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1.0–5.0 Å were used for the fits. . . . . . . . . . . . . . . . . . . . . . . . 94

3.S21Testing the applicability of QuantEXAFS on well-defined system (Pt/TiO2)

- a) EXAFS fits reported in the paper derived from conventional approach;

EXAFS fits using QuantEXAFS on the same data (300 ◦C oxidation); fit

from QuantEXAFS in b) R-space and d) k-space; c) DFT optimized struc-

ture used for fitting the data in QuantEXAFS (‘hypothesized’ to be rep-

resentative of the Pt site in the original manuscript). Red: O, gray: Ti,

and yellow: Pt. The k-range of 2.0–10.5 Å−1 and the R-range of 1.0–5.0 Å
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Abstract

Applications of Multiscale Atomistic Modeling for Materials Discovery

With advances in computing technology and data science approaches, computational ma-

terial design is becoming an increasingly reliable and powerful tool for guiding experi-

mental investigations. By constructing databases of known or hypothetical structures of

interest, atomistic simulations can be performed in parallel to screen all structures and

identify the most promising candidate materials for a given application. This disserta-

tion will highlight some of the diverse applications where computational screening can be

implemented to gain new insight about different classes of materials. To begin, a study

leveraging density functional theory (DFT) calculations to screen a class of bimetallic

porphyrin-based metal-organic frameworks (MOFs) for electrocatalytic reduction of oxy-

gen in fuel cell devices is presented. The highly tunable 3-dimensional pore spaces of these

MOFs are shown to provide ideal catalytic environments that surpass the performance

of commonly used 2-dimensional surface-based electrocatalysts (e.g., platinum). Next, a

systematic approach that combines theory and experiment to characterize active sites in

supported atomically dispersed catalysts is discussed. By creating a comprehensive DFT

library of possible catalytic sites and comparing simulations with several complementary

experimental characterization techniques, an atomic-level understanding of atomically

dispersed platinum on magnesium oxide is elucidated. Finally, acknowledging the limita-

tions of quantum mechanics-based simulations due to computational expense, I highlight

how machine learning interatomic potentials (MLPs) are revolutionizing atomistic simu-

lations and how easy-to-use open-source software packages are increasing the throughput

of the scientific community. Specifically, I discuss the workflows behind generating a large

DFT data set of pure silica zeolite configurations, training an accurate and transferable

MLP for these systems, and calculating various material properties. Taken together, the

work herein will showcase the versatility of molecular modeling approaches, while em-

phasizing the central roles of experimental collaborations, machine learning, and software

development.
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Chapter 1

Introduction

Emerging technologies in areas such as renewable energy require the discovery of new

materials that exhibit ideal application-specific properties. With the existence of millions

of potential materials from diverse classes like metal-organic frameworks and high entropy

alloys, a purely experimental approach to screening even a small fraction of the vast ma-

terial space is impossible. High-throughput computational screening approaches provide

a way to narrow down the search space to a select few candidate materials that warrant

additional investigation.1–3 This investigation can come with more rigorous theoretical

modeling or with experimental validation, and ideally a combination of both where ex-

perimental feedback is used to refine the theoretical models. These computational searches

are becoming increasingly accurate, efficient, and exhaustive with advances in computing

technology and wide-spread access to computing resources. Moreover, open-access release

of the data produced in these searches4,5 coupled with the rising popularity of data science

and data-driven techniques is accelerating the rate at which we discover new materials

and gain new insights about existing materials.

From electrocatalysis to materials characterization, the potential applications of com-

putational screening studies are vast. While the science behind these applications can

vary substantially, the similarities lie in the underlying workflows. These workflows typ-

ically consist of generating or collecting potential materials to create a search database,

calculating properties of interest by performing atomistic simulations in parallel on all

materials, and analyzing the resulting data to make observations about the materials
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studied. This dissertation will highlight a couple of these diverse applications and in-

vestigate new machine learning methodologies for enhancing computational throughput.

This section aims to outline the key foundational ideas behind the work presented in this

dissertation, and it should be taken together with the content in Chapters 2–4.

1.1 Density Functional Theory

The majority of the results presented in this dissertation involves atomistic simulations

using Density Functional Theory (DFT) calculations. DFT seeks an approximate solution

to the time-independent Schrodinger equation and rests on the revolutionary theorems of

Kohn and Hohenberg. These theorems prove that the ground state energy of a molecular

system can be evaluated as a functional of electron density, reducing the 3N dimension-

ality of the Schrodinger equation to just three dimensions. Additionally, by minimizing

this functional, the true electron density corresponding to the full Schrodinger equation

solution is obtained. This is accomplished in practice by solving a set of single electron

wave functions (ψi(r)), known as the Kohn-Sham equations,6

[
−h̄2

2m
∇2 + V (r) + VH(r) + VXC(r)

]
ψi(r) = ϵiψi(r) (1.1)

There are three potentials present on the left hand side of Equation 1.1: V (r), VH(r), and

VXC(r). The first describes the interaction between each electron and the fixed atomic

nuclei. The second, VH(r), known as the Hartree potential, describes the electron-electron

interactions using a mean-field approach that considers each electron interacting with the

surrounding electron density at position r. The final potential, VXC(r) (the exchange-

correlation potential), considers all additional quantum-mechanical effects and corrects

for the self-interaction error in VH(r) induced by the mean-field approximation (i.e., each

electron is interacting with the surrounding electron density, which includes the electron

itself). The exchange-correlation potential is of particular practical importance to DFT,

as many functionals exist of varying complexity that are more or less appropriate to use

for any given atomic system. The most common functionals belong to a class that only

use the first derivative of the electron density in VXC(r). This is known as the generalized
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gradient approximation (GGA), and these functionals are thus broadly labeled as GGAs.

More complicated forms of VXC(r) that more rigorously consider electron exchange effects

are hybrid functionals, and Chapter 2 will discuss instances where these more complex

(and thus more computationally expensive) functionals are necessary.

1.2 Computational Electrochemistry

Transitioning to an energy infrastructure featuring hydrogen as a fuel source is a promising

solution to curb our reliance on fossil fuels given hydrogen’s carbon-free emissions and

ability to be sustainably produced from a renewable energy source.7,8 A hydrogen fuel

economy requires efficient electrochemical technology capable of producing hydrogen from

water, then storing and later consuming hydrogen in a fuel cell device to deliver power

on-demand. Fuel cells convert the energy stored in the chemical bond of hydrogen into

an electrical current driven by the electrocatalytic oxygen reduction reaction (ORR) at

the device’s cathode, and further advancements in current technology are needed to make

this process more feasible.9,10 The high cost and thermodynamic inefficiency of the most

commonly used ORR electrocatalysts (e.g., Pt/C) are seen as the primary bottlenecks

in fuel cell development.11 There is great demand for new materials, and computational

screening methods coupled with electrochemical models employing DFT are enabling

rapid discovery of promising new electrocatalysts to investigate experimentally.

1.2.1 Oxygen Reduction Reaction

The oxygen reduction reaction can follow the full four-electron reduction pathway to

water, or the two-electron partial reduction pathway to hydrogen peroxide depending on

the catalyst,

O2 + 4(H+ + e−) → 2H2O;E◦ = 1.23 V (1.2)

O2 + 2(H+ + e−) → H2O2;E
◦ = 0.7 V (1.3)

The four-electron reduction involves four proton-electron pair transfers and proceeds

through three reaction intermediates: ∗OOH, ∗O, ∗OH,
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O2 + ∗ + 4(H+ + e−) → ∗OOH + 3(H+ + e−) (1.4)

∗OOH + 3(H+ + e−) → ∗O +H2O + 2(H+ + e−) (1.5)

∗O + 2(H+ + e−) → ∗OH +H+ + e− (1.6)

∗OH +H+ + e− → H2O + ∗ (1.7)

where ∗ refers to the bare active site. The two-electron pathway involves only a single

adsorbed ∗OOH intermediate and two successive proton-electron additions,

O2 + 2(H+ + e−) → ∗OOH +H+ + e− (1.8)

∗OOH +H+ + e− → H2O2 (1.9)

1.2.2 Computational Hydrogen Electrode

The works presented in Chapter 2 uses the computational hydrogen electrode (CHE)

model developed by Nørskov12 to incorporate the effect of the electrical potential into the

theoretical predictions. Under the CHE model, the reference potential is set to that of

the standard hydrogen electrode, thus at standard conditions (298 K, 1 bar, pH = 0), the

chemical potential of a proton-electron pair is equal to that of hydrogen in the gas phase

(i.e., the reaction 1/2H2 → H+ + e− is in equilibrium). This simple observation implies

that the binding energies of the OXR intermediates can be then calculated using gaseous

H2 and H2O as references,

∆EOOH = E∗OOH − E∗ − (2EH2O(g) − 3/2EH2(g)) (1.10)

∆EO = E∗O − E∗ − (EH2O(g) − EH2(g)) (1.11)

∆EOH = E∗OH − E∗ − (EH2O(g) − 1/2EH2(g)) (1.12)
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The electronic binding energies for the OXR intermediates are converted to free ener-

gies by including corrections for the change in zero-point energy (∆ZPE), entropic effects

(−T∆S) and solvation (∆w).

∆G0
OXR = ∆EOXR + ∆ZPE − T∆S + ∆w (1.13)

The effect of the electrochemical cell potential is considered by shifting the free energies

by neU where n is the number of proton-electron pairs and U is the applied potential vs

RHE,

∆GOXR = ∆G0
OXR − neU (1.14)

The computational electrocatalytic performance is measured by the theoretical limit-

ing potential (UL), the potential at which one of the reaction steps stops being thermo-

dynamically downhill. The individual reaction energies for each step are written as,

∆G1 = ∆GO2 − ∆GOOH = 4.92 − ∆GOOH (1.15)

∆G2 = ∆GOOH − ∆GO (1.16)

∆G3 = ∆GO − ∆GOH (1.17)

∆G4 = ∆GOH − ∆GH2O = ∆GOH (1.18)

These equations are shown in the free energy diagram depicted in Figure 1.1. As each

step consists of a single proton-electron pair transfer, the limiting potential for the overall

reaction is equal to the least exergonic step in Equations 1.15-1.18,

UL = min(∆G1,∆G2,∆G3,∆G4) (1.19)

This limiting potential has been shown to correlate with experimental onset poten-

tials,13 and it can be related to the theoretical overpotential for 4e ORR as,
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η = 1.23 V − UL (1.20)

The overpotential represents the deviation from the equilibrium cell potential (1.23

V) and corresponds to thermodynamic inefficiencies (heat losses) in these devices. The

limiting potential and overpotential serve as measures of catalyst performance.

Figure 1.1. Example free energy diagram for the 4e ORR reaction. The differences
in free energy between each reaction intermediate species correspond to each step’s
limiting potential, with the minimum of these corresponding to the overall limiting
potential for the reaction.

1.2.3 Scaling Relationships and Volcano Plots

By inspection of Equation 1.19 and Figure 1.1, it can be seen that an ideal catalyst would

bind each intermediate with a constant difference of 1.23 eV relative to the previous species

(e.g., 3.69 eV for ∗OOH and 2.46 eV for ∗O). However, due to the existence of linear scaling

between the reaction intermediate binding energies for a family of catalysts, individual

tuning of the binding energies is impossible. For the commonly used 2-D surface catalysts

(Pt, Pd, etc.), the binding energies have been shown to follow the relationships,11
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∆GOOH = ∆GOH + 3.2 (1.21)

∆GO = 2∆GOH (1.22)

These scaling relations exist due to the similar catalyst-oxygen bond that exists for

all intermediates, with the slope of 2 for ∆GO compared to ∆GOH due to a double bond

forming between the catalyst and oxygen adsorbate. As these energies are all correlated,

a convenient consequence of these scaling relationships is the ability to predict the overall

activity for a catalyst family as a function of only a single intermediate binding energy

(typically chosen to be ∗OH). For 2-D surface catalysts, rearranging Equations 1.21 and

1.22 and substituting into Equations 1.15-1.17 shows each limiting potential can be written

as functions of only ∆GOH as,

∆G1 = −∆GOH + 1.72 (1.23)

∆G2 = −∆GOH + 3.2 (1.24)

∆G3 = ∆GOH (1.25)

and then the overall limiting potential corresponds to,

UL = min(−∆GOH + 1.72,−∆GOH + 3.2,∆GOH ,∆GOH) (1.26)

This is typically represented graphically as a volcano-shaped plot with the legs of the

volcano defined by the linear limiting potential equations above. Figure 1.2 shows the

resulting volcano plot for common 2-D surface catalysts, and it can be seen that the

peak of the volcano is well below the ideal value of 1.23 V - a direct consequence of the

scaling relationships. For strongly binding metals on the left leg (blue in Figure 1.2, the

overall activity is limited due to ∗ OH overbinding, while the metals on the right leg are

limited due to ∗ OOH underbinding. This implies that 2-D surface catalysts will always
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be subject to thermodynamic inefficiencies and an entirely new family of catalysts that

circumvent these scaling relationships is needed to achieve more active electrocatalysts.

Figure 1.2. Volcano plot for common 2-D surface electrocatalysts showing the reduced
maximum achievable efficiency due to linear scaling relationships. Reproduced from
Kulkarni et al. 2018.11

As discussed in Chapter 2, a promising strategy to favorably alter these scaling rela-

tionships is through confinement of the reaction intermediates in a 3-D catalytic environ-

ment. To this end, metal-organic frameworks (MOFs), nanoporous materials consisting

of metal nodes joined together by organic linking ligands, are promising due to the vast

synthetic space enabling highly-customizable materials. By confining ORR to the 3-D

MOF pore environments, selective stabilization of ∗OOH can be achieved. This selective

stabilization favorably modifies the scaling relationships and shifts the right leg of the

volcano up, resulting in a class of electrocatalysts with a higher achievable maximum

limiting potential, as seen qualitatively in Figure 1.3.
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Figure 1.3. Effect of confining ORR inside 3-D MOF pore spaces allows for stabilization
of ∗OOH relative to ∗OH, resulting in modified scaling behavior (left) and higher
achievable limiting potentials (right).

1.3 Machine Learning Interatomic Potentials

While computational methods based on quantum mechanics, such as Density Functional

Theory (DFT) used in this work, are often necessary to accurately describe many mate-

rials, these approaches suffer from high computational cost. With DFT, atomistic simu-

lations are limited to small length (up to a few hundred atoms) and time scales (up to

a few picoseconds), which significantly limits the feasible applications. High throughput

screening of thousands or millions of materials or simulating long dynamic processes (e.g.,

diffusion with molecular dynamics (MD)) are rendered computationally intractable with

DFT. Machine learning interatomic potentials (MLPs), also known as machine learning

force fields (ML FFs), are revolutionizing atomistic simulations by significantly reducing

computational cost compared to DFT without significant losses in accuracy. By training

an MLP model on a suitable set of atomic configurations from first-principles calculations,

the model learns the complex potential energy surface (PES) of the systems included in

training.14,15 Simulations can then be performed with the MLP performing the energy

and force evaluations, circumventing the need to do any expensive quantum mechanical

calculations. Numerous forms of MLPs exist, typically classified as either kernel or neural

network methods, and new formulations and open-source software packages for working

with MLPs are constantly appearing. The work in this dissertation utilizes the Deep Po-
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tential (DP) MLP method16 as implemented in the open-source DeePMD-kit17 package,

and the following sections will discuss the essential concepts behind this approach.

Figure 1.4. Effect of confining ORR inside 3-D MOF pore spaces allows for stabilization
of ∗OOH relative to ∗OH, resulting in modified scaling behavior (left) and higher
achievable limiting potentials (right).

1.3.1 Neural Networks

Neural Networks (NNs) are among the most popular machine learning algorithms and were

originally developed to mimic biological neurons in the human brain.18 They are powerful

regression tools used to represent complex and highly nonlinear data by training on a large

set of reference data. NNs function as connected layers of neurons that transform inputs

to produce an output that is passed between layers if a threshold value is achieved. Deep

NNs feature multiple layers and consist of an input layer, one or more hidden layers, and

an output layer of interconnected neurons. At each neuron layer i, the vector of inputs

(x⃗i−1) from the previous layer’s neurons are mapped to the output (x⃗i) as,

x⃗i = Sa(Wx⃗i−1 + b⃗i) (1.27)

where W is a matrix of weights for each input, b⃗i is a constant bias or threshold added

to each weighted input, and Sa is an activation function to modulate the ”firing” of the

neuron. The weights and biases are assigned randomly and then optimized during training

by minimizing a loss function (e.g., mean squared error) that measures the deviation of

output values from a set of reference (training) data points.19
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1.3.2 Deep Potential Method

The DP method has been applied to represent the PES of many diverse atomistic sys-

tems.20–24 The generality of this approach can be attributed to six key considerations:

1. Model inputs consist of only atomic coordinates and chemical species (i.e., element

of each atom).

2. The model is size extensive.

3. The model preserves natural symmetries: invariant for translational, rotational, and

permutational symmetries.

4. No human intervention or parameterization is needed.

5. The model is smooth and continuously differentiable (necessary for force predic-

tions).

6. The model is accurate for both finite and periodic systems.

The DP method evaluates the energy of a given atomic configuration by predicting

single-atom energy contributions from each atom’s local environment, which are then

summed to obtain the overall system’s energy prediction. This consists of first, for each

atom i, transforming the Cartesian coordinates of each neighboring atom j within a

specified cutoff distance (rc) to localized coordinates relative to the position of atom i,

E =
∑

Ei (1.28)

{xij, yij, zij} → {s(rij), Xij, Yij, Zij} (1.29)

Xij =
s(rij)xij
rij

(1.30)

Yij =
s(rij)yij
rij

(1.31)
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Zij =
s(rij)zij
rij

(1.32)

where rij is the distance between atom i and atom j and s is a function that gives more

weight to closer atoms and avoids discontinuities at rc by smoothing values to zero for

distances between rc and a smoothing cutoff rs,
1
rij

rij < rs

1
rij

{
1
2
cos

[
π

(rij−rs)

(rc−rs)

]
+ 1

2

}
rs < rij < rs

0 rij > rc

These transformed inputs are then passed through an embedding neural network to

obtain a set of descriptors with rotational and permutational symmetry invariance. Fi-

nally, these transformed descriptors are passed through a final fitting neural net that

produces a single atom energy contribution, which is then summed to the total system

energy as shown in Equation 1.28. The atomic forces for each atom i are also predicted

as the negative gradient of the energy with respect to its position. The NN parameters

are tuned by minimizing the loss function (L),

L =
1

B

∑
pe|E − EDFT |2 + pf |F − FDFT |2 (1.33)

where B is the size of the training batch and pe and pf are weighting prefactors that control

the contributions of the energy and force mean squared errors to the total loss function.

Note that the virial stress tensor data can also be included in training which would add

an additional term to the above loss function; however, stresses were not included in the

training for the work presented in this dissertation.
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2.1 Abstract

It has been well-established that unfavorable scaling relationships between ∗OOH, ∗OH,

and ∗O are responsible for the high overpotentials associated with oxygen electrochem-

istry. A number of strategies have been proposed for breaking these linear constraints for

traditional electrocatalysts (e.g. metals, alloys, metal-doped carbons); such approaches

have not yet been validated experimentally for heterogenous catalysts. Development of a

new class of catalysts capable of circumventing such scaling relations remains an ongoing

challenge in the field. In this work, we use density functional theory (DFT) calculations

to demonstrate that bimetallic porphyrin-based MOFs (PMOFs) are an ideal materials

platform for rationally designing the 3D active site environments for oxygen reduction

reaction (ORR). Specifically, we show that the ∗OOH binding energy and the theoretical

limiting potential can be optimized by appropriately tuning the transition metal active

site, the oxophilic spectator, and the MOF topology. Our calculations predict theoret-

ical limiting potentials as high as 1.07 V for Fe/Cr-PMOF-Al, which exceeds the Pt/C

benchmark for 4e ORR. More broadly, by highlighting their unique characteristics, this
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works aims to establish bimetallic porphyrin-based MOFs as a viable materials platform

for future experimental and theoretical ORR studies.

2.2 Introduction

Oxygen electrochemistry in the form of oxygen reduction reaction (ORR, for fuel cells) and

oxygen evolution reaction (OER, for water electrolyzers) lies at the heart of an environ-

mentally sustainable hydrogen-based economy.1 However, widespread adoption of these

technologies has been limited due to the high cost and thermodynamic losses associated

with ORR and OER electrocatalysts (referred together as OXR). Despite large research

investments, only modest improvements have been achieved in the catalyst performance

over the past decade; the best catalysts show onset potentials that deviate ∼ 0.3–0.4 V

away from the ideal value (i.e. 1.23 VRHE).2–4 These losses have been attributed to the un-

favorable scaling between the binding energies of OXR intermediates, in particular ∗OOH

vs ∗OH.2,5,6 Although recent discoveries of low-cost alternatives are encouraging,7,8 it is

likely that their performance is also constrained by similar intrinsic limitations. Despite

slight material-specific variations, the robustness of the ∗OOH vs ∗OH linear correlation

across different materials and computational methods is well-established.9,10 Specifically,

a slope of 0.9 - 1.0 is observed (due to the single bond with the surface), with an intercept

of 2.8 – 3.2 eV (due to the peroxyl bond in ∗OOH).5,11–14 Designing materials that circum-

vent this linear scaling relationship is crucial for the development of the next generation

of OXR electrocatalysts.11,15 A promising strategy towards this goal is the confinement

of ∗OOH within a 3-D active site environment, which has been demonstrated for a few

model systems and homogenous molecular catalysts. For instance, Rossmeisl et al.16,17

have shown that diporphyrin motifs are capable of facilitating ∗OOH dissociation via two

closely-spaced binding sites. This approach bypasses the limitations imposed by ∗OOH

scaling in favor of the less restrictive dissociated ∗O + ∗OH pathway. Following some of

the thermodynamic optimization guide-lines discussed by Calle-Vallejo and colleagues,18

we aim to preferentially stabilize ∗OOH (relative to ∗OH) by tuning the surrounding

active site environment.
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2.3 Results and Discussion

Oxophillic spectator

TM1

TM2

Active-site

Figure 2.1. Preferential stabilization of ∗ OOH relative to ∗OH at different dis-
tances compared to the non-interacting system for various active sites (TM1 =
Fe, red; Co, light blue; Ni, dark blue) with an oxophilic Fe-OH spectator (TM2).
∆∆EOOH−OH = ∆EOOH−OH − ∆E∞

OOH−OH where ∆EOOH−OH represents the dif-
ference between the ∗OOH and ∗OH binding energies at various TM1-TM2 distances
and ∆E∞

OOH−OH represents difference between the ∗OOH and ∗OH binding energies
for the non-interacting systems (i.e., at large TM1-TM2 distances). Inset shows active
TM1-OOH stabilized by hydrogen-bonding interactions with TM2-OH spectator em-
bedded in graphene.

Similar to the co-facial Pacman molecules,19–21 Figure 2.1 shows a related model sys-

tem consisting of two transition metals (TMs). Specifically, Fe/N4-doped (TM2 = Fe)

graphene sheet is placed in close proximity with a TM porphyrin molecule (TM1 = Fe,

Co and Ni). The Fe center embedded in the graphene acts as an inactive spectating

species that preferentially stabilizes TM1-∗OOH via hydrogen bonding interactions. An

additional stabilization of 0.2 – 0.35 eV is observed for ∗OOH at distances of ∼ 7.0 Å

(using the BEEF-vdW22 functional) compared to the non-interacting system (i.e. at large

separations). Validation with other functionals (e.g. RPBE,23 BLYP,24,25 B3LYP26 and
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HSE06,27,28 Grimme’s D3BJ29–31) show that the stabilization (1) is not an artifact of us-

ing a specific functional, (2) is not dominated by van der Waals interactions (Figure 2.2)

and (3) changes the TM1-O bond order affecting both the “slope” and the “intercept” of

the scaling lines (see Figure 2.3). The preferential stabilization of ∗OOH relative to ∗OH

arises due to the favorable confined geometry, which provides a design principle to guide

the development of active OXR catalysts. This finding leads to an intriguing question: can

we design other materials that leverage favorable spatial orientations of binding sites to

circumvent OXR scaling relations? Although related concepts have been proposed,32,33 to

the best of our knowledge, no heterogenous catalysts have been experimentally proven to

take advantage of these effects for ORR. Within the field of electrochemistry, it is critical

to translate these strategies to an experimentally-synthesizable and industrially-scalable

class of materials.12

Figure 2.2. Functional dependency and Van der Waals contributions for the additional
stability of ∗OOH relative to ∗OH for Co-porphine interacting with Fe-OH spectator
embedded in graphene.

Metal-Organic Frameworks (MOFs), a class of nanoporous materials consisting of

metal nodes interconnected by organic linkers, are uniquely attractive due to their ex-

perimentally realizable diversity of active sites, 3-D porous chemical environments, and

topologies.34–36 Although MOF electrochemistry is a relatively nascent direction, a va-
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Figure 2.3. Difference in ∗OOH and ∗OH binding energies as a function of hydrogen
bond strength formed between ∗OOH and the spectating Fe-OH for different metals.

riety of common MOFs, such as Co-PMOF-Al,37 PCN-223(Fe),38 PCN-226(Co),39 and

Ni-HAB40 show intrinsic ORR activity. The experimental onset potentials reported for

these MOF systems range from 0.7 – 0.83 V, which is comparable with other promis-

ing catalysts. Progress in MOF electrocatalysis, including possible challenges associated

with MOF stability and charge transfer, has been summarized in a number of recent

reviews.41–44 In the remainder of this work, we use periodic density functional theory

(DFT) calculations to show that bimetallic porphyrin-based, mixed-linker MOFs can be

designed to preferentially stabilize ∗OOH. Specifically, by using a combination of active

and oxophilic transition metal cations, we leverage the 3-D pore structure of MOFs to spa-

tially orient the porphyrin binding sites and circumvent the scaling relations. We consider

the full four-electron associative reduction pathway to water and the partial two-electron

pathway to hydrogen peroxide (further details are presented in Chapter 1). It should be
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noted that alternative mechanisms have been reported for some M-N4 catalysts under

certain conditions.45–49 However, an exhaustive investigation into all possible mechanis-

tic pathways is beyond the scope of this work. The theoretical limiting potential (UL),

defined as the highest potential at which all reaction steps remain thermodynamically

downhill, is used to evaluate electrocatalytic performance. Although UL is determined

entirely from thermodynamics, it has been shown to correlate with ORR activity.6 Figure

2.6a shows the structure of PMOF-Al,37,50 which consists of TCPP ligands (TCPP =

tetrakis(4-carboxyphenyl)porphyrin) stacked on top of each other to form a 3-D structure

connected via a 1-D Al-oxide chain. PMOF-Al is water stable and has been shown to

be experimentally active for ORR.37 The spacing between the two linkers is ∼ 6.7 Å,

which compares well with the favorable region in Figure 2.1. As different linkers can

be incorporated in MOFs during synthesis or using post-synthetic methods,51–53 we used

DFT calculations to explore mixed-linker PMOF-Al configurations consisting of alter-

nating TM1/TCPP and TM2/TCPP linkers (TM1 = Cr, Mn, Fe, Co, Ni; TM2 = Cr,

Mn, Fe). Pourbaix diagrams are used to determine the coverage and oxidation states of

the TMs while allowing simultaneous binding on both sides of the linker (Fig. 2.4). All

possible spin combinations are explored to determine the lowest energy electronic struc-

ture for each TM (Table 2.4). Entropic corrections are calculated using the harmonic

approximation (Table 2.5), and solvation contributions are estimated using VASPsol.54

The solvent isosurface (Figure 2.5) confirms that the solvent penetrates the MOF cavity.

Other solvation approaches are possible,55 but are beyond the scope of this work. The

calculated absolute solvation effects are summarized in Table 2.1.

Table 2.1. Absolute solvation effects (eV) for each porphyrin system.

Adsorbate TCPP PMOF-Al No spectator PMOF-Al Fe-OH spectator

Bare -1.18 -0.88 -0.91

∗OOH -1.39 -1.12 -1.05

∗O -1.43 -1.15 -1.14

∗OH -1.37 -1.10 -1.12
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Figure 2.4. TPSSh-D3BJ predicted Pourbaix diagrams showing the coverage of each
metal active site at increasing potential.

Figure 2.6b shows the DFT-calculated free energy diagram for the Co active site in

monometallic and bimetallic PMOF-Al using TPSSh-D3BJ56 functional. The theoretical

limiting potential for the molecular Co/TCPP analog (UL = 0.52 V) is consistent with the

monometallic Co/PMOF system (UL = 0.59 V, blue). Our calculated limiting potentials

agree reasonably with the experimentally measured onset potentials (0.75 V),37 further

confirming the suitability of the computational protocol.

Similar calculations with RPBE-D3BJ predicts incorrect spin states and TM geome-

try, while the HSE06-D3BJ functional under-predicts binding energies for Co/TCPP and
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Figure 2.5. Solvent isosurface predicted by VASPsol for Co-∗OOH in the no spectator
PMOF-Al system.

Fe/TCPP. These findings are inconsistent with experimental results and are not discussed

further (see section 2.5.2 for details). Detailed benchmarking of different functionals (e.g.

ωB97,57 MN1558 and others59) with coupled cluster theory and/or multireference methods

for various transition metals is beyond the scope of this work.55,60–62

Compared to Co-PMOF-Al with no spectator, Figure 2.6b shows that the presence of

an oxophilic spectator (Fe-OH, green) improves the predicted activity. For instance, the

theoretical limiting potential for the bimetallic Co/Fe-OH/PMOF-Al catalyst (0.81 V) is

comparable to the Pt/C benchmark (UL = 0.8 V). The improved activity originates from

the additional 0.22 eV stabilization of ∗OOH due to the presence of the Fe-OH spectator.

Simulations of other oxophilic TMs (see Mn-OH and Cr-OH in Figure 2.6) confirms that

the presence of the spectator ligand significantly affects ∗OOH binding; the other OXR

adsorbates (i.e. ∗OH and ∗O) are largely unaffected. While the above discussion is limited

to the Co active site, we perform additional DFT calculations with Ni, Fe, Cr, and Mn

active sites. For each TM, the most stable coverage predicted by the Pourbaix diagram
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preferential 
*OOH stabilization

6.7 Å

(a) (b)

Figure 2.6. (a) Structure of bimetallic PMOF-Al with Co active site and Fe-OH spec-
tator, (b) Free energy diagram (TPSSh-D3BJ) showing the preferential stabilization
of ∗OOH. Color scheme: Co (pink), Fe (brown), C (grey), O (red), and H (white).

is used (e.g. Cr-OH, Mn-OH). As shown in Fig. 3a, we predict similar scaling slopes for

TCPP (0.66, orange) and monometallic PMOF-Al (0.60, blue). The deviation from unity

likely arises due to the changes in the spin states for ∗OOH and ∗OH intermediates and

differences in the active site coordination geometry (e.g. square planar Co vs. distorted

square pyramidal Cr-OH). Interestingly, previous work by Busch et al. has shown that

the slope of the scaling line depends on the choice of the DFT functional.46

More interestingly, the presence of the Fe-OH spectator results in a favorable deviation

from the above scaling behavior. Specifically, we observe a preferential ∗OOH stabilization

of up to 0.4 eV for various TM active sites (Fig. 2.8). A smaller deviation is observed for

strongly binding TMs (e.g. Fe-∗OOH, 0.07 eV). In contrast, weakly binding TMs (e.g. Ni-

∗OOH) are stabilized to a larger extent (0.39 eV). For a given TM active site, the extent

of ∗OOH stabilization also depends on the identity of the spectator. For instance, Mn-OH

spectator (purple, Figure 2.7a) results in systematically higher stabilization than Fe-OH

spectator. In all cases, the ∗O and ∗OH binding energies do not change significantly (<

0.15 eV).

The trends in ∗OOH stabilization can be explained by the increasing electronegativity

of the spectating metal (Mn < Cr < Fe). Spectating metals with lower electronegativity
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Figure 2.7. (a) Comparison of *OOH vs. *OH scaling lines for TCPP, monometallic
and bimetallic PMOF-Al with different active sites and spectators, (b) 1-D volcano plot
showing the improvement in activity (black arrows) due to the presence of Fe-OH spec-
tator (filled symbols, red and green volcano legs) compared to the no spectator (empty
symbols, black volcano leg) scenario. TPSSh-D3BJ calculated limiting potential for
(c) 4e and (d) 2e ORR for various bimetallic MOFs.

allow for more charge to be localized on the spectator ligand (OH), resulting in a stronger

hydrogen bond and increased stability of the ∗OOH intermediate. Table 2.2 shows the

differences in the calculated bond orders for Co active site with different spectators. In

particular, the HOOH–OOH bond order increases from 0.23 (Fe-OH spectator) to 0.33 (Mn-

OH spectator) confirming a stronger hydrogen bond. Bond order analysis also reveals that

the presence of the spectator localizes more charge on the ∗OOH adsorbate compared to

the no spectator system. The Co-OOOH bond order decreases from 0.57 to 0.48 with the

Mn-OH spectator. Although the weakened TM-oxygen bond may favor the 2e pathway,

detailed investigation of kinetic effects and product selectivity (i.e. H2O2 vs. H2O) is
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beyond the scope of this work.

As the spectator stabilizes ∗OOH, the improvement in the ORR limiting potential is

well-explained by the 1-D volcano plot in Figure 2.7b. Specifically, for TMs that lie on the

right leg of the volcano (i.e. activity is limited by O2 → ∗OOH), the spectator stabilizes

∗OOH, improves the ∗OOH vs. ∗OH scaling, and favorably shifts the right leg of the

volcano. This is depicted by black arrows in Figure 2.7b corresponding to an improvement

in the activity of Co and Cr-OH active sites due to the Fe-OH spectator (green line, filled

symbols) compared to the no spectator case (black line, empty symbols). The predicted

limiting potential for the bimetallic Cr/Fe-PMOF-Al catalyst is 1.07 V, which exceeds

the performance of the benchmark Pt/C catalyst (UL = 0.8 eV). TPSSh-D3BJ suggests

Cr-OH active site possesses high activity for all spectator combinations, and the limiting

potentials for Cr-OH TCPP (0.75 V) and no spectator (0.79 V) agree very well with the

experimental half-wave potential (0.77 V) of a recently reported Cr-N4 catalyst.63 The

strongly-binding metals on the left leg of the volcano (e.g. Mn-OH) do not benefit from

the addition of the spectator, as ∗OOH formation is not limiting for these catalysts.

Table 2.2. Calculated DDEC bond orders for Co–∗OOH with different spectators.

Spectator Pauling electronegativity Bond 1∗ Bond 2∗ Bond 3∗ Bond 4∗

No spectator – 0.57 1.25 0.79 –

Fe-OH 1.83 (Fe) 0.52 1.30 0.66 0.23

Cr-OH 1.66 (Cr) 0.49 1.32 0.63 0.24

Mn-OH 1.55 (Mn) 0.48 1.36 0.56 0.33

∗Refer to Figure 2.9 for identifying numbered bonds.

We emphasize that circumventing scaling relations via ∗OOH stabilization does not

guarantee enhanced activity, and only catalysts in which the potential-determining step

(i.e. the least thermodynamically favorable reaction step) involves ∗OOH are influenced

by this approach.64,65 Moreover, although the potential-dependent step has been shown to

correlate with kinetics,6,66,67 it may not provide a quantitative description of the reaction

rates.68–71 These results are further summarized in the heat-map in Figure 2.7c, which
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includes Mn-OH and Cr-OH spectators. While Fe-OH spectator tends to improve the 4e

limiting potentials, Mn-OH and Cr-OH do not have the same effect. Specifically, Mn-OH

and Cr-OH overstabilize ∗OOH, and the activity becomes limited by the ∗OOH → ∗O

step (see 1-D volcanoes in Figure 2.10). As the ∗OOH → ∗O step is often not limiting for

metals and alloys, we emphasize that molecular and MOF-based ORR catalysts require

a more careful analysis beyond the traditional ∗OOH vs ∗OH scaling for metals and

alloys. Single atom M-N4 catalysts only allow binding of the ∗O intermediate at the on-

top site (as opposed to the more favorable hollow sites for metallic surfaces), which has

already been shown to destabilize binding of ∗O.72 This destabilization of ∗O combined

with overstabilization of ∗OOH presents a new bottleneck for 4e ORR, where formation

of ∗O from ∗OOH limits the achievable potential. While these effects are observed in

all bimetallic combinations, the moderate stabilization of ∗OOH due to Fe-OH spectator

allows for an improvement in theoretical overpotential, notably for the Co and Cr-OH

active center. However, stronger stabilization seen with Mn-OH and Cr-OH spectators

yields a reduction in catalytic performance as ∗OOH is stabilized to the point where ∗O

formation is unfavorable.

Recognizing that this ∗O destabilization relative to metal surfaces may compromise

the selectivity of these systems towards the 4e reduction to water, we extend our analysis

to the 2e oxygen reduction reaction to form hydrogen peroxide. Figure 2.7d summarizes

the calculated 2e limiting potentials for all active site and spectator combinations. As

expected, for stronger binding active sites that lie on the left leg of the volcano, incor-

poration of an oxophilic spectator overstabilizes ∗OOH and reduces the 2e ORR activity.

However, for weakly binding metals on the far right of the volcano, a noticeable improve-

ment in theoretical limiting potential is obtained. For the Ni active site, TPSSh-D3BJ

predicts highly active limiting potentials of 0.53 (0.66) V when combined with Fe-OH

(Cr-OH) spectators, which represents a 0.4 eV improvement over the no spectator sce-

nario. The above results indicate that porphyrin-based MOFs are a promising platform

for tuning the binding energies of OXR adsorbates. Unlike metals and alloys where only

the composition73 or strain74 can be varied, the 3-D active sites in MOFs offer unique
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degree of control that is unavailable in other materials. Specifically, in addition to ap-

propriately choosing the bimetallic system (i.e. TM1 and TM2), we can now potentially

design MOF topologies to further tune the adsorbate binding energies for OXR. As an

illustrative example, we consider a model system consisting of two interacting porphine

molecules (Co active site, Fe-OH spectator) at varying distances. As shown in Figure

2.11a, parallel configurations can be considered as analogs of PMOF-Al with different

1-D metal oxide chains (e.g. substituting Al with Ga or In75), or other similar rod-based

MOFs, such as MIL-173.76 Additionally, a pair of angled (37◦) porphines is chosen to

mimic the topology of the porphyrinic Zr6-oxo cluster MOF, PCN-225.77 The distance

between the TMs is varied to illustrate the reticular approach in MOF synthesis;78 we

demonstrate the effects of varying the linker size while retaining the same topology. Fig.

4a shows a high degree of control on reaction thermodynamics can be achieved by tuning

the separation distance between adjacent porphyrin motifs, and the distances of several

known MOFs are highlighted with vertical dotted lines. For both the parallel and angled

configurations, shorter distances (∼ 7 Å) enable stronger ∗OOH stabilization that suggest

a preference towards 4e ORR. Interestingly, TPSSh-D3BJ predicts a range of ∗OOH bind-

ing energies that encompass the 2e ORR optimum (4.2 eV, dashed black line in Figure

2.11a). For the model systems considered here, we find that intrinsic catalytic activity

is insensitive to small topological changes in porphyrin orientation (i.e. parallel versus

angled). These results show that weakly ∗OOH binding active sites can be optimized for

2e peroxide synthesis by appropriately choosing the spectator transition metal, optimiz-

ing the TM1-TM2 separation, and changing the MOF topology. We acknowledge that

these results alone are not conclusive of reaction selectivity; detailed kinetic studies and

experimental measurements are necessary to validate our predictions.

2.4 Conclusion

By using state-of-the-art DFT calculations, we have demonstrated that porphyrin-based

MOFs are an ideal materials platform for rationally designing 3-D active site environments

for ORR. To the best of our knowledge, these computational predictions represent the first
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experimentally-synthesizable heterogenous catalysts (i.e. MOFs) where the 3-D structure

of the active site can be intentionally designed to circumvent the ∗OOH vs. ∗OH scaling

relations. In addition to possible electrochemical stability concerns, other factors that

impact the efficacy of MOF electrocatalysts, such as charge transport,79–82 counterion and

substrate diffusion,81,82 explicit solvation,55 etc. represent on-going research directions in

the group. We anticipate that this work will motivate further computational studies and

experimental validation of MOF-based electrocatalysts for ORR.

2.5 Computational Methods

2.5.1 DFT Calculations

Periodic density functional theory (DFT) calculations are performed using the projec-

tor augmented wave method as implemented in the Vienna ab initio simulation package

(VASP). All energies are calculated using a 400 eV plane-wave cutoff. Only the Γ-point is

sampled owing to the large MOF unit cells. A range of generalized gradient approximation

(BEEF-vdW,22 BLYP,24,25, RPBE23) and hybrid (B3LYP,26, HSE06,27,28, and TPSSh56)

functionals are used to examine the sensitivity of our results. Dispersion corrections are

considered using the DFT-D3 method with Becke-Johnson damping.29–31. Electronic en-

ergies are converged to 10−6 eV. All structures are relaxed until the forces are less than

0.03 eV/Å for RPBE and 0.1 eV/Å for HSE06 and TPSSh. A lower threshold is used for

the hybrid functionals owing to the high computational costs; differences in binding ener-

gies are less than 0.01 eV. Full relaxations were performed for RPBE and HSE06. TPSSh

relaxations were performed with HSE06 geometry and allowing the N4-M-adsorbate moi-

eties to relax due to computational cost. All possible spin states are considered. Implicit

solvation corrections are implemented using VASPSol.54 The finite displacement method

(0.015 Å) is used to calculate the entropic corrections and zero-point energies. Bond or-

ders are calculated using the density derived electrostatic and chemical (DDEC) charge

method.83,84
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2.5.2 Functional Comparison and Justification

A detailed investigation of various functionals including RBE, TPSSh and HSE06 (all with

Grimme’s D3BJ correction) is performed to identify a suitable computational protocol for

these systems. Specifically, we choose TPSSh-D3BJ as it correctly predicts the spin-states

while also agreeing with the available experimental observations for N4-Fe and N4-Co

catalysts. Our results show that RPBE tends to overstabilize the low-spin states, and

overpredicts OXR binding energies for Co. In particular, Co-N4 catalysts are known to

be active for 2e ORR, but RPBE predicts Co to lie on the left leg of the volcano (strong

∗OH binding), indicating low 2e ORR activity. On the other hand, HSE06 generally

predicts the correct spin-states, but strongly underbinds the ORR intermediates. Fe-N4

catalysts are known to be excellent for 4e ORR, and several recent studies have suggested

that the favorable reactions energetics are due to the formation of an additional axial

OH ligand on the metal center. HSE06 shows that N4-Fe-OH will be completely inactive

for ORR due to weaker ∗OOH binding, and N4-Fe is only weakly active. The calculated

theoretical limiting potentials obtained with Co are also underpredicted for HSE06. These

findings are summarized in Table 2.3, and all results obtained with RPBE and HSE06 are

presented in Figures 2.13-2.16. Similar results (incorrect spin states for GGA functionals

and under-binding due to higher exact exchange) have been observed for various other

transition metal porphyrin complexes. While we acknowledge uncertainty in our free

energy and implicit solvation corrections, we believe TPSSh provides the most reliable

comparisons with experiments. Although detailed benchmarking of electronic structure

methods and solvation is currently underway, we do not anticipate differences in the

qualitative trends predicted using TPSSh-D3BJ functional.

RPBE predictions were found to overestimate the binding energies of the ORR in-

termediates. The tightly bound adsorbates were thus less influenced by the adjacent

spectator and less stabilization was seen with this functional, as seen in Figure 2.12. The

performance of the bimetallic PMOF systems as predicted by RPBE is shown in Figure

2.13, and the scaling behavior is shown in Figure 2.14.
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Table 2.3. Comparison of experimental and theoretical activity of Fe and Co catalytic
sites in PMOF-Al.

Experimental potential (V) Theoretical UL (V)

Active site Onset Half-wave RPBE HSE06 TPSSh

N4−Co 0.75 0.55 -0.11 0.35 0.59

N4−Fe 0.86 0.74 0.34 0.29 0.71

N4−Fe−OH 0.86 0.74 0.75 -0.26 0.73

Table 2.4. TPSSh-D3BJ predicted relative spin-state energies of ORR intermediates
with Co active site.

Species Unpaired electrons Relative Energy (eV)

N4−Co 1 0.0

3 0.4

5 2.4

N4−Co−OH 0 0.0

2 0.2

4 0.3

N4−Co−O 1 0.0

3 0.0

5 0.5

N4−Co−OOH 0 0.1

2 0.0

4 0.4
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Figure 2.8. Stabilization of (a) *OOH, (b) *O, and (c) *OH for each active site and
spectator relative to the no spectator system.
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Active Site Spectator

Figure 2.9. Hydrogen-bond interaction between ∗OOH and TM-OH spectator. Calcu-
lated bond orders for 1-4 are shown in Table 2.2.

Figure 2.10. Volcano plots for (a) Mn-OH and (b) Cr-OH spectators (filled symbols)
showing a decrease in performance relative to no spectator (empty symbols) due to
overstabilization of the ∗OOH intermediate

Table 2.5. Free energy corrections applied to ORR binding energies.

Adsorbate ∆G− ∆E (eV)

∗OOH 0.11

∗O -0.08

∗OH 0.18
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Figure 2.11. (a) The ∗OOH binding energy for the two parallel (filled circles) and an-
gled (empty squares) interacting porphine molecules at various distances, (b) TPSSh-
D3BJ calculated 2e limiting potentials for the model systems. Limiting potentials for
PMOF-Al (red), PMOF-Ga (yellow), PMOF-In (green), MIL-173 (blue), and PCN-225
(purple) are predicted from their measured porphyrin separation distance.

Figure 2.12. Functional comparison for *OOH binding for parallel porphine molecules
with Co active site and Fe-OH spectator at various distances.
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Figure 2.13. RPBE-D3BJ predicted theoretical limiting potentials for (a) 4e and (b)
2e ORR for different spectator and active site combinations.

Figure 2.14. RPBE-D3BJ predicted *OOH vs. *OH scaling for different spectators.
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Figure 2.15. HSE06-D3BJ predicted theoretical limiting potentials for (a) 4e and (b)
2e ORR for different spectator and active site combinations.

Figure 2.16. HSE06-D3BJ predicted *OOH vs. *OH scaling for different spectators.
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3.1 Abstract

Atomically dispersed supported metal catalysts offer new properties and the benefits of

maximized metal accessibility and utilization. The characterization of these materials,

however, remains challenging. Using atomically-dispersed Pt supported on crystalline

MgO (chosen for its well-defined bonding sites for Pt) as a prototypical example, in this

work, we show how high-throughput density functional theory calculations (for assess-

ing all the potentially stable Pt sites) combined with automated EXAFS analysis can

lead to unbiased identification of isolated, surface-enveloped platinum cations as the cat-

alytic species for CO oxidation. The catalyst has been characterized by atomic-resolution

imaging, EXAFS, and HERFD-XANES spectroscopies; the proposed Pt site are in full
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agreement with experiment. This theory-guided workflow leads to rigorously determined

structural models and provides a more detailed picture of the structure of the catalytically

active sites than what is currently possible with conventional EXAFS analysis. As this ap-

proach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that

it will be of broad interest to the materials characterization and catalysis communities.

3.2 Introduction

Atomically dispersed metals on reducible (CeO2, TiO2, Fe3O4) and nonreducible (Al2O3,

MgO, ZrO2) metal oxide supports have drawn wide attention recently as catalysts for

a wide range of reactions including CO oxidation, water-gas shift, and other oxidations

and reductions.1–8 These catalysts offer the advantages of maximum accessibility of the

metals, which are often expensive (e.g., Pt, Pd, Ir, Rh), and catalytic properties distinct

from those of the conventional supported metal clusters and nanoparticles. Like most

single transition metal (TM) atoms in organometallic complexes, those on metal oxide

supports are positively charged, having properties that are strongly influenced by their

surroundings.9–12 These surroundings (bonding environments) are challenging to identify,

because the support surfaces are inherently heterogeneous. Even when the most incisive

experimental methods are used (e.g., aberration corrected scanning transmission electron

microscopy (STEM), X-ray absorption spectroscopy (XAS), and probe molecule exper-

iments with spectroscopies), the results often provide only average structural models of

the dominant metal bonding environment; the possible contributions of minority catalytic

species are often overlooked.13 Common research approaches involve using experimentally

determined structure parameters (e.g., bond lengths and coordination numbers from ex-

tended x-ray absorption fine structure (EXAFS) spectroscopy) with complementary in-

formation characterizing local geometry and electronic structure from x-ray absorption

near-edge structure (XANES) spectra. These techniques are often combined to create

plausible atomistic models that are subsequently investigated using density functional

theory (DFT) calculations to derive quantitative structural and mechanistic insights.7,14,15

More recent approaches have utilized machine learning techniques to gain structural in-
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formation.16 We emphasize that, as conventionally practiced, the initial development of

atomistic models relies predominantly on thorough EXAFS modeling, which is often quite

demanding and time intensive for the user, especially when multiple scattering paths are

considered. Today’s “hands-on” EXAFS modeling approaches fall short of determining

the existence of multiple metal bonding environments—a central limitation in the field.

Moreover, structures inferred for the sites may not be consistent with all the comple-

mentary experimental results. As atomically dispersed catalysts continue to be reported

for new reactions, there is a clear potential scientific benefit to develop computationally

guided approaches for characterization of these materials, specifically for the quantitative

identification of the metal site environment(s).

Figure 3.1. (a) Schematic representation of theory-guided workflow for identifying the
Pt active sites stabilized within or on a MgO lattice. (b) Radar plot for the most stable
[100], [100]Mg-vac, and [310] Pt configurations showing that the [100]Mg-vac/sub1
(blue) is more consistent with our experimental observations than [100]/sub0/∗O2

(orange) or [310]/pos1/∗O2 site (green). Structure models are presented in Figure 3.3.

As a point of departure from reported investigations, we now describe a theory-led

workflow for characterizing atomically dispersed supported metal catalysts. Our ap-

proach combines state-of-the-art characterization techniques (high-angle annular dark

field (HAADF) STEM, EXAFS spectroscopy, and high-energy resolution fluorescence

detection (HERFD) XANES spectroscopy) with DFT-level theory for critical identifi-

cation of the local environments for a prototypical catalyst—atomically dispersed Pt

cations on MgO (Pt/MgO). We chose MgO as a prototypical support because it (a)
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is nonreducible, (b) consists of low-atomic-number elements for excellent contrast with

Pt in STEM, and (c) is available as robust, high-area crystalline materials used in in-

dustrial catalysts.5,10 These crystalline supports are expected to present limited numbers

of sites for stable anchoring of isolated metal atoms, making Pt/MgO an excellent test

case to exemplify our methodology. Figure 3.1a is a summary of our strategy that com-

bines microscopy and conventional EXAFS analyses (Sections 3.3.1 and 3.3.2), large-scale

DFT calculations (Section 3.3.3), automated DFT-based EXAFS analyses (Section 3.3.4),

and FEFF-XANES spectroscopy (Section 3.3.5) to characterize Pt/MgO and identify the

structure most consistent with data obtained through all the complementary techniques.

As shown throughout this report, the outcome of this approach, represented as a radar

plot (Figure 3.1b, details in Table 3.S1), identifies sub-surface Pt sites within MgO (de-

noted Pt+4/[100]Mg-vac) to be the most populated sites for Pt atoms for this system.

Although the approach is applied for atomically dispersed Pt/MgO (Section 3.3.6), we

emphasize that the strategy is agnostic to the metal, the oxide support, and the reaction.

To our best knowledge, this approach is unique in the field and represents a significant

step forward towards the goal of comprehensive, validated integration of theoretical and

experimental methods to describe the structure and catalytic function of isolated noble

metal cations stabilized by a metal oxide support.

3.3 Results

3.3.1 Synthesis and structural characterization.

Atomically dispersed Pt on MgO, prepared from ethanol-water solutions of K2PtCl4 and

slurried MgO powder, was calcined at 700 ◦C. Low Pt loadings (0.05 wt%) were targeted

to minimize the number of different support surface sites that the Pt atoms occupy.

TEM images and x-ray diffraction (XRD) patterns show that MgO was present as the

cubic phase consisting of approximately 200-nm diameter crystallites; there was no XRD

evidence of metallic Pt (Figure 3.S1). The calcined MgO was highly dehydroxylated, with

only a weak OH band in the IR spectrum, at 3741 cm−1 (Figure 3.S2). HAADF-STEM

images show atomically dispersed Pt in the absence of clusters or nanoparticles (Figure
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3.2, Figure 3.S3). The bright spots in yellow circles (Figure 3.2a) show isolated Pt atoms

along Mg columns in the (110) projection.17 Intensity profiles along the X–Y line in Figure

3.2b (Figure 3.2c) confirm the isolation of the Pt atoms.

Figure 3.2. (a) HAADF-STEM image (along the (110) zone axis) showing that the
MgO-supported Pt atoms (yellow circles) were atomically dispersed. (b) Higher mag-
nification image showing a single isolated Pt atom, and (c) corresponding intensity
profile from the X–Y line scan in panel b

3.3.2 Conventional EXAFS analysis.

Pt L3-edge EXAFS spectra were modeled in Artemis18 using traditional methods. The

best-fit model comprises three scattering paths: Pt–O (2.05 ± 0.01 Å), with a coordination

number (CN) of 6.7 ± 0.8, and two Pt–Mg (3.01 ± 0.04 and 3.15 ± 0.04 Å), with a

total CN of 11 (Figures 3.S4-3.S6, Tables 3.S2-3.S4). Addition of a Pt–Pt scattering path

(expected at ∼ 2.7 Å for Pt0 clusters) resulted in non-meaningful results,19 confirming the

atomic dispersion of Pt demonstrated by HAADF-STEM. The continuous Cauchy wavelet

transform (CCWT) heatmap of the sample (Figure 3.S7a) shows two main scattering

features arising from short and long distances.20 This analysis provides evidence that the

longer features at 5 Å−1 arise from a lower-Z scattering atom than Pt (i.e., Mg) as it

does not match the features of the CCWT for Pt metal (Figure 3.S7b). The scattering

feature with a short-distance, low-Z scattering component was best-modeled as a Pt–O

path. The higher-R (distance) component was modeled as two Pt–Mg paths at longer

distances. We emphasize that this conventional analysis of the modeled EXAFS data

is insufficient to determine more than a single average, best-fit structure. Thus, it is

difficult to define the actual bonding site. To address the possible presence of more than
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one significant supported Pt species and to exhaustively examine the possible Pt bonding

environments, we developed an automated, high-throughput DFT-based workflow for

EXAFS data fitting that reduces user intervention, and thereby improves the objectivity

of the data interpretation.

3.3.3 A comprehensive library of DFT-optimized structures.

We used a theory-guided characterization approach to elucidate the local Pt bonding en-

vironment, that is, using DFT calculations (PBESol functional, implemented in VASP)21

to create a comprehensive library of all plausible Pt/MgO structures. As summarized in

Figure 3.3a-c, we considered three representative MgO facets (terrace sites: [100], Mg va-

cancy terrace sites: [100]Mg-vac, step sites: [310]), various adsorbates (∗O, ∗O2), vacancy

types (Ovac, Mgvac), and sub-surface Pt locations.22 These structures spanning a wide

range of local Pt environments were used to construct the temperature-dependent phase

diagram (using pMuTT, harmonic approximation for vibrational entropy) for each site.23

We chose to analyze each facet separately as the mechanism of Mg-vacancy formation

(and therefore, Mg chemical potential (µMg)) during the high-temperature calcination is

not known.

The phase diagrams in Figure 3.3d-f show the relative stabilities of various Pt sites

(i.e., locations and adsorbate coverages) for the [100], [100]Mg-vac, and [310] facets.

Our calculations for the stoichiometric [100] and [310] surfaces show that surface Pt

([100]/sub0/∗O2) and leading step edge ([310]/pos1/∗O2) sites are favored under our

experimental conditions (T = 300 K, PO2 = 1 bar), respectively. Although the results

demonstrate weaker O2 binding for [100]/sub1 (O2 desorption is predicted at T > 600 K),

the unsaturated [310]/pos1 (orange gold triangles) and [310]/pos2 (orange gold squares,

0.1 eV less stable) sites are characterized by strong ∗O adsorption associated with the

undercoordinated Pt atom. In contrast, no oxygen adsorption is predicted on the most

stable [100]Mg-vac/sub1 structure at room temperature. Next, we compared the relative

stabilities of Pt atoms at the surface and in sub-surface layers for the various MgO facets.

Significantly, for the stoichiometric [100] facet, Pt sites in the first (second) sub-surface

layer are 1.3 (2.1) eV less favorable energetically than those at the MgO surface (Figure
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Figure 3.3. Atomistic models for the (a) [100], (b) [100]Mg-vac, and (c) [310] MgO
facets considered in this study. Color scheme: Mg (green), O (red), Pt (grey). The
corresponding temperature-dependent phase diagrams are summarized in (d), (e), and
(f). Notation scheme for [100] and [100]Mg-vac MgO terraces: top surface (sub0),
first (sub1), second (sub2), and third (sub3) sub-surface layers. For the [310] facet,
we considered various step site positions including leading step edge (pos1), lower
step edge (pos2), underneath step edge (pos3), and behind step edge (pos4). The
phase diagrams were calculated relative to the most-stable “bare” Pt-configuration
(i.e., without adsorbates). All DFT-optimized structures are available as an Atomic
Simulation Environment (ASE) database file24 in the Supporting Information.

3.3d-f). Although surface Pt sites are preferred for the stoichiometric [100] surface (i.e.,

[100]/sub0, circles in Figure 3.3d), the calculations show that creation of a Mg-vacancy

(denoted as [100]Mg-vac) changes the relative stabilities. Specifically, in contrast to that

in the [100] facet, Pt substitution in the first sub-surface layer ([100]Mg-vac/sub1) is

energetically more favorable than that in the surface layer (0.8 eV less stable, [100]Mg-

vac/sub0) or the second sub-surface layer (0.3 eV less stable, [100]Mg-vac/sub2) (Figure

3.3d-f). These computational results are based on the PBESol functional; similar calcu-

lations with other functionals (RPBE/D3(BJ) and PBE/D3(BJ)) did not qualitatively

change the trends (Figure 3.S8).
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3.3.4 Automated DFT-based workflows for fitting EXAFS data

with improved thoroughness and objectivity.

Although conventional EXAFS modeling indicates high Pt–O and Pt–Mg CNs and the

absence of a Pt–Pt contribution, we emphasize that this “hands-on” approach is limited to

analyzing a few plausible, average scattering paths and does not identify a specific bond-

ing configuration. This approach is therefore not sufficient to characterize the possible

anisotropy of the individual Pt–O and Pt–Mg contributions. To overcome this limitation,

we used the open-source X-ray analysis package Larch to perform EXAFS analysis of

all 47 DFT-optimized structures mentioned above.25 The DFT-optimized structures were

used “as-is” in the fitting, with fixed CNs and spatial orientations of Mg and O atoms in

the fitting. In contrast to the typical approach whereby the average nearest-neighbors fits

(described by the average bond lengths and CNs) are used to create structural models,

we considered all relevant scattering paths (> 250 in some cases) for each DFT-optimized

structure. Notwithstanding the increased sophistication of this approach, it provides a

typical EXAFS fit for each candidate structure in a few minutes, without user interven-

tion.

As the contribution of each scattering path to the total EXAFS depends on various

parameters, it is important to limit the total number of variables in the fitting. This

efficiency is achieved by (1) hierarchically classifying the individual paths into distinct

categories based on their effective scattering distances (Reff ) and the identity of the scat-

tering atom (if Reff < 3.2 Å) and (2) limiting the number of EXAFS variables optimized

across each category. Specifically, for each DFT-optimized structure, our algorithm uses

the following EXAFS fitting parameters: one energy alignment parameter (denoted as

∆E0); a single value is used for all paths three distance scaling parameters, α1, α2, and

α3, one each for three different Reff ranges, where Reff,optimized = αi ×Reff,DFT and five

mean square variations in path lengths that depend on the scatterer identity (e.g., σ2
1,P t−O

and σ2
1,P t−Mg if Reff < 3.2 Å) and the effective scattering distance (e.g., σ2

3, σ2
4, σ2

5). The

hierarchical classification is summarized in Figure 3.5 and Table 3.1. The details of this

approach and strategy of this categorization are discussed in the Supporting Information.
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Figure 3.4. Flow-chart for hierarchically classifying all the possible paths into cate-
gories. The underlined numbers show the number of paths in the hierarchical classifi-
cation approach, and the text in red identifies fitted parameters.

The scattering path classification scheme described above ensures that (1) the con-

straints on the number of fitting parameters (calculated on the basis of the Nyquist

criterion) are not violated and (2) physically relevant characteristics of scattering paths

(e.g., different mean square variations in path length, that is, σ2
1,P t−O and σ2

1,P t−Mg for

Pt–O and Pt–Mg scatterers) are faithfully captured. The use of DFT structures enables

modeling of the longer effective scattering distances (∼ 5 Å), including contributions from

multiple scattering paths using distance-dependent fitting parameters (e.g., σ2
i , and αi)

without overfitting the data. These points are well-illustrated by our analyses for the

[100]Mg-vac/sub1 site (Figure 3.4), whereby only 9 parameters (Table 3.1 and 3.2) are

used to model all 158 unique scattering paths.
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Table 3.1. Summary of hierarchical approach used to classify all possible scattering
paths into five different categories. Only 9 parameters (shown in red) are optimized in
the automated EXAFS analyses.

Table 3.2. Optimized values of the 9 fitting parameters for the [100]Mg-vac/sub1 site.

58



The above fitting workflow was repeated for each unique DFT structure. In addi-

tion to the reduced-χ2 metric (commonly used by the XAS community), we quantified

the agreement between the experimental and simulated EXAFS spectra for each DFT

structure by using the Fréchet distance in R-space for the magnitude portions of the data

and the model (denoted as δF, which measures the similarity between two curves). The

histogram in Figure 3.5a shows the reduced-χ2 of the EXAFS fit corresponding to each

DFT structure, along with the Fréchet distance (a lower value is better), corresponding

to each structure. In general, we observed that the [100]Mg-vac structures (blue bars in

Figure 3.5a) are in better agreement with experiment (reduced-χ2 < 20, δF < 2). Al-

though some of the [100] and [310] Pt configurations (e.g., [100]/sub1 and [310]/pos3/∗O2)

show satisfactory agreement with experimental EXAFS (reduced-χ2 < 35, δF < 4.5), our

DFT calculations show these configurations to be highly unstable (1.5 eV and 0.99 eV,

respectively).

This interplay between thermodynamic stability of a structure and its consistency with

the EXAFS data is quantitatively illustrated by comparing the quality of the EXAFS fits

with the DFT-calculated Boltzmann fractions (at 300 K) (Figure 3.5b). Unsurprisingly,

only the most stable structures ([100]/sub0/∗O2 (orange circle), [100]Mg-vac/sub1 (blue

triangle), and [310]/pos1/∗O2 (green triangle)) were observed in any significant number

(based on Boltzmann distributions). The EXAFS fits corresponding to the three stable Pt

configurations are presented in Figure 3.5c-e, showing that the [100]Mg-vac/sub1 (CNPt−O

= 6, CNPt−Mg = 11) model agrees most closely with experiment. Specifically, although

the [100]/sub0/∗O2 structure agrees satisfactorily with the Pt–O scattering path (CNPt-O

= 7), the Pt–Mg path is underestimated, corresponding to the much lower Pt–Mg contri-

bution (CNPt−Mg = 8). We emphasize that the [310]/pos3 site (as suggested by Sarma et

al.)26 has coordination numbers similar to those characterizing [100]Mg-vac/sub1, but it

does not agree well with the EXAFS data (Figure 3.S10). These results demonstrate that

both the effects of coordination number (i.e., [100]/sub0/∗O2 vs. [100]Mg-vac/sub1) and

the local spatial orientation of the scattering atoms (i.e., [310]/pos3 vs. [100]Mg-vac/sub1)

are captured in our EXAFS fitting approach. At this stage, it is useful to highlight an
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additional advantage of our EXAFS fitting procedure, with [100]Mg-vac/sub1 used as

an illustrative example. Instead of using the average Pt–O (and/or Pt–Mg) distances

and coordination numbers as the fitting parameters (as done conventionally), in our ap-

proach each individual Pt–O (total 6 for [100]Mg-vac/sub1 as an example) and Pt–Mg

(total 11) scattering path is considered separately. This procedure allows us to capture

the anisotropies of the local bonding environment, as indicated by the DFT-calculated

bond lengths. Overall, we considered 158 total paths, which included single, double, and

multiple scattering paths (involving up to 5 scattering atoms), using only use 9 fitting

variables (Tables 3.1 and 3.2) to achieve unprecedented agreement with the experimen-

tal EXAFS across the entire R-range (Figure 3.5g). As the entire workflow relies on

physically motivated models, it is possible to bolster the self-consistency between DFT

structures and EXAFS fits. Beyond providing good models for the EXAFS fits, the DFT

calculations also provide force constants that can be used to generate ab-initio vibrational

mean-square relative displacements for the EXAFS (i.e., σ2).27–29 Specifically, the values

for σ2 for Pt–Mg (0.005 Å2) and Pt–O (0.003 Å2) obtained from DFT-calculated harmonic

frequencies are consistent with the results of the EXAFS fitting (Pt–Mg: 0.0067 ± 0.001

Å2, Pt–O: 0.0032 ± 0.001 Å2). This point highlights the uniqueness of our approach: (1)

the DFT-optimized structures are used to perform an objective, thorough EXAFS fit-

ting, and (2) the EXAFS fitting parameters (themselves determined using the automated

Python workflows) are consistent with independently calculated thermal disorders (from

DFT vibrations). This level of detail has not been reported for any atomically dispersed

catalysts, and we posit that it represents a significant step forward in automated analysis,

self-consistent interpretation of EXAFS data.
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Figure 3.5. (a) Reduced-χ2 and Fréchet distance (δF ) of EXAFS analysis for all the
DFT-optimized structures, (b) Boltzmann fraction calculations for all facets. The DFT
optimized geometries of the most stable (c) [100]/sub0/∗O2 (d) [100]Mg-vac/sub1, and
(e) [310]/pos1/∗O2 structures are shown with the corresponding EXAFS fits in (f), (g),
and (h) showing the magnitude (fit: blue, experiment: black) and imaginary portions
(fit: green, experiment: black) of Fourier transforms. The k-range of 2.2–12.5 Å−1

and the R-range of 1.0–5.0 Å were used for the fits. Colors: Mg (green), O (red), Pt
(grey). The purple sphere in (d) represents the sub-surface Mg-vacancy.
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Figure 3.6. (a) Fréchet distances from comparison of HERFD-XANES data with
FEFF-simulated XANES and DFT-calculated Boltzmann fractions. (b) Simulated and
experimental XANES spectra for [100]Mg-vac/sub1. Inset (dashed red box) shows
the region of the spectra from 11575–11700 eV. (c) Comparison of FEFF-simulated
XANES spectra of the most stable structures from each facet ([100]Mg-vac/sub1,
[100]/sub0/∗O2, and [310]/pos1/∗O2) with HERFD-XANES data from 11575–11700
eV.
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3.3.5 XANES evidence of structure.

In addition to the EXAFS, we also consider the XANES data (Figure 3.S11; data char-

acterizing reference compounds are shown for comparison). XANES spectra provide evi-

dence of the Pt electronic structure, as the intensity of the white line at the Pt L3 edge is

a measure of the unoccupied d-states and occupied p-states (2p3/2 → 5d3/2 or 5d5/2).30

The oxidation state of the supported Pt is close to that of Pt4+ in H2Pt(OH)6 and

markedly different from that of the Pt2+ in Pt(acac)2 (acac = acetylacetonato, [C5H7O2]
−)

and Pt0 in Pt foil (Figure 3.S11). These data imply that isolated Pt4+ was present in

six-coordinate octahedral geometry in cation vacancy sites, consistent with the STEM

and EXAFS data. To account for charge balance, one Pt4+ in an MgO sub-surface site

requires one Mg2+ vacancy, which implies a Pt-Mg coordination number of 11 and not 12,

consistent with the EXAFS analyses. These results further agree with DFT-calculated

Bader charges that show consistent oxidation states for the sub-surface Pt4+ with one Mg

vacancy and the Pt4+ in H2Pt(OH)6 (qBader = +1.35e and +1.41e, respectively). These

values are much higher than qBader = +0.86e for the Pt2+ in Pt(acac)2.

We also collected HERFD-XANES spectra; HERFD-XANES minimizes the limita-

tions of energy resolution affected by core-hole lifetime broadening and beamline optics in

conventional XANES.31 A comparison of the HERFD and conventional XANES data (Fig-

ure 3.S11) shows the advantages of HERFD in resolving near-edge features including (a)

the stable near-zero signal in the pre-edge; (b) strong intensities and sharpness without a

long tail characterizing the white line; and (c) the clear resonance feature with little broad-

ening beyond the white line. The HERFD-XANES data provide insight into the catalyst

structure beyond what is determined by the EXAFS data and DFT-guided analysis.32

The HERFD-XANES data were compared with FEFF-simulated XANES spectra based

on the aforementioned DFT-determined structures (Figure 3.6).33,34 The agreement be-

tween experimental and simulated XANES spectra (quantified using the Fréchet distance

(δ F)) is compared with the thermodynamic stability (Figure 3.6a) of various Pt sites.

Figure 3.6b, c show a comparison of the experimental HERFD and the FEFF simulations

for each of the most stable structures predicted from DFT-calculated Boltzmann fractions:
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[100]/sub0/∗O2 (99.2%), [100]Mg-vac/sub1 (99.9 %), and [310]/pos1/∗O2 (98.4%). The

FEFF results were shifted 4.5 eV and scaled to match the normalized experimental results

for values > 11650 eV. Of all the stable structures, both [100]/sub0/∗O2 and [100]Mg-

vac/sub1 show good agreement with the experimental XANES; however, by comparing

the corresponding EXAFS spectra in Figure 3.6f and g, we see that the Mg-vacancy pro-

vides a notable improvement over [100]/sub0/∗O2. Although some [310] structures are

more consistent with experiment than these (δF < 0.125), they are significantly less sta-

ble (Boltzmann fraction < 10−9), and, we infer, unlikely to exist. The most stable [310]

structures show poor agreement with experiment (Figure 3.6c (green)). Taking together

the unique combination of EXAFS and HERFD-XANES fits of [100]Mg-vac/sub1 and the

DFT-predicted stability, our results show that the Pt/MgO catalyst is well-characterized

as an atomically dispersed Pt4+ ion embedded in the first subsurface layer (sub1) located

adjacent to a Mg-vacancy site. As shown in Figure 3.S12, our HERFD-XANES analyses

and DFT calculations do not identify the exact location of the Mg-vacancy site; we used

the most stable structure, Mg-vacancy in the surface layer (sub0) for further analysis. To

analyze the origin of the various features in the HERFD, Figure 3.S13 shows the locally

projected, l-dependent density of states (l-DOS) of the [100]Mg-vac/sub1 site. Overall,

the Pt L3 HERFD spectra resemble the Pt d-DOS, as indicated by the vertical dashed

lines. The white line is composed largely of Pt d-DOS with a small contribution from

the O p-DOS, with its position being largely insensitive to the local disorder. The second

peak (∼ 9 eV above the Fermi level) shows contributions from both the O and Mg atoms

as well as the local Pt s-DOS, indicating that this feature corresponds to non-local states

and arises at least in part from bonding of Pt to the near-neighboring atoms (Figure

3.S13).

3.3.6 CO oxidation catalyzed by Pt/MgO.

We characterized the Pt/MgO as a catalyst for CO oxidation as a probe reaction. The

light-off curves (Figure 3.7a) show that the reaction became readily measurable at ap-

proximately 180 ◦C, with the CO conversion reaching nearly 100% at 280 ◦C under our

conditions. Separate experiments were carried out to determine reaction rates (turnover
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frequencies, TOF, rates per Pt atom) from data obtained at low conversions (<5%), which

were shown to be differential by the linear dependence of conversion on inverse space ve-

locity at temperatures of 180–200 ◦C (Figure 3.7b,c). An Arrhenius plot (Figure 3.7d)

indicates an apparent activation energy of 79 ± 2 kJ mol−1. Data showing conversion

as a function of time onstream in the flow reactor under steady-state conditions (Figure

3.S14) indicate that the catalyst was stable, retaining its activity for as long as it was

onstream (48 h) at 210 ◦C. The catalyst remained white in color after use. The HAADF-

STEM images of used Pt/MgO samples (after three light-off experiments) show that Pt

was still atomically dispersed (Figure 3.S15), even at a high temperature (300 ◦C). As

further checks of the catalyst stability, we recorded in-operando HERFD-XANES data

during CO oxidation at 210 ◦C (Figure 3.S16), demonstrating unchanged spectra.

This catalytic probe reaction provided yet another opportunity to verify the identity

of the support sites for Pt. Figure 3.7e shows trends in CO adsorption for the stable

[100]Mg-vac/sub1 Pt terrace site at various temperatures. Unsurprisingly, stronger CO

adsorption was found for the undercoordinated Pt site (i.e., [100]/sub0); we predicted CO

adsorption at temperatures as high as about 83 °C (Figure 3.S17). In contrast, the sub-

surface Pt site ([100]Mg-vac/sub1) is characterized by weaker CO binding (0.25 eV at 83

◦C); no CO adsorption was predicted at room temperature. The trends for the [100]Mg-

vac/sub1 site are consistent with (1) our IR experiments that do not show significant CO

uptakes at room temperature (Figure 3.S18) and (2) Sarma’s report26 of low-temperature

(-163 ◦C) IR spectra of CO on a sample similar to ours; a 2166 cm−1 νCO band was

observed, agreeing within error with our calculated frequency (2141 cm−1).

It is significant, and a challenge to our interpretation, that our Pt/MgO catalyst, which

consists of sub-surface, highly coordinated Pt sites, does not bind CO at room temper-

ature but nonetheless is catalytically active for CO oxidation. Thus, we turned to DFT

calculations (RPBE/D3-BJ functional, nudged elastic band and dimer method for barri-

ers) to investigate various possible mechanisms of CO oxidation on the [100]Mg-vac/sub1

site, and the two most favorable mechanisms are shown in Figure 3.8. Indeed, our cal-

culations show that the insertion of CO into the surface-bound O2 is the rate limiting
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Figure 3.7. (a) Light-off curve characterizing CO oxidation catalyzed by Pt/MgO.
Error bars represent standard deviation determined from three independent measure-
ments. The once-through plug-flow reactor was heated from room temperature at
a rate of 2 °C/min to 300 °C. The feed was 5.0% CO in helium flowing at 4.0 mL
(NTP)/min + 5.0% O2 in helium flowing at 16.0 mL (NTP)/min; the catalyst mass
was 100 mg. (b) Demonstration of differential conversion at various temperatures.
Low-conversion (<5%) data were obtained under the conditions stated in a, except
that the feed gas was 5.0% CO in helium flowing at 5.0, 6.0, or 8.0 mL (NTP)/min
+ 5.0% O2 in helium flowing at 20.0, 24.0, or 32.0 mL (NTP)/min; the catalyst mass
was 100 mg. (c) TOF values determined from slopes of lines in b, with errors. (d)
Arrhenius plot. (e) DFT-calculated CO and O2 adsorption at various temperatures
and O2 partial pressures.

step—the calculated enthalpic barrier (105.3107.4 kJ/mol) is in satisfactory agreement

with experimentally determined apparent activation energies (Figure 3.8a); similar car-

bonate species were proposed by Sarma et al.26 for Pt at the step site on MgO. The

addition of the subsurface Pt and Mg vacancy activates the bound O2 and allow for CO

insertion to form the intermediate carbonate. Charge density difference plots showing

the change in the electronic structure of the ∗O2 compared to pristine MgO are shown

in Figure 3.S19. Although the role of the Pt atom in this mechanism differs greatly to

what has been reported by Sarma, the calculated free energy barrier at 300 ◦C in this

work is slightly lower (169 kJ/mol compared to 173 kJ/mol26). Additionally, a similar

Eley–Rideal mechanism has been seen in a MgO/Ag system.35 A second mechanism con-
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sisting of the abstraction of a surface oxygen by CO to form an oxygen vacancy as the rate

limiting step is shown in Figure 3.8b. The similarity of the free energy barrier of these

two mechanisms (170.2 kJ/mol versus 168.8 kJ/mol) make it challenging to discern which

mechanism is more favorable and both appear reasonable according to our calculations.

Figure 3.8. Reaction free energy diagrams for CO oxidation on [100]Mg-vac/sub1
surface at 300 ◦C. Mechanism a) consists of an Eley–Rideal type mechanism with
the formation of a carbonate intermediate, while mechanism b) proceeds through the
formation of an oxygen vacancy above the subsurface Pt. Calculated free energy
(blue) and enthalpic (red) barriers are annotated for each transition state. Insets show
the optimized structures of the key intermediate species with the location of the Mg
vacancy marked with a black cross (colors: Mg, green; O, red; Pt, light grey; C, dark
grey).

A pertinent question is whether the catalyst underwent structural changes under the

conditions of CO oxidation catalysis. The EXAFS data recorded after catalysis were not

substantially different from those observed before, with [100]Mg-vac/sub1 again emerging

as the best-fit model of the EXAFS spectra (Figure 3.S20). This comparison in in line

with the catalyst performance data, indicating that the MgO- supported platinum sites

are stable under CO oxidation conditions.
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3.4 Discussion

The intense recent attention paid to atomically dispersed supported metal catalysts re-

flects the promise of catalysts with valuable new properties and the prospect that some

will be so simple in structure as to propel significant advances in the understanding of

surface catalysis broadly at the atomic level.9,36 Some literature reflects the notion that

these catalysts are straightforward to understand because the metals are atomically dis-

persed36, but this view overlooks the intrinsic complexity of the supports and the need

to incorporate the metal–support combinations in realistic models of the catalysts. Thus,

there is a motivation to work with metal–support-site combinations that are nearly unique

and can be understood in depth. Consequently, researchers have been motivated to use

crystalline metal oxides as supports and to use low metal loadings to create catalysts

that can be approximated as isolated metals in unique, stable surroundings. The char-

acterization data presented here validate that approach. They have a high degree of

internal consistency and show that the structure of the catalyst consisting of Pt in a

loading of only 0.05 wt% on crystalline MgO powder is well represented with a single,

stably encapsulated—yet still catalytically active—structure that meets the criterion of

near structural uniqueness. A full set of complementary experimental characterizations

combined with theoretical verification was needed to test the hypothesis that such a cat-

alyst could be characterized structurally with some confidence. The DFT-guided EXAFS

fitting approach described here represents, we posit, a substantial advance in the charac-

terization of such catalysts. Although previous approaches represent attempts to develop

DFT models that are motivated by results of conventional EXAFS analyses, we instead

used a library of DFT-optimized Pt structures to identify the single best representation of

the all the experimental results (e.g., EXAFS, HERFD-XANES, IR spectra of adsorbed

CO, and catalytic kinetics) collected in this investigation. Going forward, we anticipate

that further development of this combination of characterization techniques will help

guide the choice of metal–support combinations to advance the field of atomically dis-

persed supported metal catalysts; help advance the understanding of the broad class of

supported catalysts; and help guide the development of new and improved methods for
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understanding of even more complex surface structures.

3.5 Experimental and Computational Methods

3.5.1 Synthesis of Pt/MgO samples.

MgO powder (1000 mg, US Research Nanomaterials) with a manufacturer-specified spe-

cific surface area of 25 m2/g was dispersed in 250 mL of ethanol in a 500-mL beaker with

magnetic stirring. Aqueous K2PtCl4, 20 mL of 0.25 mM solution, and 40 mL of ethanol

were transferred into the stirred beaker through a syringe pump at a rate of 5 mL/h.

The resultant solid was collected by centrifugation, washed with distilled water, and then

dried overnight in air in an oven at 80 ◦C. The resultant powder was calcined in flowing

O2 (10 mL(NTP)/min) and N2 (40 mL(NTP)/min) as the temperature was ramped from

room temperature to 120 ◦C and held for 2 h to remove any residual water and organics.

The sample was then further calcined in a mixture of flowing O2 (10 mL(NTP)/min) and

N2 (40 mL(NTP)/min) as the temperature was ramped at a rate of 5 ◦C/min until a final

temperature of 700 ◦C was reached, which was held for 4 h.

3.5.2 X-ray absorption spectroscopy.

XAS was carried out at beamlines 4-1 and 6-2 at the Stanford Synchrotron Radiation

Lightsource (SSRL). At beamline 4-1, which is a side station on a 20-pole wiggler beamline,

the ring SPEAR3 was operated in top-off mode with a storage ring energy of 3 GeV and

500 mA stored current. A Si double-crystal (220) monochromator was detuned by 20–25%

of maximum intensity to minimize harmonics at the Pt L3 edge. XAS data were collected

in fluorescence yield mode with a 30-element germanium solid-state detector array with

samples pressed into a pellet at 25 ◦C. For energy calibration, a Pt foil reference was placed

between the ion chambers upbeam and downbeam of the sample so that its spectrum was

measured simultaneously with that of the sample.

At beamline 6-2, which is fed by a 56-pole, 0.9 Tesla wiggler, high-energy resolution flu-

orescence detection HERFD XANES experiments were conducted with a liquid-nitrogen-

cooled double-crystal Si (311) monochromator to select the energy of the incident beam.

A Rowland circle spectrometer (radius 1 m) equipped with three spherically bent Si (800)
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analyzers and a silicon drift detector were used to select the Pt-Lα emission line. A Pt foil

was scanned in the transmission mode for initial energy calibration. For ex-situ HERFD-

XANES experiments, the sample was pressed into a pellet at 25 ◦C. In each in-operando

HERFD-XANES experiment, approximately 50 mg of catalyst sample was loaded into a

flow-through cell, a Kapton tube (i.d. = 2.8 mm), connected to a treatment gas line.37

The compositions of effluent gases flowing from the cell were measured with an online

mass spectrometer (Hiden HPR20). The Pt/MgO was first heated in helium flowing at

20 mL(NTP)/min as the temperature was ramped from room temperature to 210 ◦C at

a rate of 5 ◦C/min. Then the feed gas was switched to a mixture of CO flowing at 0.2

mL(NTP)/min + O2 flowing at 0.8 mL(NTP)/min + helium flowing at 19 mL(NTP)/min

with the sample in the cell held at 210 ◦C for 1 h as CO oxidation catalysis took place.

Thereafter, the reactor was cooled to room temperature and the gas feed switched to he-

lium flowing at 20 mL(NTP)/min. HERFD-XANES spectra were collected periodically

during all these steps.

3.5.3 IR spectroscopy.

Transmission IR spectra of powder samples in the νO−H region were determined with

a Bruker IFS 66v/S spectrometer with a resolution of 4 cm−1. Approximately 10 mg

of sample was loaded between two KBr windows, and spectra were recorded at room

temperature with the sample under vacuum, with an average of 256 scans per spectrum.

IR spectra of samples with adsorbed CO were determined with approximately 40 mg of

sample pressed into a wafer loaded into a cell (In-situ Research Instruments, South Bend,

IN) that served as a flow reactor fed with various gases, and transmission spectra of

catalysts in the presence of these gases were recorded with a liquid-nitrogen-cooled MCT

detector.

3.5.4 CO oxidation catalysis in a conventional laboratory plug-

flow reactor.

The catalyst samples were evaluated for CO oxidation in a once-through plug-flow reactor,

with products analyzed with an online mass spectrometer (Hiden Analytical HPR20)
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equipped with a secondary electron multiplier detector used in multiple ion detection

mode. Samples of catalyst powder (100 mg) that had passed through a 40 to 60 mesh

sieve were loaded into a quartz tube reactor (i.d. = 4 mm), with the upstream and

downstream sections packed with quartz wool. In experiments to determine light-off

curves for CO oxidation, the feed was a mixture of 5.0% CO in helium flowing at 4.0

mL(NTP)/min + 5.0% O2 in helium flowing at 16.0 mL(NTP)/min; the pressure was

atmospheric. The reactor was heated from room temperature at a rate of 2 ◦C/min with

the gases flowing and then held at 300 ◦C for 20 min before the reactor was cooled down.

In a separate flow reactor system, near-steady-state conversion data were obtained under

the conditions stated in the preceding paragraph, except that the feed gas was a mixture

of 5.0% CO in helium flowing at 5.0, 6.0, or 8.0 mL(NTP)/min + 5.0% O2 in helium

flowing at 20.0, 24.0, or 32.0 mL(NTP)/min. Catalytic reaction rates were calculated

from low (differential) conversions (<5%) determined at temperatures in the range of

180–200 ◦C. In experiments determining the dependence of conversion on time on stream,

the samples were kept on stream for up to 48 h to demonstrate stability at 210 ◦C; the

feed was 5.0% CO in helium flowing at 4.0 mL(NTP)/min and 5.0% O2 in helium flowing

at 16.0 mL(NTP)/min.

3.5.5 Scanning transmission electron microscopy.

STEM imaging experiments were performed on a JEOL 200CF (NEOARM) transmission

electron microscope with an acceleration voltage of 200 kV. The specimens were prepared

by a direct dispersion of powder samples on lacey carbon grids. The HAADF images were

acquired with a convergence angle of 28.5 mrad and an inner collection angle of 55 mrad.

3.5.6 Transmission electron microscopy.

TEM images of as-prepared sample powders loaded onto copper grids were recorded with

a Hitachi H-7700 microscope at an acceleration voltage of 100 kV.

3.5.7 X-ray diffraction crystallography

XRD patterns of the samples were collected on a Philips X’Pert Pro Super diffractometer

with a monochromatized Cu Kα radiation source and a wavelength of 0.1542 nm.
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3.5.8 Inductively coupled plasma mass spectrometry.

The Pt loadings in the catalysts were determined by inductively coupled plasma mass

spectrometry with a Thermo Scientific XSERIES 2 instrument.

3.5.9 DFT calculations.

Periodic DFT calculations were performed using the projector augmented wave method as

implemented in the Vienna ab initio simulation package (VASP).21 Energies were calcu-

lated using a 500 eV plane-wave cutoff with a 2 × 1 × 1 Monkhorst-Pack k-point grid. A

range of generalized gradient approximation functionals (PBE, RPBE, and PBESol) were

used. Electronic energies were converged to 10−6 eV, and all structures were relaxed until

the forces were less than 0.05 eV/Å. The finite displacement method (0.02 Å) was used

to calculate the entropic and zero-point energy corrections. For CO oxidation mechanism

calculations, a 400 eV plane-wave cutoff was used with the RPBE functional, and disper-

sion corrections were considered with the DFT-D3 method with Becke-Johnson damping.

Barriers were calculated using the climbing image nudged elastic band and dimer methods.

3.5.10 Conventional XAS data analysis.

The EXAFS and XANES data were analyzed with the Demeter package18. Pre-processing

of data included alignment, edge calibration, deglitching, normalization, background sub-

traction, and conversion of data into a chi file for data fitting, performed with Athena.

The energy at the Pt L3 edge, determined by the first inflection point of the absorp-

tion edge data characterizing the reference Pt foil, was calibrated to the reported energy,

11564.0 eV. EXAFS data were modeled with the Artemis package in Demeter. The con-

tinuous Cauchy wavelet transform (CCWT)20 was performed on the extracted EXAFS

to visualize the data and assess how many scattering paths would be needed to fit the

data. Larch25 was used to perform the CCWT on EXAFS spectra at the Pt L3 edge

characterizing Pt/MgO samples and Pt foil.

3.5.11 Automated DFT-based fitting of EXAFS data.

The EXAFS data were analyzed with the open-source X-ray Larch package.25 Data pro-

cessing, such as alignment, edge calibration, deglitching, normalization, and background
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subtraction, was performed using the Python interface to Larch. The DFT-optimized

structures were used to generate a feff.inp file using an in-house code. These feff.inp

files were run in Larch, with FEFF used for generating scattering paths. The code uses

Matplotlib for plotting the fitting results.

3.5.12 FEFF and DOS modeling.

All HERFD simulations used DFT-optimized (PBE-D3) structures and were performed

with FEFF 9 using SCF and FMS cutoff radii of 6 and 9 Å, respectively, which ensured

convergence of the spectra.33,34 The representative atomic potentials were chosen to re-

produce chemical distinguishability for each atom type. On the basis of our experience

with Pt-containing samples, we chose not to use a core-hole in the calculations.38,39 To

properly simulate HERFD rather than the default XANES in FEFF, we also removed 1.8

eV from the default core-hole lifetime broadening of 5.2 eV. The self-energy was modeled

using the density-dependent MPSE (many-pole self-energy) dielectric function approach

based on a weighted average of the atomic loss functions.40 Moreover, to provide con-

verged results up to about 200 eV above the edge, the maximum angular momenta for

the site basis set were raised to 5, 4, and 4 for Pt, O, and Mg, respectively. Further,

vibrational disorder was added using single-scattering Debye-Waller factors based on a

correlated Debye model. The Debye temperature for this model was estimated for each

system using average force constants for the first-shell Pt–O bonds obtained from the

DFT structural simulations.27,28
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3.7 Supporting Information

Table 3.S1. Radar Plot Scoring Metrics

Each metric in the radar plot is determined computationally and is given a score

from 0–100 to show how well the metric compares with the corresponding experimental

result. The metrics are scored as: HERFD-XANES Fréchet: Percentile score of

Fréchet distance for all FEFFsimulated XANES spectra compared with HERFD-XANES

data (shown in Figure 3.S12); 0 represents the highest calculated Fréchet distance (worst

match with experiment), and 100 represents the lowest Fréchet distance (best match with

experiment). Pt oxidation state: Deviation of Pt oxidation state from +4 as determined

from Bader charge analysis compared to H2Pt(OH)6 reference. Boltzmann fraction for

each facet: DFT-calculated Boltzmann fraction relative to each facet ([100], [100]Mg-

vac, and [310]) at 300 K as presented in the phase diagrams of Figure 3.3e-f. Fractional

contribution to overall EXAFS: Contribution of the most stable structure from the 3

facets to the EXAFS data (see Figure 3.S20 for further discussion). EXAFS Fréchet and

Reduced-χ2: Percentile scores of Fréchet distances and Reduced-χ2 values for EXAFS

simulations.
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Figure 3.S1. TEM image and XRD pattern of Pt/MgO.

Figure 3.S2. IR spectra of νO−H region of Pt/MgO and the sample after use as a CO
oxidation catalyst in three independent light-off experiments.
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Figure 3.S3. Multiple HAADF-STEM images of Pt/MgO samples showing that the
MgO supported platinum (yellow circles) was atomically dispersed.

Figure 3.S4. EXAFS data at Pt L3 edge and EXAFS modelling of platinum foil.
The data and the fits are shown in black and red, respectively. The magnitude and
the imaginary portions of the Fourier transforms are shown as solid and dashed lines,
respectively (k2-weighted).
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Table 3.S2. Summary of EXAFS fit parameters for Pt foil reference.

Figure 3.S5. EXAFS collected at the Pt L3 edge characterizing the Pt/MgO sample
[black] and the best-fit EXAFS model (3-scattering path) representing the data [red]
presented in the k2-weighted (a) EXAFS and (b) magnitude and imaginary components
of the Fourier transform.
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Table 3.S3. Best fit mdoel characterizing Pt L3 edge EXAFS of Pt/MgO sample.

Figure 3.S6. EXAFS collected at the Pt L3 edge characterizing the Pt/MgO sample
[black] and the 2-scattering path EXAFS model representing the data [red] presented
in the k2-weighted (a) EXAFS and (b) magnitude and imaginary components of the
Fourier transform.
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Table 3.S4. 2-scattering path EXAFS model characterizing the Pt L3 edge EXAFS of
the Pt/MgO sample.

Figure 3.S7. k2-weighted CCWT of (a) Pt/MgO sample (k2-weighted EXAFS of the
sample presented in the bottom plot. A k-range of 3.80-11.65 Å−1 was used to generate
the magnitude of the Fourier transform, left plot.); (b) Pt foil (k2-weighted EXAFS
of the sample presented in the bottom plot. A k-range of 2.98-10.30 Å−1 was used to
generate the magnitude of the Fourier transform, left plot).
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Figure 3.S8. PBE-D3BJ calculated temperature-dependent phase diagrams for (a)
[100] and (b) [310] structures. RPBE-D3BJ calculated temperature-dependent phase
diagrams for (c) [100] and (d) [310] structures.
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Figure 3.S9. EXAFS collected at the Pt L3 edge characterizing the Pt/MgO sam-
ple [black] and the fits performed using [100]Mg-vac DFT structure representing the
data [red] presented in the k2-weighted (a) EXAFS and (b) magnitude and imaginary
components of the Fourier transform.

Figure 3.S10. Illustration of the capability of our fitting approach to capture the
anisotropic behavior of structures with the same coordination number (Pt-O = 6 and
Pt-Mg = 11). R-space EXAFS fits of (a) [100]Mg-vac/sub1 and (b) [310]/pos3 show-
ing the magnitude and imaginary portions of experimental results in black and the
magnitude and imaginary portions of the model in blue and green, respectively. The
k-range of 2.2–12.5 Å−1 and the R-range of 1.0–5.0 Å were used for the fits. Colors:
Mg (green), O (red), Pt (grey).

87



Table 3.S5. The EXAFS fitting parameters using [100]Mg-vac/sub1 as the DFT model
structure.
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Figure 3.S11. HERFD-XANES spectrum at the Pt L3 edge of Pt/MgO (black dash
dot line) and conventional XANES spectra at the Pt L3 edge of Pt/MgO (red line);
H2Pt(OH)6 (orange line); Pt(acac)2 (green line); and Pt foil (grey line). Data were
obtained at room temperature under static conditions.
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Figure 3.S12. FEFF-simulated XANES spectra (blue) and experimental HERFD-
XANES results (black) for feasible DFT-calculated structures. Insets denote the region
from 11575–11700 eV (dashed red box).
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Figure 3.S13. Locally projected, l-dependent density of states for [100]Mg-vac/sub1
site with HERFD-XANES spectrum relative to the Fermi level (EF ).

Figure 3.S14. Stability of Pt/MgO catalyst for CO oxidation in a once-through flow
reactor operated at 210 ◦C and atmospheric pressure with a steady flow of reactant
consisting of 5.0% CO in helium flowing at a rate of 4.0 mL(NTP)/min and 5.0% O2

in helium flowing at a rate of 16.0 mL(NTP)/min.
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Figure 3.S15. (a) HAADF-STEM image of Pt/MgO-used sample (Pt/MgO after it
had been used as a catalyst in three independent light-off CO oxidation measure-
ments) along the (100) zone axis. Pt atoms are marked in yellow circles; the inset
shows the corresponding FFT pattern. (b) Magnified HAADF-STEM image of a. (c)
Corresponding intensity profile from the X–Y line scan in b.

Figure 3.S16. In-operando HERFD-XANES spectra at the Pt L3 edge of Pt/MgO and
mass spectrometry results. (a) HERFD-XANES data collected at 210 ◦C with the
sample (approximately 50 mg) in helium flowing at 20 mL(NTP)/min and then after
replacement of the helium stream with a mixture of CO flowing at 0.2 mL(NTP)/min
+ O2 flowing at 0.8 mL(NTP)/min + He flowing at 19 mL(NTP)/min for 1 h. (b)
HERFD-XANES spectra collected with sample in helium flowing at 20 mL(NTP)/min
at room temperature; the data characterize Pt/MgO before and after it had been
used as a catalyst for CO oxidation at 210 ◦C for 1 h. (c) Mass spectrometry results
characterizing effluent gas recorded during in-operando HERFDXANES experiments
(shown in a) characterizing Pt/MgO (mass 44 represents CO2).
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Figure 3.S17. PBESol-calculated temperature-dependent CO and O2 adsorption on
[100]/sub0 for O2 partial pressures from 10−5 to 100 bar. CO adsorption is predicted
until 83 ◦C is reached for low O2 partial pressures.

Figure 3.S18. IR spectra of (a) Pt/MgO; (b) Pt/MgO-used (Pt/MgO after it had been
used as a catalyst in three independent light-off CO oxidation measurements); and (c)
Pt/MgO-used (Pt/MgO after it had been used as a catalyst in three independent light-
off CO oxidation measurements) in flowing helium recorded at 1, 5, and 30 min after
the beginning of flow of 10% CO in helium at room temperature and 1 atm. The bands
at 2174 and 2118 cm−1 represent the gas-phase CO.
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Figure 3.S19. Differences in charge density (±0.001 electron/Å3) upon binding of O2

on a) [100]Mg-vac/sub1 and b) pure ideally crystalline MgO. Charge gain and depletion
are represented with yellow and blue, respectively. The depletion of charge between
the O—O bond in Pt/ MgO enables CO insertion to form bound ∗CO3 during CO
oxidation catalysis.

Figure 3.S20. EXAFS fits of Pt/MgO as is (a–c) (i.e., as synthesized before CO oxida-
tion catalysis) and used (d–e) catalyst (i.e., after it had been used as a catalyst in three
independent light-off CO oxidation measurements) for the three most stable structures
[100]/sub0/∗O2, [100]Mg-vac/sub1, and [310]/pos1/∗O2 showing the magnitude and
imaginary portions of Fourier transforms. The magnitude is shown with experimental
results in black and the model in blue, and the imaginary portions are shown in black
and green, respectively. The k-range of 2.2–12.5 Å−1 and the R-range of 1.0–5.0 Å
were used for the fits.
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Figure 3.S21. Testing the applicability of QuantEXAFS on well-defined system
(Pt/TiO2) - a) EXAFS fits reported in the paper derived from conventional approach;
EXAFS fits using QuantEXAFS on the same data (300 ◦C oxidation); fit from Quan-
tEXAFS in b) R-space and d) k-space; c) DFT optimized structure used for fitting the
data in QuantEXAFS (‘hypothesized’ to be representative of the Pt site in the original
manuscript). Red: O, gray: Ti, and yellow: Pt. The k-range of 2.0–10.5 Å−1 and the
R-range of 1.0–5.0 Å were used for the fits. Adapted with permission from DeRita et
al., Nature Materials volume 18, pages 746–751. Copyright 2019 Springer Nature.
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Chapter 4

Predicting Structural Properties of Pure Silica

Zeolites Using Deep Neural Network Potentials

Tyler G. Sours and Ambarish R. Kulkarni

Adapted with permission from J. Phys. Chem. C, 2023, 127, 1455–1463.

Copyright 2023 American Chemical Society.

4.1 Abstract

Machine learning potentials (MLPs) capable of accurately describing complex ab initio

potential energy surfaces (PES) have revolutionized the field of multiscale atomistic mod-

eling. In this work, using an extensive density functional theory (DFT) dataset (denoted

as Si-ZEO22) consisting of 219 unique zeolite topologies (350,000 unique DFT calcula-

tions) found in the International Zeolite Association (IZA) database, we have trained

a DeePMD-kit MLP to model the dynamics of silica frameworks. The performance of

our model is evaluated by calculating various properties that probe the accuracy of the

energy and force predictions. This MLP demonstrates impressive agreement with DFT

for predicting zeolite structural properties, energy-volume trends, and phonon density

of states. Furthermore, our model achieves reasonable predictions for stress-strain re-

lationships without including DFT stress data during training. These results highlight

the ability of MLPs to capture the flexibility of zeolite frameworks and motivates further

MLP development for nanoporous materials with near-ab initio accuracy.
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4.2 Introduction

Accurate and efficient calculation of the energies and forces of atomistic systems remains

one of the leading challenges in computational chemistry. While ab initio approaches

rooted in quantum mechanics, e.g., Density Functional Theory (DFT), often yield reli-

able results, large scale simulation of system dynamics with DFT remains impractical.

For instance, predicting self diffusivity coefficients, phase transitions, and phonon spectra

using molecular dynamics (MD) often requires millions of force and energy evaluations.

Traditionally, generic or DFT-parameterized force fields (FFs) are used for such compu-

tationally demanding simulations. While the simplicity of the FF methods enables longer

simulation timescales for larger systems, these approaches are often less accurate than

ab initio simulations. Even for FFs derived from DFT calculations, the rigid analytical

form of bonded (e.g., harmonic, Morse etc.) and non-bonded (e.g., 12-6 Lennard-Jones,

Buckingham etc.) potentials often results in systematic deviations.1

In contrast to the simple analytical form of classical FFs, machine learning potentials

(MLPs) have emerged as a flexible alternative to describe complex potential energy sur-

faces. Specifically, by training the model on a suitable set of first principles data that

spans the relevant configuration space of a system, an MLP is able to evaluate the PES at

accuracy close to the ab initio method at significantly lower computational cost. Several

different MLP forms have been proposed, which are broadly classified as either kernel

methods or neural network methods. Kernel methods, such as GAP2 and sGDML3, em-

ploy kernel functions (e.g., SOAP4) to assess the similarity of atomic configurations and

interpolate the energy from known data points. Neural network methods calculate single

atomic energy contributions by using a set of symmetry invariant descriptors that capture

the local environment of each atom as inputs to various neural network architectures. Pop-

ular neural network potentials include ANI5 and DeePMD6,7, and newer message-passing

networks like PhysNet8, SchNet9, and SpookyNet10. New MLPs continue to appear in

the literature, and several reviews exist describing and comparing the current state of the

art models.11–15

Open-source releases of MLP software have enabled researchers to develop their own
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force fields for various systems including small molecules, nanoparticles, and metal sur-

faces. However, to the best of our knowledge, similar approach have not been used for

zeolites. Siliceous zeolites are polymorphs composed of the SiO2 formula unit with sig-

nificant industrial use.16,17 Given the chemical simplicity and the existence of over 200

unique topologies, and hundreds of thousands of theoretical structures,18 zeolites are ide-

ally suited for demonstrating the capabilities of MLPs.

Many industrially relevant applications of zeolites involve small molecules diffusing

through the porous framework over relatively long time-scales. As including framework

flexibility is necessary to accurately model diffusion and adsorption phenomena in zeo-

lites,19,20 it is important to develop MLPs that accurately model dynamics of the frame-

work. Thus, the central goals of this work are to develop a DFT dataset that rigourously

samples the atomic configuration space of pure silica zeolites, and train and validate an

MLP using the Deep Potential (DP) method implemented in DeePMD-kit.7

The DP method represents the system energy as the sum of single atomic energies

that are determined from descriptors that capture the localized interactions between each

atom and its neighbors within a specified cutoff distance. For a given atom, the relative

coordinates of the local environment (i.e., the neighboring atoms) are passed through an

encoding network to obtain symmetry invariant descriptors. These descriptors are then

mapped to single atomic energies via an additional fitting neural network. This approach

has shown promising results for describing the dynamics of both small molecules21–25

and periodic bulk materials.26–31 Additionally, DeePMD-kit provides seamless integration

with the Atomic Simulation Environment (ASE)32, the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS)33, and several other popular molecular simula-

tion platforms.

In this work, a large DFT dataset is generated using 219 of the 248 siliceous zeolite

topologies found in the IZA database; all topologies with fully connected frameworks and

less than 400 atoms were included. A single DP model, trained on 187 of these topologies

to obtain a generalized silica MLP, is shown to accurately predict energies and forces of

DFT configurations not included in the training set. This analysis is extended by using our
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DP model to calculate properties not explicitly included in the training, and the results

are compared with the DFT predictions. Our results show excellent agreement between

DP and DFT for structural properties, equations of state (EOS), and phonon density of

states (PDOS). We also demonstrate the ability of DP to model stress-strain behavior and

give reasonable predictions of mechanical properties even when ab initio stress data are

not used during training. While other ML models have been developed to predict some of

these properties purely from zeolite geometric descriptors,34–36 we test how well a DFT-

trained MLP can directly calculate these properties by evaluating the PES. Our results are

also compared with those from the BKS force field37 (used as a prototypical example of a

classical force field), and we find that the DP model provides significantly more accurate

results. We end our analysis by calculating the above properties for an additional set of 32

topologies (not included in the training) to demonstrate the transferability of the model.

Taken together, by highlighting the efficacy of the DeePMD-kit formulation for silica

zeolites, this study lays a foundation for future exploration of more complex materials

such as those containing extra-framework cations and adsorbates.

4.3 Computational Methods

4.3.1 Training Set Generation

DFT NVT-MD was used to generate the initial training set for the DP model. The

Vienna ab initio simulation package (VASP) was used with the PBE38 functional for

DFT calculations. Dispersion corrections were considered with the DFT-D3 method with

Becke-Johnson damping (D3BJ).39–41 Only the Γ-point was used for k-space sampling. A

plane-wave cutoff of 400 eV was was used, and electronic energies were converged to 10−5

eV. Configurations were obtained from MD trajectories (≥ 1.5 ps simulation time, 0.5

fs timestep) at three different temperatures: 300, 600, and 900 K. Snapshots from these

trajectories were taken every 10 timesteps and were used to train an initial DP model.

This model was then used with LAMMPS to generate 100 ps NPT-MD trajectories at

0.1, 1.0, and 10.0 bar. After equilibrating the system (298 K, 10 ps), the temperature was

ramped from 298 K to 1000 K over the course of the simulation. This approach provides
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Figure 4.1. Schematic overview of procedure used to train DP model. Initial model
was trained on configurations from 3 ps NVT DFT-MD runs at 300, 600, and 900
K. The initial DP was then used to generate 100 ps NPT DP-MD trajectories at
pressures of 0.1, 1.0, and 10.0 bar with the temperature linearly ramped from 298-
1000 K. Snapshots from every 1000 time steps were selected to obtain new uncorrelated
configurations for training final DP model that is used to predict various structural
properties of silica zeolites.

a diverse set of configurations at various temperatures and pressures. Snapshots of each

system at every 1000 timesteps were extracted for a total of 600 configurations (200 × 3

pressures). The energies and forces of the new configurations were evaluated with DFT,

and the model was retrained including these results. This procedure is illustrated in

Figure 4.1. Due to computational cost, fewer configurations were collected for large unit

cell topologies; a full list of the topologies and corresponding dataset sizes are included in

the SI. While not used in this work, we note that the DPGEN42,43 training protocol can

be used to select snapshots for training.

4.3.2 Model Training

The DP training parameters were adjusted to achieve an architecture that balances the

accuracy of the energy and force predictions as well as the time to train and evaluate

new configurations. The primary parameters we considered for tuning were the size of

the embedding neural net, size of the fitting neural net, atomic cutoff radius, initial

learning rate (LR), and the number of training steps (Tables 4.1-4.5 and Figures 4.2-
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4.6). Other “smaller” parameters (e.g., batch size and decay rate) were found to have a

negligible effect on prediction accuracy and thus have been omitted. It was discovered

that DeePMD-kit provides a very robust platform that produces reasonable results for

most architectures chosen; however, it is still advantageous to tune the parameters to find

the least complex architecture necessary to achieve the desired accuracy in the interest of

reducing computational expense.

Table 4.1. Hyperparameter configurations for tuning the embedding neural net size.

Model Embedding Net Fitting Net Cutoff Initial LR Training Steps

A (8, 16, 32) (64, 64, 64) 6.0 Å 0.0005 1× 106

B (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 1× 106

C (32, 64, 128) (64, 64, 64) 6.0 Å 0.0005 1× 106

D (32, 64, 128) (128, 128, 128) 6.0 Å 0.0005 1× 106

Table 4.2. Hyperparameter configurations for tuning the fitting neural net size.

Model Embedding Net Fitting Net Cutoff Initial LR Training Steps

A (16, 32, 64) (32, 32, 32) 6.0 Å 0.0005 1× 106

B (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 1× 106

C (16, 32, 64) (128, 128, 128) 6.0 Å 0.0005 1× 106

Table 4.3. Hyperparameter configurations for tuning the atomic cutoff.

Model Embedding Net Fitting Net Cutoff Initial LR Training Steps

A (16, 32, 64) (64, 64, 64) 5.0 Å 0.0005 1× 106

B (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 1× 106

C (16, 32, 64) (64, 64, 64) 7.0 Å 0.0005 1× 106

The configurations collected from each run were first shuffled and then split into 80%

training data, 10% validation data used by DeePMD-kit during the training process, and

an additional 10% testing data. The cutoff radius is 6.0 Å with smoothing beginning at

5.5 Å. The embedding net was set to 3 layers with (16, 32, 64) neurons, respectively. The

fitting net was also set to 3 layers with (64, 64, 64) neurons. The model was trained for
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Figure 4.2. Validation set learning curves for the model hyperparameter combinations
shown in Table 4.1 for the (top) energy and (bottom) force loss function contributions.

Table 4.4. Hyperparameter configurations for tuning the initial learning rate.

Model Embedding Net Fitting Net Cutoff Initial LR Training Steps

A (16, 32, 64) (64, 64, 64) 6.0 Å 0.001 1× 106

B (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 1× 106

C (16, 32, 64) (64, 64, 64) 6.0 Å 0.0001 1× 106

2 × 107 steps with the learning rate starting at 5 × 10−4 and exponentially decaying to

5 × 10−8. The prefactors for the energy and force contributions to the loss function were

set to pstarte = 0.02, plimit
e = 1, pstartf = 1000, plimit

f = 1. Validation set learning curves for

several model architectures are shown in Figures 4.2-4.6. The hyperparameters selected

were found to provide a reasonable balance between accuracy and training/evaluation
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Figure 4.3. Validation set learning curves for the model hyperparameter combinations
shown in Table 4.2 for the (top) energy and (bottom) force loss function contributions.

Table 4.5. Model hyperparameter configurations for tuning the number of training
steps

Model Embedding Net Fitting Net Cutoff Initial LR Training Steps

A (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 5× 105

B (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 1× 106

C (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 5× 106

D (16, 32, 64) (64, 64, 64) 6.0 Å 0.0005 2× 107

time (Figure 4.7). The complete input file of all parameters used for training the final

model is hosted at https://github.com/tysours/Si-ZEO22/blob/main/supporting_

info/SiZeo_dpmd_params.json.

103

https://github.com/tysours/Si-ZEO22/blob/main/supporting_info/SiZeo_dpmd_params.json
https://github.com/tysours/Si-ZEO22/blob/main/supporting_info/SiZeo_dpmd_params.json


103 104 105 106
10 4

10 3

10 2

10 1

100

En
er

gi
es

 lo
ss

A
B
C

103 104 105 106

Steps
10 2

10 1

100

Fo
rc

es
 lo

ss

Figure 4.4. Validation set learning curves for the model hyperparameter combinations
shown in Table 4.3 for the (top) energy and (bottom) force loss function contributions.
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Figure 4.5. Validation set learning curves for the model hyperparameter combinations
shown in Table 4.4 for the (top) energy and (bottom) force loss function contributions.
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Figure 4.6. Validation set learning curves for the model hyperparameter combinations
shown in Table 4.5 for the (top) energy and (bottom) force loss function contributions.

Figure 4.7. Relative training times per 1,000 epochs for different hyperparameter
combinations for tuning the (a) embedding neural net (Table 4.1), (b) fitting neural
net (Table 4.2), and (c) cutoff (Table 4.3).
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4.4 Results and Discussion

4.4.1 Model Performance

The accuracy of the energy and force predictions for the trained DP model were evaluated

using testing data that was unseen during model training (10% of the original dataset

for each topology was set aside for post-training testing). The parity plots comparing

DP predictions to DFT values for the energies (per SiO2 unit) and forces are shown in

Figure 4.8a and 4.8b, respectively. DP was found to be able to predict DFT values with

excellent accuracy, as seen by the MAE of 2.6× 10−3 eV/SiO2 for energies and 3.9× 10−2

eV/Å for forces. Note that the data shown in Figure 4.8a-b corresponds to the combined

test sets of all 187 training topologies considered. Predictions for some topologies were

found to be more or less accurate than others, and the complete list of MAE values for

all individual topology test sets is included in the SI.

To further demonstrate our DP’s ability to predict energies and forces on configurations

outside of the training set, and to probe for any potential sampling biases arising from

only including short DFT-MD trajectories in the initial training set, an additional 20,000

step DFT-MD run at 298 K was completed for CHA topology. The energies and forces of

all configurations of the trajectory were evaluated with DP, and the MAE for the entire

trajectory was found to be 0.95 × 10−4 eV/SiO2 for the energy and 2.0 × 10−2 eV/Å for

the force predictions. Figure 4.8c shows the DFT energies (black line) of the final 500 fs

snippet from the trajectory with DP evaluations overlaid (dashed orange line).

4.4.2 Structural Properties

The structures of all 187 topologies were relaxed using DP and compared to DFT opti-

mizations. The normalized distribution of all Si-O bond lengths and O-Si-O angles for all

relaxed structures are shown in Figure 4.9a and 4.9b, respectively. The distributions for

both angles and bond lengths with DP match almost perfectly with the DFT distributions,

highlighting the remarkable ability of DP to replicate relaxed ab initio geometries.

The percent error distribution in calculated lattice constants relative to DFT values for

DP (orange) and BKS (green) are shown in Figure 4.9c, where positive and negative errors
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Figure 4.8. Parity plots comparing DP-predicted (a) energies and (b) forces with
corresponding DFT values for test dataset not seen during training. (c) Energy relative
to relaxed structure from the final 500 fs of a 10,000 fs DFT-MD (solid black line) run
with DP predictions overlaid (dashed orange line) for CHA topology at 298 K.

correspond to overestimation and underestimation of lattice constants, respectively. The

narrow distribution centered at 0% error for DP implies excellent agreement with DFT.

BKS shows a wider distribution centered at positive error, indicating a slight tendency

to overestimate the lattice constants compared to DFT. These results show that a DP

trained on higher energy MD snapshots can still produce very similar global minima to

the DFT PES.

We acknowledge that recently reported classical zeolite force fields44,45 may show better

performance than the BKS model used in Figure 4.9. As the central goal of this study is

to develop a MLP model that shows similar accuracy to the DFT data, the comparison
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with other classical force fields (beyond the BKS model) is beyond the scope of this work.

Interested readers are referred to the seminal work of Sastre for more in-depth comparison

across different zeolite force fields.20,46,47

Figure 4.9. Normalized distributions of (a) Si-O bond lengths and (b) O-Si-O angles
for relaxed geometries of the 187 topologies included in the training set for DFT, DP,
and BKS. (c) Normalized distribution of percent errors relative to DFT of optimized
lattice constants for DP and BKS. Vertical dashed black line denotes zero error (perfect
agreement with DFT lattice constant).

4.4.3 Equation of State

Energy versus volume curves at 0 K were generated with DFT, DP, and BKS to assess

how well DP can predict energies of systematically varied cell volumes. The resulting

data were fit to the third-order Birch-Murnaghan EOS,

E(V ) = E0 +
9V0B0

16


[(

V0
V

)2/3

− 1

]3

B′
0 +

[(
V0
V

)2/3

− 1

]2 [
6 − 4

(
V0
V

)2/3
]

where E0 and V0 are the energy and volume of the relaxed structure, respectively, and B0

and B′
0 are the bulk modulus (a property that describes the resistance to uniform com-

pression/expansion) and its derivative. Thus, the bulk modulus can be determined from

fitting energy-volume data to an EOS and serves as an additional metric for evaluating

the performance of DP.

Taking the topologies of CHA, FER, and RHO as examples, the energy-volume curves

and EOS fits are shown in Figure 4.10 for 15 volumes across ±5% volumetric strain. The

DP data aligns very well with DFT, while BKS noticeably deviates. The similar curvature
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of the EOS fits for DP and DFT suggests DP can accurately calculate bulk moduli. Ad-

ditionally, the similar location of V0 (the volume corresponding to the minimum energy)

is further evidence that DP can accurately predict lattice constants. The higher curva-

ture of the BKS energy-volume data implies that BKS overestimates the bulk moduli,

and, similarly, the values of V0 imply BKS overestimates the lattice constants for these

topologies.

We extended this analysis to all other topologies included in the dataset, and the

resulting parity plots comparing predicted bulk moduli values with DFT values for DP

and BKS are shown in Figure 4.10d and Figure 4.10e, respectively. For computational

efficiency, only 5 volumes were used with ±2% volumetric strain. The RMSE of bulk

moduli calculated with DP was found to be 8.6 GPa, while BKS values had an RMSE of

31.4 GPa. Again, we see that BKS has a tendency to overestimate the bulk moduli in

comparison to DFT.

Figure 4.10. Energy-volume curves with third-order Birch-Murnaghan EOS fit for (a)
CHA, (b) FER, and (c) RHO topologies for 15 volumes across ±5% volumetric strain.
Parity plots comparing DFT with (d) DP and (e) BKS for bulk moduli calculated from
EOS fits for all 187 topologies using 5 volumes across ±2% volumetric strain.
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4.4.4 Mechanical Properties

Second-order elastic constants were calculated with Elastool48 using the optimized high-

efficiency strain-matrix set (OHESS) using 5 strains (±2% amplitude) for each deforma-

tion.49 The elastic constants were used to compute Voigt-Reuss-Hill (VRH) averages of

the bulk (KV RH) and shear (GV RH) moduli for 172 topologies. Figure 4.11 shows the

agreement of DP and BKS with DFT for KV RH and GV RH . DP is able to predict KV RH

quite accurately for topologies with values less than around 60 GPa; however, there is a

noticeable drop in accuracy for stiffer materials with high KV RH values, with DP con-

sistently underestimating bulk moduli relative to DFT. This suggests that that our DP

model struggles to reproduce the expected stress-strain behavior for stiff topologies with

high stress tensor values. Additionally, while DP tends to underestimate GV RH , the

overall predictions are comparable to the BKS predictions.

Accurate calculation of elastic constants using stress-strain relations requires accurate

stresses, so the DFT calculated bulk and shear moduli were calculated using a 700 eV

plane-wave cutoff to ensure convergence of the stress tensor components. We note that it is

possible to train a DP model including virial stress error in the loss function, and doing so

would likely improve the accuracy of the mechanical property calculations. However, the

DFT training set configurations were calculated using a plane-wave energy cutoff of 400

eV, and higher cutoffs are needed to converge the stress tensor components. Therefore, it

would not be appropriate to use the stress values for training. Notwithstanding these lim-

itations, it is quite impressive that DP can produce reasonable predictions of mechanical

properties that were calculated with a 700 eV cutoff even though the training data consists

entirely of configurations calculated at 400 eV. We note that it is necessary to include

stress data in the training and ensure the appropriate basis set is used to give reliable

stress tensors to train on, as shown by the accurate calculations obtained in other work.30

We also note that better agreement may be obtained by using methods that calculate

elastic constants from energy-strain relationships as opposed to stress-strain. However, a

detailed investigation into mechanical properties is beyond the scope of this work, and we

elected to use stress-strain approaches to examine the accuracy of DP-calculated stresses
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Figure 4.11. Parity plots comparing DFT VRH averages with DP-calculated (a) bulk
moduli and (b) shear moduli and BKS-calculated (c) bulk moduli and (d) shear moduli.

when not included in training.

4.4.5 Phonon Density of States

The PDOS of CHA (chosen due to lower DFT computational cost) was calculated at

900 K to assess DP’s ability to calculate vibrational modes. Atomic velocities from MD

trajectories were used to calculate PDOS from the Fast Fourier transform of the velocity

autocorrelation function. An MD trajectory of 10 ps was used for the DFT PDOS (black in

Figure 4.12), and 50 ps were used for DP and BKS (orange and green, respectively) PDOS

calculations. As the PDOS is calculated from the changes in atomic positions, which are

determined by the atomic force calculations at each MD step, it provides a good metric

to probe the accuracy of the DP forces. We see good agreement in the frequencies of
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the vibrational modes between DFT and DP, while the intensity of the peaks is generally

consistent but with some disagreement at a few frequencies. BKS shows a tendency to

overpredict vibrational mode frequencies with broader and less intense peaks. These data

demonstrate the suitability of the DP model for predicting phonon modes of silica zeolites

at close to DFT accuracy.
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Figure 4.12. PDOS of CHA at 900 K calculated from the velocity autocorrelation
function from an NVT-MD trajectory for DFT, DP, and BKS.

4.4.6 Model Transferability

The previous results assessed DP’s ability to predict properties of the 187 topologies in-

cluded in the model’s training. We now examine a testing set of 32 topologies from our

dataset (not used during training) to see how DP performs for topologies completely un-

seen by our model. The optimized geometries of these 32 zeolites were obtained using both

DFT and our DP model to assess DP’s ability to predict PES minima for new topologies.

As seen in Figure 4.13a-c, the DP model continues to show impressive agreement with

DFT for optimized geometries of new topologies. Both the optimized Si-O bond length

and O-Si-O angle distributions align almost perfectly with DFT, and the calculated lat-

tice constants agree with DFT typically within 1% error for the majority of topologies

considered.

The calculations of bulk moduli (B0) from fitting energy-volume data and bulk and
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shear moduli (KV RH and GV RH , respectively) from elastic constants using stress-strain

data were repeated for the test set of topologies. As shown by the excellent agreement

between DP and DFT calculated EOS bulk moduli in Figure 4.13d, we find our DP is

transferable and capable of mapping out PES of unseen topologies by learning the PES of

many similar structures. High transferability suggests that MLPs may be ideally suited

for applications involving high-throughput screening of large zeolite databases by calcu-

lating a property of interest at near-DFT accuracy. The DP model also yields reasonable

KV RH (Figure 4.13e) and GV RH (Figure 4.13f) predictions for the testing topologies with

accuracy on-par with that obtained for the training topologies. We reiterate that DFT

stresses were not included in training, so it should be expected that KV RH and GV RH

(calculated using stresses) be less accurate than B0 (calculated using energies) for both

the testing and training topologies.

Figure 4.13. Comparison of normalized distributions of (a) Si-O bond lengths and
(b) O-Si-O angles for optimized DFT and DP geometries of 32 topologies foreign to
the trained model. (c) Normalized distribution of percent errors relative to DFT of
optimized lattice constants for DP. (d) Bulk moduli calculated from EOS fits, and (e)
bulk moduli and (f) shear moduli calculated from stress-strain relationships for the 32
testing topologies (red) compared to the 187 topologies included in training (gray).
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4.4.7 Computational Cost

We end our discussion with a brief analysis of the computational efficiency of DFT and

DP. The average time per MD step was found for DP and DFT for eight randomly selected

topologies of varying system size. The DFT and DP calculations were both performed

using 32 cores (2.3 GHz Intel® Xeon™ Processor E5-2698 v3) for a direct comparison of

performance. Although using a fixed number of cores neglects potential scaling differences

between DP and DFT with increasing CPU cores, an exhaustive cost analysis across

different parallelization schemes is beyond the scope of this work. Figure 4.14 shows the

speedup (ratio of DFT and DP time per MD step) for increasing system size. For our pure

silica zeolite systems, we found DP to be > 1000 times faster than the corresponding DFT

calculation, with the more favorable scaling of DP with increasing number of atoms leading

to improved speedup for larger systems. Coupled with the accuracy of the results discussed

previously, we conclude that the DP approach significantly improves the accuracy-cost

trade off for these materials. Note that the above results were obtained with the CPU

version of DeePMD-kit; using GPUs could lead to better performance and improved

parallelization.
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Figure 4.14. Computational speedup and scaling for DP compared to DFT for various
silica topologies. The eight topologies chosen correspond to ACO, GME, CHA, MOR,
SAO, STI, MFI, and IWS in order of increasing number of atoms.
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4.5 Conclusion

In this work, a diverse DFT dataset was generated consisting of 219 pure silica zeolite

topologies for training MLPs. DeePMD-kit was used to train a single DP on 187 of the

219 topologies (32 were set aside as a test set for model transferability) that accurately

reproduces the ab initio PES of silica. We assessed the ability of the DP to calculate

properties that were not explicitly trained for through energy and force evaluations. We

have shown excellent agreement with DFT structural properties, as seen by nearly identi-

cal tetrahedral SiO4 geometry and lattice constants in structures relaxed by DFT and DP.

The accuracy of the energies and forces was also highlighted by good agreement with DP

and DFT for energy-volume curves (EOS) and finite temperature PDOS calculated from

MD velocities. Mechanical properties from elastic constants calculated from stress-strain

relationships were found to show reasonable agreement, with large improvement likely to

be gained from including DFT stresses during training. We also tested how our model

performs at calculating these same properties for the 32 testing topologies not included

during training, and we found comparable accuracy to the training set topologies, suggest-

ing a generalized DP applicable for any pure silica zeolite structure. Our results indicate

an MLP trained on ab initio data can successfully model zeolite framework dynamics. We

are currently extending the DP approach to model the diffusion of small molecules and

metal nanoclusters in zeolites and metal-organic frameworks (MOFs). Our findings pro-

vide a promising avenue to develop DP-based MLPs for zeolites, and are broadly relevant

to the nanoporous modeling community. Additionally, we anticipate that the silica zeolite

dataset developed in this work (denoted as Si-ZEO22) will motivate the development of

other MLPs for this important class of industrially relevant materials.
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Chapter 5

Summary and Future Directions

The work presented here represents several of the diverse applications of atomistic model-

ing to gain insight about a class of materials. The first section detailed how DFT predic-

tions were used with theoretical electrochemical models to evaluate bimetallic porphyrin-

based MOFs as catalysts for oxygen reduction in fuel cell devices. Certain synergetic

combinations of transition metal porphyrin complexes in the MOF linkers were shown

to provide ideal catalytic environments with selective stabilization of the ∗OOH inter-

mediate, resulting in favorable modifications of the infamous scaling relationships that

bottleneck the performance of today’s commonly used 2-dimensional surface catalysts.

Specifically, bimetallic Cr and Fe Al-PMOF was identified as a highly active catalyst with

a theoretical limiting potential of 1.07 V (compared to 0.8 V with Pt, the most common

ORR catalyst).

As electrochemical oxygen reduction is inherently a multiscale process with oxygen

diffusion, charge transfer, and the intrinsic catalytic activity all influencing the overall re-

action rate,1 there are many under-explored avenues of research that need to be addressed

to refine the theoretical models used for this newer class of nanoporous electrocatalysts.

In particular, the solvent environment around the reaction centers is poorly understood

in these MOF materials, as the topological features of the MOF heavily influence solvent

transport.2 Accurate description of the solvent is essential for ORR since the oxygen-

based reaction intermediates are stabilized by hydrogen bonding interactions with the

surrounding water molecules.3 Solvation models that explicitly include water molecules
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in the simulations are necessary but computationally costly due to the large configura-

tional space of solvated systems.4 To this end, the methodologies for training accurate

machine learning potentials discussed in Chapter 4 can be directly applied to water in

MOFs. A DFT training data set of water interacting with each adsorbate in the MOF

can be easily developed. In short, molecular dynamics (MD) simulations at various tem-

peratures and pressures with a range of water loadings surrounding each adsorbate can

be used to generate DFT configurations. Several MD runs with different initial starts

from randomly shuffling the water molecule locations coupled with temperature and pres-

sure ramping would efficiently sample the PES of the solvated ORR system. Iteratively

training an MLP with the active learning procedure previously discussed would result in

a flexible ML-powered force field to combine with existing methodologies for calculating

solvation effects in ORR.

Chapter 3 introduced an approach for characterizing atomically dispersed transition

metal catalysts using a suite of experimental and theoretical techniques. This work lever-

aged high throughput computational screening as a means to validate experimental mea-

surements for difficult to characterize active sites. State-of-the-art experimental x-ray ab-

sorption spectra were compared to theoretical equivalents for a library of DFT calculated

potential active site structures to elucidate a sub-surface Pt4+ embedded in MgO. Exper-

imental CO oxidation apparent activation energies were compared with DFT-calculated

energy barriers to validate the activity of the identified catalytic site. This work highlights

the powerful synergy of designing experiments that incorporate theoretical feedback (and

vice-versa) and the importance of diverse, interdisciplinary collaborations.

The work presented in Chapter 4 developed a large DFT data set (SiZEO-22) and

trained a generalized MLP that was shown to be accurate for representing the PES of

pure silica zeolites. This was demonstrated by calculating various unrelated properties

that involve performing atomistic simulations and evaluating energies and forces of atomic

configurations not included in training. Specifically, the MLP accurately predicted relaxed

geometries (PES minima), energy-volume relationships, phonon/vibrational properties,

and mechanical properties (shear and bulk moduli). The open-access release of the Si-
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ZEO22 data set provides researchers with an exhaustive set of DFT data for an industrially

significant class of materials. As the field of MLP research is fairly nascent with new

methodologies constantly being developed, Si-ZEO22 will serve as an invaluable resource

for validating new MLP formulations.

This project played a pivotal role in the Kulkarni group’s transition to machine-

learning based molecular modeling. It is our first publication involving the usage of

MLP approaches, and the data, workflows, and software developed during the course of

the project were used to establish a computational infrastructure in a new frontier of

research for our group. Additionally, zeolites are a central class of material to our group’s

research, and by demonstrating the effectiveness of MLPs for describing the flexible dy-

namics of the frameworks, this work can be extended to model more complex phenomena

in nanoporous materials (such as reactions and gas adsorption). To this end, several ongo-

ing works such as gold nanoparticle diffusion in zeolites, formation of subsurface Pt sites

in MgO, small molecule diffusion in metal-organic frameworks, and methane activation

in Cu-exchanged zeolites are all currently underway in our group. The lessons learned

and technical difficulties encountered in this work have allowed me to establish a role as

a mentor for guiding these studies.

We have already made significant progress with applying a DeePMD-kit MLP to cal-

culate methane activation reaction barriers for thousands of Cu-exchanged zeolite sites.

The training set was created with rigorous sampling of the configuration space around

the reaction coordinate for 30 initial CuOCu sites. MD runs with the initial state (CH4),

final state (CH +
3 ), and constrained images of the reaction coordinate from DFT nudged-

elastic band (NEB) calculations for these 30 sites were used to train an initial model.

This initial MLP was then used to perform high throughput NEBs to generate many con-

figurations along the CH4 to CH +
3 reaction coordinate to add to the training set. Several

training iterations were performed with these 30 sites and then extended to predict the

energy barriers for 5,400 unique CuOCu sites, increasing the feasible search space relative

to DFT by a factor of around 100. Additional training iterations were performed, each

time adding more DFT data from reaction coordinate images of these sites generated by
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Figure 5.1. (a) Sources of training data for training DeePMD-kit MLP to model CH4

activation in Cu-exchanged zeolites. (b) Preliminary results of MLP-calculated energy
barriers for 5,400 CuOCu sites compared to DFT values.

MLP NEBs. Figure 5.1 summarizes the DFT training set constituents and preliminary

predictions of the 5,400 site reaction barrier energies compared to DFT. We expect to

submit this work to be published in Spring 2023.

Additionally, these MLP studies have motivated investigation into GPU-accelerated

MD simulations. Figure 5.2 shows benchmark calculations for a 143 atom unit cell and

4x4 supercell of an initial MLP model trained on the data from the Pt MgO system de-

tailed in Chapter 3. As the computational cost of DFT scales approximately O(N3) with

increasing number of atoms, simulations involving more than a few hundred atoms are

highly unfeasible with current computing power. The linear scaling of MLPs enable simu-

lations with larger molecular systems,5 with GPU-powered simulations scaling extremely

favorably.

The significantly lowered cost of simulating large systems with near-DFT accuracy

with GPU-powered MLP models presents many exciting opportunities. For instance,

characterization of defects in MOFs is a new area of active research that would benefit

from these approaches. Defective MOF materials are challenging to characterize due to

the formation of nanoregions of assorted defect configurations that require using large

supercells to simulate.6–8 By training an MLP on various unit cells and small supercells

of various pristine and defective MOFs (different variations of missing node and linker

defects), the MLP can then be applied to explicitly model larger nanoregions of these
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Figure 5.2. Computational cost comparison for DFT and MLP (DP) using CPU and
GPU computing resources.

materials and probe specific defect configurations.

Multiscale atomistic modeling continues to be applied in novel ways to discover new

materials and provide atomic-level insight to experimental observations. The work pre-

sented here is a small contribution to a global effort directed at leveraging computational

workflows to automate scientific discovery. With impending advancements in computing

and machine learning coupled with the growing collection of publicly available material

and chemical databases, computational approaches will serve a crucial role in driving

technological progress in renewable energy, pharmaceuticals, and more.
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