its z-dependence is driven by the screening
mass. The screening length is assumed to be small comparing
to the characteristic distance between the sources.
The presence of the matter results in the broadening of

the transverse momentum distribution of the partons. This
process can be described through the corresponding parton
Wigner function [5,10], which reads

WLðY; pÞ≡
Z
y;x;X;p0

e−iðp·y−p0·xÞW0ðX; p0Þ

×
�
G
�
Y þ y

2
;X þ x

2

�
G†
�
Y −

y
2
;X −

x
2

��
:

ð2Þ

Here we have used shorthand notations omitting the length
dependence in the propagators, Y can be interpreted as an
impact parameter of an effective dipole formed by the
parton in the amplitude and its complex conjugate, and p is
the parton’s final transverse momentum. Also, we implic-
itly assume that the medium averaging involves a trace
over the color indices, such that hIi ¼ 1 with I being the
identity matrix in the color space. The initial Wigner
function W0ðX; p0Þ is naturally related to the initial dis-
tribution of partons. Notice that the Wigner function should
include a gauge link. However, here this link is trivial since
the transverse field components are zero for static sources
in the Lorentz gauge [10].
The two-point correlator of the propagators entering (2)

implies an averaging over the scattering centers. In this
work and as is usually done, we assume that the medium
can be described in terms of classical background densities
with Gaussian statistics [13,32,33]

hρ̂aðq; zÞρ̂bðq̄; z̄Þi ¼ δab

2CR̄
δðz − z̄Þρðqþ q̄; zÞ; ð3Þ

where ρðqþ q̄; zÞ is a mixed representation of ρðx; zÞ, the
number density of the sources, and CR̄ is the quadratic
Casimir of the representation opposite to the representation
of the sources. We further follow [6,9,11], assuming that
the medium properties are slowly varying from point to
point. This allows one to studyW using an expansion in the
transverse gradients of the medium parameters, such as the
density of the scattering centers ρðxÞ and the Debye mass
μðxÞ in the scattering potential. To do so, we will Taylor
expand the parameters

ρðxÞ ≈ ρþ x · ∇ρþ 1

2
xixj∇i∇jρ;

μ2ðxÞ ≈ μ2 þ x · ∇μ2 þ 1

2
xixj∇i∇jμ

2; ð4Þ

assuming for simplicity that they (and their transverse
gradients) are z-independent.
At the leading order in gradients, the two-point function

of the single-particle propagators has been previously
computed in [9], and reads

hGðxL; x0ÞG†ðx̄L; x̄0Þi

¼
�

E
2πL

�
2 expfiEðw · _ucÞjL0 −

R
L
0 dτ VðucðτÞÞg

1þ i
EL ĝ ·

R
L
0 dζ

R ζ
0 dξ ξ∇VðucðξÞÞ

; ð5Þ2Throughout this work, we will use the shorthand notationsR
d2q=ð2πÞ2 ¼ R

q and
R
d2x ¼ R

x.
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where w≡ xþx̄
2
, u≡ x − x̄, VðqÞ is the dipole potential, and

ĝ≡ ∇ρ δ
δρ þ ∇μ2 δ

δμ2
is an operator generating the gradient

corrections. The trajectory ucðτÞ is the solution of the
classical equations of motion arising in the path integral.3

The dipole potential is defined as

VðqÞ≡ −Cρ
�
jvðq2Þj2 − ð2πÞ2δð2ÞðqÞ

Z
l
jvðl2Þj2

�
;

where C ¼ Cproj

2CR̄
, and Cproj is the quadratic Casimir in the

representation of the energetic parton.
We are interested in the diffusion regime, which corre-

sponds to the so-called harmonic approximation for
VðqÞ. In this regime, the soft gluon exchanges with the
medium are captured but the hard momentum transfers
are neglected, and the dipole potential can be approxi-
mated by

VðyÞ≡
Z
q
eiq·yVðqÞ ≈ q̂

4
y2; ð6Þ

where q̂≡ q̂0 log
Q2

μ2
is the jet quenching parameter, and Q

is a free large momentum scale ubiquitous to the harmonic
approximation. The explicit form of q̂0 in terms of medium
parameters depends on the model of the medium. Here we
will use the Gyulassy-Wang (GW) model, corresponding to
vðq2Þ ¼ −g2=ðq2 þ μ2Þ with g the strong coupling constant
and the bare jet quenching coefficient q̂0 ≡ 4πCα2sρ. For
other medium models such as the ones based on the hard
thermal loops approximation [34] or in holographic pic-
tures [35], Eq. (6) still holds, though the dependence of q̂0
on the medium parameters is different [36].
Under all these assumptions, the resulting Wigner

function can be easily obtained using (5). For pointlike
initial conditions, W0ðX; p0Þ ¼ ð2πÞ2δð2ÞðXÞδð2Þðp0Þ, the
final state Wigner function can be written as

WðY; pÞ ¼ 48E2

q̂2L4
exp

�
−

4

q̂L3
ðL2p2 − 3ELp · Y þ 3E2Y2Þ

�

×

�
1þ g

15Eq̂L3
· ðq̂L4p − 5L3ðp2pþ 3Eq̂YÞ þ 12EL2ð4p2Y þ ðp · YÞpÞ

þ 90E3Y2Y − 9E2Lð14ðp · YÞY þ Y2pÞÞ
	
; ð7Þ

where g is the parameter resulting from ĝ which encapsu-
lates the matter gradients. For the GW model in the
harmonic approximation, the gradient parameter can be
written as

g≡ ∇q̂
q̂

¼ ∇ρ
ρ

−
1

log Q2

μ2

∇μ2

μ2
: ð8Þ

III. KINETIC APPROACH
TO PARTON TRANSPORT

While we have derived the final state Wigner distribution
to the leading order in gradients (7), for many phenom-
enological applications the evolution equation defining W
is of greater importance, since it allows us to study the in-
medium parton evolution within the kinetic picture, which
is more suitable for numerical simulations. In the past, it
has been noticed that in the absence of gradients and in the

small-angle scattering approximation the Wigner function
satisfies a diffusion equation [5]. In the present case, having
access to the explicit form of the Wigner function (7), we
can directly check how the leading order gradients modify
the diffusion in an inhomogeneous matter.
In the kinetic approach to the in-medium evolution of the

parton distribution fðY; pÞ, one usually starts from the
following reduced Boltzmann equation [22,23]:

�
∂L þ p

E
· ∇Y

�
fðY; pÞ ¼ C½f�; ð9Þ

where C½f� is the collision kernel, involving only energy
conserving elastic processes in our approximation, and the
force terms are assumed to be vanishing. To generalize the
result to the inhomogeneous case, one has to take into
account the impact parameter dependence of the parton-
matter interactions within a detailed microscopic derivation.
It is instructive to notice the following two facts. First,

one may attempt to generalize the evolution equation in a
naive ideal-hydrodynamic way, promoting the only kinetic
coefficient q̂ to a function of Y. Second, we already have
the solution for the Wigner function derived with the field
theoretical methods. Thus, we can substitute (7) into the

3To leading order in transverse gradients, see Ref. [9], uc ¼
uð0Þc þ uð1Þc with uð0Þc ðτÞ ¼ τðuL − u0Þ=Lþ u0 and

uð1Þc ðτÞ ¼ i
E
ĝ

�Zτ

0

dζ
Zζ

0

dξ −
τ

L

ZL

0

dζ
Zζ

0

dξ

�
Vðuð0Þc ðξÞÞ:
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naively generalized evolution equation, and, expanding
q̂ðYÞ ≃ q̂þ Y · ∇q̂, we find

�
∂L þ p

E
· ∇Y −

q̂ðYÞ
4

∂
2
p

�
WðY; pÞ ¼ Oð∂2⊥q̂Þ: ð10Þ

As expected, in the absence of the gradient corrections, the
Wigner function obeys the usual Boltzmann-diffusion equa-
tion, with q̂ playing the role of the diffusion constant.
Remarkably, the leading order gradient corrections in (7)
are accounted for by theminimal replacement q̂ → q̂ðYÞ, and
the naive generalization of the evolution equation does work
at this order. This observation indicates that the kinetic
description of momentum broadening gains no structural
corrections at the first order in gradients, and the two
approaches to the problem are equivalent at this level.
However, the naive generalization of the evolution equa-

tion is not necessarily adequate in general. Indeed, assuming
that the in-medium scattering rates are local in impact
parameter implies that the resulting transport equation has
the same functional form as the usual Boltzmann-diffusion
equation (up to a drift term), with the minimal replacement
q̂ → q̂ðYÞ. This locality assumption can be lifted if one
considers the quantum generalization of Boltzmann trans-
port, e.g. starting from the Kadanoff-Baym equations [37].
In turn, the results in [9] indicate that the higher order
gradient corrections to (5) are nontrivial, and the two
approaches should be further compared. The fact that the
given Wigner function (7) solves the particular evolution
equation is only indicative.

IV. QUANTUM CORRECTIONS
TO PARTON TRANSPORT

In the previous section, we have discussed how the
leading order gradient correction to the evolution equation
can be absorbed into a spatial-dependent jet quenching
parameter. Now, we turn to the derivation of the evolution
equation beyond the first order in gradients from a micro-
scopic consideration. For simplicity, we will focus on the
gradients of ρ, while μ gradients can be obtained similarly.
Since we are interested in the evolution equation

governing the Wigner function, it is instructive to study
the path length derivative of the two-point correlator in (5).
For that, we consider the two-point function of the
propagators between z ¼ 0 and z ¼ Lþ ϵ with ϵ ≪ L.
Following [11], one can express it as a convolution

hG†ðk̄; Lþ ϵ; k̄0; 0ÞGðk; Lþ ϵ; k0; 0Þi

¼
Z
l;l̄
hG†ðk̄; Lþ ϵ; l̄; LÞGðk; Lþ ϵ; l; LÞi

× hG†ðl̄; L; k̄0; 0ÞGðl; L; k0; 0Þi; ð11Þ

where we use the locality of the averages in z to break the
full evolution into two steps, both in color singlet states.

Expanding (11) to the leading order in ϵ, one can extract
the evolution kernel. We then find that the Wigner function
in a momentum space representation satisfies

∂LWðk; k̄Þ ¼ −i
k2 − k̄2

2E
Wðk; k̄Þ

−
Z
q;q̄;l;l̄

Kðq; q̄; l; l̄ÞWðl; l̄Þ; ð12Þ

where

Kðq; q̄; l; l̄Þ ¼ −ð2πÞ4CvðqÞvðq̄Þ

×

�
ρðq − q̄Þδð2Þðk − q − lÞδð2Þðk̄ − q̄ − l̄Þ

−
1

2
ρðqþ q̄Þδð2Þðk − lÞδð2Þðk̄ − q − q̄ − l̄Þ

−
1

2
ρ†ðqþ q̄Þδð2Þðk − q − q̄ − lÞδð2Þðk̄ − l̄Þ

�
;

ð13Þ
and ρðkÞ is the Fourier of the source number density.
The evolution equation (12) generalizes (10) for exact

transverse coordinate dependence of the matter parameters,
and is valid beyond the harmonic approximation.
Expanding (12) in gradients, we substitute the explicit
form of (4) up to the second order. Using the shorthand
notations h0ðq2Þ≡ ∂q2hðq2Þ and p ¼ ðkþ k̄Þ=2, we write
the second order evolution equation in the harmonic
approximation as

�
∂Lþ

p ·∇Y

E
−
q̂ðYÞ
4

∂
2
p

�
WðY;pÞ

¼∇i∇jρ

Z
q

�
κ

∂
2

∂pi∂pj
δð2ÞðqÞ−VijðqÞ

	
WðY;p−qÞ; ð14Þ

where we have introduced κ ¼ 2π2C
R
q v

2 and a new
directional potential reading

VijðqÞ ¼
C
2

�
f2qiqj½vv00 − v0v0� þ vv0δijg

− ð2πÞ2δð2ÞðqÞ
Z
l
f2lilj½vv00 − v0v0� þ vv0δijg

�
:

ð15Þ
The term proportional to ρðYÞ in (14) is a direct generali-
zation of its analog in (10). However, at the second order
the evolution equation gains additional terms of new
functional form.
Notice that these do not directly depend on the effective

scattering potential V, but rather on the in-medium elemen-
tary gluon potential v. As a consequence, Eq. (14), even in
the diffusion approximation, is more sensitive to the details
of the medium model.
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Another important conclusion is that assuming locality
of interactions in Y, one implies that all corrections to the
evolution equation could be taken into account with the
minimal replacement q̂ → q̂ðYÞ. Thus, one may conclude
that the additional terms in (14) can only be obtained if the
interactions between the matter and the jet are nonlocal in
Y. These types of interactions are linked to the quantum
nature of the evolution of the parton in the medium, and
thus the novel evolution equation also accounts for quan-
tum corrections to the classical Boltzmann transport; see
e.g. [38,39] for a recent discussion.
Finally, it is instructive to look at the second moment of

the Wigner function, since it provides access to the full jet
quenching parameter q̂r ≡ ∂Lhp2i containing power cor-
rections induced by the matter gradients. The terms in (14)
depending on the scattering rates can be absorbed into a
coefficient η ¼ ρκ=ð2π2q̂Þ þ Cρ

2q̂

R
q q

2v2½q2v0=v�0, which can
be computed directly once a particular model for the
medium is chosen. Using that at the zeroth order in
gradients

R
Y;p YiYjWðY; pÞ ¼ δijq̂L3=ð6E2Þ, we find the

full jet quenching parameter

q̂r ≡ ∂Lhp2i ¼ q̂þ ∇2q̂

�
q̂L3

12E2
þ η

�
: ð16Þ

Notice that q̂ is the value of the jet quenching parameter at
Y ¼ 0, and we require that hp2ijL¼0 ¼ 0. This effective jet
quenching coefficient gets two types of corrections. The
first ones are the sub-subeikonal terms, which one would
expect since the gradient expansion is sensitive to the
kinetic phases [6,9]. Such corrections will compete with
other sub-subeikonal effects we did not include, although
with different parametric dependence. In turn, the η-term
on the right-hand side of (16) is independent of E, and
enters at the eikonal accuracy. Similar energy-independent
corrections have recently been observed in nonperturba-
tive real-time simulations of single parton in-medium
evolution [40]. The phenomenological implications of
these novel corrections require further study, which we
leave for future work.

V. CONCLUSION

In this paper, we have detailed the first ab initio derivation
of the kinetic equation describing the evolution of energetic
partons in inhomogeneous QCD environments. Studying
the gradient corrections to the in-medium parton Wigner
function, we have derived the all-order master transport
equation. Although the leading gradient corrections can be
accounted for in the Boltzmann-diffusion form under a
minimal replacement for q̂, already at the second order the
resulting equation has functionally novel terms. We have
further argued that these are associated with nonlocal
interactions, and can be considered as quantum corrections
to the classical transport. As a direct consequence of the

modified evolution, we have found new power corrections
to the jet quenching parameter. Strikingly, q̂ gets energy-
independent contributions, which could be sizeable com-
pared to radiative corrections [41–44].
The new transport equation derived in this paper has

ample applications in jet quenching phenomenology,
allowing one to include gradient effects in existing parton
transport models. Besides such phenomenological appli-
cations, it would be important to confirm that using the
formal kinetic theory approach, it is possible to recover the
master equation derived in this paper. Such an exercise
would give new insights into the role played by matter
gradients, helping to lift some of the assumptions. Another
interesting extension would be to include other subeikonal
corrections, such as friction terms, in the evolution equa-
tion. These corrections would compete with the gradient
terms and are needed to have a complete picture of in-
medium evolution.
The results derived here are applicable in the QGP phase

of HIC, but the formalism can be extended to the other
phases of QCD matter. Since anisotropic effects might be
more important at earlier times in the aftermath of HIC or in
smaller collision systems [45–48], having theoretical tools
to describe such scenarios is of utmost importance. The
inclusion of inelastic processes can also be studied using
the approach followed in this work, although its exact
kinetic formulation is not known at the moment for
inhomogeneous backgrounds.
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