
Received: 19 January 2024 | Revised: 10 May 2024 | Accepted: 10 May 2024

DOI: 10.1002/jwmg.22622

R EV I EW

Designing count‐based studies in a world
of hierarchical models

Quresh S. Latif1 | Jonathon J. Valente2 | Alison Johnston3 |

Kayla L. Davis4 | Frank A. Fogarty5 | Adam W. Green6 |

Gavin M. Jones7 | Matthias Leu8 | Nicole L. Michel9 |

David C. Pavlacky Jr.10 | Elizabeth A. Rigby11 | Clark S. Rushing12 |

Jamie S. Sanderlin13 | Morgan W. Tingley14 | Qing Zhao1

1Bird Conservancy of the Rockies, 230 Cherry Street, Suite 150, Fort Collins, CO 80521, USA

2U.S. Geological Survey, Alabama Cooperative Fish and Wildlife Research Unit, College of Forestry, Wildlife and Environment,

Auburn University, Auburn, AL 36849, USA

3Centre for Research into Ecological and Environmental Modelling, University of St Andrews, United Kingdom

4Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, MI

48906, USA

5Department of Wildlife, California State Polytechnic University, Humboldt, CA 95521, USA

6National Operations Center, Bureau of Land Management, Lakewood, CO 80226, USA

7USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM 87102, USA

8Biology Department, William & Mary, 540 Landrum Drive, Williamsburg, VA 23187, USA

9National Audubon Society, 225 Varick Street, New York, NY 10014, USA

10Bird Conservancy of the Rockies, 14500 Lark Bunting Lane, Brighton, CO 80603, USA

11U.S. Fish and Wildlife Service, Midwest Region, 5600 American Boulevard. West, Suite 990, Bloomington, MN 55437, USA

12Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA

13USDA Forest Service, Rocky Mountain Research Station, 2500 S. Pine Knoll Drive, Flagstaff, AZ 86001, USA

14Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA

Correspondence

Quresh S. Latif, Bird Conservancy of the

Rockies, 230 Cherry Street, Suite 150, Fort

Collins, CO 80521, USA.

Email: quresh.latif@birdconservancy.org

Abstract

Advances in hierarchical modeling have improved estimation of

ecological parameters from count data, especially those

quantifying population abundance, distribution, and dynamics

by explicitly accounting for observation processes, particularly

incomplete detection. Even hierarchical models that account

for incomplete detection, however, cannot compensate for
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data limitations stemming from poorly planned sampling.

Ecologists therefore need guidance for planning count‐based

studies that follow established sampling theory, collect

appropriate data, and apply current modeling approaches to

answer their research questions. We synthesize available

literature relevant to guiding count‐based studies. Considering

the central historical and ongoing contributions of avian studies

to ecological knowledge, we focus on birds as a case study for

this review, but the basic principles apply to all populations

whose members are sufficiently observable to be counted. The

sequence of our review represents the thought process in

which we encourage ecologists to engage 1) the research

question(s) and population parameters to measure, 2) sampling

design, 3) analytical framework, 4) temporal design, and 5)

survey protocol. We also provide 2 hypothetical demonstra-

tions of these study plan components representing different

research questions and study systems. Mirroring the structure

of hierarchical models, we suggest researchers primarily focus

on the ecological processes of interest when designing their

approach to sampling, and wait to consider logistical constraints

of data collection and observation processes when developing

the survey protocol. We offer a broad framework for

researchers planning count‐based studies, while pointing to

relevant literature elaborating on particular tools and concepts.

K E YWORD S

birds, data analysis, population counts, research questions, sampling
design, study planning, survey protocol

In the past 2 decades, hierarchical models (key terms defined inTable 1 and indicated with references to Table 1 upon

first use) have improved our capacity for advancing ecological knowledge (Nichols et al. 2000, 2009; Royle and

Dorazio 2008; Kéry and Royle 2016, 2020). In particular, models for analyzing data generated from counting readily

observable animals (e.g., birds) have advanced our capacity to investigate wildlife populations across broad spatial and

temporal scales (Chandler and King 2011; Pavlacky et al. 2012, 2017). By explicitly modeling the observation process

(Table 1) as a distinct sub‐model (Table 1) separate from an underlying ecological process (Table 1) model, state‐space

(Table 1) hierarchical models, particularly those that account for incomplete detection, can more accurately estimate

population parameters (Nichols et al. 2009, Bailey et al. 2014). Moreover, researchers can use hierarchical models (i.e., both

state‐space and multi‐level models [Table 1]) to explicitly distinguish and quantify various data‐generating processes

(Table 1) for more nuanced ecological inference, including distinguishing coarse‐scale from fine‐scale distributional patterns

(Pavlacky et al. 2012, Latif et al. 2020), spatial variability from temporal population change (MacKenzie et al. 2003, Dail and

Madsen 2011, Hostetler and Chandler 2015), spatial components of animal observability from temporal components

(Nichols et al. 2009, Chandler et al. 2011, Amundson et al. 2014), and various ecological relationships among species

forming a community (Kéry et al. 2009, Iknayan et al. 2014, Riecke et al. 2021, Zipkin et al. 2023).
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TABLE 1 Glossary of terms used to describe a framework for planning studies based on counting unmarked
populations of animals.

Term Definition

Abundance The total number of individual members of a species occurring within a particular

geographic or spatial region (e.g., a country, state, province, or management unit),
including density (see definition below)

Analytical framework The paradigm for data analysis, which for count‐based studies consists of expected
data‐generating processes and an analytical model capable of representing those

processes sufficiently to answer a research question

Analytical model A mathematical construct representing processes thought to give rise to observed (e.g.,
count) data and thus used for data analysis, the basic building blocks of which are
probability functions and covariates. Basic analytical models describe variation in
observed data using a probability function (typically binomial or Poisson for counts)

modulated by at least one covariate.

Assumption A condition of the data‐generating or sampling process that must be met for reliable
inference from an analytical model

Auxiliary data Data collected alongside counts to help distinguish underlying processes. Usually,
auxiliary data allow models to distinguish observation from ecological processes.

Common examples include distances to or time of detections.

Closure assumption The assumption required for observation sub‐models that depend on replicate counts,
which is that the ecological state (i.e., species presence or number of individuals
present) is the same (i.e., closed to change) across replicates for a given survey unit

within a given survey period

Covariate Variables measuring attributes of the study system, sampling design, or counting
process with which dependent variables are related (usually linearly) in analytical
models. For this review, dependent variables are usually ecological or observation
parameters (e.g., abundance, occupancy, or detectability), or raw counts.

Data‐generating process Any process that gives rise or contributes to data, including both ecological and
observation processes

Density The number of individual members of a species per unit area (e.g., km2) occurring within
a specified temporal period (i.e., abundance scaled by area)

Ecological process All patterns and underlying mechanisms of interest relevant to a particular research

question in ecology

Fundamental parameters The basic population parameters that count‐based studies aim to measure are
abundance or occupancy. All other ecological parameters of possible interest (e.g.,
environmental relationships, trend, or dynamics) describe variation in these.

Hierarchical model An analytical model containing >1 linked sub‐models. Considering their purpose in
ecology, hierarchical models typically contain ≥1 ecological sub‐model and ≥1
observational sub‐model (i.e., state‐space models), allowing researchers to explicitly
distinguish ecological from observation processes. Additionally, multi‐level models can
employ probability functions to link multiple sub‐models representing multiple groups

(i.e., random effects).

Multi‐level models Hierarchical models that employ a probability function to describe variability among
groups while also linking those groups to allow partial information sharing across
groups (i.e., random effects). Fundamentally, random effects in multi‐level models link
>1 parameter, each of which quantifies a group. Where linked parameters are subject to

covariates, however, random effects effectively link sub‐models.

(Continues)
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TABLE 1 (Continued)

Term Definition

Observation process The process(es) by which we detect, identify, record, and enumerate population
members when implementing count‐based surveys (contra ecological process). For
planned studies, we do not include the sampling process.

Occupancy The probability of at least one member of a species occurring within a specified spatial
unit and temporal period

Probabilistic sampling Selection of sampling units from the sampling frame at random with known
probabilities for inclusion in a sample

Probability function A mathematical function describing the distribution of a random variable. The 2 types
of probability functions are probability density functions, which describe variation in

continuous variables (e.g., normal distributions), or probability mass functions, which
describe variation in discrete variables (e.g., binomial or Poisson distributions).

Sample size With probabilistic sampling, the number of sampling units selected from the sampling
frame

Sampling design The process by which we select a set of locations to count population members in a

manner that we expect to represent a study population. Formally, sampling design
consists of 3 components: 1) the sampling unit, 2) the sampling frame, and 3) selection
of sampling units from the sampling frame.

Sampling frame The area containing all possible sampling units that could represent the study
population and that the researcher could survey. As such, the sampling frame defines

the spatial extent of the population represented by sampled units and the data. For our
purposes, we consider a sampling frame inclusive of both defined and undefined frames
(Thompson et al. 1998). A sampling frame is defined if all possible sampling units are
clearly delineated and sampling units do not overlap. A defined sampling frame is

generally preferable where possible because it allows both design‐based and model‐
based inference (Williams and Brown 2019), whereas undefined sampling frames (i.e.,
where sampling units can overlap and point coordinates for unit centers are selected
from continuous space) require model‐based inference to draw inference to un‐
sampled portions of the study population.

Sampling frequency The number of sampling periods that occur at a given sampling unit, and thus how often
the portion of the study population at that unit is represented in the data, over the
course of the study period

Sampling period A discrete unit of time in which birds will be counted at a designated sampling unit, and
thus the time period over which any given count represents the portion of the study

population at that unit. The sampling period determines interpretation and thus
inference from population estimates (i.e., occupancy or abundance).

Sampling unit A unique unit of space potentially selected from the sampling frame so that counts at
units selected for sampling can represent the study population. Abundance and

occupancy are estimated at the level of the sampling unit, so the dimensions of a
sampling unit determine interpretation of and inference from these fundamental
parameters.

Spatially balanced sampling Probabilistic sampling wherein the sample selection probability is adaptively adjusted
upon selection of each sampling unit to ensure the selected sample represents

conditions within the sampling frame in proportion to their prevalence on the
landscape. Generalized random tessellation stratified (GRTS) sampling is a common
algorithm used to achieve spatially balanced sampling (Stevens and Olsen 2004).

State‐space model A hierarchical model that links sub‐models whereby one sub‐model is conditioned on
another. Such structuring is most typically used to distinguish ecological from
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With the increased information they provide, hierarchical models place greater demands on data that are often not

fully appreciated by ecologists. Explicitly modeling observation and ecological processes usually requires additional

sampling or auxiliary data (Table 1) to distinguish between them.Moreover, without careful planning of where and when to

implement surveys, researchers cannot assume that counts represent the populations they seek to measure (Sanderlin

et al. 2019, Boyd et al. 2023). The emergence of complex models for mining large opportunistic datasets (Sauer and

Link 2011, Kelling et al. 2019, Johnston et al. 2020) may convince researchers it is unnecessary to consider nuances of

sampling and data collection for reliable inference; however, models cannot supplant the critical value of high‐quality data

from well‐planned studies (Blanco et al. 2012, Sanderlin et al. 2019, Boyd et al. 2023). Moreover, the advent of data

integration makes rigorous data even more valuable as a reference for identifying and adjusting for deficiencies in

opportunistic data in the context of data mining (Miller et al. 2019; Zipkin et al. 2021, 2023). Advances in modeling

therefore raise the need for concomitant updates to guidance for study planning (Popovic et al. 2024).

Birds provide a useful case study for understanding the need for study plan guidance. Avian responsiveness to

environmental change (Furness and Greenwood 1993), the various ecosystem services they provide (Whelan

et al. 2015), and the feasibility of bird surveys relative to other taxa (Bibby et al. 2000) have made counting birds

attractive for investigating both population‐level and macroecological questions (Wiens and Rotenberry 1985,

Brown 1995, Hanski 1998). Historically, ornithologists primarily counted birds following standardized sampling

designs (Table 1) and survey protocols (Table 1; Ralph et al. 1993, Rosenstock et al. 2002, Matsuoka et al. 2014) and

analyzed resulting data with conventional analytical models (Table 1; Wiens and Rotenberry 1985, Link and

Sauer 1998, Hutto and Patterson 2016). Accepting that incomplete detection (i.e., imperfect detection; Bailey

et al. 2007) limits counts to a subset of detected population members, researchers related counts with covariates

TABLE 1 (Continued)

Term Definition

observation processes, and are foundational to hierarchical models in ecology as
defined by Kéry and Royle (2016).

Stratified sampling One type of probabilistic sampling wherein the researcher divides the sampling frame

into non‐overlapping strata and sets selection probabilities at levels that deviate from
the relative area of the strata

Study period The temporal extent of the study, usually number of years for species with seasonal
phenology

Study population The group of individuals relevant to the research question, which typically consists of all
members of a population or species that occur within the sampling frame during study
period and that are available for sampling (i.e., detectability > 0)

Sub‐model An analytical model that forms a component of a hierarchical model (defined above)

Survey frequency The number survey periods implemented within the sampling period at a given

sampling unit

Survey period The unit of time within which a single count of population members is implemented at a
designated survey unit

Survey protocol The manner in which population members are counted at designated sampling units

and within the designated sampling period

Survey unit A unit of space where a single count‐based survey is focused. Depending on logistical
constraints for surveys, a survey unit may coincide spatially with a sampling unit or it
may represent a subset of area within the sampling unit. In the latter case, multiple
survey units may be nested within each sampling unit to better cover the sampling unit.

Temporal design The temporal component of sampling, which consists of the study period, the sampling
period, and sampling frequency
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representing spatial, temporal, or environmental variation, and interpreted model estimates as indices quantifying

relative variability or population change (Link and Sauer 1998, Johnson 2008). This approach assumed that

variability in the proportion of the population counted was either constant or at least not confounded with

ecological patterns of interest. Ecologists have since demonstrated the tenuousness of this assumption (Table 1)

and the consequent need to better account for the observation process (Table 1) for rigorous and clear inference

(Ruiz‐Gutiérrez and Zipkin 2011, Marques et al. 2017). Advancement of modeling methods that do so (Kéry and

Royle 2016, 2020), however, has rendered most commonly referenced guides for counting birds incomplete (Hutto

et al. 1986, Ralph et al. 1993, Hamel et al. 1996, Bibby et al. 2000, Scott 2002).

Here, we synthesize available literature to guide wildlife biologists in planning count‐based studies that can

effectively employ hierarchical models to answer their research questions. We use birds as a case study to focus our

review, but the concepts we cover and approach we outline applies broadly to many taxa sufficiently observable to

be counted (Otto et al. 2013, Dénes et al. 2015, Tobler et al. 2015). We start with a broad overview of potential

questions that count data can help answer and population metrics that they can help measure. We then describe

core components of effective study plans (Table 1) that incorporate hierarchical models to answer questions. We

present the components of our planning framework in the order we suggest they be considered: 1) research

question(s) and population parameter(s) to measure, 2) sampling design, 3) analytical framework, 4) temporal design,

and 5) survey protocol (for definitions, see Table 1; Figure 1). Our framework mirrors the distinction of ecological

from observation processes offered by hierarchical models; sampling and temporal design components concern

ecological process(es), whereas the survey protocol concerns observation process(es). Moreover, we distinguish

between sampling design and temporal design because the latter is more determined by the analysis model and

therefore better follows development of the analytical framework. Finally, we provide examples that demonstrate

application of this framework for research and monitoring. Throughout, we strive to explain key concepts and ideas

in broad, accessible terms while providing references with further details.

RESEARCH QUESTIONS AND POPULATION METRICS

Count data can help researchers investigate various ecological questions (Table 2), which determine the ecological

parameters researchers need to measure. Researchers focusing on macroecological questions (Brown 1995,

Hanski 1998) may primarily seek to quantify occupancy (i.e., presence or absence of a species within a spatial and

temporal unit; Table 1). For questions concerning population size, researchers can measure abundance (Table 1) for

a given geography. For questions about factors governing a population's spatial distribution, researchers may

instead need to estimate relationships of density (Table 1) with variability in environmental conditions. For count‐

based studies, researchers typically want at minimum to measure abundance or occupancy (i.e., fundamental

parameters [Table 1]), whereby additional parameters describe variation in these (e.g., environmental relationships,

trend, dynamics). Clearly articulating objectives and keeping them in focus is important when planning a study to

ensure the sampling design, analytical framework (Table 1), temporal design, and survey protocol adequately

address the primary question(s) of interest (Yoccoz et al. 2001).

SAMPLING DESIGN

After identifying their question and parameters to measure, researchers should consider their sampling design.

Sampling is the process by which we select a set of locations to survey because we expect counts at these locations

to accurately represent the study population (Table 1; Thompson et al. 1998). In most cases, researchers cannot

feasibly survey all locations containing the study population, so they select a representative sample, from which

they can confidently estimate parameters representing the population as a whole. Sampling design therefore
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consists of identifying the study population, defining the sampling frame (i.e., the set of all sampling units that

together contain the study population; Table 1), and selecting sampling units (Table 1) from the sampling frame

(Thompson et al. 1998). Researchers can also apply models to predict beyond the study population, but the required

assumptions for prediction make it less reliable than estimation within the sampling frame (Wenger and

Olden 2012). The sampling frame is therefore best defined so as to contain the entire study population relevant to

the research question.

Defining the sampling frame requires defining a sampling unit, the dimensions of which should reflect the

ecological parameter(s) researchers want to measure. Sampling units smaller than a single territory or home range

are better suited for measuring fine‐scale space use. For territorial species, sampling units close to the size of a

territory will tend to yield counts consisting primarily of 0 s and 1 s that are well suited for measuring occupancy

that tracks variability in abundance (Linden et al. 2017, Latif et al. 2018, Steenweg et al. 2018). Sampling units large

enough to contain multiple individuals will be better suited for measuring spatial distribution at coarser resolutions

(Steenweg et al. 2018). For colonial or spatially aggregated populations, sampling units may correspond with

F IGURE 1 Schematic outlining suggested steps in planning studies based on counting unmarked populations of
animals. Researchers may need to rethink initial components of the study plan after assessing its overall feasibility.
Regardless, researchers will most likely succeed by planning all aspects of a study prior to implementation.
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TABLE 2 Examples of research questions or monitoring objectives potentially addressed with count‐based
population surveys. Example studies and broad aspects of population ecology targeted in each example are listed
with each question.

Question or objective Example paper
Occupancy or
abundancea

Distribution or
dynamics

What is the species' population size
and distribution within a
specified area?

Hierarchical distance sampling models
to estimate population size and
habitat‐specific abundance of an
island endemic (Sillett et al. 2012)

Abundance Distribution

How does natural disturbance affect
bird abundance?

Changes in forest bird abundance,
community structure and composition
following a hurricane in Sweden
(Chevalier et al. 2019)

Abundance Distribution

Has population size increased or

decreased?

The role of detectability on bird

population trend estimates in an open
farmland landscape (Sanz‐Pérez
et al. 2020)

Abundance Dynamics

What is the population's geographic
distribution?

Using Light Detection and Ranging
(LiDAR)‐derived vegetation metrics

for high‐resolution, species
distribution models for conservation
planning (Farrell et al. 2013)

Occupancy Distribution

What climate niche does the species

occupy, and how will this niche be
affected by environmental change?

Birds track their Grinnellian niche

through a century of climate change
(Tingley et al. 2009)

Occupancy Distribution

Produce predictive map to inform
conservation or management
planning

A multi‐scale occupancy model for the
grasshopper sparrow in the Mid‐
Atlantic (Irvin et al. 2013)

Occupancy Distribution

Where are species reintroduction
efforts most likely to succeed?

Surviving with a resident despot: do
revegetated patches act as refuges
from the effects of the noisy miner
(Manorina melanocephala) in a highly
fragmented landscape? (Mortelliti

et al. 2016)

Occupancy Distribution

Which environmental features
determine habitat for a species?

An occupancy approach to monitoring
regent honeyeaters (Crates
et al. 2017)

Occupancy Distribution

What are the implications of
alternative management scenarios for
population, demographic, or
community parameters?

Utilization of a species occupancy
model for management and
conservation (McFarland et al. 2012)

Occupancy Dynamics

How has migratory phenology shifted

over time?

Estimating unbiased phenological

trends by adapting site‐occupancy
models (Roth et al. 2014)

Occupancy Dynamics

How functionally diverse is the
community, how are traits structured,
and what is the integrity of these

structures to environmental
perturbation?

The importance of accounting for
imperfect detection when estimating
functional and phylogenetic

community structure (Si et al. 2018)

Occupancy Dynamics

aAbundance here includes density (abundance per unit area).
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locations or natural features capable of containing a colony or aggregation (e.g., wetlands for amphibians; Wright

et al. 2020). For measuring populations at multiple spatial scales, researchers can define nested sampling units

consisting of relatively large primary units that each contain multiple secondary units (Mordecai et al. 2011,

Pavlacky et al. 2012). Researchers may unconsciously define a sampling unit based on the logistic feasibility of

conducting surveys, to the detriment of their sampling design. To avoid this pitfall, we suggest distinguishing

sampling units from survey units (Table 1), and reserving logistical considerations for the latter (Pescott et al. 2019).

Next, researchers need to decide how to select sampling units from the sampling frame. Probabilistic sampling

(Table 1), whereby researchers select sampling units with known probabilities from the sampling frame, most readily

and unambiguously provides data representing the study population (Morrison et al. 2008). A sample is

representative of the population if inclusion of sampling units in the sample is not correlated with the ecological

parameter of interest (Boyd et al. 2023). Simply selecting sampling units with equal probability from the sampling

frame can effectively represent relatively small, homogenous populations. Sophisticated algorithms that ensure

spatially balanced sample selection (i.e., spatially balanced sampling [Table 1]) more efficiently represent larger

heterogeneous populations (Stevens and Olsen 2004, Theobald et al. 2007). Uneven selection probabilities may be

necessary for various reasons, in which case estimation can correct for selection probabilities as long as they are

known (i.e., design‐based inference; Williams and Brown 2019). In particular, stratified sampling (Table 1) can

provide relatively efficient sampling for research questions concerning population distribution along environmental

gradients. Strata are mutually exclusive portions of the sampling frame. Elevating sample selection probabilities in

strata delineating relatively rare environmental conditions can help ensure sufficient sampling to estimate

relationships with those conditions. Moreover, estimating relationships with environmental conditions or

hypothesized drivers of population distribution or dynamics may be necessary for hypothesis testing and

prediction beyond the study population (Williams and Brown 2019). Even spacing of sampling units can also

represent the study population but requires an additional assumption that the population is distributed

independently of selected unit spacing, which is typically difficult to know for certain (Thompson et al. 1998).

More complex selection strategies are less common but potentially worth considering to improve sampling

efficiency (Pacifici et al. 2016). Because analyses cannot fully compensate for inappropriate sampling, the

importance of understanding the strengths and weaknesses of different sampling designs cannot be overstated.

Finally, researchers must decide how many sampling units to select (i.e., sample size [Table 1]). Although

information for estimating ecological parameters generally scales with sample size, increasing sample size cannot

compensate for unrepresentativeness of the sample (Boyd et al. 2023), which is why we describe sample size after

other components of sampling design. Ideally, researchers should conduct power analyses before initiating a study

to ensure sufficient sample size. Alternatively, researchers can simply maximize their sample size given available

funding, in which case consulting published power analyses or successful studies similar to theirs can help verify

their sample size is reasonable. Within a broader research program, power analyses can also ensure sample size is

not larger than necessary, potentially conserving funds for other questions (Bailey et al. 2007, Latif et al. 2018).

Moreover, sample size may trade off with components of the survey protocol such as the number of replicate

counts implemented to provide data for estimating incomplete detection (Bailey et al. 2007, Sanderlin et al. 2014).

ANALYTICAL FRAMEWORK

Identifying ecological and observation processes

We recommend researchers first consider likely data‐generating processes relevant to their question, and then

select a model capable of representing those processes. The number of individuals counted at any one place and

time reflects both the number of individuals actually present and how readily the surveyor(s) can detect and

correctly identify those individuals. We therefore need to account for the latter before we can correctly infer the
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former, which is typically the ecological attribute of interest. As an initial step, we suggest researchers list likely

data‐generating processes (e.g., habitat, population dynamics, incomplete detection) that could affect count data

within the context of the established sampling design.

While listing data‐generating processes, we also suggest categorizing them as ecological, observational, or both.

We might be inclined to consider any process concerning the study system (e.g., population dynamics, behavior,

environmental change) as ecological and any process involved in counting (e.g., surveyor perception, survey

protocol, sampling design) as observational. For selecting or developing an analytical model, however, researchers

should view processes in light of their research question. Surveyor skill and attention represent elements of the

observation process for virtually all studies (Ralph et al. 1993, Rosenstock et al. 2002, Matsuoka et al. 2014).

Aspects of biology, such as singing rate or territorial movement for birds may at first seem ecological, but more

typically represent factors modulating our ability to detect and count individuals (Betts et al. 2008, Robertson

et al. 2010, Amundson et al. 2019, Berigan et al. 2019). Perhaps even less obvious are factors that influence both

observation and ecological processes. Vegetation or environmental structure can affect the number of individuals

present and how easily we can detect them (Ruiz‐Gutiérrez and Zipkin 2011). Abundance can modulate species

detectability (Royle and Nichols 2003), and may therefore be part of the observation process when measuring

occupancy (Kéry et al. 2009). Within‐territory movement may confound our ability to estimate site‐level population

dynamics among years (Berigan et al. 2019), but such movements may be of biological interest when investigating

fine‐scale habitat selection and space use patterns (Valente et al. 2017, Steenweg et al. 2018). We note that with a

well‐planned sampling design, researchers can avoid complicating their analysis by having to include the sampling

process in their list of observational data‐generating processes (Johnston et al. 2020, Boyd et al. 2023).

Following listing and categorization, we suggest researchers describe expected relationships between the data‐

generating processes and their count data. Graphs depicting expected relationships provide a useful approach to

map data‐generating processes in a manner that can also describe the structure of analytical models (Ethier and

Nudds 2017). Lists and graphs of data‐generating processes will best guide analytical model structure when rooted

in established ecological theory. For example, researchers interested in estimating population trends over multiple

years might remember that trends ultimately reflect dynamics of survival, reproduction, immigration, and

emigration, which are typically measured annually (MacKenzie et al. 2003, Dail and Madsen 2011). For questions

concerning spatial distribution at multiple scales, theory describes habitat selection at coarse scales as an

antecedent to finer scale selection (Cody 1985). Comprehensive listing and graphing of all data‐generating

processes is generally impossible and would often include many trivial processes that are either unimportant or

irrelevant to the primary research questions. We therefore recommend maintaining focus on the processes most

relevant to the research questions.

Analytical model

Hierarchical models (defined here following Kéry and Royle 2016) expand the toolbox available for quantifying

data‐generating processes to meaningfully answer research questions. The fundamental building blocks for

analytical models are probability functions (Table 1) and covariates (Table 1). Conventional analytical models

describe variation in observed data using a probability function (e.g., binomial for occupancy or Poisson for

abundance), the basic parameters of which may be modulated by ≥1 covariate. Hierarchical models link multiple

analytical models (i.e., sub‐models). Ecologists typically use state‐space hierarchical models (Hostetler and

Chandler 2015) to explicitly distinguish the ecological from observation process by representing each with ≥1 sub‐

model. Additionally, multi‐level models incorporate probability functions that can link multiple sub‐models

representing different groups to allow partial information sharing across groups (i.e., random effects); for example,

species within community models (Dorazio and Royle 2005, Chandler et al. 2013). While these approaches clarify

and strengthen ecological inference, linking multiple sub‐models comes with greater demands on data and often

10 of 31 | LATIF ET AL.



requires auxiliary data collection and additional assumptions. As detailed in the remainder of this section,

researchers must therefore decide which processes (or groups) to represent with distinct sub‐models, or instead

with simpler and less‐demanding approaches (e.g., covariates).

Researchers must first decide whether to represent ecological and observation processes as distinct

sub‐models. Three conceptually foundational and commonly used hierarchical models are occupancy (MacKenzie

et al. 2002, 2003; Bailey et al. 2014), N‐mixture (Royle 2004), and distance sampling models (Royle et al. 2004,

Buckland et al. 2015). Occupancy and N‐mixture models require replicate counts, and distance sampling models

require distance measurements from the surveyor to detected individuals. These foundational hierarchical models

assume that all detected individuals are correctly identified such that observation errors only arise from incomplete

detection. Researchers using these models must constrain their survey protocols to exclude false detections. Where

necessary, researchers can add sub‐models to account for false positive errors (e.g., from species misidentification)

with additional demands on the data (Royle and Link 2006, Clare et al. 2021, Zhao et al. 2022). Additional

assumptions are also required for each approach (Table 3; Matsuoka et al. 2014, Duarte et al. 2018, Louvrier

et al. 2018, Marques et al. 2017, Fogarty and Fleishman 2021). Occupancy and N‐mixture models also assume the

ecological state (i.e., species presence or abundance, respectively) at a surveyed location remains the same between

replicate surveys (i.e., closure assumption [Table 1]); distance sampling assumes 100% detectability at distance = 0

and that distances are measured accurately.

To avoid these additional data requirements and assumptions, some researchers continue to rely on non‐

hierarchical approaches, including covariates (Sauer and Link 2011), error partitioning (Dennis et al. 2006), or

constrained sampling and surveys (Hutto and Patterson 2016), to address heterogeneity in the observation process.

Inference with these approaches assumes either an invariant observation process or one that at least does not

confound intended ecological inference (Figure 2; Guillera‐Arroita et al. 2015, Hutto and Patterson 2016),

assumptions that can be very difficult to verify without explicit testing. State‐space hierarchical models can more

readily account for confounding heterogeneity in the observation process but do not do so automatically. Both

hierarchical and non‐hierarchical models require appropriate structure (e.g., covariates) to address heterogeneity in

the observation process, which is often what primarily confounds desired inference (Royle and Nichols 2003, Efford

and Dawson 2012, Veech et al. 2016, Latif et al. 2018).

Having opted for (state‐space) hierarchical modeling, researchers must decide how many and which data‐generating

processes to represent with distinct ecological and observational sub‐models. In addition to fundamental parameters,

ecological sub‐models can distinguish various processes, including population dynamics, range dynamics, spatial

distribution at multiple scales, and population parameters for multiple species, allowing derivation of community structure

and composition. Such sub‐models invariably impose additional demands or constraints on the data (Table 3). For

example, models explicitly quantifying annual dynamics require implementing counts at selected sampling units

repeatedly across successive years (MacKenzie et al. 2003, Dail and Madsen 2011). In contrast, repeated and successive

sampling of individual units is less important for models that simply include year as a categorical covariate, although

repeated sampling across years can still help distinguish temporal from spatial variation (Rhodes and Jonzén 2011).

Multiple sub‐models can also help account and correct for multiple observation processes (Nichols et al. 2009,

Schmidt et al. 2022). Incomplete detection sub‐models fitted with data from replicate counts (e.g., repeat counts or

multiple observers), such as in N‐mixture models, can account for observer skill and temporal processes, such as

singing rate for birds and movement, but ambiguity in the effective area surveyed can bias abundance estimates

from N‐mixture models or obscure their interpretation (Nichols et al. 2009). In contrast, the detection sub‐model in

distance sampling models accounts for effective area surveyed but ignores temporal processes (Bächler and

Liechti 2007). Integrating both sub‐models may be necessary for accurate abundance estimation if counts both

decline with perceptibility of individuals farther from the surveyor and with intermittent availability of individuals

for detection (e.g., most point‐based counts of territorial songbirds; Chandler et al. 2011, Amundson et al. 2014).

Models that account for false positive errors along with incomplete detection may also do so with a distinct

sub‐model for each (Clare et al. 2021).
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Using analytical models to derive ecological inference inevitably requires making assumptions, so researchers

must consider whether their data likely conform sufficiently to key model assumptions to provide information

useful for answering their question. Providing a comprehensive list of all assumptions is beyond our scope, but basic

assumptions for virtually all analytical models include that data accurately represent the study population and that

F IGURE 2 Hypothetical scenarios demonstrating how detectability can confound estimation of environmental
relationships with data from count surveys of unmarked animal populations. Scenario A shows a hypothetical
scenario where detectability is positively correlated with abundance, whereas scenario B shows the opposite. Both
represent situations where explicit observation models would be critical for accurately estimating the depicted
environmental relationship with population density.
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residual variation not accounted for by the model is independent among selected sampling units (i.e.,

independence). Hierarchical models require additional assumptions (Table 3). Probabilistic sampling designs

provide clear advantages over opportunistic sampling for meeting assumptions of independence and representa-

tiveness of the study population (Williams and Brown 2019). Adding structure to models (e.g., covariates, random

effects, autocorrelation parameters; Royle and Kéry 2007, Guélat and Kéry 2018) can help meet independence

assumptions while also focusing models on the research questions. Additionally, we may be able to adjust our

interpretation of model parameters to relax the closure assumption while maintaining or even improving inference

(Latif et al. 2016, Valente et al. 2017, Steenweg et al. 2018, Fogarty and Fleishman 2021). Simulations before

analysis and model checking afterwards are important tools for evaluating sufficient adherence to assumptions to

support valid inference for addressing the study question (Conn et al. 2018, DiRenzo et al. 2023).

TEMPORAL DESIGN

We refer to the frequency, distribution, and extent of sampling over time as the temporal design. The temporal

extent of the study—or the study period (usually number of years for species with seasonal phenology; Table 1)—

determines the time period across which the study population is represented, and thus how broadly we can infer

population change (e.g., dynamics and trend) from the data. The sampling period (Table 1) represents the unit of

time within which the sample is collected (i.e., individuals are counted) at each selected sampling unit, and as such

intersects with species ecology to determine interpretation of fundamental parameters estimated with count data.

With a short sampling period that excludes the potential for individuals moving in or out of the sampling unit during

sample collection, fundamental parameter estimates represent populations for a snapshot in time. Such estimates

are especially relevant for inferring population density, population size, or the physical distribution of individuals at

any given time (Buckland 2006, Latif et al. 2016). With longer sampling periods that allow movement during sample

collection, fundamental parameter estimates instead represent the population within range of units and are more

relevant to questions concerning species geographic range, habitat use, and metapopulation dynamics (Valente

et al. 2017). Finally, the sampling frequency (Table 1) describes how many and how often sampling periods occur at

a sampling unit within the study period. Sampling frequency determines the resolution at which we can estimate

population change. For example, annual sampling is needed to quantify inter‐annual population dynamics

(MacKenzie et al. 2003, Dail and Madsen 2011), whereas less‐frequent sampling may be sufficient to measure

longer term population trends (Gitzen et al. 2012). The optimal ratio of spatial to temporal intensity of sampling

increases with increasing spatial heterogeneity of the study population (Rhodes and Jonzén 2011). Simulations can

help researchers navigate tradeoffs between different aspects of sampling and temporal design (e.g., sample size vs.

study period; Ross and Weegman 2022). For most ecological systems, seasonal timing of sampling will additionally

constrain inference (e.g., breeding season sampling will represent breeding populations). Analogous to our

distinction between sampling and survey units, we recommend focusing on ecological processes of interest to the

research question when defining sampling period and sampling frequency, and waiting to consider logistical

constraints on surveys and observation processes when defining the survey period (Table 1) and survey frequency

(Table 1).

SURVEY PROTOCOL

The survey protocol encompasses the process of conducting counts within selected sampling units and sampling

periods. Researchers need a survey protocol capable of generating data necessary to answer their questions, but

unlike sampling design and temporal design, logistical constraints and observation processes are more relevant to

development of the survey protocol.
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We suggest first defining the survey period and survey unit, which (as noted in the sampling design section) may

reflect logistical constraints imposed on the surveyor and how we want model parameters to reflect observation

processes. For small territorial breeding landbirds, surveyors typically implement counts while standing at points

representing the center of circular survey units (i.e., point counts; Ralph et al. 1993, Rosenstock et al. 2002, Matsuoka

et al. 2014). For other systems (e.g., non‐territorial birds, waterbirds, large mammals), surveyors may travel along linear

transects or meander across areal units (Dunn et al. 2005, Certain and Bretagnolle 2008, Brown et al. 2017, Harris

et al. 2021, Schmidt et al. 2022). Researchers often limit the size and shape of survey units based in part on a priori

knowledge of the perceptual limitations of surveyors or survey equipment (e.g., automated recording units, cameras).

Logistical considerations may also shape the survey period, such as the need to distribute limited surveyor time across

multiple survey units. Re‐considering the independence assumption required by most analytical models can benefit

researchers as they define survey units. Conversely, misunderstanding these assumptions can mislead study planning

(Appendix A). If survey units are much smaller than a sampling unit, researchers may need multiple survey units per

selected sampling unit for adequate sampling. Moreover, survey units may also serve as secondary sampling units for

examining spatial distribution at multiple spatial scales (Pavlacky et al. 2012, 2017).

The survey period entails tradeoffs between detectability and assumptions about the distribution of individuals

in space, and thus affects how counts and count‐based model estimates reflect surveyor perception and behavior.

Relatively long surveys allow observers more time to look and listen for individuals present within the survey unit,

potentially increasing detectability within the survey. Long surveys, however, may also allow individuals to move in

or out of the survey unit, expanding the subset of the population potentially detected and resulting in ambiguity

regarding the spatial area sampled (Schmidt et al. 2013). Additionally, the likelihood of false positives in count data

may increase with survey period length as it becomes increasingly difficult to keep track of individuals. Considering

the typical variability in the observation process with seasonal and daily fluctuations in behavior and activity,

researchers will likely benefit by constraining the survey period to when individuals are most readily detectable

(e.g., morning hours for territorial breeding songbirds).

Survey protocols for state‐space hierarchical models usually need to include auxiliary data collection or additional

structure to inform observation sub‐models. Distance sampling models require distance measurements from the survey

unit center (typically a point or line transect) to each detected individual (Buckland et al. 2015). Covariates can also provide

auxiliary information required by some models (Lele et al. 2012) with additional assumptions required (Knape and Korner‐

Nievergelt 2015). Replicated counts required for observation sub‐models in N‐mixture and occupancy models can arise

from various protocols, including repeat surveys (Valente et al. 2017), double‐observer surveys (Nichols et al. 2000),

recording the time to first detection (Farnsworth et al. 2002, Latif et al. 2020), or (with caution) spatial replication (Kendall

and White 2009, Guillera‐Arroita 2011). We emphasize that researchers may analyze data of similar dimensions with a

model that is mathematically identical across these protocols, but they may nevertheless generate estimates with different

interpretations largely because of differences in survey period, which alters underlying observation processes (see previous

paragraph). The survey frequency (i.e., number of repeat surveys or replicate counts within the sampling period; Table 1)

determines the overall probability of detecting an individual or species where present at least once during the sampling

period (i.e., p* in MacKenzie and Royle 2005). Estimates of fundamental parameters are biased when overall detection

probability is too low, so literature guiding replicate counts to provide data for detectability estimates focuses heavily on

optimizing survey frequency (MacKenzie and Royle 2005, Bailey et al. 2007, Guillera‐Arroita et al. 2010, Sanderlin

et al. 2014, Reich 2020).

ASSESSING FEASIBILITY WITH SIMULATIONS

Simulations can be invaluable for assessing potential study plans. By comparing model estimates fitted with

simulated data to the true parameter values used to generate those data, we can quantify various estimator

properties, including precision, accuracy, and statistical power. Simulations can represent either ideal scenarios for
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evaluating basic estimator properties or non‐ideal scenarios for evaluating how estimators hold up when model

assumptions are violated (Bailey et al. 2007, Efford and Dawson 2012, Brown et al. 2017, Latif et al. 2018, Fogarty

and Fleishman 2021). Moreover, simulations representing even a limited range of plausible scenarios can provide

researchers the opportunity to familiarize themselves with their intended analytical model while evaluating

feasibility of drawing meaningful inference (DiRenzo et al. 2023). Despite the broad availability of computational

tools, implementing extensive custom simulations for every study is probably infeasible for most researchers and

unnecessary for well‐established sampling designs. At the very least, researchers should be familiar with published

simulation work relevant to sampling and analysis approaches under consideration. Much of the foundational

literature for hierarchical models includes simulation studies that compare alternative sampling designs and survey

protocols (Kéry and Royle 2016, 2020; MacKenzie et al. 2018). Simulation studies for observation sub‐models

informed with replicate counts describe minimum levels of replication for sufficient detectability to reliably estimate

fundamental parameters (e.g., MacKenzie et al. 2002, Royle and Nichols 2003). Similarly, distance sampling

literature describes minimum sample sizes needed to reliably estimate density (10 survey units and 60 independent

detections; Buckland et al. 2001). Once acquainted with foundational literature, researchers can then gauge the

value of additional tailored simulations to guide their study plan (e.g., Ross and Weegman 2022) given budget

constraints (e.g., Sanderlin et al. 2014).

EXAMPLE STUDY PLANS

Red‐faced warbler

Research question

In our first hypothetical example, we considered researchers working in the southwestern United States with red‐

faced warbler (Cardellina rubrifrons) as their study species. Red‐faced warblers are a species of concern owing to

expected habitat loss and degradation with interacting effects of climate change and increased risk of high‐severity

wildfire (Kirkpatrick and Conway 2010, Ganey et al. 2015). Red‐faced warblers nest on the ground in higher

elevation forests dominated by coniferous trees intermixed with oaks (Ganey et al. 2015), where they occupy

uniformly distributed breeding territories (Flesch 2019).

The researchers were interested in studying the distribution of red‐faced warbler in relation to fire history,

particularly burn severity and time since wildfire. Additionally, in light of theory describing habitat selection as occurring

first at coarser scales and subsequently at finer scales (Cody 1985), the researchers wanted to distinguish spatial scales at

which red‐faced warbler distributions exhibit the strongest relationships with fire history. Although negatively affected by

high‐severity fire, red‐faced warblers may also respond negatively to small‐diameter thinning treatments (Kalies

et al. 2010) intended to reduce burn severity. The researchers therefore expected results from this study to help guide

fuels management aimed at restoration (Villarreal et al. 2020) to reduce overall fire severity risk.

Population metric

Reflecting their primary interest in quantifying the spatial distribution of red‐faced warblers, the researchers chose density

as their target ecological metric. Given the small size of home ranges, researchers expected to routinely count >1

individual within relatively small areas. The researchers therefore expected density to be appropriate for fully quantifying

spatial and temporal patterns anticipated in expected data. The researchers considered but ultimately decided against

other metrics, including occupancy (better suited to rare or sparsely distributed species), relative abundance (requires

assuming detectability of red‐faced warbler is unrelated to burn severity and time since wildfire), trend (requires more
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years than possible with available funding), and population vital rates of persistence and growth (requires sampling the

same units successively over multiple years, potentially limiting spatial representation of the population, and not

necessarily required for evaluating habitat quality; Bock and Jones 2004).

Sampling design

The researchers identified all red‐faced warblers occurring within one Sky Island mountain in a high elevation

conifer forest as their study population. An analysis of remotely sensed land cover verified sufficient range of burn

severity and time since fire within one mountain sufficient to meet study objectives. Sampling units consisted of

1 × 3‐km rectangular cells large enough to include multiple breeding territories yet small enough for units to

represent distinct levels of burn severity and time since fire. Each sampling unit contained a set of 12 evenly spaced

points (500m apart; Figure 3). In addition to facilitating efficient allocation of survey effort, points served as

secondary sampling units for finer scale relationships with wildfire. The researchers' sampling frame consisted of all

possible sampling units within the Sky Island mountain containing their study population. Burned forest stands of

varying severity and unburned stands were not evenly distributed in space, so researchers stratified sampling to

select an equal number of sampling units representing 4 levels of burn severity: unburned, low, medium, and high.

Researchers selected sampling unit center points within each of these strata using a spatially balanced approach

(Stevens and Olsen 2004, Theobald et al. 2007), and oriented units randomly while constraining them to not overlap

neighboring units. Thus, sampling units could include multiple levels of burn severity but would span the full

severity gradient present within the sampling frame. The researchers conducted a simulation‐based power analysis

with parameters reflecting pilot data to identify a sufficient sample size to estimate abundance relationships with

burn severity and time since wildfire.

F IGURE 3 A portion of the sampling frame in one Sky Island mountain range (Arizona, USA) with the spatial
arrangement of sampling units across different burn severities for a hypothetical study of red‐faced warblers.
Sampling units are rectangular cells containing evenly distributed points where surveys were centered.
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Analytical framework

The researchers created a diagram of the relevant ecological and observation processes expected to influence

count data (Figure 4). The primary ecological processes of interest are wildfire altering habitat conditions, and

consequently affecting the spatial distribution of the population at 2 different spatial scales. Red‐faced warbler

breeding territories are generally distributed uniformly within suitable areas, so the researchers did not anticipate

any spatial variation in density beyond what could be explained by variable habitat conditions.

During breeding, male red‐faced warblers sing regularly, making them easily heard and visible. The researchers

expected training to further boost surveyor ability to detect and distinguish red‐faced warblers, particularly males,

although detectability of red‐faced warblers was expected to decline with distance from the surveyor. Moreover,

they expected the steepness of this decline to depend on vegetation density (more vegetation obstructs vision and

potentially reduces how far sound travels), burn severity and time since fire (via effects on vegetation density), wind

(reduces how far sound travels), and observer (skill may vary even after training). The possibility of burn severity and

time since fire affecting detectability was especially problematic for this study. With reduced vegetation density in

recently burned areas, the researchers expected detectability to increase with increasing burn severity and

decreasing time since fire, potentially obscuring relationships between population density and fire. Despite being

readily detectable during breeding, the researchers expected singing rate to vary with time of day and progression

of the breeding season, potentially adding variation to detectability. The researchers expected restricting sampling

F IGURE 4 Directed acyclic graph of the distance sampling model intended for analyzing hypothetical red‐faced
warbler count data (Sky Island mountain range, Arizona, USA) with relevant ecological and observational processes
highlighted. Data include number of individuals (y) detected at survey units in different distance classes, and
covariates. Ecological parameters represented in the model are expected abundance at primary and secondary
sampling units (i.e., 2 spatial scales: λP and λS), realized abundance red‐faced warblers present within a survey unit,
which coincides with the survey unit (N), and covariate relationships with expected abundance (β XλP and β XλS ).
Observation parameters are the detection probability in each distance class (p), the distribution of individuals
present among distance classes (ψ), the expected proportion of detected individuals among distance classes (π), and
covariate relationships with detectability (βpX). Arrows indicate dependencies among parameters (circle nodes) and
data (square nodes). The inset depicts the decline of detection probability with distance from the observer.
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to the height of the breeding season would limit this source of variation, but daily variation in singing rate could

remain a factor of concern.

The researchers selected hierarchical distance sampling (Royle et al. 2004) as their modeling approach for

estimating population density while accounting for observation processes (Figure 4). This model assumes perfect

detectability for individuals located at distance = 0 from the surveyor, and then estimates the decline in

detectability with increasing distance using distances to detected individuals recorded by the surveyor. The model

allows covariates to modulate how steeply detectability declines with distance while also allowing researchers to

estimate covariate relationships with population density. The researchers included burn severity and time since fire

as covariates of density at primary and secondary spatial scales, and detectability to account for potential

confounding effects of fire on ecological and observation processes. Although sampling was stratified among burn

severity classes, the researchers identified a continuous measure of burn severity for use as a modeling covariate.

Field measurements of wind speed and observer identity represented additional covariates for detectability

(Figure 4). Assuming a relatively uniform distribution of red‐faced warblers within suitable areas and assuming fire is

the primary driver of habitat condition, the researchers did not anticipate density to vary spatially beyond what

could be explained by variation in burn severity and time since fire. Nevertheless, they planned to evaluate model

goodness of fit (Buckland et al. 2015) and include additional parameters to account for additional sources of

variation (e.g., Pacifici et al. 2016) as needed for adequate fit.

Considering the particularly high detectability of singing males, the researchers planned to focus density

estimation on breeding males and assume a balanced sex ratio to infer population density. Infrequent or variable

singing could limit detectability and more importantly compromise the assumption of perfect detectability at

distance = 0 (Amundson et al. 2014). By restricting sampling to the height of the breeding season and carefully

planning surveys (see Survey protocol below), the researchers hoped to sufficiently adhere to the model assumption

of perfect detectability of males at distance = 0. Nevertheless, the researchers planned to collect auxiliary data

needed to check this assumption (i.e., time to detection) and potentially add a sub‐model for incomplete temporal

availability for detection if needed.

Temporal design

The researchers deemed a study period of 3 years as sufficient to meet their primary objective of quantifying spatial

distribution along an environmental gradient. In particular, 3 years ensured estimated habitat relationships

represented more than just 1 potentially aberrant year. Given their interest in estimating population density for a

snapshot in time, the researchers wanted to limit the potential for individuals moving into range of the surveyor

during sampling, so they restricted the sampling period to a short time window corresponding with a single survey

on a single day of the breeding season. Red‐faced warblers are migratory and found within the sampling frame only

during the breeding season, when breeding behavior (e.g., singing) makes them particularly detectable. The

researchers therefore restricted sampling periods to occur within a 5‐week period at the center of the 9‐week

breeding season (i.e., excluding the first 2 and last 2 weeks of the breeding season). In addition to ensuring

representation of the breeding season population, this sample timing maximized the intensity of breeding behavior

during sampling. The researchers planned to sample each unit once during the study period (i.e., sampling frequency

= 1), allowing sampling of different units in each year and thus maximizing spatial representation of the population.

Survey protocol

The researchers defined a survey unit as a circular plot centered on 1 of the 12 evenly distributed points

within a selected sampling unit. Rugged terrain makes travel difficult, so clustering multiple survey units within
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larger (primary) sampling units limited logistical demands associated with travel between surveys, along with

benefits for ecological inference of scale‐specific patterns (see above). Considering logistical constraints (e.g.,

travel time to and among sampling units, number of observers), the researchers expected that <12 survey units

may be completed in some sampling units, and specified a minimum of 5 surveys for inclusion of a

sampling unit.

The researchers selected 5minutes as their survey period because this length of time was sufficient for all

males within aural range of the surveyor to sing while being short enough to exclude substantial movement of

singing males towards the surveyor during the survey. To meet requirements of their distance sampling model,

surveyors recorded distances to each red‐faced warbler they detected using a laser range finder, while planning to

confirm the location of aurally detected individuals as needed after each survey. Surveyors recorded all detected

individuals along with their sex (distinguished by plumage and behavior; Martin and Barber 2020) to allow the

analysis to focus on males. Surveys were constrained to occur in the morning (i.e., 30 minutes before sunrise to

3 hours after sunrise) when singing rate is highest to limit variability in detectability and meet the required

assumption of perfect detectability at distance = 0. The surveyors also recorded the timing of detections within the

5‐minute survey period to allow researchers to verify the model assumption of perfect detectability at distance = 0

(Amundson et al. 2014).

Assessing feasibility

As a final step, the researchers assessed the feasibility of their study. They verified selected sampling units

represented an adequate range of burn severity and time since fire values to address their research question.

Conducting surveys in a mountainous setting can be logistically demanding in unexpected ways, so they conducted

a pilot season (Sanderlin et al. 2019). They developed contingency plans for possible unexpected events, such as

observers dropping out of the study or a new wildfire burning selected units. They also simulated data with

parameters reflecting a pilot study to verify sufficient power to answer their research question with intended

sampling design, analysis approach, and survey protocol. The researchers defined sufficient power as an 80%

chance of an 80% credible interval for wildfire covariate relationships to exclude the null hypothesis given 30%

more abundance with an increase in any wildfire covariate of 1 standard deviation.

Red‐shouldered hawk

Research question

In our second hypothetical example, we consider researchers examining temporal population dynamics of red‐shouldered

hawk (Buteo lineatus) populations breeding in the eastern United States. Studies have reported decreasing range‐wide

population trends (Dykstra et al. 2020, Sauer et al. 2020), raising conservation interest. Eastern populations breed in a

variety of forest ecosystems, particularly in mature deciduous or mixed coniferous‐deciduous forests in flooded areas or

along riparian corridors but also in forests embedded in urban landscapes (Dykstra et al. 2020).

The researchers were interested in examining the population dynamics and spatial distribution of this species

along a rural–urban gradient. They hypothesized that populations in urban areas are increasing compared to rural

populations that are either stable or declining. They expected information on spatial variation in population

dynamics would elucidate source‐sink dynamics needed to infer spatial distribution and prioritization of

conservation action. Additionally, the researchers wanted to quantify the overall population trajectory to assess

conservation status and guide prioritization of their study population for conservation action relative to other

populations described in the literature.
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Population metric

The researchers identified species occupancy dynamics as their focus for quantifying population dynamics.

Specifically, they decided to measure spatial variation in colonization (probability of unoccupied sites becoming

occupied) and extirpation (probability of occupied sites becoming unoccupied; MacKenzie et al. 2003). The

researchers considered occupancy dynamics an appropriate focus because red‐shouldered hawks are wide‐ranging

and sparsely distributed, so data were expected to be binary (detection or non‐detection of a breeding pair). In

contrast, collecting sufficient data to quantify dynamics in abundance (Dail and Madsen 2011) appeared less

feasible for this species. To allow inference of population status and trajectory from occupancy, the researchers

planned to measure occupancy at a spatial grain approximating the size of a breeding territory (Linden et al. 2017).

Sampling design

The researchers defined their study population as all red‐shouldered hawks within the area encompassed by

the Virginia peninsula in southeastern Virginia, USA (Figure 5), which is bounded by the York River to the

north, the James River to the south, and by major metropolitan areas of Hampton and Richmond,

to the east and west, respectively. This area consisted of a coastal plain ecosystem with patches of

eastern deciduous forest interspersed by agriculture, wetlands, and low‐ to high‐density urban areas. The

study population consisted of all red‐shouldered hawks within this area, which are a resident species in this

system.

F IGURE 5 Sampling frame for a hypothetical study of red‐shouldered hawk occupancy dynamics in the eastern
United States. Sampling units represent 1.3‐km2 cells, approximating the size of a typical breeding territory,
superimposed on rural–urban and non‐forest–forest gradients. Forest is defined as National Land Cover Data
(NLCD) values 41 and 43 and urban as NLCD values 21–24 (NLCD 2019). Panels represent cell‐specific percent
urban (left) and percent forest (right) discretized into bins representing low (0–10%), medium (11–50%), and high
values (>50%). Crossing these bins generated the 8 strata across which sampling was stratified (ninth bin of high
urban and high forest did not exist on the landscape).
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The researchers identified their sampling units as 1.3‐km2 grid cells, approximating the size of a typical breeding

territory (Dykstra et al. 2020). This spatial grain minimizes the number of breeding territories that could intersect a

sampling unit, and thus allows stronger inference of population distribution and dynamics from occupancy (Linden

et al. 2017). The researchers defined their sampling frame as all non‐overlapping grid cells contained in their study

area (Figure 5). By defining their sampling frame as a discrete set of non‐overlapping sampling units (i.e., a well‐

defined sampling frame; Thompson et al. 1998), the researchers aimed to facilitate estimation of total area occupied

to more clearly infer conservation status and trajectory of their study population. Additionally, the researchers

ensured representation of environmental conditions of interest by stratifying sampling across 8 strata representing

urban–rural and forest cover gradients. They mapped percent forest and urban land covers within 1.3‐km2 cells

discretized into low (0–10%), medium (11–50%), and high percent (>50%; Figure 5). Cells representing both high

proportion urban and high proportion forest did not exist on the landscape, so crossing the 3 bins for the 2

gradients generated 8 strata. Spatially balanced sampling (Stevens and Olsen 2004) within each stratum generated a

sample of 240 units for the study. By consulting foundational literature describing dynamic occupancy models and

published studies estimating occupancy dynamics for raptors, the researchers verified this sample size was

reasonable for estimating distribution and dynamics along urban–rural and forest land cover gradients.

Analytical framework

The researchers visualized ecological and observation processes expected to influence red‐shouldered hawk

detection data in a directed acyclic graph (Figure 6). The primary ecological processes of interest were

F IGURE 6 Directed acyclic graph representing ecological and observation processes for a hypothetical study
of occupancy dynamics for red‐shouldered hawks in the eastern United States. Expected data are year‐specific
detection histories (y). Occupancy model parameters representing ecological processes are occupancy probability in
year 1 (ψ), colonization (γ) and extirpation (ϕ) probabilities for years 2–T, covariate relationships with these (βψX,
βγX, and βϕX), and occupancy states for sampling units in each year (zt). Parameters representing observation
processes are detection probability (p) and covariate relationships with detection (βpX). Arrows indicate
dependencies among parameters (circle nodes) and data (square nodes).
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occurrence of breeding territories, space use of red‐shouldered hawks within breeding territories (i.e.,

components of spatial distribution), annual changes in territory and space use distributions, and environmental

effects on these processes. The researchers expected spatial distribution to relate positively with forest,

particularly those associated with aquatic land cover types (e.g., flooded areas, riparian corridors, storm

ponds), reflecting a diet that includes aquatic prey (Dykstra et al. 2020). The researchers also expected

distributional shifts towards urban and away from rural areas combined with an overall population decline

resulting in a decline in total area occupied.

The researchers expected red‐shouldered hawk detectability to be lower in forested areas because of

decreased visibility, and also potentially correlate with urbanization because urbanization affects vegetation

structure (affecting visibility) and resource availability (affecting red‐shouldered hawk behavior). In addition,

the researchers anticipated detectability to vary among years, reflecting turnover of surveyors and

consequent fluctuations in skill and experience, and annual variation in environmental conditions and

behavior associated with resource availability. The researchers planned to incorporate call broadcasts in their

surveys to boost detectability (see Survey protocol), but red‐shouldered hawks are more responsive to call

broadcasts before trees are fully leafed (McLeod and Andersen 1998), potentially causing a negative

detectability relationship with survey date. The researchers also expected activity and therefore detectability

to be lower on windy days.

The researchers planned to use a dynamic occupancy model (MacKenzie et al. 2003) to analyze their data and

quantify ecological parameters of interest while accounting for relevant observation processes (Figure 6). This

model assumes that the true occupancy status of a site remains constant within the sampling period and that

changes among replicate surveys within a sampling period are therefore due to incomplete detectability. Replicate

surveys therefore need to be spaced sufficiently in time to avoid dependencies from red‐shouldered hawk

movement speed limitations and behavior.

The model estimates occupancy in the initial year as a function of spatially varying covariates, with

occupancy in subsequent years estimated from colonization and extinction rates, which can vary with spatial

or temporal covariates. Considering their objectives, the researchers related both initial occupancy and

occupancy dynamics (colonization and extirpation) with spatial covariates (percent urbanization, percent

forest, and proximity to water), and occupancy dynamic parameters were additionally allowed to vary

annually.

The researchers modeled detection probability as a function of covariates representing expected observation

processes. They related detectability as a linear function of forest cover, percent urbanization, day of year, wind

speed, and time of day. The researchers also planned to include categorical effects of year and observer as

covariates of detectability (either as fixed or random effects; Zuur et al. 2009).

Temporal design

To provide time series data needed to quantify occupancy dynamics, the researchers planned a study period of 5

years. Their sample selection algorithm generated an ordered list of units, whereby any ordered subset of units

would itself represent a spatially balanced sample (Stevens and Olsen 2004). Thus, the researchers could reduce the

number of units surveyed in each stratum in any given year if needed to deal with unexpected logistical constraints

while maintaining an annual sampling frequency for a core set of spatially balanced units representing the gradients

of interest. The researchers expected an annual sampling frequency for a core set of sampling units to allow

estimation of yearly rates of colonization and extirpation while also including data from units sampled less

frequently (MacKenzie et al. 2003). The researchers bounded their sampling period within each year by the

breeding season to ensure relatively predictable movements centered on a nest (Dykstra et al. 2020), thereby better

meeting the closure assumption (MacKenzie et al. 2003, 2018).
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Survey protocol

The researchers planned to implement call broadcast surveys from the centers of 1.3‐km2 grid cells representing

selected sampling units. Thus, each grid cell contained a single survey unit at its center. Because the researchers

lacked a straightforward way to measure the reach of call broadcasts, the size of the survey unit was ambiguous.

Nevertheless, the researchers expected that the minimum spacing of 1.14 km between neighboring survey unit

centers (same as distance between neighboring sampling unit centers) would limit the potential for a single breeding

territory to intersect >1 survey unit, so as to sufficiently meet assumptions required to infer population change from

occupancy dynamics (Linden et al. 2017).

Following established methods, the researchers planned a survey period of 10minutes, during which the

surveyor would broadcast conspecific calls at approximately 100 dB 6 times for 20 seconds every minute, followed

by a 4‐minute and 40‐second listening period, and restricted surveys to morning hours (McLeod and

Andersen 1998). The researchers defined a survey detection (visual or aural) as an individual flying overhead or

approaching the speaker, confirming that a breeding territory included the survey (and sampling) unit center. If

necessary to stay on schedule, surveyors could discontinue surveys once they recorded a survey detection, but they

planned to complete the full survey period where time allowed to confirm their assumption of territorial exclusivity.

The researchers planned to repeat surveys at a survey unit within each sampling period to provide data needed

to estimate detection probability and allow interpretation of occupancy probabilities as the probability of a breeding

territory including a sampling unit center. The researchers used a pilot study to evaluate how many surveys were

needed for unbiased occupancy estimation. Results from the pilot study indicated 4 surveys were required for

cumulative detection probabilities of p* ≥ 0.85 (i.e., sufficient probability of recording at least one detection where

the species is present for unbiased estimation of occupancy; MacKenzie and Royle 2005). To maximize

independence of detection outcomes among surveys, the researchers spaced surveys evenly across the sampling

period by completing surveys of all units before returning for subsequent surveys.

Assessing feasibility

The researchers used established software inputted with detection and occupancy probability estimates from pilot

data to verify sufficient power to discern occupancy dynamic relationships with environmental gradients of interest

(Bailey et al. 2007). Considering that a majority of land in the sampling frame was privately owned, the researchers

sought access to each survey unit from private landowners prior to the first field season. In cases where access was

denied to a selected sampling unit, the researchers replaced the unit with the next unit on the list generated by their

selection algorithm to maintain a spatially balanced sample (Stevens and Olsen 2004).

RESEARCH IMPLICATIONS

Contemporary hierarchical models expand researchers' capacity to ask increasingly complex and nuanced ecological

questions from count surveys. We provide general guidance for collecting count data of necessary quality and

structure to support desired inference with these models. Our framework outlines the major components of study

planning that, considered in the order presented, can help ensure appropriate data are collected to answer research

questions of interest. This framework and all of its components are demonstrated in 2 detailed examples.
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APPENDIX A: IMPLICATIONS OF MOVEMENT FOR STATISTICAL INDEPENDENCE

In general, analytical models require that any deviations of counts from the model‐predicted value for the sampling

unit within the sampling period can be reasonably approximated with the specified error distribution (e.g., typically

Poisson for count data and binomial for binary detection data). To help meet this assumption, researchers often pay

special attention to spacing between sampling units and limiting the distance at which surveyors can record

detections to avoid counting the same individual at multiple units. The potential for movement between adjacent

units, however, should not be confused with statistical independence. Such movement need not violate

independence assumptions as long as it is random with respect to the sampling process and ecological parameters

of interest (Zuckerberg et al. 2012). Conversely, spacing that avoids detection of the same individual at neighboring

units does not necessarily guarantee statistical independence. Non‐independence can arise, for example, by birds

following or avoiding the surveyor, spatial association or avoidance among neighbors, or unmodeled environmental

covariate relationships.
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