
Physics-Informed Machine Learning for the Earth Sciences:
Applications to Glaciology and Paleomagnetism

by

Facundo Fabián Sapienza

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Associate Professor Fernando Pérez, Co-chair
Professor Jonathan Taylor, Co-chair
Assistant Professor Ryan Giordano

Assistant Teaching Professor Alexander Strang

Spring 2024

Physics-Informed Machine Learning for the Earth Sciences:
Applications to Glaciology and Paleomagnetism

Copyright 2024
by

Facundo Fabián Sapienza

1

Abstract

Physics-Informed Machine Learning for the Earth Sciences:
Applications to Glaciology and Paleomagnetism

by

Facundo Fabián Sapienza

Doctor of Philosophy in Statistics

University of California, Berkeley

Associate Professor Fernando Pérez, Co-chair

Professor Jonathan Taylor, Co-chair

This dissertation studies the application of machine learning in the fields of Glaciology and
Paleomagnetism. In the past few years, there have been significant advances in introducing
physical constraints in the form of inductive biases in data-driven approaches coming from
statistics and machine learning. This gave rise to the field of physics-informed machine
learning, which we will introduce in Chapter 1. Chapters 3 and 4 will cover the application
of neural differential equations for ice flow modelling, showcasing how the differentiable
programming techniques introduced in Chapter 2 have been successfully applied for the
inversion and calibration of the internal ice viscosity of mountain glaciers with different
climates. This led to the development of ODINN.jl, a multilanguage Julia-Python package
for the modelling of global glacier-climate interactions. We will finalize our discussion in
Chapter 5 with the quantification of errors involved in paleomagnetic sampling and further
applications of non-parametric regression based on neural differential equations.

i

Many years later as he faced the firing squad,
Colonel Aureliano Buendía was to remember that distant afternoon

when his father took him to discover ice.

José Arcadio Buendía ventured a murmur:
“It’s the largest diamond in the world.”

“No,” the gypsy countered. “It’s ice.”

Five reales more to touch it,” he said.
José Arcadio Buendía paid them and put his hand on the ice

and held it there for several minutes as his heart
filled with fear and jubilation at the contact with mystery.

“This is the great invention of our time.”

100 Años de Soledad, Gabriel García Márquez

Malchin Peak, in the triple border between Mongolia, Russia, and China. Picture taken a
few months before embarking on the doctoral endeavour.

ii

Contents

Contents ii

List of Figures vi

List of Tables viii

Introduction ix

Publications xiii

Acknowledgments xvi

1 Statistical modelling in the physical sciences 1
1.1 Why now? . 2
1.2 Forward and inverse modelling: the language of scientific discovery 7

1.2.1 Forward modelling . 7
1.2.1.1 The old recipe for physics: differential equations 8

1.2.2 Inverse modelling . 9
1.2.2.1 The role of differentiable programming 9

1.3 Physics-based machine learning . 10
1.3.1 Surrogate models and emulators . 11
1.3.2 Soft physical constraints . 12
1.3.3 Hard physical constraints and universal differential equations 13
1.3.4 Further remarks . 15

1.4 Conclusions . 15

2 Differentiable programming for differential equations 16
2.1 Abstract . 17
2.2 Introduction . 17
2.3 Methods: A mathematical perspective . 20

2.3.1 Preliminaries . 22
2.3.1.1 Numerical solvers for ordinary differential equations 22
2.3.1.2 What to differentiate and why? 23

iii

2.3.1.3 Sensitivity matrix . 25
2.3.2 Finite differences . 26
2.3.3 Automatic differentiation . 27

2.3.3.1 Forward mode . 27
2.3.3.1.1 Dual numbers . 27
2.3.3.1.2 Computational graph 28

2.3.3.2 Reverse mode . 29
2.3.3.3 AD connection with JVPs and VJPs 30

2.3.4 Complex step differentiation . 31
2.3.5 Symbolic differentiation . 33
2.3.6 Sensitivity equations . 33
2.3.7 Discrete adjoint method . 34

2.3.7.1 Adjoint state equations . 34
2.3.7.2 Simple linear system . 37

2.3.8 Continuous adjoint method . 38
2.3.9 Mathematical comparison of the methods 39

2.3.9.1 Forward AD and complex step differentiation 40
2.3.9.2 Discrete adjoints and reverse AD 41
2.3.9.3 Consistency: forward AD and sensitivity equations 42
2.3.9.4 Consistency: discrete and continuous adjoints 43

2.4 Implementation: A computer science perspective 44
2.4.1 Direct methods . 45

2.4.1.1 Finite differences . 45
2.4.1.2 Automatic differentiation 46

2.4.1.2.1 Forward AD based on dual numbers 46
2.4.1.2.2 Reverse AD based on computational graph 48
2.4.1.2.3 Checkpointing . 48

2.4.1.3 Complex step differentiation 49
2.4.2 Solver-based methods . 50

2.4.2.1 Sensitivity equation . 50
2.4.2.1.1 Computing VJPs inside the solver 51

2.4.2.2 Adjoint methods . 52
2.4.2.2.1 Discrete adjoint method 52
2.4.2.2.2 Continuous adjoint method 53
2.4.2.2.3 Solving the quadrature 54

2.5 Conclusions . 55

3 Glacier modelling 56
3.1 Physical foundations . 56

3.1.1 Continuity equation . 57
3.1.2 Glen’s law . 59
3.1.3 Flow equations . 60

iv

3.1.4 Shallow ice approximation (SIA) . 62
3.2 Numerical solutions . 64

3.2.1 Gridding . 64
3.2.2 Algebraic constraint . 67

4 Universal differential equations for glacier ice flow modelling 69
4.1 Abstract . 69
4.2 Introduction . 70
4.3 Methods . 71

4.3.1 Forward model . 73
4.3.2 Optimization and inverse model . 74
4.3.3 Training dataset . 75

4.3.3.1 Surface mass balance . 76
4.3.4 Sensitivity methods and differentiation 78

4.3.4.1 Continuous adjoint sensitivity analysis 78
4.3.4.2 Finite differences . 79

4.3.5 Scientific computing in the future . 79
4.4 Results . 80

4.4.1 Robustness to noise in observations 82
4.5 Discussion: challenges and perspectives . 83

4.5.1 Application to functional inversions of glacier physical processes . . . 83
4.5.2 Scientific machine learning . 85

4.5.2.1 Automatic differentiation approaches 85
4.5.2.2 Surrogate models and emulators 85
4.5.2.3 New statistical questions . 86

4.6 Conclusions and future directions . 87

5 Quantitative analysis of paleomagnetic sampling strategies 88
5.1 Abstract . 89
5.2 Introduction . 90
5.3 Mathematical setup . 92

5.3.1 Data generating process . 93
5.3.2 Estimation of the paleopole direction 94
5.3.3 Estimation of the VGP scatter . 95

5.4 Numerical results . 95
5.4.1 Trade-off between number of sites and number of samples per site . . 96
5.4.2 Sampling strategy in the presence of outliers 99

5.5 Theoretical results . 102
5.5.1 Setup . 105
5.5.2 Mean of Fisher distributions . 106
5.5.3 Hierarchical sampling of Fisher distributions 107
5.5.4 Ensemble of Fisher and uniform distributions 109

v

5.5.5 General Fisherian approximation of the pole mean 110
5.6 Recommendations . 111
5.7 Conclusions and future directions . 112

5.7.1 Universal differential equations in paleomagnetism 113

Conclusions 119

Bibliography 120

A Supplementary code 143

B Shallow shelf approximation 144
B.1 Glen’s law in viscosity form . 144
B.2 Friction with the bed . 145
B.3 SSA derivation . 146

vi

List of Figures

1.1 Interoperability between Julia, Python and R 5
1.2 Basic representation of universal differential equations (UDEs) and their associ-

ated modelling philosophy . 14

2.1 Schematic representation of the different methods available for differentiation
involving differential equation solutions . 20

2.2 Comparison between forward and reverse AD 32
2.3 Diagram showing how gradients are computed using discrete adjoints 36
2.4 Comparison between AD implemented with dual numbers and complex step dif-

ferentiation . 40
2.5 Computational graph associated to the discrete adjoint method 42
2.6 Numerical comparison of direct methods . 46

3.1 Diagram of a mountain glacier . 57
3.2 Different values of the effective diffusivity D . 65
3.3 Simulation of the SIA equation for a synthetic example with a flat bed 65
3.4 Staggered grid, used to solve the Shallow Ice Approximation PDE 67

4.1 Logo of ODINN.jl . 71
4.2 Overview of ODINN.jl’s workflow . 72
4.3 Geographical distribution of glaciers. 76
4.4 Multilanguage framework inside ODINN.jl . 80
4.5 Training of universal differential equation . 81
4.6 Differences in surface elevation for a 5-year simulation 83

5.1 A paleomagnetic campaign . 90
5.2 Root mean square error in degrees between site mean poles and the true GAD

pole and between-site VGP dispersion . 97
5.3 Root mean square error angle of the computed mean pole 98
5.4 Comparison between two different sampling strategies to determine a mean pale-

omagnetic pole position in the presence of outliers (Part 1) 100
5.5 Comparison between two different sampling strategies to determine a mean pale-

omagnetic pole position in the presence of outliers (Part 2) 101

vii

5.6 Boxplot of the angular error between estimated and true GAD pole for different
sampling strategies . 103

5.7 Boxplot of the relative error when estimating the between-site dispersion Sb . . 104
5.8 Example of path regression in the sphere using SphereUDE.jl 117

viii

List of Tables

2.1 Comparison in performance and cost of solver-based methods 53

4.1 Glaciers used for training the UDE . 77
4.2 Recommended values of the Glen coefficient A as a function of the ice temperature 78

5.1 Parameters used in the data generating process for the sampling of poles 94

ix

Introduction

Geoscientific models are facing increasing challenges to take advantage of growing datasets
coming from remote sensing. Physics-informed machine learning, aided by differentiable
programming, provides a new scientific modelling paradigm enabling both complex functional
inversions to potentially discover new physical laws and data assimilation from heterogeneous
and sparse observations.

Machine learning methods have opened new avenues for extending traditional physical
modeling approaches with rich and complex datasets, offering advances in both computa-
tional efficiency and predictive power. Nonetheless, the lack of interpretability of some of
these methods, including artificial neural networks, has been a frequent subject of concern
when modelling physical systems (Zdeborová 2020). This black box effect is particularly
limiting in scientific modelling, where the discovery and interpretation of physical processes
and mechanisms plays a central role to improve our understanding of the physical system
under study. As a consequence, a new breed of machine learning models has appeared in
the last few years, attempting to add physical constraints and interpretability to learning
algorithms (Chen et al. 2018; Rackauckas et al. 2020; Raissi et al. 2019).

In this thesis, we will focus our attention to two fields in geophysics, namely glaciology
and paleomagnetism. Further applications to planetary sciences are included in Publications.

Glaciology
Large parts of this thesis concern the study of the cryosphere, that is, the study of ice on
Earth. More specifically, we will focus our attention on glaciology and the study of how ice
masses move in mountain glaciers and the large ice sheets and shelves in Antarctica and
Greenland, and how that flow is affected by the climate and other external conditions.

Glacier modeling in the 21st century is an important piece of the complex puzzle to
understand the implications that climate change will have on Earth. One of the long-
standing questions in glaciology and sea-level predictions is how internal ice deformation
and ice-bedrock sliding laws respond to different stresses and physical variables, such as air
and ice temperature and water in the subglacial drainage system.

Remote sensing observations have sparked a revolution in scientific computing and mod-
eling within Earth sciences, and glaciology is no exception (Hugonnet et al. 2020; Millan et al.
2022). Historically, the field of glaciology has been based on the generalization of properties

x

derived from the calibration and modeling of individual glaciers based on in-situ measure-
ments. However, in the past decade there has been an increase in remote-sensing datasets
providing ice surface velocities of mountain glaciers (a total of approximately 274, 000 moun-
tain glaciers distributed around the globe (RGI 7.0 Consortium 2023)), ice sheets, and ice
shelves (Farinotti et al. 2019; Millan et al. 2022; Morlighem et al. 2020), together with
ice-penetrating radar thickness observations (Schroeder 2022).

This revolution is assisted by modelling frameworks based on machine learning (Jouvet et
al. 2021; Rasp et al. 2018), computational scientific infrastructure, e.g. Jupyter and Pangeo
(Arendt et al. 2018; Kluyver et al. 2016), and modern programming languages like Python
and Julia. In glaciology, classification methods have been more popular than regression
methods (Baumhoer et al. 2019; Mohajerani et al. 2019). Nonetheless, progress has been
made with surrogate models for ice flow modelling (Jouvet et al. 2021; Riel et al. 2021),
subglacial processes (Brinkerhoff et al. 2020), glacier mass balance modelling (Anilkumar
et al. 2022; Bolibar et al. 2020a,b; Guidicelli et al. 2023) or super-resolution applications
to downscale glacier ice thickness (Leong et al. 2020). In glaciology, and more specifically
in ice flow modelling, it is still challenging to move from small-scale detailed observations
and physical processes (for example, the viscous properties of ice derived with ice in the
laboratory) to large-scale observations and parametrizations used to model ice flow at the
scale of Antarctica or Greenland. When modelling glaciers globally, simple empirical models
such as temperature-index models are used, due to their robustness to noise and the lack
of observations needed to support more complex models. The same applies for ice flow
dynamics, with flowline models based on the Shallow Ice Approximation (SIA, (Hutter 1983))
being widely used, as it provides a good approximation, particularly with noisy and coarse-
resolution input data typical from large-scale models (Maussion et al. 2019; Zekollari et al.
2019). Moreover, it helps to reduce the computational cost of simulations when compared to
higher-order models. Therefore, there is a broad need for new methods that enable a robust
calibration and discovery of more sophisticated, nonlinear interpretable parametrizations,
in geosciences in general, but also for both glacier mass balance and ice flow dynamics.
These include the need to transition towards non-constant melt and accumulation factors
for temperature-index mass balance models (Bolibar et al. 2022), or the need to find a robust
relationship to calibrate ice creep and basal sliding for different regions, topographies and
climates (Hock et al. 2023).

This motivated the development of ODINN.jl, a new modelling framework based on
universal differential equations (UDEs) applied to glacier ice flow modelling. UDEs or neural
differential equations are a particular type of algorithms that embed neural networks inside
a differential equation (Rackauckas et al. 2020). In Chapter 4, we illustrate how UDEs,
supported by differentiable programming in the Julia programming language, can be used
to infer empirical laws present in datasets, even in the presence of noise. We did so by using
a prescribed artificial law as a subpart of the partial differential equation used to model ice
flow. We used a neural network to infer the functional dependency between the internal
ice viscosity with respect to a climatic proxy for 17 different glaciers across the world. The
presented functional inversion framework is robust to noise present in input observations,

xi

particularly on the surface mass balance, as shown in an experiment.

Paleomagnetism
Another domain in geophysics where statistical and machine learning modelling is gaining
momentum is Paleomagnetism. Paleomagnetism is the study of the ancient geomagnetic
field of the Earth based on the measurement of remanent magnetization present in rocks.
These are used in paleogeography for the reconstruction of the past motion of tectonic plates
(Tauxe et al. 2003).

Paleomagnetic data are typically assembled and reported in a hierarchical fashion (Tauxe
2010). First, individual paleomagnetic sample directions are grouped and averaged into sites.
Sites are geological units for which the magnetic remanence direction of all associated sam-
ples is interpreted to have recorded the same spot reading of the geomagnetic field. Given
that the timescale of remanence acquisition is typically quite short relative to the timescale
of secular variation of Earth’s magnetic field, individual sites do not average out this vari-
ability. A virtual geomagnetic pole (VGP) calculated from site-level data thus represents the
position of the magnetic dipole axis at the time of magnetization acquisition. Traditionally,
the subsequent step is to average site-level VGPs to yield a study-level paleomagnetic pole (or
paleopole), which, in the framework of the time-averaged geocentric axial dipole hypothesis,
is interpreted to correspond to Earth’s spin axis. Finally, study-level paleopoles are con-
ventionally aggregated to construct an apparent polar wander path (APWP) representing
the apparent motion of the spin-axis that can be used to reconstruct plate tectonic motion
(Besse et al. 2002; Kent et al. 2010; Torsvik et al. 2012).

Due to the importance of how paleomagnetic observations are collected and interpreted
as paleopoles, there is a need to quantify the uncertainty in these estimates and further
improve the field sampling strategies, a problem that has long been recognized in the field. In
Chapter 5 we will introduce a quantitative analysis based on both numerical simulation and
theoretical results that shows the different trade-offs between different sampling strategies
and makes a step forward in introducing quantifiable metrics at the moment of estimating
paleomagnetic pole position and dispersion in paleomagnetic studies. Although not covered
in the same chapter, further progress has been made in the methods employed for APWP
estimation used to described the relative motion of tectonic plates in the past. Commonly,
APWPs are generated by means of moving average techniques, wherein a Fisher mean is
computed from all the paleopoles whose age falls within a running window (Irving 1977).
However, these methods fail at the moment of detecting change points in the dynamics
of plate motion, which lead to the development of new methodologies (Gallo et al. 2022;
Sapienza et al. 2024b). Furthermore, a Monte Carlo uncertainty propagation scheme that
operates on site-level paleomagnetic data has been introduced to integrate multiple sources
of noise in the statistical construction of APWPs without relying on parametric assumptions
of the underlying data (Gallo et al. 2023).

xii

The rest of the thesis is organized as follows. Chapter 1 consists on an essay introducing
the framework we will use in this thesis for the statistical modelling of the physical sciences.
Chapter 2 includes a review of differentiable programming tools for differential equation sys-
tems and a quick overview of different physics-informed machine learning methods. Chapter
3 introduces the fundamentals of ice flow modelling and the necessary mathematical frame-
work to formulate ice flow equations used inside ODINN.jl. Chapter 4 will discuss the
development of the modelling framework in ODINN.jl. Finally, Chapter 5 will move the
focus to paleomagnetism and will show results on optimal sampling strategies.

xiii

Publications

Most results included in this thesis are part of the following articles in press:

▶ J. Bolibar, F. Sapienza, F. Maussion, R. Lguensat, B. Wouters, and F. Pérez (2023a).
“Universal differential equations for glacier ice flow modelling”. In: Geoscientific Model
Development 16.22, pp. 6671–6687. doi: 10.5194/gmd-16-6671-20231

▶ F. Sapienza, L. C. Gallo, Y. Zhang, B. Vaes, M. Domeier, and N. L. Swanson-Hysell
(2023a). “Quantitative Analysis of Paleomagnetic Sampling Strategies”. In: Journal
of Geophysical Research: Solid Earth 128.11, e2023JB027211. doi: https://doi.o
rg/10.1029/2023JB027211

and the following list of manuscripts in preparation:

▶ F. Sapienza, J. Bolibar, F. Schäfer, P. Heimbach, G. Hooker, F. Pérez, P. Persson, C.
Rackauckas, V. Boussange, B. Groenke, and A. Pal (2024c). “Differentiable Program-
ming for Differential Equations: A Review”. In: preparation

▶ F. Sapienza et al. (2024b). “Fitting curves in the sphere using universal differential
equations”. In: preparation

These further include a list of software tools developed along with the previous publications:

▶ J. Bolibar and F. Sapienza (June 2023b). ODINN-SciML/ODINN.jl: v0.2.0. Ver-
sion v0.2.0. doi: 10.5281/zenodo.8033313

▶ F. Sapienza, L. C. Gallo, Y. Zhang, B. Vaes, M. Domeier, and N. Swanson-Hysell
(2023b). PolarWandering/PaleoSampling (Version 1.0.0). Comp. software. Ver-
sion 1.0.0. doi: https://doi.org/10.5281/zenodo.8347149

This is a list of publications result from the collaboration between statisticians and planetary
scientists during the period of this dissertations. Although this research was conducted
entirely as part of the doctoral work, these results are non included in this dissertation:

▶ F. Sapienza et al. (2024a). “An Analytical Model of Magnetic Field Draping in Induced
Magnetospheres”. In: preparation

1J. Bolibar and F. Sapienza contributed equally to this work.

https://doi.org/10.5194/gmd-16-6671-2023
https://doi.org/https://doi.org/10.1029/2023JB027211
https://doi.org/https://doi.org/10.1029/2023JB027211
https://doi.org/10.5281/zenodo.8033313
https://doi.org/https://doi.org/10.5281/zenodo.8347149

xiv

▶ A. R. Azari, E. Abrahams, F. Sapienza, D. L. Mitchell, J. Biersteker, S. Xu, C. Bowers,
F. Pérez, G. A. DiBraccio, Y. Dong, and S. Curry (2023). “Magnetic Field Draping in
Induced Magnetospheres: Evidence From the MAVEN Mission to Mars”. In: Journal
of Geophysical Research: Space Physics 128.11, e2023JA031546. doi: https://doi
.org/10.1029/2023JA031546

▶ A. Azari, E. Abrahams, F. Sapienza, J. Halekas, J. Biersteker, D. Mitchell, F. Pérez,
M. Marquette, M. Rutala, C. Bowers, et al. (2024). “A Virtual Solar Wind Monitor for
Mars with Uncertainty Quantification using Gaussian Processes”. In: arXiv preprint
arXiv:2402.01932

Further collaborations that lead to peer-review publications during the period of the doctoral
program include:

▶ E. Smucler, F. Sapienza, and A. Rotnitzky (2022). “Efficient adjustment sets in causal
graphical models with hidden variables”. In: Biometrika 109.1, pp. 49–65

▶ L. C. Gallo, M. Domeier, F. Sapienza, N. L. Swanson-Hysell, B. Vaes, Y. Zhang, M.
Arnould, A. Eyster, D. Gürer, Á. Király, B. Robert, T. Rolf, G. Shephard, and A.
van der Boon (2023). “Embracing Uncertainty to Resolve Polar Wander: A Case
Study of Cenozoic North America”. In: Geophysical Research Letters 50.11. doi:
10.1029/2023gl103436

▶ F. Chazal, L. Ferraris, P. Groisman, M. Jonckheere, F. Pascal, and F. Sapienza (2023).
“Choosing the parameter of the Fermat distance: navigating geometry and noise”. In:
arXiv preprint arXiv:2311.18663

▶ F. Cerisola, F. Sapienza, and A. J. Roncaglia (2022). “Heat engines with single-shot
deterministic work extraction”. In: Physical Review E 106.3, p. 034135

▶ L. C. Gallo, F. Sapienza, and M. Domeier (2022). “An optimization method for pale-
omagnetic Euler pole analysis”. In: Computers & Geosciences 166, p. 105150

▶ L. C. Gallo et al. (2024). “On the feasibility of paleomagnetic Euler pole analysis”. In:
preparation

https://doi.org/https://doi.org/10.1029/2023JA031546
https://doi.org/https://doi.org/10.1029/2023JA031546
https://doi.org/10.1029/2023gl103436

xv

Acknowledgments

I would like to start by acknowledging Fernando Pérez and Jonathan Taylor for being my
advisors during these last five years. You are both wonderful and incredible mentors. You
each deserved at least a paragraph, so here we go.

Muchas gracias Fernando por todas tus enseñanzas y por mostrarme una nueva manera
de hacer ciencia e investigación. Viendo cinco años atras, todavia no entiendo muy bien como
llegue hasta aca, haciendo lo que hacemos, pero sé con certeza que fue por haber confiado
y creido en tu vision. Las enseñanzas y las conversacions de los últimos años me las quedo
para siempre. Más que adiós, el fin de mi doctorado es un hasta la próxima, Señor Director.

Thank you Jonathan for taking me as your student even when we are in opposite sides
of the Bay. I have learned a lot from you in the last five years and I am happy to know that
I will be able to continue working together and interacting with you in my next academic
stage. Looking forward for more hours-long conversations in your office! Thank you for
being my statistician of reference.

During my doctoral studies, I was very fortunate to work closely with amazing postdocs:
Abigail Azari, Jordi Bolibar, and Leandro Gallo. If Fernando and Jonathan were my aca-
demic parents during the last years, then you are my academic big brothers and sisters. You
also each deserved a separate paragraph.

Thank you Abby for taking my research to the stars (sorry, I needed to make the joke).
I enjoyed working with you and special thank you for your commitment to give me advice
in multiple occasions along the course of the years.

Gracias Jordi por haberme incluido en la familia ODINN desde sus inicios. Es un placer
trabajar con vos, y aprendo de vos cada día más. Sos una referencia para mi y estoy seguro
de que nuestros caminos van a seguir juntos por un buen tiempo. Gracias por la amistad
y por ser un mentor. Por mucha más ciencia juntos, más conciertos, más black metal, más
cervezas, y por supuesto: ¡Visca ODINN!.

Gracias Leo por haberme reincertado al mundo del Paleomagnetismo. Es un placer
trabajar con vos y espero que esta sea una relación que se mantenga hasta nuestra jubilación,
en alguna quinta de Buenos Aires. Sos una referencia y aprendí muchas cosas de vos a lo
largo de los años. Muchas gracias, amigo, colega, y referencia (en otras palabras, titán).

Thank you to the members of my qualifying exam, dissertation committee, and the many
professors and mentors I was able to learn from in the past five years. Thank you Alexander
Strang, Giles Hooker, Kurt Cuffey, Mathew Domeier, Nicholas Swanson-Hysell, Per-Olof
Persson, Ryan Giordano.

To all the Berkeley crew, including professors, students, and staff. Special thank you to
the students and friends in my cohort who helped me in multiple instances in the past (Adam,
Alice, Corrine, Yassine) and the wonderful staff of Berkeley Statistics, special gratitude to
La Shana Porlaris, Ryan Lovett, and Tanisha Robinson.

Thank you to all the people I was able to collaborate. Thank you Lindsey Heagy for
helping me on my first steps in the group (and helping on on my first PR back in the days).
Special thank you to all the members of the Cryo group: Ben Hills, Ellianna Abrahams,

xvi

James Butler, Matthew Siegfried, Shane Grigsby, Tasha Snow, Whyjay Zheng. Thank you
to the paleomag crew in Berkeley, including Nick and Yiming.

Muchas gracias a mi familia por haberme bancado durante todos estos años y desde
la distancia haber acompañado este sueño. No estaria aca de no ser por la educación,
enseñanzas y cariño que recibí desde chico. Gracias Mamá, Papá, Cami, Lela, Titi, Tio
Nano, Bauti, Tio Gus, y Tia Adriana.

A los amigos de fierro que siguen estando a lo largo de todos estos años. Gracias Lulú,
la casa está en construcción. Gracias Agus, Dani, Lauta, Lucho, Manu, Pili, Teclo.

Thank you to the members of the Cedar Scholars Association for their camaraderie during
the last three wonderful years. Thank you Adam, Adele, Ellen, Frank, Georgia, Guillaume,
Kris, Paola, Sophie, Willie.

Thank you to all the friends I made during my time at Berkeley. Thank you to all the
Argentinian crew. Thank you Meli for being my friend since my first day at Berkeley and
helping me in this new journey.

I am a product of high-quality, public, and free education. Thank you to the University
of Buenos Aires and the Argentinian public educational system. I wouldn’t be here without
the tons of professors and instructors at each stage of education I was immerse in since I was
3 years old. Special thanks to the people responsible for why I am here right now: Augusto
Roncaglia, Carlos Vazquez, Leonardo Boechi, Matthieu Jonckheere, Pablo Groisman.

Finally, thank you so much to the people who offered their help and support during the
last round of this journey. Thank you Adam, James, Jimmy, and Margaret.

1

Chapter 1

Statistical modelling in the physical
sciences

In this first chapter I am going to take on the challenge of answering the following question
that has driven my decision to pursue a doctorate in Statistics:

Question No. 1. What does statistical modelling and machine learning have to
offer the physical and Earth sciences?

Furthermore, as scientists we have the job of finding links between our present scientific
goals and new methodologies to address them. Nature does not care about the artificial
boundaries we impose between disciplines, let alone the distinction between departments in
the university. Understanding the world around us and the interconnectivity of its parts is a
joint scientific effort, and the search for knowledge and understanding is a universal human
effort. In the same spirit, the second question that I am interested in addressing here is the
following:

Question No. 2. What does Earth Science modelling have to offer Statistics?

Many of the modelling and data-related challenges found in the physical sciences today are
of a statistical nature, included but not limited to geospatial model validation, introduction
of priors in form of mechanistic equations, and uncertainty quantification.

Today the need to understand how the Earth works and how it will respond to climate
change is essential to anticipate what our future on Earth will be like and what measures
we can take in time to alleviate its effects. To be successful, as a community we need to
start thinking about a collective effort where scientists and humans with different abilities
come together and embrace the recent advances in computational sciences, data science, and
statistics. It is my own belief, the belief of many of my colleagues, and many members of
the scientific community that the next breakthrough in physics and Earth sciences will come
from the combination of data science, domain knowledge, and data and software engineering.
Here we stand.

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 2

1.1 Why now?
In this first section, I will explain what I believe are some of the reasons why there is an
increase in efforts to combine machine learning with the physical sciences. While most of this
discussion applies to different domains, from fundamental physics to biology, our discussion
will focus on Earth sciences and geophysics, and even more specifically to glaciology, with
some remarks to paleomagnetism and planetary sciences.

Increase of scientific data sets. The fuel of any statistical, data science, and machine
learning algorithm is data. In fundamental fields in physics, traditional computational meth-
ods are no longer able to handle the massive volumes of data being collected every day.
Examples of this include gravitational-wave detection (Cuoco et al. 2020) and high-energy
physics (Maguire et al. 2017). In the case of the Earth sciences, many datasets consist of
re-analyses of remote sensing products with global coverage and fine spatial and/or temporal
resolution, allowing to sample the dynamic range of our planet. In glaciology, the last few
years had witnessed an increase in remote-sensing datasets providing ice surface velocities
of mountain glaciers (Millan et al. 2022), ice sheets, and ice shelves (Farinotti et al. 2019;
Morlighem et al. 2020); ice surface altimetry (Abdalati et al. 2010; Magruder et al. 2021);
and ice-penetrating radar thickness observations (Schroeder 2022).

How do we deliver the data? More than just data accumulation, recent years have seen an
increase in standardization and the creation of data science-ready datasets that are openly
avaliable to the scientific community (Peckham 2014). This includes the creation of analysis-
ready data, cloud-optimized (ARCO) formats (Abernathey et al. 2021). Journals, publishers,
and agencies like NASA are now moving forward in the internet-based democratization of
data, supporting the open access to data and software (National Academies of Sciences
and Division on Engineering and Physical Sciences et al. 2018). An outstanding example
of this is icepyx, a open source Python library design to access data from the ICESat-2
laser altimeter satellite mission (The icepyx Developers 2023). Further examples of data-
science ready datasets in other fields include ClimateSet in climate sciences (Kaltenborn et
al. 2023), the materials project (Jain et al. 2013), and the open catalyst project in material
design (Chanussot et al. 2021).

Do we need more data or better models? In areas such as computer vision and natural
language processing, the importance of massive datasets over sophisticated algorithms has
been highlighted in the literature as the main factor driving the success of machine learning
(Halevy et al. 2009; Weyand et al. 2016). This point has been raised in the essay The
Unreasonable Effectiveness of Data (Halevy et al. 2009) which challenges the traditional
success of the physical science by relying on mathematical principles, a point made by Nobel
laureate in physics Eugene Wigner in Unreasonable Effectiveness of Mathematics in the
Natural Sciences (Wigner 1960). However, data in the Earth sciences are sparse, noisy,
and even if they are large, they are not massive enough to be trained with physics-free

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 3

models (Karpatne et al. 2017b). This naturally leads our discussion towards the advances
in designing new algorithms that combine the physics and data-based approaches.

Search for new models of Nature. As our understanding of the fundamental behaviour
of the natural world increases, it becomes more difficult to resolve detailed aspects of scientific
theories by simple observation and speculation. For new and emerging theories, this works
very well and it has been the successful path that disciplines like physics have followed
for centuries. However, as the complexity of existing theories increases and scientists start
asking more complicated questions, the observation-assimilation approach becomes more
difficult. Complex physical systems are governed by typically unknown causal mechanisms
(Ebert-Uphoff et al. 2014; Runge et al. 2019). Some of them are chaotic (weather), others
higher-non linear (ice flow), and in general they are affected by mechanisms we do not fully
comprehend (eg, friction laws between rock and ice in the bed of a glacier).

Another obstacle in Earth science modelling is that large-scale systems are dominated
by processes that typically operate at different spatiotemporal resolutions. The traditional
example for this is climate sciences, where convection, storms, and cloud processes operate
at different scales (Schneider et al. 2017). In glaciology, the composition of ice crystals in the
scales of 100-1000 nanometers have an impact in the shearing properties of ice use for large-
scale modelling of ice sheets and glaciers (Cuffey et al. 2010). Furthermore, there is a large
discrepancy between laboratory and site measurements. An example of this is the calibration
of rheological laws regarding the deformation of ice under different stresses, a phenomena
described by Glen’s law that we will discuss in Section 3.1.2. Laboratory measurements are
performed on ice blocks no larger than one meter, even when derived results will later be
used to model large-scale ice sheets like Antarctica and Greenland.

Both the evident complexity of the natural world and the increasing amount of available
data to validate our models set limits on how much more we can learn about Nature by
simple observation and speculation. Traditional physical theories lack algorithmic complexity
(Roberts 2021). It is in this context that we have been seen new research frameworks with
adjusted models that represent a compromise between the data-driven and physics-based
traditions (Azari et al. 2020; Karniadakis et al. 2021; Karpatne et al. 2017a), including
the sub-field of physics-informed machine learning that we will explore in more detail in
Section 1.3. Some authors even describe the use of data-driven approaches as the beginning
of a fourth paradigm in science, following empirical (-1600), theoretical (1600-1950), and
computational science (1950-2000) (Hey et al. 2009; Schleder et al. 2019).

As a separate note, many scientists have decided to embark on the enterprise of integrat-
ing machine learning in their everyday research due to the apparent success that machine
learning has had in recent decades. Not many years ago, domain scientists had often been
reluctant to learn about machine learning methods, judging them as opaque black boxes, un-
reliable, and not respecting domain-established knowledge (Coveney et al. 2016). Even with
this caveat, advances in the field of machine learning, and particularly in deep learning, have
allowed statistical models to learn at multiple levels of abstraction and capture extremely

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 4

complex nonlinear patterns and information hidden in large datasets (LeCun et al. 2015).
In other words, the fields of mechanistic modelling and statistical modelling have mostly
evolved independently (Zdeborová 2020). However, there has been an increasing interest in
making mechanistic models more flexible, as well as introducing domain-specific or physical
constraints and interpretability in machine learning models.

Hardware. Most of the improvements between 1986 and 2015 that explain the success of
deep learning can be attributed, firstly, to the increase in size of available datasets, as we
discussed above, and secondly, to the creation of more powerful computers that can handle
larger artificial neural networks (Goodfellow et al. 2016). It is impossible to deny the central
role that technology plays in the growth of machine learning and, more broadly, the field of
artificial intelligence. Emphasizing the argument made in the previous item regarding the
different paradigms in science, Thomas Kuhn, a Berkeley professor at the time of publishing
his famous book The Structure of Scientific Revolutions, identified the introduction of new
technologies as one of the most important triggers of a scientific revolution leading to a new
scientific paradigm (Kuhn 1962).

However, a hammer by itself does not build a house. The increase alone of computer power
does not explain the rapid growth of the scientific computing community, the incorporation
of modern programming practices, and introduction of machine learning in the sciences. We
still require the software and the tools for scientific computing. As opposed to hardware,
there is no silver bullet for software development, meaning that software is an organism whose
growth is much slower and more linear than hardware (Brooks Jr 1995). Furthermore, it is
important to remark that nowadays machine learning models are being trained on both low
and high performance computers. Let us use this point to transition our discussion to the
importance of software.

(Open & scientific) Software. Modern scientists have adopted scientific computing as
part of their working routine. This includes the use of open-source and community-driven
programming languages such as Julia, Python, and R, and the use of enhanced tools like
Jupyter that allow interactive computing while still prioritizing the scientific narrative when
doing research (Granger et al. 2021). Tools like Jupyter have allowed domain scientists to
embrace the computing side of scientific analysis, no surprise it has been recognized as one
of the ten computer programs that revolutionized science (Perkel 2021). These factors have
birthed a rich software ecosystem where computing and science combine to produce software
that adapts to the needs of scientists, including data preprocessing, exploration and analysis.
Let us see some examples of how this works in practice.

Maturity of scientific software. Machine learning applications in the Earth sciences has been
empowered in the Python ecosystems by leveraging a rich stack of different packages. (See
the Jupyter Meets the Earth project website for a full illustration of this: https://jupy
tearth.org/jupyter-resources/introduction/ecosystem.html.) On the
bottom of the stack we find the Python core libraries, including Numpy for multidimensional

https://jupytearth.org/jupyter-resources/introduction/ecosystem.html
https://jupytearth.org/jupyter-resources/introduction/ecosystem.html

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 5

RCall.jl

Figure 1.1: Interoperability between Julia, Python and R. This include the use of Python
from Julia with PyCall.jl and PythonCall.jl; Julia to R with JuliaCall; R to
Python with rpy2; Python to R with reticulate; R to Julia with RCall.jl; and
finally Julia to Python using PyJulia and JuliaCall.

arrays (Harris et al. 2020), Matplotlib for plotting (Hunter 2007), Pandas for data frames
(McKinney 2010), and Jupyter for interactive computing (Pérez et al. 2007). On top of
them, we find more specialized libraries, Scikit-learn being the most popular for machine
learning (Pedregosa et al. 2011). We also highlight xarray, a Python package designed to
manipulate labeled tensor data such as those found in Earth science datasets (Hoyer et al.
2017a).

Another example that we will further explore in Chapters 2 and 4 is the development of
the scientific machine learning ecosystem in Julia. Julia is a recent but mature programming
language that has already a large tradition in implementing packages to advance differentiable
programming (Bezanson et al. 2017, 2012), with particular emphasis on differential equation
solvers (Rackauckas et al. 2016) and sensitivity analysis (Rackauckas et al. 2020). Central to
the successful integration of differentiable programming is software interoperability, meaning
that the automatic differentiation machinery works when applied on top of numerical solvers
and probabilistic programming libraries (Rackauckas et al. 2019).

Outside of the individual realm of each programming language, it is now possible to
write software that combines libraries from different programming languages, leveraging the
advantages of each one of them. This multilanguage approach is explored in this thesis
on the development of ODINN.jl (Bolibar et al. 2023b) and SphereUDE.jl (Sapienza
et al. 2024b), where the core source code is written in Julia but subroutines run processes in
Python. Figure 1.1 shows some of the tools allowing communication between Julia, Python,
and R.

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 6

Cloud computing. In recent years, scientific workflows in Earth and environmental sciences
have benefited from transitioning from local to cloud computing (Abernathey et al. 2021;
Gentemann et al. 2021; Mesnard et al. 2020). The adoption of cloud computing facilitates
the creation of shared computational environments, datasets, and analysis pipelines, which
leads to more reproducible scientific results by enabling standalone software containers like
Binder (Jupyter et al. 2018) for other researchers to easily reproduce scientific results. On
the other hand, working in cloud environments lowers the access threshold for many scientists
from under-represented groups across multiple institutions and continents (see https://
coessing.org/2023-school/). An example of this is the development of CryoCloud,
a cloud-computing platform specially dedicated for cryospheric research (Snow et al. 2023).

Adopting software development common practices. The arrival of scientists in computational
domains has enriched the domain sciences by incorporating practices generally associated
with software developers and designers. Examples of this include better code documentation,
which makes software easier to distribute and use, use of version control systems such as git
and Github for team development, and testing to ensure trustworthiness and stability of
the software (Stoudt et al. 2021). More importantly, the scientific community is recognizing
the importance of community work and the ineffectiveness of developing code in isolation
(Turk 2013). We hope the next decades see more academics and scholars recognizing the
importance of developing community-driven scientific software.

Reproducibility and collaboration. All these previous points build on each other to create
an ecosystem where communication and collaboration between pairs is facilitated. The
use of good software practices also facilitates the development of scientific results that are
computationally reproducible.

Cultural relevance. The Earth is facing a climate crisis that is impossible to deny (Pört-
ner et al. 2022). There is a call for action to the whole scientific community to come up with
ideas and solutions that alleviate the consequences of climate change. One of the key points
in this discussion is the role that machine learning will play in the next years, especially
for physical model projections, simulations, and data-assimilation methods that can help
us understand how the Earth will respond to fast changing temperatures. The scientific
community has acknowledged the importance of machine learning and artificial intelligence
to tackle climate change (Rolnick et al. 2022), at the same time as the World Economic
Forum has identified machine learning as a key element of the modelling of Earth (The
World Economic Forum 2018). With the advent of new hybrid approaches that combine
machine learning with physical knowledge in the form of differential equations, there is an
opportunity to better understand the physical properties of glaciers by leveraging flexible
approaches that assimilate observational data. Improving ice flow modeling techniques is a
key research area in climate and Earth science, providing an improved understanding of the
contribution of glaciers and ice sheets to both water resources and sea-level rise.

https://coessing.org/2023-school/
https://coessing.org/2023-school/

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 7

1.2 Forward and inverse modelling: the language of
scientific discovery

Many of the goals being pursued by the scientific modelling community can be framed as a
combination of forward and inverse methods. In statistics, forward modelling is the world of
prediction while inverse modelling is the world of inference. Let us explore these two modes
of modelling in the context of physical systems and its connection to statistical modelling.
The general mathematical framework in this chapter is inspired by the celebrated article of
UC Berkeley professor Leo Breiman titled Statistical Modelling: The Two Cultures (Breiman
2001).

1.2.1 Forward modelling

Given an input x ∈ X and an output y ∈ Y , our goal is to learn something about the map

y = G(x; β), (1.1)

where β refers to the model parameter(s). The forward map G is usually one of the following:

(i) A known function that is computationally expensive to evaluate.

(ii) An unknown function that describes the behaviour of certain system.

(iii) A partially known function with flexibility provided by the parameter β.

Here the input and output spaces (X and Y) can be finite vector spaces or infinite dimensional
functional spaces, to give a few examples. An important remark here is that the map G
potentially includes stochasticity, for example in the form of observational noise, which can
be easily modelled as G = G(x; β, ϵ) with ϵ some random variable.

Given data in the form of pairs {(xi, yi)}ni=1, there are two goals: being able to predict
new output responses (prediction) and learn something about the nature of the forward map
G (inference or information). Traditional statistical methods have focused their attention to
approach (iii), known as the data modelling culture, where our goal is to learn the map G by
performing inference on the model parameters β. This correspond to cases where we know
or assume something about the data generating process of our data.

On the other side, the algorithmic modelling culture typically will deal with cases (i) and
(ii). Here we assume that the forward map G can be approximated by a new map

y† = G†
θ(x; β) (1.2)

parametrized by an unknown parameter θ ∈ Θ. Notice that here we have used the parameter
β to refer to parameters in the data generating model, while we will reserve θ for algorithmic
parameters. In Section 1.3 we will introduce the field of physical-informed machine learning
and see how different families of methods approach the forward modelling.

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 8

1.2.1.1 The old recipe for physics: differential equations

Mechanistic or process-based models have played a central role in a wide range of scien-
tific disciplines. They consist of precise mathematical descriptions of physical mechanisms,
including the modelling of causal interactions, feedback loops, and dependencies between
components of the system under consideration (Rackauckas et al. 2020). These mathemati-
cal representations typically take the form of differential equations.

Differential equations are the cornerstone of the physical sciences. For centuries, the
scientific community relied only on theoretical and analytical approaches to model and solve
systems governed by differential equations. The introduction of numerical methods and,
most importantly, the development of the computer, allowed scientists to enter the realm
of computational modelling from 1950 to the present day (Hey et al. 2009). With such
numerical methods to approximate their solutions, differential equations led to fundamental
advances in the understanding and prediction of physical systems.

Similar to statistical and machine learning models, the solution of a differential equation
can be seen as a function that maps parameter and initial conditions to state variables. In
cases where the forward model is dictated by a differential equation, we have y = H(u),
where u : Ω 7→ R is the solution of a differential equation of the form

Dinterior(x; β)u = 0 dom(u) = Ω (1.3)
Dconstraint(x; β)u = 0 dom(u) = Γ (1.4)

where Dinterior a differential operator depending on both the input and parameter; Dconstraint

is an operator imposing the boundary conditions, initial conditions, and/or constraints on
the values the function u takes in the domain Γ; and H is a given function mapping the
latent state to observational space (Bryson et al. 1979). Forward models determined by
differential equations correspond to cases where the forward map is defined implicitly. A
simple example could be solutions of the heat equation, where

Dinterior(x; β)u =
∂u

∂t
−∇ · (c(β)∇u) = 0 dom(u) = [0,∞)× V (1.5)

Dconstraint(x; β)u = u− u0(x) = 0 dom(u) = ({0} × V) ∪ ([0,∞)× ∂V) (1.6)

where c(β) is the diffusivity coefficient, and with initial condition u = u0(x). Both x and
β here can be used for parameters involved in the differential operator or initial/boundary
conditions. For the purposes of this thesis, the forward model in glacier modelling is dictated
by the mechanistic laws governing ice flow given in the form of partial differential equations
arising from approximations of the Navier-Stokes equation (Section 3.1.4)

Solving differential equations is usually carried out by numerical solvers (Hairer et al.
2008; Wanner et al. 1996). We will cover numerical methods for differential equations in the
following chapters.

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 9

1.2.2 Inverse modelling

Inverse modelling is the world of statistical inference. Provided with a forward model, inverse
modelling consists in using observation data {(xi, yi)}ni=1 to recover the parameters of the
forward model that can best explain the data, namely β or θ for the data and algorithmic
modelling cultures, respectively. This is performed via the conciliation between model pre-
dictions and observations, a process also known as calibration of the model, where optimal
parameters and/or initial conditions are found to match the two.

Inverse modelling is one of the ways to bridge the statistical and mechanistic modelling
fields (Rüde et al. 2018; Wigner 1960). The field of dynamical data analysis is full of ex-
amples where systems of ordinary differential equations are used to model observed data
(Ramsay et al. 2017). However, the estimation of model parameters becomes impossible as
the number variables and the expressivity of the model increases, especially when considering
highly non-linear processes dictated by hidden physics (Karniadakis et al. 2021). Further-
more, for stochastic forward models, the intractability of the likelihood function represents a
major challenge for statistical inference (Cranmer et al. 2020). The integration of automatic
differentiation and, more broadly, differentiable programming, has provided new tools for
resolving complex simulation-based inference problems (Cranmer et al. 2020).

In the context of this thesis, the inverse model or data assimilation pipeline consists
of inferring the underlying rheological properties of ice deformation by optimizing a loss
function that compares observed glacier velocities with the ones obtained by the forward
model (Section 4).

1.2.2.1 The role of differentiable programming

Deep Learning est Mort! Vive Differentiable Programming, Yann LeCun (2018).

Differentiable programming refers to the ability to compute gradients or sensitivities of
a model output with respect to model variables or parameters (Shen et al. 2023). Gradi-
ents of the forward map given by ∇βG(x; β) can then be used for optimization, sensitivity
analysis, Bayesian inference, inverse methods, and uncertainty quantification, within many
applications (Razavi et al. 2021). Differentiable programming is a technology that computes
gradients involved in probabilistic programming and the efficient evaluation of sensitivities of
numerical integrators for differential equations (Blondel et al. 2024). Some authors have re-
cently suggested differentiable programming as the bridge between modern machine learning
and traditional scientific models (Gelbrecht et al. 2023; Rackauckas et al. 2021; Ramsundar
et al. 2021; Shen et al. 2023). Being able to compute gradients or sensitivities of dynamical
systems opens the door to more complex data assimilation models that leverage both strong
physical priors and the flexibility to adapt to observations. This is very appealing in fields
like computational physics, geophysics, and biology, to mention a few, where there is a broad
literature on physical models and a long tradition in numerical methods.

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 10

Arguably, the notion of differentiable programming for dynamical systems has a long
tradition across the scientific spectrum, including applications in glaciology (Bolibar et al.
2023a; Hascoët et al. 2018; Heimbach et al. 2009; Logan et al. 2020; MacAyeal 1992); fluid
dynamics (Giles et al. 2000b; Mohammadi et al. 2009); solid Earth physics (Wu et al. 2023;
Zhu et al. 2021b); biology (Strouwen et al. 2022); and design and optimal control (Allaire
et al. 2014; Lions 1971; McGreivy et al. 2021; Pironneau 2005). The realization of the
importance of differentiable programming in inference and prediction problems involving
physical-based modelling lead to the creation of a review paper, which will be the focus of
Chapter 2.

Probably the most well-known example of differentiable programming applications in ma-
chine learning is the backpropagation algorithm in deep learning (Goodfellow et al. 2016).
The backpropagation algorithm is one of the core algorithmic elements that enables the train-
ing of complex neural networks. Backpropagation is equivalent to reverse-mode automatic
differentiation to compute the gradient of a loss function with respect to the parameters of the
neural network, which is later used to perform gradient-based optimization. It is important
to remark that differentiable programming is not just a re-branding of the backpropagation
algorithms, but it includes a broader set of methods that we will discuss in Chapter 2 with
a larger scope of applicability.

1.3 Physics-based machine learning
Roughly defined and a sub-field of machine learning still under development, we can define
physics-informed machine learning as the collection of machine learning techniques that ex-
plicitly introduce biases to satisfy certain physical constraints. These biases can be forced by
the design of algorithms that include symmetries, conservation laws, and constraints in the
form of differential equations (Karniadakis et al. 2021). For the purpose of this thesis, we
are going to assume that these constraints are encoded in the form of differential equations.

Physical constraints come in a full spectrum, whether the physics of the system is known,
unknown, or, more interestingly, partially known. This opens the door for data assimilation
algorithms that aim to learn governing equations from data. These include methods such
as SINDy (Brunton et al. 2016); universal differential equations (UDEs) (Rackauckas et
al. 2020); neural ordinary differential equations (Chen et al. 2018; Dandekar et al. 2020);
symbolic regression (Chen et al. 2022); Gaussian processes (Chen et al. 2021); physical-
informed neural networks (PINNs) (Lagergren et al. 2020; Raissi et al. 2019), including
NeuralPDEs (Zubov et al. 2021) and biologically-informed neural networks (Lagergren et al.
2020); and Hamiltonian neural networks (Mattheakis et al. 2020).

Following (Thuerey et al. 2021), we can classify these approaches into the three following
classes depending on the goal and the level of compromise between the data and physics-
driven cultures:

(i) Surrogate models and emulators

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 11

(ii) Soft constraints

(iii) Hard constraints

Surprisingly enough, we are going to see how these three classes align with the three types
of assumptions on the forward map G (and G†) that we previously introduced in Section
1.2.1. Let us explore these methods in more detail.

1.3.1 Surrogate models and emulators

The overall goal of surrogate models and emulators is to accelerate the execution of the
forward model. This corresponds to the case where the forward map y = G(x; β) is known
but computationally expensive to run, for example, the numerical solution of a complex
differential equation (item (i) in Section 1.2.1). When used as a black box model, surrogates
are used as universal approximators of any possible function (item (ii)). Here, we aim to
find a surrogate model y† = G†

θ(x; β) such that y ≈ y†. This is done by fitting the model
parameter θ that best approximates the forward map,

θ∗ = argmin
θ∈Θ

n∑

i=1

Loss(yi, G†
θ(xi; βi)). (1.7)

The approximator G† is usually a very flexible model, typically a deep neural network with
customized architectures to adapt to the characteristics of the physical problem. More recent
models include neural operators (Kovachki et al. 2021) and Fourier neural operators (Li et
al. 2020b) that overcome the discretization-dependence of previous models by learning maps
between functional spaces instead of parameters spaces.

These cheap versions of the forward map are useful when the evaluation of the forward
model is required for many choices of the input variable x but computationally prohibitive
with traditional numerical solvers (Cleary et al. 2021). A good example of this is in Bayesian
inference (Li et al. 2020b). In more general cases, the emulator can be trained to evaluate the
value of likelihood functions, likelihood ratios, or the posterior density (Cranmer et al. 2020;
Hermans et al. 2020). Furthermore, it is possible to design hybrid models by combining low
fidelity numerical solvers that are cheaper to run with emulators to enhance the resolution
of the model (Pestourie et al. 2023).

Nowadays we find physical emulators in practically any scientific discipline dealing with
numerical solutions of complex differential equations. These include applications in glaciol-
ogy (Jouvet et al. 2021), computational fluid dynamics (Kochkov et al. 2021), climate with
models like ACE (Watt-Meyer et al. 2023), weather prediction with models like FourCast-
Net (Pathak et al. 2022) and GraphCast (Lam et al. 2022), quantum chemistry with density
functional theory (DFT) emulators (Smith et al. 2017), and high-energy physics (Elvira et al.
2022).

Discovering new representations. Designing models just to achieve predictive results also
brings hope for finding new physical representations of complex physical phenomena that

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 12

are learned by the method itself without the need of inductive biases. A simple example of
this consists in using neural network architectures including autoencoders for the forward
map in such a way that the latent space encodes meaningful representations of the physical
system (Iten et al. 2020).

Inverse modelling with emulators. In the mathematical formulation in Equation (1.7), we
have included the parameter β of the forward model. Given observations, this parameter
can be inferred using some data assimilation method, for example, via gradient-based opti-
mization involving now gradients of the emulator ∇βG

†
θ(x; β). A good example of this is the

inversion of glacier flow models in (Jouvet 2023) performed on a previously trained emulator
(Jouvet et al. 2021).

1.3.2 Soft physical constraints

A recent family of methods that imposed the differential equation structure during training is
know as physics-informed neural networks (PINNs) (Raissi et al. 2019). These methods are
sometimes called soft constraints because the physical constraint is added in the loss function
as a regularization in opposition to the model architecture itself, so the optimization needs
to balance the fit to the data and satisfy the differential equation. Given data {(xi, yi)}ni=1,
the solution u of the differential equation embedded in the forward map is approximated by
a neural network uθ with parameter θ such that it minimizes the following combined loss
function

n∑

i=1

Lossdata(yi, G
†
θ(xi; β)) + λLossphysics(D(xi; β)uθ), (1.8)

where Lossdata evaluates the match between observations and the forward model; Lossphysics

penalizes functions uθ that do not satisfy the differential equation; and λ ≥ 0 is an hyper-
parameter controlling the contribution of these two to the final loss. The forward map G is
then replaced by the algorithmic approximation G†

θ as follows:

y = G(x; β) y = H(u) Dinterior(x; β)u = 0 (1.9)

ŷ ≈ G†
θ(x; β) y† = H(uθ) Dinterior(x; β)uθ ≈ 0. (1.10)

The physical loss penalty Lossphysics may or may not include boundary or initial conditions,
providing more flexible constraints than traditional numerical solvers where both need to be
specified. In glaciology, PINNs have been used for scientific discovery of rheological (Wang et
al. 2023; Wang et al. 2022) and basal sliding properties (Riel et al. 2021); ice sheet modelling
(He et al. 2023); and ice-thickness interpolation techniques based on physical constraints for
sparse data (Teisberg et al. 2021). However, in general PINNs can be difficult to train and
computationally expensive in cases where higher-order derivatives are required (Bettencourt
et al. 2019).

Alternative differential equation solvers. As introduced here, PINNs can be used as a
method to solve the original differential equation. Together with the family of emulators we

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 13

explored in the previous section, PINNs belong to the family of approaches that aims to use
deep learning to numerically solve differential equations (Han et al. 2018; Hasani et al. 2024;
Sirignano et al. 2017; Zhu et al. 2021a). An important consideration is that PINNs tend to
be slower than high-fidelity partial differential equation numerical solvers, but offer larger
flexibility (Pestourie et al. 2023). Since PINNs can be seen as a numerical solvers, we can
still perform inference on the trained solution uθ with respect to the model parameter β.

Smoothing methods. The loss function in Equation (1.8) equals the empirical loss with a reg-
ularization term that imposes solutions that are smooth according to a prescribed differential
equation. This approaches coincides with profiling estimation methods in the literature of
dynamical data analysis (Ramsay et al. 2017). A simpler case of this is smoothing splines,
where the penalization term includes second derivatives of the regression function (Green
et al. 1993).

1.3.3 Hard physical constraints and universal differential
equations

This last family of methods integrates the physics by directly solving the differential equation
using a numerical solver. This approach includes universal differential equations (UDEs)
(Rackauckas et al. 2020), which in particular include neural differential equation approaches
(Chen et al. 2018). More generally, neural differential equations are forward models based on
numerical solvers where at least one term inside the differential equation has been replaced
by a neural network (Ramadhan et al. 2022). Training is performed via an optimization
based on trajectory matching (Ramsay et al. 2017):

θ∗ = argmin
θ∈Θ

n∑

i=1

Loss(yi, G(xi; βθ)), (1.11)

where the parameter β of the physical model has been replaced by a more general algorithmic
representation βθ with θ the parameter to be optimized. Replacing the model parameter β
by a function parametrized by a new (algorithmic) parameter θ may seem confusing, but it
is actually very simple and intuitive. Consider the harmonic oscillator

Dinterior(x; β)u =
∂2u

∂t2
+ ω2u = 0 (1.12)

with natural frequency ω. We can augment this system by allowing ω = ωθ(t) to be a
function of time. This function can be parametrized by a neural network with weights θ that
will be trained based on observations.

This approach has the advantage of integrating both data and algorithmic cultures un-
der the same mathematical framework. As noted in their mathematical formulation, we
still preserved the original map G (item (iii)) but we add algorithmic flexibility inside the
differential equation by allowing the parameter β to be more flexible. In the extreme case of

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 14

��������������
������������������

��������������
�������
������������������

��������
��������

����

����������������������
��	�������������
���������������������

������������������������������	���������
������������	��������	�����	������	����
	��	������	����������	�����
��������

�

Figure 1.2: Basic representation of universal differential equations (UDEs) and their
associated modelling philosophy. UDEs sit at the intersection of physical domain knowl-
edge, represented by differential equations, numerical methods used to solve the differential
equations and data-driven models, often represented as machine learning.

a completely unknown forward map (item (ii)), we can still use neural differential equations
as an universal approximator via the forward map

Dinterior(x; β)u =
∂u

∂t
− fθ(x; β)(u) = 0, (1.13)

where fθ is a function that described the dynamics of the system parametrized by the pa-
rameter θ, including neural networks, polynomial expansions and splines.

Augmented dynamics. The philosophy behind UDEs is to embed a rich family of parametric
functions inside a differential equation, so the base structure of the differential equation is
preserved but more flexibility is allowed in the model at the moment of fitting observed data.
This is particularly useful when our goal is to use as much existing domain knowledge in the
form of differential equations as possible and try to learn just the new parts with regressors
(see Figure 1.2) (Bolibar et al. 2023a).

Differentiable programming through the solver. The hard physical constraint is imposed by
directly solving the differential equation involved in G using numerical solvers. This means
that in order to perform gradient-based optimization to solve Equation (1.11) we need to
compute the gradient of the numerical solution of a differential equation. As we mentioned
in the previous section, this is carried out via differentiable programming tools that we will
extensively explore in Chapter 2. Either when the calculation of gradients requires more
sophisticated tools, methods based on hard constraints tend to converge after just a few
epochs (Bolibar et al. 2023a; Rackauckas et al. 2020; Zhou et al. 2024).

CHAPTER 1. STATISTICAL MODELLING IN THE PHYSICAL SCIENCES 15

1.3.4 Further remarks

Before finishing this section, let us just cover some short remarks.

From physics to machine learning or from machine learning to physics? Another phrasing
of the distinction between soft and hard physical constraint methods is whether we embed
machine learning (e.g., neural networks) into existing physical models or we bring physical
models into existing machine learning methods. One of the main differences here is what
differentiable programming machinery is required in order to train models with many param-
eters. Incorporating differentiable programming capabilities into existing simulation codes is
a more direct way to exploit the advances in deep learning than trying to incorporate domain
knowledge into an entirely foreign substrate such as a deep neural network (Cranmer et al.
2020).

Why are we only talking about neural networks? We should not! Almost all algorithms used
in the literature use neural networks to parameterize unknown functions. Possibly this is due
to the success of neural networks in learning complex non-linear relationships and their easy
availability in modern scientific software. However, there is much room for new methods
and the use of techniques such as Gaussian processes to combine statistical and physical
models. Gaussian processes have been applied in ocean current modelling via the design
of kernels that incorporate physical prior information in the form of differential equations
(Berlinghieri et al. 2023). Parallelisms between Gaussian process regression and numerical
solvers for PDEs have also been recently explored (Chen et al. 2021; Heinonen et al. 2018;
Karniadakis et al. 2021; Pförtner et al. 2022).

1.4 Conclusions
There are many challenges in applying machine learning to the Earth sciences (Karpatne
et al. 2017b), including the development of geostatistical methods that account for the spa-
tiotemporal nature of the data (Chiles et al. 2012), the validation of statistical models in
cases where fundamental assumptions like independence of samples, and independence be-
tween training and test set are violated (Hoffimann et al. 2021), and the usage and fitting
of forward models dictated by complex dynamics. There is a great opportunity for statis-
ticians interested in working on exciting new problems in Earth sciences. With the rise of
remote sensing observations and re-analysis products in the last decades, the Earth sciences
has shifted from being a field strongly based on physical models to the realm of big data.
Pivoting between the physics and data-driven approaches, there is a unique opportunity to
explore the now reasonable joint effectiveness of physical models and large amounts of data
(Halevy et al. 2009; Wigner 1960).

16

Chapter 2

Differentiable programming for
differential equations

Most of the contents included in this chapter belong to the manuscript in preparation of a
review paper on sensitivity methods, tentatively titled

▶ F. Sapienza, J. Bolibar, F. Schäfer, P. Heimbach, G. Hooker, F. Pérez, P. Persson, C.
Rackauckas, V. Boussange, B. Groenke, and A. Pal (2024c). “Differentiable Program-
ming for Differential Equations: A Review”. In: preparation

The content of this chapter started as the spin-off of the appendix in (Bolibar et al. 2023a)
(Chapter 4) and grew to include a very detailed overview of sensitivity methods for models
based on numerical solutions of differential equations. From the first day of this project,
all the text and code were openly available in GitHub and contributors/collaborators were
invited to participate under the following statement:

To the community, by the community. This manuscript was conceived
with the goal of shortening the gap between developers and practitioners of dif-
ferentiable programming applied to modern scientific machine learning. With the
advent of new tools and new software, it is important to create pedagogical con-
tent that allows the broader community to understand and integrate these methods
into their workflows. We hope this encourages new people to be an active part of
the ecosystem, by using and developing open-source tools. This work was done
under the premise open-science from scratch, meaning all the contents of this
work, both code and text, have been in the open from the beginning and that any
interested person can contribute to the project. You can contribute directly to the
GitHub repository github.com/ODINN-SciML/DiffEqSensitivity-R
eview .

This work started with three authors and grew to include a total of 12 contributions. This
chapter benefited from comments and suggestions of all co-authors.

github.com/ODINN-SciML/DiffEqSensitivity-Review
github.com/ODINN-SciML/DiffEqSensitivity-Review

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 17

2.1 Abstract
The differentiable programming paradigm has become a central component of modern ma-
chine learning techniques. A long tradition of this paradigm exists in the context of scientific
computing, in particular in differential equation-constrained, gradient-based optimization.
The recognition of the strong conceptual synergies between inverse methods and machine
learning offers the opportunity to lay out a coherent framework applicable to both fields.
For models described by differential equations, the calculation of sensitivities and gradients
requires careful algebraic and numeric manipulations of the underlying dynamical system.
Here, we provide a comprehensive review of existing techniques to compute gradients of
numerical solutions of differential equation systems. We first lay out the mathematical foun-
dations of the various approaches and compare them with each other. Second, we delve into
the computational considerations and explore the solutions available in modern scientific
software.

2.2 Introduction
Evaluating how the value of a function changes with respect to its arguments and parameters
plays a central role in optimization, sensitivity analysis, Bayesian inference, inverse methods,
and uncertainty quantification, among many (Razavi et al. 2021). Modern machine learning
applications require the use of gradients to efficiently exploit the high-dimensional space of
parameters to be inferred or learned (e.g., the weights of a neural network). When optimizing
an objective function, gradient-based methods (for example, gradient descent and its many
variants (Ruder 2016)) are more efficient at finding a minimum and converge faster to them
than gradient-free methods. When numerically computing the posterior of a probabilistic
model, gradient-based sampling strategies are better at estimating the posterior distribution
than gradient-free methods. Hessians further help to improve the convergence rates of these
algorithms and can enable uncertainty quantification around parameter values (Bui-Thanh
et al. 2012). Furthermore, the curse of dimensionality renders gradient-free optimization
and sampling methods computationally intractable for most large-scale problems (Oden et
al. 2010).

A gradient serves as a compass in modern data science: it tells us in which
direction in the vast, open ocean of parameters we should move towards in order
to increase our chances of success.

Models based on differential equations arising in simulation-based science, which play a
central role in describing the behaviour of systems in natural and social sciences, are not
an exception to the rule (Ghattas et al. 2021). The solution of differential equations can
be seen as functions that map parameter and initial conditions to state variables, similar
to machine learning models (see Section 1.2.1.1). Some authors have recently suggested
differentiable programming as the bridge between modern machine learning and traditional

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 18

scientific models (Gelbrecht et al. 2023; Rackauckas et al. 2021; Ramsundar et al. 2021; Shen
et al. 2023). Being able to compute gradients or sensitivities of dynamical systems opens
the door to more complex data assimilation models that leverage in strong physical priors
at the same time they offer flexibility to adapt to observations. This is very appealing in
fields like computational physics, geophysics, and biology, to mention a few, where there is
a broad literature on physical models and a long tradition in numerical methods. The first
goal of this work is to introduce some of the applications of this emerging technology and
to motivate its incorporation for the modelling of complex systems in the natural and social
sciences.

Question 1. What are the scientific applications of differentiable programming
for dynamical systems?

Sensitivity analysis corresponds to any method aiming to calculate how much the output
of a function or program changes when we vary one of the function (or model) parameters.
This task is performed in different ways by different communities when working with dy-
namical systems. In statistics, the sensitivity equations enable the computation of gradients
of the likelihood of the model with respect to the parameters of the dynamical system, which
can be later used for inference (Ramsay et al. 2017). In numerical analysis, sensitivities quan-
tify how the solution of a differential equation fluctuates with respect to certain parameters.
This is particularly useful in optimal control theory (Giles et al. 2000b), where the goal is
to find the optimal value of some control (e.g. the shape of a wing) that minimizes a given
loss function. In recent years, there has been an increasing interest in designing machine
learning workflows that include constraints in the form of differential equations. Examples of
this include methods that numerically solve differential equations, such as physics-informed
neural networks (PINNs, Section 1.3.2) and universal differential equations (UDEs, Section
1.3.3).

However, when working with differential equations, the computation of gradients is not
an easy task, both regarding the mathematical framework and software implementation in-
volved. Except for a small set of particular cases, most differential equations require numer-
ical methods to approximate their solution. This means that solutions cannot be directly
differentiated and require special treatment to compute first or second-order derivatives.
Furthermore, numerical solutions introduce approximation errors. These errors can be prop-
agated and amplified during the computation of the gradient. Alternatively, there is a broad
literature on numerical methods for solving differential equations (Hairer et al. 2008; Wanner
et al. 1996). Although each method provides different guarantees and advantages depending
on the use case, this means that the tools developed to compute gradients when using a solver
need to be universal enough in order to be applied to all or at least to a large set of them. As
coined by Uwe Naumann, the automatic generation of optimal (in terms of robustness and
efficiency) adjoint versions of large-scale simulation code is one of the great open challenges
in the field of High-Performance Scientific Computing (Naumann 2011). The second goal of
this article is to review different methods that exist to achieve this goal.

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 19

Question 2. How to efficiently compute the gradient of a function that depends
on the numerical solution of a differential equation?

The broader set of tools known as automatic or algorithmic differentiation (AD) aims
to compute derivatives by sequentially applying the chain rule to the sequence of unit op-
erations that constitute a computer program (Griewank et al. 2008; Naumann 2011). The
premise is simple: every computer program is ultimately an algorithm described by a nested
concatenation of elementary algebraic operations, such as addition and multiplication, that
are individually easy to differentiate and their composition is easy to differentiate by using
the chain rule (Giering et al. 1998). More broadly than AD, differentiable programming
encapsulates the set of software tools that allows to compute efficient and robust gradients
though complex algorithms, including numerical solvers (Innes et al. 2019). Although many
modern differentiation tools use AD to some extent, there is also a family of methods that
compute the gradient by relying on an auxiliary set of differential equations and/or compute
an intermediate adjoint. Furthermore, it is important to be aware than when using AD
or any other technique we are differentiating the algorithm used to lead to the numerical
solution, no the numerical solution itself, which can lead to wrong results (Eberhard et al.
1996).

The differences between methods to compute sensitivities arise both from their mathe-
matical formulation and their computational implementation. The first provides different
guarantees on the method returning the actual gradient or a good approximation thereof.
The second involves how theory is translated to software, and what are the data structures
and algorithms used to implement it. Different methods have different computational com-
plexities depending on the total number of parameters and size of the differential equation
system, and these complexities are also balanced between total execution time and required
memory. The third goal of this work, then, is to illustrate the different strengths and weak-
nesses of these methods, and how to use them in modern scientific software.

Question 3. What are the advantages and disadvantages of different differen-
tiation methods and how can I incorporate them in my research?

Differentiable programming is opening new ways of doing research across sciences. Ar-
guably, its potential has so far been under-explored but is being rediscovered in the age of
data-driven science. In order to realize its full potential, we need close collaboration be-
tween domain scientists, methodological scientists, computational scientists, and computer
scientists in order to develop successful, scalable, practical, and efficient frameworks for real
world applications. As we make progress in the use of these tools, new methodological ques-
tions start to emerge. How do these methods compare? How can they be improved? In
this review we present a comprehensive list of the methods that exists in the intersection of
differentiable programming and differential equation modelling.

A full discussion of the first of our questions emphasizing the importance of gradients of
solutions of ODEs in a variety of scientific domains, covering computational fluid dynamics,
geosciences, meteorology, oceanograpgy, climate science, glaciology, ecology, and biology, is

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 20

Discrete

Continuous

Reverse Forward

Finite differences

Symbolic differentiation
Discrete adjoint
 method Forward AD

Sensitivity equationsContinuous adjoint
method

 Reverse AD
(backpropagation) Complex step differentiation

Figure 2.1: Schematic representation of the different methods available for differenti-
ation involving differential equation solutions. These can be classified depending if they
find the gradient by solving a new system of differential equations (continuous) or if in-
stead they manipulate unit algebraic operations (discrete). Additionally, these methods
can be categorized based on their alignment with the direction of the numerical solver. If
they operate in the same direction as the solver, they are referred to as forward methods.
Conversely, if they function in the opposite direction, they are known as reverse methods.

included in the full manuscript of the review paper available in the GitHub repository and
it was omitted in this thesis. The review paper is structured in three main sections, looking
at differentiable programming for differential equations from three different perspectives: a
domain science perspective, a mathematical perspective (Section 2.3) and a computer science
perspective (Section 2.4).

2.3 Methods: A mathematical perspective
There is a large family of methods for computing gradients and sensitivities of systems of
differential equations. Depending on the number of parameters and the complexity of the
differential equation we are trying to solve, they have different mathematical, numerical, and
computational advantages. These methods can be roughly classified as follows (Ma et al.
2021a):

• Continuous vs discrete methods

• Forward vs reverse methods

Figure 2.1 displays a classification of some methods under this two-fold division.

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 21

The continuous vs discrete distinction is one of mathematical and numerical nature.
When solving for the gradient of a differential equation, one needs to derive both a mathe-
matical expression for the gradient (the differentiation step) and solve the equations using a
numerical solver (the discretization step) (Bradley 2013; Onken et al. 2020; Sirkes et al. 1997;
Zhang et al. 2014). Depending on the order of these two operations, we are going to talk
about discrete methods (discretize-then-differentiate) or continuous methods (differentiate-
then-discretize). In the case of discrete methods, gradients are computed based on simple
function evaluations of the solutions of the numerical solver (finite differences, complex step
differentiation) or by manipulation of atomic operations inside a numerical solver (AD, sym-
bolic differentiation, discrete adjoint method). In the case of continuous methods, a new set
of differential equations is derived for the sensitivity (sensitivity equations) or the adjoint
(continuous adjoint method) of the system, both quantities that allow the calculation of the
desired gradient. When comparing between discrete and continuous methods, more than
talking about computational efficiency we are focusing on the mathematical consistency of
the method, that is, is the method estimating the right gradient?. Discrete methods com-
pute the exact derivative of the numerical approximation to the loss function, but they do
not necessarily yield to an approximation of the exact derivatives of the objective function
((Walther 2007), Section 2.3.9.3).

The forward vs reverse distinction regards when the gradient is computed, if this happens
during the forward pass of the numerical solver or in a later recalculation (Griewank et al.
2008). In all forward methods the solution of the differential equation is solved sequentially
and simultaneously with the gradient during the forward pass of the numerical solver. On
the contrary, reverse methods compute the gradient tracking backwards the forward model
by resolving a new problem that moves in the opposite direction as the original numerical
solver. For systems of ordinary differential equations (ODEs) and initial value problems
(IVPs), most numerical methods solve the differential equation progressively moving forward
in time, meaning that reverse methods then solve for the gradient moving backwards in time.

As we will discuss in the following sections, forward methods are very efficient for prob-
lems with a small number of parameters we want to differentiate with respect to, while
backwards methods are more efficient for a large number of parameters but they come with
a larger memory cost which needs to be overcome using different performance tricks. With
the exception of finite differences and complex step differentiation, the rest of the forward
methods (i.e. forward AD, sensitivity equations, symbolic differentiation) compute the full
sensitivity of the differential equation, that is, how the full solution of the ODEs changes
when we change the parameters of the model. This can be computationally expensive for
large systems. Conversely, reverse methods are based on the computation of intermediate
variables, known as the adjoint or dual variables, that cleverly avoid the unnecessary calcu-
lation of the full sensitivity at expenses of larger memory cost (Givoli 2021). For this reason,
reverse methods can be also labeled as adjoint methods (Ma et al. 2021a).

The rest of this section is organized as follows. We will first introduce some basic mathe-
matical notions that are going to facilitate the discussion of the sensitivity methods (Section
2.3.1). Then we will embark in the mission of mathematically introducing each one of meth-

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 22

ods listed in Figure 2.1. We will finalize the discussion in Section 2.3.9 with an comparison
of some of mathematical foundations of these methods.

2.3.1 Preliminaries

Consider a system of first order ordinary differential equations (ODEs) given by

du

dt
= f(u, θ, t), (2.1)

where u ∈ Rn is the unknown solution; f : Rn×Rp×R 7→ Rn is a function that depends
on the state u, some vector parameter θ ∈ Rp, and potentially the independent variable
t which we will refer as time; and with initial condition u(t0) = u0. Here n denotes the
total number of ODEs and p the dimension of a parameter embedded in the functional form
of the differential equation. Although we here consider the case of ODEs, that is, when
the derivatives are just with respect to the time variable t, the ideas presented here can be
extended to the case of partial differential equations (PDEs; for example, via the method of
lines (Ascher 2008)) and differential algebraic equations (Wanner et al. 1996). Except for
a minority of functions f(u, θ, t), solutions to Equation (2.1) need to be computed using a
numerical solver.

2.3.1.1 Numerical solvers for ordinary differential equations

Numerical solvers for the solution of ODEs or initial value problems (IVP) can be classified
as one-step methods, among which Runge-Kutta methods are the most widely used, and
multi-step methods (Hairer et al. 2008). Given an integer s, a s-stage Runge-Kutta method
is defined by generalizing numerical integration quadrature rules as follows

un+1 = un +∆tn

s∑

i=1

biki

ki = f

(
un +

s∑

j=1

aijkj, θ, tn + ci∆tn

)
i = 1, 2, . . . , s.

(2.2)

where un ≈ u(tn) approximates the solution at time tn; timesteps ∆tn = tn+1 − tn; and
coefficients aij, bi, and cj, with i, j = 1, 2, . . . , j, usually represented in the form of a tableau.
A Runge-Kutta method is called explicit if aij = 0 for i ≤ j; diagonally implicit if aij = 0
for i < j; and implicit otherwise. Different choices of number of stages and coefficients give
different orders of convergence of the numerical scheme (Butcher 2001; Butcher et al. 1996).

On the contrary, multisteps linear solvers are of the form

k1∑

i=0

αniu
n−i = ∆tn

k2∑

j=0

βnjf(u
n−j, θ, tn−j) (2.3)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 23

where αni and βnj are numerical coefficients (Hairer et al. 2008). In most cases, including
Adam and BFG methods, we have the coefficients αni = αi and βnj = βj, meaning that
the coefficients do not depend on the iteration. Notice that multisteps linear methods are
linear in the function f , which is not the case in Runge-Kutta methods with intermediate
evaluations (Ascher 2008). Explicit methods are characterized by βn,0 = 0 and are easy to
solve by direct iterative updates. For implicit methods, the usually non-linear equation

gi(ui; θ) = ui − hβn0f(ui, θ, ti)− αi = 0, (2.4)

with αi a computed coefficient that includes the information of all the past iterations, can be
solved using predictor-corrector methods (Hairer et al. 2008) or iteratively using Newton’s
method (Hindmarsh et al. 2005).

There are many considerations at the moment of picking a numerical solver. One of
the most important ones is the stiffness of the differential equation we are trying to solve.
Although stiffness is a known phenomena in the study of differential equation solver, different
definitions and types of instability exist in the literature. This is due to historical reasons
(Dahlquist 1985) as well as the fact that different stiff equations suffer from different types
of instabilities. Among them we select the following:

• Stiff equations are equations for which explicit methods do not work and implicit
methods work better (Wanner et al. 1996).

• Stiff differential equations are characterized by dynamics with different time scales
(Kim et al. 2021), also characterized by the phenomena of increasing oscillations
(Dahlquist 1985).

Stability properties can be achieved by the use of implicit methods over explicit methods.
When using explicit methods, smaller timesteps may be required to guaranteed stability.

Another important consideration is how to pick the time-steps ∆ti in a numerical solver
(Hairer et al. 2008). Modern solvers include stepsize controllers that pick ∆ti as large as
possible to minimize the total number of steps at the same time that they control for large
errors in the numerical solution controlled by adjustable relative and absolute tolerances.

2.3.1.2 What to differentiate and why?

We are interested in computing the gradient of a given function L(u(·, θ)) with respect to
the parameter θ. This formulation is very general and allows to include many different
applications, including the following.

• Loss function and empirical risk function. This is usually a real-valued function
that quantifies the level of agreement between the model prediction and observations.
Examples of loss functions include the squared error

L(θ) =
1

2
∥u(t1; θ)− utarget(t1)∥22, (2.5)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 24

where utarget(t1) is the desired target observation at some later time t1. More gener-
ally, we can evaluate the loss function at points of the time series for which we have
observations,

L(θ) =
1

2

N∑

i=1

ωi ∥u(ti; θ)− utarget(ti)∥22, (2.6)

with ωi some arbitrary non-negative weights. More generally, misfit functions used in
optimal estimation and control problems map from the model’s state space, in this case
the solution u(t), to the observation space define by a new variable y(t) = H(u(t, θ)),
where H : Rn 7→ Ro is a given function mapping the latent state to observational space
(Bryson et al. 1979). In these cases, the loss function is instead

L(θ) =
1

2

N∑

i=1

ωi ∥H(u(ti; θ))− ytarget(ti)∥22. (2.7)

We can also consider the continuous evaluated loss function of the form

L(u(·, θ)) =
∫ t1

t0

h(u(t; θ), θ)dt, (2.8)

with h being a function that quantifies the contribution of the error term at every
time t ∈ [t0, t1]. Defining a loss function where just the empirical error is penalized
is known as trajectory matching (Ramsay et al. 2017). Other methods like gradient
matching and generalized smoothing the loss depends on smooth approximations of
the trajectory and their derivatives.

• Likelihood function. From a statistical perspective, it is common to assume that
observations correspond to noisy observations of the underlying dynamical system,
yi = H(u(ti; θ)) + εi, with εi errors or residual that are independent of each other
and of the trajectory u(·; θ) (Ramsay et al. 2017). When H is the identity, each yi
corresponds to the noise observation of the state u(ti; θ). If p(Y |t, θ) is the probability
distribution of Y = (y1, y2, . . . , yN), maximum likelihood estimation consists in finding
the maximum a posteriori (MAP) estimate of the parameter θ as

θ∗ = argmax
θ

ℓ(Y |θ) =
n∏

i=1

p(yi|θ, ti). (2.9)

When εi ∼ N(0, σ2
i I) is the isotropic multivariate normal distribution, the maximum

likelihood principle is the same as minimizing − log ℓ(Y |θ) which coincides with the
mean squared error of Equation (2.7) (Hastie et al. 2009),

θ∗ = argmin
θ

{− log ℓ(Y |θ)} = argmin
θ

N∑

i=1

1

2σ2
i

∥yi −H(u(ti; θ))∥22. (2.10)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 25

Provided with a prior distribution p(θ) for the parameter θ, we can further compute a
posterior distribution for θ given the observations Y following Bayes theorem (Murphy
2022). In practice, the posterior is difficult to evaluate and needs to be approximated
using Markov chain Monte Carlo (MCMC) sampling methods (Gelman et al. 2013).
Being able to further compute gradients of the likelihood allows to design more efficient
sampling methods, such as Hamiltonian MCMC (Betancourt 2017).

• Quantity of interest. Another important example is when L returns the value of
the solution at one or many points, which is useful when we want to know how the
solution itself changes as we move the parameter values.

• Diagnosis of the solution. In many cases we are interested in optimizing the value
of some variable that is a function of the solution of a differential equation. This is
the case in design control theory, a popular approach in aerodynamics modelling where
goals include maximizing the speed of an airplane or the lift of a wing given the solution
of the flow equation for a given geometry profile (Giles et al. 2000a; Jameson 1988;
Mohammadi et al. 2004).

In the rest of the manuscript we will use letter L to emphasize that in many cases this will
be a loss function, but without loss of generality this includes the richer class of functions
included in the previous examples.

2.3.1.3 Sensitivity matrix

In the general case, we are going to work with loss functions of the form L(θ) = L(u(·, θ), θ).
Using the chain rule we can derive

dL

dθ
=

∂L

∂u

∂u

∂θ
+

∂L

∂θ
. (2.11)

The two partial derivatives of the loss function on the right-hand side are usually easy to
evaluate. For example, for the loss function in Equation (2.5) this are simply given by

∂L

∂u
= u− utarget(t1)

∂L

∂θ
= 0. (2.12)

Just as in this last example, in most applications the loss function L(θ) will depend on θ just
through u, meaning ∂L

∂θ
= 0. The complicated term to compute is the matrix of derivatives

∂u
∂θ

, usually referred to as the sensitivity s, and represents how much the full solution u varies
as a function of the parameter θ,

s =
∂u

∂θ
=

∂u1

∂θ1
. . . ∂u1

∂θp
...

∂un

∂θ1
. . . ∂un

∂θp

 ∈ Rn×p. (2.13)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 26

The sensitivity s defined in Equation (2.13) is what is called a Jacobian, that is, a matrix
of first derivatives for general vector-valued functions. Some of the methods we will discuss
here will directly compute the sensitivity, while others will only deal with Jacobian-vector
products (JVPs) of the form ∂u

∂θ
v, for some vector v ∈ Rp. The product ∂u

∂θ
v is the directional

derivative of the function u(θ), also known as the Gateaux derivative of u(θ) in the direction
v, given by

∂u

∂θ
v = lim

h→0

u(θ + hv)− u(θ)

h
, (2.14)

representing how much the function u changes when we perturb θ in the direction of v.

2.3.2 Finite differences

The simplest way of evaluating a derivative is by computing the difference between the
evaluation of the function at a given point and a small perturbation of the function. In the
case of the function L : Rp 7→ R, we can approximate

dL

dθi
(θ) =

L(θ + εei)− L(θ)

ε
+O(ε), (2.15)

with ei the i-th canonical vector and ε the stepsize. Even better, the centered difference
scheme leads to

dL

dθi
(θ) =

L(θ + εei)− L(θ − εei)

2ε
+O(ε2). (2.16)

While Equation (2.15) gives the derivative to an error of magnitude O(ε), the centered
differences schemes improves the accuracy to O(ε2) (Ascher et al. 2011). Further finite
difference stencils of higher order exist in the literature (Fornberg 1988).

However, there are a series of problems associated with finite differences. The first one is
due to how it scales with the dimension p of parameter vector θ. Each directional derivative
requires the evaluation of the loss function L twice. For the centered differences approach
in Equation (2.16), this requires a total of 2p function evaluations which demands solving
the differential equation each time for a new set of parameters. A second problem is due to
rounding errors. Every computer ultimately stores and manipulates numbers using floating
point arithmetic (Goldberg 1991). Equations (2.15) and (2.16) involve the subtraction of
two numbers that are very close to each other, which leads to large cancellation errors for
small values of ε that are amplified by the division by ε. On the other hand, large values of
the stepsize give inaccurate estimations of the gradient. Finding the optimal value of ε that
balances these two effects is sometimes known as the stepsize dilemma, for which algorithms
based on prior knowledge of the function to be differentiated or algorithms based on heuristic
rules have been introduced (Barton 1992; Hindmarsh et al. 2005; Mathur 2012). Although
analytical functions, like polynomials and trigonometric functions, can be computed with
machine precision, numerical solutions of differential equations have errors that are typically
larger than machine precision, which leads to inaccurate estimations of the gradient when ε
is too small. We will further emphasize this point in Section 2.4.1.1.

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 27

Despite all these caveats, finite differences can be useful when computing Jacobian-vector
products (JVPs). Given a Jacobian matrix J = ∂f

∂u
(or the sensitivity s = ∂u

∂θ
) and a vector

v, the product Jv corresponding to the directional derivative and can be approximated as

Jv ≈ f(u+ εv, θ, t)− f(u, θ, t)

ε
. (2.17)

This approach is used in numerical solvers based on Krylov methods, where linear systems
are solved by iteratively solving matrix-vectors products (Ipsen et al. 1998).

2.3.3 Automatic differentiation

Automatic differentiation (AD) is a technology that generates new code representing deriva-
tives of a given parent code. Examples are code representing the tangent linear or adjoint
operator of the parent code (Griewank et al. 2008). The names algorithmic and computa-
tional differentiation had also been used in the literature, emphasizing the algorithmic rather
than automatic nature of AD (Griewank et al. 2008; Margossian 2018). The basis of all AD
systems is the notion that complicated functions included in any computer program can be
reduced to a sequence of simple algebraic operations that have straightforward derivative
expressions, based upon elementary rules of differentiation (Juedes 1991). The derivatives of
the outputs of the computer program (dependent variables) with respect to their inputs (in-
dependent variables) are then combined using the chain rule. One advantage of AD systems
is to automatically differentiate programs that include control flow, such as branching, loops
or recursions. This is because any program can be reduced to a trace of input, intermediate
and output variables (Baydin et al. 2017).

Depending if the concatenation of these gradients is done as we execute the program
(from input to output) or in a later instance where we trace-back the calculation from the
end (from output to input), we refer to forward or reverse AD, respectively. Neither forward
nor reverse mode is more efficient in all cases (Griewank 1989), as we will discuss in Section
2.3.3.3.

2.3.3.1 Forward mode

Forward mode AD can be implemented in different ways depending on the data structures we
use at the moment of representing a computer program. Examples of these data structures
include dual numbers and computational graphs (Baydin et al. 2017).

2.3.3.1.1 Dual numbers Dual numbers extend the definition of a numerical variable
that takes a certain value to also carry information about its derivative with respect to a
certain parameter (Clifford 1871). We define a dual number based on two variables: a value
coordinate x1 that carries the value of the variable and a derivative (also known as partial
or tangent) coordinate x2 with the value of the derivative ∂x1

∂θ
. Just as complex number, we

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 28

can represent dual numbers as an ordered pair (x1, x2), sometimes known as Argand pair,
or in the rectangular form

xϵ = x1 + ϵ x2, (2.18)

where ϵ is an abstract number called a perturbation or tangent, with the properties ϵ2 = 0
and ϵ ̸= 0. This last representation is quite convenient since it naturally allow us to extend
algebraic operations, like addition and multiplication, to dual numbers (Karczmarczuk 1998).
For example, given two dual numbers xϵ = x1 + ϵx2 and yϵ = y1 + ϵy2, it is easy to derive
using the fact ϵ2 = 0 that

xϵ + yϵ = (x1 + y1) + ϵ (x2 + y2) xϵyϵ = x1y1 + ϵ (x1y2 + x2y1). (2.19)

From these last examples, we can see that the derivative component of the dual number
carries the information of the derivatives when combining operations. For example, suppose
than in the last example the dual variables x2 and y2 carry the value of the derivative of x1

and x2 with respect to a parameter θ, respectively.
Intuitively, we can think of ϵ as being a differential in the Taylor series expansion, fact

that we can observe in how the output of any scalar functions is extended to a dual number
output:

f(x1 + ϵx2) = f(x1) + ϵ x2 f
′(x1) + ϵ2 · (. . .)

= f(x1) + ϵ x2 f
′(x1).

(2.20)

When computing first order derivatives, we can ignore everything of order ϵ2 or larger,
which is represented in the condition ϵ2 = 0. This implies that we can use dual numbers to
implement forward AD through a numerical algorithm. In Section 2.4.1.2.1 we will explore
how this is implemented.

Multidimensional dual number generalize dual number to include a different dual vari-
able ϵi for each variable we want to differentiate with respect to (Neuenhofen 2018; Revels
et al. 2016). A multidimensional dual number is then defined as xϵ = x +

∑p
i=1 xiϵi, with

the property that ϵiϵj = 0 for all pairs i and j. Incorrect implementations of this aspect
can lead to perturbation confusion, an existing problem in some AD software where dual
variables corresponding to different variables result indistinguishable, especially in the case
of nested functions (Manzyuk et al. 2019; Siskind et al. 2005). This problem can be further
been overcome by computing the full gradient as the combination of independent directional
derivatives (see Section 2.3.3.3) Another extension of dual numbers that should not be con-
fused with multidimensional dual numbers are hyper-dual numbers, which allow to compute
higher-order derivatives of a function (Fike 2013).

2.3.3.1.2 Computational graph A useful way of representing a computer program is
via a computational graph with intermediate variables that relate the input and output
variables. Most scalar functions of interest can be represented as a acyclic directed graph
with nodes associated to variables and edges to atomic operations (Griewank 1989; Griewank

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 29

et al. 2008), known as Kantorovich graph (Kantorovich 1957) or its linearized representation
via a Wengert trace/tape (Bauer 1974; Griewank et al. 2008; Wengert 1964). We can define
v−p+1, v−p+2, . . . , v0 = θ1, θ2, . . . , θp the input set of variables; v1, . . . , vm−1 the set of all the
intermediate variables, and finally vm = L(θ) the final output of a computer program. This
can be done in such a way that the order is strict, meaning that each variable vi is computed
just as a function of the previous variables vj with j < i. Once the graph is constructed,
we can compute the derivative of every node with respect to other (a quantity known as the
tangent) using the Bauer formula (Bauer 1974; Oktay et al. 2020):

∂vj
∂vi

=
∑

paths w0→w1→...→wK
with w0=vi,wK=vj

K−1∏

k=0

∂wk+1

∂wk

, (2.21)

where the sum is calculated with respect to all the directed paths in the graph connecting
the input and target node. Instead of evaluating the last expression for all possible paths, a
simplification is to increasingly evaluate j = 1, . . . ,m using the recursion

∂vj
∂vi

=
∑

w such that w → vj

∂vj
∂w

∂w

∂vi
(2.22)

Since every variable node w such that w → vj is an edge of the computational graph have
index less than j, we can iterate this procedure as we run the computer program and solve for
both the function and its gradient. This is possible because in forward mode the term ∂w

∂vi
has

been computed in a previous iteration, while ∂vj
∂w

can be evaluated at the same time the node
vj is computed based on only the value of the parent variable nodes. The only requirement
for differentiation is being able to compute the derivative/tangent of each edge/primitive
and combine these using the recursion defined in Equation (2.22).

2.3.3.2 Reverse mode

Reverse mode AD is also known as the adjoint of cotangent linear mode, or backpropagation
in the field of machine learning. The reverse mode of automatic differentiation has been
introduced in different contexts (Griewank 2012) and materializes the observation made by
Phil Wolfe that if the chain rule is implemented in reverse mode, then the ratio between
the computational cost of the gradient of a function and the function itself can be bounded
by a constant that does not depend of the number of parameters to differentiate (Griewank
1989; Wolfe 1982), a point known as the cheap gradient principle (Griewank 2012). Given
a directed graph of operations defined by a Wengert list, we can compute gradients of any
given function in the same fashion as Equation (2.22) but in reverse mode as

v̄i =
∂ℓ

∂vi
=

∑

w such that vi → w

∂w

∂vi
w̄. (2.23)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 30

In this context, the notation w̄ = ∂ℓ
∂w

is introduced to signify the partial derivative of the
output variable, here associated to the loss function, with respect to input and intermediate
variables. This derivative is often referred to as the adjoint, dual, or cotangent, and its
connection with the discrete adjoint method will be made more explicitly in Section 2.3.9.2.

Since in reverse-mode AD the values of w̄ are being updated in reverse order, in general
we need to know the state value of all the argument variables v of w in order to evaluate the
terms ∂w

∂v
. These state values (required variables) need to be either stored in memory during

the evaluation of the function or recomputed on the fly in order to be able to evaluate the
derivative. Checkpointing schemes exist to limit and balance the amount of storing versus
recomputation (see section 2.4.1.2.3).

2.3.3.3 AD connection with JVPs and VJPs

When working with unit operations that involve matrix operations dealing with vectors of
different dimensions, the order in which we apply the chain rule matters (Giering et al. 1998).
When computing a gradient using AD, we can encounter vector-Jacobian products (VJPs)
or Jacobian-vector products (JVP). As their name indicates, the difference between them
is that the quantity we are interested in is described by the product of a Jacobian times
a vector on the left side (VJP) or the right (JVP). Furthermore, both forward and reverse
AD can be thought as a way of computing directional derivatives associated with JVPs (see
Equation (2.14)) and VJPs, respectively. In other words, given a function g : Rd1 7→ Rd2

that is evaluated during the forward mode of given program, AD will carry terms of the form
Dh(x) · ẋ (JVP) in forward mode and ȳT · Dh(x) (VJP) in reverse mode (Griewank et al.
2008).

Let us consider for example the case of a nested loss function L : Rp 7→ R taking a total
of p arguments as inputs that can be decomposed as L(θ) = ℓ ◦ gk ◦ . . . ◦ g2 ◦ g1(θ), with
ℓ : Rdk 7→ R the final evaluation of the loss function after we apply in order a sequence of
intermediate functions gi : Rdi−1 7→ Rdi , where we define d0 = p for simplicity. The final
gradient is computed as the chain product of vectors and Jacobians as

∇θL = ∇ℓ ·Dgk ·Dgk−1 · . . . ·Dg2 ·Dg1, (2.24)

with Dgi the Jacobian of each nested function evaluated at the intermediate values gi−1 ◦
gi−2 ◦ . . . ◦ gi(θ). Notice that in the last equation ∇ℓ ∈ Rdk is a vector. In order to compute
∇θL, we can solve the multiplication starting from the right side, which will correspond to
multiplying the Jacobians forward from Dg1 to Dgk, or from the left side, moving backwards.
The important aspect of the backwards case is that we will always be computing VJPs, since
∇ℓ is a vector. Since VJPs are easier to evaluate than full Jacobians, the reverse mode will
in general be faster when 1 ≪ p. This example is illustrated in Figure 2.2. For general
rectangular matrices A ∈ Rd1×d2 and B ∈ Rd2×d3 , the cost of the matrix multiplication
AB is O(d1d2d3). It is worth noticing that while more efficient methods for matrix-matrix
multiplication based on Strassen’s recursive algorithm and its variants exist, these are not

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 31

extensively used in most scientific applications (Huang et al. 2016; Silva et al. 2018). This
implies that forward AD requires a total of

d2d1p+ d3d2p+ . . .+ dkdk−1p+ dkp = O(kp) (2.25)

operations, while backwards mode AD requires

dkdk−1 + dk−1dk−2 + . . .+ d2d1 + d1p = O(k + p) (2.26)

operations.
In the general case of a function L : Rp 7→ Rq with multiple outputs and a total of

k intermediate functions, the cost of forward AD is O(pk + q) and the cost of reverse is
O(p+ kq). When the function to differentiate has a larger input space than output (q ≪ p),
AD in reverse mode is more efficient as it propagates the chain rule by computing VJPs,
the reason why reverse-mode AD is more used in modern machine learning. However, notice
that backwards mode AD requires us to save intermediate variables through the forward run
in order to run backwards afterwards (Bennett 1973), leading to performance overhead that
makes forward AD more efficient when p ≲ q (Baydin et al. 2017; Griewank 1989; Margossian
2018). In other words, reverse AD is really more efficient when q ≪ p.

In a practical sense, many AD systems are reduced to the computation of only directional
derivatives (VJPs) and JVPs (Griewank et al. 2008). Full Jacobians J ∈ Rn×p (e.g., the
sensitivity s = ∂u

∂θ
∈ Rn×p) can be fully reconstructed by the independent computation of the

p columns of J via the JVPs Jei, with ei ∈ Rp the canonical vectors; or by the calculation
of the m rows of J via the VJPs eTj J , with ej ∈ Rn. An important observation here is then
how to efficiently compute sparse Jacobians, which are commonplace in large-scale nonlinear
systems and discretized PDEs. For cases with known sparsity pattern, colored AD can be
used to chunk multiple JVPs or VJPs using the colored Jacobian (Gebremedhin et al. 2005).

2.3.4 Complex step differentiation

An alternative to finite differences that avoids subtractive cancellation errors is based on
complex variable analysis. The first proposals originated in 1967 using the Cauchy integral
theorem involving the numerical evaluation of a complex-valued integral (Lyness 1967; Lyness
et al. 1967). A new approach recently emerged that uses the complex generalization of a real
function to evaluate its derivatives (Martins et al. 2003; Squire et al. 1998). Assuming that
the function L(θ) admits a holomorphic extension (that is, it can be extended to a complex-
valued function that is analytical and differentiable (Stein et al. 2010)), the Cauchy-Riemann
conditions can be used to evaluate the derivative with respect to one single scalar parameter
θ ∈ R as

dL

dθ
= lim

ε→0

Im(L(θ + iε))

ε
, (2.27)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 32

Forward

Reverse=

d1 × p

d1 × p

dk−1 × p

O(kp)

O(k + p)

d2 × d1dk × dk−1 dk−1 × dk−2=1× p 1× dk

=1× p 1× dk

1× p 1× d2 d2 × d1

dk × dk−1

∇θL ∇� Dgk Dg2 Dg1Dgk−1

Figure 2.2: Comparison between forward and reverse AD. Changing the order of Jaco-
bian multiplications changes the total number of floating-point operations, which leads to
different computational complexities between forward and reverse mode. When the mul-
tiplication is carried from the right side of the mathematical expression for ∇θL, each
matrix simplification involves a matrix with size p, giving a total complexity of O(kp).
This is the opposite of what happens when we carried the VJP from the left side of the
expression, where the matrix of size d1 × p has no effect in the intermediate calculations,
making all the intermediate calculations O(1) with respect to p and a total complexity of
O(k + p).

where i is the imaginary unit satisfying i2 = −1. The order of this approximation can be
found using the Taylor expansion of a function,

L(θ + iε) = L(θ) + iε
dL

dθ
− 1

2
ε2
d2L

dθ2
+O(ε3). (2.28)

Computing the imaginary part Im(L(θ + iε)) leads to

dL

dθ
=

Im(L(θ + iε))

ε
+O(ε2). (2.29)

The method of complex step differentiation consists then in estimating the gradient as
Im(L(θ + iε))/ε for a small value of ε. Besides the advantage of being a method with

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 33

precision O(ε2), the complex step method avoids subtracting cancellation error and then the
value of ε can be reduced to almost machine precision error without affecting the calculation
of the derivative. However, a major limitation of this method is that it only works for com-
plex analytical functions (Martins et al. 2003). Extension to higher order derivatives can be
done by introducing multicomplex variables (Lantoine et al. 2012).

2.3.5 Symbolic differentiation

In symbolic differentiation, functions are represented algebraically instead of algorithmically,
which is why many symbolic differentiation tools are included inside computer algebra sys-
tems (CAS) (Gowda et al. 2022). Instead of numerically evaluating the final value of a
derivative, symbolic systems define algebraic objects, including variable names, expressions,
operations, and literals. For example, the relation y = x2 is interpreted as expression with
two variables, x and y, and the symbolic system need to generate the derivative y′ = 2× x
with 2 a numeric literal, × a binary operation, and x the same variable assignment than in
the original expression. When the function to differentiate is large, symbolic differentiation
can lead to expression swell, that is, exponentially large or complex symbolic expressions
(Baydin et al. 2017). Here, an important piece of CAS is simplification routines that reduce
the size and complexity of algebraic expressions by finding common sub-expressions. This
can make symbolic differentiation very efficient when computing derivatives multiple times
and for different input values (Dürrbaum et al. 2002).

It is important to remark on the close relationship between AD and symbolic differenti-
ation. There is no agreement as to whether symbolic differentiation should be classified as
AD (Elliott 2018; Juedes 1991; Laue 2019) or as a different method (Baydin et al. 2017).
Both are equivalent in the sense that they perform the same operations but the underly-
ing data structure is different (Laue 2019). Here, expression swell is a consequence of the
underlying representation when this does not allow for common sub-expressions. This can
also be understood as if AD is symbolic differentiation performed by a compiler (Elliott
2018), meaning that different AD can be classified based on the level of integration with the
underlying source language (Juedes 1991)

2.3.6 Sensitivity equations

An easy way to derive an expression for the sensitivity s defined in Equation (2.13) is
by deriving the sensitivity equations (Ramsay et al. 2017), a method also referred to as
continuous local sensitivity analysis (CSA). If we consider the original system of ODEs given
by Equation (2.1) and we differentiate with respect to θ, we then obtain

d

dθ

(
du

dt
− f(u(θ), θ, t)

)
= 0. (2.30)

Assuming that an unique solution exists and both ∂f
∂u

and ∂f
∂θ

are continuous in the neigh-
bourhood of the solution, or under the guarantee of interchangeability of the derivatives

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 34

(Gronwall 1919), for example by assuming that both du
dt

and du
dθ

are differentiable (Palmieri
et al. 2020), we can derive

d

dθ

du

dt
=

d

dθ
f(u(θ), θ, t) =

∂f

∂θ
+

∂f

∂u

∂u

∂θ
. (2.31)

Identifying the sensitivity matrix s(t), we obtain the sensitivity differential equation

ds

dt
=

∂f

∂u
s+

∂f

∂θ
. (2.32)

Both the original system of n ODEs and the sensitivity equation of np ODEs are solved
simultaneously, which is necessary since the sensitivity differential equation directly depends
on the value of u(t). This implies that as we solve the ODEs, we can ensure the same level
of numerical precision for the two of them inside the numerical solver.

In contrast to the methods previously introduced, the sensitivity equations find the gra-
dient by solving a new set of continuous differential equations. Notice also that the obtained
sensitivity s(t) can be evaluated at any given time t. This method can be labeled as for-
ward, since we solve both u(t) and s(t) as we solve the differential equation forward in time,
without the need of backtracking any operation though the solver. By solving the sensitivity
equation and the original differential equation for u(t) simultaneously, we ensure that by the
end of the forward step we have calculated both u(t) and s(t).

2.3.7 Discrete adjoint method

Also known as the adjoint state method, it is another example of a discrete method that
aims to find the gradient by solving an alternative system of linear equations, known as
the adjoint equations, simultaneously with the original system of equations defined by the
numerical solver. These methods are extremely popular in optimal control theory in fluid
dynamics, for example for the design of geometries for vehicles and airplanes that optimize
performance (Elliott et al. 1996; Giles et al. 2000b).

The idea of the adjoint method is to treat the differential equation as a constraint in an
optimization problem and then differentiate an objective function subject to that constraint.
Mathematically speaking, this can be treated both from a duality or Lagrangian perspective
(Giles et al. 2000b). In agreement with other authors, we prefer to derive the equation using
the former as it gives better insights to how the method works and it allows generalization
to other user cases (Givoli 2021).

2.3.7.1 Adjoint state equations

The derivation of the discrete adjoint equations is carried out once the numerical scheme for
solving Equation (2.1) has been specified. Given a discrete sequence of timesteps t0, t1, . . . , tN ,
we aim to find approximate numerical solutions ui ≈ u(ti; θ). Any numerical solver, in-
cluding the ones discussed in Section 2.3.1.1, can be understood as solving the (in gen-
eral nonlinear) system of equations defined by G(U ; θ) = 0, where U is the super-vector

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 35

U = (u1, u2, . . . , uN) ∈ RnN , and we had combine the systems of equations defined by the
iterative solver as G(U ; θ) = (g1(u1; θ), . . . , gN(uN ; θ)) = 0 (see Equation (2.4)).

We are interested in differentiating an objective or loss function L(U, θ) with respect to
the parameter θ. Since here U is the discrete set of evaluations of the solver, examples of
loss functions now include

L(U, θ) =
1

2

N∑

i=1

∥ui − uobs
i ∥2, (2.33)

with uobs
i the observed time-series. Now, same as Equation (2.11) we have

dL

dθ
=

∂L

∂θ
+

∂L

∂U

∂U

∂θ
. (2.34)

We further need to impose the constraint that the solution satisfies the algebraic equation
G(U ; θ) = 0, which gives

dG

dθ
=

∂G

∂θ
+

∂G

∂U

∂U

∂θ
= 0 (2.35)

and which is equivalent to
∂U

∂θ
= −

(
∂G

∂U

)−1
∂G

∂θ
. (2.36)

If we replace this last expression into equation (2.34), we obtain

dL

dθ
=

∂L

∂θ
− ∂L

∂U

(
∂G

∂U

)−1
∂G

∂θ
. (2.37)

The important trick in the adjoint state methods is to observe that in this last equation, the
right-hand side can be resolved as a vector-Jacobian product (VJP), with ∂L

∂U
being the vector.

Instead of computing the product of the matrices
(
∂G
∂U

)−1 and ∂G
∂θ

, it is computationally more
efficient first to compute the resulting vector from the VJP operation ∂L

∂U

(
∂G
∂U

)−1 and then
multiply this by ∂G

∂θ
. This leads to the definition of the adjoint λ ∈ RnN as the solution of

the linear system of equations
(
∂G

∂U

)T

λ =

(
∂L

∂U

)T

, (2.38)

or equivalently,

λT =
∂L

∂U

(
∂G

∂U

)−1

. (2.39)

Finally, if we replace Equation (2.39) into (2.37), we obtain

dL

dθ
=

∂L

∂θ
− λT ∂G

∂θ
. (2.40)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 36

dL

dθ
=

∂L

∂θ
+

∂L

∂U

∂U

∂θ

dL

dθ
=

∂L

∂θ
+

∂L

∂G

∂G

∂θ
=

∂L

∂θ
− λT ∂G

∂θ

∂L

∂U

L

U

G

θ

−λT∂G

∂θ

∂L

∂U

∂U

∂θ

∂G

∂U

L

U

G

θ

∂G

∂θ

∂U

∂θ

∂G

∂U

∂L

∂θ
∂L

∂θ

Gradient based on adjointDirect gradient calculation

−λT =
∂L

∂G
=

∂L

∂U

∂U

∂G

=
∂L

∂U

(
∂G

∂U

)−1

Figure 2.3: Diagram showing how gradients are computed using discrete adjoints. On
the left, we see how gradients will be computed if we use the chain rule applied to the
directed triangle defined by the variables θ, U , and L (blue arrows). However, we can
define the intermediate vector variable G = G(U ; θ), which satisfies G = 0 as long as the
discrete system of differential equations are satisfied, and apply the chain rule instead to
the triangle defined by θ, G, and L (red arrows). In the red diagram, the calculation of
∂L
∂G is done by pivoting in U as shown in the right diagram (shaded area). Notice that the
use of adjoints avoids the calculation of the sensitivity ∂U

∂θ . The adjoint is defined as the
partial derivative λT = − ∂L

∂G representing changes in the loss function due to variations
in the discrete equation G(U ; θ) = 0.

The important trick used in the adjoint method is the rearrangement of the multiplicative
terms involved in equation (2.37). Computing the full Jacobian/sensitivity ∂U/∂θ will be
computationally expensive and involves the product of two matrices. However, we are not
interested in the calculation of the Jacobian, but instead in the VJP given by ∂L

∂U
∂U
∂θ

. By
rearranging these terms and relying in the intermediate variable G(U ; θ), we can make the
same computation more efficient. These ideas are summarized in the diagram in Figure
2.3, where we can also see an interesting interpretation of the adjoint as being equivalent to
λT = − ∂L

∂G
.

Notice that the algebraic equation of the adjoint λ in Equation (2.38) is a linear system
of equations even when the original system G(U ; θ) = 0 was not necessarily linear in U .
This means that while the forward mode may require multiple iterations in order to solve
the non-linear system G(U) = 0 (e.g., by using Krylov methods), the backwards step to
compute the adjoint is one single linear system of equations.

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 37

2.3.7.2 Simple linear system

To gain further intuition about the discrete adjoint method, let us consider the simple case
of the explicit linear one-step methods, where at every step we need to solve the equation
ui+1 = gi(ui; θ) = Ai(θ)ui + bi(θ), where Ai(θ) ∈ Rn×n and bi(θ) ∈ Rn are defined by the
numerical solver (Johnson 2012). This condition can be written in a more compact manner
as G(U) = A(θ)U − b(θ) = 0, that is

A(θ)U =

In 0
−A1 In 0

−A2 In 0
. . .

−AN−1 In

u1

u2

u3
...
uN

=

A0u0 + b0
b1
b2
...

bN−1

= b(θ), (2.41)

with In the identity matrix of size n × n. Notice that in most cases, the matrix A(θ) is
quite large and mostly sparse. While this representation of the discrete differential equation
is convenient for mathematical manipulations, when solving the system we rely on iterative
solvers that save memory and computation.

For the linear system of discrete equations G(U ; θ) = A(θ)U − b(θ) = 0, we have

∂G

∂θ
=

∂A

∂θ
U − ∂b

∂θ
, (2.42)

so the desired gradient in Equation (2.40) can be computed as

dL

dθ
=

∂L

∂θ
− λT

(
∂A

∂θ
U − ∂b

∂θ

)
(2.43)

with λ the discrete adjoint obtained by solving the linear system in Equation (2.38),

A(θ)Tλ =

In −AT
1

0 In −AT
2

0 In −AT
3

. . . −AT
N−1

0 In

λ1

λ2

λ3
...
λN

=

u1 − uobs
1

u2 − uobs
2

u3 − uobs
3

...
uN − uobs

N

=

∂L

∂U

T

. (2.44)

This is a linear system of equations with the same size of the original A(θ)U = b(θ), but
involving the adjoint matrix AT . Computationally this also means that if we can solve
the original system of discretized equations then we can also solve the adjoint at the same
computational cost (e.g., by using the LU factorization of A(θ)). Another more natural way
of finding the adjoints λ is by noticing that the system of equations (2.44) is equivalent to
the final value problem

λi = AT
i λi+1 + (ui − uobs

i) (2.45)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 38

with final condition λN . This means that we can solve the adjoint equation backwards, i.e.,
in reverse mode, starting from the final state λN and computing the values of λi in decreasing
index order. Unless the loss function L is linear in U , this procedure requires to know the
value of ui (or some equivalent form of it) at any given timestep.

2.3.8 Continuous adjoint method

The continuous adjoint method, also known as continuous adjoint sensitivity analysis (CASA),
operates by defining a convenient set of new differential equations for the adjoint variable and
using this to compute the gradient in a more efficient manner. We encourage the interested
reader to make the effort of following how the continuous adjoint method follows the same
logic as the discrete adjoint method, but where the discretization of the differential equation
does not happen until the very last step, when the solutions of the differential equations
involved need to be numerically evaluated.

Consider an integrated loss function defined in Equation (2.8) of the form

L(u; θ) =

∫ t1

t0

h(u(t; θ), θ)dt (2.46)

and its derivative with respect to the parameter θ given by the following integral involving
the sensitivity matrix s(t):

dL

dθ
=

∫ t1

t0

(
∂h

∂θ
+

∂h

∂u
s(t)

)
dt. (2.47)

Just as in the case of the discrete adjoint method, the complicated term to evaluate in the
last expression is the sensitivity (Equation (2.13)). Again, the trick is to evaluate the VJP
∂h
∂u

∂u
∂θ

by first defining an intermediate adjoint variable. The continuous adjoint equation now
is obtained by finding the dual/adjoint equation of the sensitivity equation using the weak
formulation of Equation (2.32). The adjoint equation is obtained by writing the sensitivity
equation in the form

∫ t1

t0

λ(t)T
(
ds

dt
− f(u, θ, t) s− ∂f

∂θ

)
dt = 0, (2.48)

where this equation must be satisfied for every function λ(t) in order for Equation (2.32)
to be true. The next step is to get rid of the time derivative applied to the sensitivity s(t)
using integration by parts:

∫ t1

t0

λ(t)T
ds

dt
dt = λ(t1)

T s(t1)− λ(t0)
T s(t0)−

∫ t1

t0

dλT

dt
s(t) dt. (2.49)

Replacing this last expression into Equation (2.48) we obtain
∫ t1

t0

(
−dλT

dt
− λ(t)Tf(u, θ, t)

)
s(t)dt =

∫ t1

t0

λ(t)T
∂f

∂θ
dt− λ(t1)

T s(t1) + λ(t0)
T s(t0). (2.50)

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 39

At first glance, there is nothing particularly interesting about this last equation. However,
both Equations (2.47) and (2.50) involve a VJP with s(t). Since Equation (2.50) must hold
for every function λ(t), we can pick λ(t) to make the terms involving s(t) in Equations (2.47)
and (2.50) to perfectly coincide. This is done by defining the adjoint λ(t) to be the solution
of the new system of differential equations

dλ

dt
= −f(u, θ, t)Tλ− ∂hT

∂u
λ(t1) = 0. (2.51)

Notice that the adjoint equation is defined with the final condition at t1, meaning that it
needs to be solved backwards in time. The definition of the adjoint λ(t) as the solution of
this last ODE simplifies Equation (2.50) to

∫ t1

t0

∂h

∂u
s(t)dt = λ(t0)

T s(t0) +

∫ t1

t0

λ(t)T
∂f

∂θ
dt. (2.52)

Finally, replacing this inside the expression for the gradient of the loss function we have

dL

dθ
= λ(t0)

T s(t0) +

∫ t1

t0

(
∂h

∂θ
+ λT ∂f

∂θ

)
dt (2.53)

The full algorithm to compute the full gradient dL
dθ

can be described as follows:

1. Solve the original differential equation du
dt

= f(u, t, θ);

2. Solve the backwards adjoint differential equation given by Equation (2.51);

3. Compute the gradient using Equation (2.53).

The same recipe used here to derived the continuous adjoint method for a system of ODEs
can be employed to derive adjoint methods for PDEs (Giles et al. 2000b) and DAE (Cao
et al. 2002).

2.3.9 Mathematical comparison of the methods

In Sections 2.3.2-2.3.8 we focused in merely introducing each one of the sensitivity methods
classified in Figure 2.1 as separate methods, postponing the discussion about their common
points. In this section, we are going to compare these methods one-to-one to show paral-
lelism across them. We hope this enlightens the discussion on sensitivity methods and helps
demystify misconceptions around the sometimes apparent differences across methods. This
comparison will be strengthen again later in Section 2.4, where we will see how even small
differences between methods can be translated to different software implementations with
different advantages.

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 40

x+ ε

x2 + ε (2x)

x+ i ε

x2 − ε2 + 2iεx

sin(x2 − ε2) cosh(2iε)

+ i cos(x2 − ε2) sinh(2iε)

sin(x2)

+ ε cos(x2)(2x)

d

dx

x

x2

sin(x2)

AD with Dual Numbers Complex step di�erentiation

cos(x2)(2x)cos(x2)(2x)

The exact derivative
is carried by the
dual component

The derivative is
obtained by taking a

limit with the
complex component

lim
ε→0

1

ε
cos(x2 − ε2) sinh(2iε)

= cos(x2)(2x)

Figure 2.4: Comparison between AD implemented with dual numbers and complex step
differentiation. For the simple case of the function f(x) = sin(x2), we can see how each
operation is carried in the forward step by the dual component (blue) and the complex
component (red). Whereas AD gives the exact gradient at the end of the forward run, in
the case of the complex step method we need to take the limit in the imaginary part.

2.3.9.1 Forward AD and complex step differentiation

Notice that both AD based on dual number and complex-step differentiation introduce an
abstract unit (ϵ and i, respectively) associated with the imaginary part of the dual variable
that carries forward the numerical value of the gradient. Although these methods seem
similar, we emphasize that AD gives the exact gradient, whereas complex step differentiation
relies on numerical approximations that are valid only when the stepsize ε is small. In Figure
2.4 we show how the calculation of the gradient of the function sin(x2) is performed by these
two methods. Whereas the second component of the dual number has the exact derivative
of the function sin(x2) with respect to x, it is not until we take ε → 0 that we obtain the
derivative in the imaginary component for the complex step method. The dependence of the
complex step differentiation method on the step size gives it a closer resemblance to finite
difference methods than to AD using dual numbers. Furthermore, the complex step method
involves more terms in the calculation, a consequence of the fact that second order terms
of the form i2 = −1 are transferred to the real part of the complex number, while for dual
numbers the terms associated to ϵ2 = 0 vanish (Martins et al. 2001).

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 41

2.3.9.2 Discrete adjoints and reverse AD

Both discrete adjoint methods and reverse AD are classified as discrete and reverse methods
(see Figure 2.1). Furthermore, both methods introduce an intermediate adjoint associated
to the partial derivative of the loss function (output variable) with respect to intermediate
variables of the forward computation. In the case of reverse AD, the adjoint is defined with
the notation w̄ (Equation (2.23)), while in the discrete adjoint method this correspond to
each one of the variables λ1, λ2, . . . , λN (Equation (2.44)). In this section we will show that
both methods are mathematically equivalent (Li et al. 2020a; Zhu et al. 2021b), but naive
implementations using reverse AD can result in sub-optimal performances compared to the
one obtained by directly employing the discrete adjoint method (Alexe et al. 2009).

In order to have a better idea of how this works in the case of a numerical solver, let
us consider again the case of a one-step explicit method, not necessarily linear, where the
updates ui satisfy the equation ui+1 = gi(ui, θ). Following the same schematics than in Figure
2.3, we represent the computational graph of the numerical method in Figure 2.5 using the
intermediate variables g1, g2, . . . , gN−1. The dual/adjoint variables defined in reverse AD in
this computational graph are given by

ḡi =
∂ui+1

∂gi
ūi+1 =

∂L

∂ui+1

+
∂gi+1

∂ui

ḡi+1. (2.54)

The updates of ḡi then mathematically coincide with the updates in reverse mode of the
adjoint variable λi (see Equation (2.45)).

Modern numerical solvers use functions gi that correspond to nested functions, meaning
gi = g

(ki)
i ◦ g(ki−1)

i ◦ . . . ◦ g(1)i . This is certainly the case for implicit methods when ui+1 is
the solution of an iterative Newton’s method (Hindmarsh et al. 2005); or in cases where the
numerical solver includes internal iterative sub-routines (Alexe et al. 2009). If the number
of intermediate function is large, reverse AD will result in a large computational graph,
potentially leading to excessive memory usage and slow computation (Alexe et al. 2009;
Margossian 2018). A solution to this problem is to introduce a customized super node that
directly encapsulates the contribution to the full adjoint in gi without computing the adjoint
for each intermediate function g

(j)
i . Provided with the value of the Jacobian matrices ∂gi

∂ui

and ∂gi
∂θ

, we can use the implicit function theorem to find the ∂ui

∂θ
as the solution of the linear

system of equations
∂gi
∂ui

∂ui

∂θ
= −∂gi

∂θ
(2.55)

and implement AD by directly solving this new system of equations. In both cases, the
discrete adjoint method can be implemented directly on top of a reverse AD tool that allows
customized adjoint calculation (Rackauckas et al. 2021). Furthermore, notice that instead
of the full Jacobian, reverse methods only required to compute VJPs.

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 42

θ L

ui ui+1

gi gi+1

ui+2

Figure 2.5: Computational graph associated to the discrete adjoint method. Reverse
AD applied on top of the computational graph leads to the update rules for the discrete
adjoint. The adjoint variable λi in the discrete adjoint method coincides with the adjoint
variable ḡi defined in the backpropagation step.

2.3.9.3 Consistency: forward AD and sensitivity equations

The sensitivity equations can also be solved in discrete forward mode by numerically dis-
cretizing the original ODE and later deriving the discrete sensitivity equations (Ma et al.
2021a). For most cases, this leads to the same result than in the continuous case (Zhang
et al. 2014). We can numerically solve for the sensitivity s by extending the parameter θ to
a multidimensional dual number

θ =

θ1
θ2
...
θp

 −→

θ1 + ϵ1
θ2 + ϵ2

...
θp + ϵp

 (2.56)

where ϵiϵj = 0 for all pairs of i and j (see Section 2.3.3.1.1). The dependency of the solution
u of the ODE on the parameter θ is now expanded following Equation (2.20) as

u =

u1

u2
...
un

 −→

u1 +
∑p

j=1
∂u1

∂θj
ϵj

u2 +
∑p

j=1
∂u2

∂θj
ϵj

...
up +

∑p
j=1

∂un

∂θj
ϵj

= u + s

ϵ1
ϵ2
...
ϵp

 , (2.57)

that is, the dual component of the vector u corresponds exactly to the sensitivity matrix s.
This implies forward AD applied to any multistep linear solver will result in the application

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 43

of the same solver to the sensitivity equation (Equation (2.32)). For example, for the forward
Euler method this gives

ut+1 + st+1 ϵ = ut + st ϵ+∆t f(ut + st ϵ, θ + ϵ, t)

= ut + f(ut, θ, t) + ∆t

(
∂f

∂u
st +

∂f

∂θ

)
ϵ.

(2.58)

The dual component corresponds to the forward Euler discretization of the sensitivity equa-
tion, with st the temporal discretization of the sensitivity s(t).

The consistency result for discrete and continuous methods also holds for Runge-Kutta
methods (Walther 2007). When introducing dual numbers, the Runge-Kutta scheme in
Equation (2.2) gives the following identities

un+1 + sn+1ϵ = sn +∆tn

s∑

i=1

bik̇i (2.59)

ki + k̇iϵ = f

(
un +

s∑

j=1

aijkj +

(
sn +

s∑

j=1

aij k̇j

)
ϵ, θ + ϵ, tn + ci∆tn

)
(2.60)

with k̇i the dual variable associated to ki. The partial component in Equation (2.60) carrying
the coefficient ϵ gives

k̇i =
∂f

∂u

(
un +

s∑

j=1

aijkj, θ, tn + ci∆tn

)(
sn +

s∑

j=1

aij k̇j

)

+
∂f

∂θ

(
un +

s∑

j=1

aijkj, θ, tn + ci∆tn

)
,

(2.61)

which coincides with the Runge-Kutta scheme we will obtain for the original sensitivity
equation. This means that forward AD on Runge-Kutta methods leads to solutions for the
sensitivity that have the same convergence properties of the forward solver.

2.3.9.4 Consistency: discrete and continuous adjoints

As previously mentioned, the difference between the discrete and continuous adjoint methods
is that the former follows the discretize-then-differentiate approach, also known as finite
difference of adjoints (Sirkes et al. 1997). In contrast, continuous adjoint equations are
derived by directly operating on the differential equation, without a priori consideration of
the numerical scheme used to solve it. In some sense then, we can think of the discrete adjoint
λ = (λ1, λ2, . . . , λN) in Equation (2.44) as the discretization of the continuous adjoint λ(t).

A natural question then is if these two methods effectively compute the same gradient,
i.e., if the discrete adjoint consistently approximate its continuous counterpart. Furthermore,
since the continuous adjoint method requires to numerical solve the adjoint, we are interested

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 44

in the relative accuracy of the forward and backwards step. It has been shown that for both
explicit and implicit Runge-Kutta methods, as long as the coefficients in the numerical
scheme given in Equation (2.2) satisfy the condition bi ̸= 0 for all i = 1, 2, . . . , s, then
the discrete adjoint is a consistent estimate of the continunous adjoint with same order
of convergence than the forward numerical solver (Hager 2000; Sandu 2006, 2011; Walther
2007). To guarantee the same order of convergence, it is important that both the forward and
backwards solver use the same Runge-Kutta coefficients (Alexe et al. 2009). Importantly,
even when consistent, the code generated using the discrete adjoint using AD tools (see
Section 2.3.9.2) can be sub-optimal and manual modification of the differentiation code are
required to guarantee correctness (Alexe et al. 2007; Eberhard et al. 1996).

It is important to remark that adjoint methods can fail in chaotic systems (Wang et al.
2014). Some works have shown that continuous adjoints can lead to unstable sensitivities
(Jensen et al. 2014). In the more general case, discrete and continuous adjoint methods can
give different computational results (Sirkes et al. 1997).

2.4 Implementation: A computer science perspective
In this section, we address how these different methods are computationally implemented
and how to decide which method to use depending on the scientific task. In order to address
this point, it is important to make one further distinction between the methods introduced
in Section 2.3, i.e., between those that apply direct differentiation at the algorithmic level
and those that are based on numerical solvers. The former are easier to implement since
they are agnostic with respect to the mathematical and numerical properties of the system of
ODEs; however, they tend to be either inaccurate, memory-expensive, or at times unfeasible
for large models. The latter family of methods that are based on numerical solvers include
the sensitivity equations and the adjoint methods, both discrete and continuous; they are
more difficult to implement and for real case applications require complex software imple-
mentations, but they are also more accurate and adequate. This section is then divided in
two parts:

• Direct methods. (Section 2.4.1) Their implementation occurs at a higher hierarchy
than the numerical solver software. They include finite differences, AD, complex step
differentiation.

• Solver-based methods. Their implementation occurs at the same level of the nu-
merical solver. They include:

– Sensitivity equations (Section 2.4.2.1)

– Adjoint methods, both discrete and continuous (Section 2.4.2.2)

Despite the fact that these methods can be implemented in different programming languages,
here we decided to use the Julia programming language for the different examples. Julia is a

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 45

recent but mature programming language that already has a large tradition in implementing
packages aiming to advance differentiable programming (Bezanson et al. 2017, 2012), with
a strong emphasis in differential equation solvers (Rackauckas et al. 2016) and sensitivity
analysis (Rackauckas et al. 2020). Nevertheless, in reviewing existing work, we will also point
to applications developed in other programming languages.

The GitHub repository DiffEqSensitivity-Review contains both text and code
used to generate this manuscript. See Appendix A for a complete description of the scripts
provided. The symbol ♣ will be use to reference code associated with scripts in the reposi-
tory.

2.4.1 Direct methods

Direct methods are implemented independent of the structure of the differential equation
and the numerical solver used to solve it. These include finite differences, complex step
differentiation, and both forward and reverse mode AD.

2.4.1.1 Finite differences

Finite differences are easy to implement manually, do not require much software support, and
provide a direct way of approximating a gradient. In Julia, these methods are implemented
in FiniteDiff.jl and FiniteDifferences.jl, which already include subroutines to
determine step-sizes. However, finite differences are less accurate and as costly as forward
AD (Griewank 1989) and complex-step differentiation. Figure 2.6 illustrates the error in
computing the gradient of a simple loss function for both true analytical solution and nu-
merical solution of a system of ODEs as a function of the stepsize ε using finite differences
♣1. Here we consider the solution of the differential equation u′′ + ω2u = 0 with initial
condition u(0) = 0 and u′(0) = 1, which has analytical solution utrue(t) = sin(ωt)/ω. The
numerical solution unum(t) can be founded by solving the system of ODEs

{
du1

dt
= u2 u1(0) = 0

du2

dt
= −ω2u1 u2(0) = 1.

(2.62)

The loss function used to differentiate is given by L(θ) = u(10). We see that finite differences
are inaccurate for computing the derivative of utrue with respect to ω (that is, u′

true =
cos(ωt)− sin(ωt)/ω2) when the stepsize ε is both too small and too large (red dashed line).
When the derivative is instead computed using the numerical solution unum(t) (red circles),
the accuracy of the derivative further deteriorates due to approximation errors in the solver.
This effect is dependent on the numerical solver tolerance. Notice that in general we do not
know the true solution of the differential equation, so the derivative of utrue obtained using
finite differences just serves as a lower bound of the error we expect to see when performing
sensitivity analysis on top of the numerical solver.

https://github.com/ODINN-SciML/DiffEqSensitivity-Review

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 46

Stepsize (𝜀)
10−15 10−10 10−5 100

R
el

at
iv

e
e r

ro
r

10−15

10−10

10−5

100

Finite differences (exact solution)

Complex step differentiation (exact solution)

Finite differences on solver (tol=10− 6)

Finite differences on solver (tol=10− 12)

Complex step differentiation on solver (tol=10− 6)

Complex step differentiation on solver (tol=10− 12)

Forward AD (tol=10− 6)

Forward AD (tol=10− 12)

Figure 2.6: Absolute relative error when computing the gradient of the function
u(t) = sin(ωt)/ω with respect to ω at t = 10.0 as a function of the stepsize ε. Here,
u(t) corresponds to the solution of the differential equation u′′ + ω2u = 0 with initial
condition u(0) = 0 and u′(0) = 1. The blue dots correspond to the case where the rela-
tive error is computed with finite differences. The red and orange lines are for the case
where u(t) is numerically computed using the default Tsitouras solver (Tsitouras 2011)
from OrdinaryDiffEq.jl using different tolerances. The error when using a numeri-
cal solver is larger and it is dependent on the numerical precision of the numerical solver.

2.4.1.2 Automatic differentiation

The AD algorithms described in Section 2.3.3 can be implemented using operator overloading
for AD based on dual numbers and source code transformation for both forward and reverse
AD based on the computational graph (Martins et al. 2001). In this section we are going to
cover how forward AD is implemented using dual numbers, postponing the implementation
of AD based on computational graphs for reverse AD (Section 2.4.1.2.2).

2.4.1.2.1 Forward AD based on dual numbers Implementing forward AD using
dual numbers is usually carried out using operator overloading (Neuenhofen 2018). This
means expanding the object associated to a numerical variable to include the tangent and
extending the definition of atomic algebraic functions. In Julia, this can be done by relying
on multiple dispatch (Bezanson et al. 2017). The following example illustrates how to define
a dual number and its associated binary addition and multiplication extensions ♣2.

� �
using Base: @kwdef

@kwdef struct DualNumber{F <: AbstractFloat}
value::F
derivative::F

end

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 47

Binary sum
Base.:(+)(a::DualNumber, b::DualNumber) = DualNumber(value = a.value + b.value,

derivative = a.derivative + b.derivative)

Binary product
Base.:(*)(a::DualNumber, b::DualNumber) = DualNumber(value = a.value * b.value,

derivative = a.value*b.derivative + a.derivative*b.value)� �
We further overload base operations for this new type to extend the definition of standard
functions by simply applying the chain rule and storing the derivative in the dual variable
following Equation (2.20):

� �
function Base.:(sin)(a::DualNumber)

value = sin(a.value)
derivative = a.derivative * cos(a.value)
return DualNumber(value=value, derivative=derivative)

end� �
In the Julia ecosystem, ForwardDiff.jl implements forward mode AD with multidi-

mensional dual numbers (Revels et al. 2016) and the sensitivity method ForwardDiff
Sensitivity implements forward differentiation inside the numerical solver using dual
numbers. Figure 2.6 shows the result of performing forward AD inside the numerical solver.
We can see that for this simple example forward AD performs as good as the best output
of finite differences and complex step differentiation (see Section 2.4.1.3) even for the best
possible choice of the stepsize ε. Further, note that AD is not subject to numerical errors
due to floating point arithmetic (Griewank et al. 2008).

Implementations of forward AD using dual numbers and computational graphs require a
number of operations that increases with the number of variables to differentiate, since each
computed quantity is accompanied by the corresponding gradient calculations (Griewank
1989). This consideration also applies to the other forward methods, including finite differ-
ences and complex-step differentiation, which makes forward models prone to the curse of
dimensionality with respect to the number of parameters considered.

Although AD is always algorithmically correct, when combined with a numerical solver
AD can be numerically incorrect and result in wrong gradient calculations (Eberhard et al.
1996). To illustrate this point, consider the following example of a simple system of ODEs

{
du1

dt
= au1 − u1u2 u1(0) = 1

du2

dt
= −au2 + u1u2 u2(0) = 1

(2.63)

with a the parameter with respect to which we want to differentiate. In the simple case
of a = 1, the solutions of the ODE are constant functions u1(t) ≡ u2(t) ≡ 1. Traditional
adaptive stepsize solvers used for just solving ODEs are designed to control for numerical
errors in the ODE solution but not in its sensitivities when coupled with an internal AD
method. This can lead to wrong gradient calculations that propagate through the numerical
solver without further warning ♣3.

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 48

2.4.1.2.2 Reverse AD based on computational graph In contrast to finite differ-
ences, forward AD, and complex-step differentiation, reverse AD is the only of this family of
methods that propagates the gradient in reverse mode by relying on analytical derivatives of
primitive functions, which in Julia are available via ChainRules.jl. Since this requires
the evaluation intermediate variables, reverse AD requires a more delicate protocol of how
to store intermediate variables in memory and make them accessible during the backwards
pass.

Reverse AD can be implemented via pullback functions (Innes 2018), a method also
known as continuation-passing style (Wang et al. 2019). In the backward step, it executes a
series of function calls, one for each elementary operation. If one of the nodes in the graph
w is the output of an operation involving the nodes v1, . . . , vm, where vi → w are all nodes
in the graph, then the pullback v̄1, . . . , v̄m = Bw(w̄) is a function that accepts gradients with
respect to w (defined as w̄) and returns gradients with respect to each vi (defined as v̄i) by
applying the chain rule. Consider the example of the multiplicative operation w = v1 × v2.
Then

v̄1, v̄2 = v2 × w̄, v1 × w̄ = Bw(w̄), (2.64)

which is equivalent to using the chain rule as

∂ℓ

∂v1
=

∂

∂v1
(v1 × v2)

∂ℓ

∂w
. (2.65)

A crucial distinction between AD implementations based on computational graphs is
between static and dynamical methods (Baydin et al. 2017). In the case of a static imple-
mentation, the computational graph is constructed before any code is executed, which are
encoded and optimized for performance within the graph language. For static structures
such as neural networks, this is ideal (Abadi et al. 2016). However, two major drawbacks
of static methods are composability with existing code, including support of custom types,
and adaptive control flow, which is a common feature of numerical solvers. These issues
are addressed in reverse AD implementations using tracing, where the program structure is
transformed into a list of pullback functions that built the graph dynamically at runtime.
Popular libraries in this category are Tracker.jl and ReverseDiff.jl. There also exist
source-to-source AD system that achive highest performance at the same time they support
arbitrary control flow structure. These include Zygote.jl (Innes et al. 2019), Enzyme.jl
(Moses et al. 2020), and Difractor.jl. The existence of multiple AD packages lead to
the development of AbstractDifferentiation.jl which allows to combine different
methods (Schäfer et al. 2021).

2.4.1.2.3 Checkpointing In opposition to forward methods, all reverse methods, in-
cluding backpropagation and adjoint methods, require access to the value of intermediate
variables during the propagation of the gradient. For a numerical solver, the amount of
memory required to accomplish this can be very large, involving a total of at least O(nk)
terms, with k the number of steps of the numerical solver. Checkpointing is a technique that

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 49

can be used for all the backwards methods that avoids storing all the intermediate states by
balancing storing and recomputation to recover the required state exactly (Griewank et al.
2008). This is achieved by saving intermediate states of the solution in the forward pass and
recalculating the solution between intermediate states in the backwards mode (Griewank
et al. 2008; Schanen et al. 2023).

2.4.1.3 Complex step differentiation

Modern software already has support for complex number arithmetic, making complex step
differentiation very easy to implement. In Julia, complex analysis arithmetic can be easily
carried inside the numerical solver. The following example shows how to extend the numerical
solver used to solve the ODEs in Equation (2.62) to support complex numbers ♣4.

� �
function dyn!(du::Array{Complex{Float64}}, u::Array{Complex{Float64}}, p, t)

ω = p[1]
du[1] = u[2]
du[2] = - ωˆ2 * u[1]

end

tspan = [0.0, 10.0]
du = Array{Complex{Float64}}([0.0])
u0 = Array{Complex{Float64}}([0.0, 1.0])

function complexstep_differentiation(f::Function, p::Float64, ε::Float64)
p_complex = p + ε * im
return imag(f(p_complex)) / ε

end

complexstep_differentiation(x -> solve(ODEProblem(dyn!, u0, tspan, [x]), Tsit5()
).u[end][1], 20., 1e-3)� �

Figure 2.6 further shows the result of performing complex step differentiation using the
same example as in Section 2.4.1.1. We can see from both exact and numerical solutions
that complex-step differentiation does not suffer from small values of ε, meaning that ε can
be chosen arbitrarily small (Martins et al. 2001) as long as it does not reach the underflow
threshold (Goldberg 1991). Notice that for large values of the stepsize ε complex step
differentiation gives similar results than finite differences, while for small values of ε the
performance of complex step differentiation is slightly worse than forward AD. This result
emphasizes the observation made in Section 2.3.9.2, complex step differentiation has many
aspects in common with finite differences and AD based on dual numbers.

However, the difference between the methods sometimes makes the complex step differ-
entiation more efficient than both finite differences and AD (Lantoine et al. 2012), an effect
that can be counterbalanced by the number of extra unnecessary operations that complex
arithmetic requires (see last column in Figure 2.4) (Martins et al. 2003).

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 50

2.4.2 Solver-based methods

Sensitivity methods based on numerical solvers tend to be better adapted to the structure and
properties of the underlying ODE (stiffness, stability, accuracy) but are also more difficult
to implement. This difficulty arises from the fact that the sensitivity method needs to
deal with some numerical and computational considerations, including i) how to handle
matrix/Jacobian-vector products; ii) numerical stability of the forward/reverse solver; and
iii) memory-time tradeoff. These factors are further exacerbated by the number of ODEs
and parameters in the model. Just a few modern scientific softwares have the capabilities of
solving systems of ODEs and computing their sensitivities at the same time. These include
CVODES within SUNDIALS in C (Hindmarsh et al. 2005; Serban et al. 2005); ODESSA
(Leis et al. 1988) and FATODE (discrete adjoints) (Zhang et al. 2014) both in Fortram;
SciMLSensitivity.jl in Julia (Rackauckas et al. 2020); Dolfin-adjoint based on
the FEniCS Project (Farrell et al. 2013; Mitusch et al. 2019); DENSERKS in Fortram (Alexe
et al. 2007); DASPKADJOINT (Cao et al. 2002); and Diffrax in Python (Kidger 2021).

It is important to remark that the underlying machinery of all numerical integrators relies
on solvers for linear systems of equations, which can be solved in dense, band (sparse), and
Krylov mode. Another important consideration is that all these methods have subroutines
to compute the VJPs involved in the sensitivity and adjoint equations. This calculation is
carried out by another sensitivity method, usually finite differences or AD, which plays a
central role when analyzing the accuracy and stability of the adjoint method.

2.4.2.1 Sensitivity equation

For systems of equations with few numbers of parameters, this method is useful since the
system of n(p+1) equations composed by Equations (2.1) and (2.32) can be solved using the
same precision for both solution and sensitivity numerical evaluation. Furthermore, it does
not required saving the solution in memory. The following example illustrates how Equation
(2.62) and the sensitivity equation can be solved simultaneously using the simple explicit
Euler method ♣5:

� �
ω = 0.2
p = [ω]
u0 = [0.0, 1.0]
tspan = [0.0, 10.0]

Dynamics
function f(u, p, t)

du1 = u[2]
du2 = - p[1]ˆ2 * u[1]
return [du1, du2]

end

Jacobian ∂f/∂p
function ∂f∂p(u, p, t)

Jac = zeros(length(u), length(p))
Jac[2,1] = -2*p[1]*u[1]
return Jac

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 51

end

Jacobian ∂f/∂u
function ∂f∂u(u, p, t)

Jac = zeros(length(u), length(u))
Jac[1,2] = 1
Jac[2,1] = -p[1]ˆ2
return Jac

end

Explicit Euler method
function sensitivityequation(u0, tspan, p, dt)

u = u0
sensitivity = zeros(length(u), length(p))
for ti in tspan[1]:dt:tspan[2]

sensitivity += dt * (∂f∂u(u, p, ti) * sensitivity + ∂f∂p(u, p, ti))
u += dt * f(u, p, ti)

end
return u, sensitivity

end

u, s = sensitivityequation(u0, tspan , p, 0.001)� �
The simplicity of the sensitivity method makes it available in most software for sensitivity
analysis. In Julia, the ForwardSensitivity method implements continuous sensitivity
analysis, which performs forward AD on the solver via ForwardDiff.jl (see Section
2.3.9.3). The same result can be achieve by:

� �
using Zygote, SciMLSensitivity

function f!(du, u, p, t)
du[1] = u[2]
du[2] = - p[1]ˆ2 * u[1]

end

s = Zygote.jacobian(p->solve(ODEProblem(f!, u0, tspan, p), Tsit5(), u0=u0, p=p,
sensealg=ForwardSensitivity())[end], p)� �

Notice that in the last example we needed to re-define the out-of-place function f to the
in-place version f!.

For stiff systems of ODEs the use of the sensitivity equations is unfeasible (Kim et al.
2021). This is because stiff ODEs require the use of stable solvers with cubic cost with
respect to the number of ODEs (Wanner et al. 1996), making the total complexity of the
sensitivity method O(n3p3). This complexity makes this method useless for models with
many ODEs and/or parameters.

2.4.2.1.1 Computing VJPs inside the solver All solver-based methods require the
computation of VJPs. In the case of the sensitivity equation, this corresponds to the row/-
column terms in ∂f

∂u
s in Equation (2.32). For the adjoint equations, although an efficient trick

has been used to remove the computationally expensive VJP, we still need to evaluate the
term λT ∂G

∂θ
for the discrete adjoint method in Equation (2.39), and λT ∂f

∂θ
for the continuous

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 52

adjoint method in Equation (2.53). Therefore, the choice of the algorithm to compute VJPs
can have a significant impact in the overall performance.

In SUNDIALS, the VJPs involved in the sensitivity and adjoint method are handled using
finite differences unless specified by the user (Hindmarsh et al. 2005). In FATODE, these can
be computed with finite differences, AD, or it can be provided by the user. In the Julia
ecosystem, different AD packages are available for this task (see Section 2.4.1.2.2), includ-
ing ForwardDiff.jl, ReverseDiff.jl, Zygote.jl (Innes et al. 2019), Enzyme.jl
(Moses et al. 2020), Tracker.jl. These will compute the VJPs using some form of AD,
which will result in correct calculations but potentially sub-optimal code. In Julia, the op-
tions autodiff and autojacvec allow to customized if VJPs are computed using AD or
finite differences.

2.4.2.2 Adjoint methods

For complex and large systems, direct methods for computing the gradient on top of the
numerical solver can be memory expensive due to the large number of function evaluations
required by the solver and the later store of the intermediate states. For these cases, adjoint-
based methods allow us to compute the gradients of a loss function by instead computing the
adjoint that serves as a bridge between the solution of the ODE and the final gradient. The
adjoint method offers advantages when working with complex systems. Since we are dealing
with a new differential equation special care needs to be taken with respect to numerical
efficiency and stability.

2.4.2.2.1 Discrete adjoint method In order to illustrate how the discrete adjoint
method works, the following example shows how to manually solve for the gradient of the
solution of (2.62) using an explicit Euler method.

� �
function discrete_adjoint_method(u0, tspan, p, dt)

u = u0
times = tspan[1]:dt:tspan[2]

λ = [1.0, 0.0]
∂L∂θ = zeros(length(p))
u_store = [u]

Forward pass to compute solution
for t in times[1:end-1]

u += dt * f(u, p, t)
push!(u_store, u)

end

Reverse pass to compute adjoint
for (i, t) in enumerate(reverse(times)[2:end])

u_memory = u_store[end-i+1]
λ += dt * ∂f∂u(u_memory, p, t)' * λ
∂L∂θ += dt * λ' * ∂f∂p(u_memory, p, t)

end

return ∂L∂θ

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 53

Method Stability Stiff Performance Memory
D

is
cr

et
e ReverseDiffAdjoint Best O(n3 + p) High

ZygoteAdjoint Best O(n3 + p) High

TrackerAdjoint Best O(n3 + p) High

C
on

ti
nu

ou
s

Sensitivity equation Good O(n3p3) O(1)
Backsolve adjoint Poor O((n+ p)3) O(1)
Backsolve adjoint◀ Medium O((n+ p)3) O(k)

Interpolating adjoint Good O((n+ p)3) High

Interpolating adjoint◀ Good O((n+ p)3) O(k)
Quadrature adjoint Good O(n3 + p) High

Gauss adjoint Good O(n3 + p) High

Table 2.1: Comparison in performance and cost of solver-based methods. Methods
that are being checkpointed are indicated with the symbol ◀, with k the total number of
checkpoints.

end

∂L∂θ = discrete_adjoint_method(u0, tspan, p, 0.001)� �
In this case, the full solution in the forward pass is stored in memory and used to compute
the adjoint and integrate the loss function during the reverse pass. As in the case of reverse
AD, checkpointing can be used here.

The previous example shows a manual implementation of the adjoint method. However,
as we discuss in Section 2.3.9.2, the discrete adjoint method can be directly implemented
using reverse AD. In the Julia SciML ecosystem, ReverseDiffAdjoint performs reverse
AD on the numerical solver via ReverseDiff.jl; ZygoteAdjoint via Zygote.jl;
and TrackerAdjoint via Tracker.jl. In all these cases, a custom pullback function
needs to be specified that specifies how VJPs are computed thought the numerical solver
(Rackauckas et al. 2021).

2.4.2.2.2 Continuous adjoint method The continuous adjoint method offers a series
of advantages over the discrete method and the rest of the forward methods previously
discussed. Just as the discrete adjoint methods and backpropagation, the bottleneck is
how to solve for the adjoint λ(t) due to its dependency with VJPs involving the state u(t).

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 54

Effectively, notice that Equation (2.51) involves the terms f(u, θ, t) and ∂h
∂u

, which are both
functions of u(t). In opposition to the discrete adjoint methods, notice that here the full
continuous trajectory u(t) is needed, instead of its discrete pointwise evaluation. There are
two solutions for addressing the evaluation of u(t) during the backwards step.

(i) Interpolation. During the forward model, we can store in memory intermediate states
of the numerical solution allowing the dense evaluation of the numerical solution at any
given time. This can be done using dense output formulas, for example by adding extra
stages to the Runge-Kutta scheme (Equation (2.2)) that allows to define a continuous
interpolation, a method known as continuous Runge-Kutta (Alexe et al. 2009; Wanner
et al. 1996).

(ii) Backsolve. Solve again the original system of ODEs together with the adjoint as the
solution of the reversed augmented system (Chen et al. 2018)

d

dt

u
λ
dL
dθ

 =

−f
−∂f

∂u

T
λ− ∂h

∂u

T

−λT ∂f
∂θ
− ∂h

∂θ

u
λ
dL
dθ

 (t1) =

u(t1)
∂L

∂u(t1)

λ(t0)
T s(t0)

 . (2.66)

An important problem with this approach is that computing the ODE backwards
du
dt

= −f(u, θ, t) can be unstable and lead to large numerical errors (Kim et al. 2021;
Zhuang et al. 2020). One way of solving this system of equations that ensures stability
is by using implicit methods. However, this requires cubic time in the total number
of ordinary differential equations, leading to a total complexity of O((n+ p)3) for the
adjoint method.

Both interpolating and backsolve adjoint methods can be implemented along with a check-
pointing scheme. This is implemented in Checkpointing.jl (Schanen et al. 2023).

When dealing with stiff differential equations, special considerations need to be taken
into account. Two alternatives are proposed in (Kim et al. 2021), the first referred to as
Quadrature Adjoint produces a high order interpolation of the solution u(t) as we move
forward, then solve for λ backwards using an implicit solver and finally integrating dL

dθ
in a

forward step. This reduces the complexity to O(n3+ p), where the cubic cost in the number
of ODEs comes from the fact that we still need to solve the original stiff differential equation
in the forward step. A second similar approach is to use an implicit-explicit (IMEX) solver,
where we use the implicit part for the original equation and the explicit for the adjoint. This
method also has a complexity of O(n3 + p).

2.4.2.2.3 Solving the quadrature Another computational consideration is how the
integral in Equation (2.53) is numerically evaluated. Some methods save computation by
noticing that the last step in the continuous adjoint method for evaluating dL

dθ
is an integral

instead of an ODE, and then it can be computed without the need to include it inside

CHAPTER 2. DIFFERENTIABLE PROGRAMMING FOR DIFFERENTIAL
EQUATIONS 55

the numerical solver (Kidger et al. 2021). Numerical integration, also known as quadrature
integration, consists in approximating integrals by finite sums of the form

∫ t1

t0

F (t)dt ≈
K∑

i=1

ωi F (τi), (2.67)

where the evaluation of the function occurs in certain knots t0 ≤ τ1 < . . . < τK ≤ t1, and
ωi are weights. Weights and knots are obtained in order to maximize the order in which
polynomials are exactly integrated (Stoer et al. 2002). Different quadrature methods are
based on different choices of the knots and associated weights. Between these methods, the
Gaussian quadrature is the faster method to evaluate one-dimensional integrals (Norcliffe
et al. 2023), which gives the name to the Gaussian adjoint method in Table 2.1.

2.5 Conclusions
In the present work, we presented a comprehensive overview of the different existing methods
for calculating the sensitivity or gradients of forward maps involving numerical solutions of
differential equations. This task has been approached from three different angles. First,
we presented the existing literature in different scientific communities where adjoints and
sensitivities have been used before and play a central modelling role, especially for inverse
modeling. Secondly, we reviewed the mathematical foundations of these methods and their
classification as forward-reverse and discrete-continuous. Finally, we have shown how the
different methods are implemented in Julia and the different computational considerations
that we must take into account when implementing or using a sensitivity algorithm.

Software availability. The GitHub repository DiffEqSensitivity-Review contains
both text and code used to generate this manuscript. The manuscript for the review paper
and the bibliography file are automatically generated with GitHub actions. See Appendix
A for a complete description of the scrips provided. The symbol ♣ will be use to reference
code associated with scripts in the repository.

https://github.com/ODINN-SciML/DiffEqSensitivity-Review

56

Chapter 3

Glacier modelling

In this section we are going to introduce some basic elements in glacier ice flow modelling.
Ice on Earth can be mostly found in the two polar ice caps, Antarctica and Greenland, and
distributed around the approximately 274, 000 mountain glaciers around the globe (RGI 7.0
Consortium 2023). Ice shelves, ice sheets, and mountain glaciers can be modelled as a very
slow viscous fluid, pushed by gravity and internal hydro-static pressure, in interaction with
the surrounding rock via friction mechanisms, on top of which accumulation and ablation
effects (including melting and calving) occur.

The two most common approaches found in the literature to model glacier ice flow are
the following:

1. Mass conservation approach. Simple, but accurate. This consists on assuming
that the glacier is in a balance state, that is, the flow of ice balances the ablation (loss
of ice) and accumulation of new ice. This approach fails when the glacier is far from a
steady state, but it also predicts many observed characteristics of glacier flow.

2. Mechanical physics. The gold standard, this is what we want to use in theory. Here,
we try to understand the evolution of a glacier based on the effect of the gravitational
force plus the boundary conditions of the glacier. Models based on mechanical physics
approaches are more difficult to implement and lack a good data assimilation pipeline,
potentially leading to useless predictions. However, they have the potential to better
describe the physical processes involved in ice flow.

In this chapter we are going to derive the fundamental differential equations governing
ice flow. These are going to be the governing laws we will use to describe the forward model
of the workflow in ODINN in Chapter 4.

3.1 Physical foundations
Let us first begin with some notation. The standard convention in glacier modelling is that
coordinate x is used to describe the flowline direction; y the cross-sectional direction; and

CHAPTER 3. GLACIER MODELLING 57

x

yz

H(x, y, t)

S(x, y, t)

B(x, y)

Figure 3.1: Diagram of a mountain glacier with its associated coordinate system.

z is used to described the vertical axes pointing in the direction of gravity (see Figure 3.1).
This applies very well for elongated or tongue-shaped glaciers, where the scale of the physical
processes applying in the direction of flow are different than the ones occurring in the cross-
sectional direction of ice flow. In general, both x and y describe a generic planar coordinate
system. We further introduce the following shape variables:

• B(x, y) the bed topography, that is, the altitude of the rock underlying the glacier.

• H(x, y, t) the height of the ice column of ice.

• S(x, y, t) = B(x, y) +H(x, y, t) the ice surface elevation.

The only dynamical quantities we consider here are the shape of the glacier, which affects
the ice thickness H and the observed surface elevation S. When redundant, we will ignore
the temporal and spatial dependency on these variables.

3.1.1 Continuity equation

We will focus on the modelling of changes in the height of the ice column H(x, y, t) instead
of the full three-dimensional flow of ice. This strategy involves deriving depth-integrated
equations, meaning that we sum up all the sources of stresses/forces acting on a column of
ice to come up with a vertically averaged description of the glacier. The variation in ice
thickness is determined by the continuity equation (Cuffey et al. 2010). If ρ(x, y, z, t) and
u(x, y, z, t) denote the density of ice and ice flow velocity, respectively, then the continuity
equation for fluids states (Landau et al. 2013)

∂ρ

∂t
+∇ · (ρu) = 0. (3.1)

For a constant density and without melting or aggregation of ice, the continuity equation
reduces pointwise to the incompressibility condition ∇ · u = 0. Assuming a constant density

CHAPTER 3. GLACIER MODELLING 58

ρ is justified by the fact that the superficial layer known as firn where the density varies is
relatively small compared to the rest of the glacier (Fowler 2010). However, since addition
and removal of ice happen just in the bottom and surface of a glacier, we instead consider
the vertically integrated version of the continuity equation. The vertical integration of the
continuity equation results in a new continuity equation of the mass change over the vertical
column of ice with length H(x, y, t). Now, we can integrate this last equation in order to
have the mass change for a vertical column of ice. Considering the boundary conditions
related to the vertical velocities in both the bed and the surface (Whillans 1977), we obtain
the following version of the continuity equation for constant density ρ,

∂H

∂t
= ḃ−∇xy · q, (3.2)

with q the ice flow given by

q(x, y, t) =

∫ S(x,y,t)

B(x,y)

u(x, y, z)dz = ūH(x, y, t), (3.3)

and ∇xy the divergence on the horizontal plane (when referring to two dimensional flows,
we will use the symbol ∇ to refer to ∇xy). The term ḃ = ḃ(x, y, t) is known as mass balance
and represents addition or removal of ice happening both in the surface and bottom of the
glacier. Since most of the removal and aggregation of ice happens in the surface instead of
in the bed, we usually will model only the surface mass balance (SMB) contribution and we
will call ḃ both surface mass balance or just mass balance (MB).

The continuity equation states that solving for the ice thickness H and solving for the ice
flow u are the same problem once we know the mass balance. It is also interesting to notice
that variations in ice thickness are ruled by two different processes: the mass balance term
associated to accumulation and ablation of ice (usually related to climatic or thermodynamic
mechanisms) and the ice dynamical term that establishes how the mass of ice is re-distributed
as a consequence of the movement of ice.

The mass conservation approach described previously consists in assuming that changes
in ice thickness H are very slow compared to the processes of flow and mass balance in
Equation (3.2). This is certainly the case of a glacier in equilibrium, where the shape of the
glacier does not change drastically over time. For these cases, the continuity equation reads
as

ḃ ≈ ∇xy · q. (3.4)

This last equation tell us that we can inform changes in ice velocities (dictated by physical
mechanisms) based on observations of accumulation (dictated by climate and weather).

If useful and simple to perform, the mass conservation approach relies on the strong hy-
pothesis of stationary glaciers that do not drastically change over time. Considering the rapid
retreat of mountain glaciers all around the world, more complex and complete approaches
are needed in order to capture the fast variability of glacier shape. In the next section, and
in the rest of this thesis, we will instead consider the mechanical physics approach.

CHAPTER 3. GLACIER MODELLING 59

3.1.2 Glen’s law

Glen’s Law is a phenomenological law that relates shearing ϵ̇ with deviatoric stress τ using
a power law ϵ̇ = Aτn (Glen 1955). The coefficients of this power law relation are the Glen
exponent n and Glen coefficient A, also known as creep exponent and creep parameter.
Importantly for our analysis, these coefficients are generally non-constant and may vary
both temporally and spatially. Although it is usually assumed and there is some evidence
supporting that n ≈ 3, this number can vary between n ≈ 1.8 and n ≈ 4 for different
configurations of ice, including the stress configurations and the ice fabric, that is, the grain
size and distribution of ice crystals, as the main driver (Behn et al. 2021). Furthermore, the
viscosity of the ice and consequently the Glen parameter A are affected by multiple factors,
including ice temperature, pressure, water content, and ice fabric (Cuffey et al. 2010). For
example, ice is harder and therefore more resistant to deformation at lower temperatures.
The rest of this section is dedicated to the mathematical formulation of the Glen creep law
using tensorial analysis.

When mathematically modeling a fluid, we associate different tensors to each differential
unit, in our case, a small differential cube of ice. A tensor is a algebraic object that is invariant
under change of the coordinate system. The Jacobian of the velocity vector u = (u1, u2, u3)
(first order tensor) is the second rank tensor given by

∂u1

∂x
∂u2

∂x
∂u3

∂x
∂u1

∂y
∂u2

∂y
∂u3

∂y
∂u1

∂z
∂u2

∂z
∂u3

∂z

 . (3.5)

All tensors can be decomposed as the sum of a symmetric and antisymmetric (or skew-
symmetric) tensor (Spain 2003; Synge et al. 1978). In physical terms, the symmetric com-
ponent describes the stretching and shearing while the second component quantifies the rate
of rotation. Since antisymmetric matrices can be used to compute cross products as matrix
representations, it is easy to check that the antisymmetric part corresponds to a solid rota-
tion around the vorticity vector. On the other hand, the rate of deformation is encoded in
the symmetric part of the speed tensor, given by

ϵ̇ij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (3.6)

Here we had introduced the common notation x1 = x, x2 = y and x3 = z. Now, the diagonal
terms of the tensor ϵ̇ correspond to the stretching of an unit of ice, while the non-diagonal
terms quantify shearing. For an incompressible fluid we have that the total stretching is
zero, meaning

∑
i ϵ̇ii = 0.

The second important tensor we need to consider to model ice deformation is the stress
tensor. The stress tensor σ is a second rank tensor that allow us to compute the stress/pres-
sure that a differential of ice experiences. Given a normal vector n = (nx, ny, nz), the stress
T in the direction n is a vector that represents the force by unit of area that a differential of

CHAPTER 3. GLACIER MODELLING 60

ice is experiencing in that direction and can be computed as

Tx

Ty

Tz

 =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

nx

ny

nz

 . (3.7)

If the non diagonal terms in σ are non-zero, this means that a piece of ice will shrink in
one direction. Another important property is that σ is a symmetric tensor, meaning that
σxy = σyx, σxz = σzx and σyz = σzy. This is a necessary condition in order to satisfy the
torque balance of an infinitesimal cube of ice (Fowler 2010).

It is the deviatoric stress τ that determines the rate of deformation of ice. The deviatoric
stress tensor τ is defined as

τ =

τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 =

σxx − σM σxy σxz

σyx σyy − σM σyz

σzx σzy σzz − σM

 , (3.8)

with σM the normal mean stress defined as σM = 1
3
(σxx+σyy+σzz), which also coincides with

the negative of the mean pressure p = −σM (Cuffey et al. 2010; Fowler et al. 2020). Glen’s
law relates the rate of deformation of ice with deviatoric stress via the power relationship
ϵ̇ = A(τ)τn. The isotropic condition of ice imposes the constraint ϵij = λ(τ)τij, with λ(τ)
a function of an invariant of the tensor τ . This leads to the following tensorial form of the
Nye-Glen’s law,

ϵ̇jk = Aτn−1
E τjk. (3.9)

with
τ 2E =

1

2

(
τ 2xx + τ 2yy + τ 2zz

)
+ τ 2xy + τ 2xz + τ 2yz. (3.10)

the effective stress; and A the Glen coefficient.
Solving for the deviatoric tensor instead we obtain τjk = ηϵ̇jk, with η the viscosity of the

fluid given by η = 1/Aτn−1
E . For n = 3, the viscosity decreases if we increase the stress at

any direction. Ice becomes more fluid when the stress increases. The creep of glacier ice is
intermediate between Newtonian viscous and perfect plastic behaviours.

3.1.3 Flow equations

The mechanical physics approach consists of deriving differential equations for the variations
in glacier shape and flow, represented by the ice thickness profile or the ice flow velocity
field. The Navier-Stokes equation for viscous fluids is

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (η∇u) + ρg. (3.11)

with p = p(x, y, z, t) the pressure; η = η(x, y, z, t) the viscosity; and g = g(z) the gravita-
tional acceleration (Brenner 2005; Lemarié-Rieusset 2018). Now, ice behaves as a slow fluid

CHAPTER 3. GLACIER MODELLING 61

that does not experience turbulence, convection, or the Coriolis force like the atmosphere
and ocean (Bueler 2014). This means that the left side of Equation (3.11) is approximately
zero in comparison with the right side. More technically, this simplification is justified by the
fact that ice behaves as a viscous fluid with Reynolds number of the order of 10−14 (Fowler
et al. 2020). The remaining equation is just the balance of forces, and combined with the
incompressibility of ice and Glen’s law, they define the set of Stokes equations (Bueler 2014):

∇ · u = 0 (3.12)
0 = −∇p+∇ · τij + ρg (3.13)

ϵ̇ij = Aτn−1
E τij. (3.14)

Notice that Stokes equations do not contain any time derivative. This means that the
boundary conditions, the gravity force, and other parameters alone determine the velocity
and stress fields. Velocity is a diagnosis or output of ice flow models, without memory of
prior velocity. However, this does not mean that the velocity field of a glacier is constant
over time. Ice flux can change the shape of the glacier (for example, its thickness) which
may impact in the velocity field.

Now, these set of equations are too difficult to handle in general, especially since they
are still modelling the full three-dimensional flow. Two common simplified depth-integrated
models are given by:

• Shallow Ice Approximation (SIA)

• Shallow Shelf Approximation (SSA)

As the names indicate, they are both shallow approximations, meaning that we assume
thin glaciers, with small depth to width ratio. This applies in general to ice sheets and ice
streams. They are both depth-integrated methods, meaning that we end up with a set of
equations that depend on x and y but not on z.

However, the SIA and SSA differ in the approximations they make about the components
of the deviatoric stress tensor

τ =

τxx τxy τxz

τyy τyz
τzz

 . (3.15)

In SIA, we neglect the terms τxx, τyy and τxy (and then τzz) and we just consider τxz and
τyz as non-zero components. This implies that the driving stress caused by gravity is only
balanced by the basal resistance τb. The SIA assumption has been first developed and it
holds very well for mountain glaciers, with the caveat that it fails in regions close to the
grounding line and it is not able to reproduce short time scale events (Bueler et al. 2009).
On the contrary, the SSA assumes that τxz and τyz are negligible with respect to the rest
of the components of τij. This implies that SSA considers both longitudinal resistive forces
and lateral shearing, which is a valid assumption for ice shelves and low-drag ice streams.

CHAPTER 3. GLACIER MODELLING 62

Notice that in SIA, since the diagonal of τij is zero, then ∂ux

∂x
, ∂uy

∂y
and ∂uz

∂z
are necessary zero.

In SSA, in principle all components of the velocity vector u can depend on x, y and z.
In the next section, we are going to derive the SIA equation. For the interested reader,

the mathematical derivation of the SSA can be found in Appendix B.

3.1.4 Shallow ice approximation (SIA)

We are going to start with out analysis of the Shallow Ice Approximation (SIA). Let us
derive an expression for the vertical profile of the velocity of a glacier and an expression
for the surface velocity. We are going to assume that the glacier deforms in simple shear, a
situation called laminar flow. Without loss of generality, we can assume τyz = 0. If τyz ̸= 0
the final result is exactly the same, but we need to consider the direction in which the ice
column is moving in the (x, y) plane. The deviatoric stress is given by

τ =

0 0 τxz
0 0 0
τxz 0 0

 , (3.16)

where the component τxz is a linear interpolation consequence of hydrostatic pressure between
τxz = 0 in the surface of the glacier and τxz = τb at the bed of the glacier, with τb the basal
drag, that is,

τxz = τb

(
1− z

H

)
. (3.17)

Based on Glen’s law we have

du

dz
= 2Aτnxz = 2Aτnb

(
1− z

H

)n
, (3.18)

where z = 0 coincides with the bed. Integrating last expression from the bed to a generic
value of z gives the vertical profile

u(z)− ub = 2Aτnb

∫ z

0

(
1− z

H

)n
dz

=
2A

n+ 1
τnb H

[
1−

(
1− z

H

)n+1
]
, (3.19)

with ub the velocity at the bed. Finally, the flux per column of ice results from integrating
u(z) from the bed to the surface results in (Monnier et al. 2017)

q = Hū =

∫ H

0

u(z)dz = Hub +
2A

n+ 2
H2τnb

=

(
C +

2A

n+ 2
H

)
H2τnb . (3.20)

CHAPTER 3. GLACIER MODELLING 63

where we defined the constant C to encapsulates the contribution of the basal flow ub to the
flux.

Using the equilibrium of hydrostatic forces that a column of ice experiences, we can derive
the commonly used expression for the basal drag τb = −ρgHα, with α = ∥∇S∥ the slope on
the surface. Then we can write

ū(x, t) = −
(
C +

2A

n+ 2
H

)
(ρg)nHn+1∥∇S∥n−1∇S. (3.21)

The final step to derive the SIA equations is to replace the expression for the flow q = Hū
in Equation (3.21) in the continuity equation (3.2),

∂H

∂t
= ḃ+∇ ·

((
C +

2A

n+ 2
H

)
(ρg)nHn+1∥∇S∥n−1∇S

)
, (3.22)

where n and A are the creep exponent and parameter in Glen’s Law, respectively; ḃ is the
mass balance (MB); C is a basal sliding coefficient; and ∇S is the gradient of the glacier
surface S(x, y, t) = B(x, y)+H(x, y, t), with B(x, y) the bedrock elevation, and ∥∇S∥ denotes
its Euclidean norm (Monnier et al. 2017). The operator ∇ = ∇xy here includes just the
spatial derivatives in x and y. Now, we can rewrite this last equation in a more compact
form as

∂H

∂t
= ḃ+∇ · (D∇S) , (3.23)

where D is the effective diffusivity given by

D = D(H,∇S;A, n,C) =

(
C +

2A

n+ 2
H

)
(ρg)nHn+1∥∇S∥n−1. (3.24)

This last differential equations are analogous to the heat equation for H(x, y, t), where the
diffusivity coefficient depends on H.

A convenient simplification of the SIA equation is to assume C = 0, which implies the
basal velocity is zero all along the bed. This is reasonable when large portions of the glacier
bed experience minimal sliding. In that case, the effective diffusivity D is given by

D = ΓHn+2∥∇S∥n−1, Γ =
2A

n+ 2
(ρg)n. (3.25)

An important property of the SIA equation is that the ice surface velocity u can be directly
derived from the ice thickness H by the equation

u = − 2A

n+ 1
(ρg)nHn+1∥∇S∥n−1∇S. (3.26)

This relationship is particularly useful for physical inversions, where ice thickness can be
inverted from ice surface velocities observations (Millan et al. 2022).

CHAPTER 3. GLACIER MODELLING 64

3.2 Numerical solutions
Except for a few engineered initial glacier conditions, no analytical solutions for the SIA
differential equation (Equation (3.23)) are known, and it is necessary to use numerical meth-
ods in order to find approximate solutions (Halfar 1981). A short introduction of numerical
solvers for ordinary differential equations was covered in Section 2.3.1.1.

Numerically solving the SIA equation is challenging for the following reasons.

1. The diffusivity D depends on the unknown solution H. In most cases, the diffusivity
involved in the heat equation is a spatial-temporal function, but not a function of the
solution itself.

2. The SIA equation is a stiff differential equation (Wanner et al. 1996). This is because
the diffusivity D is very sensitive to changes in the shape of the glacier. For example,
for n = 3, we have D ∝ H5∥∇S∥2. Values of the diffusivity D for different values of
H and slopes α = ∥∇S∥ are shown in Figure 3.2.

3. The SIA equation is a degenerate diffusion equation since the diffusivity D vanishes as
H → 0 or ∇S → 0 (Bueler 2014).

4. Non-negativity of the solution. Although the continuous differential equation (3.23)
satisfies H ≥ 0 for all times, this constraint may be violated by numerical solvers
based on discrete time updates. This means that the numerical solver needs to further
impose the constraint H ≥ 0.

Both items 1 and 2 can be handled with a staged grid (Section 3.2.1) and a numerical solver
with stepsize controllers that guarantee low numerical error at the cost of small stepsizes
(Section 2.3.1.1). Item 3 is easily handled by treating the SIA equation as a free-boundary
problem, which is allowed as long as the glacier does not extend to the margins of our
domain (Fowler et al. 2020). Item 4 is enforced by adding an extra stepsize controller to the
numerical solver and clipping gradients when necessary (Section 3.2.2) (Imhof 2021). All
these methods are implemented inside the numerical solvers in ODINN.jl, which we will
cover in more detail in Chapter 4.

Just to gain some intuition of ice flow before dealing with some more technical aspects
of the numerical solver, Figure 3.3 shows the results of solving the SIA equation for the case
of a dome inspired glacier lying on a flat bed. As we move forward in time (in this case a
total amount of time of 30 years) we see how the ice spreads on the sides and smooths out
the extreme curvature of the initial condition.

3.2.1 Gridding

The strategy to solve the SIA partial differential equation follows the method of lines, where
the spatial coordinate is discretized and the PDE is transformed into a system of sparse
coupled ordinary differential equations (ODEs) (Ascher 2008). We are going to consider a

CHAPTER 3. GLACIER MODELLING 65

Figure 3.2: Different values of the effective diffusivity D (units of m2/yr) as a function
of the ice thickness H and surface slope α = ∥∇S∥.

Figure 3.3: Simulation of the SIA equation for a synthetic example with a flat bed.

uniform grid on points (xj, yk), with j = 1, 2, . . . , Nx and k = 1, 2, . . . , Ny, with ∆x = ∆y =
xj+1 − xj = yk+1 − yk. Then each Hj,k = H(t, xj, yk) is just a function of time. Starting
from some initial time t0, we are going to update the value of the solution for H by steps
∆ti, with ti = ti−1 + ∆ti−1. We are going to refer as H i

j,k for the numerical approximation
of H(ti, xj, yk). In this way, we are going to have a system of ODEs for all the Hj,k.

An important consideration when working with numerical schemes for differential equa-
tions is the stability of the method (Hairer et al. 2008). Here we are going to consider
just explicit methods, although the spatial discretization is the same for implicit methods.
Explicit methods for the SIA equation are conditionally stable, meaning that stability is
guaranteed given the following conditions (Fowler et al. 2020).

CHAPTER 3. GLACIER MODELLING 66

1. Evaluation of the diffusivity in a staggered grid Di± 1
2
,k± 1

2
labeled by semi-integer indices

(circles on the dotted grid in Figure 3.4). This grid coincides with Scheme E of Arakawa
grids (Arakawa et al. 1977).

2. Usage of a timestep controller such that ∆ti ≤ ∆x2/4Di
max, where Dmax is the maxi-

mum diffusivity at step i.

The algorithm to solve the SIA equation follows the next one-step iterative procedure:

1. Given the value of Hj,k = H i
j,k at some give time ti, compute the value of the diffusivity

on the staggered grid. As we mentioned before, the diffusivity is a function of H, ∂S
∂x

and ∂S
∂y

. Instead of using one single estimate of H to approximate all these quantities,
the idea is to use averaged quantities on the primal grid to compute the diffusivity on
the staggered grid (red arrows in Figure 3.4). We define the average quantities

Hj+ 1
2
,k+ 1

2
=

1

4
(Hj,k +Hj+1,k +Hj,k+1 +Hj+1,k+1) (3.27)

(
∂S

∂x

)

j+ 1
2
,k+ 1

2

=
1

2

(
Hj+1,k −Hj, k

∆x
+

Hj+1,k+1 −Hj,k+1

∆x

)
(3.28)

(
∂S

∂y

)

j+ 1
2
,k+ 1

2

=
1

2

(
Hi,k+1 −Hi,k

∆y
+

Hi+1,k+1 −Hi+1,k

∆y

)
. (3.29)

Then, we compute the diffusivity on the staggered grid as

Dj+ 1
2
,k+ 1

2
= D

(
Hj+ 1

2
,k+ 1

2
,

(
∂S

∂x

)

j+ 1
2
,k+ 1

2

,

(
∂S

∂y

)

j+ 1
2
,k+ 1

2

)
. (3.30)

2. Compute a different average diffusivity but now on the edges of the primal grid (blue
arrows in Figure 3.4):

Dj,k± 1
2
=

1

2

(
Dj− 1

2
,k± 1

2
+Dj+ 1

2
,k± 1

2

)
, (3.31)

Dj± 1
2
,k =

1

2

(
Dj± 1

2
,k− 1

2
+Dj± 1

2
,k+ 1

2

)
(3.32)

3. Compute the diffusive part of the SIA equations on the point in the primal grid (j, k)
as

∇(D∇S)j,k =
Dj+ 1

2
,k(Sj+1,k − Sj,k)−Dj− 1

2
,k(Sj,k − Sj−1,k)

∆x2

+
Dj,k+ 1

2
(Sj,k+1 − Sj,k)−Dj,k− 1

2
(Sj,k − Sj,k−1)

∆y2
. (3.33)

CHAPTER 3. GLACIER MODELLING 67

k

k − 1

2

k +
1

2

j +
1

2
j − 1

2

j − 1 j + 1j

k − 1

k + 1

Figure 3.4: Staggered grid used to solve the Shallow Ice Approximation PDE. Black
squares represent the primal grid; empty circles the staggered grid; diamonds represent
the points in the grid where the diffusivity evaluated in the staggered grid is averaged
(Equations (3.31) and (3.32)); blue arrows operations in the edges of the primal grid, and
red arrows operations in the staggered grid.

4. Update the value of H following an explicit or implicit scheme (see Section 2.3.1.1).
Just for illustration, the explicit Euler method will update the values of the ice thickness
following

H i+1
j,k = H i

j,k +∆ti

(
ḃij,k +∇(D∇S)ij,k

)
. (3.34)

where ∆ti is the time step, which in our case is automatically selected by the numerical
solver to ensure stability, for example ∆ti = η∆x2/4Di

max with η ∈ (0, 1).

3.2.2 Algebraic constraint

A priori, the stepsize ∆ti is chosen by a stepsize controller integrated inside the numerical
solver. The purpose of these is to pick the stepsize as large as possible (so the solver requires
less total steps) at the same time that local errors induced by the numerical solver are
bounded (Hairer et al. 2008; Ranocha et al. 2022). However, this does not automatically

CHAPTER 3. GLACIER MODELLING 68

guarantee that the updates in the ice thickness (Equation (3.34)) make H i+1
j,k ≥ 0. A sufficient

condition for H i+1
j,k ≥ 0 is given by (Imhof 2021)

−H i
j,k ≤ Sj±1,k − Sj,k, (3.35)

−H i
j,k ≤ Sj,k±1 − Sj,k. (3.36)

This condition guarantees that the computed diffusivity (Equation (3.33)) satisfies

∇(D∇S)ij,k ≥ −
4Dmax

∆x2
H i

j,k (3.37)

and hence

H i+1
j,k ≥ H i

j,k +∆tiḃ
i
j,k −

4∆tiDmax

∆x2
H i

j,k =

(
1− 4∆tiDmax

∆x2

)
H i

j,k +∆tiḃ
i
j,k ≥ ∆tiḃ

i
j,k, (3.38)

where the last inequality is consequence of the stability condition ∆ti ≤ ∆x2/4Dmax. In
cases where no mass balance term is added (bij,k = 0), we simply have that H i+1

j,k ≥ 0 for
all grid points. In the general case with mass balance, we still need to clip the updated
ice thickness by replacing H i+1

j,k by max{0, H i+1
j,k }. This includes those cases with excessive

ablation.

69

Chapter 4

Universal differential equations for
glacier ice flow modelling

The contents of this chapter are based on the following:

▶ J. Bolibar, F. Sapienza, F. Maussion, R. Lguensat, B. Wouters, and F. Pérez (2023a).
“Universal differential equations for glacier ice flow modelling”. In: Geoscientific Model
Development 16.22, pp. 6671–6687. doi: 10.5194/gmd-16-6671-20231

▶ J. Bolibar and F. Sapienza (June 2023b). ODINN-SciML/ODINN.jl: v0.2.0. Ver-
sion v0.2.0. doi: 10.5281/zenodo.8033313

The associated publication has highlighted in the journal Geoscientific Model Development.

4.1 Abstract
Geoscientific models are facing increasing challenges to exploit growing datasets coming from
remote sensing. Universal differential equations (UDEs), aided by differentiable program-
ming, provide a new scientific modelling paradigm enabling both complex functional inver-
sions to potentially discover new physical laws and data assimilation from heterogeneous
and sparse observations. We demonstrate an application of UDEs as a proof of concept
to learn the creep component of ice flow, i.e. a nonlinear diffusivity differential equation,
of a glacier evolution model. By combining a mechanistic model based on a 2D Shallow
Ice Approximation partial differential equation with an embedded neural network, i.e. a
UDE, we can learn parts of an equation as nonlinear functions that then can be translated
into mathematical expressions. We implemented this modelling framework as ODINN.jl,
a package in the Julia programming language, providing high performance, source-to-source
automatic differentiation (AD) and seamless integration with tools and global datasets from
the Open Global Glacier Model (OGGM) in Python. We demonstrate this concept for 17

1J. Bolibar and F. Sapienza contributed equally to this work.

https://doi.org/10.5194/gmd-16-6671-2023
https://doi.org/10.5281/zenodo.8033313

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 70

different glaciers around the world, for which we successfully recover a prescribed artificial
law describing ice creep variability by solving ∼500,000 ordinary differential equations in par-
allel. Furthermore, we investigate which are the best tools in the scientific machine learning
ecosystem in Julia to differentiate and optimize large nonlinear diffusivity UDEs. This study
represents a proof of concept for a new modelling framework aiming at discovering empirical
laws for large-scale glacier processes, such as the variability of ice creep and basal sliding for
ice flow, and new hybrid surface mass balance models.

4.2 Introduction
Universal differential equations (UDEs) (Rackauckas et al. 2020)), also known as neural
differential equations when using neural networks (Chen et al. 2018; Kidger 2021; Lguensat
et al. 2019), combine the physical simulation of a differential equation using a numerical solver
with machine learning (Figure 1.2). Optimization algorithms based on exact calculations of
the gradient of the loss function require a fully differentiable framework, which has been
a technical barrier for some time. Python libraries such as PyTorch (Paszke et al. 2019),
Tensorflow (Abadi et al. 2016) or JAX (Bradbury et al. 2020) require rewriting the scientific
model and the solver with the specific differentiable operations of each library, making it very
costly to apply it to existing models or making solutions very library-centered. Alternatively,
the Julia programming language (Bezanson et al. 2017), designed specifically for modern
scientific computing, has approached this problem in a different manner. Instead of using
library-specific differentiable operators, it performs automatic differentiation (AD) directly
on source code. This feature, together with a rich differential equations library provides a
suitable scientific machine learning ecosystem to explore new ways to model and understand
physical systems (Rackauckas et al. 2019).

In terms of data assimilation and model parameter calibration, many different approaches
to obtain differentiable glacier models have been developed (Brinkerhoff et al. 2016; Goldberg
et al. 2013; MacAyeal 1993). These inverse modelling frameworks enable the minimization
of a loss function by finding the optimal values of parameters via gradient descent. Such
gradients can be found by either computing the associated adjoint or by using AD (see
Chapter 2). Nonetheless, all efforts so far have been applied to the inversion of scalar
parameters and sometimes their distributions (in the context of Bayesian inference), i.e.
parameters that are stationary for a single inversion given a dataset. This means that the
potential of learning the underlying physical processes is reduced to the current structure of
the mechanistic model. No changes are made to the equations themselves, with the main
role of the inversions being the fitting of one or more parameters already present in the
equations. To advance beyond scalar parameter inversions, more complex inversions are
required, shifting towards functional inversions. Functional inversions enable the capture
of relationships between a parameter of interest and other proxy variables, resulting in a
function that can serve as a law or parametrization. These learnt functions can then be
added in the currently existing equation, thus expanding the underlying model with new

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 71

Figure 4.1: Logo of ODINN.jl. The ecosystem of ODINN has been casually and without
explicit intention being built around characters in Norse mythology. This includes Odin
but also the sub-packages Huginn, Muninn, and Sleipnir.

knowledge.
We present an application of universal differential equations, i.e. a differential equation

with an embedded function approximator (e.g. a neural network). For the purpose of this
study, the neural network is used to infer a prescribed artificial law determining the ice
creep coefficient in Glen’s law based on a climate proxy. Instead of treating it as classical
inverse problem, where a global parameter is optimized for a given point in space and time,
neural networks learn a nonlinear function that captures the spatiotemporal variability of
that parameter. This opens the door to a new way of learning parametrizations and empirical
laws of physical processes from data. This case study is based on ODINN.jl v0.2 (Bolibar
et al. 2023b), a new open-source Julia package, available on GitHub at https://github
.com/ODINN-SciML/ODINN.jl. With this study, we attempt to share and discuss what
are the main advances and difficulties in applying UDEs to more complex physical problems,
we assess the current state of differentiable physics in Julia, and we suggest and project the
next steps in order to scale this modelling framework to work with large scale remote sensing
datasets.

4.3 Methods
The combination of Python tools from OGGM with the UDE glacier modelling framework
in Julia has resulted in the creation of a new Julia package named ODINN.jl (OGGM +
DIferential equation Neural Networks; (Bolibar et al. 2023b)). For the purpose of this study,
ODINN has been used to study the viability of UDEs to solve and learn subparts of the SIA
equation.

The general overview of ODINN.jl’s workflow to perform functional inversions of glacier
physical processes is shown in Figure 4.2. The parameters θ of a function determining a given
physical process Dθ, expressed by a neural network NNθ, are optimized in order to minimize
a loss function. For this study, the physical law was constrained only by climate data, but

https://github.com/ODINN-SciML/ODINN.jl
https://github.com/ODINN-SciML/ODINN.jl

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 72

����������

�����������

��������

�����

������������������������������

����������

����������

������������
��������

�����������
���������

���������� ��������
��
	�����

����������

�����������

�

�

	�����������
������������������������

���������

�

Figure 4.2: Overview of ODINN.jl’s workflow to perform functional inversions of
glacier physical processes using Universal Differential Equations. The parameters (θ) of a
function determining a given physical process (Dθ), expressed by a neural network NNθ,
are optimized in order to minimize a loss function. For this study, the physical law was
constrained only by climate data, but any other proxies of interest can be used to design it.
The glacier surface mass balance is downscaled (i.e. it depends) on S, which is updated
by the solver, thus dynamically updating the state of the simulation for a given timestep.

any other proxies of interest can be used to design it. The glacier surface mass balance is
downscaled (i.e. it depends) on S, which is updated by the solver, thus dynamically updating
the state of the simulation for a given timestep.

In previous chapters we had described the Shallow Ice Approximation (SIA) equation we
will use to model the flow of ice (Section 3.1.4). The fundamentals of universal differential
equations and how they contextualize in the family of physics-informed machine learning
methods in general was reviewed in Section 1.3.3. Finally, the differentiable programming
machinery enabling gradient-descent optimization was introduced in Chapter 2 and broader
developed in (Sapienza et al. 2024c). In this section we introduce how these elements are
combined to give the universal differential equation associated to the SIA equation we will
use to perform functional inversions of ice flow.

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 73

4.3.1 Forward model

In this study, we will focus in the SIA equation given by

∂H

∂t
= ḃ+∇ · (D∇S) , D =

(
C +

2A

n+ 2
H

)
(ρg)nHn+1∥∇S∥n−1, (4.1)

where H(x, y, t) is the length of the ice column; ḃ is the mass balance (sink/source); S(x, y, t) =
B(x, y) + H(x, y, t) the ice surface profile; and the ∇ operator is with respect to the two
spatial coordinates x and y (see Chapter 3). We consider a simple synthetic example where
we fix Glen exponent n = 3, C = 0, and model the dependency of Glen’s creep parameter
A and the climate temperature normal Ts, i.e. the average long-term variability of air tem-
perature at the glacier surface. Here Ts is computed using a 30-year rolling mean of the air
temperature series, used to drive the changes in A in the prescribed artificial law. Although
simplistic and incomplete, this relationship allows us to present all of our methodological
steps in the process of identifying more general phenomenological laws for glacier dynamics.
Any other proxies of interest could be used instead of Ts for the design of the model. Instead
of considering that the diffusivity Dθ is the output of a universal approximator, we are going
to replace the creep parameter A in Equation (3.25) with a neural network with input Ts,
which results in the following functional version for the effective diffusivity

Dθ(Ts) =
2Aθ(Ts)

n+ 2
(ρg)nHn+2∥∇S∥n−1. (4.2)

In this last equation, Dθ(Ts) is parametrized using a small neural network. The term Aθ(Ts)
plays the role of βθ in Equation (1.11), allowing the solutions of the PDE to span over a
rich set of possible solutions. The objective of Aθ(Ts) will be to learn the spatial variability
(i.e. among glaciers) of A with respect to Ts for multiple glaciers in different climates. How-
ever, this assumption ignores many other important physical drivers influencing the value
of A, such as a direct relationship with the temperature of ice, the type of fabric (that is,
the distribution of ice grain shape and orientation) and the water content (Cuffey et al.
2010). Nonetheless, this simple example serves to illustrate the modelling framework based
on UDEs for glacier ice flow modelling, while acting as a platform to present both the tech-
nical challenges and adaptations performed in the process, and the future perspectives for
applications at larger scales with additional data.

In order to solve the SIA Equation (3.23), we perform a discretization in the spatial
domain to solve the problem as a combination of ordinary differential equations (see Section
3.2 for more details about how the numerical solver has been implemented). Once the
problem has been discretized in the spatial domain, we use the numerical solver RDPK3Sp35
(Ranocha et al. 2022) implemented in DifferentialEquations.jl (Rackauckas et al.
2016) to solve the SIA forward in time. The method implements an adaptive temporal step
size close to the maximum value satisfying the CFL conditions for numerical stability at the
same time that controls numerical error and computational storage (Ranocha et al. 2022).

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 74

As mentioned before, the function Aθ(Ts) is parametrized using a small feed-forward
neural network using Flux.jl (Innes et al. 2018). The architecture of the neural network
consists of one single input variable, 3 hidden layers with 3, 10, and 3 units, respectively, and
one single output variable. Since the optimization problem is much more constrained by the
structure of the solutions of the PDE compared to a pure data-driven approach (Rackauckas
et al. 2020), a very small neural network is enough to learn the dynamics related to the
subpart of the equation it is representing (i.e. A). This network has a single input and
output neuron, thus producing a one-to-one mapping. This small size is one of the main
advantages of UDEs, which do not require as much data as traditional data-driven machine
learning approaches. We used a softplus activation function in all layers except for the last
layer, for which we use a rescaled sigmoid activation function defined as

σ(x;xmin, xmax) = xmin +
xmax − xmin

1 + e−x
(4.3)

which constrains the output within physically plausible values of xmin = 8−20yr−1Pa−3 to
xmax = 8−17yr−1Pa−3. Constraining the output values of the neural network is necessary
in order to avoid numerical instabilities in the solver or very small stepsizes in the forward
model than will lead to expensive computations of the gradient. The use of smooth activation
functions has been proven to be more effective for neural differential equations, since their
derivatives are also smooth, thus avoiding problems of vanishing gradients (Kim et al. 2021).

4.3.2 Optimization and inverse model

Training an UDE requires that we optimize with respect to the solutions of the SIA equation,
which need to be solved using numerical methods. The approach to fit the value of θ is
to minimize the squared error between the target ice surface velocity profile (described in
section 4.3.3 together with all other datasets used) at some given time and the predicted
surface velocities using the UDE, an approach known as trajectory matching (Ramsay et
al. 2017). For a single glacier, if we observed two different ice surface velocities u0 and
u1 at times t0 and t1, respectively, then we want to find θ that minimizes the discrepancy
between u1 and SIASolver(H0, t0, t1, Dθ), defined as the forward numerical solution of the
SIA equation yielding a surface ice velocity field following Equation 3.26. When training
with multiple glaciers, we are instead interested in minimizing the total level of agreement
between observation and predictions,

min
θ
L(θ) =

∑

k

ωkLk(θ), Lk(θ) = ∥uk
1 − SIASolver(Hk

0 , t0, t1, Dθ)∥2F , (4.4)

where ∥ · ∥F denotes the Frobenius norm; and each k corresponds to a different glacier. The
weights ωk are included in order to balance the contribution of each glacier to the total loss
function. For our experiments, we consider ωk = 1/∥uk

0∥F , which results in a re-scaling of
the surface velocities. This scaling is similar to the methods suggested in (Kim et al. 2021)

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 75

to improve the training of stiff neural ODEs. In our case, the scaling also helps balancing
the contribution of slow and fast flowing glacier to the total loss function.

Once the gradient of L(θ) with respect to θ has been computed, optimization of the total
loss function without any extra regularization penalty to the weights in the loss function was
performed using a Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimizer with parameter
0.001. We also tested ADAM (Mogensen et al. 2018) with a learning rate of 0.01. BFGS
converges in fewer epochs than ADAM, but it had a higher computational cost per epoch.
Overall, BFGS performed better in different scenarios, resulting in a more reliable UDE
training. For this toy model, a full epoch was trained in parallel using 17 workers, each one
for a single glacier. Larger simulations will require batching either across glaciers, or across
time in case a dataset with dense temporal series were used.

4.3.3 Training dataset

The following data are used for the initial and final glacier conditions:

1. A Digital Elevation Model (DEM) for the glacier surface elevation S based on the
Shuttle Radar Topography Mission from the year 2005 (SRTM (Farr et al. 2007))

2. Estimated glacier ice thickness H from the global dataset from (Farinotti et al. 2019)
based on

3. Glacier outlines around the year 2003 of the Randolph Glacier Inventory (Consortium
2017)

All these datasets, together with all glacier information are retrieved using the Open Global
Glacier Model (OGGM), an open-source glacier evolution model in Python providing a
vast set of tools to retrieve and process climate and topographical data related to glaciers
(Maussion et al. 2019). Since these datasets are only available for just one or few times, but
have a global spatial coverage of almost all of the ∼274,000 glaciers on Earth, we perform this
training for 17 different glaciers distributed in different climates around the world (see Figure
4.3 and Table 4.1). This enables a good sampling of different climate conditions from which
to take Ts to compute A. All climate data was based on the W5E5 climate dataset (Lange
2019), also retrieved using OGGM. For the purpose of the synthetic experiments, some of
the boundary conditions (surface topography, glacier bedrock inferred from topography and
ice thickness) are assumed to be perfectly known. Notice that the resolution of the spatial
grid depends on the glacier size and domain size, typically ranging between 100x100 to
200x200 grid points, which leads to a system of coupled ODEs ranging from 10,000 to 40,000
equations per glacier.

In order to generate the forward simultion to train the UDE, we use a prescribed artificial
law. For this we have used the relationship between ice temperature and A from (Cuffey
et al. 2010) given in Table 4.2 and replaced ice temperatures with a relationship between A
and Ts. This relationship is based on the hypothesis that Ts is a proxy of ice temperature,

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 76

Figure 4.3: Geographical distribution of the 17 glaciers used during training.

and therefore of A. In order to create conditions similar to those one would encounter when
using remote sensing observations for the functional inversions, we add Gaussian noise with
zero mean and standard deviation 6·10−18 (around 30% of the average A value) to the output
of the prescribed law (Figure 4.5). This setup is used to compute the reference synthetic
solutions (uk

1 in Equation (4.4)), which will then be used by the UDE to attempt to infer
the prescribed law indirectly from glacier ice surface velocities and/or ice thickness.

4.3.3.1 Surface mass balance

In order to compute the glacier surface mass balance (ḃ in Equations (3.2) and (4.1)) we
used a very simple temperature-index model with a single melt factor and a precipitation
factor set to 5 mm d−1 º C−1 and 1.2, respectively. These are average values found in the
literature (Hock 2003), and despite its simplicity, this approach serves to add a realistic SMB
signal on top of the ice rheology in order to assess the performance of the inversion method
under realistic conditions. In order to add the surface mass balance term ḃ in the SIA
Equation (3.23) we used a DiscreteCallback from DifferentialEquations.jl.
This enabled the modification of the glacier ice thickness H with any desired time intervals
and without producing numerical instabilities when using all the numerical solvers available
in the package (Rackauckas et al. 2016). We observed this makes the solution to be more
stable without the need of reducing the stepsize of the solver. In order to find a good
compromise between computational efficiency and memory usage, we pre-process raw climate
files from W5E5 (Lange 2019) for the simulation period of each glacier. Then, within the run,
for each desired timestep where the surface mass balance needs to be computed (monthly by

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 77

R
G

I
ID

G
la

ci
er

n
am

e
R

eg
io

n
A

re
a

(k
m

2
)

L
on

/L
at

(º
)

G
ri

d
si

ze
G

ri
d

re
s

(m
)

R
G

I6
0-

11
.0

36
38

G
la

ci
er

d’
A

rg
en

ti
èr

e
C

en
tr

al
E

ur
op

e
13

.7
9

(6
.9

8,
45

.9
5)

(1
38

,1
29

)
62

R
G

I6
0-

11
.0

14
50

A
le

ts
ch

gl
et

sc
he

r
C

en
tr

al
E

ur
op

e
82

.2
(8

.0
2,

46
.5

0)
(1

07
,1

54
)

13
7

R
G

I6
0-

08
.0

02
13

St
or

gl
ac

iä
re

n
Sc

an
di

na
vi

a
3.

40
(1

8.
57

,6
7.

90
)

(1
10

,7
5)

36
R

G
I6

0-
04

.0
43

51
-

A
rc

ti
c

C
an

ad
a

So
ut

h
24

.7
7

(-
63

.2
1,

66
.5

2)
(1

32
,1

04
)

80
R

G
I6

0-
01

.0
21

70
E

se
tu

k
G

la
ci

er
A

la
sk

a
7.

5
(-

14
4.

30
,6

9.
29

)
(1

38
,1

11
)

48
R

G
I6

0-
02

.0
50

98
P
ey

to
G

la
ci

er
W

es
te

rn
C

an
ad

a
an

d
U

S
9.

69
(-

11
6.

56
,5

1.
65

)
(1

04
,1

05
)

54
R

G
I6

0-
01

.0
11

04
L
em

on
C

re
ek

G
la

ci
er

A
la

sk
a

9.
52

(-
13

4.
35

,5
8.

38
)

(7
5,

12
5)

53
R

G
I6

0-
01

.0
91

62
W

ol
ve

ri
ne

G
la

ci
er

A
la

sk
a

16
.7

4
(-

14
8.

90
,6

0.
41

)
(9

6,
12

2)
67

R
G

I6
0-

01
.0

05
70

G
ul

ka
na

G
la

ci
er

A
la

sk
a

17
.5

6
(-

14
5.

42
,6

3.
28

)
(1

32
,1

03
)

69
R

G
I6

0-
04

.0
70

51
-

A
rc

ti
c

C
an

ad
a

So
ut

h
58

.2
1

(-
80

.3
1,

73
.5

2)
(1

02
,1

85
)

11
7

R
G

I6
0-

07
.0

02
74

E
dv

ar
db

re
en

Sv
al

ba
rd

61
.1

8
(1

7.
57

,7
7.

88
)

(1
32

,1
33

)
12

0
R

G
I6

0-
07

.0
13

23
B

is
ka

ye
rf

on
na

Sv
al

ba
rd

12
.7

2
(1

2.
28

,7
9.

79
)

(8
0,

12
2)

60
R

G
I6

0-
01

.1
73

16
T
w

ah
ar

pi
es

G
la

ci
er

A
la

sk
a

54
.6

6
(-

14
2.

08
,6

1.
36

)
(1

95
,1

09
)

11
4

R
G

I6
0-

07
.0

11
93

Sk
au

gu
m

br
ee

n
Sv

al
ba

rd
8.

36
(1

4.
72

,7
9.

54
)

(1
29

,1
16

)
50

R
G

I6
0-

01
.2

21
74

B
uc

ks
ki

n
G

la
ci

er
A

la
sk

a
46

.4
6

(-
15

0.
45

,6
2.

98
)

(2
22

,9
3)

10
5

R
G

I6
0-

14
.0

73
09

W
es

t
C

hi
ng

K
an

g
G

la
ci

er
So

ut
h

A
si

a
W

es
t

30
.3

0
(7

5.
98

69
,3

5.
48

05
)

(1
18

,1
35

)
87

R
G

I6
0-

15
.1

02
61

-
So

ut
h

A
si

a
E

as
t

3.
42

(8
5.

78
8,

28
.4

04
)

(8
5,

13
8)

36

T
ab

le
4.

1:
T
ab

le
of

gl
ac

ie
rs

us
ed

fo
r

tr
ai

ni
ng

th
e

U
D

E
.

G
ri

d
si

ze
an

d
G

ri
d

re
s

(i
.e

.
re

so
lu

ti
on

)
in

di
ca

te
th

e
ad

ap
ti
ve

co
ns

ta
nt

gr
id

us
ed

by
O

G
G

M
to

ad
ap

t
al

lg
ri

dd
ed

da
ta

fo
r

ea
ch

gl
ac

ie
r.

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 78

Ice temperature (◦C) A(yr−1Pa−3)
0 7.57e-17
-2 5.36e-17
-5 2.93e-17
-10 1.10e-17
-15 6.63e-18
-20 3.79e-18
-25 2.15e-18
-30 1.17e-18
-35 6.31e-19
-40 3.16e-19
-45 1.64e-19
-50 8.20e-20

Table 4.2: Recommended values of the Glen coefficient A as a function of the ice tem-
perature. Creep coefficients A for the intermediate values of ice temperature are obtained
with a polynomial interpolation (interpolation is shown in Figure 4.5). Table adapted from
(Cuffey et al. 2010).

default), we read the raw climate file for a given glacier and we downscale the air temperature
to the current surface elevation S of the glacier given by the SIA PDE. For that, we use the
adaptive lapse rates given by W5E5, thus capturing the topographical feedback of retreating
glaciers in the surface mass balance signal (Bolibar et al. 2022).

4.3.4 Sensitivity methods and differentiation

In order to minimize the loss function from Equation (4.4), we need to evaluate its gradi-
ent with respect to the parameters of the neural network and then perform gradient-based
optimization. Different methods exist to evaluate the sensitivity or gradients of the solu-
tion of a differential equation. These methods have been reviewed in Chapter 2. Here we
compare the evaluation of the gradients using a continuous adjoint method integrated with
automatic differentiation and a hybrid method that combines automatic differentiation with
finite differences.

4.3.4.1 Continuous adjoint sensitivity analysis

For the first method based on pure automatic differentiation, we used the SciMLSensiti
vity.jl package, an evolution of the former DiffEqFlux.jl Julia package (Rackauckas
et al. 2019), capable of weaving neural networks and differential equation solvers with AD.
In order to train the SIA UDE from Equation (4.2), we use the same previously mentioned
numerical scheme as for the PDE (i.e. RDPK3Sp35). Unlike in the original neural ODEs

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 79

paper (Chen et al. 2018), simply reversing the ODE for the backward solve results in unstable
gradients. This has been shown to be the case for most differential equations, particularly stiff
ones like the one from this study (Kim et al. 2021). In order to overcome this issue, we used
the interpolating adjoint method as described in Section 2.4.2.2.2. This method combined
with an explicit solver proved more efficient than using the quadrature adjoint method. It
is also possible to use checkpointing and just store a few evaluations of the solution. This
has the advantage of reducing memory usage at the cost of sacrificing some computational
performance (Griewank et al. 2008; Schanen et al. 2023). To compute the vector-Jacobian
products involved in the adjoint calculations of the SIA UDE, we used reverse-mode AD
with the ReverseDiff.jl package with a cached compilation of the reverse tape. We
found that for our problem, the limitation of not being able to use control flow was easily
bypassed, and performance was noticeably faster than other AD packages in Julia, such as
Zygote.jl.

4.3.4.2 Finite differences

The second method consists in using AD just for the neural network and finite differences
for capturing the variability of the loss function with respect to the parameter A. Notice
that in Equation (4.4) we can write Lk(θ) = Lk(Aθ(Tk)), with A(θ) the function that maps
input parameters Tk into the scalar value of A (which for this example is assumed to be
a single scalar across the glacier) as a function of the neural network parameters θ. Once
A has being specified, the function Lk is a one-to-one function that is easily differentiable
using finite differences. If we define g = ∇θA(Tk) the gradient of the neural network that
we obtain using AD, then the full gradient of the loss function can be evaluated using the
centered numerical approximation

∇θLk ≈
L(θ + ηg)− L(θ − ηg)

2η∥g∥2 g, g = ∇θAθ(Tk), (4.5)

where η is the stepsize used for the numerical approximation of the derivative. Notice that
the first term on the right hand side is just a scalar that quantifies the sign and amplitude
of the gradient, which will be always in the direction of ∇θA(Tk). The choice of stepsize η is
critical in order to correctly estimate the gradient. Notice that this method works just when
there are a few parameters, and will not generalize well to the case of an A that varies in
space and time for each glacier. The main advantage of this method is that it very simple
to implement and it does not require the calculation of the continuous adjoint.

4.3.5 Scientific computing in the future

As part of this new approach in terms of geoscientific computing, we are computing every-
thing directly in the cloud using a JupyterHub (see https://jupyter.org/hub). This
JupyterHub allows us to work with both Julia and Python, using Unix terminals, Jupyter

https://jupyter.org/hub

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 80

Figure 4.4: Multilanguage framework inside ODINN.jl. Most of the source code is
written in Julia, but the preprocessing of the glacier data is performed using the Open
Global Glacier Model (OGGM) and xarray in Python.

notebooks (Kluyver et al. 2016) and VSCode directly on the browser. Moreover, this pro-
vides a lot of flexibility in terms of computational resources. When logging in, one can
choose between different machines, ranging from small ones (1-4 CPUs, 4-16 GB RAM) to
very large ones (64 CPUs, 1 T4 Tensor Core GPU, 1 TB RAM), depending on the task to
be run. The largest simulations for this study were run in a large machine, with 16 CPUs
and 64 GB of RAM.

ODINN is a multilanguage library that is mostly written in Julia but run sub-routines
in Python. This is done by the use of the package PyCall.jl, which enables a seamless
integration of Python libraries such as OGGM and xarray (Hoyer et al. 2017b) within
ODINN. Figure 4.4 shows an schematic of the different software tools present in the ODINN
ecosystem.

4.4 Results
Despite its apparent simplicity, it is not a straightforward problem to invert the spatial
function of A with respect to predictor indirectly from surface velocities, mainly due to the
highly nonlinear behaviour of the diffusivity of ice (see Figure 3.2). We ran a functional
inversion using two different differentiation methods for 17 different glaciers (Table 4.1) for
a period of 5 years.

Training the UDE with full batches using the continuous adjoint method converges in
around 20 epochs. The neural network is capable of successfully approximating the pre-

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 81

� �

Figure 4.5: (a) Inferred function by the neural network embedded in the SIA PDE using
full automatic differentiation. The neural network learnt the prescribed noisy function
(each dot represents a glacier), that relates Glen’s coefficient A with a proxy of interest
(i.e. the long-term air temperature Ts). (b) Evolution of the loss through training, using
a BFGS optimizer. The loss is based on a scaled mean squared error of the difference
between the simulated and target ice surface velocities. The scaling is used to correctly
account for values of different orders of magnitude. Without any use of regularization, the
optimization converges in around 20 epochs. Note that the loss is shown in log scale.

scribed nonlinear function of A. The loss sees a steep decrease in the first epochs, with
BFGS optimizing the function towards the lowest values of A, which correctly approximate
the majority of values of the prescribed nonlinear function. From this point, the function
slowly converges until it finds an optimal non-overfitted solution (Figure 4.5b). This simula-
tion took about 3 hours to converge, with a running time between 6 to 12 minutes per epoch,
in a machine in the cloud-based JupyterHub with 16 CPUs and 64 GB of RAM, using all
available CPUs to simulate in parallel the 17 glaciers in batches and using the full 64 GB of
memory. Figure 4.5a shows the parametrization of A as a function of Ts obtained with the
trained neural network. We observe that the neural network is able to capture the mono-
tonic increasing function A(Ts) without overfitting the noisy values used for training (dots
in the plot). Interestingly, the lack of regularization did not affect overfitting. We are unsure
about the reasons behind this behaviour, but we suspect this could be related to an implicit
regularization caused by UDEs. This can be related to the shape of the landscape obtained
by the map forward of the solutions of the differential equation, which makes more likely to
find local minima that result in smooth functions Aθ(Ts) instead of overfitted function with
lower empirical error. In this sense, a bold speculation is that the differential equation serves
as an implicit regularizer of the objective function. This property has not been studied yet,
so more investigations should be carried out in order to better understand this apparent
robustness to overfitting.

We also compared the efficiency of our approach when using the finite differences scheme.

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 82

Since this does not require heavy backwards operations as the continuous adjoint method
does, the finite difference method runs faster (around 1 minute per epoch). However, we
encountered difficulties in picking the right stepsize η in Equation (4.5). Small values of η
lead to floating number arithmetic errors and large η to biased estimates of the gradient. On
top of this effect, we found that numerical precision errors in the solution of the differential
equation result in wrong gradients and the consequent failure in the optimization procedure
(see discussion about this in Section 4.5.2.3). A solution for this would be to pick η adaptive
as we update the value of the parameter θ. However, this would lead to more evaluations of
the loss function. Instead, we applied early stopping when we observed that the loss function
reached a reasonable minimum.

4.4.1 Robustness to noise in observations

The addition of surface mass balance to the SIA equation further complicates things for the
functional inversion, particularly from a computational point of view. The accumulation
and ablation (subtraction) of mass on the glacier introduces additional noise to the pure ice
flow signal. The mass loss in the lower elevations of the glacier slows down ice flow near the
tongue, whereas the accumulation of mass in the higher elevations accelerates the ice flow
on the upper parts of the glacier.

As an experiment to test the robustness of the functional inversions made by the UDE,
we used different surface mass balance models for the reference simulation (i.e. the ground
truth), and the UDE. This means that the surface mass balance signal during training is
totally different from the one in the ground truth. We achieved this by using a temperature-
index model with a melt factor of 4 mm d−1 º C−1 and a precipitation factor of 2 for the
reference run, and a melt factor of 8 mm d−1 º C−1 and a precipitation factor of 1 for the
UDE. This means that the UDE is perceiving a much more negative surface mass balance
than the actual one from the ground truth. Despite the really large difference that can be
seen in Figure 4.6, the UDE was perfectly capable of inverting the nonlinear function of
A. The evolution of the loss was less smooth than for the case of matching surface mass
balance rates, but it also converged in around 20 epochs, with no noticeable difference in
final performance.

This shows the robustness of this modelling approach, particularly when the ice surface
velocities u are used in the loss function. Unlike the glacier ice thickness, u is much less
sensitive to changes in surface elevation, making it a perfect data for inferring ice rheology
properties. This is also due to the fact that we are using ice surface velocities averaged across
multiple years, which lessen the importance of changes in surface elevation. When working
with velocities with a higher temporal resolution, these will likely become more sensitive to
noise. This weak dependence on the surface mass balance signal will be highly beneficial for
many applications, since it will imply that the inversion can be done even if we only have
an approximate representation of the surface mass balance, which will be the case for many
glaciers. Various tests using H instead of u as the target data showed that A cannot be
successfully inverted in the presence of a surface mass balance signal.

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 83

RGI60-11.03638

RGI60-11.01450

RGI60-08.00213

RGI60-04.04351

RGI60-01.02170

RGI60-02.05098

RGI60-01.01104

RGI60-01.09162

RGI60-01.00570

RGI60-04.07051

RGI60-07.00274

RGI60-07.01323

S
ur

fa
ce

 m
as

s
ba

la
nc

e
di

ffe
re

nc
e

(m
)

-30

-20

-10

0

Figure 4.6: Differences in surface elevation for a 5-year simulation, coming from the
different applied surface mass balance rates, between the ground truth data and the training
of the UDE. Despite the noise coming from the different surface mass balance signal, the
UDE is perfectly capable of learning the underlying nonlinear function of A. This proves
the robustness against noise of this functional inversion framework for glacier rheology
when using ice surface velocities. Showing only 12 out of the total 17 glaciers.

4.5 Discussion: challenges and perspectives

4.5.1 Application to functional inversions of glacier physical
processes

This first implementation of a UDE on glacier ice flow modelling serves as a baseline to
tackle more complex problems with large datasets. One main simplification of this current
setup needs to be overcome in order to make the model useful at a global scale for exploring
and discovering empirical laws. In this study, only ice deformation (creep) has been taken
into account in the diffusivity. Basal sliding, at the ice-bedrock interface, will have to be
included in the SIA equation to accommodate different configurations and behaviours of
many glaciers around the world. Therefore, a logical next step would be to infer D in
Equation (3.25), including the sliding coefficient C from Equation (3.23) using a UDE.
Nonetheless, despite a scale difference between these two processes, this can be an ill-posed
problem, since the only available ice velocity observations are from the surface, encompassing
both creep and basal sliding. This results in degeneracy, making it very challenging to
disentangle the contributions of each physical processes to ice flow. This is particularly true

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 84

for datasets with average annual surface velocities, since both physical processes contribute
to glacier velocities, with no obvious way of separating them. In order to overcome such
issues, using new remote sensing datasets with high temporal resolution, like (Nanni et al.
2023) with observations every 10 days, can help better constrain the contribution of each
physical process. This implies that we cannot only exploit the spatial dimension with multiple
glaciers, but also rich time series of the fluctuations of glacier velocities along the seasons.
Such dynamics can help disentangle the main contributions of creep during the winter season,
and the onset of sliding during the summer season as the subglacial hydrological network
activates due to melt.

Interestingly, depending on the used ice surface velocity observations, the need of a
numerical solver and a UDE are not imperative for a functional inversion. For a single
snapshot of ice surface velocities between two dates (e.g. 2017-2018 in (Millan et al. 2022)),
a functional inversion can be performed directly on the SIA equation without the need
of a solver. The average ice surface velocities can be directly inverted if the geometry is
known. This reduces the technical complexity enormously, enabling one to focus on more
complex neural network architectures and functions to inverse ice rheology and basal sliding
properties. Some initial tests have shown that such problems train orders of magnitude
faster. However, since only one timestamp is present for the inversions, the inversion is
extremely sensitive to time discrepancies in the input datasets, making it potentially quite
vulnerable to noisy or temporally misaligned datasets.

Alternatively, the optimization of the neural network for ice rheology inference based on
ice surface velocities has proved to be robust to the noise added by the surface mass balance
component. This serves to validate an alternative glacier ice dynamics model calibration
strategy to those of the majority of large-scale glacier models (e.g. OGGM and GloGEM;
(Huss et al. 2015)). By being able to calibrate separately ice rheology and mass balance,
one can avoid many equifinality problems that appear when attempting to calibrate both
components at the same time (Arthern et al. 2010; Zhao et al. 2018). A classic problem of
a joint calibration is the ambiguity in increasing/decreasing accumulation vs increasing/de-
creasing Glen’s coefficient (A). ODINN.jl, with its fully differentiable codebase, provides a
different strategy consisting in two main steps: (i) calibrating the ice rheology from observed
ice surface velocities (Millan et al. 2022), observed ice thicknesses (Consortium 2019) and
DEMs; (ii) calibrating the MB component (e.g. melt and accumulation factors) with the pre-
viously calibrated ice rheology based on both point glaciological mass balance observations
and multiannual geodetic MB observations (Hugonnet et al. 2020). This maximises the use
of current glaciological datasets for model calibration, even for transient simulations. Such a
differentiable modelling framework presents both the advantages of complex inversions and
the possibility of performing data assimilation with heterogeneous and sparse observations.

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 85

4.5.2 Scientific machine learning

4.5.2.1 Automatic differentiation approaches

Automatic differentiation is a centerpiece of the modelling framework presented in this study.
In the Julia programming language, multiple AD packages exist, which are compatible with
both differential equation and neural networks packages, as part of the SciML ecosystem.
Each package has advantages and disadvantages, which make them suitable for different
tasks. In our case, ReverseDiff.jl turned out to be the best performing AD package,
due to the speed gained by reverse tape compilation. Together with Zygote.jl (Innes et al.
2019), another popular reverse AD package, they have the limitation of not allowing mutation
of arrays. This implies that no in-place operations can be used, thus augmenting the memory
allocation of the simulations considerably. Enzyme.jl (Moses et al. 2021) is arising as a
promising alternative, with the fastest gradient computation times in Julia (Ma et al. 2021b).
It directly computes gradients on statically analyzable LLVM, without differentiating any
Julia source code. Nonetheless, Enzyme.jl is still under heavy development, and it is still
not stable enough for problems like the ones from this study. As Enzyme.jl will become
more robust in the future, appears likely to become the de facto solution for AD in Julia.

Overall, the vision on AD from Julia is highly ambitious, attempting to perform AD
directly on source code, with minimal impact on the user side and with the possibility of
easily switching AD back-ends. In practice, this implies that it is much more complex to
achieve from a technical point of view than hardcoded gradients linked to specific operators,
an approach followed by JAX (Bradbury et al. 2020) and other popular deep learning Python
libraries. On the short term, the latter provides a more stable experience, albeit a more rigid
one. However, in the long term, once these packages are given the time to grow and become
more stable, differentiating through complex code, like the one from UDEs, should become
increasingly straightforward.

4.5.2.2 Surrogate models and emulators

In this work, we model glacier ice flow using a two-dimensional SIA equation described
by Equation (3.23). This decision was originally driven by the goal of using a differential
equation that is general enough for modelling the gridded remote sensing available data, but
also flexible enough to include unknowns in the equation in both the diffusivity and surface
mass balance terms. Nonetheless, the approach of UDEs and functional inversions is flexible,
and can be applied to more complex ice flow models, such as Full-Stokes. It is important to
keep in mind that for such more complex models, the numerical solvers involved would be
computationally more expensive to run, both in forward and reverse mode.

A recent alternative to such a computationally heavy approach is the use of surrogate
models and emulators (see Section 1.3.1). An example of these are the emulators based on
convolutional neural networks for the solutions of the differential equations of a high-order
ice flow model (Jouvet et al. 2021; Wang et al. 2022). Emulators can be used to replace the
numerical solver shown in the workflow illustrated in Figure 4.2, while keeping the functional

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 86

inversion methodology intact. This in fact translates into replacing a numerical solver by
a previously trained neural network, which has learnt to solve the Stokes equations for ice
flow. Embedding a neural network inside a second neural network that gives approximate
solutions instead of a PDE solved by a numerical solver allows computing the full gradient of
the loss function by just using reverse AD. Neural networks can be very easily differentiated,
thus resulting in a simpler differentiation scheme. At the same time, as shown in (Jouvet
2023), this could potentially speed-up functional inversions by orders of magnitude, while
also improving the quality of the ice flow simulations transitioning from the SIA, with its
vertically-integrated ice column assumption, to Full-Stokes.

4.5.2.3 New statistical questions

The combination of solvers for differential equations with modern machine learning tech-
niques opens the door to new methodological questions that include the standard ones about
the design of the machine learning method (loss function, optimization method, regulariza-
tion) but also new phenomena that emerges purely by the use of numerical solutions of
differential equations in the loss function. Although this intersection between data science
and dynamical systems has been widely explored (see (Ramsay et al. 2017)), the use of ad-
joints for sensitivity analysis integrated with AD tools for optimization and the properties of
the landscape generated when using numerical solvers has not. Because numerical methods
approximate the solution of the differential equation, there is an error term associated to
running the forward model that can be amplified when running the model backwards when
computing the adjoint. This can lead to inaccurate gradients, especially for stiff differential
equations (Kim et al. 2021). Furthermore, when computing a loss function that depends
of the solution of the differential equation for certain parameter θ, the loss depends on θ
because local variations in θ result in changes in the error itself, but also because of hyper-
parameters in the numerical solver (for example, the timestep used to ensure stability) that
are adaptatively selected as a function of θ. This double dependency of the loss as a function
of θ results in distortions of the shape of the loss function (Creswell et al. 2023). Further
investigation is needed in order to establish the effect of these distortions during optimization
and how these can impact the calculation of the gradient obtained using different sensitivity
methods.

Another interesting question regards the training and regularization of UDEs and related
physics-informed neural networks. During training, we observed that the neural network
never overfitted the noisy version of prescribed law A(Ts). We conjecture that one reason
why this may be happening is because of the implicit regularization imposed by the form of
the differential equation in Equation (3.23).

CHAPTER 4. UNIVERSAL DIFFERENTIAL EQUATIONS FOR GLACIER ICE
FLOW MODELLING 87

4.6 Conclusions and future directions
Despite the ever increasing amounts of new Earth observations coming from remote sensing,
it is still extremely challenging to translate complex, sparse, noisy data into actual models
and physical laws. Paraphrasing (Rackauckas et al. 2020), "In the context of science, the well-
known adage a picture is worth a thousand words might well be a model is worth a thousand
datasets”. Therefore, there is a clear need for new modelling frameworks capable of generating
data-driven models with the interpretability and hard constraints of classic physical models.
Universal differential equations (UDEs) embed a universal function approximator (e.g. a
neural network) inside a differential equation. This enables additional flexibility typical from
data-driven models into a reliable physical structure determined by a differential equation.

We presented ODINN.jl, a new modelling framework based on UDEs applied to glacier
ice flow modelling. We illustrated how UDEs, supported by differentiable programming in
the Julia programming language, can be used to retrieve empirical laws present in datasets,
even in the presence of noise. We did so by using the Shallow Ice Approximation PDE, and
learning a prescribed artificial law as a subpart of the equation. We used a neural network
to infer Glen’s coefficient A, determining the ice viscosity, with respect to a climatic proxy
for 17 different glaciers across the world. The presented functional inversion framework is
robust to noise present in input observations, particularly on the surface mass balance, as
shown in an experiment.

This study can serve as a baseline for other researchers interested in applying UDEs to
similar nonlinear diffusivity problems. It also provides a codebase to be used as a backbone
to explore new parametrizations for large-scale glacier modelling, such as for glacier ice
rheology, basal sliding, or more complex hybrid surface mass balance models.

Software availability. The source code of ODINN.jl v0.2.0 (Bolibar et al. 2023b) used
in this study is available as an open-source Julia package: https://github.com/ODI
NN-SciML/ODINN.jl. The package includes Continuous Integration tests, installation
guidelines on how to use the model and a Zenodo DOI: https://zenodo.org/recor
d/8033313. OGGM v1.6 (Maussion et al. 2023) is also available as an open-source Python
package at: https://github.com/OGGM/oggm, with documentation and tutorials
available at https://oggm.org.

https://github.com/ODINN-SciML/ODINN.jl
https://github.com/ODINN-SciML/ODINN.jl
https://zenodo.org/record/8033313
https://zenodo.org/record/8033313
https://github.com/OGGM/oggm
https://oggm.org

88

Chapter 5

Quantitative analysis of paleomagnetic
sampling strategies

A different application of statistical modelling in geophysics is pursued in the field of Pa-
leomagnetism. Most of the contents of this chapter are based on the analysis and results
in

▶ F. Sapienza, L. C. Gallo, Y. Zhang, B. Vaes, M. Domeier, and N. L. Swanson-Hysell
(2023a). “Quantitative Analysis of Paleomagnetic Sampling Strategies”. In: Journal
of Geophysical Research: Solid Earth 128.11, e2023JB027211. doi: https://doi.o
rg/10.1029/2023JB027211.

The associated publication includes an editor highlight in the Journal of Geophysical Re-
search: Solid Earth titled Should I Stay or Should I Go. . .To Another Paleomagnetic Site?
available at https://eos.org/editor-highlights/should-i-stay-or-sho
uld-i-goto-another-paleomagnetic-site. At the end of this chapter we will
further show how the same tools covered in Chapter 4 can be used to model the past motion
of tectonic plates from paleomagnetic data. Further work in estimation of apparent polar
wander paths (see Section 5.7.1) can be found in the following publications:

▶ L. C. Gallo, M. Domeier, F. Sapienza, N. L. Swanson-Hysell, B. Vaes, Y. Zhang, M.
Arnould, A. Eyster, D. Gürer, Á. Király, B. Robert, T. Rolf, G. Shephard, and A.
van der Boon (2023). “Embracing Uncertainty to Resolve Polar Wander: A Case
Study of Cenozoic North America”. In: Geophysical Research Letters 50.11. doi:
10.1029/2023gl103436

▶ L. C. Gallo, F. Sapienza, and M. Domeier (2022). “An optimization method for pale-
omagnetic Euler pole analysis”. In: Computers & Geosciences 166, p. 105150

and in the two manuscripts in progress

▶ F. Sapienza et al. (2024b). “Fitting curves in the sphere using universal differential
equations”. In: preparation

https://doi.org/https://doi.org/10.1029/2023JB027211
https://doi.org/https://doi.org/10.1029/2023JB027211
https://eos.org/editor-highlights/should-i-stay-or-should-i-goto-another-paleomagnetic-site
https://eos.org/editor-highlights/should-i-stay-or-should-i-goto-another-paleomagnetic-site
https://doi.org/10.1029/2023gl103436

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 89

▶ L. C. Gallo et al. (2024). “On the feasibility of paleomagnetic Euler pole analysis”. In:
preparation

5.1 Abstract
Sampling strategies used in paleomagnetic studies play a crucial role in dictating the ac-
curacy of our estimates of properties of the ancient geomagnetic field. However, there has
been little quantitative analysis of optimal paleomagnetic sampling strategies and the com-
munity has instead defaulted to traditional practices that vary between laboratories. In this
paper, we quantitatively evaluate the accuracy of alternative paleomagnetic sampling strate-
gies through numerical experiments and an associated analytical framework. Our findings
demonstrate a strong correspondence between the accuracy of an estimated paleopole posi-
tion and the number of sites or independent readings of the time-varying paleomagnetic field,
whereas larger numbers of in-site samples have a dwindling effect. This remains true even
when a large proportion of the sample directions are spurious. This approach can be read-
ily achieved in sedimentary sequences by distributing samples stratigraphically, considering
each sample as an individual site. However, where the number of potential independent sites
is inherently limited the collection of additional in-site samples can improve the accuracy of
the paleopole estimate (although with diminishing returns with increasing samples per site).
Where an estimate of the magnitude of paleosecular variation is sought, multiple in-site
samples should be taken, but the optimal number is dependent on the expected fraction of
outliers. The use of filters based on angular distance helps the accuracy of paleopole estima-
tion, but leads to inaccurate estimates of paleosecular variation. We provide both analytical
formulas and a series of interactive Jupyter notebooks allowing optimal sampling strategies
to be developed from user-informed expectations.

Plain Language Summary
Earth’s magnetic field can be preserved in rocks when they form. Through studying these
magnetic records using the tools of paleomagnetism, scientists can learn about how Earth’s
magnetic field has changed through time and how tectonic plates have moved relative to the
field. This study is about the best ways to design sampling approaches to gain these insights
using statistical quantification. Traditional protocols emphasize the collection of numerous
samples from units that record the field at a given instant in time. Such units are referred
to as sites. By simulating data, we develop tools for evaluating trade offs between collecting
more sites and more samples per site. Our results show that strategies that maximize
collecting more sites, even if fewer samples are taken at each site, leads to more accurate
estimates even in the presence of spurious observation. While there is a benefit to more
samples per site, particularly for studies seeking to estimate the variability of the ancient
field, such sampling has diminishing returns relative to maximizing the number of sites. We

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 90

(a) (b)

(c) (d)

Figure 5.1: A paleomagnetic campaign. Samples consist in cylindrical pieces of rock (c)
extracted from a given outcrop (a). Different layers are associated to different ages and
sites. Pictures (b) and (d) despite Mathew Domeier measuring the orientation and drilling
the new sample, respectively. Please notice that in all this chapter, samples correspond to
rock samples, no statistical samples. Pictures courtesy of Leandro Gallo.

provide formulas and interactive computational resources to help the community to make
informed decisions about the best way to gather data.

5.2 Introduction
Paleomagnetism is concerned with attempting to estimate properties of the ancient geomag-
netic field from magnetic records preserved in rocks. This involves laboratory measurements
of magnetization directions recorded by rocks and statistical analyses of those directions.
Two geomagnetic properties of particular interest that can be estimated from these paleo-
magnetic directional data are:

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 91

• The position of the time-averaged (≳ 104 − 105 years) ancient geomagnetic pole (also
known as a paleopole) that corresponds to the Earth’s spin axis according to the geo-
centric axial dipole hypothesis (Creer et al. 1954).

• The paleosecular variation of the field, which is associated with the shorter-term (≲
104 − 105 years) time-varying position of the geomagnetic pole.

Despite the importance of these two quantities, there has been little exploration of the best
sampling practices with which to derive estimates of them. This has resulted in practices
that vary according to the traditions of different laboratories; that is, the community largely
relies on conventional wisdom.

In the hierarchical framework of paleomagnetic studies, a site should correspond to a unit
of rock with a common age and direction of magnetization (McElhinny et al. 2000; Tauxe
2010). Note that in some contributions a site is defined more loosely as a small area or
stratigraphic interval from which samples are collected which is not the definition that we
use here. In our preferred definition, each site is interpreted to be a spot recording of the
time-varying geomagnetic field. In the case of an igneous rock, a site could be an individual
lava flow or intrusion, whereas for a sedimentary rock, a site should ideally comprise a
single depositional event. In practice, a sedimentary site typically corresponds to a single
stratigraphic horizon that is the height of a standard paleomagnetic sample, usually about
2.5 cm (see Figure 5.1). Notice that when sedimentation rates are low, an individual samples
may partially time average the field. To move up the hierarchy, a collection of paleomagnetic
samples from a given site are averaged and the site mean is transformed from a direction
with an associated declination and inclination to pole space with an associated latitude and
longitude, where the mean is referred to as a virtual geomagnetic pole (VGP). Following the
definition of a site, each VGP ideally represents an independent estimate of the position of
the ancient geomagnetic pole at an instant in time. Estimates of paleosecular variation of
the ancient geomagnetic field prior to 10 Ma can be made from populations of VGPs by
determining their angular dispersion – most typically applied to collections of igneous sites
of a similar age (McFadden et al. 1988). To determine a mean paleomagnetic pole position,
a group of similarly aged VGPs are averaged to a Fisher mean paleopole that is taken as the
best estimate of the true position of the ancient geographic pole relative to the observation
point.

Regardless of whether we seek to discern the statistical properties of the time-averaged
pole position or geomagnetic secular variation, our estimates will include error. Paleomag-
netic errors come from a variety of sources which can include orientation errors both in the
field and the laboratory; measurement errors; and the imperfect isolation of the magnetiza-
tion of interest from secondary magnetic overprints. The frequent occurrence of imperfect
magnetization acquisition or the inability to isolate primary components often results in
a sample collection being contaminated by outliers. Orientation and measurement errors
are generally assumed to be randomly unbiased (non-systematic) and so can be mitigated
through the collection, measurement and directional averaging of multiple samples within a

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 92

site. However, given finite resources, the collection of additional samples per site will come
at the cost of a lower number of sites in many settings. A relevant question is thus: how
should we distribute our sampling to minimize uncertainty on the property we seek to esti-
mate? Is it better to take a few sites with many samples? Or many sites with fewer samples?
How might the recommended strategy change depending on the objective (in estimating the
location of the paleopole vs. the dispersion of VGPs) or the fidelity of the magnetic record?

Some notions concerning sampling have become entrenched in the paleomagnetic litera-
ture. For example, many workers seek to collect six to eight samples per site (Butler 1992),
although the rationale for this range is not entirely clear. (Opdyke et al. 1996) suggest that
at least three samples per site be collected where determinations of polarity are important,
whereas to reliably estimate the dispersion of sample directions within a site, a minimum
of four (Cromwell et al. 2018) or five (Tauxe et al. 2003) samples per site has been deemed
necessary. Having a more significant number of samples within the site provides the benefit
of being able to apply data filters based on within-site scatter. However, (Gerritsen et al.
2022) have found empirically that collecting and averaging multiple samples per site only
results in a modest enhancement of the overall accuracy of the paleopole. Thus, where the
objective is to estimate the position of a paleopole, (Gerritsen et al. 2022) suggested that
it is most beneficial to maximize the number of sites, and so the collection of additional
single-sample sites should be preferred over the collection of multiple samples from fewer
sites. Nevertheless, a statistical and quantitative evaluation of alternative strategies has not
yet been conducted.

Here we explore how the distribution of samples across sites affects the performance in
the estimation of the paleopole position and the dispersion of VGPs, and how the varying
influence of outliers dictates the optimal strategy to best estimate these parameters. We also
derive a set of equations that can enable quantitative sampling strategy recommendations
based on specified parameters informed by user expectations.

5.3 Mathematical setup
Consider the problem of estimating a paleomagnetic pole µ0 for some given interval of time,
where µ0 is a three-dimension vector contained in the unit sphere. Observations consist of a
collection of a total of n samples distributed among N sites. Because the geomagnetic field
is constantly varying around a mean configuration, each one of the virtual geomagnetic poles
(VGP) per site, denoted by µi with i = 1, 2, . . . , N , is going to differ from the time-averaged
paleomagnetic pole µ0. A fundamental assumption in paleomagnetic research is that this
secular variation of the geomagnetic field can be effectively estimated through averaging of
a sufficiently high number of independent and temporally distributed VGPs. We now seek
to evaluate how our choices of n and N will affect our estimation of µ0, as well as how we
distribute the n samples among the N sites.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 93

5.3.1 Data generating process

We define the following data generating process. First, we consider a set with a total of
N VGPs sampled from a statistical model of secular variation. Examples of these models
include the Gaussian process type model (Constable et al. 1988; Tauxe et al. 2004) and model
G (McFadden et al. 1988). In this contribution, we use model G which captures latitudinal
variation in VGP scatter, and considers a mean geocentric axial and dipolar (GAD) field.
Then, given a GAD mean direction µ0, we sample a series of VGPs µ1, µ2, . . . , µN according
to

µi ∼ SV(µ0, κb) i = 1, 2, . . . , N. (5.1)
The sampling procedure depends on the mean direction µ0 and the precision parameter κb

that will depend on the secular variation model used. In this study, we adopt the mild
assumption that VGP distributions are circularly symmetric (Tauxe et al. 2004) and can be
sampled from a Fisher distribution (Deenen et al. 2011; Fisher 1953), whose dispersion Sb,
according to model G (McFadden et al. 1988), depends on the sampling latitude λ through
the following formula

Sb(λ)
2 = a2 + b2λ2, (5.2)

with a and b two empirical coefficients, recently calculated as a = 11.3◦+1.3◦

−1.1◦ and b = 0.27+0.04
−0.08

by (Doubrovine et al. 2019). At population level, there is a one-to-one relationship between
Sb and the value of κb we use to sample from the Fisher distribution. This relationship
can be found numerically with an arbitrary level of precision. Then, VGPs can be sampled
according to a Fisher distribution with mean direction µ0 and dispersion parameter κb(λ).

In the following, we use the supraindex ∗ to denote variables in directional space (inclination-
declination). Thus, µi refers to any given VGP (geographic coordinates) and µ∗

i refers to its
corresponding direction in inclination and declination space according to the dipole formula.
Note that this transformation between pole and directional space depends on the latitude
and longitude of the site.

Now, we assume that the ith-site has ni individual directions that follow a Fisher distri-
bution

x∗
ij ∼ Fisher(µ∗

i , κi) with probability 1− poutlier and (5.3)
x∗
ij ∼ Unif otherwise, for j = 1, 2, . . . , ni,

with xij the jth-direction of the ith-site; κi the dispersion parameters per site; and Unif
represents the uniform distribution on the sphere. The parameter poutlier has been added to
quantify the effect of outliers in the sampling process. With probability 1 − poutlier we are
going to observe a true sample, while with probability poutlier our sample will be corrupted
and instead we will observe a spurious direction, modelled by a uniform distribution on
the sphere where no information is provided about the true orientation of the field. For
cases where we do not want to consider the effect of outliers in the sampling process, we set
poutlier = 0. Also, for cases where the number of samples and dispersion parameter are the
same for all the sites, we will use n0 and κw to refer to any of the ni and κi, respectively.
The parameters used in the model are summarized in Table 5.1.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 94

Parameter Range Description
N ≥ 1 Total number of sites.
n0 ≥ 1 Number of samples per site. We will assume n0 = n1 =

. . . = nN and denote n = Nn0 the total number of
samples.

κw [0,∞) Precision parameter of the Fisher distribution for a given
site, where kw = 0 results in a uniform distribution on
a sphere and kw →∞ is a singular point.

κb [0,∞) Precision parameter of the Fisher distribution between
sites. For the model G, this is directly determined by λ.

λ [0◦, 90◦] Paleolatitude.
poutlier [0, 1] Outlier rate where 0 is no outliers and 1 is all samples

are outliers drawn from a uniform distribution.

Table 5.1: Parameters used in the data generating process for the sampling of poles.

5.3.2 Estimation of the paleopole direction

We can estimate the true pole location µ0 by computing the Fisher mean of the VGPs
estimated from each site, that is,

µ̂0 =
1

R0

N∑

i=1

µ̂i R0 =

∥∥∥∥∥
N∑

i=1

µ̂i

∥∥∥∥∥ , (5.4)

where R0 is the length of the resultant vector with ∥ · ∥ denoting the Euclidean norm; and
µ̂i is the sample mean per site, which results from transforming to pole space the estimate
of the pole in directional space,

µ̂∗
i =

1

Ri

ni∑

j=1

x∗
ij Ri =

∥∥∥∥∥
ni∑

j=1

x∗
ij

∥∥∥∥∥ . (5.5)

The overall goal of this estimation procedure is to get a value for µ̂0 as close as possible to
the ground truth µ0.

We assess the accuracy of the pole estimate across simulations by computing the root-
mean-square error (RMSE) as

Errµ̂0 =

√√√√ 1

M

M∑

m=1

angle
(
µ̂
(m)
0 , µ0

)2
, (5.6)

where angle(µ̂(m)
0 , µ0) = (180◦/π) cos−1(µ̂T

0 µ̂
(m)
0) is the angular distance in degrees between

the true pole µ0 and each one of the simulated estimations µ̂(m)
0 , where M is the total number

of simulations.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 95

5.3.3 Estimation of the VGP scatter

Long-term assessment of the paleomagnetic secular variation of the geomagnetic field relies
on the VGPs dispersion Sb instead of their mean. The observed global dispersion S is
estimated as (Cox 1970)

Ŝ2 =
1

N − 1

N∑

i=1

angle(µ̂i, µ̂0)
2. (5.7)

The global dispersion S2 is a combination of the dispersion between VGPs Sb and that
arising from the dispersion among the samples within the site Sw (McFadden et al. 1991).
We assume that the latter arises purely from random errors associated with orientation,
measurement and analytical errors, whereas the former is an unknown, latitude-dependent
parameter of the time-averaged geomagnetic field. In order to estimate Sb, we first need to
extract the within-site dispersion from the global dispersion of the VGPs, that is

Ŝ2
b = Ŝ2 − Ŝ2

w, (5.8)

where the estimated within-site dispersion Ŝw is computed in directional space following
(McFadden et al. 1991) and (Doubrovine et al. 2019)

Ŝ2
w =

1

N

N∑

i=1

Ŝ2
wi

ni

(5.9)

Ŝ2
wi = 2

(
180◦

π

)2
T (λ)

k̂wi

(5.10)

k̂wi =
ni − 1

ni −Ri

, (5.11)

with T (λ) = 1
8
(5 + 18 sin2 λ+9 sin4 λ) the latitude correction introduced in (Cox 1970); and

Ri the resultant vector length defined in Equation 5.5. Notice that the within-site dispersion
will lead to unrealistic estimates of the between-site dispersion in cases where ni is small,
ni = 1 being the extreme case where the within-site dispersion cannot be estimated; that is,
we cannot disentangle the contribution of the within-site and between-site dispersion. For
cases where ni = 1, we set Ŝw = 0, that is, the within site dispersion is zero since it cannot
be estimated from these series of equations.

5.4 Numerical results
In this section, we present the results of numerical simulations that explore how different
sampling strategies affect the estimation of paleopole position µ0 and VGP scatter Sb. These
simulations implement the data generation process described in the Section 5.3.1 to draw
samples of site directions and associated directions within a given site. For the different
numerical experiments, we apply varied choices for the model parameters (Table 5.1) and

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 96

we respectively compute the mean pole position µ̂0 and VGP scatter Ŝb. These simulations
enable us to assess what differences in sampling strategy yield estimates of the parameters
of interest that are closer to the true value. We compare the results of these estimates
for different choices of filters to determine which sampling strategy and method yields the
highest accuracy.

5.4.1 Trade-off between number of sites and number of samples
per site

The top panel in Figure 5.2 shows the accuracy of the mean µ̂0 (Equation (5.6)) as a function
of the number of sites N and the number of samples per site n0 in the absence of outliers
(poutlier = 0). As the number of sites increases (moving up the y-axis), the total error reduces.
The mean error is also reduced if we increase the number of samples per site while keeping
the total number of sites fixed. However, in the latter case we see that the improvement
resulting from increasing the number of samples per site is small relative to increasing the
number of sites and saturates for small numbers of n0 (see black contour lines).

In a scenario with unlimited resources to collect and analyze paleomagnetic samples, one
could seek to maximize both the number of sites (N) and the number of samples per site
(n0). However, in the context of finite resources, it is interesting to consider what happens
when we keep fixed the total number of samples n = n0N but change how these samples are
partitioned between number of sites (N) and number of samples per site (n0). As visualized
with the white dotted curves in Figure 5.2 that follow a fixed total number of samples, we
see that smaller errors are associated with sampling strategies that prioritize the acquisition
of additional sites over the collection of additional samples per site. The same behaviour
is exposed when we plot the error as a function of the total number of samples n and for
different values of n0 (Figures 5.3a and 5.3b). For all choices of samples per site n0, the
net error decreases at rate 1/

√
n, with the absolute value of the error being additionally

affected by n0. We quantify the improvement in accuracy due to an increase in the number
of samples for different number of samples per site (Figures 5.3c and 5.3d). Even by keeping
fixed the number of sites and increasing n0 (and, consequently, increasing the total number
of samples), the improvement in accuracy is minimal once n0 ≥ 3.

The effect of varied numbers for N and n0 on the accuracy of estimates of VGP scatter
(between-site dispersion Sb) is shown in Figure 5.2. As with estimating pole position, we
observe similar behavior for estimating VGP scatter where, given a fixed total number of
samples, there is smaller error when the number of sites is higher. However, the benefit of
increasing the number of samples per site on reducing the root mean square error between
Ŝb and the true VGP scatter Sb is more pronounced. Notice that for n0 = 1, this error is
large due to the inability to estimate the within-site dispersion. However, for n0 ≥ 3 the
error stabilizes and we observe the same behaviour as before: the acquisition of more sites
over more samples per site leads to better estimation of the VGP scatter assuming n0 ≥ 3.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 97

Figure 5.2: Root mean square error (RMSE) in degrees between site mean poles and the
true GAD pole (top panel) and between-site VGP dispersion (bottom panel) as a function
of different combinations of the total number of sites N and the number of samples per site
n0. For this diagram, we use a paleolatitude of 30◦ (κb ≈ 35), poutlier = 0, and κw = 50.
The white dashed lines represent isolines where the total number of samples n is constant,
and the black lines represent isolines with constant net mean error angle. Each point-wise
estimate of the mean error (i.e. each box) is based on the results of 10, 000 simulations.
While these simulations represent secular variation using model G, similar results emerge
from using the TK03 model (Tauxe et al. 2004).

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 98

0 50 100 150 200 250 300
Total number of samples (n)

0

1

2

3

4

5

6

7

8

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(a)

100 101 102

Total number of samples (n)

100

101

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(b)

0 20 40 60 80 100
Total number of sites (N)

0

1

2

3

4

5

6

7

8

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(c)

100 101 102

Total number of sites (N)

101

RM
SE

 (d
eg

re
es

)

Samples per site
1
2
3
4
5
6
7

(d)

Figure 5.3: (a) Root mean square error (RMSE) angle of the computed mean pole as
a function of the total number of samples n for different values of samples per site n0

where an increase in samples per site results in a decrease in the number of sites. (b)
Displays the same values on a logarithmic scale, making explicit the 1/

√
n decay of the

error, independent of the value of n0. (c) RMSE as a function of the total number of
sites N for different values of n0 where an increase in n0 increases the total number of
samples, also in (d) logarithmic scale. For all the figures, we set λ = 30◦, κw = 50, and
poutlier = 0. The dot-dashed lines in all the plots represents the theoretical approximation
(see Section 5.5).

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 99

5.4.2 Sampling strategy in the presence of outliers

In the previous section, we concluded that the number of sites N is mostly what determines
the accuracy of the estimated position of the paleopole. However, an argument for collecting
more samples per site is the ability to detect and filter out spurious sample directions. A
more fair comparison then is to compare two different strategies for estimating the paleopole
while taking the possible occurrence of such outliers into account. When using a small
number of samples per site n0, outlier detection at the site level may be difficult, or directly
impossible where n0 = 1 given that within site consistency cannot be evaluated. However, it
is possible to implement methods to filter VGPs that are statistically significantly apart from
the mean (e.g. the paleopole) using an iterative cut-off (Vandamme 1994). We compare this
first strategy (n0 = 1 with Vandamme’s iterative cut-off applied on the estimated population
of VGPs) with the optimistic case where we collect more samples per site and are able to
identify and filter all the outliers directly at the site level. The latter case provides a lower
bound on the most optimistic error when using any outlier detection criteria at site level.
For this second strategy, no outliers are included in the calculation of the final estimated
pole µ̂0. This means that the effective number of samples used to estimate µ0 will be less
than n, but since the samples removed are spurious directions, we expect the estimate of the
paleopole will be more accurate than if we included all the samples in the calculation. We
also show the results of the first method without using any outlier filter whatsoever.

Histograms in Figures 5.4 show the distribution of the angles between µ0 (true GAD pole)
and µ̂0 (estimated pole) for the two sampling strategies and with 10%, 40% and 60% outlier
rate, respectively. Even in the presence of outliers, using n0 = 1 gives lower angular errors
than when using n0 = 5 until the proportion of outliers poutlier increases by a significant
amount. We illustrate this by showing in Figure 5.5a the mean of these two errors as a
function of the outlier rate poutlier. Until the proportion of outliers reaches a critical point of
approximately 55%, having n0 = 1 but being able to sample more sites N still out-performs
the case where n0 = 5 and all outliers are removed. Figure 5.5b shows this critical value of
poutlier for different site latitudes and within-site dispersion, showing that we need to have
more than 40% outliers before the second strategy out-performs the n0 = 1 strategy. Panel
5.5c further shows this critical value in the case where no filter is used for n0 = 1. It is
noteworthy that despite the small variance, this critical value of poutlier grows as a function
of site latitude (increasing Sb) and remains relatively similar as a function of within-site
dispersion.

A wider comparison of these methods for a range of samples per site n0 is provided in
Figure 5.6. Here again we can observe that for a fixed number of total samples the scenario
with n0 = 1 leads to better estimation of the true pole until the proportion of outliers
becomes very high. On the right side of the panel we can also observe the improvement in
accuracy when we fix the number of sites N and we increase the number of samples per site
and thus the total number of samples. In agreement with the results shown in Figure 5.3,
we observe that the improvement due to an increase in the number of samples per site n0 by
keeping N fixed is small compared to a change in the overall sampling strategy.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 100

(b) 40% Outliers

(c) 60% Outliers

(a) 10% Outliers

Figure 5.4: Comparison between two different sampling strategies to determine a mean
paleomagnetic pole position in the presence of outliers for a fixed number of total samples
(n = 100). The red histograms and curve are strategy 1 where we have one sample per
site (n0 = 1), one hundred sites (N = 100) and we use the Vandamme filter. The blue
histograms and curve are strategy 2 where n0 = 5, (N = 20) and we filter all the outliers
(perfect detection algorithm) for (a) poutlier = 0.10 (10% of sample directions are outliers);
(b) poutlier = 0.40; and (c) poutlier = 0.60. Here κw = 66 is such that the angular dispersion
within site is 10◦, and λ = 30◦. The gray line denotes the case in which we sample for
n0 = 1 but we do not use any outlier detection method.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 101

(c) poutlier critical(b) poutlier critical

(a) Intersecting errors

Figure 5.5: Comparison between two different sampling strategies to determine a mean
paleomagnetic pole position in the presence of outliers for a fixed number of total samples
(n = 100) (Part 2). (a) As we increase the number of outliers poutlier, the error increases
differently depending on whether we can detect and filter outliers or not. The intersection
of the two errors corresponds to the value of poutlier whereupon there is a crossover in the
efficacy of the two methods. The shaded envelopes around the solid lines correspond to
the 25 and 75 percentile bands. (b) Value of the intersection between the mean errors for
strategies 1 and 2 (panel a) for different values of latitude λ and within-site dispersion
kw. (c) Same as in (b) but comparing n0 = 5 with the scenario of no outlier detection.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 102

We conducted the same analysis for estimating the VGP scatter Sb and its associated
error. Figure 5.7 shows the signed percentage error 100% · (Ŝb − Sb)/Sb for different choices
of n0. When n0 = 1, all methods overestimate the real VGP scatter due to the lack of
estimates of the within site dispersion S2

w (Equation (5.9)). On the other hand, Sb tends to be
underestimated when we use the (Vandamme 1994) filter, since the cut-off of outliers reduces
the total dispersion of the VGPs (Equation (5.7)). As we increase the number of outliers, we
observe a significant deterioration of the VGP scatter estimation due to the inability to filter
outliers. This behaviour is rather different to what we observed for paleopole estimation,
where the estimation is more robust to outliers. However, after reaching a minimum required
value of samples per site (around n0 = 3), the accuracy only minimally improves by adding
more samples per site. In the case where no outliers are present, we are back to the case in
Figure 5.2 where we observed that, for the same budget of total samples n, a larger value of
sites N leads to more accurate estimates as long as n0 ≥ 3.

5.5 Theoretical results
We can quantify the trade-offs between the different model parameters introduced in the
previous section by theoretically deriving approximations for the dispersion parameter of the
distribution of the estimated pole µ̂0. This procedure works by finding the effective precision
parameter κeff of a Fisher distribution that minimizes the Kullback-Leibler divergence with
respect to the actual dispersion of µ̂0 (Heslop et al. 2020; Kurz et al. 2016). As derived in
(Kurz et al. 2016), this approach is equivalent to finding the mean direction and dispersion
parameter that matches the resultant vector length of the target distribution. Using this
method, we will derive in this section the following approximation for the dispersion of the
estimated µ̂0:

µ̂0 ≈ Fisher(µ0, κeff), κeff =
Nκb

1 + κb

n0 (1−poutlier)κw T (λ)

. (5.12)

The effective dispersion parameter κeff is a function of all the parameters in the model. Under
the assumptions of model G (McFadden et al. 1988), we have κb = κb(λ) is a function of the
paleolatitude according to Equation (5.2). However, this result holds for other choices of κb

where the Fisher approximation of the VGP scatter is appropriate.
In the case where no outliers are included (poutlier = 0), based on the approximated

relationship between angular dispersion S and κ we can approximate the angular error Errµ̂0

introduced in Equation (5.6) as

Errµ̂0 ≈
81◦√
N

√
1

κb

+
1

n0κ1T (λ)
. (5.13)

This equation allow us to quantify the amount of error associated with different choices of n0.
Comparing this theoretical approximation with the simulations (Figure 5.2 and 5.3) reveals
relative error of around 1% between simulation and theory.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 103

1 (100) 2 (50) 3 (33) 4 (25) 5 (20)
Samples per site (Total number of sites)

0

2

4

6

8

10
An

gu
la

r e
rro

r (
de

gr
ee

s)
Vandamme
No detection
Perfect detection

(a) n ≈ 100, 10% Outliers

1 (100) 2 (100) 3 (100) 4 (100) 5 (100)
Samples per site (Total number of sites)

0

2

4

6

8

10

An
gu

la
r e

rro
r (

de
gr

ee
s)

Vandamme
No detection
Perfect detection

(b) N = 100, 10% Outliers

1 (100) 2 (50) 3 (33) 4 (25) 5 (20)
Samples per site (Total number of sites)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

An
gu

la
r e

rro
r (

de
gr

ee
s)

Vandamme
No detection
Perfect detection

(c) n ≈ 100, 40% Outliers

1 (100) 2 (100) 3 (100) 4 (100) 5 (100)
Samples per site (Total number of sites)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

An
gu

la
r e

rro
r (

de
gr

ee
s)

Vandamme
No detection
Perfect detection

(d) N = 100, 40% Outliers

1 (100) 2 (50) 3 (33) 4 (25) 5 (20)
Samples per site (Total number of sites)

0

5

10

15

20

25

30

An
gu

la
r e

rro
r (

de
gr

ee
s)

Vandamme
No detection
Perfect detection

(e) n ≈ 100, 60% Outliers

1 (100) 2 (100) 3 (100) 4 (100) 5 (100)
Samples per site (Total number of sites)

0

5

10

15

20

25

30

An
gu

la
r e

rro
r (

de
gr

ee
s)

Vandamme
No detection
Perfect detection

(f) N = 100, 60% Outliers

Figure 5.6: Boxplot of the angular error between estimated and true GAD pole for
different sampling strategies (number of samples per site, and total number of sites in
parenthesis) for (a,b) poutlier = 0.10, (c,d) poutlier = 0.40 and (e,f) poutlier = 0.60. The left
column corresponds to the case where the total number of samples is fixed around n ≈ 100,
while the right column is the case with fixed number of sites (N = 100) and a variable total
number of samples. Following the convention in Figure 5.4, the red diagrams correspond
to n0 = 1 using the Vandamme filter; the blue to n0 = 5 with perfect outlier detection
algorithm; and the grey boxes correspond to n0 = 1 with no outlier detection been applied.
For all simulations shown, kw = 50 and λ = 30◦.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 104

1 (100) 2 (50) 3 (33) 4 (25) 5 (20)
Samples per site (n0)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 e

rro
r f

or
 S

b

Vandamme
Perfect detection
No detection

(a) n ≈ 100, 0% Outliers

1 (100) 2 (100) 3 (100) 4 (100) 5 (100)
Samples per site (n0)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 e

rro
r f

or
 S

b

Vandamme
Perfect detection
No detection

(b) N = 100, 0% Outliers

1 (100) 2 (50) 3 (33) 4 (25) 5 (20)
Samples per site (n0)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 e

rro
r f

or
 S

b

Vandamme
Perfect detection
No detection

(c) n ≈ 100, 20% Outliers

1 (100) 2 (100) 3 (100) 4 (100) 5 (100)
Samples per site (n0)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%
Pe

rc
en

ta
ge

 e
rro

r f
or

 S
b

Vandamme
Perfect detection
No detection

(d) N = 100, 20% Outliers

1 (100) 2 (50) 3 (33) 4 (25) 5 (20)
Samples per site (n0)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 e

rro
r f

or
 S

b

Vandamme
Perfect detection
No detection

(e) n ≈ 100, 40% Outliers

1 (100) 2 (100) 3 (100) 4 (100) 5 (100)
Samples per site (n0)

-100%

-75%

-50%

-25%

0%

25%

50%

75%

100%

Pe
rc

en
ta

ge
 e

rro
r f

or
 S

b

Vandamme
Perfect detection
No detection

(f) N = 100, 40% Outliers

Figure 5.7: Boxplot of the relative error when estimating the between-site dispersion
Sb, that is, 100%(Ŝb − Sb)/Sb, where Ŝb is estimated as it was explained in Section 5.3.3,
and Sb is the true VGP scatter. Parameters, color references and panel arrangements are
the same than in Figure 5.6, while here the choice of outliers rates is (a,b) poutlier = 0,
(c,d) poutlier = 0.20 and (e,f) poutlier = 0.40.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 105

From the theoretical expression for Errµ̂0 we can see that as n0 increases, the improvement
in accuracy to the final error becomes rather minimal since the coefficient 1/n0κ1T (λ) is
dominated by 1/κb. Surprisingly, this limit is reached for very small values of n0, which
shows the small amount of improvement that increasing n0 adds to the final error, especially
when we compare this with the decay of the error given by the factor 1/

√
N . No matter the

choice of n0, the error goes to zero as N increases. On the other hand, no matter how large
n0 becomes, the overall error will never be lower than 81◦/

√
Nκb, N being the quantity that

controls the overall error most.
The approximation with outliers is accurate for values of which n0(1− poutlier) is strictly

larger than one. For the case of n0 = 1, a more accurate approximation is given by

ρ−1

(
(1− poutlier)

Nκb

1 + κb

n0 κw T (λ)

)
, (5.14)

where ρ(κ) = 1/ tanh(κ)− 1/κ is the expected length of a Fisher distribution with precision
parameter κ and ρ−1 its inverse. When using a perfect outlier algorithm with (1−poutlier)n0 ≥
2, the approximation in Equation (5.13) is still appropriate. Further investigation is needed
to estimate the final error when using iterative cut-off methods such as the Vandamme filter
(Vandamme 1994).

Notice that the theoretical expression for the final dispersion can be used to define con-
fidence intervals around the true pole for a specific study case. Effectively, given a sampling
procedure with prescribed N and n0, we can estimate the dispersion parameters κw and
κb and then, by plugging these into Equations (5.12) and (5.13) obtain a confidence region
around the sample estimated pole. This procedure will take into account the hierarchical
nature of paleomagnetic samples at the moment of quantifying uncertainty.

5.5.1 Setup

The building blocks that lead to that final results in Equations (5.12), (5.13), and (5.14)
consist in finding approximate Fisher distributions for the following procedures:

1. Mean of Fisher distributions (Section 5.5.2)

2. Hierarchical sample of two nested Fisher distributions (Section 5.5.3)

3. Superposition of Fisher and uniform distributions (Section 5.5.4).

Just as we assumed before, we randomly sample a total of N VGPs µi in latitude-
longitude space from a Fisher distribution with mean µ0 and concentration parameter κb.
Then, we sample site measurements x∗

ij in directional space from a Fisher distribution with
mean µ∗

i and concentration parameter κw, where j = 1, 2, . . . , ni (see Section 2.1). We are
going to use ρ(·) to refer to the function

ρ(κ) =
1

tanh(κ)
− 1

κ
, (5.15)

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 106

where κ will refer to the precision parameter of Fisher distributions. It is easy to see that ρ(κ)
is the expected length of a draw from a Fisher distribution with concentration parameter κ
(Mardia et al. 2000).

The method for approximating Fisher distributions follows the moment matching proce-
dure also used in (Heslop et al. 2020). If p(x) represents the probability density function of
some random estimate with support in the unit-sphere given by S2 = {x ∈ R3 : ∥x∥ = 1},
then we aim to find the parameters µ ∈ R3 (∥µ∥ = 1) and κ of the Fisher probability density
function q(x;µ, κ),

q(x;µ, κ) =
κ

4π sinh(κ)
eκµ

T x, (5.16)

such that they minimize the Kullback–Leibler divergence DKL(p|q) given by

min
µ,κ

DKL(p|q) =
∫

S2

p(x) log
p(x)

q(x;µ, κ)
dx. (5.17)

As it was found in (Kurz et al. 2016), this is equivalent to finding a Fisher distribution
q(x;µ, κ) with same mean direction and mean vector length, where the mean vector (both
direction and length) is computed as

∫
S2 x p(x) dx. The technique then consists in esti-

mating the mean resultant length of the estimated paleopole µ̂0 and matching it with the
corresponding Fisher distribution q(x;µ, κ) with same mean resultant length.

5.5.2 Mean of Fisher distributions

Let us begin with a result about the distribution of the mean of a total of n Fisher distri-
butions with same dispersion parameter κ. The case n = 1 is excluded since it leads to a
trivial result.

Proposition 1 (Mean of Fisher Distributions). Consider a sample of n ≥ 2 independent
Fisher distributions xi, i = 1, 2, . . . , n, with mean µ0 and precision parameter κ. Then the
Fisher mean

µ̂ =
1

nR

n∑

i=1

xi R =

∥∥∥∥∥
1

n

n∑

i=1

xi

∥∥∥∥∥ (5.18)

is approximately Fisher distributed with mean direction µ0 and precision parameter κnρ(κ).

Proof. Following (Fisher 1953), the estimated mean Fisher distribution µ̂ can be approx-
imated with a Fisher distribution with mean µ and concentration parameter κnR. This
can be derived by the fact that the conditional probability of µ̂|R = r has distribution
Fisher(µ0, nκr) (Mardia 1975). Taking then expectation over R we obtain an approximate
value of the effective concentration parameter of µ̂. Now, we need to find the expected value
of the vector length of the mean estimate R. For n > 1, it is easy to see that this last
quantity coincides in expectation with the expected length of the Fisher distribution with

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 107

parameter κ, that is E [R] = ρ(κ) (Heslop et al. 2020; Mardia et al. 2000). On the other
side, for n = 1 we simply have R = 1. Even when this may be seem clear, let us derive a
secondary proof that will be useful in the later section. For distributions in the sphere, the
following relationship holds ((Mardia et al. 2000), equation 9.2.13)

E
[
R2
]
= E [R]2 +

1

n
(1− E [R]2), (5.19)

or equivalently

E [R]2 =
nE [R2]− 1

n− 1
. (5.20)

This last equation is useful because it allow us to compute the expected value of R as a
function of the expected value of R2, which is mathematically easier to manipulate. Now,

R2 =
1

n2

n∑

i,j=1

xT
i xj =

1

n2

n∑

i=1

∥xi∥2 +
1

n2

∑

i ̸=j

xT
i xj. (5.21)

Now, taking expectation and using ∥xi∥ = 1 and the independence of the xi we have

E
[
R2
]
=

1

n
+

n− 1

n
E
[
xT
1 x2

]
. (5.22)

The only thing that remains to be calculated is the expectation of the cosine of the angle
between independent Fisher distributed vectors xT

1 x2. However, notice

E
[
xT
1 x2

]
= ρ(κ)E

[
µT
0 x2

]
= ρ(κ)2 (5.23)

which then leads to
E
[
R2
]
=

1

n
+

n− 1

n
ρ(κ)2 (5.24)

and E [R] = ρ(κ). Finally, we have that µ̂ is approximately Fisher distributed with mean µ
and expected concentration parameter equal to κnρ(κ).

5.5.3 Hierarchical sampling of Fisher distributions

Now, let us consider the case where we hierarchically sample Fisher distribution with random
mean directions. This emulates the hierarchical computation of mean directions used to
estimate paleopole directions.

Proposition 2 (Hierarchical Sampling on Fisher Distributions). Consider the following
hierarchical sampling of Fisher distributed random variables.

µ1 ∼ Fisher(µ0, κ0)

x ∼ Fisher(µ1, κ1) (5.25)

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 108

Then the full distribution of x can be approximated by a Fisher distribution with mean µ0

and precision parameter κ∗ equal to

κ∗ =
κ0κ1

κ0 + κ1

. (5.26)

Proof. We can write the full probability density function of x by integrating the product of
conditional densities over all the possible values of µ1 in the sphere, that is

p(x) =

∫

S2

p(x|µ1)p(µ1|µ0)dµ1

=
κ0κ1

(4π)2 sinh(κ0) sinh(κ1)

∫
exp

{
κ0µ

T
0 µ1 + κ1x

Tµ1

}
dµ1

=
κ0κ1

4π sinh(κ0) sinh(κ1)

sinh(∥κ0µ0 + κ1x∥)
∥κ0µ0 + κ1x∥

. (5.27)

Without lost of generality, we can assign µ0 = (0, 0, 1) and then

∥κ0µ0 + κ1x∥ =
√

κ2
1x

2 + κ1y2 + (κ1z + κ0)2 =
√
κ2
1 + κ2

0 + 2κ0κ1z. (5.28)

Now, we need to find the first moment of the previous distribution in order to compute the
mean length, which implies solving the integral

∫

S2

sinh(
√
κ2
1 + κ2

0 + 2κ0κ1z)√
κ2
1 + κ2

0 + 2κ0κ1z
zdΩ = 2π

∫ 1

−1

sinh(
√
κ2
1 + κ2

0 + 2κ0κ1z)√
κ2
1 + κ2

0 + 2κ0κ1z
zdz. (5.29)

Now, this last integral can be solved analytically as

2π

∫ 1

−1

sinh(
√
κ2
1 + κ2

0 + 2κ0κ1z)√
κ2
1 + κ2

0 + 2κ0κ1z
zdz

=
2π

κ2
0κ

2
1

[
(κ0κ1z + 1) cosh(

√
κ0 + κ2

1 + 2κ0κ1z)

−
√

κ0 + κ2
1 + 2κ0κ1z sinh(

√
κ0 + κ2

1 + 2κ0κ1z)

]z=1

z=−1

=
2π

κ2
0κ

2
1

(
(κ0κ1 + 1) cosh(κ0 + κ1)− (κ0 + κ1) sinh(κ0 + κ1)

− (κ0κ1 − 1) cosh(|κ1 − κ0|) + |κ1 − κ0| sinh(|κ1 − κ0|)
)
, (5.30)

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 109

which lead to the fact that the expected length of the vector x is

κ0κ1

2κ0κ1 sinh(κ0) sinh(κ1)

(
(κ0κ1 + 1) cosh(κ0 + κ1)− (κ0 + κ1) sinh(κ0 + κ1)

−(κ0κ1 − 1) cosh(|κ1 − κ0|) + |κ1 − κ0| sinh(|κ1 − κ0|)
)

≍ 1− κ0 + κ1

κ0κ1

, (5.31)

where we use sinh(κ) ≍ cosh(κ) ≍ eκ/2 for κ large enough. Comparing with the equivalent
vector length ρ(·), we obtain that the equivalent dispersion parameter κ∗ for the superposition
of two Fisher distribution is given by

κ∗ =
κ0κ1

κ0 + κ1

, (5.32)

as we wanted to prove.

Notice that under the approximation that the dispersion coefficient S can be approxi-
mated as

S2 ≈ 2

(
180

π

)2
1

κ
, (5.33)

we can then derive that the dispersion S2
∗ associated to κ∗ can be approximated as

S2
∗ ≈ 2

(
180

π

)2
1

κ
= 2

(
180

π

)2
κ1 + κ2

κ1κ2

≈ S2
1 + S2

2 , (5.34)

where S1 and S2 are the dispersion associated to Fisher distribution with precision parameters
κ1 and κ2, respectively.

5.5.4 Ensemble of Fisher and uniform distributions

We will now consider how to approximate a superposition of Fisher and uniform distribution.
This approximation is going to be much more limited than the other ones, due to the fact than
a superposition of Fisher and uniform does not have a shape similar to a Fisher distribution.
However, when many samples are consider and we are computing the mean of samples coming
form this ensemble, this approximation is quite accurate.

Proposition 3 (Superposition of Fisher with Uniform distributions). Consider the model
where we sample a total of n samples xi, i = 1, 2, . . . , n, from a Fisher distribution with some
probability 1− poutlier and with uniform distribution with probability poutlier:

xi ∼ Fisher(µ, κ) with probability 1− poutlier and (5.35)
xi ∼ Unif otherwise, for i = 1, 2, . . . , n,

Then the Fisher mean µ̂ of the n samples can be approximated with a Fisher distribution
with mean µ and precision parameter equal to n(1− poutlier)κρ(κ).

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 110

Proof. In order to compute the dispersion parameter, we need to compute the approximated
vector length resulting from adding together draws from the Fisher and uniform distribution.
Given a total number of n0 ≤ n points that are not outliers, a similar calculation as in the
derivation of Equation (5.21) leads to

E
[
R2|n0

]
=

1

n2

(
n+ n0(n0 − 1)ρ(κ)2

)
. (5.36)

Now, using that n0 has Binomial distribution with success probability 1 − poutlier and a
total of N samples, taking expectation over n0 and noticing that E [n0] = n(1− poutlier) and
E [n2

0] = npoutlier(1− poutlier) + n2(1− poutlier)
2, we obtain

E
[
R2
]
=

1

n
+

n− 1

n
(1− poutlier)

2ρ(κ)2. (5.37)

This leads to E [R] = (1− poutlier)ρ(κ) for n ≥ 2.

5.5.5 General Fisherian approximation of the pole mean

These last three results allow us to approximate a hierarchical sample of Fisher distributions
with a very good level of accuracy. In order to compute the final dispersion of the pole,
notice that each estimated VPG µ̂∗

i in directional space can be approximated as a sample
from a Fisher distribution with dispersion parameter

niκi(1− poutlier)ρni
(κi), (5.38)

where ρn(κ) = ρ(κ) for n ≥ 2 and ρ1(κ) = 1 (Propositions 1 and 3). We have introduced this
extra notation in order to include both the ni = 1 and ni ≥ 2 cases in the same expression.
Now, since the Fisher mean of the VGPs is computed in directional space, we need to include
the latitude correction factor T (λ) when we convert these to VGP space (Cox 1970). This
then implies that we can approximate

µ̂i ∼ Fisher
(
µi, niκw(1− poutlier)ρni

(κw)T (λ)

)
. (5.39)

Finally, since µi (the mean direction for µ̂i) is also Fisher distributed with mean µ0 and
precision parameter κb, using Proposition 2 we have that the final pole µ̂0 will have dispersion
parameter equal to

κb

1 + κw

κb(1−poutlier)niρni (κw)T (λ)

(5.40)

Now, if ni = n0 are all the same, we can average all the µ̂i to came up with the final pole
dispersion parameter

µ̂0 ∼ Fisher

(
µ0,

NκbρN(κb)

1 + κb

κwni(1−poutlier)ρn0 (κw)T (λ)

)
. (5.41)

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 111

Assuming ρ(κi) ≈ 1, we then obtain that the final estimate µ̂0 has a concentration parameter
κ∗ approximately equal to

Nκb

1 + κb

κw(1−poutlier)n0T (λ)

, (5.42)

which is the same expression as in Equation (12). In order to derive Equation (13), we rely
again in the approximation of the dispersion given in Equation (5.33).

As we mentioned before, Proposition 3 will fail when the number of samples per site n0

is small and the number of outliers poutlier is large. For those cases, a better approximation
is given by Equation (14). This arises from computing the expected vector length without
outliers and then multiply the expected vector length by the factor (1− poutlier), which gives
an approximated vector length for this case. We then find the corresponding κ for such
resultant length by computationally inverting the function ρ(κ).

5.6 Recommendations
When the goal is to estimate the position of a paleopole, our results show that the total
number of sites N has a far larger impact on accuracy than the number of samples per site
n0. We therefore recommend the following rule of thumb for sample collection where the
objective is paleopole estimation: the more samples the better, but efforts to maximize the
number of independent sites will have a greater effect on improving accuracy than more
samples per site. In particular, the benefit of collecting more samples per site is small for
n0 ≥ 3 and diminishes at n0 ≥ 5. Analyzing more samples than these values per site
is inadvisable if it will result in fewer overall sites in a given study. As was concluded in
(Gerritsen et al. 2022), for the purpose of computing a paleopole and for a fixed total number
of samples, it is always better to collect these samples from different sites than to collect
more samples per sites. In the context of sedimentary sections, this result strongly supports
stratigraphic sampling strategies of one sample per horizon for directional estimation where
each sample is its own site, consistent with previous findings by (Vaes et al. 2021). Collecting
a large number of single-sample sites is also beneficial for the application of the elongation-
inclination (E/I) correction for inclination shallowing (Tauxe et al. 2004), which requires
N ≥ 100 to be robust. In settings of limited sites or where moving between sites is itself
resource intensive, as can be the case of igneous intrusions, there is a benefit to more samples
per site given that it can improve site level direction estimates and enable within site outlier
detection.

A recent approach to synthesize site data into apparent polar wander paths developed
by (Gallo et al. 2023) enabled the propagation of directional uncertainty using site level
precision κw estimated by multiple samples in a given site. This approach is not possible
when applying a n0 = 1 sampling strategy. However, estimation of the in-site dispersion can
be derived using a different estimator such as the maximum angular deviation (MAD) of a
directional fit (Khokhlov et al. 2016).

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 112

For paleopole estimates, filters based on populations of VGPs can aid in the detection of
outliers (Vandamme 1994). If there is an appreciable outlier rate, such filtering schemes are
necessary when n0 = 1 given that outliers cannot be detected through within site consistency.
When conducting a study with a low number of samples per site, the site consistency test
proposed by (Gerritsen et al. 2022) can be applied where more samples are analyzed for
selected sites. This field test can be used to gain insight into within site reproducibility
and precision for a given lithology. Multiple samples per site can also be advisable when
the presence of single outliers would have a major impact on interpretations such as in the
case of interpreting geomagnetic polarity or transitional directions. We recommend that
researchers use of Equation (5.13) to obtain an estimate of the net error as a function of the
expected parameters present in the sampling.

An important caveat concerning the use of directional filters is that while the mean may
be relatively insensitive to their effects, they can significantly distort the shape of the true
directional distribution and should therefore be avoided where the latter is a parameter of
interest (e.g. paleosecular variation studies). Indeed, the presence of outliers has a major
impact on the estimation of the dispersion, and thus the VGP scatter Sb. Increasing the
number of samples per site n0 is beneficial as long as this helps us to detect outliers more
accurately. However, this is not always straightforward using conventional data filters and
cutoffs, which leads to a reliance on the expert’s subjective interpretation (Gerritsen et al.
2022). There is a greater improvement in the accuracy of estimates of VGP scatter through
increasing the number of samples per site, even in the absence of outliers, than there is
for estimating the mean pole position. However, the improvement in the estimate of the
VGP scatter progressively diminishes for increasing samples per site. When outliers can be
detected efficiently, and for a minimum of three or four samples per site, the same trade-offs
as noted above for paleopole estimation again apply: the preferential collection of more sites
over more samples per site leads to more accurate estimates of the VGP scatter. And again,
the most optimal sampling scheme given any suite of expected parameters can be determined
from the results presented herein.

For general calculations of pole and VGP scatter accuracy, we recommend the interested
reader to run their own experiments directly from the source code, which can be executed
directly from the cloud using the provided Binder link (Jupyter et al. 2018) in the Code
Availability section (Sapienza et al. 2023b).

5.7 Conclusions and future directions
The hierarchical nature of sampling in paleomagnetic investigations is a long-standing prac-
tice, but the community’s specific default sampling strategies have largely relied upon con-
ventional wisdom. Here we quantitatively explored, both numerically and analytically, the
impact of different sampling strategies on the accuracy of estimates of paleopole position and
VGP scatter. Our results demonstrate that when the objective is to estimate the position
of the time-averaged paleomagnetic pole, a strategy that maximizes the number of sites is

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 113

always the most favorable. Thus, given an infinite number of possible sites, it would be
advantageous to collect as many single-sample sites as possible such as sampling one sample
per stratigraphic horizon.

Where an estimate of VGP scatter is sought, the situation changes and the collection
of single-sample sites hinders the estimation and exclusion of within-site directional scatter.
The use of directional filters such as that of (Vandamme 1994) can lead to large inaccuracies
in estimates of paleosecular variation. Here the optimal sampling strategy is more nuanced
and the ideal number of samples per site depends on the expected proportion of outliers.
However, the same general rule of thumb still applies: beyond some minimum number of
samples per site the collection of additional sites should be prioritized over the collection of
additional within-site samples.

We also emphasize that beyond these general rules of thumb, we herein provided tools
enabling quantitative sampling recommendations to be generated from user-provided ex-
pectations. While specific project goals and geologic complexity should factor into project
design we hope that these findings may free the community from the adoption of default
sampling practices, and utilize statistically-informed strategies.

5.7.1 Universal differential equations in paleomagnetism

Finding smooth approximations to points distributed in the unit sphere plays an important
role in directional statistics. An application is the estimation of apparent polar wander paths
(APWP) in paleomagnetism used to describe the relative continental drift of tectonic plates.
APWPs are extensively used to reconstruct past location of continents and are the only
available method for performing paleography before 300 millions years ago (which accounts
for 93% of Earth’s history!).

As we discussed in Chapter 1 and as shown in 4, there has been an increasing interest in
recent years in combining machine learning algorithms with differential equations. Solutions
of differential equations can be used to represent a broad class of functions that can be used
for regression purposes. This is the case with universal differential equations (UDEs) and
neural differential equations, where observations are modelled as the numerical solution of
a differential equation that has embedded some form of regressor (for example, a neural
network) inside the differential equation (Rackauckas et al. 2020).

An application of this approach in paleomagnetism is currently being implemented in
SphereUDE.jl (Sapienza et al. 2024b). Our model addresses the following three major
points for data supported in a sphere. We further believe these considerations are a first step
towards more complex models that combine statistical regression with differential equations.

1. Sphere-constrained regression. In this work we are interested in modelling data
supported in the unit sphere.

2. Path regularization. We will start considering the general case on non-parametric
regression with no regularization, but we are going to consider different types of regu-
larization that are desired at the moment of fitting APWPs.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 114

3. Temporal uncertainties. Ideally, we want a model that can deal with uncertainties
in both space and time. Here we want to emphasize the importance of accounting for
uncertainties in time, since paleopole dating is a difficult task and time estimates tend
to carry important temporal uncertainties.

Consider a sequence of pairs (ti, yi), i = 1, 2, . . . , N , where each ti corresponds to an
observed time and each yi ∈ S2 is a unit vector supported in the unit sphere S2 = {x ∈ R3 :
∥x∥2 = 1}. Without loss of generality, we assume tmin ≤ t1 ≤ t2 ≤ . . . ≤ tN ≤ tmax for some
tmin, tmax ∈ R. A rotation matrix R(p, θ) ∈ R3×3 is defined by an axis of rotation p ∈ S2,
called Euler pole, and an angle of rotation θ. Given some vector x0, the rotation matrix
R(p, θ) transforms x0 into R(p, θ)x0. The space of rotations in three dimensions SO(3)
is a Lie group with an associated Lie algebra associated to the infinitesimal generators of
rotations. A rotation matrix can be approximated at first-order with respect to the rotation
angle as

R(p, θ) = I + θ skewt(d) +O(θ2), (5.43)

where skewt(p) represents the skew-symmetric matrix defined by the rotation axis p, which
satisfies skewt(p)x = p× x for all vector x ∈ R3.

We will assume that each yi is a sample from the von Mises-Fisher distribution (Fisher
1953; Watson 1982) in the sphere with mean direction x(ti) and concentration parameter κi,
which controls the concentration of the distribution around the mean direction,

p(yi|x(ti), κi) =
κi

4π sinh(κi)
e−κix(ti)

T yi , (5.44)

where x(t) is the solution of a differential equation.
There is a rich literature in regression problems where the goal is to learn trajectories in

the sphere (Buss et al. 2001; Fletcher 2013; Hüper et al. 2007; Jupp et al. 1987; Marzio et al.
2019; Rosenthal et al. 2014; Samir et al. 2012). The novelty of our approach relies in the
mathematical and computational simplicity of the method and its flexibility to incorporate
new model requirements.

Sphere-constrained regression. Equation (5.43) represents the functional form of an
infinitesimal rotation in the sphere. If we call θ = ω∆t, with ω being some angular velocity
and ∆t some time interval over which we apply the rotation, as ∆t → 0, the successive
application of a rotation matrix with the same Euler pole p corresponds to solutions of the
differential equation

dx

dt
(t) = L(t)× x(t) (5.45)

where L(t) = ω(t)p(t) can be associated to the angular momentum of the solid sphere at
some given time t, that is, a vector aligned with the rotation axis and with norm equals
to ω. In fact, every smooth path in the sphere can be represented as the solution of such
differential equation for some function L : [tmin, tmax] 7→ R3, a result that is encapsulated in
the following lemma.

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 115

Lemma 4. For every continuous curve y : [tmin, tmax] 7→ S2 in the sphere, there is a function
L : [tmin, tmax] 7→ R3 such that y(t) is the solution to the ordinary differential equation

dx

dt
(t) = L(t)× x(t) x(tmin) = y(tmin) (5.46)

Proof. Consider L(t) = α(t)x(t) + x(t)× ẋ(t) for any function α : [tmin, tmax] 7→ R function.
Using basic properties of the cross product, we have

L(t)× x(t) = (x(t)× ẋ(t))× x(t) = ẋ(t)∥x(t)∥22 − x(t)(x(t) · ẋ(t)). (5.47)

Since x(t) ∈ S2, we have ∥x(t)∥2 = 1 and x(t) · ẋ(t) = 0. Notice that any value of α(t)
will satisfy the differential equation , meaning that there are many L(t) that will satisfy
the differential equation. This is because infinitesimal variations of a path in a sphere are
isomorphic to the tangent plane of S2 at x(t), instead of all the full group so(3). However,
notice that α ≡ 0 is the one that makes L(t) to have minimal Euclidean norm.

This previous result give us a general formula to parametrize curves in the sphere. Given
observations y1, y2, . . . , yN , we can perform non-parametric maximum likelihood estimation
by solving

max
L:R7→R3,x0

N∏

i=1

p(yi|x(ti), κi), (5.48)

where x(t) is the solution to the differential equation (5.47). This optimization problem is
equivalent to trajectory matching (Ramsay et al. 2017)

min
L(t),x0

N∑

i=1

−κi y
T
i ODESolve(ti;x0, L(t)), (5.49)

where ODESolve(ti;x0, L(t)) is the numerical solution of the differential equation (5.45) with
initial condition x(t0) = x0 and time-dependent angular momentum L(t).

In order to solve this optimization problem, we are going to parametrize the function
L : [t0, tN] 7→ R3 with a small neural network. Any other regressor with good expressivity
that satisfies that the output is differentiable with respect to its arguments and parameters
would serve as well. We will then write L(t) = L(t; θ) to parametrize the space of all possible
time-varying angular momentum as a function of some high-dimensional parameter θ (for
the case of a neural network, this will correspond to weights and biases).

Path regularization. Depending on the structure we want to impose to the path, we
may be interested in imposing different types of regularization or constraints in the curves
we parametrize in the sphere. This can be driven by domain knowledge of how the path
should look (something we will further explore with the paleomagnetic data) or in order to
break the multiplicity of solutions L(t) that give rise to the same path x(t). Expressing

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 116

curves in S2 as solutions of the differential equations (5.45) where L(t) is a time-dependent
function allow us to directly regularize L(t) instead of the numerical solution x(t). Here we
consider regularizations of the form

Regpk(L(·)) =
∫ t1

t0

∥∥∥∥
dkL

dtk
(τ)

∥∥∥∥
p

2

dτ (5.50)

with k the order derivative (k = 0 for no derivative) and p the type of penalization (p = 1
for Lasso, p = 2 for Ridge). The following list shows some useful penalization terms.

1. Small angular velocities (k = 0, p = 2). As we described in our previous result,
there are many instant rotations that give rise to the same differential path. If we are
interested in finding the rotation with minimum angular velocity, we can add a the
penalty

Reg20(L(·)) =
∫ t1

t0

∥L(θ)∥22dτ. (5.51)

Since ∥L(t)∥2 = ω(t) coincides with the angular velocity of the infinitesimal rotation
in the sphere, this penalization encourages slow rotation with large arcs (great circles)
over rotations with spin axis close to the path (small circles).

2. Smooth trajectories (k = 1, p = 2). Smoothness in the final path can be imposed
with

Reg21(L(·)) =
∫ t1

t0

∥∥∥∥
dL

dt
(τ)

∥∥∥∥
2

2

dτ. (5.52)

3. Piecewise dynamics (k = 1, p = 1). It is usally assumed that APWPs in paleomag-
netism consist on a sequence of solid rotations that stay stable over certain periods
of time (Gallo et al. 2022). Since constant values of L(t) are associated to constant
rotations with fixed rotation axis and angular velocity, we can impose sparse changes
in the values of L(t) by a Lasso penalty in the first derivatives of L(t):

Reg11(L(·)) =
∫ t1

t0

∥∥∥∥
dL

dt
(τ)

∥∥∥∥
2

dτ. (5.53)

It can be shown that this is the continuous version of the trend filtering problem
(Tibshirani 2014).

Temporal uncertainties. An important component of modelling time series is how to
incorporate time uncertainties and time-corrections into the model. This will assume that
the observed pair (ti, yi) has an associated latent time τi and ti = τi+ δi with δi independent
and following some distribution including but not limited to the normal case δi ∼ N(0, σ2

i).
Since time observations ti are then subject to measurement error, we assume that directional

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 117

Figure 5.8: A simple example of spherical path regression using the method introduced
in this section.

observations yi are distributed according to p(y|x(τi), κi), where the latent direction x(τi) is
evaluated at time τi instead of ti. The join likelihood can then be writen as

p(yi, τi|xi, ti) = p(yi|τi, xi) p(τi|ti) (5.54)

which leads to the optimization problem

min
L(t),x0,τ

N∑

i=1

−κi y
T
i ODESolve(τi;x0, L(t)) + hi(ti − τi) (5.55)

where hi : R 7→ R is penalization term on the difference δi = ti − τi. Different model
assumptions on the temporal error will give rise to different function penalizations hi. Two
useful choices include δ ∼ N(0, σ2) which leads to h(δ) = δ2/2σ2 and δ ∼ Unif([δmin, δmax])
leading to the constrained optimization with no regularization term but restricted to δ ∈
[δmin, δmax].

The final loss function to optimize consist on

min
θ,x0,τi

N∑

i=1

(
− κiy

T
i ODESolve(τi, x0;L(·; θ)) + hi(ti − τi)

)
+ λRegpk(L(·)) (5.56)

where θ are the weights and biased of the neural network parametrizing the function L :
[tmin, tmax] 7→ R3.

Figure 5.8 shows a simple example of how path regression in the sphere is carried using
this method. Here we consider points distributed in the sphere generated using two different

CHAPTER 5. QUANTITATIVE ANALYSIS OF PALEOMAGNETIC SAMPLING
STRATEGIES 118

constant rotation matrices from tmin = 0 to tmax = 160, with the change in the rotation
matrices at t = 65. Fisher noise with concentration parameter κ = 50 is added to the latent
solution. In order to reproduce the discontinuous change in the value of L(t), we added the
penalization term Reg11(L(·)) to the loss function.

An implementation with examples is available via de Julia package SphereUDE.jl
which can be directly being installed using the Julia package manager. Source code is
available at https://github.com/ODINN-SciML/SphereUDE.jl.

Software availability. The Jupyter Notebooks and Python package created to execute the
analysis in the paper is preserved at (Sapienza et al. 2023b). We also provided reproducible
support by including a Binder (Jupyter et al. 2018) link to execute all the code in the cloud
here https://mybinder.org/v2/gh/PolarWandering/PaleoSampling/HEAD
and a JupyterBook (Community 2020) link here https://polarwandering.githu
b.io/PaleoSampling/. We benefit from the use of PmagPy (Tauxe et al. 2016) for
calculations and Dask for parallel computing (Dask Development Team 2016).

https://github.com/ODINN-SciML/SphereUDE.jl
https://mybinder.org/v2/gh/PolarWandering/PaleoSampling/HEAD
https://polarwandering.github.io/PaleoSampling/
https://polarwandering.github.io/PaleoSampling/

119

Conclusions

Pivoting between the physics and data-driven approaches, there is a unique opportunity to
explore modern data science techniques to the Earth sciences. Our discussion in Chapter 1
explored some of the reason of why this is happening now and introduced some elements of
physics-informed machine learning. We further emphasize the importance of designing new
models that allow the assimilation based on new remote sensing observations and re-analysis
products, including universal differential equations.

In Chapter 4 we introduced ODINN.jl, a Julia package providing high performance,
source-to-source automatic differentiation and seamless integration with tools and global
datasets from the Open Global Glacier Model in Python. The ice flow modelling foundations
were introduced in Chapter 3. We demonstrated an application of universal differential
equations as a proof of concept to learn the creep component of ice flow, i.e. a nonlinear
diffusivity differential equation, of a glacier evolution model. We demonstrate this concept for
17 different glaciers around the world, for which we successfully recover a prescribed artificial
law describing ice creep variability by solving approximately 500,000 ordinary differential
equations in parallel.

A central element for complex data assimilation pipelines is differentiable programming.
In Chapter 2, we presented a exhaustive review of the different sensitivity methods for com-
puting gradients of loss functions that include numerical solutions of differential equations.
The continuous adjoint method together with the automatic differentiation machinery al-
lows inverse modelling inside ODINN.jl. Furthermore, we investigate which are the best
tools in the scientific machine learning ecosystem in Julia to differentiate and optimize large
nonlinear diffusivity UDEs.

We then move our discussion to paleomagnetism. In Chapter 5, we quantitatively ex-
plored, both numerically and analytically, the impact of different sampling strategies on
the accuracy of estimates of paleopole position and VGP scatter. When the objective is to
estimate the position of the time-averaged paleomagnetic pole, a strategy that maximizes
the number of sites is always the most favorable. This research makes a step forward in
introducing quantifiable metrics at the moment of estimating paleomagnetic pole position
and dispersion in paleomagnetic studies. We also emphasize that beyond these general rules
of thumb, we herein provided tools enabling quantitative sampling recommendations to be
generated from user-provided expectations. To conclude, we further shown how universal
differential equations can be used for estimation of paleopole trajectories on the sphere.

120

Bibliography

Abadi, M., P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng (2016). “Tensor-
Flow: A System for Large-Scale Machine Learning”. In: Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation. OSDI’16. Savannah, GA,
USA: USENIX Association, pp. 265–283.

Abdalati, W., H. J. Zwally, R. Bindschadler, B. Csatho, S. L. Farrell, H. A. Fricker, D.
Harding, R. Kwok, M. Lefsky, T. Markus, et al. (2010). “The ICESat-2 laser altimetry
mission”. In: Proceedings of the IEEE 98.5, pp. 735–751.

Abernathey, R. P., T. Augspurger, A. Banihirwe, C. C. Blackmon-Luca, T. J. Crone, C. L.
Gentemann, J. J. Hamman, N. Henderson, C. Lepore, T. A. McCaie, N. H. Robinson, and
R. P. Signell (2021). “Cloud-Native Repositories for Big Scientific Data”. In: Computing
in Science Engineering 23.2, pp. 26–35. doi: 10.1109/MCSE.2021.3059437.

Alexe, M. and A. Sandu (2007). “DENSERKS: Fortran sensitivity solvers using continuous,
explicit Runge-Kutta schemes”. In.

— (2009). “Forward and adjoint sensitivity analysis with continuous explicit Runge–Kutta
schemes”. In: Applied Mathematics and Computation 208.2, pp. 328–346. doi: 10.1016
/j.amc.2008.11.035.

Allaire, G., C. Dapogny, and P. Frey (2014). “Shape optimization with a level set based
mesh evolution method”. In: Computer Methods in Applied Mechanics and Engineering
282, pp. 22–53.

Anilkumar, R., R. Bharti, D. Chutia, and S. P. Aggarwal (2022). “Modelling the Point Mass
Balance for the Glaciers of Central European Alps using Machine Learning Techniques”.
In: EGUsphere, pp. 1–27.

Arakawa, A. and V. R. Lamb (1977). “Computational design of the basic dynamical processes
of the UCLA general circulation model”. In: General circulation models of the atmosphere
17.Supplement C, pp. 173–265.

Arendt, A. A., J. Hamman, M. Rocklin, A. Tan, D. R. Fatland, J. Joughin, E. D. Gutmann,
L. Setiawan, and S. T. Henderson (2018). “Pangeo: Community tools for analysis of Earth
Science Data in the Cloud”. In: AGU Fall Meeting Abstracts. Vol. 2018, IN54A–05.

https://doi.org/10.1109/MCSE.2021.3059437
https://doi.org/10.1016/j.amc.2008.11.035
https://doi.org/10.1016/j.amc.2008.11.035

BIBLIOGRAPHY 121

Arthern, R. J. and G. H. Gudmundsson (2010). “Initialization of ice-sheet forecasts viewed
as an inverse Robin problem”. en. In: Journal of Glaciology 56.197, pp. 527–533. doi:
10.3189/002214310792447699.

Ascher, U. M. (2008). Numerical methods for evolutionary differential equations. SIAM.
Ascher, U. M. and C. Greif (2011). A First Course in Numerical Methods. Philadelphia, PA:

Society for Industrial and Applied Mathematics. doi: 10.1137/9780898719987.
Azari, A. R., E. Abrahams, F. Sapienza, D. L. Mitchell, J. Biersteker, S. Xu, C. Bowers,

F. Pérez, G. A. DiBraccio, Y. Dong, and S. Curry (2023). “Magnetic Field Draping in
Induced Magnetospheres: Evidence From the MAVEN Mission to Mars”. In: Journal of
Geophysical Research: Space Physics 128.11, e2023JA031546. doi: https://doi.org
/10.1029/2023JA031546.

Azari, A. R., J. W. Lockhart, M. W. Liemohn, and X. Jia (2020). “Incorporating Physical
Knowledge Into Machine Learning for Planetary Space Physics”. In: Frontiers in Astron-
omy and Space Sciences 7, p. 36. doi: 10.3389/fspas.2020.00036.

Azari, A., E. Abrahams, F. Sapienza, J. Halekas, J. Biersteker, D. Mitchell, F. Pérez,
M. Marquette, M. Rutala, C. Bowers, et al. (2024). “A Virtual Solar Wind Monitor
for Mars with Uncertainty Quantification using Gaussian Processes”. In: arXiv preprint
arXiv:2402.01932.

Barton, R. R. (1992). “Computing Forward Difference Derivatives In Engineering Optimiza-
tion”. In: Engineering Optimization 20.3, pp. 205–224. doi: 10.1080/030521592089
41281.

Bauer, F. L. (1974). “Computational Graphs and Rounding Error”. In: SIAM Journal on
Numerical Analysis 11.1, pp. 87–96. doi: 10.1137/0711010.

Baumhoer, C. A., A. J. Dietz, C. Kneisel, and C. Kuenzer (Oct. 2019). “Automated Ex-
traction of Antarctic Glacier and Ice Shelf Fronts from Sentinel-1 Imagery Using Deep
Learning”. en. In: Remote Sensing 11.21, p. 2529. doi: 10.3390/rs11212529.

Baydin, A. G., B. A. Pearlmutter, A. A. Radul, and J. M. Siskind (Jan. 2017). “Automatic
Differentiation in Machine Learning: A Survey”. In: J. Mach. Learn. Res. 18.1, pp. 5595–
5637.

Behn, M. D., D. L. Goldsby, and G. Hirth (2021). “The role of grain size evolution in the
rheology of ice: implications for reconciling laboratory creep data and the Glen flow law”.
In: The Cryosphere 15.9, pp. 4589–4605. doi: 10.5194/tc-15-4589-2021.

Bennett, C. H. (1973). “Logical Reversibility of Computation”. In: IBM Journal of Research
and Development 17.6, pp. 525–532. doi: 10.1147/rd.176.0525.

Berlinghieri, R., B. L. Trippe, D. R. Burt, R. Giordano, K. Srinivasan, T. Özgökmen, J. Xia,
and T. Broderick (2023). “Gaussian processes at the Helm(holtz): A more fluid model for
ocean currents”. In: arXiv. doi: 10.48550/arxiv.2302.10364.

Besse, J. and V. Courtillot (2002). “Apparent and true polar wander and the geometry of
the geomagnetic field over the last 200 Myr”. In: Journal of Geophysical Research: Solid
Earth 107.B11, EPM–6.

Betancourt, M. (2017). “A Conceptual Introduction to Hamiltonian Monte Carlo”. In: arXiv.
doi: 10.48550/arxiv.1701.02434.

https://doi.org/10.3189/002214310792447699
https://doi.org/10.1137/9780898719987
https://doi.org/https://doi.org/10.1029/2023JA031546
https://doi.org/https://doi.org/10.1029/2023JA031546
https://doi.org/10.3389/fspas.2020.00036
https://doi.org/10.1080/03052159208941281
https://doi.org/10.1080/03052159208941281
https://doi.org/10.1137/0711010
https://doi.org/10.3390/rs11212529
https://doi.org/10.5194/tc-15-4589-2021
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.48550/arxiv.2302.10364
https://doi.org/10.48550/arxiv.1701.02434

BIBLIOGRAPHY 122

Bettencourt, J., M. J. Johnson, and D. Duvenaud (2019). “Taylor-Mode Automatic Differ-
entiation for Higher-Order Derivatives in JAX”. In: Program Transformations for ML
Workshop at NeurIPS 2019.

Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah (2017). “Julia: A Fresh Approach to
Numerical Computing”. In: SIAM Review 59.1, pp. 65–98. doi: 10.1137/141000671.

Bezanson, J., S. Karpinski, V. B. Shah, and A. Edelman (2012). “Julia: A Fast Dynamic
Language for Technical Computing”. In: arXiv. doi: 10.48550/arxiv.1209.5145.

Blondel, M. and V. Roulet (2024). “The Elements of Differentiable Programming”. In: arXiv.
Bolibar, J., F. Sapienza, F. Maussion, R. Lguensat, B. Wouters, and F. Pérez (2023a).

“Universal differential equations for glacier ice flow modelling”. In: Geoscientific Model
Development 16.22, pp. 6671–6687. doi: 10.5194/gmd-16-6671-2023.

Bolibar, J., A. Rabatel, I. Gouttevin, and C. Galiez (Sept. 2020a). “A deep learning recon-
struction of mass balance series for all glaciers in the French Alps: 1967–2015”. en. In:
Earth System Science Data 12.3, pp. 1973–1983. doi: 10.5194/essd-12-1973-202
0.

Bolibar, J., A. Rabatel, I. Gouttevin, C. Galiez, T. Condom, and E. Sauquet (Feb. 2020b).
“Deep learning applied to glacier evolution modelling”. en. In: The Cryosphere 14.2,
pp. 565–584. doi: 10.5194/tc-14-565-2020.

Bolibar, J., A. Rabatel, I. Gouttevin, H. Zekollari, and C. Galiez (Dec. 2022). “Nonlinear
sensitivity of glacier mass balance to future climate change unveiled by deep learning”.
en. In: Nature Communications 13.1, p. 409. doi: 10.1038/s41467-022-28033-0.

Bolibar, J. and F. Sapienza (June 2023b). ODINN-SciML/ODINN.jl: v0.2.0. Version v0.2.0.
doi: 10.5281/zenodo.8033313.

Bradbury, J., R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, and S.
Wanderman-Milne (2020). “JAX: composable transformations of Python+ NumPy pro-
grams, 2018”. In: URL http://github. com/google/jax, p. 18.

Bradley, A. M. (2013). PDE-constrained optimization and the adjoint method. Tech. rep.
Technical Report. Stanford University. https://cs. stanford. edu/˜ ambrad . . .

Breiman, L. (2001). “Statistical modeling: The two cultures (with comments and a rejoinder
by the author)”. In: Statistical science 16.3, pp. 199–231.

Brenner, H. (2005). “Navier–Stokes revisited”. In: Physica A: Statistical Mechanics and its
Applications 349.1–2, pp. 60–132. doi: 10.1016/j.physa.2004.10.034.

Brinkerhoff, D., A. Aschwanden, and M. Fahnestock (June 2020). “Constraining subglacial
processes from surface velocity observations using surrogate-based Bayesian inference”.
In: arXiv:2006.12422 [physics]. arXiv: 2006.12422.

Brinkerhoff, D. J., C. R. Meyer, E. Bueler, M. Truffer, and T. C. Bartholomaus (2016).
“Inversion of a glacier hydrology model”. In: Annals of Glaciology 57.72, pp. 84–95. doi:
10.1017/aog.2016.3.

Brooks Jr, F. P. (1995). The mythical man-month (anniversary ed.)
Brunton, S. L., J. L. Proctor, and J. N. Kutz (Apr. 2016). “Discovering governing equations

from data by sparse identification of nonlinear dynamical systems”. en. In: Proceedings

https://doi.org/10.1137/141000671
https://doi.org/10.48550/arxiv.1209.5145
https://doi.org/10.5194/gmd-16-6671-2023
https://doi.org/10.5194/essd-12-1973-2020
https://doi.org/10.5194/essd-12-1973-2020
https://doi.org/10.5194/tc-14-565-2020
https://doi.org/10.1038/s41467-022-28033-0
https://doi.org/10.5281/zenodo.8033313
https://doi.org/10.1016/j.physa.2004.10.034
https://doi.org/10.1017/aog.2016.3

BIBLIOGRAPHY 123

of the National Academy of Sciences 113.15, pp. 3932–3937. doi: 10.1073/pnas.151
7384113.

Bryson, A., Y.-C. Ho, and G. Siouris (July 1979). “Applied Optimal Control: Optimization,
Estimation, and Control”. In: Systems, Man and Cybernetics, IEEE Transactions on 9,
pp. 366–367. doi: 10.1109/TSMC.1979.4310229.

Bueler, E. (2014). “Numerical Modelling of Ice Sheets, Streams, and Shelves”. In: Karthaus.
Bueler, E. and J. Brown (2009). “Shallow shelf approximation as a “sliding law” in a ther-

momechanically coupled ice sheet model”. In: Journal of Geophysical Research: Earth
Surface (2003–2012) 114.F3. doi: 10.1029/2008jf001179.

Bui-Thanh, T., C. Burstedde, O. Ghattas, J. Martin, G. Stadler, and L. C. Wilcox (2012).
“Extreme-scale UQ for Bayesian inverse problems governed by PDEs”. In: IEEE Computer
Society Press, p. 3.

Buss, S. R. and J. P. Fillmore (2001). “Spherical averages and applications to spherical
splines and interpolation”. In: ACM Transactions on Graphics (TOG) 20.2, pp. 95–126.
doi: 10.1145/502122.502124.

Butcher, J. C. (2001). “Numerical Analysis: Historical Developments in the 20th Century”.
In: pp. 449–477. doi: 10.1016/b978-0-444-50617-7.50018-5.

Butcher, J. and G. Wanner (1996). “Runge-Kutta methods: some historical notes”. In: Applied
Numerical Mathematics 22.1–3, pp. 113–151. doi: 10.1016/s0168-9274(96)0004
8-7.

Butler, R. F. (1992). Paleomagnetism: magnetic domains to geologic terranes. Vol. 319. Black-
well Scientific Publications Boston.

Cao, Y., S. Li, and L. Petzold (2002). “Adjoint sensitivity analysis for differential-algebraic
equations: algorithms and software”. In: Journal of Computational and Applied Mathe-
matics 149.1, pp. 171–191. doi: 10.1016/s0377-0427(02)00528-9.

Cerisola, F., F. Sapienza, and A. J. Roncaglia (2022). “Heat engines with single-shot deter-
ministic work extraction”. In: Physical Review E 106.3, p. 034135.

Chanussot, L., A. Das, S. Goyal, T. Lavril, M. Shuaibi, M. Riviere, K. Tran, J. Heras-
Domingo, C. Ho, W. Hu, A. Palizhati, A. Sriram, B. Wood, J. Yoon, D. Parikh, C. L.
Zitnick, and Z. Ulissi (2021). “Open Catalyst 2020 (OC20) Dataset and Community
Challenges”. In: ACS Catalysis. doi: 10.1021/acscatal.0c04525.

Chazal, F., L. Ferraris, P. Groisman, M. Jonckheere, F. Pascal, and F. Sapienza (2023).
“Choosing the parameter of the Fermat distance: navigating geometry and noise”. In:
arXiv preprint arXiv:2311.18663.

Chen, R., Y. Rubanova, J. Bettencourt, and D. K. Duvenaud (2018). “Neural ordinary
differential equations”. In: Advances in neural information processing systems 31.

Chen, Y., B. Hosseini, H. Owhadi, and A. M. Stuart (2021). “Solving and Learning Nonlinear
PDEs with Gaussian Processes”. In: arXiv. doi: 10.48550/arxiv.2103.12959.

Chen, Y., Y. Luo, Q. Liu, H. Xu, and D. Zhang (2022). “Symbolic genetic algorithm for
discovering open-form partial differential equations (SGA-PDE)”. In: Physical Review
Research 4.2, p. 023174. doi: 10.1103/physrevresearch.4.023174.

https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1109/TSMC.1979.4310229
https://doi.org/10.1029/2008jf001179
https://doi.org/10.1145/502122.502124
https://doi.org/10.1016/b978-0-444-50617-7.50018-5
https://doi.org/10.1016/s0168-9274(96)00048-7
https://doi.org/10.1016/s0168-9274(96)00048-7
https://doi.org/10.1016/s0377-0427(02)00528-9
https://doi.org/10.1021/acscatal.0c04525
https://doi.org/10.48550/arxiv.2103.12959
https://doi.org/10.1103/physrevresearch.4.023174

BIBLIOGRAPHY 124

Chiles, J.-P. and P. Delfiner (2012). Geostatistics: modeling spatial uncertainty. Vol. 713.
John Wiley & Sons.

Cleary, E., A. Garbuno-Inigo, S. Lan, T. Schneider, and A. M. Stuart (2021). “Calibrate,
emulate, sample”. In: Journal of Computational Physics 424, p. 109716. doi: 10.1016
/j.jcp.2020.109716.

Clifford (1871). “Preliminary sketch of biquaternions”. In: Proceedings of the London Math-
ematical Society 1.1, pp. 381–395.

Community, E. B. (Feb. 2020). Jupyter Book. Version v0.10. doi: 10.5281/zenodo.453
9666.

Consortium, G. (2019). Glacier Thickness Database 3.0.1.
Consortium, R. G. I. (2017). Randolph Glacier Inventory 6.0. English. type: dataset. doi:

10.7265/N5-RGI-60.
Constable, C. and R. Parker (1988). “Statistics of the geomagnetic secular variation for the

past 5 my”. In: Journal of Geophysical Research: Solid Earth 93.B10, pp. 11569–11581.
Coveney, P. V., E. R. Dougherty, and R. R. Highfield (2016). “Big data need big theory too”.

In: Philosophical Transactions of the Royal Society of London. Series A: Physical and
Engineering Sciences 374.2080, pp. 20160153–11. doi: 10.1098/rsta.2016.0153.

Cox, A. (1970). “Latitude dependence of the angular dispersion of the geomagnetic field”.
In: Geophysical Journal International 20.3, pp. 253–269.

Cranmer, K., J. Brehmer, and G. Louppe (2020). “The frontier of simulation-based inference.”
In: Proceedings of the National Academy of Sciences of the United States of America
117.48, pp. 30055–30062. doi: 10.1073/pnas.1912789117.

Creer, K., E. Irving, and S. Runcorn (1954). “The direction of the geomagnetic field in remote
epochs in Great Britain”. In: Journal of geomagnetism and geoelectricity 6.4, pp. 163–168.

Creswell, R., K. M. Shepherd, B. Lambert, G. R. Mirams, C. L. Lei, S. Tavener, M. Robinson,
and D. J. Gavaghan (2023). “Understanding the impact of numerical solvers on inference
for differential equation models”. In: arXiv preprint arXiv:2307.00749.

Cromwell, G., C. Johnson, L. Tauxe, C. Constable, and N. Jarboe (2018). “PSV10: A global
data set for 0–10 Ma time-averaged field and paleosecular variation studies”. In: Geo-
chemistry, Geophysics, Geosystems 19.5, pp. 1533–1558.

Cuffey, K. and W. S. B. Paterson (2010). The physics of glaciers. 4th ed. OCLC: ocn488732494.
Burlington, MA: Butterworth-Heinemann/Elsevier.

Cuoco, E., J. Powell, M. Cavaglià, K. Ackley, M. Bejger, C. Chatterjee, M. Coughlin, S.
Coughlin, P. Easter, R. Essick, H. Gabbard, T. Gebhard, S. Ghosh, L. Haegel, A. Iess,
D. Keitel, Z. Marka, S. Marka, F. Morawski, T. Nguyen, R. Ormiston, M. Puerrer, M.
Razzano, K. Staats, G. Vajente, and D. Williams (2020). “Enhancing Gravitational-Wave
Science with Machine Learning”. In: arXiv. doi: 10.1088/2632-2153/abb93a.

Dahlquist, G. (1985). “33 years of numerical instability, Part I”. In: BIT Numerical Mathe-
matics 25.1, pp. 188–204. doi: 10.1007/bf01934997.

Dandekar, R., K. Chung, V. Dixit, M. Tarek, A. Garcia-Valadez, K. V. Vemula, and C.
Rackauckas (2020). “Bayesian Neural Ordinary Differential Equations”. In: arXiv.

Dask Development Team (2016). Dask: Library for dynamic task scheduling.

https://doi.org/10.1016/j.jcp.2020.109716
https://doi.org/10.1016/j.jcp.2020.109716
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.7265/N5-RGI-60
https://doi.org/10.1098/rsta.2016.0153
https://doi.org/10.1073/pnas.1912789117
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1007/bf01934997

BIBLIOGRAPHY 125

Deenen, M. H., C. G. Langereis, D. J. van Hinsbergen, and A. J. Biggin (2011). “Geomagnetic
secular variation and the statistics of palaeomagnetic directions”. In: Geophysical Journal
International 186.2, pp. 509–520.

Doubrovine, P. V., T. Veikkolainen, L. J. Pesonen, E. Piispa, S. Ots, A. V. Smirnov, E. V.
Kulakov, and A. J. Biggin (2019). “Latitude dependence of geomagnetic paleosecular
variation and its relation to the frequency of magnetic reversals: observations from the
Cretaceous and Jurassic”. In: Geochemistry, Geophysics, Geosystems 20.3, pp. 1240–1279.

Dürrbaum, A., W. Klier, and H. Hahn (2002). “Comparison of Automatic and Symbolic
Differentiation in Mathematical Modeling and Computer Simulation of Rigid-Body Sys-
tems”. In: Multibody System Dynamics 7.4, pp. 331–355. doi: 10.1023/a:10155230
18029.

Eberhard, P. and C. Bischof (1996). “Automatic differentiation of numerical integration
algorithms”. In: Mathematics of Computation 68.226, pp. 717–731. doi: 10.1090/s00
25-5718-99-01027-3.

Ebert-Uphoff, I. and Y. Deng (2014). “Causal Discovery from Spatio-Temporal Data with
Applications to Climate Science”. In: 2014 13th International Conference on Machine
Learning and Applications, pp. 606–613. doi: 10.1109/icmla.2014.96.

Elliott, C. (2018). “The simple essence of automatic differentiation”. In: Proceedings of the
ACM on Programming Languages 2.ICFP, p. 70. doi: 10.1145/3236765.

Elliott, J. and J. Peraire (1996). “Aerodynamic design using unstructured meshes”. In: Fluid
Dynamics Conference. doi: 10.2514/6.1996-1941.

Elvira, V. D., S. Gottlieb, O. Gutsche, B. Nachman, S. Bailey, W. Bhimji, P. Boyle, G.
Cerati, M. C. Kind, K. Cranmer, et al. (2022). “The Future of High Energy Physics
Software and Computing”. In: arXiv preprint arXiv:2210.05822.

Farinotti, D., M. Huss, J. J. Fürst, J. Landmann, H. Machguth, F. Maussion, and A. Pandit
(Mar. 2019). “A consensus estimate for the ice thickness distribution of all glaciers on
Earth”. en. In: Nature Geoscience 12.3, pp. 168–173. doi: 10.1038/s41561-019-03
00-3.

Farr, T. G., P. A. Rosen, E. Caro, R. Crippen, R. Duren, S. Hensley, M. Kobrick, M. Paller,
E. Rodriguez, L. Roth, et al. (2007). “The shuttle radar topography mission”. In: Reviews
of geophysics 45.2.

Farrell, P. E., D. A. Ham, S. W. Funke, and M. E. Rognes (2013). “Automated Derivation
of the Adjoint of High-Level Transient Finite Element Programs”. In: SIAM Journal on
Scientific Computing 35.4, pp. C369–C393. doi: 10.1137/120873558.

Fike, J. A. (2013). “Multi-objective optimization using hyper-dual numbers”. PhD thesis.
Fisher, R. A. (1953). “Dispersion on a sphere”. In: Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences 217, pp. 295–305.
Fletcher, P. T. (2013). “Geodesic Regression and the Theory of Least Squares on Riemannian

Manifolds”. In: International Journal of Computer Vision 105.2, pp. 171–185. doi: 10.1
007/s11263-012-0591-y.

Fornberg, B. (1988). “Generation of Finite Difference Formulas on Arbitrarily Spaced Grids”.
In: Mathematics of Computation 51.184, pp. 699–706.

https://doi.org/10.1023/a:1015523018029
https://doi.org/10.1023/a:1015523018029
https://doi.org/10.1090/s0025-5718-99-01027-3
https://doi.org/10.1090/s0025-5718-99-01027-3
https://doi.org/10.1109/icmla.2014.96
https://doi.org/10.1145/3236765
https://doi.org/10.2514/6.1996-1941
https://doi.org/10.1038/s41561-019-0300-3
https://doi.org/10.1038/s41561-019-0300-3
https://doi.org/10.1137/120873558
https://doi.org/10.1007/s11263-012-0591-y
https://doi.org/10.1007/s11263-012-0591-y

BIBLIOGRAPHY 126

Fowler, A. (2010). “Weertman, Lliboutry and the development of sliding theory”. In: Journal
of Glaciology 56.200, pp. 965–972. doi: 10.3189/002214311796406112.

Fowler, A. and F. Ng (2020). Glaciers and Ice Sheets in the climate system: The Karthaus
summer school lecture notes. Springer Nature.

Gallo, L. C., M. Domeier, F. Sapienza, N. L. Swanson-Hysell, B. Vaes, Y. Zhang, M. Arnould,
A. Eyster, D. Gürer, Á. Király, B. Robert, T. Rolf, G. Shephard, and A. van der Boon
(2023). “Embracing Uncertainty to Resolve Polar Wander: A Case Study of Cenozoic
North America”. In: Geophysical Research Letters 50.11. doi: 10.1029/2023gl1034
36.

Gallo, L. C., F. Sapienza, and M. Domeier (2022). “An optimization method for paleomag-
netic Euler pole analysis”. In: Computers & Geosciences 166, p. 105150.

Gallo, L. C. et al. (2024). “On the feasibility of paleomagnetic Euler pole analysis”. In:
preparation.

Gebremedhin, A. H., F. Manne, and A. Pothen (2005). “What color is your Jacobian? Graph
coloring for computing derivatives”. In: SIAM review 47.4, pp. 629–705.

Gelbrecht, M., A. White, S. Bathiany, and N. Boers (2023). “Differentiable programming
for Earth system modeling”. In: Geoscientific Model Development 16.11, pp. 3123–3135.
doi: 10.5194/gmd-16-3123-2023.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin (2013).
Bayesian data analysis. CRC press.

Gentemann, C. L., C. Holdgraf, R. Abernathey, D. Crichton, J. Colliander, E. J. Kearns,
Y. Panda, and R. P. Signell (2021). “Science Storms the Cloud”. In: AGU Advances 2.2.
doi: 10.1029/2020av000354.

Gerritsen, D., B. Vaes, and D. J. van Hinsbergen (2022). “Influence of data filters on the
position and precision of paleomagnetic poles: what is the optimal sampling strategy?”
In: Geochemistry, Geophysics, Geosystems 23.4, e2021GC010269.

Ghattas, O. and K. Willcox (2021). “Learning physics-based models from data: perspectives
from inverse problems and model reduction”. In: Acta Numerica 30, pp. 445–554. doi:
10.1017/s0962492921000064.

Giering, R. and T. Kaminski (1998). “Recipes for adjoint code construction”. In: ACM Trans-
actions on Mathematical Software (TOMS) 24.4, pp. 437–474. doi: 10.1145/293686
.293695.

Giles, M. B. and N. A. Pierce (2000a). “An introduction to the adjoint approach to design”.
In: Flow, Turbulence and Combustion 65.3, pp. 393–415.

Giles, M. B. and N. A. Pierce (2000b). “An Introduction to the Adjoint Approach to Design”.
In: Flow, Turbulence and Combustion 65.3–4, pp. 393–415. doi: 10.1023/a:101143
0410075.

Givoli, D. (2021). “A tutorial on the adjoint method for inverse problems”. In: 380, p. 113810.
doi: 10.1016/j.cma.2021.113810.

Glen, J. W. (1955). “The creep of polycrystalline ice”. In: Proceedings of the Royal Society
of London. Series A. Mathematical and Physical Sciences 228.1175, pp. 519–538.

https://doi.org/10.3189/002214311796406112
https://doi.org/10.1029/2023gl103436
https://doi.org/10.1029/2023gl103436
https://doi.org/10.5194/gmd-16-3123-2023
https://doi.org/10.1029/2020av000354
https://doi.org/10.1017/s0962492921000064
https://doi.org/10.1145/293686.293695
https://doi.org/10.1145/293686.293695
https://doi.org/10.1023/a:1011430410075
https://doi.org/10.1023/a:1011430410075
https://doi.org/10.1016/j.cma.2021.113810

BIBLIOGRAPHY 127

Goldberg, D. N. and P. Heimbach (2013). “Parameter and state estimation with a time-
dependent adjoint marine ice sheet model”. In: The Cryosphere 7.6, pp. 1659–1678. doi:
10.5194/tc-7-1659-2013.

Goldberg, D. (1991). “What every computer scientist should know about floating-point arith-
metic”. In: ACM Computing Surveys (CSUR) 23.1, pp. 5–48. doi: 10.1145/103162
.103163.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. http://www.deeple
arningbook.org. MIT Press.

Gowda, S., Y. Ma, A. Cheli, M. Gwóźzdź, V. B. Shah, A. Edelman, and C. Rackauckas (2022).
“High-performance symbolic-numerics via multiple dispatch”. In: ACM Communications
in Computer Algebra 55.3, pp. 92–96. doi: 10.1145/3511528.3511535.

Granger, B. E. and F. Pérez (2021). “Jupyter: Thinking and Storytelling With Code and
Data”. In: Computing in Science Engineering 23.2, pp. 7–14. doi: 10.1109/mcse.20
21.3059263.

Green, P. J. and B. W. Silverman (1993). Nonparametric regression and generalized linear
models: a roughness penalty approach. Crc Press.

Griewank, A. (1989). “On Automatic Differentiation”. In: Mathematical Programming: Recent
Developments and Applications.

— (2012). “Who invented the reverse mode of differentiation”. In: Documenta Mathematica,
Extra Volume ISMP 389400.

Griewank, A. and A. Walther (2008). Evaluating Derivatives. doi: 10.1137/1.9780898
717761.

Gronwall, T. H. (1919). “Note on the derivatives with respect to a parameter of the solutions
of a system of differential equations”. In: Annals of Mathematics, pp. 292–296.

Guidicelli, M., M. Huss, M. Gabella, and N. Salzmann (2023). “Spatio-temporal reconstruc-
tion of winter glacier mass balance in the Alps, Scandinavia, Central Asia and western
Canada (1981–2019) using climate reanalyses and machine learning”. In: The Cryosphere
17.2, pp. 977–1002.

Hager, W. W. (2000). “Runge-Kutta methods in optimal control and the transformed adjoint
system”. In: Numerische Mathematik 87.2, pp. 247–282. doi: 10.1007/s0021100001
78.

Hairer, E., G. Wanner, and S. Nørsett (2008). Solving Ordinary Differential Equations I:
Nonstiff Problems (Second Revised Edition). Springer Berlin Heidelberg New York.

Halevy, A., P. Norvig, and F. Pereira (2009). “The Unreasonable Effectiveness of Data”. In:
IEEE Intelligent Systems 24.2, pp. 8–12. doi: 10.1109/mis.2009.36.

Halfar, P. (1981). “On the dynamics of the ice sheets”. In: Journal of Geophysical Research:
Oceans 86.C11, pp. 11065–11072. doi: 10.1029/jc086ic11p11065.

Han, J., A. Jentzen, and W. E (2018). “Solving high-dimensional partial differential equa-
tions using deep learning”. In: Proceedings of the National Academy of Sciences 115.34,
p. 201718942. doi: 10.1073/pnas.1718942115.

https://doi.org/10.5194/tc-7-1659-2013
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1109/mcse.2021.3059263
https://doi.org/10.1109/mcse.2021.3059263
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1007/s002110000178
https://doi.org/10.1007/s002110000178
https://doi.org/10.1109/mis.2009.36
https://doi.org/10.1029/jc086ic11p11065
https://doi.org/10.1073/pnas.1718942115

BIBLIOGRAPHY 128

Harris, C. R., K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al. (2020). “Array programming with
NumPy”. In: Nature 585.7825, pp. 357–362.

Hasani, E. and R. A. Ward (2024). “Generating synthetic data for neural operators”. In:
arXiv.

Hascoët, L. and M. Morlighem (2018). “Source-to-source adjoint Algorithmic Differentia-
tion of an ice sheet model written in C”. In: Optimization Methods and Software 33.4-6,
pp. 829–843.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman (2009). The elements of
statistical learning: data mining, inference, and prediction. Vol. 2. Springer.

He, Q., M. Perego, A. A. Howard, G. E. Karniadakis, and P. Stinis (2023). “A hybrid deep
neural operator/finite element method for ice-sheet modeling”. In: Journal of Computa-
tional Physics 492, p. 112428. doi: 10.1016/j.jcp.2023.112428.

Heimbach, P. and V. Bugnion (2009). “Greenland ice-sheet volume sensitivity to basal, sur-
face and initial conditions derived from an adjoint model”. In: Annals of Glaciology 50.52,
pp. 67–80.

Heinonen, M., C. Yildiz, H. Mannerström, J. Intosalmi, and H. Lähdesmäki (2018). “Learning
unknown ODE models with Gaussian processes”. In: arXiv.

Hermans, J., V. Begy, and G. Louppe (2020). “Likelihood-free mcmc with amortized ap-
proximate ratio estimators”. In: International conference on machine learning. PMLR,
pp. 4239–4248.

Heslop, D. and A. Roberts (2020). “Uncertainty propagation in hierarchical paleomagnetic
reconstructions”. In: Journal of Geophysical Research: Solid Earth 125.6, e2020JB019488.

Hey, T., S. Tansley, K. Tolle, and J. Gray (Oct. 2009). The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research.

Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward (2005). “SUNDIALS: Suite of nonlinear and differential/algebraic equation
solvers”. In: ACM Transactions on Mathematical Software (TOMS) 31.3, pp. 363–396.

Hock, R. (Nov. 2003). “Temperature index melt modelling in mountain areas”. en. In: Journal
of Hydrology 282.1-4, pp. 104–115. doi: 10.1016/S0022-1694(03)00257-9.

Hock, R., F. Maussion, B. Marzeion, and S. Nowicki (2023). “What is the global glacier
ice volume outside the ice sheets?” In: Journal of Glaciology 69.273, pp. 204–210. doi:
10.1017/jog.2023.1.

Hoffimann, J., M. Zortea, B. d. Carvalho, and B. Zadrozny (2021). “Geostatistical Learning:
Challenges and Opportunities”. In: arXiv.

Hoyer, S. and J. Hamman (2017a). “xarray: N-D labeled arrays and datasets in Python”. In:
Journal of Open Research Software 5.1. doi: 10.5334/jors.148.

Hoyer, S. and J. J. Hamman (Apr. 2017b). “xarray: N-D labeled Arrays and Datasets in
Python”. en. In: Journal of Open Research Software 5, p. 10. doi: 10.5334/jors.14
8.

https://doi.org/10.1016/j.jcp.2023.112428
https://doi.org/10.1016/S0022-1694(03)00257-9
https://doi.org/10.1017/jog.2023.1
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148

BIBLIOGRAPHY 129

Huang, J., T. M. Smith, G. M. Henry, and R. A. V. D. Geijn (2016). “Strassen’s Algo-
rithm Reloaded”. In: SC16: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 690–701. doi: 10.1109/sc.2016.58.

Hugonnet, R., R. McNabb, E. Berthier, B. Menounos, C. Nuth, L. Girod, D. Farinotti, M.
Huss, I. Dussaillant, F. Brun, and A. Kääb (Mar. 2020). A globally complete, spatially
and temporally resolved estimate of glacier mass change: 2000 to 2019. other. display.
doi: 10.5194/egusphere-egu2020-20908.

Hunter, J. D. (2007). “Matplotlib: A 2D Graphics Environment”. In: Computing in Science
Engineering 9.3, pp. 90–95. doi: 10.1109/MCSE.2007.55.

Hüper, K. and F. S. Leite (2007). “On the Geometry of Rolling and Interpolation Curves
on Sn, SOn, and Grassmann Manifolds”. In: Journal of Dynamical and Control Systems
13.4, pp. 467–502. doi: 10.1007/s10883-007-9027-3.

Huss, M. and R. Hock (Sept. 2015). “A new model for global glacier change and sea-level
rise”. In: Frontiers in Earth Science 3. doi: 10.3389/feart.2015.00054.

Hutter, K. (1983). Theoretical Glaciology. en. Dordrecht: Springer Netherlands. doi: 10.1
007/978-94-015-1167-4.

Imhof, M. A. (2021). “Combined climate-ice flow modelling of the Alpine ice field during the
Last Glacial Maximum”. In: VAW-Mitteilungen 260.

Innes, M. (2018). “Don’t Unroll Adjoint: Differentiating SSA-Form Programs”. In: arXiv.
Innes, M., E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy, T. Karmali, A. Pal,

and V. Shah (2018). “Fashionable Modelling with Flux”. In: CoRR abs/1811.01457.
Innes, M., A. Edelman, K. Fischer, C. Rackauckas, E. Saba, V. B. Shah, and W. Tebbutt

(2019). “A Differentiable Programming System to Bridge Machine Learning and Scientific
Computing”. In: arXiv. doi: 10.48550/arxiv.1907.07587.

Ipsen, I. C. F. and C. D. Meyer (1998). “The Idea Behind Krylov Methods”. In: The American
Mathematical Monthly 105.10, pp. 889–899. doi: 10.1080/00029890.1998.12004
985.

Irving, E. (1977). “Drift of the major continental blocks since the Devonian”. In: Nature
270.5635, pp. 304–309.

Iten, R., T. Metger, H. Wilming, L. d. Rio, and R. Renner (2020). “Discovering Physical
Concepts with Neural Networks”. In: Physical Review Letters 124.1, p. 010508. doi: 10
.1103/physrevlett.124.010508.

Jain, A., S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter,
D. Skinner, G. Ceder, et al. (2013). “Commentary: The Materials Project: A materials
genome approach to accelerating materials innovation”. In: APL materials 1.1.

Jameson, A. (1988). “Aerodynamic design via control theory”. In: Journal of Scientific Com-
puting 3.3, pp. 233–260. doi: 10.1007/bf01061285.

Jensen, J. S., P. B. Nakshatrala, and D. A. Tortorelli (2014). “On the consistency of adjoint
sensitivity analysis for structural optimization of linear dynamic problems”. In: Structural
and Multidisciplinary Optimization 49.5, pp. 831–837. doi: 10.1007/s00158-013-1
024-4.

Johnson, S. G. (2012). “Notes on Adjoint Methods for 18.335”. In.

https://doi.org/10.1109/sc.2016.58
https://doi.org/10.5194/egusphere-egu2020-20908
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/s10883-007-9027-3
https://doi.org/10.3389/feart.2015.00054
https://doi.org/10.1007/978-94-015-1167-4
https://doi.org/10.1007/978-94-015-1167-4
https://doi.org/10.48550/arxiv.1907.07587
https://doi.org/10.1080/00029890.1998.12004985
https://doi.org/10.1080/00029890.1998.12004985
https://doi.org/10.1103/physrevlett.124.010508
https://doi.org/10.1103/physrevlett.124.010508
https://doi.org/10.1007/bf01061285
https://doi.org/10.1007/s00158-013-1024-4
https://doi.org/10.1007/s00158-013-1024-4

BIBLIOGRAPHY 130

Jouvet, G. (2023). “Inversion of a Stokes glacier flow model emulated by deep learning”. In:
Journal of Glaciology 69.273, pp. 13–26. doi: 10.1017/jog.2022.41.

Jouvet, G., G. Cordonnier, B. Kim, M. Lüthi, A. Vieli, and A. Aschwanden (Dec. 2021).
“Deep learning speeds up ice flow modelling by several orders of magnitude”. en. In:
Journal of Glaciology, pp. 1–14. doi: 10.1017/jog.2021.120.

Juedes, D. W. (1991). A taxonomy of automatic differentiation tools. Tech. rep. Argonne
National Lab., IL (United States).

Jupp, P. E. and J. T. Kent (1987). “Fitting Smooth Paths to Speherical Data”. In: Journal
of the Royal Statistical Society. Series C (Applied Statistics) 36.1, pp. 34–46.

Jupyter, P., M. Bussonnier, J. Forde, J. Freeman, B. Granger, T. Head, C. Holdgraf, K.
Kelley, G. Nalvarte, A. Osheroff, M. Pacer, Y. Panda, F. Perez, B. Ragan-Kelley, and C.
Willing (2018). “Binder 2.0 - Reproducible, interactive, sharable environments for science
at scale”. In: Proceedings of the 17th Python in Science Conference. Ed. by F. Akici, D.
Lippa, D. Niederhut, and M. Pacer, pp. 113–120. doi: 10.25080/Majora-4af1f41
7-011.

Kaltenborn, J., C. E. E. Lange, V. Ramesh, P. Brouillard, Y. Gurwicz, C. Nagda, J. Runge,
P. Nowack, and D. Rolnick (2023). “ClimateSet: A Large-Scale Climate Model Dataset
for Machine Learning”. In: arXiv. doi: 10.48550/arxiv.2311.03721.

Kantorovich, L. V. (1957). “On a mathematical symbolism convenient for performing ma-
chine calculations”. In: Dokl. Akad. Nauk SSSR. Vol. 113. 4, pp. 738–741.

Karczmarczuk, J. (1998). “Functional Differentiation of Computer Programs”. In: Proceed-
ings of the Third ACM SIGPLAN International Conference on Functional Programming.
ICFP ’98. Baltimore, Maryland, USA: Association for Computing Machinery, pp. 195–
203. doi: 10.1145/289423.289442.

Karniadakis, G. E., I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang (2021).
“Physics-informed machine learning”. In: Nature Reviews Physics 3.6, pp. 422–440. doi:
10.1038/s42254-021-00314-5.

Karpatne, A., G. Atluri, J. H. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S. Shekhar,
N. Samatova, and V. Kumar (2017a). “Theory-Guided Data Science: A New Paradigm
for Scientific Discovery from Data”. In: IEEE Transactions on Knowledge and Data En-
gineering 29.10, pp. 2318–2331. doi: 10.1109/tkde.2017.2720168.

Karpatne, A., I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar (2017b). “Machine
Learning for the Geosciences: Challenges and Opportunities”. In: IEEE Transactions on
Knowledge and Data Engineering 31.8, pp. 1544–1554. doi: 10.1109/tkde.2018.2
861006.

Kent, D. V. and E. Irving (2010). “Influence of inclination error in sedimentary rocks on the
Triassic and Jurassic apparent pole wander path for North America and implications for
Cordilleran tectonics”. In: Journal of Geophysical Research: Solid Earth 115.B10.

Khokhlov, A. and G. Hulot (Jan. 2016). “Principal component analysis of palaeomagnetic
directions: converting a Maximum Angular Deviation (MAD) into an 95 angle”. In: Geo-
physical Journal International 204.1, pp. 274–291. doi: 10.1093/gji/ggv451.

Kidger, P. (2021). “On Neural Differential Equations”. PhD thesis. University of Oxford.

https://doi.org/10.1017/jog.2022.41
https://doi.org/10.1017/jog.2021.120
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.25080/Majora-4af1f417-011
https://doi.org/10.48550/arxiv.2311.03721
https://doi.org/10.1145/289423.289442
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1109/tkde.2017.2720168
https://doi.org/10.1109/tkde.2018.2861006
https://doi.org/10.1109/tkde.2018.2861006
https://doi.org/10.1093/gji/ggv451

BIBLIOGRAPHY 131

Kidger, P., R. T. Q. Chen, and T. J. Lyons (18–24 Jul 2021). “"Hey, that’s not an ODE":
Faster ODE Adjoints via Seminorms”. In: Proceedings of the 38th International Confer-
ence on Machine Learning. Ed. by M. Meila and T. Zhang. Vol. 139. Proceedings of
Machine Learning Research. PMLR, pp. 5443–5452.

Kim, S., W. Ji, S. Deng, Y. Ma, and C. Rackauckas (2021). “Stiff neural ordinary differen-
tial equations”. en. In: Chaos: An Interdisciplinary Journal of Nonlinear Science 31.9,
p. 093122. doi: 10.1063/5.0060697.

Kluyver, T., B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley,
J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and J.
development team (2016). “Jupyter Notebooks - a publishing format for reproducible
computational workflows”. In: ed. by F. Loizides and B. Scmidt, pp. 87–90.

Kochkov, D., J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer (2021). “Machine
learning accelerated computational fluid dynamics”. In: arXiv.

Kovachki, N., Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, and A. Anand-
kumar (2021). “Neural Operator: Learning Maps Between Function Spaces”. In: arXiv.
doi: 10.48550/arxiv.2108.08481.

Kuhn, T. S. (1962). The Structure of Scientific Revolutions. Chicago: University of Chicago
Press.

Kurz, G., F. Pfaff, and U. D. Hanebeck (2016). “Kullback-Leibler divergence and moment
matching for hyperspherical probability distributions”. In: 2016 19th International Con-
ference on Information Fusion (FUSION). IEEE, pp. 2087–2094.

Lagergren, J. H., J. T. Nardini, R. E. Baker, M. J. Simpson, and K. B. Flores (2020).
“Biologically-informed neural networks guide mechanistic modeling from sparse experi-
mental data”. In: arXiv. doi: 10.1371/journal.pcbi.1008462.

Lam, R., A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri,
T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott,
A. Pritzel, S. Mohamed, and P. Battaglia (2022). “GraphCast: Learning skillful medium-
range global weather forecasting”. In: arXiv. doi: 10.48550/arxiv.2212.12794.

Landau, L. D. and E. M. Lifshitz (2013). Fluid Mechanics: Landau and Lifshitz: Course of
Theoretical Physics, Volume 6. Vol. 6. Elsevier.

Lange, S. (2019). WFDE5 over land merged with ERA5 over the ocean (W5E5). en. Version
Number: 1.0 Type: dataset. doi: 10.5880/PIK.2019.023.

Lantoine, G., R. P. Russell, and T. Dargent (2012). “Using Multicomplex Variables for Auto-
matic Computation of High-Order Derivatives”. In: ACM Transactions on Mathematical
Software (TOMS) 38.3, p. 16. doi: 10.1145/2168773.2168774.

Laue, S. (2019). On the Equivalence of Forward Mode Automatic Differentiation and Symbolic
Differentiation. doi: 10.48550/ARXIV.1904.02990.

LeCun, Y., Y. Bengio, and G. Hinton (May 27, 2015). “Deep Learning”. In: Nature 521.7553,
pp. 436–444. doi: 10.1038/nature14539.

Leis, J. R. and M. A. Kramer (Mar. 1988). “Algorithm 658: ODESSA–an Ordinary Differ-
ential Equation Solver with Explicit Simultaneous Sensitivity Analysis”. In: ACM Trans.
Math. Softw. 14.1, pp. 61–67. doi: 10.1145/42288.214371.

https://doi.org/10.1063/5.0060697
https://doi.org/10.48550/arxiv.2108.08481
https://doi.org/10.1371/journal.pcbi.1008462
https://doi.org/10.48550/arxiv.2212.12794
https://doi.org/10.5880/PIK.2019.023
https://doi.org/10.1145/2168773.2168774
https://doi.org/10.48550/ARXIV.1904.02990
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/42288.214371

BIBLIOGRAPHY 132

Lemarié-Rieusset, P. G. (2018). The Navier-Stokes problem in the 21st century. CRC press.
Leong, W. J. and H. J. Horgan (Apr. 2020). DeepBedMap: Using a deep neural network to

better resolve the bed topography of Antarctica. preprint. Ice sheets/Data Assimilation.
doi: 10.5194/tc-2020-74.

Lguensat, R., J. L. Sommer, S. Metref, E. Cosme, and R. Fablet (Nov. 2019). “Learn-
ing Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models”. In:
arXiv:1911.08856 [physics, stat]. arXiv: 1911.08856.

Li, D., K. Xu, J. M. Harris, and E. Darve (2020a). “Coupled time-lapse full-waveform in-
version for subsurface flow problems using intrusive automatic differentiation”. In: Water
Resources Research 56.8, e2019WR027032.

Li, Z., N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anand-
kumar (2020b). “Fourier Neural Operator for Parametric Partial Differential Equations”.
In: arXiv. doi: 10.48550/arxiv.2010.08895.

Lions, J. L. (1971). Optimal control of systems governed by partial differential equations.
Vol. 170. Springer.

Logan, L. C., S. H. K. Narayanan, R. Greve, and P. Heimbach (2020). “SICOPOLIS-AD
v1: an open-source adjoint modeling framework for ice sheet simulation enabled by
the algorithmic differentiation tool OpenAD”. In: Geoscientific Model Development 13.4,
pp. 1845–1864.

Lyness, J. N. (1967). “Numerical algorithms based on the theory of complex variable”. In:
Proceedings of the 1967 22nd national conference on -, pp. 125–133. doi: 10.1145/80
0196.805983.

Lyness, J. N. and C. B. Moler (1967). “Numerical Differentiation of Analytic Functions”. In:
SIAM Journal on Numerical Analysis 4.2, pp. 202–210. doi: 10.1137/0704019.

Ma, Y., V. Dixit, M. J. Innes, X. Guo, and C. Rackauckas (2021a). “A comparison of au-
tomatic differentiation and continuous sensitivity analysis for derivatives of differential
equation solutions”. In: 2021 IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, pp. 1–9.

Ma, Y., V. Dixit, M. Innes, X. Guo, and C. Rackauckas (July 2021b). “A Comparison of Au-
tomatic Differentiation and Continuous Sensitivity Analysis for Derivatives of Differential
Equation Solutions”. In: arXiv:1812.01892 [cs]. arXiv: 1812.01892.

MacAyeal, D. R. (1992). “The basal stress distribution of Ice Stream E, Antarctica, inferred
by control methods”. In: Journal of Geophysical Research: Solid Earth 97.B1, pp. 595–
603.

— (1993). “A tutorial on the use of control methods in ice-sheet modeling”. In: Journal of
Glaciology 39.131. Publisher: Cambridge University Press, pp. 91–98. doi: 10.3189/S
0022143000015744.

Magruder, L., T. Neumann, and N. Kurtz (2021). “ICESat-2 Early Mission Synopsis and
Observatory Performance”. In: Earth and Space Science 8.5, e2020EA001555.

Maguire, E., L. Heinrich, and G. Watt (Oct. 2017). “HEPData: a repository for high energy
physics data”. In: Journal of Physics: Conference Series 898.10, p. 102006. doi: 10.10
88/1742-6596/898/10/102006.

https://doi.org/10.5194/tc-2020-74
https://doi.org/10.48550/arxiv.2010.08895
https://doi.org/10.1145/800196.805983
https://doi.org/10.1145/800196.805983
https://doi.org/10.1137/0704019
https://doi.org/10.3189/S0022143000015744
https://doi.org/10.3189/S0022143000015744
https://doi.org/10.1088/1742-6596/898/10/102006
https://doi.org/10.1088/1742-6596/898/10/102006

BIBLIOGRAPHY 133

Manzyuk, O., B. A. Pearlmutter, A. A. Radul, D. R. Rush, and J. M. Siskind (2019).
“Perturbation confusion in forward automatic differentiation of higher-order functions”.
In: Journal of Functional Programming 29, e12.

Mardia, K. V. (1975). “Distribution Theory for the Von Mises-Fisher Distribution and Its
Application”. In: A Modern Course on Statistical Distributions in Scientific Work. Ed. by
G. P. Patil, S. Kotz, and J. K. Ord. Dordrecht: Springer Netherlands, pp. 113–130.

Mardia, K. V. and P. E. Jupp (2000). Directional statistics. Vol. 2. Wiley Online Library.
Margossian, C. C. (2018). “A Review of automatic differentiation and its efficient implemen-

tation”. In: arXiv. doi: 10.48550/arxiv.1811.05031.
Martins, J. R. R. A., P. Sturdza, and J. J. Alonso (2003). “The complex-step derivative

approximation”. In: ACM Transactions on Mathematical Software (TOMS) 29, pp. 245–
262. doi: 10.1145/838250.838251.

Martins, J., P. Sturdza, and J. Alonso (2001). “The connection between the complex-step
derivative approximation and algorithmic differentiation”. In: 39th Aerospace Sciences
Meeting and Exhibit, p. 921.

Marzio, M. D., A. Panzera, and C. C. Taylor (2019). “Nonparametric Rotations for Sphere-
Sphere Regression”. In: Journal of the American Statistical Association 114.525, pp. 466–
476. doi: 10.1080/01621459.2017.1421542.

Mathur, R. (2012). “An analytical approach to computing step sizes for finite-difference
derivatives”. PhD thesis.

Mattheakis, M., D. Sondak, A. S. Dogra, and P. Protopapas (2020). “Hamiltonian Neural
Networks for solving differential equations”. In: arXiv.

Maussion, F., A. Butenko, N. Champollion, M. Dusch, J. Eis, K. Fourteau, P. Gregor, A. H.
Jarosch, J. Landmann, F. Oesterle, B. Recinos, T. Rothenpieler, A. Vlug, C. T. Wild,
and B. Marzeion (Mar. 2019). “The Open Global Glacier Model (OGGM) v1.1”. en. In:
Geoscientific Model Development 12.3, pp. 909–931. doi: 10.5194/gmd-12-909-20
19.

Maussion, F., T. Rothenpieler, M. Dusch, P. Schmitt, A. Vlug, L. Schuster, N. Champollion,
F. Li, B. Marzeion, M. Oberrauch, J. Eis, J. Landmann, A. Jarosch, A. Fischer, luzpaz,
S. Hanus, D. Rounce, M. Castellani, S. L. Bartholomew, S. Minallah, bowenbelongsto-
nature, C. Merrill, D. Otto, D. Loibl, L. Ultee, S. Thompson, anton-ub, P. Gregor, and
zhaohongyu (Mar. 2023). OGGM/oggm: v1.6.0. Version v1.6.0. doi: 10.5281/zenodo
.7718476.

McElhinny, M. and P. McFadden (2000). Paleomagnetism: Continents and Oceans. Vol. 73.
International Geophysics Series. San Diego: Academic Press.

McFadden, P., R. Merrill, and M. McElhinny (1988). “Dipole/quadrupole family model-
ing of paleosecular variation”. In: Journal of Geophysical Research: Solid Earth 93.B10,
pp. 11583–11588.

McFadden, P., R. Merrill, M. McElhinny, and S. Lee (1991). “Reversals of the Earth’s mag-
netic field and temporal variations of the dynamo families”. In: Journal of Geophysical
Research: Solid Earth 96.B3, pp. 3923–3933.

https://doi.org/10.48550/arxiv.1811.05031
https://doi.org/10.1145/838250.838251
https://doi.org/10.1080/01621459.2017.1421542
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5194/gmd-12-909-2019
https://doi.org/10.5281/zenodo.7718476
https://doi.org/10.5281/zenodo.7718476

BIBLIOGRAPHY 134

McGreivy, N., S. Hudson, and C. Zhu (2021). “Optimized finite-build stellarator coils using
automatic differentiation”. In: Nuclear Fusion 61, p. 026020. doi: 10.1088/1741-43
26/abcd76.

McKinney, W. (2010). “Data Structures for Statistical Computing in Python”. In: Proceedings
of the 9th Python in Science Conference. Ed. by S. van der Walt and J. Millman, pp. 56–
61. doi: 10.25080/Majora-92bf1922-00a.

Mesnard, O. and L. A. Barba (2020). “Reproducible Workflow on a Public Cloud for Com-
putational Fluid Dynamics”. In: Computing in Science Engineering 22.1, pp. 102–116.
doi: 10.1109/mcse.2019.2941702.

Millan, R., J. Mouginot, A. Rabatel, and M. Morlighem (Feb. 2022). “Ice velocity and thick-
ness of the world’s glaciers”. en. In: Nature Geoscience 15.2, pp. 124–129. doi: 10.103
8/s41561-021-00885-z.

Mitusch, S. K., S. W. Funke, and J. S. Dokken (2019). “dolfin-adjoint 2018.1: automated
adjoints for FEniCS and Firedrake”. In: Journal of Open Source Software 4.38, p. 1292.
doi: 10.21105/joss.01292.

Mogensen, P. K. and A. N. Riseth (2018). “Optim: A mathematical optimization package for
Julia”. In: Journal of Open Source Software 3.24, p. 615. doi: 10.21105/joss.00615.

Mohajerani, Y., M. Wood, I. Velicogna, and E. Rignot (Jan. 2019). “Detection of Glacier
Calving Margins with Convolutional Neural Networks: A Case Study”. en. In: Remote
Sensing 11.1, p. 74. doi: 10.3390/rs11010074.

Mohammadi, B. and O. Pironneau (2004). “Shape optimization in fluid mechanics”. In: An-
nual Review of Fluid Mechanics 36.1, pp. 255–279. doi: 10.1146/annurev.fluid
.36.050802.121926.

— (2009). Applied shape optimization for fluids. OUP Oxford.
Monnier, J. and P.-E. d. Boscs (2017). “Inference of the bottom properties in shallow ice

approximation models”. In: Inverse Problems 33.11, p. 115001. doi: 10.1088/1361-6
420/aa7b92.

Morlighem, M., E. Rignot, T. Binder, D. Blankenship, R. Drews, G. Eagles, O. Eisen, F.
Ferraccioli, R. Forsberg, P. Fretwell, et al. (2020). “Deep glacial troughs and stabilizing
ridges unveiled beneath the margins of the Antarctic ice sheet”. In: Nature geoscience
13.2, pp. 132–137.

Moses, W. and V. Churavy (2020). “Instead of Rewriting Foreign Code for Machine Learning,
Automatically Synthesize Fast Gradients”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., pp. 12472–12485.

Moses, W. S., V. Churavy, L. Paehler, J. Hückelheim, S. H. K. Narayanan, M. Schanen, and
J. Doerfert (2021). “Reverse-mode automatic differentiation and optimization of GPU
kernels via Enzyme”. In: Proceedings of the international conference for high performance
computing, networking, storage and analysis, pp. 1–16.

Murphy, K. P. (2022). Probabilistic Machine Learning: An introduction. MIT Press.

https://doi.org/10.1088/1741-4326/abcd76
https://doi.org/10.1088/1741-4326/abcd76
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1109/mcse.2019.2941702
https://doi.org/10.1038/s41561-021-00885-z
https://doi.org/10.1038/s41561-021-00885-z
https://doi.org/10.21105/joss.01292
https://doi.org/10.21105/joss.00615
https://doi.org/10.3390/rs11010074
https://doi.org/10.1146/annurev.fluid.36.050802.121926
https://doi.org/10.1146/annurev.fluid.36.050802.121926
https://doi.org/10.1088/1361-6420/aa7b92
https://doi.org/10.1088/1361-6420/aa7b92

BIBLIOGRAPHY 135

Nanni, U., D. Scherler, F. Ayoub, R. Millan, F. Herman, and J.-P. Avouac (2023). “Climatic
control on seasonal variations in mountain glacier surface velocity”. In: The Cryosphere
17.4, pp. 1567–1583. doi: 10.5194/tc-17-1567-2023.

National Academies of Sciences and Division on Engineering and Physical Sciences, Space
Studies Board, and Committee on Best Practices for a Future Open Code Policy for
NASA Space Science (2018). “Open Source Software Policy Options for NASA Earth
and Space Sciences”. In.

Naumann, U. (2011). The Art of Differentiating Computer Programs. Society for Industrial
and Applied Mathematics. doi: 10.1137/1.9781611972078.

Neuenhofen, M. (2018). “Review of theory and implementation of hyper-dual numbers for
first and second order automatic differentiation”. In: arXiv. doi: 10.48550/arxiv.1
801.03614.

Norcliffe, A. and M. P. Deisenroth (2023). “Faster Training of Neural ODEs Using Gauß-
Legendre Quadrature”. In: arXiv. doi: 10.48550/arxiv.2308.10644.

Oden, J. T., R. Moser, and O. Ghattas (2010). “Computer Predictions with Quantified
Uncertainty, Part II”. In: SIAM News 43.10, pp. 1–4.

Oktay, D., N. McGreivy, J. Aduol, A. Beatson, and R. P. Adams (2020). “Randomized
Automatic Differentiation”. In: arXiv. doi: 10.48550/arxiv.2007.10412.

Onken, D. and L. Ruthotto (2020). “Discretize-Optimize vs. Optimize-Discretize for Time-
Series Regression and Continuous Normalizing Flows”. In: arXiv. doi: 10.48550/arx
iv.2005.13420.

Opdyke, M. D. and J. E. Channell (1996). Magnetic stratigraphy. Academic Press.
Palmieri, G., M. Tiboni, and G. Legnani (2020). “Analysis of the Upper Limitation of the

Most Convenient Cadence Range in Cycling Using an Equivalent Moment Based Cost
Function”. In: Mathematics 8.11. doi: 10.3390/math8111947.

Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala (2019). “PyTorch:
An Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d. Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., pp. 8026–8037.

Pathak, J., S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T.
Kurth, D. Hall, Z. Li, K. Azizzadenesheli, P. Hassanzadeh, K. Kashinath, and A. Anand-
kumar (2022). “FourCastNet: A Global Data-driven High-resolution Weather Model using
Adaptive Fourier Neural Operators”. In: arXiv. doi: 10.48550/arxiv.2202.11214.

Peckham, S. D. (2014). “The CSDMS standard names: Cross-domain naming conventions
for describing process models, data sets and their associated variables”. In.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. (2011). “Scikit-learn: Machine learning in
Python”. In: the Journal of machine Learning research 12, pp. 2825–2830.

https://doi.org/10.5194/tc-17-1567-2023
https://doi.org/10.1137/1.9781611972078
https://doi.org/10.48550/arxiv.1801.03614
https://doi.org/10.48550/arxiv.1801.03614
https://doi.org/10.48550/arxiv.2308.10644
https://doi.org/10.48550/arxiv.2007.10412
https://doi.org/10.48550/arxiv.2005.13420
https://doi.org/10.48550/arxiv.2005.13420
https://doi.org/10.3390/math8111947
https://doi.org/10.48550/arxiv.2202.11214

BIBLIOGRAPHY 136

Pérez, F. and B. E. Granger (2007). “IPython: A System for Interactive Scientific Comput-
ing”. In: Computing in Science Engineering 9.3, pp. 21–29. doi: 10.1109/MCSE.200
7.53.

Perkel, J. M. (2021). “Ten computer codes that transformed science”. In: Nature 589.7842,
pp. 344–348. doi: 10.1038/d41586-021-00075-2.

Pestourie, R., Y. Mroueh, C. Rackauckas, P. Das, and S. G. Johnson (2023). “Physics-
enhanced deep surrogates for partial differential equations”. In: Nature Machine Intel-
ligence 5.12, pp. 1458–1465. doi: 10.1038/s42256-023-00761-y.

Pförtner, M., I. Steinwart, P. Hennig, and J. Wenger (2022). “Physics-Informed Gaussian
Process Regression Generalizes Linear PDE Solvers”. In: arXiv. doi: 10.48550/arxi
v.2212.12474.

Pironneau, O. (2005). “Optimal shape design for elliptic systems”. In: System Modeling and
Optimization: Proceedings of the 10th IFIP Conference New York City, USA, August
31–September 4, 1981. Springer, pp. 42–66.

Pörtner, H.-O., D. Roberts, H. Adams, I. Adelekan, C. Adler, R. Adrian, P. Aldunce, E.
Ali, R. A. Begum, B. B. Friedl, R. B. Kerr, R. Biesbroek, J. Birkmann, K. Bowen, M.
Caretta, J. Carnicer, E. Castellanos, T. Cheong, W. Chow, G. C. G. Cissé, and Z. Z.
Ibrahim (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Technical
Summary. Cambridge, UK and New York, USA: Cambridge University Press, pp. 37–118.

Rackauckas, C., M. Innes, Y. Ma, J. Bettencourt, L. White, and V. Dixit (2019). “DiffE-
qFlux.jl - A Julia Library for Neural Differential Equations”. In: arXiv.

Rackauckas, C., A. Edelman, K. Fischer, M. Innes, E. Saba, V. B. Shah, and W. Tebbutt
(2021). “Generalized physics-informed learning through language-wide differentiable pro-
gramming”. In.

Rackauckas, C., Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, A. Ra-
madhan, and A. Edelman (2020). “Universal differential equations for scientific machine
learning”. In: arXiv preprint arXiv:2001.04385.

Rackauckas, C. and Q. Nie (2016). “DifferentialEquations.jl – A Performant and Feature-
Rich Ecosystem for Solving Differential Equations in Julia”. In: Journal of Open Research
Software 5.1, p. 15. doi: 10.5334/jors.151.

Raissi, M., P. Perdikaris, and G. Karniadakis (2019). “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational Physics 378, pp. 686–707.
doi: 10.1016/j.jcp.2018.10.045.

Ramadhan, A., J. C. Marshall, A. N. Souza, X. K. Lee, U. Piterbarg, A. Hillier, G. L. Wagner,
C. Rackauckas, C. Hill, J.-M. Campin, and R. Ferrari (2022). “Capturing missing physics
in climate model parameterizations using neural differential equations”. In: doi: 10.10
02/essoar.10512533.1.

Ramsay, J. and G. Hooker (2017). Dynamic Data Analysis, Modeling Data with Differential
Equations. doi: 10.1007/978-1-4939-7190-9.

Ramsundar, B., D. Krishnamurthy, and V. Viswanathan (2021). “Differentiable Physics: A
Position Piece”. In: arXiv. doi: 10.48550/arxiv.2109.07573.

https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1038/d41586-021-00075-2
https://doi.org/10.1038/s42256-023-00761-y
https://doi.org/10.48550/arxiv.2212.12474
https://doi.org/10.48550/arxiv.2212.12474
https://doi.org/10.5334/jors.151
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1002/essoar.10512533.1
https://doi.org/10.1002/essoar.10512533.1
https://doi.org/10.1007/978-1-4939-7190-9
https://doi.org/10.48550/arxiv.2109.07573

BIBLIOGRAPHY 137

Ranocha, H., L. Dalcin, M. Parsani, and D. I. Ketcheson (2022). “Optimized Runge-Kutta
Methods with Automatic Step Size Control for Compressible Computational Fluid Dy-
namics”. In: Communications on Applied Mathematics and Computation 4.4. Paper with
the RDPK3Sp35 method, pp. 1191–1228. doi: 10.1007/s42967-021-00159-w.

Rasp, S., M. S. Pritchard, and P. Gentine (Sept. 2018). “Deep learning to represent subgrid
processes in climate models”. en. In: Proceedings of the National Academy of Sciences
115.39, pp. 9684–9689. doi: 10.1073/pnas.1810286115.

Razavi, S., A. Jakeman, A. Saltelli, C. Prieur, B. Iooss, E. Borgonovo, E. Plischke, S. L.
Piano, T. Iwanaga, W. Becker, S. Tarantola, J. H. A. Guillaume, J. Jakeman, H. Gupta,
N. Melillo, G. Rabitti, V. Chabridon, Q. Duan, X. Sun, S. Smith, R. Sheikholeslami, N.
Hosseini, M. Asadzadeh, A. Puy, S. Kucherenko, and H. R. Maier (2021). “The Future
of Sensitivity Analysis: An essential discipline for systems modeling and policy support”.
In: Environmental Modelling & Software 137, p. 104954. doi: 10.1016/j.envsoft
.2020.104954.

Revels, J., M. Lubin, and T. Papamarkou (2016). “Forward-Mode Automatic Differentiation
in Julia”. In: arXiv:1607.07892 [cs.MS].

RGI 7.0 Consortium, 2. R. G. I. (2023). Randolph Glacier Inventory 7.0. English. doi: 10
.5067/f6jmovy5navz.

Riel, B., B. Minchew, and T. Bischoff (2021). “Data-Driven Inference of the Mechanics
of Slip Along Glacier Beds Using Physics-Informed Neural Networks: Case Study on
Rutford Ice Stream, Antarctica”. In: Journal of Advances in Modeling Earth Systems
13.11. e2021MS002621 2021MS002621, e2021MS002621. doi: https://doi.org/10
.1029/2021MS002621.

Roberts, D. A. (2021). “Why is AI hard and Physics simple?” In: arXiv.
Rolnick, D., P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A. S. Ross,

N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown, A. S. Luccioni, T. Maharaj, E. D.
Sherwin, S. K. Mukkavilli, K. P. Kording, C. P. Gomes, A. Y. Ng, D. Hassabis, J. C.
Platt, F. Creutzig, J. Chayes, and Y. Bengio (2022). “Tackling Climate Change with
Machine Learning”. In: ACM Computing Surveys (CSUR) 55.2, pp. 1–96. doi: 10.114
5/3485128.

Rosenthal, M., W. Wu, E. Klassen, and A. Srivastava (2014). “Spherical Regression Models
Using Projective Linear Transformations”. In: Journal of the American Statistical Asso-
ciation 109.508, pp. 1615–1624. doi: 10.1080/01621459.2014.892881.

Rüde, U., K. Willcox, L. C. McInnes, and H. D. Sterck (2018). “Research and Education
in Computational Science and Engineering”. In: SIAM Review 60.3, pp. 707–754. doi:
10.1137/16m1096840.

Ruder, S. (2016). “An overview of gradient descent optimization algorithms”. In: arXiv
preprint arXiv:1609.04747.

Runge, J., S. Bathiany, E. Bollt, G. Camps-Valls, D. Coumou, E. Deyle, C. Glymour, M.
Kretschmer, M. D. Mahecha, J. Muñoz-Marí, E. H. v. Nes, J. Peters, R. Quax, M. Re-
ichstein, M. Scheffer, B. Schölkopf, P. Spirtes, G. Sugihara, J. Sun, K. Zhang, and J.

https://doi.org/10.1007/s42967-021-00159-w
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1016/j.envsoft.2020.104954
https://doi.org/10.1016/j.envsoft.2020.104954
https://doi.org/10.5067/f6jmovy5navz
https://doi.org/10.5067/f6jmovy5navz
https://doi.org/https://doi.org/10.1029/2021MS002621
https://doi.org/https://doi.org/10.1029/2021MS002621
https://doi.org/10.1145/3485128
https://doi.org/10.1145/3485128
https://doi.org/10.1080/01621459.2014.892881
https://doi.org/10.1137/16m1096840

BIBLIOGRAPHY 138

Zscheischler (2019). “Inferring causation from time series in Earth system sciences”. In:
Nature Communications 10.1, p. 2553. doi: 10.1038/s41467-019-10105-3.

Samir, C., P.-A. Absil, A. Srivastava, and E. Klassen (2012). “A Gradient-Descent Method for
Curve Fitting on Riemannian Manifolds”. In: Foundations of Computational Mathematics
12.1, pp. 49–73. doi: 10.1007/s10208-011-9091-7.

Sandu, A. (2006). “On the properties of Runge-Kutta discrete adjoints”. In: Computational
Science–ICCS 2006: 6th International Conference, Reading, UK, May 28-31, 2006, Pro-
ceedings, Part IV 6. Springer, pp. 550–557.

— (2011). “Solution of inverse problems using discrete ODE adjoints”. In: Large-Scale Inverse
Problems and Quantification of Uncertainty, pp. 345–365.

Sapienza, F. et al. (2024a). “An Analytical Model of Magnetic Field Draping in Induced
Magnetospheres”. In: preparation.

— (2024b). “Fitting curves in the sphere using universal differential equations”. In: prepara-
tion.

Sapienza, F., J. Bolibar, F. Schäfer, P. Heimbach, G. Hooker, F. Pérez, P. Persson, C. Rack-
auckas, V. Boussange, B. Groenke, and A. Pal (2024c). “Differentiable Programming for
Differential Equations: A Review”. In: preparation.

Sapienza, F., L. C. Gallo, Y. Zhang, B. Vaes, M. Domeier, and N. L. Swanson-Hysell (2023a).
“Quantitative Analysis of Paleomagnetic Sampling Strategies”. In: Journal of Geophysical
Research: Solid Earth 128.11, e2023JB027211. doi: https://doi.org/10.1029/2
023JB027211.

Sapienza, F., L. C. Gallo, Y. Zhang, B. Vaes, M. Domeier, and N. Swanson-Hysell (2023b).
PolarWandering/PaleoSampling (Version 1.0.0). Comp. software. Version 1.0.0. doi: ht
tps://doi.org/10.5281/zenodo.8347149.

Schäfer, F., M. Tarek, L. White, and C. Rackauckas (2021). “AbstractDifferentiation.jl:
Backend-Agnostic Differentiable Programming in Julia”. In: arXiv. doi: 10.48550/ar
xiv.2109.12449.

Schanen, M., S. H. K. Narayanan, S. Williamson, V. Churavy, W. S. Moses, and L. Paehler
(2023). “Transparent Checkpointing for Automatic Differentiation of Program Loops
Through Expression Transformations”. In: ed. by J. Mikyška, C. de Mulatier, M. Paszyn-
ski, V. V. Krzhizhanovskaya, J. J. Dongarra, and P. M. Sloot, pp. 483–497.

Schleder, G. R., A. C. M. Padilha, C. M. Acosta, M. Costa, and A. Fazzio (2019). “From
DFT to machine learning: recent approaches to materials science–a review”. In: Journal
of Physics: Materials 2.3, p. 032001. doi: 10.1088/2515-7639/ab084b.

Schneider, T., J. Teixeira, C. S. Bretherton, F. Brient, K. G. Pressel, C. Schär, and A. P.
Siebesma (2017). “Climate goals and computing the future of clouds”. In: Nature Climate
Change 7.1, pp. 3–5.

Schoof, C. (2006). “A variational approach to ice stream flow”. In: Journal of Fluid Mechanics
556, pp. 227–251. doi: 10.1017/s0022112006009591.

Schroeder, D. M. (2022). “Paths forward in radioglaciology”. In: Annals of Glaciology 63.87–89,
pp. 13–17. doi: 10.1017/aog.2023.3.

https://doi.org/10.1038/s41467-019-10105-3
https://doi.org/10.1007/s10208-011-9091-7
https://doi.org/https://doi.org/10.1029/2023JB027211
https://doi.org/https://doi.org/10.1029/2023JB027211
https://doi.org/https://doi.org/10.5281/zenodo.8347149
https://doi.org/https://doi.org/10.5281/zenodo.8347149
https://doi.org/10.48550/arxiv.2109.12449
https://doi.org/10.48550/arxiv.2109.12449
https://doi.org/10.1088/2515-7639/ab084b
https://doi.org/10.1017/s0022112006009591
https://doi.org/10.1017/aog.2023.3

BIBLIOGRAPHY 139

Serban, R. and A. C. Hindmarsh (2005). “CVODES: the sensitivity-enabled ODE solver in
SUNDIALS”. In: International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference. Vol. 47438, pp. 257–269.

Shen, C., A. P. Appling, P. Gentine, T. Bandai, H. Gupta, A. Tartakovsky, M. Baity-Jesi,
F. Fenicia, D. Kifer, L. Li, X. Liu, W. Ren, Y. Zheng, C. J. Harman, M. Clark, M.
Farthing, D. Feng, P. Kumar, D. Aboelyazeed, F. Rahmani, Y. Song, H. E. Beck, T.
Bindas, D. Dwivedi, K. Fang, M. Höge, C. Rackauckas, B. Mohanty, T. Roy, C. Xu,
and K. Lawson (2023). “Differentiable modelling to unify machine learning and physical
models for geosciences”. In: Nature Reviews Earth & Environment, pp. 1–16. doi: 10.1
038/s43017-023-00450-9.

Silva, H. D., J. L. Gustafson, and W.-F. Wong (2018). “Making Strassen Matrix Multiplica-
tion Safe”. In: 2018 IEEE 25th International Conference on High Performance Computing
(HiPC) 00, pp. 173–182. doi: 10.1109/hipc.2018.00028.

Sirignano, J. and K. Spiliopoulos (2017). “DGM: A deep learning algorithm for solving partial
differential equations”. In: arXiv. doi: 10.1016/j.jcp.2018.08.029.

Sirkes, Z. and E. Tziperman (1997). “Finite Difference of Adjoint or Adjoint of Finite Dif-
ference?” In: Monthly Weather Review 125.12, pp. 3373–3378. doi: 10.1175/1520-0
493(1997)125<3373:fdoaoa>2.0.co;2.

Siskind, J. M. and B. A. Pearlmutter (2005). “Perturbation confusion and referential trans-
parency: Correct functional implementation of forward-mode AD”. In.

Smith, J. S., O. Isayev, and A. E. Roitberg (2017). “ANI-1: an extensible neural network
potential with DFT accuracy at force field computational cost”. In: Chemical science 8.4,
pp. 3192–3203.

Smucler, E., F. Sapienza, and A. Rotnitzky (2022). “Efficient adjustment sets in causal
graphical models with hidden variables”. In: Biometrika 109.1, pp. 49–65.

Snow, T., J. Millstein, J. Scheick, W. Sauthoff, W. J. Leong, J. Colliander, F. Pérez, J.
Munroe, D. Felikson, T. Sutterley, and M. Siegfried (2023). CryoCloud JupyterBook.
doi: https://doi.org/10.5281/zenodo.7576602.

Spain, B. (2003). Tensor Calculus: a concise course. Courier Corporation.
Squire, W. and G. Trapp (1998). “Using Complex Variables to Estimate Derivatives of Real

Functions”. In: 40, pp. 110–112. doi: 10.1137/s003614459631241x.
Stein, E. M. and R. Shakarchi (2010). Complex analysis. Vol. 2. Princeton University Press.
Stoer, J. and R. Bulirsch (2002). Introduction to numerical analysis. Springer.
Stoudt, S., V. N. Vásquez, and C. C. Martinez (2021). “Principles for data analysis work-

flows”. In: PLOS Computational Biology 17.3, e1008770. doi: 10.1371/journal.pc
bi.1008770.

Strouwen, A., B. M. Nicolaï, and P. Goos (Jan. 12, 2022). “Robust Dynamic Experiments
for the Precise Estimation of Respiration and Fermentation Parameters of Fruit and
Vegetables”. In: PLOS Computational Biology 18.1. Ed. by P. Mendes, e1009610. doi:
10.1371/journal.pcbi.1009610.

Synge, J. L. and A. Schild (1978). Tensor calculus. Vol. 5. Courier Corporation.

https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1038/s43017-023-00450-9
https://doi.org/10.1109/hipc.2018.00028
https://doi.org/10.1016/j.jcp.2018.08.029
https://doi.org/10.1175/1520-0493(1997)125<3373:fdoaoa>2.0.co;2
https://doi.org/10.1175/1520-0493(1997)125<3373:fdoaoa>2.0.co;2
https://doi.org/https://doi.org/10.5281/zenodo.7576602
https://doi.org/10.1137/s003614459631241x
https://doi.org/10.1371/journal.pcbi.1008770
https://doi.org/10.1371/journal.pcbi.1008770
https://doi.org/10.1371/journal.pcbi.1009610

BIBLIOGRAPHY 140

Tauxe, L., R. Shaar, L. Jonestrask, N. Swanson-Hysell, R. Minnett, A. Koppers, C. Consta-
ble, N. Jarboe, K. Gaastra, and L. Fairchild (2016). “PmagPy: Software package for pale-
omagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC)
Database”. In: Geochemistry, Geophysics, Geosystems 17.6, pp. 2450–2463.

Tauxe, L. (2010). Essentials of Paleomagnetism. University of California Press.
Tauxe, L., C. Constable, C. L. Johnson, A. A. Koppers, W. R. Miller, and H. Staudigel

(2003). “Paleomagnetism of the southwestern USA recorded by 0–5 Ma igneous rocks”.
In: Geochemistry, Geophysics, Geosystems 4.4.

Tauxe, L. and D. V. Kent (2004). “Timescales Of The Paleomagnetic Field”. In: Geophysical
Monograph Series, pp. 101–115. doi: 10.1029/145gm08.

Teisberg, T. O., D. M. Schroeder, and E. J. MacKie (2021). “A Machine Learning Approach
to Mass-Conserving Ice Thickness Interpolation”. In: 2021 IEEE International Geoscience
and Remote Sensing Symposium IGARSS 00, pp. 8664–8667. doi: 10.1109/igarss4
7720.2021.9555002.

The icepyx Developers (2023). icepyx: Python tools for obtaining and working with ICESat-2
data. icesat2py. doi: https://doi.org/10.5281/zenodo.7729175.

The World Economic Forum (2018). “Harnessing artificial intelligence for the earth”. In:
Tech. Rep.

Thuerey, N., P. Holl, M. Mueller, P. Schnell, F. Trost, and K. Um (2021). Physics-based Deep
Learning. WWW.

Tibshirani, R. J. (2014). “Adaptive piecewise polynomial estimation via trend filtering”. In:
The Annals of Statistics 42.1, pp. 285–323. doi: 10.1214/13-AOS1189.

Torsvik, T. H., R. Van der Voo, U. Preeden, C. Mac Niocaill, B. Steinberger, P. V. Doubrovine,
D. J. Van Hinsbergen, M. Domeier, C. Gaina, E. Tohver, et al. (2012). “Phanerozoic polar
wander, palaeogeography and dynamics”. In: Earth-Science Reviews 114.3-4, pp. 325–368.

Tsitouras, C. (2011). “Runge–Kutta pairs of order 5(4) satisfying only the first column sim-
plifying assumption”. In: Computers & Mathematics with Applications 62.2, pp. 770–775.
doi: 10.1016/j.camwa.2011.06.002.

Turk, M. J. (2013). “How to Scale a Code in the Human Dimension”. In: arXiv.
Vaes, B., S. Li, C. G. Langereis, and D. J. van Hinsbergen (2021). “Reliability of palaeo-

magnetic poles from sedimentary rocks”. In: Geophysical Journal International 225.2,
pp. 1281–1303.

Vandamme, D. (1994). “A new method to determine paleosecular variation”. In: Physics of
the Earth and Planetary Interiors 85.1-2, pp. 131–142.

Walther, A. (2007). “Automatic differentiation of explicit Runge-Kutta methods for optimal
control”. In: Computational Optimization and Applications 36.1, pp. 83–108. doi: 10.1
007/s10589-006-0397-3.

Wang, F., D. Zheng, J. Decker, X. Wu, G. M. Essertel, and T. Rompf (2019). “Backpropaga-
tion with Continuation Callbacks:Foundations for Efficient and ExpressiveDifferentiable
Programming”. In: Proceedings of the ACM on Programming Languages 3.ICFP, p. 96.
doi: 10.1145/3341700.

https://doi.org/10.1029/145gm08
https://doi.org/10.1109/igarss47720.2021.9555002
https://doi.org/10.1109/igarss47720.2021.9555002
https://doi.org/https://doi.org/10.5281/zenodo.7729175
https://doi.org/10.1214/13-AOS1189
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.1007/s10589-006-0397-3
https://doi.org/10.1007/s10589-006-0397-3
https://doi.org/10.1145/3341700

BIBLIOGRAPHY 141

Wang, Q., R. Hu, and P. Blonigan (2014). “Least Squares Shadowing sensitivity analysis of
chaotic limit cycle oscillations”. In: Journal of Computational Physics 267, pp. 210–224.
doi: https://doi.org/10.1016/j.jcp.2014.03.002.

Wang, Y., C.-Y. Lai, J. Gómez-Serrano, and T. Buckmaster (2023). “Asymptotic Self-Similar
Blow-Up Profile for Three-Dimensional Axisymmetric Euler Equations Using Neural Net-
works”. In: Physical Review Letters 130.24, p. 244002. doi: 10.1103/physrevlett
.130.244002.

Wang, Y., C.-Y. Lai, and C. Cowen-Breen (2022). “Discovering the rheology of Antarctic Ice
Shelves via physics-informed deep learning”. In: doi: 10.21203/rs.3.rs-2135795
/v1.

Wanner, G. and E. Hairer (1996). Solving ordinary differential equations II. Vol. 375. Springer
Berlin Heidelberg New York.

Watson, G. S. (1982). “Distributions on the circle and sphere”. In: Journal of Applied Prob-
ability 19.A, pp. 265–280. doi: 10.1017/s0021900200034628.

Watt-Meyer, O., G. Dresdner, J. McGibbon, S. K. Clark, B. Henn, J. Duncan, N. D.
Brenowitz, K. Kashinath, M. S. Pritchard, B. Bonev, M. E. Peters, and C. S. Bretherton
(2023). “ACE: A fast, skillful learned global atmospheric model for climate prediction”.
In: arXiv. doi: 10.48550/arxiv.2310.02074.

Wengert, R. E. (1964). “A simple automatic derivative evaluation program”. In: Communi-
cations of the ACM 7.8, pp. 463–464. doi: 10.1145/355586.364791.

Weyand, T., I. Kostrikov, and J. Philbin (2016). “Planet-photo geolocation with convolu-
tional neural networks”. In: Computer Vision–ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14. Springer,
pp. 37–55.

Whillans, I. M. (1977). “The Equation of Continuity and its Application to the Ice Sheet
Near “byrd” Station, Antarctica”. In: Journal of Glaciology 18.80, pp. 359–371. doi: 10
.3189/S0022143000021055.

Wigner, E. P. (1960). “The unreasonable effectiveness of mathematics in the natural sciences”.
In: Communications on Pure and Applied Mathematics 13, pp. 1–14. doi: 10.1002/c
pa.3160130102.

Wolfe, P. (1982). “Checking the Calculation of Gradients”. In: ACM Transactions on Math-
ematical Software (TOMS) 8.4, pp. 337–343. doi: 10.1145/356012.356013.

Wu, H., S. Y. Greer, and D. O’Malley (2023). “Physics-embedded inverse analysis with
algorithmic differentiation for the earth’s subsurface”. In: Scientific Reports 13.1, p. 718.
doi: 10.1038/s41598-022-26898-1.

Zdeborová, L. (May 2020). “Understanding deep learning is also a job for physicists”. en. In:
Nature Physics. doi: 10.1038/s41567-020-0929-2.

Zekollari, H., M. Huss, and D. Farinotti (Apr. 2019). “Modelling the future evolution of
glaciers in the European Alps under the EURO-CORDEX RCM ensemble”. en. In: The
Cryosphere 13.4, pp. 1125–1146. doi: 10.5194/tc-13-1125-2019.

Zhang, H. and A. Sandu (2014). “FATODE: A library for forward, adjoint, and tangent linear
integration of ODEs”. In: SIAM Journal on Scientific Computing 36.5, pp. C504–C523.

https://doi.org/https://doi.org/10.1016/j.jcp.2014.03.002
https://doi.org/10.1103/physrevlett.130.244002
https://doi.org/10.1103/physrevlett.130.244002
https://doi.org/10.21203/rs.3.rs-2135795/v1
https://doi.org/10.21203/rs.3.rs-2135795/v1
https://doi.org/10.1017/s0021900200034628
https://doi.org/10.48550/arxiv.2310.02074
https://doi.org/10.1145/355586.364791
https://doi.org/10.3189/S0022143000021055
https://doi.org/10.3189/S0022143000021055
https://doi.org/10.1002/cpa.3160130102
https://doi.org/10.1002/cpa.3160130102
https://doi.org/10.1145/356012.356013
https://doi.org/10.1038/s41598-022-26898-1
https://doi.org/10.1038/s41567-020-0929-2
https://doi.org/10.5194/tc-13-1125-2019

BIBLIOGRAPHY 142

Zhao, C., R. M. Gladstone, R. C. Warner, M. A. King, T. Zwinger, and M. Morlighem (Aug.
2018). “Basal friction of Fleming Glacier, Antarctica – Part 1: Sensitivity of inversion to
temperature and bedrock uncertainty”. en. In: The Cryosphere 12.8, pp. 2637–2652. doi:
10.5194/tc-12-2637-2018.

Zhou, T., X. Wan, D. Z. Huang, Z. Li, Z. Peng, A. Anandkumar, J. F. Brady, P. W. Sternberg,
and C. Daraio (2024). “AI-aided geometric design of anti-infection catheters”. In: Science
Advances 10.1, eadj1741. doi: 10.1126/sciadv.adj1741.

Zhu, Q. and J. Yang (2021a). “A Local Deep Learning Method for Solving High Order Partial
Differential Equations”. In: arXiv. doi: 10.48550/arxiv.2103.08915.

Zhu, W., K. Xu, E. Darve, and G. C. Beroza (2021b). “A general approach to seismic
inversion with automatic differentiation”. In: Computers & Geosciences 151, p. 104751.
doi: 10.1016/j.cageo.2021.104751.

Zhuang, J., N. Dvornek, X. Li, S. Tatikonda, X. Papademetris, and J. Duncan (2020). “Adap-
tive Checkpoint Adjoint Method for Gradient Estimation in Neural ODE.” In: Proceedings
of machine learning research 119, pp. 11639–11649.

Zubov, K., Z. McCarthy, Y. Ma, F. Calisto, V. Pagliarino, S. Azeglio, L. Bottero, E. Luján,
V. Sulzer, A. Bharambe, N. Vinchhi, K. Balakrishnan, D. Upadhyay, and C. Rackauckas
(2021). “NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error
Approximations”. In: arXiv. doi: 10.48550/arxiv.2107.09443.

https://doi.org/10.5194/tc-12-2637-2018
https://doi.org/10.1126/sciadv.adj1741
https://doi.org/10.48550/arxiv.2103.08915
https://doi.org/10.1016/j.cageo.2021.104751
https://doi.org/10.48550/arxiv.2107.09443

143

Appendix A

Supplementary code

This is a list of the code provided along with the current manuscript. All the following
scripts can be found in the GitHub repository DiffEqSensitivity-Review.

♣1 Comparison of direct methods. The script direct-comparision.jl repro-
duces Figure 2.6.

♣2 Dual numbers definition. The script dualnumber_definition.jl includes a
very simple example of how to define a dual number using struct in Julia and how to
extend simple unary and binary operations to implement the chain rule usign multiple
distpatch.

♣3 When AD is algorithmically correct but numerically wrong. The script
example-AD-tolerances.jl includes the example shown in Section 2.4.1.2.1 where
forward AD gives the wrong answer when tolerances in the gradient are not computed
taking into account both numerical errors in the numerical solution and the sensitiv-
ity matrix. Further examples of this phenomena can be found in the Python script
testgradient_python.py and the Julia testgradient_julia.jl.

♣4 Complex step in numerical solver. The script complex_solver.jl shows how
to define the dynamics of the ODE to support complex variables and then compute
the complex step derivative.

♣5 Solving the sensitivity equation. The scrip sensitivityequation.jl in-
cludes a manual implementation of the sensitivity equations. This also includes how
to compute the same sensitivity using ForwardSensitivity in Julia.

https://github.com/ODINN-SciML/DiffEqSensitivity-Review
https://github.com/ODINN-SciML/DiffEqSensitivity-Review/blob/main/code/DirectMethods/Comparison/direct-comparision.jl
https://github.com/ODINN-SciML/DiffEqSensitivity-Review/blob/main/code/DirectMethods/DualNumbers/dualnumber_definition.jl
https://github.com/ODINN-SciML/DiffEqSensitivity-Review/blob/main/code/SensitivityForwardAD/example-AD-tolerances.jl
https://github.com/ODINN-SciML/DiffEqSensitivity-Review/blob/main/code/SensitivityForwardAD/testgradient_python.py
https://github.com/ODINN-SciML/DiffEqSensitivity-Review/blob/main/code/SensitivityForwardAD/testgradient_julia.jl
https://github.com/ODINN-SciML/DiffEqSensitivity-Review/blob/main/code/DirectMethods/ComplexStep/complex_solver.jl
https://github.com/ODINN-SciML/DiffEqSensitivity-Review/blob/main/code/SolverMethods/sensitivityequation.jl

144

Appendix B

Shallow shelf approximation

The SIA approximation suits well in cases where we can think of the glacier as a thin layer
of ice and then ignore the effect of longitudinal and lateral stresses. However, "A peculiar
behaviour exhibited by ice sheets, which sets them apart from other geophysical thin-film
flows, is the formation of ice streams. These bands of fast-flowing ice within an ice sheet are
typically around fifty kilometres wide and hundreds of kilometres long, and are surrounded
by more slowly moving ice often termed ice ridges. The high flow velocities of ice streams
generally cannot be explained by vertical shearing in the ice, as one would expect from a
typical lubrication flow, but must be caused by rapid sliding at the contact between ice and
the underlying bed" (Schoof 2006).

In these cases, it is important to incorporate the effect of lateral and longitudinal stresses
that balance the driving stress in addition to the usual basal drag (this are components τxx,
τyy and τxy of the deviatoric stress). The simplest form of a membrane stress balance we can
derive from the Stokes model is SSA (Bueler et al. 2009).

In opposition to the SIA equation, the SSA model uses Glen’s Law in its viscous form
(Section B.1). Since the driving stress is not longer balanced just by the basal drag, we
need an expression for the friction with the bed (Section B.2), which will correspond to the
Mohn-Coulomb law. With all this ingredients, we will be ready to derive the SSA equations.

B.1 Glen’s law in viscosity form
The SSA equation uses Glen’s Law too but in its viscosity form. Instead of writing the strain
rate ϵ̇ij as a function of the deviatoric stress tensor, we do the other way around. Glen’s law
states

ϵ̇ij = Aτn−1
E τij, (B.1)

with 2τ 2E = τijτij. Using Glen’s law again in the expression for τ 2E we obtain

2τ 2E =
1

A2τ 2n−2
E

ϵ̇ij ϵ̇ij ⇒ τ 2nE =
1

2A2
ϵ̇ij ϵ̇ij =

1

A2
ϵ̇2E ⇒ τn−1

E = A−(n−1)/nϵ̇
(n−1)/n
E

(B.2)

APPENDIX B. SHALLOW SHELF APPROXIMATION 145

and then
ϵ̇ij = A1/nϵ̇

1− 1
n

E τij (B.3)

and finally
τij = 2ν(ϵ̇E)ϵ̇ij, (B.4)

where ν is the non-linear viscosity satisfying 2ν = Bϵ̇
1
n
−1

E and B = A−1/n the ice hardness.

B.2 Friction with the bed
The form of friction law depends on the debris concentration (rocks) and weather the ice
contacts the bed directly or transmit is weight thought the particles. Coulomb friction acts
between the debris particles and the bed, giving a total force per unit area A (drag force)

τf = µPcAc /A, (B.5)

with µ ≈ 0.6 the friction coefficient, Pc the pressure at regions of contact and Ac the area of
contact.

The normal stress at the bed must balance the weight of the ice column Pi = ρigH and
then

PiA = PwAw +PcAc,

with Pw the water pressure applied on some area Aw. Assuming A = Ac+Aw we obtain

τf = µ(Pi − fwPw), (B.6)

with fw = Aw /A the fraction of the bed surface that is wet. If fw ≈ 1, this formula reduces
to the Mohr-Coulomb relation

τf = µN = µ(Pi − Pw), (B.7)

where N is the effective pressure, (Cuffey et al. 2010).
Now, a similar relation holds for the case of a deforming till. A deforming till cannot

tolerate a stress no larger than τ∗. Laboratory experiments show that τ∗ also follows a
Mohr-Coulomb law

τ∗ = c0 + fN = c0 + tanφ(ρigH − Pw), (B.8)

with c0 the apparent cohesion. We can write f = tanφ, where φ is the angle of the bed
deformation with respect to the bed slope (angle β in Figure 7.3 in (Cuffey et al. 2010)).

Either τf or τ∗ represent the absolute value of the force by unit area applied on the bed
as a consequence of the friction between ice and rock. That force is applied in the opposite
direction of movement of the glacier at the bed. If u = (u, v) are the horizontal components
of the velocity vector in the bed, then the basal drag τb components are

τb,x = −τ∗
u

∥u∥ τb,y = −τ∗
u

∥u∥ , (B.9)

with ∥u∥ =
√
u2 + v2.

APPENDIX B. SHALLOW SHELF APPROXIMATION 146

B.3 SSA derivation
We are going to consider a coordinate system with z pointing vertically and both x and y are
in the horizontal plane. Now, the shallow approximation consists in assuming that the ice
thickness is small compared with the horizontal dimensions of the glacier. Then, if ϵ denotes
the ratio between the typical thickness and the typical horizontal extent of the glacier, we
are going to consider the following scaling of the variables

(x, y, z)← (x, y, ϵz) (B.10)
(τxx, τyy, τzz, τxy)← (τxx, τyy, τzz, τxy) (B.11)

(τxz, τyz)← ϵ(τxz, τyz) (B.12)

and consider all the equation at the lowest order in ϵ.
If σij denotes the stress tensor, then the set of balance equations in 3 dimensions is

∂σij

∂xj

− ρgσi3 = 0, (B.13)

where the repeated index j indicates sum over j = 1, 2, 3 (ie, j = x, y, z) and the free index
i indicates that this equation holds for i = 1, 2, 3. We can write these last equations as a
function of the deviatoric stress τij = σij − σM , with σM = σii. Since σM follows the same
sign convention as the stresses, it is negative for compression (Cuffey et al. 2010). Here, we
are going to use the pressure P = −σM . Using σij = τij − Pδij we obtain

∂τij
∂xj

− ∂P

∂xi

− ρgδi3 = 0. (Balance equations)

for i = z this last equation is

∂τxz
∂x

+
∂τyz
∂y︸ ︷︷ ︸

O(ϵ)

+
∂(τzz − P)

∂z︸ ︷︷ ︸
O(ϵ−1)

−ρg = 0 ⇝
∂(τzz − P)

∂z
= 0 (B.14)

where ⇝ denotes the result after removing higher order terms on ϵ in the equation.
First, we need to specify the boundary conditions in both the bed and surface. Define nb

and ns the normal vectors in the bed and surface, respectively, given by

nb =
1√

1 + (∂b/∂x)2 + (∂b/∂y)2

(
− ∂b

∂x
,−∂b

∂y
, 1

)
, (B.15)

ns =
1√

1 + (∂s/∂x)2 + (∂s/∂y)2

(
−∂s

∂x
,−∂s

∂y
, 1

)
. (B.16)

On the normal direction in the surface, the net force has to be zero, that is,

σs
ijnj = τ sijn

s
j − Pns

i = 0. (Boundary condition in surface)

APPENDIX B. SHALLOW SHELF APPROXIMATION 147

For i = 3 we obtain

τ szz −
∂s

∂x
τ sxz −

∂s

∂y
τ syz

︸ ︷︷ ︸
O(ϵ2)

−P = 0 ⇝ τ szz = P. (B.17)

Equations (B.14) and (B.17) imply P = τzz = −τxx − τyy. Also, for i = 1 we have (using
P = τ szz)

τ sxz −
∂s

∂x
τ sxx −

∂s

∂y
τ sxy +

∂s

∂x
τ szz = 0. (B.18)

Notice that all the terms in the last equation are O(ϵ) and that is the reason why we keep
them all.

The boundary conditions for the bed are a little bit more tricky. The normal that the bed
experiences is a stress (force per unit area) acting in the direction −nb and with intensity

N = P − τ bijn
b
in

b
j = P +O(ϵ). (B.19)

The total force per unit area experienced on the bed is a combination of the driving stress
and the normal force and all these is balanced by the basal drag τ bi :

τ bi + τ bijn
b − τ bjkn

b
jn

b
kn

b
i = 0. (Boundary condition in bed)

Now, the boundary condition on the bed for i = 1, and using the Mohn-Coulomb law,

τ bi = −µ(N − pw)
ui

∥u∥ , (B.20)

is equivalent to

τ bxz −
∂b

∂x
τ bxx −

∂b

∂y
τ bxy +

∂b

∂x
τ bzz

︸ ︷︷ ︸
O(ϵ)

+O(ϵ2) = µ (P − pw)
ux

∥u∥︸ ︷︷ ︸
O(ϵ)

. (B.21)

The right hand side of last equation is O(ϵ) because in practice P − pw = (ϵ) (they both
increase linearly with depth).

We can now vertically integrate the balance equation for x (or y) and obtain
∫ s

b

∂τxx
∂x

dz +

∫ z

b

∂τxy
∂y

dz + τ sxz − τ bxz −
∫ s

b

∂P

∂x
dz = 0. (B.22)

Using Leibniz integral rule we obtain

0 =
∂

∂x

∫ s

b

τxxdz +
∂b

∂x
τ bxx −∂s

∂x
τ sxx (B.23)

∂

∂y

∫ s

b

τxydz +
∂b

∂y
τ bxy −∂s

∂y
τ sxy (B.24)

−τ bxz︸︷︷︸
−µ(P−pw) ux

∥u∥+
∂b
∂x

τbzz

+ τ sxz︸︷︷︸
=− ∂s

∂x
τszz

− ∂

∂x

∫ s

b

P︸︷︷︸
=−τxx−τyy

dz − ∂b

∂x
P b +

∂s

∂x
P s
︸︷︷︸
=0

.

(B.25)

APPENDIX B. SHALLOW SHELF APPROXIMATION 148

Assuming that τxx, τyy, τxy and τzz at leading order, this last equations simplifies to

∂(2Hτxx + τyy)

∂x
+

∂τxy
∂y
− ρgH

∂s

∂x
− µ(ρgH − pw)

ux

∥u∥ = 0. (B.26)

Finally, if B∗ = H−1
∫ s

b
Bdz is the vertical averaged hardness and

ν =
B∗

2

(
1

2

(
∂u

∂x

)2

+
1

2

(
∂v

∂y

)2

+
1

2

(
∂u

∂x
+

∂v

∂y

)2

+
1

4

(
∂u

∂y
+

∂v

∂x

)2
) 1−n

2n

, (B.27)

using the viscous form of Glen’s law we arrive to the SSA equations

2
∂

∂x

[
νH

(
2
∂u

∂x
+

∂v

∂y

)]
+

∂

∂y

[
νH

(
∂u

∂y
+

∂v

∂x

)]
− ρgH

∂s

∂x
− τcu/∥u∥ = 0 (SSA (x))

2
∂

∂y

[
νH

(
2
∂v

∂y
+

∂u

∂x

)]
+

∂

∂x

[
νH

(
∂u

∂y
+

∂v

∂x

)]
− ρgH

∂s

∂y
− τcv/∥u∥ = 0 (SSA (y))

We can also introduce the vertical integrated stress tensor

Tij = 2νH(ϵ̇ij + (ϵ̇xx + ϵ̇yy)δij) (B.28)

for i, j = 1, 2 and write the SSA equations in a more compact way:

∂Tij

∂xj

+ τ bi = ρgH
∂s

∂xi

. (B.29)

	Contents
	List of Figures
	List of Tables
	Introduction
	Publications
	Acknowledgments
	Statistical modelling in the physical sciences
	Why now?
	Forward and inverse modelling: the language of scientific discovery
	Forward modelling
	The old recipe for physics: differential equations

	Inverse modelling
	The role of differentiable programming

	Physics-based machine learning
	Surrogate models and emulators
	Soft physical constraints
	Hard physical constraints and universal differential equations
	Further remarks

	Conclusions

	Differentiable programming for differential equations
	Abstract
	Introduction
	Methods: A mathematical perspective
	Preliminaries
	Numerical solvers for ordinary differential equations
	What to differentiate and why?
	Sensitivity matrix

	Finite differences
	Automatic differentiation
	Forward mode
	Dual numbers
	Computational graph

	Reverse mode
	AD connection with JVPs and VJPs

	Complex step differentiation
	Symbolic differentiation
	Sensitivity equations
	Discrete adjoint method
	Adjoint state equations
	Simple linear system

	Continuous adjoint method
	Mathematical comparison of the methods
	Forward AD and complex step differentiation
	Discrete adjoints and reverse AD
	Consistency: forward AD and sensitivity equations
	Consistency: discrete and continuous adjoints

	Implementation: A computer science perspective
	Direct methods
	Finite differences
	Automatic differentiation
	Forward AD based on dual numbers
	Reverse AD based on computational graph
	Checkpointing

	Complex step differentiation

	Solver-based methods
	Sensitivity equation
	Computing VJPs inside the solver

	Adjoint methods
	Discrete adjoint method
	Continuous adjoint method
	Solving the quadrature

	Conclusions

	Glacier modelling
	Physical foundations
	Continuity equation
	Glen's law
	Flow equations
	Shallow ice approximation (SIA)

	Numerical solutions
	Gridding
	Algebraic constraint

	Universal differential equations for glacier ice flow modelling
	Abstract
	Introduction
	Methods
	Forward model
	Optimization and inverse model
	Training dataset
	Surface mass balance

	Sensitivity methods and differentiation
	Continuous adjoint sensitivity analysis
	Finite differences

	Scientific computing in the future

	Results
	Robustness to noise in observations

	Discussion: challenges and perspectives
	Application to functional inversions of glacier physical processes
	Scientific machine learning
	Automatic differentiation approaches
	Surrogate models and emulators
	New statistical questions

	Conclusions and future directions

	Quantitative analysis of paleomagnetic sampling strategies
	Abstract
	Introduction
	Mathematical setup
	Data generating process
	Estimation of the paleopole direction
	Estimation of the VGP scatter

	Numerical results
	Trade-off between number of sites and number of samples per site
	Sampling strategy in the presence of outliers

	Theoretical results
	Setup
	Mean of Fisher distributions
	Hierarchical sampling of Fisher distributions
	Ensemble of Fisher and uniform distributions
	General Fisherian approximation of the pole mean

	Recommendations
	Conclusions and future directions
	Universal differential equations in paleomagnetism

	Conclusions
	Bibliography
	Supplementary code
	Shallow shelf approximation
	Glen's law in viscosity form
	Friction with the bed
	SSA derivation

