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ABSTRACT1
Estimating personal vehicle energy consumption is important for nationwide climate policy, local2
and statewide environmental policy, and technology planning. Transportation energy use is com-3
plex, depending on vehicle performance and the driving behavior of individuals as well as on travel4
patterns of cities and regions. Previous studies typically combine large samples of travel behav-5
ior with fixed estimates of per-mile fuel economy or use detailed models of vehicles with limited6
samples of travel behavior. Here we introduce a model for estimating privately operated vehicle7
energy consumption, TripEnergy, that accurately reconstructs detailed driving behavior across the8
U.S. and simulates vehicle performance for different driving conditions. TripEnergy consists of9
a demand model, linking GPS drive cycles to travel survey trips, and a vehicle model, efficiently10
simulating energy consumption across different types of driving. Because of its ability to link11
small-scale variation in vehicle technology and driver behavior with large-scale variation in travel12
patterns, we expect it to be useful for a variety of applications, including technology assessment,13
cost and energy savings from eco-driving, and the integration of electric vehicle technologies into14
the grid.15
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INTRODUCTION1
Personal vehicles in the United States consumed an estimated 1.7×1019 joules of secondary energy2
in 2014 (1) during over 200 billion trips (2). This demand arose from a population of vehicles and3
drivers using various transportation technologies and following diverse travel patterns. Quantifying4
energy consumption and related environmental impacts at the scale of countries, regions, and cities,5
and relating those aggregates to micro-scale determinants, is critical for developing sustainable6
transportation strategies.7

A variety of methods have been used to estimate the energy use of single trips or larger8
populations. Top-down methods such as energy sales accounting provide data on large-scale envi-9
ronmental impacts but not the low-level determinants needed to evaluate, for example, the effects10
of future technological changes on total energy use. Bottom-up methods such as dynamometer11
testing and microsimulation provide high-fidelity representations of specific vehicle performance12
and driver behavior, but rely on data that is not available at the macro scale needed to understand13
the societal impacts of policies.14

Relating aggregated energy-related impacts, such as greenhouse emissions, to low-level15
factors is similarly critical. Privately operated vehicles (POVs) are one of the primary emitters of16
greenhouse gases in the U.S., and reductions to the energy- and carbon-intensity of transportation17
are a major component of mitigation scenarios (3, 4). Future emissions will be affected by cur-18
rent policies such as fuel economy standards (5), technology developments such as battery electric19
vehicles (6), and demographic changes such as urbanization (7). Evaluating the plausibility of20
emissions targets means relating them to required levels of technology, infrastructural, or behav-21
ioral changes necessary to meet these goals.22

In this paper we present a tool for estimating POV energy consumption that is designed23
to be applicable to this wide range of uses. The method, TripEnergy, produces accurate estimates24
for energy aggregates consistent with top-down inventories (e.g. total gasoline consumption), but25
computes them from the bottom-up based on second-by-second reconstructions of driving pat-26
terns across the U.S. and an energy model that works with specific, existing vehicles. As a result,27
TripEnergy can model the effects on aggregate energy use from changes to vehicle technology28
and driving behavior. TripEnergy can estimate energy requirements for individual trips for a wide29
variety of vehicle models, and can operate probabilistically, producing a distribution of possible30
energies for each trip. Energy requirements can be flexibly aggregated by region, trip purpose, ve-31
hicle type, and a large number of socioeconomic variables. The tool produces coherent results with32
different levels of detail in its inputs, for a wide range of vehicle models, and in a computationally33
tractable way. It allows more coverage and accuracy than models based only on GPS surveys or34
direct vehicle modeling, but can address a wider range of questions than possible with fleetwide35
emissions models.36

BACKGROUND37
Here we present a summary of some widely used methods for estimating POV energy consumption.38
TripEnergy is not intended to replace any of the methods below, but to add new capabilities in39
modeling fleetwide POV energy use.40

Bottom-up methods41
Bottom-up methods give energy consumption for individual trips based on direct measurement or42
simulation. Many studies rely on published measurements of energy consumption per distance to43
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translate miles of travel into estimates of energy or emissions. In the U.S., the EPA requires fuel1
economy labeling of all new personal vehicles. These are derived from a series of dynamometer2
tests (8) in which a vehicle is driven through several standardized drive cycles (9). These estimates3
have been used, for example, to study range requirements in electric vehicles using GPS data4
(10, 11), or to estimate the fuel price elasticity of energy use (12).5

To capture greater variation in operating conditions than in EPA drive cycles, some re-6
searchers have supplemented EPA results with direct energy readings from a vehicle’s onboard7
computer (13, 14). Microsimulation has also been used to capture variation in operating condi-8
tions. Various software packages simulate vehicle operation over an input drive cycle (15, 16).9
One use of these simulations has been to capture energy consumption during the use phase of life10
cycle assessments (17), allowing the effects of typical driving conditions on life cycle impacts to11
be studied.12

While widely useful, these methods are not suitable for all research questions. Methods13
based on a single miles per gallon (MPG) estimate cannot directly capture variations in energy use14
with driving style (18) or climate (19). By using a single energy intensity value, these methods will15
introduce biases for congested city driving, for example, or moderate speed highway driving, con-16
ditions that are likely to have particularly high or low energy intensity (17, 20, 21). Dynamometer17
testing and onboard measurement can provide data for these more extreme conditions, but data18
collection is impractical for analyses of very large numbers of trips and vehicle types.19

Top down methods20
Top-down methods can provide accurate assessments of energy consumption in aggregate. These21
methods use data on energy sales and trace backward to when and how energy was used for trans-22
portation. In the U.S. for example, the Federal Highway Administration (FHWA) (22) collects23
data on statewide and national gasoline consumption from gas tax receipts, and converting barrels24
of oil to energy consumption and CO2 emissions. For well-mixed greenhouse gases this approach25
is often deemed accurate enough for modeling and inventory purposes. Other uses of top-down26
accounting include extrapolating future trends in gasoline consumption from fleet-average fuel27
economy and vehicle miles traveled (23), and constructing localized emissions inventories. For28
example, Gately et al. use roadway level VMT data to create a high-resolution spatial inventory of29
U.S. transportation-related greenhouse gas emissions (24).30

For evaluating vehicle technologies, however, top-down inventories lack critical details,31
such as the effects of driving conditions on vehicle performance (25). As inventories often lack a32
picture of travel behavior and traveler needs, they cannot address some policy questions related to33
meeting users’ technology needs, charging infrastructure, and impacts of charging on the electric34
grid.35

Hybrid methods36
Combining large and representative sample sizes with realistic trip patterns has been an ongoing37
goal of transportation modeling. Some methods accomplish this by using the output of travel38
demand models as proxies for real-world data. These include four-step network flow models and39
more complex activity-based or car-following models. Simulated trips can be fed into software40
such as MOVES (26) and combined with information on expected fleet composition, weather,41
and other variables to estimate energy and emissions for cities or regions. MOVES calculates the42
expected emissions intensity of a given vehicle-mile of travel using distributions of energy intensity43
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for different road types and travel speeds, resulting in energy consumption estimates for particular1
roadways (27). Other approaches have been to generate synthetic drive cycles from travel demand2
models and combine them with vehicle simulation (21, 28), or to directly link microscopic travel3
demand simulations with detailed vehicle models (29).4

These simulations are a common way to estimate the energy impacts of changes to the5
transportation network or travel demand. However, they are not typically designed to address6
technological change or modifications to driving behavior. Energy consumption in these models7
is often calibrated using a small number of drive cycles and real-world vehicles (30), limiting the8
range of technology and driving conditions captured. A more problematic issue is that many hybrid9
methods produce estimates of the emissions or energy intensities of each link of the road network,10
rather than driver- or vehicle-based intensities. A road-based energy accounting makes it difficult11
to observe the energy need of individual vehicles over the course of a day.12

MODEL REQUIREMENTS & APPLICATIONS13
The tool that we describe in the next section aims to meet two general requirements. First, it14
produces accurate energy estimates, for a wide range of vehicles, when applied to realistic driving15
behavior. Second, it produces estimates for individual trips, for national aggregates, and for various16
levels of aggregation in between.17

Energy requirements vary greatly from trip to trip due to variations in vehicle technology,18
driving style (18), and ambient temperature (19). Accounting for these variations allows fuel19
economy to vary in a realistic way with trip characteristics, allowing a number of applications20
that require location-, time-, and trip-resolved energy estimates. Additionally, because trip-by-21
trip energy consumption is highly variable, we would like our method to be able to produce a22
probabilistic picture of energy intensity, which is often more relevant to users’ needs.23

The most accurate estimate of an individual POV trip’s energy consumption is likely to24
come from microsimulation or onboard instrumentation, while the best measure of national energy25
use comes from accounting of fuel sales. Bridging these data types allows analyses that run across26
scales, i.e. involving both small scale technology performance and large scale energy demand. An27
example would be a comparison of the fuel economy and energy use of suburban residents to those28
in the inner core of a city.29

Our tool needs to perform well despite limitations in the scope and accuracy of data on30
travel behavior and vehicle characteristics. Data collection from onboard recorders or GPS devices31
provides detailed information about driving and energy use, but is infeasible to gather at the large32
scales provided by nationally-representative travel surveys. Furthermore, every vehicle type has33
distinct performance characteristics that strongly influence energy use.34

The TripEnergy model presented below was developed to meet these needs while address-35
ing the limitations in data. It combines data from the National Household Travel Survey (NHTS)36
(2), several GPS-based travel surveys (31–33), EPA emissions test parameters and results (8, 34),37
and historical weather data (35). TripEnergy is able to model a wide range of vehicles because it38
draws on widely available EPA vehicle test results, unlike many microscopic emissions simulators39
that rely on extensive data collection from a few vehicles. TripEnergy consists of a vehicle model,40
designed to capture variations in POV performance under a range of driving conditions, and a41
demand model, designed to reproduce travel patterns across the U.S. at high resolution.42
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Applications1
Meeting the requirements described in the last section enables a variety of applications that are2
not easily done with existing methods. Here we outline some of these applications for researchers,3
policy makers, consumers, and industry.4

Enriched BEV range estimates5
Official range estimates for BEVs are designed to be accurate on average, but make little allowance6
for variation in driving conditions. Estimates are currently based on predictions of a vehicle’s7
average fuel economy under city and highway-style driving. But potential customers may also8
wish to know a ‘worst case’ range. TripEnergy could calculate this, for example, as a range below9
which a trip or series of trips would exceed battery capacity with a given low probability. Since10
range varies with ambient temperature, range estimates could be tailored to a region’s climate11
and disaggregated seasonally. Ranges estimates could also be compared to typical daily driving12
distances in a given city or area where the vehicle is sold.13

BEV charging effects on the electric grid14
TripEnergy could help electricity providers and regulators predict the impacts on the electric grid15
of a fleet of electric vehicles charging. The timing and intensity of grid demand could be predicted16
based on daily driving distances, when trips start and stop, and weather. This ability would let17
electricity providers and regulators better understand the secondary effects of widespread BEV18
adoption, such as weather-related spikes in residential and transportation energy consumption.19

Energy savings from changes to driving behavior20
The model presented here would allow drivers and policymakers to better understand the potential21
for energy savings from changes in driving behavior. Studies have shown that some savings can22
be achieved simply by reminding travelers about the energy and emissions impacts of their travel23
choices (36). TripEnergy is computationally inexpensive and could be run on a smartphone, with24
estimates for planned or past trips displayed to drivers in real time, with city, neighborhood, or25
social-network level comparisons.26

Energy savings from changes to vehicle performance and technology27
We recently used TripEnergy to study how improvements to battery capacity would affect BEV28
range, showing that expected battery improvement will practically eliminate the difference be-29
tween urban and rural areas in the portion of vehicle-days that are covered on a single charge30
(37). The same approach could be used to study how much energy savings could be realized from31
improvements to vehicle mass or drag, for example, with results that can be made specific to par-32
ticular locations. TripEnergy draws on a richer variation in driving conditions than can be obtained33
from standardized drive cycles, making it more suitable to assessing the benefits of potential im-34
provements under real-world usage. This ability could help vehicle manufacturers evaluate vehicle35
designs quickly.36

MODEL37
TripEnergy consists of a demand model, which pairs trips from a travel survey with plausible38
second-by-second drive cycles and external temperature, and a vehicle model, which computes39
energy use given a drive cycle, ambient temperature, and specified vehicle type (Fig. 1.). These40
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FIGURE 1 : TripEnergy model diagram, showing the demand model (left) and vehicle model
(right). The demand model combines travel survey data (e.g. National Household Travel Survey)
with higher resolution GPS-based drive cycles and weather data to reconstruct a second-by-second
picture of vehicle operating conditions that determine energy use. The vehicle model, calibrated
by EPA dynamometer test results, converts this information into an estimate for a trip’s energy
consumption. A similar diagram appears in the Supplementary Information of Needell et al. (37).

components separate the factors influencing energy consumption into two groups – vehicle charac-1
teristics such as mass, drag coefficients, and powertrain efficiency, and trip characteristics, particu-2
larly speed and weather conditions. Treating these factors as independent is a minor simplification3
that lets us supplement broad survey data with the detailed description of trips needed to estimate4
energy consumption.5

Here we outline the core structure and functioning of the model. Extensive details on all6
components below, and additional validation, can be found in the Supplementary Information of7
Needell et al. (2016) (37).8

Demand Model9
The demand model begins with a user selecting a population of trips for study from the National10
Household Travel Survey (NHTS) (2). NHTS is the most comprehensive source of data on travel11
behavior in the U.S., compiled by the Federal Highway Administration about once every ten years.12
The 2009 survey covers about 1 million personal vehicle trips in the U.S., using a weighting scheme13
to ensure that results are demographically and geographically representative. NHTS provides a14
wide variety of data on individual trips, including region, number of passengers, trip purpose,15
and many socioeconomic variables. Using these variables many different subsets of trips can be16
isolated for analysis depending on the application.17

Trip distances and times from NHTS are self-reported, and travel surveys have shown ev-18
idence of rounding and other reporting errors (38). To correct for rounding a model of traveler19
rounding was fit to the NHTS trip distance and time distributions, providing the probability p(x|x̃)20
that a rounded distance or time x̃ was originally x. As described in (37) this function can then be21
used to estimate the distribution of the original unrounded distances and times.22

The purpose of the demand model is to augment the data in the NHTS with detailed in-23
formation needed to estimate a range of energy values an observed trip could have had. In the24
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FIGURE 2 : Example of the effect of trip duration on the fuel economy of the 2014 Ford Focus.
The right column shows two drive cycles corresponding to 8-mile trips, with durations of 10 min-
utes (b) and 22 minutes (d). The left column (a,c) shows the distribution of fuel economy values
for similar trips in the GPS dataset as chosen by the demand model. The drive cycles shown in the
right column correspond to the medians of these distributions, as indicated by the orange vertical
lines. As expected the fuel economy of the faster trip is typically (though not always) higher.

drive cycle matching component, we link each trip with a set of similar GPS drive cycles. The1
drive cycle matching draws from a GPS database with 117,588 drive cycles collected over several2
regional travel studies (31–33). Similar GPS trips are defined as ones that fall within a set window3
around the original trip in distance and duration. We found this procedure sufficiently differentiates4
between different types of trips with different energy requirements, as illustrated in Figure 2.5

Trips are also linked with a range of external temperatures. Using an approach similar to6
Yuksel et al. (14), each NHTS trip is first paired with a weather station in the Typical Meterological7
Year (TMY3) database based on its reported location (its Core Based Statistical Area if one is8
reported, otherwise its state). A range of possible temperatures is chosen from the TMY3 database9
according to the reported month and time-of-day of the trip.10

The set of all linked driving conditions measure a range of plausible operating conditions11
of the POV trip observed in the NHTS. Each combination of drive cycle, temperature, and de-12
rounding can be fed into the vehicle model described below, leading to a probability distribution13
for energy requirements of each NHTS trip.14

Vehicle Model15
For convenience, we decompose a trip’s total energy use Euse into drive energy Edrive needed16
for vehicle motion and auxiliary energy Eaux used for other purposes, primarily climate control.17
Thus we have Euse = Edrive + Eaux. To compute Edrive, we factor it into final energy Etr, also18
known as tractive energy, actually delivered to the wheels and a drive efficiency factor ηdrive:19
Edrive = Etr/ηdrive. (To distinguish pre-conversion energies, measured at the battery or gas tank,20
from final energies delivered to wheels and auxiliary systems, we write the former in normal font21
and the latter in script.)22

A trip’s tractive energy can be computed from drive cycles received from the demand model23
using standard models of vehicle motion, with tractive power output of a vehicle given as a function24
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of its speed and acceleration: Ptr(v) = av+ bv2 + cv3 +(1+ ε)mvdv
dt . The coefficients a, b, and c1

are dynamometer or coastdown coefficients published by the EPA for many vehicles (34), m is2
vehicle mass, and ε is a factor accounting for the rotational inertia of a vehicle, assumed to be 1.053
here. Positive values of Ptr (corresponding to energy being drawn by the engine) can be integrated4
over a drive cycle to compute tractive energy Etr for the trip.5

Conversion losses are significant for all POVs. (An internal combustion engine is ther-6
modynamically limited to efficiencies ηdrive typically less than 0.4.) The nonlinear relationship7
between engine operating conditions and fuel consumption can be modeled as a polynomial func-8
tion (39). Rakha et al. (40) present a related method using EPA test result data to fit this function.9
Our approach is similar, and uses a fitting approach first proposed by Lutsey (41) that exploits data10
from EPA CAFE fuel economy tests. A trip’s total energy consumption ∆EB and tractive energy11
consumption Etr can be calculated from reported unadjusted MPG ratings, the CAFE drive cycles,12
and a vehicle’s dynamometer coefficients. Using the formulation for total energy described above,13
ηdrive can then be calculated for a particular CAFE drive cycle as14

ηdrive =
Etr

∆EB− Eaux
ηaux

. (1)

Using the CAFE city and highway drive cycles, we can estimate two values of ηdrive. Since ηdrive15
varies with driving behavior, we use a two-parameter function for ηdrive based on the drive cycle16
that is calibrated to exactly reproduce energy consumption over the two CAFE drive cycles. The17
form of this function is based on physical intuition and modeling in ADVISOR (described in more18
detail in Needell et al (37)), but follows the intuition that internal combustion engines are more19
efficient at higher speeds and torques, while BEV powertrain and regenerative braking efficiencies20
are roughly constant over a wide range of speed and torque.21

Similarly, pre-conversion auxiliary energy is factored into final auxiliary energy delivered22
to auxiliary systems and the auxiliary efficiency: Eaux = Eaux/ηaux. In typical driving most aux-23
iliary energy use comes from climate control (42). The external temperature received from the24
demand model determines how hard climate controls must work to maintain cabin temperature25
within a comfortable range. We model HVAC energy consumption with a steady-state heat bal-26
ance model: Pthermal = k|∆T |, with the thermal constant k taken to be 350 W/C deg. HVAC power27
depends on the thermal load to maintain cabin temperature and the coefficient of performance of28
the climate control system used (e.g. a heat pump, radiant heater, or air conditioner). We add a29
constant power of 250 W to power other auxiliaries such as dashboard lights and power steering30
(43). The efficiency ηaux is taken to be a constant for each powertrain type. (Equal to 0.185 for31
ICEVs, 0.81 for BEVs, which take into account typical powertrain effiency and power conversion32
losses. See Needell et al. (37) Supplementary Information.)33

MODEL VALIDATION34
The model reproduces several intuitive aspects of vehicle performance under different operating35
conditions. We describe these aspects below.36

Overall fuel economy without adjustment factors37
EPA fuel economy estimates (8) are derived by multiplying raw, unadjusted values measured dur-38
ing CAFE tests by adjustment factors (9), which bring fuel economy into better agreement with39
values experienced in real-world driving (18). The need for adjustment factors is thought to arise40
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from differences between the drive cycles used in the tests and real-world drive cycles. How-1
ever, the method here produces estimates close to adjusted fuel economies without the need for2
adjustment factors. After using the EPA test results to calibrate drive efficiency, the model can3
be applied to a broad set of realistic drive cycles that are representative of real-world driving to4
measure fleetwide performance. The model has been calibrated on two ICEVs and two BEVs and5
shows similar values to what the EPA estimates after making adjustments. (Table 1.)6

2011 Ford Explorer 2013 Nissan Leaf 2014 Tesla Model S 2014 Ford Focus
EPA Calculated EPA Calculated EPA Calculated EPA Calculated

Highway 34.7 34.7 146.4 146.4 121.5 121.5 50.4 50.4
City 21.9 21.9 184.2 184.2 118.6 118.6 33.5 33.5
Overall 20 22.2 116 109.7 95 85.7 30 31.8

TABLE 1 : Comparison of fuel economies predicted by our model with EPA-published fuel
economies. The EPA city and highway fuel economies shown here are raw, unadjusted values,
while the overall fuel economy is the adjusted value (see text). Predicted highway and city fuel
economies are based on the EPA city and highway drive cycles, while the overall fuel economy
is based on an average over all POV trips in the NHTS. The efficiency component of our model
is calibrated to match the city and highway CAFE test results. A similar table appears in the
Supplementary Information of Needell et al. (37).

Reproducing EV and ICEV performance behavior7
BEVs and hybrid electric vehicles (HEVs) tend to perform best in urban driving, where low-speed,8
start-and-stop driving predominates and regenerative braking can salvage the most energy possi-9
ble. Conventional ICEVs perform best during moderate speed highway driving, where powertrain10
efficiency is high and energy losses from braking are minimized (17). The model here reproduces11
these performance patterns. (Figure 3.) We see a strong dependence on average speed in agree-12
ment with expected performance for both vehicle types. We see a secondary dependence on trip13
distance where, for a given average speed, fuel economy tends to increase with trip distance for an14
ICEV but decrease for a BEV. This is occurs because longer distance trips tend to include more15
highway driving.16

In addition, the method here can be used to study variability in fuel economy given the dis-17
tance of a trip. Variability in fuel economy is not easily probed by other methods, yet is important18
because it makes vehicle range uncertain. Fuel economy is most variable for short trips in ICEVs19
and slow trips in BEVs. In another paper (37), we exploit this capability of TripEnergy to evaluate20
the way BEV range is different for rural and urban drivers.21
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FIGURE 3 : Differences in ICEV and BEV fuel economy performance by trip distance and av-
erage speed. Top plots are for the 2014 Ford Focus (an ICEV) and bottom plots are for the 2013
Nissan Leaf (a BEV). The left column shows the average fuel economy, in units of miles per gal-
lon (MPG) for the Focus (a), and miles per gallon equivalent (MPGe) for the Leaf (c), for trips in
a given distance and average speed bin. The right column shows the variability in fuel economy
within a bin, as captured by the coefficient of variation of fuel economy. (The standard deviation of
fuel economy divided by the average.) The ICEV realizes its highest fuel economy for moderately
high speed, long distance trips, while the BEV realizes its highest fuel economy for moderately
slow, short trips.

Single trip energy and aggregate energy estimation1
To test the accuracy of energy estimates we performed a cross-validation test in which one set2
of GPS trips were used to predict the energies of another set. One tenth of the GPS trips were3
chosen as a test set and the remainder used within the demand model as described above. To4
simulate survey data, distances and times in the test set were rounded as though they were part of5
the original survey data, with only the rounded distance and duration observable by TripEnergy.6
For comparison we performed the same test using a different method of drawing on the reference7
GPS data. We compute the average fuel economy of all reference trips and apply this fixed MPG8
value to all test trips. We call this the ’MPG Method’. Both estimates were compared with energy9
consumption calculated from the full GPS drive cycle, taken as the true values, with a constant10
auxiliary power of 300W assumed.11

We show results for a BEV (the 2013 Nissan Leaf) with similar results for ICEVs. (Fig.12
4.) Both methods perform well at estimating total energy. Across ten folds, the root median square13
error was 1.2% for TripEnergy and 1.0% for the MPG method, with the MPG method results14
more variable. TripEnergy significantly outperforms the MPG method in estimating the energies15
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FIGURE 4 : Cross-validation of TripEnergy’s accuracy and comparison with a method based on
average fuel economy (the MPG method). TripEnergy was used to estimate the energy of a test
set of GPS trips using only the distance and duration of the trip. Energy estimates were also made
using the MPG method. Both estimates were compared with energy consumption calculated from
the full GPS drive cycle, taken as the true values. (a): Root median square percent error for the total
energy of the test set of trips under 10-fold cross-validation, and for the energy of individual trips
within the test set. Methods perform similarly well for estimating total energy, while TripEnergy
significantly outperforms the MPG method for individual trips. Right: Four measures of individual
trip errors. (b) histogram of absolute energy errors; (c): predicted energies (in MJ) versus true
energies from a single fold; (d) histogram of relative errors; (e) relative errors versus true energies
from a single fold. The MPG method systematically overestimates the energies of low energy trips
and underestimates the energies of high energy trips.
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of individual trips. Denoting the true energy of trip i by E0,i and its estimated energy by Eest,i, we1

define the root median square percent error of trip energy estimates as 100 ·
√

median
i

(
Eest,i−E0,i

E0,i

)
.2

For TripEnergy we find a value of 13%, compared to 29% for the MPG method. TripEnergy is3
especially successful at identifying the highest-energy trips, which for the Leaf tend to be long,4
high speed trips with lower fuel economy.5

SUMMARY6
Personal vehicles contribute significantly to energy use and environmental impacts at local and na-7
tional scales. Relating aggregate impacts to low-level determinants, such as vehicle technology and8
driver behavior, is key to informing environmental policy and technology planning. The TripEn-9
ergy model presented here accomplishes this by accurately reconstructing second-by-second driv-10
ing behavior across the U.S., giving a detailed yet expansive view of travel patterns. A demand11
model pairs trips from a nationally-representative travel survey with GPS-based drive cycles and12
time- and location-based temperatures. This information is fed into a vehicle model that computes13
energy use, and covers a wide range of vehicles. A realistic distribution of energy requirements for14
single trips can be generated based on known information about a trip’s distance, region, time and15
date of travel. Aggregate energy estimates for large numbers of trips draw on travel surveys that16
are representative of the traveling population.17

TripEnergy contributes to multiple communities studying personal vehicle travel, includ-18
ing energy and environmental researchers, transportation researchers, policy makers, and vehicle19
manufacturers. We expect the model to be particularly useful where (i) analyses depend on varia-20
tions in vehicle performance and temporal, regional, or socioeconomic patterns of travel behavior,21
and where (ii) impacts are likely to change with continued evolution in vehicle technology. Aiding22
such analyses should help inform environmental policy and technology planning, while addressing23
consumer’s travel needs.24
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