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GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ
EQUATIONS WITH VERTICAL DISSIPATION

JINKAI LI AND EDRISS S. TITI

Abstract. We prove the global well-posedness of the two-dimensional Boussinesq
equations with only vertical dissipation. The initial data (u0, θ0) are required to
be only in the space X = {f ∈ L2(R2) | ∂xf ∈ L2(R2)}, and thus our result gener-
alizes that in [C. Cao, J. Wu, Global regularity for the two-dimensional anisotropic

Boussinesq equations with vertical dissipation, Arch. Rational Mech. Anal., 208
(2013), 985–1004], where the initial data are assumed to be in H2(R2). The as-
sumption on the initial data is at the minimal level that is required to guarantee
the uniqueness of the solutions. A logarithmic type limiting Sobolev embedding
inequality for the L∞(R2) norm, in terms of anisotropic Sobolev norms, and a log-
arithmic type Gronwall inequality are established to obtain the global in time a
priori estimates, which guarantee the local solution to be a global one.

1. Introduction

The Boussinesq equations form a fundamental block in many geophysical models,
such as those of atmospheric fronts and ocean circulations, see, e.g., Majda [19],
Pedlosky [21] and Vallis [23]. The Boussinesq equations in R

2 read as






∂tu+ (u · ∇)u+∇p− ν1∂
2
xu− ν2∂

2
yu = θe2,

divu = 0,
∂tθ + u · ∇θ − κ1∂

2
xθ − κ2∂

2
yθ = 0,

(1.1)

with e2 = (0, 1), where the velocity u = (u1, u2), the pressure p and the temperature
θ are the unknowns, while the viscous coefficients νi and diffusivity coefficients κi,
i = 1, 2, are nonnegative constants.

In recent years there has been a lot of work investigating the Boussinesq system
(1.1). On the one hand, it is well-known that the Boussinesq system (1.1) with full
dissipation, i.e. when all viscous and diffusivity coefficients being positive constants,
is global well-posed, see, e.g., Cannon–DiBenedetto [8] and Foias–Manley–Temam
[12] (see also Temam [22]); however, on the other hand, for the inviscid case, i.e.
when all viscosities and diffusivity coefficients are zero, the global well-posedness
is still an open question, and actually, as pointed out in Majda–Bertozzi [20], the
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two-dimensional inviscid Boussinesq equations are identical to the incompressible
axi-symmetric swirling three-dimensional Euler equations.

As the intermediate cases between the two extreme cases (the full dissipation case
and the inviscid case), the Boussinesq equations with partial dissipation, i.e. with
partial viscosities or partial diffusivity, have recently been attracting the attention of
many mathematicians. The case that with full viscosities, but without any diffusivity
was proved to be global well-posed by Hou–Li [14] and Chae [3], independently. Note
that the case that with full diffusivity, but with no viscosities was also considered and
proved to be global well-posed in Chae [3]. The initial data in [3, 14] are required to
have some suitable high regularities. Some generalizations of the results in [3, 14],
toward weakening the assumption on the initial data, were established in Hmidi–
Keraani [13] and Danchin–Paicu [10]; in particular, no smoothness assumptions on
the initial data are required in [10]. More precisely, assuming the initial data are
in L2(R2) is sufficient for both global existence and uniqueness. Therefore, the two-
dimensional Boussinesq system with full viscosities and with or without diffusivity
is global well-posed for any L2(R2) initial data. It should be pointed out that the
global well-posedness results also hold for the system defined in bounded domains
of R2; however, in this case, the initial data are required to have some appropriate
smoothness, see, e.g., Hu–Kukavica–Ziane [15] and Lai–Pan–Zhao [16].

Note that all the papers [3, 10, 13, 14] consider the full viscosities case to guarantee
the global well-posedness, i.e. both the horizontal viscosity ν1 and the vertical viscos-
ity ν2 are assumed to be positive constants. One can further reduce the assumptions
on the viscosities in the Boussinesq system without losing its global well-posedness.
As a matter of fact, the works of Danchin–Paicu [11] and of Larios–Lunasin–Titi [17]
show that only horizontal viscosity, i.e., ν1 > 0, and ν2 = κ1 = κ2 = 0, is sufficient
for the global well-posedness of the two-dimensional Boussinesq equations, as long as
the initial data are suitably regular. It is still unclear if merely a vertical viscosity,
i.e., ν2 > 0 and ν1 = κ1 = κ2 = 0, is sufficient for the global well-posedness of the
two-dimensional Boussinesq system. However, it has been proven in Cao–Wu [7] that
the two-dimensional Boussinesq equations with only vertical dissipation, i.e., with
both vertical viscosity and vertical diffusivity (ν1 = κ1 = 0, ν2 > 0, and κ2 > 0),
indeed admit a unique global classical solution, for any initial data in H2(R2).

The aim of this paper is to weaken the assumptions of [7], concerning the initial
data, as possible as one can, without losing the global well-posedness of the system.
More precisely, we are going to establish the global well-posedness of the following
Boussinesq system in R

2, under the minimal assumptions on the initial data at the
level that are required for the uniqueness of the solutions







∂tu+ (u · ∇)u+∇p− ν∂2
yu = θe2,

divu = 0,
∂tθ + u · ∇θ − κ∂2

yθ = 0,
(1.2)
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where ν and κ are given positive constants. We consider the Cauchy problem to the
above system in R

2 and look for such solutions that vanish at infinity. We complement
the system with the initial condition

(u, θ)|t=0 = (u0, θ0). (1.3)

Notably, our result and proof are equally valid for the periodic boundary conditions
case, or on the two-dimensional sphere.

Throughout this paper, for r ∈ [1,∞] and positive integer m, we use Lr(R2) and
Hm(R2) to denote the standard Lebessgue and Sobolev spaces on R

2, respectively,
while H−1(R2) is the dual space of H1(R2). For convenience, we always use ‖f‖r to
denote the Lr(R2) norm of f .

Next, we state our main result.

Theorem 1.1. Assume that (u0, θ0, ∂xu0, ∂xθ0) ∈ L2(R2), and that T > 0. Then,
there is a unique global solution (u, θ) to system (1.2), subject to the initial condition
(1.3), satisfying

(u, θ) ∈ C([0, T ];L2(R2)) ∩ L2(0, T ;H1(R2)),

(∂xu, ∂xθ) ∈ L∞(0, T ;L2(R2)), (∂2
xyu, ∂

2
xyθ) ∈ L2(0, T ;L2(R2)),

(∂tu, ∂tθ) ∈ L2(0, T ;H−1(R2)), (∂tu, ∂tθ) ∈ L2(τ, T ;L2(R2)),

(u, θ) ∈ L∞(τ, T ;H1(R2)), (∂yu, ∂yθ) ∈ L2(τ, T ;H1(R2)),

for any τ ∈ (0, T ].

Remark 1.1. (i) Our result is clear a generalization of that in [7], where the H2(R2)
smoothness on the initial data is required in [7].

(ii) As it will be seen later, the regularity that (∂xu, ∂xθ) ∈ L2(0, T ;L2(R2)) is
required for the uniqueness, while such kind of regularity for (1.2) can only be inherited
from the initial data, because of the absence of the horizontal dissipation. Thus, our
assumption on the initial data that (∂xu0, ∂xθ0) ∈ L2(R2) is natural and necessary for
our proof.

To prove Theorem 1.1, it suffices to prove the local well-posedness and establish
some appropriate a priori estimates. The local well-posedness can be proven in a
standard way. Thanks to the dissipation in the vertical direction, the local solution
(u, θ) immediately belongs to H1(R2) away from the initial time. It turns out that the
a priori L∞(H1(R2)) estimate of (u, θ), away from the initial time, will be sufficient
for extending the local solution to be a global one. Regarding the H1 type estimates
on (u, θ), we can obtain the following energy inequality

d

dt
‖(u, θ)‖2H1 + ‖(∂yu, ∂yθ)‖2H1 ≤ 8(‖u2‖2∞ + ‖θ‖2∞ + 1)‖(u, θ)‖2H1,

which indicates that we have to control ‖u2‖2∞ in order to obtain the desired a priori
L∞(0, T ;H1(R2)) estimate. To this end, we first establish a logarithmic type em-
bedding inequality for anisotropic Sobolev spaces (see Lemma 2.2 below), which in
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particular implies that

‖u2‖2∞ ≤Cmax

{

1, sup
r≥2

‖u2‖2r
r log r

}

log(e3 + ‖u‖H1 + ‖∂yu‖H1)

× log log(e3 + ‖u‖H1 + ‖∂yu‖H1).

Then recalling the previous H1 energy inequality, and thanks to the fact that ‖u2‖r
grows no faster than

√
r log r, which is established in [7], we end up with the following

kind inequality

A′(t) +B(t) ≤ CA(t) logB(t) log logB(t),

where A and B are quantities involving ‖(u, θ)‖2H1 and ‖(∂yu, ∂yθ)‖2H1 , respectively.
Observing that the above inequality implies the boundedness, up to any finite time
T , of the quantity 2A(t) +

∫ t

0
B(s)ds (see Lemma 2.3, below), and thus one gets the

desired a priori H1 estimate of (u, θ) and further establish a global solution.
Since the specific values of the positive coefficients ν and κ play no roles in the

argument of this paper, and thus, for simplicity, we suppose that

ν = κ = 1.

Throughout this paper, we always use C to denote a generic positive constant which
may vary from line to line.

The rest of this paper is organized as follows: in the next section, section 2, we
state some preliminary results which will be used in the following sections; in section
3, we prove the global well-posedness of the Boussinesq system (1.2) with H1(R2)
initial data, based on which we can prove Theorem 1.1 in the last section, section 4.

2. Preliminaries

In this section, we state some preliminary results, including a logarithmic type
embedding inequalities for the anisotropic Sobolev spaces and a logarithmic type
Gronwall inequality.

We first recall the following lemma.

Lemma 2.1 (See Lemma 2.2 of [7]). Let q ∈ [2,∞), and assume that f, g, ∂yg, ∂xh ∈
L2(R2) and h ∈ L2(q−1)(R2). Then

∫

R2

|fgh|dxdy ≤ C‖f‖2‖g‖
1− 1

q

2 ‖∂yg‖
1
q

2 ‖h‖
1− 1

q

2(q−1)‖∂xh‖
1
q

2 ,

where C is a constant depending only on q, and in particular, we have
∫

R2

|fgh|dxdy ≤ C‖f‖2‖g‖
1
2
2 ‖∂yg‖

1
2
2 ‖h‖

1
2
2 ‖∂xh‖

1
2
2 ,

for an absolute positive constant C.
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Next, we state and prove a logarithmic type limiting Sobolev embedding inequali-
ties for the anisotropic Sobolev spaces in L∞(R2), which generalizes that in Cao–Li–
Titi [6], where the relevant inequality for the standard Sobolev spaces was established.
Notably, this inequality also generalizes the classical Brezis–Gallouate–Wainger in-
equality [1, 2] (see also [4, 5, 7], and references therein for other similar inequalities).

Lemma 2.2 (Logarithmic limiting Sobolev embedding). Denote p = (p1, p2, · · · , pN),
with pi ∈ (1,∞), and suppose that

∑N
i=1

1
pi

< 1. Then, we have

‖F‖L∞(RN ) ≤CN,p,λmax

{

1, sup
r≥2

‖F‖Lr(RN )

(r log r)λ

}

[logNp(F ) log logNp(F )]λ,

for any λ > 0 and for any function F such that all the quantities on the right-hand
side are well-defined and finite, where

Np(F ) =
N
∑

i=1

(‖F‖Lpi(RN ) + ‖∂iF‖Lpi(RN )) + e3.

Proof. Without loss of generality, we can suppose that |F (0)| = ‖F‖∞. Choose a
function φ ∈ C∞

0 (B2), with 0 ≤ φ ≤ 1, and φ ≡ 1 on B1. Setting f = Fφ, we have
(see (5.3) in [6])

|f(0)|q ≤ CN,pq

N
∑

i=1

‖f‖q−1
(q−1)κi

‖∂if‖pi, (2.1)

for any q ≥ 3, where

κi =
pi

(

1 +
∑N

j=1 αj

)

1−∑N
j=1 αj

, αi =
1

pi
.

It should be mentioned that the proof of (2.1) was given for the case N ≥ 3 in
[6]; however, as pointed out there that the same inequality also holds for the two-
dimensional case by a similar argument (see also Cao–Fahart–Titi [4] for a similar
result in 2D).

One can easily verify that

‖F‖∞ = |F (0)| = |f(0)|, ‖f‖(q−1)κi
≤ ‖F‖(q−1)κi

,

‖∂if‖pi ≤ C(‖F‖pi + ‖∂iF‖pi) ≤ CNp(F ).

With the aid of the above inequalities, and noticing that q
1
q ≤ C and (q − 1)κi ≥ 2,

for any q ∈ [3,∞), we deduce from (2.1) that

‖F‖∞ ≤CN,p

N
∑

j=1

‖F‖1−
1
q

(q−1)κi
Np(F )

1
q



6 JINKAI LI AND EDRISS S. TITI

=CN,p

N
∑

i=1







‖F‖1−
1
q

(q−1)κi

[(q − 1)κi log((q − 1)κi)]
λ(1− 1

q
)

× [(q − 1)κi log((q − 1)κi)]
λ(1− 1

q )
}

Np(F )
1
q

≤CN,p,λ

N
∑

i=1

{ ‖F‖(q−1)κi

[(q − 1)κi log((q − 1)κi)]λ

}1− 1
q

(q log q)λNp(F )
1
q

≤CN,p,λ max

{

1, sup
r≥2

‖F‖r
(r log r)λ

}

(q log q)λNp(F )
1
q .

Therefore

‖F‖∞ ≤ CN,p,λmax

{

1, sup
r≥2

‖F‖r
(r log r)λ

}

(q log q)λNp(F )
1
q ,

for any q ≥ 3. Noticing that logNp(F ) ≥ 3, one can choose q = logNp(F ) in the
above inequality and end up with

‖F‖∞ ≤CN,p,λ max

{

1, sup
r≥2

‖F‖r
(r log r)λ

}

[logNp(F ) log logNp(F )]λ,

for any λ > 0, which proves the conclusion. �

Finally, we prove a logarithmic Gronwall inequality stated in the following lemma.
This lemma will be applied later to establish the global in time a priori estimates.

Lemma 2.3 (Logarithmic Gronwall inequality). Let T ∈ (0,∞) be given. Let A

and B be defined and integrable functions on (0, T ), with A,B ≥ e, such that A is
absolutely continuous on (0, T ) and continuous on [0, T ). Suppose that

A′(t) +B(t) ≤ KA(t) logB(t) log logB(t), (2.2)

for t ∈ (0, T ), where K ≥ 1 is a constant. Then

2A(t) +

∫ t

0

B(t) ≤ 512K2Q2(t) + 2A(0),

for any t ∈ [0, T ), where

Q(t) = exp
{

exp
{

(log logA(0) + 260K2t)eKt
}}

.

Proof. Dividing both sides of inequality (2.2) by A, and defining

A1 = logA, B1 =
B

A
,

one has

A′
1 +B1 ≤ K(A1 + logB1) log(A1 + logB1). (2.3)



TWO-DIMENSIONAL BOUSSINESQ EQUATIONS WITH VERTICAL DISSIPATION 7

One can easily verify that

log z ≤ z, log z ≤ 4z1/4, for z ∈ (0,∞). (2.4)

Thus, we can deduce from (2.3), (2.4) and the Young inequality that

A′
1 + B1 ≤K(A1 + logB1) log(A1 +B1)

=KA1 log(A1 +B1) +K logB1 log(A1 +B1)

≤KA1 log(A1 +B1) + 16KB
1/4
1 (A1 +B1)

1/4

≤KA1 log(A1 +B1) + 16K(A1 +B1)
1/2

≤1

2
(A1 +B1) +

1

2
(16K)2 +KA1 log(A1 +B1),

from which, one gets

A′
1 +

1

2
(A1 +B1) ≤ A1 + (16K)2 +KA1 log(A1 +B1).

Dividing both sides of the above inequality by A1, noticing that A1 ≥ 1, and denoting

A2 = logA1, B2 =
A1 +B1

2A1
,

one obtains
A′

2 +B2 ≤ 1 +K + (16K)2 +K(A2 + logB2). (2.5)

One can easily verify that

log z ≤ 2z1/2, for z ∈ (0,∞).

Thus, recalling that K ≥ 1, it follows from (2.5) and the Young inequality that

A′
2 +B2 ≤1 +K + (16K)2 +KA2 + 2KB

1/2
2

≤1

2
B2 + 1 +K + 2K2 + (16K)2 +KA2 ≤

1

2
B2 + 260K2 +KA2,

which implies

A′
2 +

1

2
B2 ≤ 260K2 +KA2.

Applying the Gronwall inequality to the above inequality yields

A2(t) ≤ eKt(A2(0) + 260K2t) = eKt(log logA(0) + 260K2t),

for any t ∈ [0, T ), and therefore, recalling the definition of A2, we have

A(t) = ee
A2(t) ≤ exp

{

exp
{

(log logA(0) + 260K2t)eKt
}}

=: Q(t).

On account of the above estimate, and recalling (2.4), it follows from (2.2) and the
Young inequality that

A′ +B ≤KA logB log logB ≤ KA(logB)2

≤KA(4B1/4)2 = 16KAB1/2 ≤ 16KQ(t)B1/2
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≤1

2
B + (16K)2Q2(t) =

1

2
B + 256K2Q2(t).

Integrating the above inequality over (0, t) yields the conclusion. �

3. Global well-posedness : H1 initial data

In this section, we prove the global well-posedness of solutions to system (1.2) with
H1 initial data. This result will be used to prove the global well-posedness with lower
regular initial data in the next section.

We first recall the following global well-posedness result with H2 initial data.

Proposition 3.1 (See Theorem 1.1 in [7]). For any initial data (u0, θ0) ∈ H2(R2),
there is a unique global solution (u, θ) to system (1.2), with initial data (u0, θ0),
satisfying

(u, θ) ∈ C([0,∞);H2(R2)).

The solution (u, θ) to system (1.2), with initial data (u0, θ0) ∈ H2(R2), satisfies
some basic energy estimates stated in the following proposition.

Proposition 3.2 (See Lemma 3.3 in [7]). Let (u, θ) be a classical solution to system
(1.2), with initial data (u0, θ0) ∈ H2(R2), then one has

sup
0≤s≤t

‖u(s)‖22 + 2

∫ t

0

‖∂yu‖22ds ≤ (‖u0‖2 + t‖θ0‖2)2,

sup
0≤s≤t

‖θ(s)‖qq + q(q − 1)

∫ t

0

‖|θ| q2−1∂yθ‖22ds ≤ ‖θ0‖qq, for every q ∈ (1,∞).

It turns out that the Lr norms of the second component of the velocity grow no
faster than

√
r log r, more precisely, the following proposition holds.

Proposition 3.3 (See Proposition 4.1 in [7]). Let (u, θ) be a classical solution to
system (1.2), with initial data (u0, θ0) ∈ H2(R2), then one has

sup
r≥2

‖u2(t)‖22r
r log r

≤ sup
r≥2

‖u2
0‖22r

r log r
+m(t), (3.1)

where m(t) is an explicit nondecreasing continuous function of t ∈ [0,∞) that depends
continuously on the initial norm ‖(u0, θ0)‖H1.

Remark 3.1. In the original Proposition 4.1 in [7], the function m(t) is stated to be
locally integrable on [0,∞) and depends on ‖(u0, θ0)‖H2; however, one can check the
proof there to find that it is actually continuous in time and depends continuously on
the initial norm ‖(u0, θ0)‖H1.

As a corollary of Proposition 3.3, and using the following inequality (see, e.g.,
inequality (3) on page 206 of Lieb–Loss [18], which is a sharper version of the following
inequality)

‖f‖2Lq(R2) ≤ Cq‖f‖2H1(R2), (3.2)
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we then have the following estimate

sup
r≥2

‖u2(t)‖22r
r log r

≤ C‖u0‖2H1 +m(t), (3.3)

where m(t) is the same function as in (3.1).
Based on the estimate on the growth of the Lr norms of u2, and using the loga-

rithmic type Sobolev embedding inequality (Lemma 2.2) and the logarithmic type
Gronwall inequality (Lemma 2.3), we can successfully establish the a priori H1 esti-
mates stated in the following proposition, which is the key estimate of this paper.

Proposition 3.4 (H1 estimate). Let (u, θ) be a solution to system (1.2), with initial
data (u0, θ0) ∈ H2(R2). Then, we have

sup
0≤s≤t

(‖u(s)‖2H1 + ‖θ(s)‖2H1) +

∫ t

0

(‖∂yu‖2H1 + ‖∂yθ‖2H1)ds ≤ S1(t),

where S1 is an explicit nondecreasing continuous function of t ∈ [0,∞), depending
continuously on the initial norm ‖(u0, θ0)‖H1.

Proof. Take arbitrary T ∈ (0,∞), and define the functions

A(t) = ‖u(t)‖2H1 + ‖θ(t)‖2H1 + e3, B(t) = ‖∂yu(t)‖2H1 + ‖∂yθ(t)‖2H1 + e3,

for any t ∈ [0, T ].
Recall that, for any divergence free vector function u ∈ H2(R2), one has

∫

R2

(u · ∇u) ·∆udxdy = 0.

Multiplying equations (1.2)1 and (1.2)3 by u−∆u and θ−∆θ, respectively, summing
the resultants up, and integrating over R2, then it follows from integration by parts,
Lemma 2.1 and the Young inequality that

1

2

d

dt
(‖u‖2H1 + ‖θ‖2H1) + (‖∂yu‖2H1 + ‖∂yθ‖2H1)

=

∫

R2

[θ(u2 −∆u2)− (∂xu · ∇θ∂xθ + ∂yu · ∇θ∂yθ)]dxdy

=

∫

R2

(θu2 + ∂xθ∂xu
2 − θ∂2

yu
2 + ∂yu

2∂xθ∂xθ

− ∂xu
2∂yθ∂xθ − ∂yu

1∂xθ∂yθ − ∂yu
2∂yθ∂yθ)dxdy

=

∫

R2

[θu2 + ∂xθ∂xu
2 − θ∂2

yu
2 − 2u2∂xθ∂

2
xyθ + θ(∂2

xyu
2∂xθ

+ ∂xu
2∂2

xyθ + ∂2
yu

1∂xθ + ∂yu
1∂2

xyθ) + 2u2∂yθ∂
2
yθ]dxdy

≤‖θ‖2‖u‖2 + ‖∇θ‖2‖∇u‖2 + ‖θ‖2‖∇∂yu‖2 + 2[‖u2‖∞‖∇θ‖2‖∇∂yθ‖2
+ ‖θ‖∞(‖∇θ‖2‖∇∂yu‖2 + ‖∇u‖2‖∇∂yθ‖2)]
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≤1

2
‖(∇∂yu,∇∂yθ)‖22 + 4(‖u2‖2∞ + ‖θ‖2∞ + 1)‖(u, θ)‖2H1.

Thus, we have
A′(t) +B(t) ≤ 8(1 + ‖θ‖2∞ + ‖u2‖2∞)A(t),

for any t ∈ (0, T ].
By Lemma 2.2 and Proposition 3.2, and recalling (3.2) and (3.3), we have

‖θ‖2∞ ≤Cmax

{

1, sup
r≥2

‖θ‖2r
r log r

}

logN (θ) log logN (θ)

≤Cmax

{

1, sup
r≥2

‖θ0‖2r
r log r

}

logN (θ) log logN (θ)

≤C(1 + ‖θ0‖2H1) logN (θ) log logN (θ),

and

‖u2‖2∞ ≤Cmax

{

1, sup
r≥2

‖u2‖2r
r log r

}

logN (u2) log logN (u2)

≤C(1 + ‖u0‖2H1 +m(t)) logN (u2) log logN (u2),

where

N (θ) = ‖θ‖2 + ‖∂xθ‖2 + ‖θ‖4 + ‖∂yθ‖4 + e3,

N (u2) = ‖u2‖2 + ‖∂xu2‖2 + ‖u2‖4 + ‖∂yu2‖4 + e3.

By the Ladyzhenskaya interpolation inequality for L4(R2) (cf. [9, 22]), one has

N (θ) +N (u2) ≤ C(‖(u, θ)‖H1 + ‖(∂yu, ∂yθ)‖H1 + e3) ≤ C(A+B).

Therefore, recalling that m(t) is a nondecreasing function, we have

A′(t) + A(t) +B(t) ≤ C(1 + ‖(u0, θ0)‖2H1 +m(T ))A log(A+B) log log(A+B),

for any t ∈ (0, T ]. Applying Lemma 2.3 to the above inequality, one has

2 sup
0≤t≤T

A(t) +

∫ T

0

B(t)dt ≤ S1(T ),

for an explicit continuous increasing function S1, which depends continuously on the
initial norm ‖(u0, θ0)‖H1. This completes the proof. �

We also have the a priori estimates on the time derivatives of the solutions, that
is we have the following:

Proposition 3.5. Let (u, θ) be a solution to system (1.2), with initial data (u0, θ0) ∈
H2(R2). Then, we have

∫ t

0

(‖∂tu‖22 + ‖∂tθ‖22)ds ≤ S2(t),
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where S2 is an explicit nondecreasing continuous function of t ∈ [0,∞), depending
continuously on the initial norm ‖(u0, θ0)‖H1.

Proof. Multiplying equations (1.2)1 and (1.2)3 by ∂tu and ∂tθ, respectively, summing
the resultants up, and integrating over R2, then it follows from Lemma 2.1 that

1

2

d

dt
(‖∂yu‖22 + ‖∂yθ‖22) + (‖∂tu‖22 + ‖∂tθ‖22)

=

∫

R2

(θ∂tu
2 − (u · ∇)u · ∂tu− u · ∇θ∂tθ)dxdy

≤‖θ‖2‖∂tu‖2 + C‖u‖
1
2
2 ‖∂xu‖

1
2
2 ‖∇u‖

1
2
2 ‖∇∂yu‖

1
2
2 ‖∂tu‖2

+ C‖u‖
1
2
2 ‖∂xu‖

1
2
2 ‖∇θ‖

1
2
2 ‖∇∂yθ‖

1
2
2 ‖∂tθ‖2

≤1

2
(‖∂tu‖22 + ‖∂tθ‖22) + C(‖θ‖22 + ‖u‖22‖∂xu‖22
+ ‖∇u‖22‖∇∂yu‖22 + ‖∇θ‖22‖∇∂yθ‖22),

which, integrating with respect to t and using Proposition 3.4, yields the conclusion.
�

With the a priori estimates (Propositions 3.4 and 3.5) in hand, we can now prove
the global well-posedness to the Boussinesq system (1.2), with initial data (u0, θ0) ∈
H1(R2). Specifically, we have the following:

Theorem 3.1. For any initial data (u0, θ0) ∈ H1(R2), there is a unique global solu-
tion (u, θ) to system (1.2), subject to (1.3), satisfying

(u, θ) ∈ L∞(0, T ;H1(R2)) ∩ C([0, T ];L2(R2)),

(∂tu, ∂tθ) ∈ L2(0, T ;L2(R2)), (∂yu, ∂yθ) ∈ L2(0, T ;H1(R2)),

for any T ∈ (0,∞).

Proof. The uniqueness is a direct consequence of the next proposition, Proposition 3.6
(note that the solutions established in this theorem have stronger regularities than
those required in Proposition 3.6), below, so we only need to prove the existence.
Take a sequence {(u0n, θ0n)} ∈ H2(R2), such that

(u0n, θ0n) → (u0, θ0), in H1(R2).

By Proposition 3.1, for each n, there is a unique global classical solution (un, θn) to
system (1.2), with initial data (u0n, θ0n). Moreover, by Proposition 3.4 and Proposi-
tion 3.5, we have the following estimate

sup
0≤s≤t

‖(un(s), θn(s))‖2H1 +

∫ t

0

(‖(∂tun, ∂tθn)‖22 + ‖(∂yu, ∂yθ)‖2H1)ds ≤ S1(t) + S2(t),

for large n. Observe that S1 and S2 above, and by Proposition 3.4 and Proposition 3.5,
respectively, depend continuously on ‖(u0n, θ0n)‖H1 . Therefore, we can take them to
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be slightly larger in the above estimate so that they depend continuously, and solely,
on ‖(u0, θ0)‖H1. Thanks to the above estimate, there is a subsequence, still denoted
by {(un, θn)}, and {(u, θ)}, such that

(un, θn)
∗
⇀ (u, θ) in L∞(0, T ;H1(R2)),

(∂yun, ∂yθn) ⇀ (∂yu, ∂yθ), in L2(0, T ;H1(R2)),

(∂tun, ∂tθn) ⇀ (∂tu, ∂θ), in L2(0, T ;L2(R2)),

for any T ∈ (0,∞), fixed, where
∗
⇀ and ⇀ denote the weak-* and weak convergences,

respectively. Moreover, by the Aubin-Lions lemma, for every given positive integer
R, there is a subsequence, depending on R, still denoted by {(un, θn)}, such that

(un, θn) → (u, θ), in L2(0, T ;L2(BR)),

(∂yun, ∂yθn) → (∂yu, ∂yθ), in L2(0, T ;L2(BR)).

On account of these convergences, one can use a diagonal argument in n and R to
show that there is a subsequence, still denoted by {(un, θn)}, such that (un, θn) →
(u, θ) in L2(0, T ;L2(Bρ)) and (∂yun, ∂yθn) → (∂yu, ∂yθ) in L2(0, T ;L2(Bρ)), for every
ρ ∈ (0,∞), in particular that (u, θ) is a global solution to system (1.2), with initial
data (u0, θ0). The regularities stated in the theorem follow from the weakly lower
semi-continuity of the norms. �

In the next proposition, we relax the assumptions on the regularities of the solu-
tions, in particular on their time derivative, in order to apply the same proposition
for proving the uniqueness of the solutions established in Theorem 3.1 as well as those
in Proposition 4.2, below.

Proposition 3.6. Given T ∈ (0,∞). Let (ui, θi), i = 1, 2, be two solutions to system
(1.2) on R

2 × (0, T ), with initial data (ui0, θi0) ∈ L2(R2), such that

(ui, θi) ∈ L∞(0, T ;L2(R2)) ∩ L2(0, T ;H1(R2)), (∂tui, ∂tθi) ∈ L2(0, T ;H−1(R2)).

Then, we have the estimate

sup
0≤s≤t

‖(u1 − u2, θ1 − θ2)(s)‖22 +
∫ t

0

‖(∂y(u1 − u2), ∂y(θ1 − θ2))‖22ds

≤eC[t+sup0≤s≤t(‖u2‖22+‖θ2‖22)
∫ t

0
(‖∂xu2‖22+‖∂xθ2‖22)ds]‖(u10 − u20, θ10 − θ20)‖22,

for any t ∈ (0, T ).

Proof. Note that (u, θ) satisfies






∂tu+ (u1 · ∇)u+ (u · ∇)u2 +∇p− ∂2
yu = θe2,

divu = 0,
∂tθ + u1 · ∇θ + u · ∇θ2 − ∂2

yθ = 0.
(3.4)

By the assumption, we have

(u, θ) ∈ L2(0, T ;H1(R2)), (∂tu, ∂tθ) ∈ L2(0, T ;H−1(R2)),
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and consequently, by the Lions–Magenes Lemma (cf. [22], it follows

〈∂tu, u〉 =
1

2

d

dt
‖u‖22, 〈∂tθ, θ〉 =

1

2

d

dt
‖θ‖22,

where 〈·, ·〉 denotes the dual action between H−1(R2) and H1(R2). Thanks to these
two identities, testing (3.4)1 and (3.4)3 by u and θ, respectively, and summing the
resultants up, then it follows from integration by parts that

1

2

d

dt
(‖u‖22 + ‖θ‖22) + (‖∂yu‖22 + ‖∂yθ‖22)

=

∫

R2

[−(u · ∇)u2 · u+ θu2 − u · ∇θ2θ]dxdy

=−
∫

R2

(u2∂yu2 · u+ u1∂xu2 · u− θu2 + u1∂xθ2θ + u2∂yθ2θ)dxdy

=

∫

R2

(∂yu
2u2 · u+ u2u2 · ∂yu− u1∂xu2 · u+ θu2

− u1∂xθ2θ + ∂yu
2θθ2 + u2∂yθθ2)dxdy

≤C

∫

R2

(|u2||u||∂yu|+ |u1||u||∂xu2|+ |θ||u|+ |u1||θ||∂xθ2|

+ |∂yu||θ||θ2|+ |u||∂yθ||θ2|)dxdy := I. (3.5)

By Lemma 2.1 and Young inequality, we can estimate the quantity I as follows

I ≤C(‖u2‖
1
2
2 ‖∂xu2‖

1
2
2 ‖u‖

1
2
2 ‖∂yu‖

3
2
2 + ‖u1‖

1
2
2 ‖∂xu1‖

1
2
2 ‖u‖

1
2
2 ‖∂yu‖

1
2
2 ‖∂xu2‖2

+ ‖u1‖
1
2
2 ‖∂xu1‖

1
2
2 ‖θ‖

1
2
2 ‖∂yθ‖

1
2
2 ‖∂xθ2‖2 + ‖∂yu‖2‖θ‖

1
2
2 ‖∂yθ‖

1
2
2 ‖θ2‖

1
2
2 ‖∂xθ2‖

1
2
2

+ ‖u‖
1
2
2 ‖∂yu‖

1
2
2 ‖∂yθ‖2‖θ2‖

1
2
2 ‖∂xθ2‖

1
2
2 + ‖θ‖2‖u‖2)

≤C(‖u2‖
1
2
2 ‖∂xu2‖

1
2
2 ‖u‖

1
2
2 ‖∂yu‖

3
2
2 + ‖u‖2‖∂yu‖2‖∂xu2‖2

+ ‖u‖
1
2
2 ‖∂yu‖

1
2
2 ‖θ‖

1
2
2 ‖∂yθ‖

1
2
2 ‖∂xθ2‖2 + ‖∂yu‖2‖θ‖

1
2
2 ‖∂yθ‖

1
2
2 ‖θ2‖

1
2
2 ‖∂xθ2‖

1
2
2

+ ‖u‖
1
2
2 ‖∂yu‖

1
2
2 ‖∂yθ‖2‖θ2‖

1
2
2 ‖∂xθ2‖

1
2
2 + ‖θ‖2‖u‖2)

≤1

2
‖(∂yu, ∂yθ)‖22 + C(1 + ‖(u2, θ2)‖22‖(∂xu2, ∂xθ2)‖22)‖(u, θ)‖22.

Substituting the above estimate into (3.5), then by the Gronwall inequality, the
conclusion follows. �

4. Global well-posedness: lower regular initial data

In this section, we prove the global well-posedness of system (1.2), with initial
data (u1

0, u
2
0, θ0) in space X = {f ∈ L2(R2) | ∂xf ∈ L2(R2)}. Since we have already

established in Theorem 3.1 the global well-posedness result for H1 initial data, and
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system (1.2) has smoothing effect in the y direction, we actually need to show the
local well-posedness for initial data in X .

We start with the local in time a priori estimates in terms of the X-norm of the
initial data.

Proposition 4.1. Let (u, θ) be a solution to system (1.2), with initial data (u0, θ0) ∈
H2(R2). Denote by

f0 = 1 + ‖(u0, θ0, ∂xu0, ∂xθ0)‖22.
Then, there exists a positive absolute constant C, such that

sup
0≤s≤t

‖(u, θ, ∂xu, ∂xθ)(s)‖22 +
∫ t

0

‖(∂yu, ∂yθ, ∂2
xyu, ∂

2
xyθ)‖22ds ≤

√
2f0,

for any t ∈ (0, 1
4Cf2

0
).

Proof. Multiplying equations (1.2)1 and (1.2)3 by u − ∂2
xu and θ − ∂2

xθ, respectively,
summing the resultants up, and integrating over R2, then it follows from integration
by parts, Lemma 2.1 and the Young inequality that

1

2

d

dt
‖(u, θ, ∂xu, ∂xθ)‖22 + ‖(∂yu, ∂yθ, ∂2

xyu, ∂
2
xyθ)‖22

=

∫

R2

[u2θ − (∂xu · ∇)u · ∂xu+ ∂xθ∂xu
2 − ∂xu · ∇θ∂xθ]dxdy

=

∫

R2

(u2θ + ∂yu
2∂xu · ∂xu− ∂xu

2∂yu · ∂xu+ ∂xθ∂xu
2

+ ∂yu
2∂xθ∂xθ − ∂xu

2∂yθ∂xθ)dxdy

=

∫

R2

(u2θ − 2u2∂xu · ∂2
xyu+ ∂2

xyu
2u · ∂xu+ ∂xu

2u · ∂2
xyu+ ∂xθ∂xu

2

− 2u2∂xθ∂
2
xyθ + ∂2

xyu
2θ∂xθ + ∂xu

2θ∂2
xyθ)dxdy

≤C

∫

R2

[|u||θ|+ (|u|+ |θ|)(|∂xu|+ |∂xθ|)(|∂2
xyu|+ |∂2

xyθ|) + |∂xθ||∂xu|]dxdy

≤C(‖u‖2‖θ‖2 + ‖(u, θ)‖
1
2
2 ‖(∂xu, ∂xθ)‖2‖(∂2

xyu, ∂
2
xyθ)‖

3
2
2 + ‖∂xu‖2‖∂xθ‖2)

≤1

2
‖(∂2

xyu, ∂
2
xyθ)‖22 + C(1 + ‖(u, θ)‖22 + ‖(∂xu, ∂xθ)‖22)3,

and thus

d

dt
‖(u, θ, ∂xu, ∂xθ)‖22 + ‖(∂yu, ∂yθ, ∂2

xyu, ∂
2
xyθ)‖22 ≤ C(1 + ‖(u, θ, ∂xu, ∂xθ)‖22)3,

for an absolute constant C. Define

f(t) = 1 + ‖(u, θ, ∂xu, ∂xθ)‖22(t) +
∫ t

0

‖(∂yu, ∂yθ, ∂2
xyu, ∂

2
xyθ)‖22ds,
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then

f ′(t) ≤ Cf 3(t).

Solving the above ordinary differential inequality, one has

f(t) ≤ f0
√

1− 2Cf 2
0 t

≤
√
2f0, for t ∈

(

0,
1

4Cf 2
0

)

,

which implies the conclusion. �

Based on the above proposition, we can prove the following local well-posedness
result.

Proposition 4.2. Assume that (u0, θ0) ∈ L2(R2), and (∂xu0, ∂xθ0) ∈ L2(R2). Then
there is a positive time T0 depending only on ‖(u0, θ0, ∂xu0, ∂xθ0)‖22, such that, system
(1.2) has a unique solution (u, θ) on R

2× (0, T0), with initial data (u0, θ0), satisfying

(u, θ) ∈ C([0, T0];L
2(R2)) ∩ L2(0, T0;H

1(R2)),

(∂xu, ∂xθ) ∈ L∞(0, T0;L
2(R2)), (∂2

xyu, ∂
2
xyθ) ∈ L2(0, T0;L

2(R2)),

(∂tu, ∂tθ) ∈ L2(0, T0;H
−1(R2)).

Proof. Uniqueness is a direct consequence of Proposition 3.6, thus we only need to
prove the existence. Take a sequence {(u0n, θ0n)} ∈ H2(R2), such that

(u0n, θ0n, ∂xu0n, ∂xθ0n) → (u0, θ0, ∂xu0, ∂xθ0), in L2(R2).

By Lemma 3.1, for each n, there is a unique global classical solution (un, θn) to system
(1.2), with initial data (u0n, θ0n). By Proposition 4.1, there are two positive constants
T0 and C0 depending only on ‖(u0, θ0, ∂xu0, ∂xθ0)‖22, such that

sup
0≤t≤T0

‖(un, θn, ∂xun, ∂xθn)(t)‖22 +
∫ T0

0

‖(∂yun, ∂yθn, ∂
2
xyun, ∂

2
xyθn)‖22dt ≤ C0.

Thanks to this estimate, by the Ladyzhenskaya interpolation inequality for L4(R2)
(cf. [9, 22]), we have

‖(un, θn)‖4L4(R2×(0,T0))
≤ CC0.

Consequently, noticing that L2(R2) →֒ H−1(R2), it follows from (1.2) that

‖(∂tun, ∂tθn)‖2L2(0,T0;H−1(R2)) ≤C(‖θn‖2L2(R2×(0,T0))
+ ‖(un, θn)‖4L4(R2×(0,T0))

)

≤C(C0 + C2
0).

On account of these estimates, there is a subsequence, still denoted by {(un, θn)},
and {(u, θ)}, such that

(un, θn, ∂xun, ∂xθn)
∗
⇀ (u, θ, ∂xu, ∂xθ), in L∞(0, T0;L

2(R2)),

(∂yun, ∂yθn, ∂
2
xyun, ∂

2
xyθn) ⇀ (∂yu, ∂yθ, ∂

2
xyu, ∂

2
xyθ), in L2(0, T0;L

2(R2)),

(∂tun, ∂tθn) ⇀ (∂tu, ∂tθ), in L2(0, T0;H
−1(R2)).
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Moreover, let R be a given positive integer, by the Aubin–Lions lemma, there is a
subsequence, depending on R, still denoted by {(un, θn)}, such that

(un, θn) → (u, θ), in L2(0, T0;L
2(BR)).

Thanks to these convergences, we can apply the diagonal argument in n andR to show
that there is a subsequence of {(un, θn)} that converges to (u, θ) in L2(0, T0;L

2(Bρ)),
for every ρ ∈ (0,∞). Furthermore, (u, θ) is a solution to system (1.2) on R

2× (0, T0),
with initial data (u0, θ0). The regularities of (u, θ) follow from the weakly lower
semi-continuity of the norms. �

Now, we are ready to prove the global well-posedness result with initial data in the
space X , that is Theorem 1.1.

Proof of Theorem 1.1. By Proposition 4.2, there is a unique local solution (u, θ)
to system (1.2) on R

2 × (0, T0), with initial data (u0, θ0), such that

(u, θ) ∈ C([0, T0];L
2(R2)) ∩ L2(0, T0;H

1(R2)),

(∂xu, ∂xθ) ∈ L∞(0, T0;L
2(R2)), (∂2

xyu, ∂
2
xyθ) ∈ L2(0, T0;L

2(R2)),

(∂tu, ∂tθ) ∈ L2(0, T0;H
−1(R2)).

For any t ∈ (0, T0), recalling that (u, θ) ∈ C([0, t];L2(R2))∩L2(0, t;H1(R2)), there is
a time t1 ∈ ( t

2
, t), such that (u(t1), θ(t1)) ∈ H1(R2). Now, choosing t1 as the initial

time, by Theorem 3.1, one can extend solution (u, θ) uniquely to arbitrary finite time
T , such that

(u, θ) ∈ L∞(t1, T ;H
1(R2)) ∩ C([t1, T ];L

2(R2)),

(∂tu, ∂tθ) ∈ L2(t1, T ;L
2(R2)), (∂yu, ∂yθ) ∈ L2(t1, T ;H

1(R2)).

Therefore, we have established a global solution (u, θ) to system (1.2), subject to
(1.3), satisfying the regularities in the theorem. This completes the proof. �
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