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ABSTRACT OF THE DISSERTATION 

 

Conservation, evolutionary and physiological ecology of plant drought tolerance: from ecotypes 

to ecosystems 

 

by 

 

Camila Dias Barros Medeiros 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2021 

Professor Lawren Sack, Chair 

 

Due to the projected increases climatic variability, including an increased frequency of extreme 

climatic events, such and droughts, flooding and fires, the mechanisms that plants use to access, 

transport and conserve water require critical and quantitative understanding. While there is a 

growing consensus that traits, such as the leaf osmotic potential at turgor loss point (πtlp), determine 

plants’ abilities to maintain photosynthetic performance and survive droughts, there has been little 

work to understand their inter-relationships, evolution, and how they scale up to overall plant 

performance and ecosystem functioning. During my PhD I focused on the integration of leaf and 

whole-plant traits to explain and predict plant vital rates and vegetation distributions with respect 

to climate. I showed that the stomatal conductance of Arabidopsis ecotypes and its relationship 

with climate is developmentally determined by the area of epidermal pavement cells and the 

stomatal initiation rate, and not the stomatal size. I determined that traits of California native oak 
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species evolve in modules and that traits of Hawaiian native species from contrasting forests varied 

strongly and influenced species’ vital rates, with stronger relationships when stratifying by tree 

size.  I also showed that species’ climate distributions across California can be predicted from traits 

and that traits and trait-trait intercorrelations change along a gradient of aridity in California. 

Ultimately, this work provided a new synthesis of the variation of trait-climate relationships across 

scales, opening new avenues for the inclusion of mechanistically informative traits to parameterize 

process-based models to test the ability to predict growth and mortality rates from trait networks, 

spatial neighborhoods, local topography, and climate across forests worldwide. 
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CHAPTER 1 

PREMISE OF THE DISSERTATION 

 

Functional traits are morphological, physiological or phenological attributes measurable at the 

individual level that influence plant growth, reproduction and survival and thereby fitness (Lavorel 

& Garnier 2002; Violle et al. 2007), and thus can be used to predict vital rates (Poorter et al. 2008; 

Adler et al. 2014; Uriarte et al. 2016), habitat preferences (Shipley et al. 2017) and spatial 

distributions (Stahl et al. 2014). For decades, functional traits have been applied by ecologists 

performing research at large biogeographic scales with an emphasis on easy-to-measure traits that 

can be determined for entire communities (Grime 1979; Wright et al. 2004; Díaz et al. 2016; 

Messier et al. 2017). Instead of measuring all aspects of the ecology and physiology, which was 

presumed to require focusing on small species sets, this approach focuses on small sets of 

informative parameters in entire communities and ecosystems (Mcgill et al. 2006). This trait-based 

approach presents a clear advantage: the ability to study patterns even across species worldwide 

(Wright et al. 2004; Westoby & Wright 2006; Díaz et al. 2016). 

However, the functional trait approach has to be applied with caution—traits may not be 

meaningful alone, since they vary in coordination with other traits (Sack et al. 2013; He et al. 

2020; Sack & Buckley 2020). To truly understand the ecological response and the mechanisms 

involved, there has been a focus on the selection and quantification of closely coordinated traits 

thought to most importantly represent function (Cornelissen et al. 2003; Westoby & Wright 2006). 

Oversimplification of the trait-based approach can lead to equivocal conclusions with serious 

consequences to the development of the field and to the understanding of natural ecosystems, 

ultimately leading to wrong management of natural landscapes (Lavorel & Garnier 2002; Sack et 
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al. 2013). Indeed, several have argued that more extensive suites of traits would enable stronger 

predictive and explanatory power (Reich 2014; Paine et al. 2015; Greenwood et al. 2017; Yang et 

al. 2018), and this argument has conceptual support because mechanistic models of growth and 

survival are sensitive to a broad set of traits as inputs (Marks & Lechowicz 2006; Sterck et al. 

2006; Osborne & Sack 2012). 

In this context, the inclusion of more physiology-intensive parameters seems be the most 

promising next step to further the development of trait-based ecology, moving beyond simple and 

easy-to-measure parameters with little biological relevance to species distribution patterns and 

closer to a mechanistically oriented functional ecology. Thus, my PhD work focused on integrating 

trait-based approaches in physiology, evolution and ecology, in particular linking leaf and whole-

plant function and vital rates and vegetation distributions to reach an integrative perspective of 

plant’s responses to environmental drivers and create models to explain and predict species ranges. 

In each successive chapter of my dissertation, I scale up to higher levels of organization and 

function, from ecotypes to ecosystems. I quantified a comprehensive set of leaf, stem and whole-

plant traits and their relationships with climate across: ecotypes of a model species (Chapter 2), 

different species from the same genus (Chapter 3), species from contrasting forest types (Chapter 

4) and different ecosystem types across the California Floristic Province (CAFP; Chapters 5 and 

6).  

 In Chapter 2, I quantify the variation and interrelationships of leaf epidermal traits across 

Arabidopsis ecotypes and partition the developmental drivers of a central trait for the regulation 

of water use efficiency and photosynthesis, the maximum theoretical stomatal conductance, gmax. 

I show that gmax and its relationship with climate is developmentally determined by the area of 

epidermal pavement cells and the stomatal initiation rate, and not the stomatal size. This finding 
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has important implications for the advancement of plant breeding for more photosynthetically 

efficient plants, that can now shift their efforts to genes that regulate epidermal pavement cell size 

and stomatal initiation. These results also have important implications for models of ecosystem 

fluxes, since many have been scaling up from stomatal size and density to plant and ecosystem 

growth rates and NPP (Wang et al. 2015). 

In Chapter 3, I quantify the variation and interrelationships of functional traits across 

California Oak species and show that trait evolution driven by adaptation to spatial heterogeneity 

in climate has resulted in the emergence of semi-independent trait modules relating to structure 

and function. I also performed an analysis of plant trait networks (PTNs), which creates clusters 

based on statistical relationships, to identify the contribution of shared evolutionary history to the 

formation of trait modules (Flores-Moreno et al. 2019; Kleyer et al. 2019; He et al. 2020). I show 

that traits evolve within clusters, highlighting the emergence of integrated phenotypes that provide 

drought tolerance and pointing to the necessity of considering the benefits and costs contributed 

by multiple traits to overall climate adaptation (He et al. 2020; Sack & Buckley 2020). 

In Chapter 4, I quantify the variation and interrelationships of functional traits across 

species sampled from a wet montane and a lowland dry forest (MWF and LDF respectively) to 

test for the presence of functional modules and the relationships between functional traits and 

relative growth rate (RGR) and mortality rate (m) while accounting for plant size. I show that traits 

are overall more variable in the MWF than LDF and are correlated within modules, as we found 

in Chapter 3. I was also able to predict species’ RGR and m across forests using multiple traits and 

uncovered stronger relationships when stratifying by tree size. These findings are consistent with 

a powerful role of broad suites of functional traits in contributing to forest species’ distributions, 

integrated plant design, and vital rates (Marks & Lechowicz 2006; Sterck et al. 2006, 2011; Poorter 
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et al. 2008; Osborne & Sack 2012; Adler et al. 2014; Stahl et al. 2014; Uriarte et al. 2016; He et 

al. 2020). 

In Chapter 5, I quantify the variation of functional traits across species sampled from 

different ecosystems along a gradient of aridity in the California Floristic Province, CAFP, to test 

the ability of functional traits to predict species’ preferred climates. This is important because 

anticipating and mitigating shifts in the distributions of species and ecosystems under climate 

change depends on understanding their preferred climate and their vulnerability. In this chapter I 

show that mechanistic traits enable strong prediction of the mean maximum temperature, rainfall 

and aridity of the climatic range of diverse plant species and ecosystems, and that species that have 

less xeromorphic traits are projected to face greater climate aridification. The ability to predict a 

species’ preferred climate from its traits has potential to improve global dynamic vegetation 

models, and thereby to predict the impact of climate change, and to inform the design and 

prioritization of conservation efforts to protect the most vulnerable species. 

In Chapter 6, I show how the intercorrelations of an extensive suite of functional traits vary 

across ecosystems along the same gradient of aridity from Chapter 5. Because plant ecological and 

physiological strategies are the result of multiple interactions among traits, a deeper understanding 

of how traits are integrated within different axes of function can clarify how they contribute to 

species’ ecological specializations, biogeographic distributions, and tolerance of climate change, 

building on the evidence I showed in Chapters 3 and 4 (Messier et al. 2017; Flores-Moreno et al. 

2019; Kleyer et al. 2019; He et al. 2020). I found that functional traits and their pairwise 

relationships varied strongly across ecosystems, with PTNs becoming more interconnected and 

more complex from high to low aridity environments, indicating that under more intense 
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environmental pressure plant communities tend to become more functionally redundant (Cowling 

et al. 1994; Pillar et al. 2013; Biggs et al. 2020). 

The use of extensive suites of functional traits while accounting for species shared 

evolutionary histories and plant size provided insight into the modular nature of trait function and 

overall physiological, evolutionary and ecological strategies of different plant species and 

ecosystems. The PTNs also enabled greater clarity and improved examination of the wider range 

of key plant traits, reinforcing that traits have limited meaning when alone.  

Overall, my thesis work provides a new level of comprehensive trait measurement and 

analysis within multiple contexts and scales, toward providing a new resolution of the importance 

of physiological and structural diversity on ecological processes and contributing to state-of-the-

art predictive tools to study community assembly and species distributions. 
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CHAPTER 2 
 

DEVELOPMENTAL BASIS FOR THE ADAPTATION OF MAXIMUM STOMATAL 

CONDUCTANCE TO CLIMATE IN ARABIDOPSIS 

 

ABSTRACT 

Stomata, the micro-pores on leaves, regulate CO2 uptake and water loss, thus directly influencing 

plant growth and stress tolerance. The relationships between the stomatal density and size (d and 

s, respectively) and epidermal pavement cell size (e), and their consequences for the anatomical 

maximum stomatal conductance, gmax, have been widely investigated, with key theory attributing 

higher gmax to a greater density of smaller stomata. However, little is known about how the 

adaptation of gmax to climate depends on its developmental drivers, that is, e, s and the stomatal 

initiation rate (i). We measured epidermal traits for the abaxial and adaxial surfaces of 152 

ecotypes of model species Arabidopsis thaliana grown in a greenhouse common garden, quantified 

how much of the variation in gmax was accounted for by the developmental drivers e, i and s and 

tested their relationships with the native climate of the origin of each ecotype. All epidermal traits 

varied strongly across ecotypes, and gmax was strongly related to mean annual temperature, 

precipitation and length of the growing season. The gmax of A. thaliana ecotypes was determined 

mainly by e and i, with a minimal role of s, and the adaptation of gmax to climate was determined 

by shifts in both e and i with climate. These results provide new resolution of the underlying 

developmental basis for gmax and its adaptive shifts with climate. 
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INTRODUCTION 

The stomata are pores on the leaf surface involved in the regulation of CO2 uptake and water loss 

to the atmosphere (Willmer & Fricker 1995; Wang et al. 2015). Stomata first appeared between 

the late Silurian to early Devonian periods, simultaneously with the cuticle and vascular tissues, 

when plants transitioned from the aquatic to the terrestrial environment (Willmer & Fricker 1995) 

and represent the ultimate interface between plants and the atmosphere. Stomatal size and density 

are key drivers of the theoretical maximum anatomical stomatal conductance, gmax, and 

consequently strongly constrain water uptake and photosynthesis (Buckley 2005; Sack & Buckley 

2016), and thus directly influence plant growth and stress tolerance.  

The critical importance of stomata, and their ability to open and close to optimize carbon 

gain relative to water loss, has long inspired plant scientists to investigate how their numbers and 

dimensions vary across species, ecotypes and ontogenetic stages (Salisbury 1927; Doheny-Adams 

et al. 2012; Dow et al. 2014; Wang et al. 2015; Dittberner et al. 2018). An extensive body of 

research has focused on the relationship between stomatal area, s, and density, d, with numerous 

reports of a negative relationship between d and s (Franks & Farquhar 2007; Ohsumi et al. 2007; 

Franks et al. 2009; Camargo & Marenco 2011; Wang et al. 2015; Dittberner et al. 2018; Kardiman 

& Ræbild 2018; Yin et al. 2020), which has been considered a trade-off resulting from a spatial 

constraint in the leaves (Wang et al. 2015; Dittberner et al. 2018), and to intrinsically determine 

gmax, such that a higher density of smaller stomata is responsible for higher gmax (Fig. 2.1a) (Franks 

et al. 2009). However, d is itself a function of underlying developmental traits, that is, s, and the 

epidermal pavement cell area, e, and the stomatal index, i (Salisbury 1927; Sack & Buckley 2016). 

Thus, gmax can be disentangled into its developmental drivers, that is, e, i and s according to explicit 

mathematical models (Fig. 2.1b) (Sack & Buckley 2016). Yet, the causal roles of e, i and s in 
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determining d and gmax and their adaptation to climate have not been established within and across 

species. 

We measured epidermal traits for the abaxial and adaxial surfaces of 152 ecotypes of 

Arabidopsis thaliana L. Heynh (hereafter “Arabidopsis”) grown in a greenhouse common garden. 

Arabidopsis is an annual herb widely distributed across the Northern hemisphere with populations 

adapted to contrasting climates (“ecotypes”; Fig. 2.2a), from cold and/or dry to warm and/or wet 

(Sharbel et al. 2000; Hoffmann 2002; Weigel & Mott 2009). More than a thousand ecotypes with 

known geographic origin have been sequenced to date (Alonso-Blanco et al. 2016), making 

Arabidopsis an ideal system to for ecology and development questions within an evolutionary 

framework (Sharbel et al. 2000; Alonso-Blanco et al. 2016), particularly given the phenology and 

physiology of different ecotypes represent adaptation to drought and cold stresses. Previous studies 

have shown that across species, adaptation to colder and drier climates may be associated with 

higher d and gmax, for plants that “avoid” drought or cold, through rapid growth in wetter and 

warmer season and/or warmer times of day, or with lower d and gmax, for plants that achieve 

tolerance through slow growth and reduced resource demand (Carlson et al. 2016; Hughes et al. 

2017). In Arabidopsis ecotypes, many studies have shown that adaptation to cold often involves 

slower growth and longer times to flowering (Sanda et al. 1997; Kazan & Lyons 2016; Exposito-

Alonso 2020), and one previous study has shown that d is higher in cold climates (Dittberner et al. 

2018). 

We tested the degree that differences in e, i and s contribute to the variation in d and gmax 

across ecotypes of a single plant species and how gmax and its anatomical drivers shift in response 

to climate. We hypothesized that ecotypes with higher i values would translate into a higher 

proportion of stomata, leading to higher d and gmax (Fig. 2.2f-h), whereas higher e, and to a lesser 
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extent, higher s, would lead to  more spaced apart stomata, and thus lower d and gmax  (Fig. 2.2c-

e) (Franks & Farquhar 2007). We expected e and i to be the traits with largest influence on d and 

gmax (Appendix Table 2.1 and Fig. 2.1b; (Franks et al. 2009; Sack & Buckley 2016)). Further, we 

expected relationships between e, i and s may arise from development and to constrain gmax. We 

hypothesized a positive relationship between e and s, based on studies across species that showed 

that cell sizes are coordinated, potentially due to their associations with genome size (Beaulieu et 

al. 2008); such a relationship would increase the dependence of high and gmax on small cell 

dimensions, that is, e, s and related measures, including guard cell length and width (CGl and GCw) 

and the inner and outer stomatal pore lengths (SPil and SPol). We further hypothesized a positive 

relationship between e and i, as the differentiation of greater numbers of stomata from meristemoid 

epidermal cells would be enabled by a greater duration of pavement cell expansion (Nadeau 2002; 

Bergmann & Sack 2007; Lau & Bergmann 2012). Thus, we (i) quantified the variation and 

interrelationships of leaf epidermal traits across Arabidopsis ecotypes, (ii) partitioned the 

developmental drivers of gmax and (iii) determined the adaptation of gmax and its drivers to the 

native climate of the origin of the ecotypes.  

 

METHODS 

Plant material and growing conditions 

We grew 152 ecotypes of Arabidopsis thaliana, 137 sampled from the 1,001 Genomes Consortium 

populations (Alonso-Blanco et al. 2016) and 15 from the RegMap populations (Horton et al. 2012). 

These ecotypes were selected to represent the extent of the natural distribution of the species (Fig. 

2.2a). 
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Seeds were sown in moist organic compost and stratified in a cold chamber at 4°C for four 

days. Three seedlings per ecotype were then transferred to individual pots filled with organic 

compost (Neuhaus N2) and watered twice a week for the duration of the experiment (140 days 

from sowing to harvest). Pots were randomly distributed across four tables in blocks, with one 

replicate per ecotype per table. The tables were placed in a greenhouse with a controlled 

temperature of 18°C during the day and 16°C during the night, and rotated daily to reduce block 

effects within the greenhouse. A supplemental lighting system was used to maintain a constant 

12.5 h day-length.  

 

Trait measurements 

For all trait measurements we harvested a fully expanded and light-exposed leaf, or the last 

developed leaf at the bolting stage of each of three individuals per ecotype. The leaves were fixed 

in formalin–acetic acid–alcohol solution (FAA) for at least two days and then transferred to a pure 

glycerol medium for storage. First, the leaf area (LA) was measured from images obtained using a 

flatbed scanner (Pérez-Harguindeguy et al. 2013). Epidermal anatomy traits were measured on 

microscopy images taken of nail varnish impressions of both leaf surfaces (Medeiros et al. 2019). 

To determine leaf-level values for traits, for cell dimensions, we calculated an average value as the 

arithmetic mean of the abaxial (ABA) and adaxial (ADA) values (traits with subscript “avg”). For 

leaf-level cell densities and gmax we calculated a total trait value as the sum of ABA and ADA 

values (traits with subscript “total”). 

From the microscope images of the nail varnish peels we measured stomatal density (d; 

number of stomata per mm2), stomatal differentiation rate (or index; the number of stomata per 

numbers of stomata plus epidermal pavement cells, i), stomatal area (s), guard cell length and 



 14 
 
 
 
 

width (GCl, GCw), inner and outer stomatal pore length (SPil, SPol) and epidermal pavement cell 

area (e) in the abaxial (ABA) and adaxial (ADA) surfaces (Sack et al. 2006; Medeiros et al. 2019).  

The cell dimensions were obtained from four stomatal complexes and three epidermal 

pavement cells per image. Each image was divided into four quadrants and one stomatal complex 

per quadrant was measured to reduce selection bias. Due to the large variation in epidermal 

pavement cell shape and size in Arabidopsis (Pillitteri & Dong 2013), we standardized selection 

of cells for measurement and averaged measurements of one small subsidiary cell, a typical 

epidermal pavement cell and a large pavement cell (Boudolf et al. 2004; Bergmann & Sack 2007; 

Pillitteri & Dong 2013). All images were analyzed and traits were measured using the software 

ImageJ (http://imagej.nih.gov/ij/). 

From the anatomical measurements we calculated the maximum theoretical stomatal 

conductance (gmax): 

𝑔#$% =
𝑏𝑚𝑑𝑠
𝑠+.- ,							 (Eqn	1) 

where b is a biophysical constant given as 𝑏 = 6
7
, D represents the diffusivity of CO2 and water in 

air m2 s-1 and v is the molar volume of air m3 mol-1, so b = 0.00126; m is a morphological constant 

based on scaling factors representing the proportionality of stomatal dimensions 𝑚 =	 89:

;<.=>?;@	8
, 

with c, h, and j treated as constants for the estimation of gmax c, h and j = 0.5; d is stomatal density, 

and s is stomatal area (Franks & Farquhar 2007; Franks et al. 2009; McElwain et al. 2016; Sack 

& Buckley 2016). 
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Climate of ecotypes’ geographic origins and flowering time 

We obtained ecotype coordinates from the 1,001 Genomes Consortium (Alonso-Blanco et al. 

2016) and RegMap panel (Horton et al. 2012) and used R software [version 3.4.4 (R Core Team 

2020)] to extract climate variables of the geographic origin of the ecotypes with known coordinates 

(149 of the 152 ecotypes). From open-access raster layers, we extracted a total of 51 environmental 

parameters, 34 relating to air temperature and precipitation [WorldClim; (Hijmans et al. 2005)], 

aridity [CGIAR-CSI, NCAR-UCAR; (Zomer et al. 2008)] and soil characteristics [ISRIC 

Soilgrids; (Hengl et al. 2017)]. The raster layers with the same resolution were stacked using the 

stack function from the ‘raster’ package (Hijmans & van Etten 2012) and the environmental 

parameters for each geographic coordinate were extracted using the extract function from the 

‘dismo’ package (Hijmans et al. 2011). From those variables, we also calculated 17 environmental 

parameters that describe the length of and climate during the growing season (see Chapter 2 legend 

in the Data Supplement for complete list of variables). The growing season was determined as the 

months that have abundant soil moisture (mean precipitation in mm ≥ 2 * mean temperature in 

degrees Celsius) and minimum temperature above 4ºC, since below this temperature water 

becomes too viscous to pass through membrane (Lasky et al. 2012). 

We also obtained the flowering time at 10ºC and 16ºC (F10 and F16, respectively) for each 

of the 137 ecotypes included in the 1,001 Genomes Consortium and the present study (Alonso-

Blanco et al. 2016). 

 

Statistical and comparative analyses 

All statistical analyses were performed and plots created using R software [version 4.0.2 (R Core 

Team 2020)] and packages available from the CRAN platform. 
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To quantify the trait variation across ecotypes we performed ANOVAs using the aov 

function, with functional traits coded as the dependent variable and ecotype as the independent 

variable (Sokal & Rohlf 2012; R Core Team 2020). Anatomical traits were log-normally 

distributed and thus log10-transformed prior to analyses. 

To test the relationships among anatomical traits and between traits and the climate of the 

origin of each ecotype, we used two approaches: one ahistorical and one evolutionary. In the 

ahistorical approach we used ordinary least squares regression analyses and in the evolutionary 

approach we performed generalized mixed-effects regression analyses with a Kinship matrix as 

random effect (Yu et al. 2006). We chose this framework because it is more powerful in reducing 

types I and II errors in datasets with complex familial relationships and population structure of 

relatedness than other frameworks, such as phylogenetic generalized least-squares analyses (Yu et 

al. 2006). Analyses were performed for untransformed and log10-transformed data, to test for either 

approximately linear or non-linear (i.e., approximate power-law) relationships respectively. 

Variables that included both negative and positive numbers were incremented by a constant equal 

to the lowest ecotype mean +1 before log-transformation, such that 1 was the lowest value for that 

variable. 

 To determine the contribution of leaf anatomical parameters e, i and s to gmax we conducted 

a causal partitioning analysis, in which we partitioned differences in gmax among ecotypes into 

contributions from the underlying variables using the partitioning approach of (Buckley & Diaz-

Espejo 2015). In this approach, a finite difference dy in some function f of N underlying variables 

xj (j=1 to N) between two states, an initial or "reference state" (yr = f(x1r, x2r, ...)) and a final or 

"comparison" state (yc = f(x1c, x2c, ...)), is partitioned into contributions from changes in each 

variable, by numerically integrating the partial derivative of f with respect to the variable in 



 17 
 
 
 
 

question (¶f/¶xj) over an imaginary path between the two states, with each variable assumed to 

change linearly between its values in each state. Thus, the % contribution of variable xk (C[xk]) to 

the difference in y (dy = yc – yr) between the two states is given by 

 

𝐶(𝑥C) = 100 ⋅
∫ 𝜕𝑓
𝜕𝑥C

𝑑𝑥C
9
I

∑ ∫ 𝜕𝑓
𝜕𝑥;

𝑑𝑥;	
9
I

K
;LM

= 100 ⋅
∫ 𝜕𝑓
𝜕𝑥C

𝑑𝑥C
9
I

𝑦9 − 𝑦I
.							(Eqn	2) 

 

Each contribution is expressed relative to the sum of all contributions, so the contributions add up 

to 100%. We used this method to partition: (i) abaxial gmax into contributions from abaxial values 

of e, i, and s, (ii) adaxial gmax into contributions from adaxial values of e, i and s, (iii) total gmax 

into contributions from abaxial and adaxial gmax, and (iv) total gmax into contributions from both 

abaxial and adaxial values of e, i and s. In each case, we repeated these calculations for every 

possible pairwise comparison between ecotypes (for 152 ecotypes, this gives 152!/[150!´2!] = 

152´151/2 = 11,476 pairwise comparisons), with values for the two ecotypes in each pair 

representing the reference and comparison states respectively, and each numerical integration 

using 1,000 steps. We then calculated the median contributions (values of C) for each variable 

over the 11,476 comparisons. 

 

RESULTS 

Variation in leaf anatomical traits across ecotypes 

We found strong variation in all leaf anatomical traits across ecotypes from contrasting native 

climates, with similar values in the abaxial and adaxial surfaces (ANOVAs; p<0.001; Table S2.1 

and Fig. 2.2a). The leaf area (LA) was the most variable trait with a 10-fold variation across 
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ecotypes, followed by the maximum anatomical stomatal conductance (gmax total), average 

epidermal cell area (eavg), stomatal density (dtotal), stomatal index (iavg) and stomatal area (savg), 

which varied two- to four-fold across ecotypes (Fig. 2.2b-g). Guard cell and stomatal pore 

dimensions, GCl avg, GCw avg, SPil avg and SPol avg varied from 1.6 to 1.9-fold (Table S2.1). 

 

Coordination of leaf anatomical traits 

We found strong coordination among leaf anatomical traits and high similarity between results 

obtained from ahistorical and evolutionary analyses (Tables S2.2 and S2.3); we present in the text 

evolutionary analyses based on linear mixed effects regression with a Kinship matrix as a random 

effect, hereafter, “kin”, and ahistorical analyses based on ordinary least squares regression, 

hereafter, “ols”,only when the evolutionary relationships were not significant; both analyses are 

presented in the figures and supplements (Table S2.2 and Fig. 2.3). 

Arabidopsis ecotypes with larger leaves had larger epidermal cells and smaller stomata on 

both leaf surfaces and, consequently, had lower d and gmax in both leaf surfaces (|rkin| ranging from 

0.24 to 0.36; p<0.05; Table S2.3). Ecotypes with large LA also had a negative relationship with 

the tADA (rkin = -0.23; p<0.05; Table S2.3).  

For the abaxial surface iABA was the trait most strongly and positively correlated with both 

dABA and gmax ABA (rkin = 0.56 and 0.55, respectively; p<0.01; Table S2.3 and Fig. 2.3b, e), followed 

closely by eABA, which was negatively correlated with both dABA and gmax ABA (rkin = -0.49 and -

0.47, respectively; p<0.001; Table S2.3 and Fig. 2.3a, d). As hypothesized, eABA and iABA were 

also positively correlated (rkin = 0.40; p<0.001; Table S2.3 and Fig. 2.3g). Notably, sABA was only 

weakly negatively correlated with dABA (rols = -0.23; p<0.01; Table S2.2 and Fig. 2.3f) and not 

correlated with eABA, iABA and gmax ABA (Fig. 2.3c, h-i). For the adaxial surface iADA was also the 
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trait most strongly and positively correlated with both dADA and gmax ADA (rkin = 0.74 and 0.73, 

respectively; p<0.01; Table S2.3 and Fig. S2.2), followed by eADA, which was negatively correlated 

with both dADA and gmax ADA (rkin = -0.43 and -0.42, respectively; p<0.001; Table S2.3 and Fig. 

S2.2). sADA was positively correlated with gmax ADA (rkin = 0.22; p<0.05; Table S2.3 and Fig. S2.2). 

eADA and iADA were positively correlated and both were independent from s (rkin = 0.23; p<0.001; 

Table S2.3 and Fig. S2.2). 

We also tested the relationships between guard cell dimensions and stomatal pore length 

with gmax and its anatomical drivers (Table S2.3). SPil ABA, SPol ABA, GCl ABA and GCw ABA were 

positively correlated with sABA (rkin ranging from 0.30 to 0.80; p<0.05). SPil ABA was negatively 

correlated with dABA and iABA (rkin = -0.20 and -0.23, respectively; p<0.05), SPol ABA was negatively 

correlated with dABA (rkin = -0.24; p<0.05), GCl ABA was negatively correlated with dABA (rkin = -

0.28; p<0.001) and positively correlated with eABA (rkin = 0.19; p<0.05) and GCw ABA was positively 

correlated with gmax ABA (rkin = 0.21; p<0.05) (Table S2.3). For the adaxial surface, SPil ADA, SPol 

ADA, GCl ADA and GCw ADA were positively correlated with sADA (rkin ranging from 0.32 to 0.76; 

p<0.05). SPil ADA was negatively correlated with dADA, iADA and gmax ADA (rkin ranging from -0.20 

and -0.23; p<0.05), SPol ADA was negatively correlated with dADA (rkin = -0.22; p<0.05), GCl ABA 

was negatively correlated with dADA (rkin = -0.26; p<0.01) and positively correlated with eADA (rkin 

= 0.18; p<0.05) and GCw ADA was positively correlated with gmax ADA (rkin = 0.26; p<0.05) (Table 

S2.3). 

 

Relationship of epidermal traits and climate 

We found strong coordination of leaf anatomical traits with the native climate of ecotype origins. 

The gmax total and dtotal were correlated with 32 and 29 of the 53 climate variables included in our 
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study, respectively; overall, gmax total and dtotal were negatively correlated with mean annual 

temperature, precipitation of the growing season and soil water variables, and positively correlated 

with the flowering times and Spring and Winter drought frequencies (Table S2.3). Among the 

hypothesized anatomical drivers of gmax total, eavg and iavg were correlated with 20 each and savg with 

three of the climate variables included in our study (Table S2.3). 

In Figure 4 we summarize the overall patterns of trait-climate relationships across 

Arabidopsis ecotypes. gmax and i were negatively correlated with the mean annual temperature 

(MAT) and the precipitation of the growing season (pptGS) and positively correlated with the 

flowering time at 16ºC (FT16) (|rkin| ranged from 0.19 to 0.72; p<0.05; Table S2.3 and Fig. 2.4a-c, 

g-i). i was positively correlated with MAT and pptGS and negatively correlated with FT16 (|rkin| 

ranged from 0.22 to 0.3; p<0.01; Table S2.3 and Fig. 2.4d-f). s was not correlated with direct 

temperature or precipitation variables (Table S2.3 and Fig. 2.4j-l). It was, however, weakly 

negatively correlated with the seasonality and annual range of temperature and positively 

correlated with the soil water capacity (|rkin| ranged from 0.17 to 0.18; p<0.05; Table S2.3). 

We also found relationships between LA and climate. LA was negatively correlated with 

the FTs, soil water content and the Spring drought frequency and positively correlated with 

temperature variables, elevation and soil’s depth and pH (|rkin| ranged from 0.22 to 0.3; p<0.01; 

Table S2.3). 

 

The drivers of maximum stomatal conductance 

Causal partitioning analysis found that differences in gmax among ecotypes were driven almost 

entirely by differences in e and i, and minimally by differences in s (Fig. 2.5). For leaf total gmax, 

the strongest contributors were iADA and iABA (median contributions of 36.4% and 26.8%, 
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respectively), followed by eABA and eADA (20.4% and 16.2%, respectively). The median 

contributions of sADA and sABA were 1.8% and -0.9%, respectively. (n.b.: [i] a negative contribution 

indicates that the underlying variable in question [abaxial stomatal size in this case] usually 

changed in the direction opposite to the dependent variable [gmax]; and [ii] although the 

contributions calculated for a comparison between two given ecotypes always sum to 100%, the 

median values of those contributions across all such comparisons may not sum exactly to 100%). 

For gmax ABA considered in isolation, eABA and iABA contributed approximately equally (51.6% and 

50.3%, respectively), and sABA negligibly (0.1%) (Fig. S2.3); gmax ADA considered in isolation, iADA 

was more than twice as important (64.5%) as eADA (30.7%), and again sADA contributed little 

(3.7%). Finally, differences in gmax total were driven roughly equally by differences in abaxial and 

adaxial gmax (45.1% and 55.2%, respectively) (Fig. S2.3). 

 

DISCUSSION 

Across Arabidopsis ecotypes, gmax was determined mainly by e and i, with a much smaller effect 

of s (Fig. 2.5). The anatomical determination of d and gmax by e and i suggests that these traits 

would be loci for selection, and potential targets for improved crops. By contrast, stomatal size 

was not a key driver of d or gmax, indicating that theory that gmax is strongly influenced by stomatal 

packing and the s vs. d trade-off—which was weak in this study—does not apply across 

Arabidopsis ecotypes. 

The coordination between anatomical drivers of gmax with climate across Arabidopsis 

ecotypes would provide adaptation to cold and drought through a drought-avoidance strategy, e.g., 

the positive relationship between e and i and negative relationships between gmax and the mean 

annual temperature and the precipitation and length of the growing season (Table S2.3 and Fig. 
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2.4) (Xu & Zhou 2008; Basu et al. 2016). The variation in leaf anatomical traits across ecotypes 

was consistent with the wide range of climates this species is found in and was larger for traits 

expected to be under intense selective pressure, such as gmax (Table S2.1 and Fig. 2.2b-j) 

(Hoffmann 2002; Raven 2002). Traits with the lowest variation were also the less adaptive across 

ecotypes, such as s and guard cell dimensions (Figs. 2.2b-j and 2.4j-l). Indeed, s was independent 

from both e and i, and from the main climatic drivers of gmax (Figs. 2.3 and 2.4).  

To our knowledge, this is the first study to show quantitatively that the maximum 

anatomical stomatal conductance and its relationship with climate, is developmentally determined 

by the area of epidermal pavement cells and the stomatal initiation rate, and not the stomatal size. 

This finding has important implications for the advancement of plant breeding for more 

photosynthetically efficient plants, that can now shift their efforts to genes that regulate epidermal 

pavement cell size and stomatal initiation. These results also have important implications for 

models of ecosystem fluxes, since many have been scaling up from stomatal size and density to 

plant and ecosystem growth rates and NPP (Wang et al. 2015). 
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FIGURE CAPTIONS 

Figure 2.1. Anatomical variables contributing to the maximum theoretical anatomical stomatal 

conductance, gmax, and the stomatal density, d. (a) Summarizes the classic understanding that gmax 

is determined by d and s (Franks et al. 2009). In (b) we updated the causal model of anatomical 

determinants of gmax (Sack & Buckley 2016). Increasing e leads to more spaced out stomata, and 

thus lower gmax and d. Higher i values translate into higher proportion of stomata, which leads to 

higher gmax and d. Increasing s is typically associated with low d, since all else being equal, larger 

cells would result in lower density. Consequently, larger s is also associated with lower gmax (more 

detailed rationale available in Appendix Table 2.1). (c-k) Panels showing the variation in 

epidermal morphology of ecotypes with increasing values of (c-e) epidermal pavement cell area, 

e, (f-h) stomatal differentiation rate, i, and (i-k) stomatal area, s. 

 

Figure 2.2. (a) Map showing the geographic origin of the 149 ecotypes of Arabidopsis thaliana 

included in this study that have geolocated origins. Symbol colors represent a gradient from low 

(light gray) to high (dark red) mean annual temperature, MAT. (b-g) Plots showing the variation in 

cell morphology of leaves of 152 ecotypes. (b) Epidermal pavement cell area, eavg; (c) stomatal 

differentiation rate, iavg; (d) stomatal area, savg; (e) maximum theoretical anatomical stomatal 

conductance, gmax total, (f) stomatal density, dtotal, and (g) leaf area, LA (Table S2.1). (b-d) show the 

average of adaxial and abaxial values for cell dimensions and (e-f) show the total values, calculated 

as the sum of adaxial and abaxial values.  

 

Figure 2.3. Relationships between easy-to-measure anatomical traits (epidermal pavement cell 

area, eABA; stomatal differentiation rate, iABA, and stomatal area, sABA) measured on the abaxial 
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surface of 152 ecotypes of Arabidopsis thaliana grown under greenhouse conditions with the 

maximum theoretical anatomical stomatal conductance, gmax ABA (a-c), and with stomatal density, 

dABA (d-f). Panels (g-i) show the relationships among anatomical traits. Symbol colors represent a 

gradient from low (light gray) to high (dark red) mean annual temperature, MAT, of ecotype 

origins. *p < 0.05; **p < 0.01; ***p < 0.01. Solid and dashed lines represent the ahistorical and 

historical correlations (ordinary least squares and linear mixed-effects models using a kinship 

matrix as random effect, respectively; Tables S2.2 and S2.3). 

 

Figure 2.4. Relationships between anatomical traits measured from leaves of 152 ecotypes of 

Arabidopsis thaliana grown under greenhouse conditions with the climate of their origin. Symbol 

colors represent a gradient from low (light gray) to high (dark red) mean annual temperature, MAT, 

of ecotype origins. The first column shows the relationships with the mean annual temperature, 

MAT; the second with the precipitation of the growing season, pptGS, and the third with an 

important life-history trait, the flowering time at 16ºC, FT16. Relationships with (a-c) the maximum 

theoretical anatomical stomatal conductance, gmax total, (d-f) epidermal pavement cell area, eavg, (g-

i) stomatal index, iavg, and (j-l) stomatal area, savg. *p < 0.05; **p < 0.01; ***p < 0.01. Solid and 

dashed lines represent the ahistorical and historical correlations (ordinary least squares and linear 

mixed effects models using a kinship matrix as random effect, respectively; Tables S2.2 and S2.3).  

 

Figure 2.5. Median contributions (%) of differences in anatomical variables (e: epidermal cell 

size; s: stomatal size; i: stomatal index) to differences in anatomical leaf gmax between ecotypes of 

Arabidopsis thaliana grown under greenhouse conditions with the climate of their origin. Medians 

were calculated over all possible pairwise comparisons between ecotypes (n = 11,476 
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comparisons). The small negative contribution of abaxial stomatal size indicates that, when two 

ecotypes were compared, the ecotype with larger gmax tended to have smaller stomata (albeit only 

very slightly so); thus, although smaller stomata should decrease gmax for a given value of stomatal 

index, in practice that effect tended to be greatly outweighed by differences in stomatal index. 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5
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Appendix Table 2.1. Expectation and rationale for each trait-trait or trait-climate relationship and whether the expectation was 

supported by our data. We report the range of correlation coefficients of relationships between traits measured on the abaxial and the 

adaxial surfaces and their average. The p-values shown below were estimated using linear mixed-effects models with a kinship matrix 

as random effect. 

Trait-trait or trait-
climate pair 

Expectation and rationale Supported? 

d vs. gmax +. More stomata per area would lead to larger pore area which can reduce the resistance to CO2 flux and 
enable greater CO2 assimilation. 

Yes. r ranged from 0.96 to 0.98; 
p<0.001. 

d vs. e -. Large epidermal pavement cells would cause the stomata to become more spaced apart, thus reducing 
the stomatal density. 

Yes. r ranged from -0.43 to -0.49; 
p<0.001.  

d vs. i +. High i reflects a large frequency of stomata per total epidermal cell number, so stomatal density 
should be positively correlated with stomatal initiation rate. 

Yes. r ranged from 0.56 to 0.74; 
p<0.001. 

d vs. s -. For a given leaf size, we expect to find a trade-off between stomatal density and size due to a spatial 
constraint; however, due to the small area occupied by stomata on a typical leaf, we expect this 
relationship to be weak. 

No. 

gmax vs. e -. For a given leaf size, you would expect a trade-off between the maximum theoretical anatomical 
stomatal conductance and the epidermal pavement cell size. Due to a spatial constraint, when e is large 
there will be less space available to be occupied by stomata, so the pore area would be smaller, 
increasing the resistance to CO2 and lowering the overall gmax. 

Yes. r ranged from = -0.42 to -0.47; 
p<0.001. 

gmax vs. i +. High i reflects a large frequency of stomata per total epidermal cell number, which leads to a larger 
pore area, reduced resistance to CO2 flux and greater CO2 assimilation. 

Yes. r ranged from 0.55 to 0.73; 
p<0.001   

gmax vs. s -. Smaller stomata free up more epidermal space for other cell types and functions  No. We found a positive relationship 
between gmax and s in the abaxial 
surface. r = 0.22; p<0.05. 

e vs. i -. For a given number of epidermal cells, we expect large epidermal pavement cells to result in more 
spaced apart stomata, so i would be inversely correlated with e. 
 
+. Given the independence of e and i, plants can achieve high i despite of having large e if the number 
of epidermal cells is lower. 

We found a positive relationship with r 
ranging from 0.22 to 0.40; p<0.05.   

i vs. s -. When stomatal size is larger there will be less space to be occupied by more stomata, so the stomatal 
differentiation rate should be inversely correlated with s. 

No. 

s vs. e +. Stomatal size typically scales with epidermal pavement cell size. Yes. r ranged from 0.19 to 0.43; p<0.05.  
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gmax total vs. MAT 
(mean annual 
temperature) 

+. High gmax would enable more efficient cooling of the leaves in grown in warm temperatures. 
 
-. Ecotypes adapted to grow fast during a short growth season, i.e., adapted to cold and/or dry climates, 
would maintain higher gmax during the growth period.  

We found support for a negative 
relationship between gmax and the MAT. 
r = -0.32; p<0.01.  

gmax total vs. pptGS 
(precipitation of the 
growing season) 

+. High water availability would allow plants to maintain their stomata open for longer periods. 
 
-. Ecotypes adapted to grow fast during a short growth season, i.e., adapted to cold and/or dry climates, 
would maintain higher gmax during the growth period. 

We found support for a negative 
relationship between gmax and the pptGS. 
r = -0.34; p<0.001.   

gmax total vs. LGS 

(length of growing 
season) 

+. Longer potential growing seasons reflect environments with high water availability, which would 
allow plants to maintain their stomata open for longer periods. 
 
-. Ecotypes adapted to grow fast during a short growth season, i.e., adapted to cold and/or dry climates, 
would maintain higher gmax during the growth period (drought-avoiding). 

We found support for a negative 
relationship between gmax and LGS. r = -
0.34; p<0.001.   
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SUPPLEMENTARY MATERIALS 

Supplementary data captions (see attached Excel Workbook) 

Table S2.1. Differences in traits among 152 ecotypes of Arabidopsis thaliana as indicated in one-

way analyses of variance. Eight of the 11 groups were created based on geographic origin, one 

group gathers relict ecotypes, one group with the admixed ecotypes and one with ecotypes not 

included in the 1,001 Genomes Project dataset. Red highlighted cells indicate variables differing 

significantly across ecotypes (p ≤ 0.05). 

 

Table S2.2. Associations of traits and environmental variables representing the climate of the 

origin for 131 ecotypes of Arabidopsis thaliana using linear mixed models with ecotypes 

relatedness included as a random effect (through a kinship matrix; Yu et al. 2006). Red highlighted 

cells indicate significant relationships (p ≤ 0.05). 

 

Table S2.3. Associations of traits and environmental variables representing the climate of the 

origin for 131 ecotypes of Arabidopsis thaliana using linear mixed models with ecotypes 

relatedness included as a random effect (through a kinship matrix; Yu et al. 2006). Red highlighted 

cells indicate significant relationships (p ≤ 0.05). 
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Supplementary figure captions  

Figure S2.1. Relationship between the total maximum theoretical anatomical stomatal 

conductance, gmax total, with stomatal density, d. Symbol colors represent a gradient from low (light 

gray) to high (dark red) mean annual temperature, MAT, of ecotype origins. ***p < 0.001. Solid 

and dashed lines represent the ahistorical and historical correlations (ordinary least squares and 

linear mixed effects models using a kinship matrix as random effect, respectively). 

 

Figure S2.2. Relationships between easy-to-measure anatomical traits (epidermal pavement cell 

area, eADA; stomatal differentiation rate, iADA, and stomatal area, sADA) measured on the adaxial 

surface of 152 ecotypes of Arabidopsis thaliana grown under greenhouse conditions with the 

maximum theoretical anatomical stomatal conductance, gmax ADA (a-c), and with stomatal density, 

dADA (d-f). Panels (g-i) show the relationships among anatomical traits. Symbol colors represent a 

gradient from low (light gray) to high (dark red) mean annual temperature, MAT, of ecotype 

origins. *p < 0.05; **p < 0.01; ***p < 0.01. Solid and dashed lines represent the ahistorical and 

historical correlations (ordinary least squares and linear mixed-effects models using a kinship 

matrix as random effect, respectively). 

 

Figure S2.3. Median contributions (%) of (a) differences in anatomical variables (e: epidermal 

cell size; s: stomatal size; i: stomatal index) to differences in single-surface anatomical gmax for 

abaxial (red) and adaxial (blue) surfaces; and (b) differences in abaxial and adaxial anatomical 

gmax to differences in whole-leaf anatomical gmax, between ecotypes of Arabidopsis thaliana grown 

under greenhouse conditions with the climate of their origin. Medians were calculated over all 

possible pairwise comparisons between ecotypes (n = 11,476 comparisons). 
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Figure S2.1 
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Figure S2.2 
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Figure S2.3 
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CHAPTER 3 

EVOLUTION OF TRAIT MODULES ACROSS CALIFORNIA NATIVE OAKS 

 

ABSTRACT 

Plants species may adapt to the environment through the optimization of phenotype, which 

involves multiple functional traits. Previous theory has held that suites of traits often evolve 

together to enable optimization according to given environments, or along environmental 

gradients, but contrary views of trait variation have emerged, with some considering that most key 

plant traits would shift together as a single module (economics spectrum) reflecting fast versus 

slow growth, and others hypothesizing the evolution of semi-independent structure-function 

modules. Our main goals were to: (1) test hypotheses for trait co-evolution within and across 

structure-function modules defined based on ecophysiological theory (plant size, leaf size, flux-

related, economics, ecological stoichiometry and drought response modules), (2) identify the 

contribution of shared evolutionary history on the formation of trait modules within plant trait 

networks (PTNs), (3) identify the key “hub traits” within the trait networks, that show 

disproportionate connectivity among the traits, and (4) test the correlated evolution of traits and 

structure-function modules with species’ climatic aridity. Thus, for common garden-grown adult 

trees of 15 species from three sections of the genus Quercus in California (Lobatae, Protobalanus 

and Quercus), we measured 90 functional traits, including plant and leaf size-related traits, drought 

tolerance, resource economics, and nutrient stoichiometry and tested their associations and with 

the climatic aridity of species native ranges of distribution. Traits varied strongly among and within 

California oak species, and showed significantly more correlations within than among theoretically 

expected structure-function modules. Indicator traits of several modules (the leaf size, ecological 
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stoichiometry and drought-tolerance modules) were positively correlated with climatic aridity of 

species’ native distributions, and others were independent (plant size, flux-related and economics 

modules). Including evolutionary history strongly influenced the analysis of trait network 

architecture. Network analysis indicated multiple traits showed disproportionate connectivity, 

including photosynthetic traits and the leaf turgor loss point. The evolution of traits within modules 

highlights the complexity of the integrated phenotypes, and that several semi-distinct trait suites 

adapt to climatic aridity, and overall points to the necessity of considering the benefits and costs 

contributed by multiple traits to overall climate adaptation. 
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INTRODUCTION 

Plant species may adapt to the environment through the optimization of their functional traits (He 

et al. 2020), defined as characteristics of a plant that influence plant growth, reproduction and 

survival and thereby fitness (Lavorel & Garnier 2002; Violle et al. 2007; Medeiros et al. 2019). 

Functional traits are often used in frameworks distinguishing species’ ecological strategies and are 

often inter-related due to co-optimization or trade-offs, which may provide advantages in given 

environments and result in the emergence of putative structure-function trait clusters or modules 

(Maire et al. 2013; Medeiros et al. 2019). Many attempts have been made to summarize the 

complexity of trait-trait relationships and the resulting functional strategies into a few dimensions 

(or axes). For example, Grime’s Competitive-Stress tolerator-Ruderal Triangle, categorized plants 

based on the combination of levels of disturbance and stress of the environment they occupy 

(Grime 1979). Yet, such simple frameworks have since been criticized due to the fact that plants 

can occupy more diverse environments and can show more diverse trait combinations than such 

simple schemes describe (Grubb 1985). 

 More recently, Westoby proposed a model that would be more general than Grime’s and 

would explain species strategies in response to the environment using three dimensions of plant 

function: specific leaf area, SLA, maximum canopy height, Hmax, and seed mass, SM (Leaf-Height-

Seed strategy; (Westoby 1998)). Later work on leaf traits found that traits related to rapid growth 

tended to be positively correlated across species, and negatively with traits related to leaf longevity 

(Reich 2014). These correlations also hold across globally diverse plant species, and have been 

described as the worldwide ‘Leaf Economics Spectrum’, LES (Wright et al. 2004), which 

integrates six key traits related to leaf economics: leaf mass per area (LMA), photosynthetic 

assimilation rates (Amass), leaf nitrogen (N), phosphorus (P), dark respiration (Rmass) and leaf 
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lifespan (LL). The LES, despite being one the most successful and widely discussed frameworks 

of trait-based ecology, also has been criticized for its attempt to summarize plant ecophysiological 

“strategies” without accounting for water-related traits or plant organs other than the leaves (Reich 

2014). Other models have been proposed since, as complementary, such as the wood and root 

economics spectra (WES and RES, respectively; (Chave et al. 2009; Roumet et al. 2016)) and the 

designation of independent trait spectra related to carbon and water fluxes versus drought tolerance 

(Sack et al. 2003; Hao et al. 2010; Li et al. 2017). Further, the LES has been expanded  in a 

proposed “global spectrum of form and function” (Díaz et al. 2016), which included stem density 

with the LES traits. Some have also proposed links between functional dimensions, such plant size 

and flux (Olson et al. 2018) and drought tolerance and economics (Oliveira et al. 2021), while 

others argue that all traits are part of a single fast vs. slow dimension (Grime 2006). All such 

proposals for generalized schemes based on correlated traits are challenged by the 

multifunctionality of traits (i.e., traits that may be optimized to multiple environmental factors) 

and their contributions to multiple functions (i.e., different combinations of traits may result in the 

same overall functional strategy) (Marks & Lechowicz 2006; Sack & Buckley 2020).  

Recent work has shown that plant trait networks (PTNs) offer a higher resolution of the 

patterns of traits correlations (Messier et al. 2017; Flores-Moreno et al. 2019; Kleyer et al. 2019; 

He et al. 2020). PTNs enable a comprehensive visualization of the associations among traits and 

the architecture of PTNs can indicate the overall ecophysiological strategies of different individual 

plants, species or communities. Notably, while species trait-trait relationships are moderated by 

species-relatedness or associated with convergent adaptation across a phylogeny (Edwards 2006; 

Schmerler et al. 2012; Fletcher et al. 2018; Ramírez-Valiente et al. 2020), previous PTN analyses 

have heretofore not included phylogenetic information that would enable evolutionary insight. 
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To identify the architecture of trait correlations and the emergence of modules we focus on 

the genus Quercus, which is highly diverse and widespread worldwide, and has very well studied 

phylogenies for a non-model organism (Cavender-Bares et al. 2015; Sork et al. 2016; Hipp et al. 

2018, 2020). Studies within plant genera growing under controlled conditions would make the 

ideal system to test hypotheses about the evolution of plant traits in clusters (Cavender-Bares et 

al. 2020; Ramírez-Valiente et al. 2020). Oak species can be found across the entire CAFP, but 

some species have more restricted ranges of occupation than others, which allowed us to 

investigate how trait-trait coordination and trait-climate relationships shaped their current 

distribution (Ortego et al. 2015; Sork et al. 2016; Hipp et al. 2018) (Fig. S3.1). 

Our overarching hypothesis is that trait evolution driven by adaptation to spatial 

heterogeneity in climate has resulted in the emergence of semi-independent trait modules relating 

to structure and function, such that traits will be coordinated disproportionately within relative to 

among modules. Based on the literature describing trait coordination, we assessed evidence in 

support of six proposed trait modules. Specifically, we explored traits related to plant size, leaf 

size, water and carbon fluxes, resource economics, nutrient stoichiometry and drought tolerance 

(Table S1). We measured 90 structural, hydraulic, compositional traits and compiled another 8 

traits from the literature for 15 species of California native oaks grown in a common garden (Fig. 

1) to test the existence of the aforementioned structure-function modules, their interrelationships 

and evolution. We also performed an independent analysis of plant trait networks (PTNs), which 

creates clusters based on statistical relationships, to identify the contribution of shared evolutionary 

history to the formation of trait modules. 
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METHODS 

Study species and sampling 

For this study we sampled 15 of the 21 species of California native oaks, including three 

representatives from each of the three Quercus sections found in North America, Quercus, Lobatae 

and Protobalanus (Hipp et al. 2018) (Fig. 3.1a). All sampled individuals were grown in a common 

garden at the California Botanic Garden in Claremont, California (34.110738, −117.713913; 507 

mm precipitation per year; WorldClim (Hijmans et al. 2005); Fig. 3.1a). The common garden 

approach is ideal to test questions related to trait evolution across species, as it ensures that the 

observed differences are due to heritable interspecies variation and minimizes confounding 

environmental variables that may have elicited phenotypically plastic trait variation if plants were 

sampled in the field (Cordell et al. 1998; Dunbar-Co et al. 2009; Givnish & Montgomery 2014; 

Mason & Donovan 2015; Fletcher et al. 2018; Cavender-Bares et al. 2020). The species varied in 

growth form (shrubs and trees), leaf habit (evergreen and deciduous), and climate of their native 

ranges of distribution (Appendix Table 3.1 and Fig. S3.1). 

 We sampled three to six individuals per species, given availability in the common garden. 

For each individual, we recorded approximate plant height and used pole pruners to collect the 

most exposed mature branch grown in the current year, with no signs of damage and herbivory. 

Branches were carried to the lab in dark plastic bags with moist paper and rehydrated overnight 

under plastic before harvesting stem sections and fully expanded leaves and stems for all 

subsequent analyses. We measured traits from three leaves from each of three to six individuals 

per species, unless noted otherwise in the sections below. 

  

 



 48 

Epidermal morphology and leaf venation traits 

We measured epidermal and venation traits on one leaf from each of three to six individuals per 

species. Epidermal measurements were obtained from microscopy images taken from nail varnish 

impressions of both leaf surfaces. From microscope images of the nail varnish peels we measured 

stomatal density (SD), stomatal differentiation rate (or index; the number of stomata per numbers 

of stomata plus epidermal pavement cells, SI), stomatal area (S), guard cell length and width (GCl, 

GCw), inner and outer stomatal pore length (SPil, SPol), epidermal pavement cell area (E) and 

trichome density (TD). The total number of cells per leaf (Ncells) was calculated as the sum of 

stomata and epidermal pavement cells per leaf. From cell measurements we calculated the 

maximum theoretical stomatal conductance (Gmax) (Franks & Farquhar 2007; Sack & Buckley 

2016). 

 For the venation traits, fixed leaves were cleared, stained and scanned for major vein 

lengths per area (VLAmajor) and diameter (VDmajor) and the top, middle and bottom of each leaf were 

imaged under light microscope for measurements of minor and free ending vein lengths per area 

(VLAminor and FEVs) and diameter (VDminor) (Scoffoni et al. 2011). From those measurements, we 

calculated the major, minor and total leaf vein volume (VVmajor, VVminor and VVtotal) as: 

𝜋 × $𝑉𝐷 2( )
*
× 𝑉𝐿𝐴 (Sack et al. 2012). All images were analyzed and anatomical traits were 

measured using the software ImageJ (http://imagej.nih.gov/ij/). 

 

Leaf economics and structure 

Leaf saturated mass was measured using an analytical balance (0.01 mg; XS205; Mettler-Toledo, 

OH, USA) and leaf thickness (LT) using digital calipers (0.01 mm; Fowler, Chicago, IL, USA). 

The leaf area (LA) and perimeter (LP) were measured using a flatbed scanner and analyzed using 



 49 

the software ImageJ (http://imagej.nih.gov/ij/). From these measurements we calculated 

descriptors of leaf shape, including the ratio between LP and LA (LP:LA), which quantifies the 

relative amount of leaf edge, and LP2 and LA (LP2:LA), which removes the geometric dependence 

on leaf size. After scanning, leaves were oven-dried at 70º for 72 h and their dry mass and area 

were measured again. Leaf mass per area (LMA) was calculated as lamina dry mass divided by 

saturated area; leaf density (LD) as LMA divided by LT; saturated water content (SWC) as 

(saturated mass minus dry mass) divided by dry mass; water mass per area (WMA) as the (saturated 

mass minus dry mass) divided by saturated area; leaf dry matter content (LDMC) as dry mass 

divided by saturated mass; percentage loss in area after drying (PLAdry) as the percent decline in 

area from saturated to dry leaves, and percentage loss in thickness after drying (PLTHdry) as the 

percent decline in thickness from saturated to dry leaves (Witkowski & Lamont 1991; Ogburn & 

Edwards 2012; Pérez-Harguindeguy et al. 2013). The petiole area (PA) was calculated as the area 

of a cylinder using the petiole length and diameter; the petiole to leaf area ratio (PA:LA) was 

calculated as the petiole area divided by the leaf area. 

 

Wood economics and structure 

We measured wood density (WD) from one 5 cm-branch segment of each of the studied individuals 

after bark removal by water-displacement; branch segments were immersed in water and the mass 

of the displaced water was recorded. Branch segments were then oven-dried at 70º for 120 h and 

their dry mass was measured. WD was calculated as the segment dry mass divided by the mass of 

displaced water (Pérez-Harguindeguy et al. 2013). 
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Leaf composition 

The concentrations of four macronutrients (potassium, calcium, phosphorus and magnesium) and 

12 micronutrients (iron, boron, manganese, sodium, zinc, copper, molybdenum, cobalt, aluminum, 

arsenic, cadmium, rubidium and strontium) were determined from ground oven-dried leaves using 

high throughput elemental profiling (ionomics; (Salt et al. 2008)) by the USDA-ARS/Danforth 

Center Ionomics facility at the Donald Danforth Plant Science Center. Elemental carbon and 

nitrogen concentrations and their isotope ratios (δ13C and δ15N) were measured by the University 

of California, Berkeley, Center for Stable Isotope Biogeochemistry, by continuous flow dual 

isotope analysis using a CHNOS Elemental Analyzer interfaced to an IsoPrime100 mass 

spectrometer (Fry et al. 1996; Pérez-Harguindeguy et al. 2013). The concentrations of nutrients 

were converted from mass basis into area-basis by multiplying by LMA. The carbon isotope 

discrimination (D13C; in parts per thousand, ‰) was calculated following (Farquhar & Richards 

1984). The chlorophyll concentration per area (Chlarea) was measured using a SPAD meter ((Monje 

& Bugbee 1992); SPAD-502, Konica Minolta, Japan), and the chlorophyll concentration per mass 

was determined by dividing by LMA (Chlmass).  

 

Hydraulics traits 

Turgor loss point (πtlp) was measured for two leaves per studied individual. We used a vapor-

pressure osmometer (Vapro 5520, Wescor, US) to obtain the osmotic concentration of the leaves 

and used calibration equations to estimate πtlp (Bartlett et al. 2012).  

The leaf and stem water potentials at point of air entry in the xylem (Peleaf and Pestem), 

water potentials at 50% loss of hydraulic conductivity (P50leaf and P50stem), minimum water 

potential at midday (ymidday) and maximum xylem vessel length (Vl) were measured by (Skelton 
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et al. 2018) using the optical method (Brodribb et al. 2016) in three branches from at least six 

individuals of seven of the 15 species included in this study grown in the Pepperwood Preserve in 

Sonoma County, located on the west coast of California (Skelton et al. 2018). 

 

Estimated photosynthetic traits 

We estimated maximum rate of carboxylation per mass (Vcmax mass) and electron transport rate (Jmax 

mass) from leaf N and P concentrations per mass (Domingues et al. 2010). The ratio between 

intercellular CO2 concentration (Ci) and ambient CO2 concentration (Ca) was estimated from D13C 

(Farquhar et al. 1982; Franks et al. 2014). Estimates of leaf lifetime integrated CO2 assimilation 

rate (Amass) and stomatal conductance to CO2 (Gcleaf) were derived from Vcmax mass, Jmax mass and 

isotope composition data using the Farquhar, von Caemmerer and Berry model (Franks et al. 

2009). To convert Vcmax mass, Jmax mass, and Amass to area-basis, we multiplied the trait values by 

LMA. We also calculated the ratio between Gcleaf and Gmax, an index of the degree that stomata are 

open on average relative to their anatomical maximum aperture (McElwain et al. 2016), and the 

ratio between Gmax and Narea, which is negatively related to water retention for a given investment 

in photosynthetic machinery (Wright et al. 2001). 

 

Plant size 

Species maximum height (Hmax) and seed dry mass values (SM) were compiled from the Ecological 

Flora of California database (https://ucjeps.berkeley.edu/efc/). When not available, the Hmax was 

recorded as the maximum value reported on the Jepson eFlora website 

(https://ucjeps.berkeley.edu/eflora/).  
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Environmental variables for species’ native ranges 

We obtained species occurrence data from the Global Biodiversity Information Facility (GBIF; 

references available in Table S3.2) and we used R software (version 3.4.4 (R Core Team 2020)) 

to extract and calculate the mean, range and standard deviation of environmental variables of 

known occurrences across the range of distribution of each species. Occurrence records were 

downloaded using the ‘rgbif’ package (Chamberlain et al. 2019) and filtered to keep herbarium 

records only and remove incomplete (latitude or longitude missing) and duplicated records, non-

natural occurrences (e.g., records from botanical gardens, planted urban trees) and to limit the 

temporal range to 1950-current (Riordan et al. 2015; Chamberlain et al. 2019). We calculated 

species climatic envelope using species occurrence points and not maps of distribution ranges 

because we were interested in the relationship between species’ traits and climate, and since 

occurrence maps are based on ecological niche models (Harrison 1997; Peterson 1999) that are 

partially calculated from environmental variables, they could potentially introduce circularity into 

our analyses (Šímová et al. 2018). 

From open-access raster layers, we extracted a total of 30 environmental parameters 

relating to air temperature (WorldClim, CRU; (Hijmans et al. 2005)), precipitation (WorldClim; 

(Hijmans et al. 2005)), aridity (CGIAR-CSI, NCAR-UCAR; (Zomer et al. 2008)) and soil 

characteristics (ISRIC Soilgrids; (Hengl et al. 2017); see Table S3 for detailed description, 

download links and references for each variable). The raster layers with the same resolution were 

stacked using the stack function from the ‘raster’ package (Hijmans & van Etten 2012) and the 

environmental parameters for each occurrence record were extracted using the extract function 

from the ‘dismo’ package (Hijmans et al. 2011). 
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Quantifying the relative connectivity of traits within and across structure-function clusters 

The 90 measured traits were organized into eight measurement type categories: epidermal 

morphology, leaf venation, leaf economics and structure, wood economics and structure, leaf 

composition, hydraulics, estimated photosynthesis and plant size (Table S3.1). Traits were then 

assigned to six structure-function clusters, which were defined based on expectations for trait 

correlation with an “indicator trait”, according to theory and empirical evidence in the previous 

literature considering diverse species (Table S3.1).  Thus, traits expected to be related to taller 

stature were included in the “plant size cluster” (with indicator trait Hmax); traits expected to be 

related to leaf size were included in the “leaf size cluster” (with indicator trait LA); traits expected 

to be related to fluxes of carbon and water per leaf area were included in the “flux-related cluster” 

(with indicator trait Gmax); traits expected to be related to plant growth rates and tissue longevity 

were included in the “economics cluster” (with indicator trait LMA) and, if traits were also 

expected to be related to mass-based leaf nutrient concentrations they were included in the 

“ecological stoichiometry cluster” (with indicator trait Nmass); traits expected to be related to 

drought tolerance (with indicator trait ptlp) were included in the “drought tolerance cluster” (see 

Table S3.1 for the rationales for assigning each trait into structure-function clusters). Note that 

given traits were assigned to one or more structure-function clusters, assuming multiple functions 

and involvement in different physiological processes (Sack & Buckley 2020). 

For each a priori hypothesized structure-function cluster we quantified the “within-cluster 

trait connectivity” as the proportion of trait-trait correlations relative to the total number of possible 

correlations within the cluster, and the “across-cluster trait connectivity” as the number of 

correlations among traits classified into different structure-function clusters relative to the number 

of possible trait-trait correlations among clusters (Table S3.8- S3.9). 
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Plant trait network analysis 

To build the plant trait networks (PTNs), functional traits were considered as nodes and trait 

correlations were considered as edges. First, we built trait-trait correlation matrices from species 

mean values using ahistorical (ordinary least squares regression, OLS) and historical (phylogenetic 

generalized least squares, PGLS) relationships. The strength of the trait-trait relationships was 

described using correlation coefficients (r). To consider trait relationships as edges in the network, 

we set significance thresholds of p < 0.05. The matrices were then converted into adjacency 

matrices A = [ai,j], where we assigned 1 to relationships that were above the significance threshold 

and 0 to those below the threshold (ai,j ϵ [0,1]). These networks were visualized and all network 

parameters were calculated using functions available in the ‘igraph’ package (version 1.2.6) in the 

R Software (R Core Team 2020). 

We calculated five parameters to describe the overall topology of the PTNs, three that 

quantify the “tightness” of the PTN, the edge density (ed), the diameter (d) and the average path 

length (al); and two parameters to quantify the “complexity” of the PTN, the average clustering 

coefficient (ac) and the modularity (q) (He et al. 2020). The ed is the proportion of connections 

out of all possible connections, al is the network-averaged shortest distance between traits, d is the 

maximum distance between traits in the network; ac is the network-averaged clustering coefficient 

of all traits and q is the difference between the within-module connections and a null model where 

connections among traits are randomly distributed. Higher values of ed reflect more 

interdependence of traits within the network while higher values of al and d reflect networks that 

have traits that are more independent of each other. Higher values of ac reflect higher division of 

network into subcomponents and higher q values reflect higher tendency of the network to form 

modules (He et al. 2020). 
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We also calculated parameters to describe the importance of traits within PTNs, two that 

quantify the “connectedness” of each trait, the degree (k) and closeness (c); and two that quantify 

the “centrality” of each trait, the betweenness (b), and the clustering coefficient (cc). For each trait, 

k is defined as the number of connections for a given trait, c represents how far other traits are 

from the focal trait; b is a measure of the number of shortest paths between traits that connect with 

the focal trait and cc is the proportion of connections between a focal trait and its neighboring traits 

out of all possible connections. Traits with the highest k were considered “hub traits” and traits 

with highest b were considered “mediator traits” (He et al. 2020). 

 

Statistical and comparative analyses 

All statistical analyses were performed and plots created using R software (version 4.0.2 (R Core 

Team 2020)) and packages available from the CRAN platform. We performed nested ANOVAs 

to test for differences in functional traits among sections using the aov function, with functional 

traits coded as the dependent variable, section as the independent variable and species nested 

within section (Sokal & Rohlf 2012; R Core Team 2020). To test for differences in functional traits 

among species we performed one-way ANOVAs, with functional traits coded as the dependent 

variable and species as the independent variable (Sokal & Rohlf 2012; R Core Team 2020). Most 

trait and climate variables were log-nomally distributed and were log10-transformed prior to 

analyses. Variables that included both negative and positive numbers were incremented by a 

constant equal to the lowest species mean +1 before log-transformation, such that 1 was the lowest 

value for that variable (see Tables S3.4-5 for detailed description). 

 To summarize the variation in functional traits of the oak species, we performed a principal 

component analyses (PCAs) on species means of the six indicator traits of the structure-function 
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clusters, Hmax, LA, Gmax, LMA, Nmass and ptlp, using the prcomp function in the ‘stats’ package (R 

Core Team 2020). All variables were log-scaled prior to analyses. We extracted the species scores 

(scaled to range from -1 to 1) of PC axes 1 and 2, and used them to summarize trait main axes of 

variation in subsequent analyses. 

To test trait-trait and trait-environment relationships across species, we performed 

regressions using an ahistorical and an evolutionary approach. In the ahistorical approach we used 

ordinary least squares regression analyses (OLS) using the lm function from the ‘stats’ package 

and in the evolutionary approach we used phylogenetic generalized least-squares analyses (PGLS 

(Felsenstein 1985; Freckleton et al. 2002; Harmon 2019)) using the pgls function from the ‘caper’ 

package (Orme et al. 2018) with lambda (l) optimized using maximum likelihood. Pairwise 

branch distances were calculated for each species pair based on an ultrametric tree modified from 

the oak phylogeny of (Hipp et al. 2020). Analyses were performed in untransformed and log-

transformed data, to test for either approximately linear or non-linear (i.e., approximate power-

law) relationships, respectively. Here we focus on the results from the evolutionary analyses 

(hereafter “rphy”) and present the ahistorical results (hereafter, “rols”) in the figures and 

supplemental files (Table S3.6 and Fig. 3.2). 

To compare the proportion of correlations uncovered within and across the hypothesized 

structure-function trait clusters out of all possible correlations we performed proportion tests using 

the prop.test function from the ‘stats’ package. 
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RESULTS 

Variation in traits within and across species 

Traits varied strongly among and within California oak species. On average across the measured 

traits, 13% of the total variation was accounted for by section, 44% by species-differences within 

section, and 43% by individuals within species (nested ANOVAs; Table S3.4). We found that 56 

of the 90 traits with individual-level measurements differed significantly across species, including 

the indicator traits of four of the six structure-function clusters, Gmax (flux-related cluster), LMA 

(resource economics cluster), Nmass (nutrient stoichiometry cluster) and ptlp (drought tolerance 

cluster) (one-way ANOVAs; Table S3.5 and Fig. S3.2). 

 

Trait-trait coordination among and within structure-function clusters 

Overall, traits were more connected within than across the a priori defined structure-function 

clusters. We tested if traits were more correlated within than across the six a priori hypothesized 

structure-function clusters by comparing the proportion of correlations within and across clusters 

out of all possible correlations, with values closer to one reflecting higher “connectivity” (Tables 

S3.1, S3.8- S3.9). With the ahistorical approach, we found a connectivity of 0.23 within and 0.18 

across structure-function clusters (p <0.001; Table S3.8) and with the evolutionary approach, we 

found a connectivity of 0.29 within and 0.23 across clusters (p <0.001; Table S3.9). The plant and 

leaf size clusters were the most intercorrelated, while the flux-related and drought response clusters 

were the least intercorrelated in both ahistorical and evolutionary analyses (Tables S3.8- S3.9). 

Traits in the plant size cluster were also the most correlated with traits in other structure-function 

clusters, while traits in the economics cluster were the least correlated (Tables S3.8- S3.9).  
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We also plotted the relationships between the indicator traits (i.e., traits we hypothesized 

would be the most strongly correlated with the structure-function cluster and thus, have the highest 

number of connections with other traits) and the other traits belonging to the same structure-

function cluster (Fig. 3.2). In the plant size cluster, we found that taller oak species have larger 

leaves and petioles, faster photosynthetic rates and less dense wood, so larger petiole area, PA, leaf 

area, LA, CO2 assimilation rate, Amass, maximum carboxylation and electron rates per mass, Vcmax 

mass and Jmax mass, and lower wood density, WD (|rphy| ranged from 0.58 to 0.84; p < 0.05; Table S3.7 

and Fig. 2a). In the leaf size cluster, oak species with larger leaves were taller, had larger PA, 

higher major vein diameter, VDmajor and lower major vein lengths per area, VLAmajor, and leaf mass 

per area, LMA (|rphy| ranged from 0.75 to 0.93; p < 0.05; Table S3.7 and Fig. 3.2b). In the flux-

related cluster we found that species with higher maximum stomatal conductance, Gmax, have 

higher stomatal density, SD, stomatal index, SI, guard cell width, GCw, petiole to leaf area ratio, 

PA:LA, and nitrogen concentration per area, Narea (|rphy| ranged from 0.54 to 0.95; p < 0.05; Table 

S3.7 and Fig. 3.2c). In the economics cluster, species with high LMA had thicker, denser leaves 

with higher photosynthetic rates and nutrient concentrations per area; they also had lower 

chlorophyll, photosynthetic rates and nutrients per mass (|rphy| ranged from 0.55 to 1; p < 0.05; 

Table S3.7 and Fig. 3.2d). In the ecological stoichiometry cluster, species with high Nmass had 

higher leaf concentrations of K, Cu, P, Rb, and lower concentrations of B, Na, and C per mass; 

they also had a higher nitrogen 15 isotope composition, d15N, and lower C to N ratio, C:N (|rphy| 

ranged from 0.62 to 0.99; p < 0.05; Table S3.7 and Fig. 3.2e). In the drought response cluster, oak 

species with higher (less negative) turgor loss point, ptlp, had larger and less lobed leaves (low 

LP:LA and LP2:LA) with higher VDmajor, photosynthetic rates and saturated water content, SWC, 
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and lower saturated water mass per area, SWMA, LMA, WD and minor vein diameter, VDminor (|rphy| 

ranged from 0.55 to 0.86; p < 0.05; Table S3.7 and Fig. 3.2f). 

 

Trait-environment coordination 

A principal component analysis of indicator traits from each of the six structure-function clusters 

for all species identified two dominant axes of variation (Traits-PCA); Traits-PC1 and Traits-PC2 

explained 59.6% and 20.3% of variation, respectively (Table S3.3 and Fig. 3.3a). Traits-PC1 

represented a gradient from low to high tolerance to drought, with higher scores corresponding to 

higher LMA, more negative ptlp and smaller LA, Hmax, and Nmass. Traits-PC2 represented a gradient 

from low to high Gmax (Table S3.3 and Fig. 3.3a). 

High climatic aridity, i.e., low values of aridity index, AI, and high potential 

evapotranspiration (PET), was positively correlated with Traits-PC1 (rphy = 0.54 and 0.61, 

respectively; p < 0.05; Table S3.7 and Fig. 3.3b-c). Traits-PC1 was also negatively correlated with 

soil depth (rphy = -0.58; p < 0.05; Table S3.7). Despite varying largely in climatic aridity of their 

native ranges, three of the four deciduous species, Q. kelloggii, Q. garryana and Q. lobata, had 

very similarly low values of Traits-PC1, which reflect their large LA, Hmax and ptlp (Fig. 3.3). 

Traits-PC2 was not correlated with AI nor PET, but it was positively correlated with the annual 

temperature range and negatively correlated with the minimum temperature and soil pH (|rphy| 

ranging from 0.52 to 0.56; p < 0.05; Table S3.7). Indicator traits alone were also correlated with 

AI and PET (Tables S3.6- S3.7). AI was positively correlated with LA and Nmass (rphy = 0.57 and 

0.61, respectively; p < 0.05; Table S3.7) and PET was negatively correlated with LA and ptlp (rphy 

= -0.71 and -0.62, respectively; p < 0.01; Table S3.7). 
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Plant trait network architecture and complexity: ahistorical vs. evolutionary networks 

The ahistorical and evolutionary networks had similar overall tightness (i.e., dependence of one 

trait on another); the diameter, d, of the two networks was the same, but the evolutionary network 

had a higher edge density, ed, while the ahistorical had a higher average path length, al (Table 3.1 

and Fig. 3.4). The evolutionary network was overall more complex than the ahistorical; it had a 

higher clustering coefficient (ac; PTN is divided into more subcomponents) and lower modularity 

(q; higher clustering into modules) than the ahistorical PTN (Table 3.1 and Fig. 3.4). The 

ahistorical network grouped the traits into 44 modules, with 39 composed of one trait, and the 

evolutionary network grouped traits into 40 modules, 36 of them composed of a single trait (Table 

S3.10 and Fig. 3.4). 

In the ahistorical PTN, the algorithm grouped the traits into five main modules (Fig. 3.4a). 

The first module included traits related to gas exchange and photosynthetic efficiency: SD, SI, 

Gmax and Gmax:Narea (orange; Fig. 3.4a). The second group consisted of traits that describe stomatal 

size (S, GCl, SPil, SPol) and the volume of major veins (pink; Fig. 3.4a). The third and largest group 

combined traits related to leaf and wood economics, leaf composition and drought tolerance 

responses, such as LA, LMA, WD, ptlp and VLAmajor and the area and mass-basis concentrations of 

leaf nutrients (green; Fig. 3.4a). The fourth group included the GCW, Almass, Femass, Znmass, Comass 

and Coarea (yellow; Fig. 3.4a). The fifth module consisted of VLAminor, Camass and Srmass (blue; Fig. 

3.4a). 

The evolutionary PTN grouped the traits into four main clusters (Fig. 3.4b). The first, 

second and third clusters of the evolutionary PTN consisted of virtually the same traits as the 

ahistorical network (orange, pink and green modules; Table S3.10 and Fig. 3.4b). The fourth and 

last module, however, consisted of traits related to water use and photosynthetic efficiency, D13C, 
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Ci:Ca and Karea (purple; Fig. 3.4b). We also plotted the evolutionary PTN coloring the nodes 

according to the structure-function cluster we hypothesized them to belong to (Table S3.1 and Fig. 

S3.3) instead of the clusters formed by the clustering algorithm (Fig. 3.4b). We observed a high 

similarity between the economics structure-function cluster and the green cluster of the PTN and 

between the drought response structure-function cluster and the combination of the pink, purple 

and orange clusters of the PTN (Figs. 3.4b and S3.3). 

 

Trait connectedness: “hub” and “mediator” traits 

Hub and mediator traits differed between the ahistorical and evolutionary approaches. In the 

ahistorical network, the top five hub traits were the chlorophyll concentration per mass, Chlmass, 

boron concentration per area, Barea, carbon concentration per area, Carea, carbon to nitrogen ratio, 

C:N, and Nmass (Table S3.10 and Fig. 3.5a) and the top five mediator traits were the zinc 

concentration per area, Znarea, sodium concentration per mass, Namass, the ratio of Gmax:Narea, Chlmass 

and Hmax (Table S3.10 and Fig. 3.5b). In the evolutionary network, the top five hub traits were the 

Chlmass, Amass, LMA, Barea and C:N (Table S3.10 and Fig. 3.5c) and the top five mediator traits were 

Hmax, PA:LA, ptlp, aluminum concentration per area, Alarea, and the diameter of major veins (Table 

S3.10 and Fig. 3.5d). 

The PTN mostly supported our selection of indicator traits for each structure-function 

cluster and helped uncover additional potential indicator traits (Table S3.10 and Fig. S3.4). In the 

plant size cluster, the indicator trait Hmax was the trait with highest betweeness and Amass was the 

trait with largest k (Fig. S3.4a). In the leaf size cluster, the indicator trait LA had the second largest 

k and fourth largest b, with LMA and Hmax also being very connected traits (Fig. S3.4b). In the 

flux-releted cluster, the indicator trait Gmax had low k and b; the most interconnected traits in the 
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flux-related cluster were photosynthesis variables, such Amass and Vcmax mass and Hmax (Fig. S3.4c). 

The LMA had the third highest k and seventh largest b of the economics cluster; other traits were 

also very connected, such as Chlmass and Amass( Fig. S3.4d). Nmass had the second largest k of the 

ecological stoichiometry cluster, but had a low b; C:N and Znmass were also important traits in the 

cluster (Fig. S3.4e). In the drought tolerance cluster, traits related to photosynthesis, such as Amass 

and Vcmax mass had the largest k, and the indicator trait ptlp had the second largest b, after Hmax (Fig. 

S3.4f). 

 

DISCUSSION 

Variation in traits within and across species 

We found strong intra- and interspecific variation in traits of California native oak species, which 

is not surprising, given their high degree of phenotypic variation, convergent evolution and 

hybridization (Tucker 1974; Sork et al. 2016). A high intraspecific variation could be 

advantageous for species growing under resource-limitation, since a larger range of possible trait 

values would allow plants to go through plastic trait changes in response to shifts in the 

environment, potentially leading to higher resilience (Jung et al. 2014; Anderegg 2015; González 

de Andrés et al. 2021).  

It is also interesting to note that the variation explained by inter and intraspecific 

differences was not consistent across traits. Traits such as leaf nutrient concentrations had greatest 

intraspecific variation, which might explained due to differential resource allocation and 

differences in the soil morphology and composition in different microenvironments across the 

common garden (Opedal et al. 2015). For the large majority of traits, species differences explained 

most of the variation in traits while the differences across sections explained the least amount of 
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variation (around 13%). This lack of cohesiveness among species belonging to the same section 

indicates that species relatedness is not the main determining factor of functional strategies across 

this set of California native oaks (Tucker 1974). 

 

Trait-trait coordination among and within structure-function clusters 

Our results supported the hypothesis that traits would be more inter-correlated with traits that are 

involved in the same physiological processes, thus evolving as structure-function clusters. We 

showed that, with the exception of the flux-related cluster, traits involved in similar functional 

responses are more coordinated and relatively independent of other clusters (Table S3.8- S3.9). 

This low cohesiveness of the flux-related cluster could be explained by their multifunctionality. 

Indeed, most of the traits included in the flux-related cluster were hypothesized to be involved in 

four of the six structure-function clusters (Sack & Buckley 2020). We also found that the inclusion 

of shared evolutionary histories in our analyses resulted in higher trait-trait coordination, both 

within and across structure-function modules. This indicates that despite not being an important 

driver of overall function, species’ relatedness can have an important role in determining certain 

traits, such as stomatal density, guard cell width, Gmax and trichome density (Table S3.4). 

 

Trait modules evolved with climate 

Our results suggest strong adaptation of drought tolerance across the California native Quercus 

species, involving repeated convergent adaptation of key traits. The relationships we uncovered 

between the structure-function clusters, through their indicator traits, and climatic aridity of their 

native ranges supported our initial hypotheses (Table S3.1 and Fig. 3.3). Species that reach a 

smaller height at maturity, possess smaller leaves and lower cencentration of nitrogen in the leaves, 
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coupled with larger LMA and a more negative ptlp are currently distributed in drier climates, where 

the AI is lower and the PET is higher (Fig. 3.3), consistent with traits related to high sclerophylly 

and tolerance to drought (Alonso-Forn et al. 2020). 

 There was a clear decoupling between the traits of three of the four deciduous species (Q. 

kelloggii, Q. garryana and Q. lobata) included in this study from the climatic aridity of their native 

ranges (Table S3.3 and Fig 3.3). These species had a variation of approximately 2 fold in their 

native AI and PET, but their Traits-PC1 was very similar; in other words, they have large Hmax, LA 

and Nmass coupled with less negative ptlp and low LMA. This combination of traits is typically found 

in drought sensitive species or species growing in resource abundant environments, which is not 

the case for these three species (Sork et al. 2016). However, since they only keep their leaves 

physiologically active for a few months a year, they compensate by doing most of their growth in 

a short growth season (which is also the rainy season), supporting a drought avoidance strategy for 

this subset of species (Sancho-Knapik et al. 2021).  

 

Evolution of traits in modules 

The PTN approach helped clarify the correlative structure of traits and allowed us to identify trait 

clusters according to their statistical relationships. Including species shared evolutionary history 

strongly influenced the architecture of the PTN; the evolutionary network was overall more 

complex than the ahistorical, with higher ac and lower q, which reflect a network with more 

subcomponents or clusters consisting of less traits (Table 3.1; (He et al. 2020)). Additionally, the 

clusters identified with this approach somewhat supported the structure-function clusters we 

hypothesized a priori, especially the economics and the drought response clusters. The differences 

between the structure-function clusters we hypothesized and the clusters identified by the 
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algorithm do not necessarily mean there was no statistical support for the other four other clusters; 

it just highlights the strong coordination of traits and the importance of this global view of plant 

function. Because of the multifunctionality of traits, some trait-trait relationships will vary 

depending of the circumstances of the study, so we would also expect to uncover different 

architectures in PTNs created from contrasting species adapted to different environments. This is 

ultimately why PTNs are so promising in ecophysiological studies: they help resolve relationships 

among multiple traits at the same time and visualize how traits might indirectly influence traits 

related to different functions (Messier et al. 2017; Flores-Moreno et al. 2019; Kleyer et al. 2019; 

He et al. 2020). 

 The PTN approach also allowed us to identify traits with special importance as hubs and 

mediators, including photosynthetic traits, such as Amass and Vcmax mass, leaf composition traits, such 

as LMA and C:N, and ptlp and Hmax (Figs. 3.5 and S3.4). This does not mean that less connected 

traits are necessarily less important; these traits might be fundamental to a different dimension of 

plant function and thus more “mechanistically isolated” from other trait clusters. 

 

Applications and limitations of this study 

The evolution of traits within clusters highlights the emergence of integrated phenotypes that 

provide drought tolerance, and points to the necessity of considering the benefits and costs 

contributed by multiple traits to overall climate adaptation. The PTN are a very promising 

approach to visualize multiple traits at the same time, providing us with a more integrative 

perpective of how the plant phenotype responds to changing environments, while also helping us 

get closer to the identification of the key traits and/or structure-function clusters. 
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Table 1. Network-level parameters that quantify network tightness (edge density, ed, diameter, d, 

and average path length, al) and complexity (average clustering coefficient, ac, and the modularity, 

q) using ahistorical correlations and evolutionary correlations. 

 
Network property Parameter Significance of higher value Ahistorical Evolutionary 

Tightness Edge density, ed Traits are less independent  0.197 0.248 

 Average path 
length, al Traits are more independent 2.230 2.022 

 Diameter, d Traits are more independent 5 5 

Complexity Average clustering 
coefficient, ac 

Network divided into more 
subcomponents 0.607 0.634 

 Modularity, q Higher clustering of traits into modules 0.146 0.117 
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FIGURE CAPTIONS 

Figure 3.1. (a) Map showing the centroid of the range of distribution of the 15 California native 

oak species sampled in this study with terrain colored according to the aridity index. The star 

represents the sampling location, Rancho Santa Ana Botanical Garden. (b) Phylogenetic tree of 

the California native oaks species included in this study (adapted from (Hipp et al. 2020)). Colors 

represent section within the genus Quercus: Lobatae (red), Protobalanus (yellow) and Quercus 

(blue). 

 

Figure 3.2. Relationships between indicator traits (x-axes) and traits hypothesized to belong to 

each structure-function cluster (y-axes). Traits that affect plant stature are included in the “plant 

size cluster”; traits that affect the leaf size are included in the “leaf size cluster”; traits that affect 

hydraulic conductivity were included in the “flux-related cluster”; traits that affect leaf lifespan 

were included in the “economics cluster” and, if they are also related to elemental composition 

they were included in “ecological stoichiometry cluster”; traits that affect species responses to 

drought (i.e., re related to climatic aridity) were included in the “drought response cluster”. Since 

traits can have multiple functions, they might reflect more than one cluster. Relationships between 

(a) plant size cluster and the maximum plant height, Hmax, (b) the leaf size cluster and the leaf area, 

LA; (c) the flux-related cluster and the theoretical maximum stomatal conductance, Gmax; (d) the 

economics cluster and the leaf mass per area, LMA; (e) the ecological stoichiometry cluster and 

the nitrogen concentration per leaf mass, Nmass; (f) the drought response cluster and the water 

potential at turgor loss, ptlp. The symbol outline color represents the hypothesized relationship 

(Table S3.1) and the symbol filling represents the relationship uncovered by our analyses 

(phylogenetic generalized least squares, PGLS; p < 0.05; Table S3.7). Blue and red symbols 
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represent traits that are, respectively, positively and negatively related to the indicator trait of a 

given cluster. Gray represents traits with multiple published hypotheses for their relationships with 

the indicator trait (Table S3.1). 

 

Figure 3.3. Variation in traits and native climate across 15 oak species grown in a common garden. 

Principal component analysis (PCA; Table S3.3) on (a) indicator traits of each of the six structure-

function clusters, maximum plant height, Hmax, leaf area, LA, anatomical maximum stomatal 

conductance, Gmax, leaf mass per area, LMA, foliar nitrogen concentration per mass, Nmass, and 

turgor loss point, ptlp (multiplied by “-1” prior to PCA). Relationships between the first axis of the 

traits PCA with (b) the aridity index, AI, and (c) the potential evapotranspiration, PET. Larger AI 

represents more humid climate, so we present the reversed the x-axis to highlight that PET and AI 

increase with climatic aridity. Colors represent section within the genus Quercus: Lobatae (red), 

Protobalanus (yellow) and Quercus (blue); symbols represent leaf habit, evergreen (circles) and 

deciduous (squares). Solid lines describe the fit of the evolutionary analyses (PGLS; Table S3.7) 

and dashed lines describe the fit of the ahistorical analyses (ordinary least squares regression, OLS; 

Table S3.6). *p < 0.05.  

 

Figure 3.4. Networks of the 90 functional traits measured in 15 species of California native oaks 

grown in a common garden. Both networks were built from a matrix of trait-trait correlations, with 

(a) showing the resulting ahistorical network (ordinary least squares regression, OLS; Table S3.6) 

and (b) showing the evolutionary network (phylogenetic generalized least squares, PGLS; Table 

S3.7). Correlations were considered significant when p < 0.05. Nodes with the same colors were 
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grouped into the same modules by the clustering algorithm and nodes colored in gray were placed 

in modules where they were the single component (Table S3.10). 

 

Figure 3.5. Trait-level network parameters describing trait connectivity and centrality in the 

ahistorical (top row) and evolutionary networks (bottom row). Panels (a) and (c) show the degree 

of connectedness, k, and panels (b) and (d) show the betweeness, b. Traits with high values of k 

were considered “hub traits” and traits with high values of b were considered “mediator traits”. 

Bars with the same colors were grouped into the same modules by the clustering algorithm (as in 

Fig. 4) and bars colored in gray were placed in modules where they were the single component. 

Indicator traits are highlighted in bold and with an asterisk. Here we show the 20 traits with largest 

k and b values; see Table S3.10 for complete list. 
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Figure 3.1 

  

5000

10000

15000

20000

Quercus engelmannii

Quercus douglasii

Quercus john−tuckeri

Quercus cornelius−mulleri

Quercus pacifica

Quercus berberidifolia

Quercus durata

Quercus garryana

Quercus lobata

Quercus tomentella

Quercus chrysolepis

Quercus palmeri

Quercus wislizeni

Quercus agrifolia

Quercus kelloggii

0.2

1 0.8 0.6 0.4 0.2 0

a b

2.0    
1.5
1.0
0.5

Aridity 
index



 72 

 

Figure 3.2 
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Figure 3.3 
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Figure 3.4 

  

SD

SI

S

GC l

GCw SP il

SPol

E N cells

Gmax

TD

VLAmajor
VDmajor

VVmajor

VLAminor

VDminor

VVminor

VLA total

VV total

LA

LMA

LP : LA

LP2 : LA

LT

LD

LDMC

SWC

SWMA

PLAdry

PLTHdry

PA

PA : LA

WD

Ca

Cm

Na

Nm

Ka

Km

Caa

Cam
Pa

Pm

Mga

Mgm

Fea

Fem

Ba

Bm

Mna

Mnm

Naa

Nam

Zna

Znm

Cua

Cum

Moa

Mom

Coa

Com

Ala

Alm

Asa

Asm

CdaCdm

Rba

Rbm

Sra

Srm

Chla

Chlm

C :N

N :P

Chla :Na

d15N

D13C

ptlp Jmax a

Jmax m

Vcmax a

Vcmax m

C i :Ca

Aa

Am

G c G c :Gmax

Gmax :Na

Hmax

SD

SI

S

GC l

GCw

SP il

SPol

E

N cells

Gmax

TD

VLAmajor

VDmajor

VVmajor

VLAminor

VDminor

VVminor

VLA total

VV total

LA

LMA
LP : LA

LP2 : LA

LT

LD

LDMC

SWC

SWMA

PLAdry

PLTHdry

PA

PA : LA

WD

C a

Cm

Na

Nm

Ka

Km

Caa

Cam

Pa

Pm

Mga

Mgm

FeaFem

Ba

Bm

Mna

Mnm

Naa

Nam
Zna

Znm

Cua

Cum

Moa

Mom

Coa

Com

Ala
Alm

Asa

Asm

Cda

Cdm

Rba

Rbm

Sra

Srm

Chla

Chlm

C :NN :P

Chla :Na

d15N

D13C

ptlp

Jmax a

Jmax m

Vcmax a

Vcmax m

C i :C a

Aa

Am

G c

G c :GmaxGmax :Na

Hmax

a b



 75 

 

Figure 3.5 
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Appendix Table 3.1. List of the 15 California native Quercus species grown in a common garden 

and included in this study. For each species we provide Latin and common names, section within 

the genus, growth form, leaf habit (evergreen, E, or deciduous, D), and the mean aridity index (AI) 

and potential evapotranspiration (PET) of their natural range of distribution. 

 

  

Species name Code Common name Section Growth 
form 

Leaf 
habit AI PET 

(mm.year-1) 
Quercus agrifolia QAGR Coast Live oak Lobatae Tree E 0.30 1815 

Quercus kelloggii QKEL Black oak Lobatae Tree D 0.55 1719 

Quercus wislizeni QWIS Interior live oak Lobatae Tree E 0.39 1870 

Quercus chrysolepis QCHR Canyon Live oak Protobalanus Tree E 0.48 1820 

Quercus palmeri QPAL Palmer oak Protobalanus Shrub E 0.24 2050 

Quercus tomentella QTOM Island oak Protobalanus Tree E 0.23 1570 

Quercus berberidifolia QBER Coastal Shrub oak Quercus Shrub E 0.30 1893 

Quercus cornelius-mulleri QCOR Muller oak Quercus Shrub E 0.19 2202 

Quercus douglasii QDOU Blue oak Quercus Tree D 0.35 1823 

Quercus durata QDUR Leather oak Quercus Shrub E 0.49 1747 

Quercus engelmannii QENG Engelman oak Quercus Tree E 0.21 1977 

Quercus garryana QGAR Oregon oak Quercus Tree D 0.82 1474 

Quercus john-tuckeri QJOH Tucker oak Quercus Tree E 0.23 2018 

Quercus lobata QLOB Valley oak Quercus Tree D 0.34 1789 

Quercus pacifica QPAC Island scrub oak Quercus Shrub E 0.24 1570 
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SUPPLEMENTARY MATERIALS 

Supplementary data captions (see attached Excel Workbook) 

Table S3.1. List of the 98 traits and three environmental variables quantified for 15 species of 

California native oaks grown in a common garden. The traits relate to eight measurement 

categories: epidermal morphology, leaf venation, leaf economics and structure, wood economics 

and structure, leaf composition, hydraulics, estimated photosynthesis and plant size. For the traits, 

we provide symbols, units and the functional dimensions each trait reflects, i.e. the “structure-

function clusters”. Traits that affect plant stature are included in the “plant size cluster”; traits that 

affect the leaf size are included in the “leaf size cluster”; traits that affect hydraulic conductivity 

were included in the “flux-related cluster”; traits that affect leaf lifespan were included in the 

“economics cluster” and, if they are also related to elemental composition they were included in 

“ecological stoichiometry cluster”; traits that affect species responses to drought (i.e., are related 

to climatic aridity) were included in the “drought response cluster”. Blue and red filled cells 

represent traits that are, respectively, positively and negatively related to a given cluster. Since 

traits can have multiple functions, they might reflect more than one cluster. 

 

Table S3.2. List of environmental variables including abbreviations, units, source database, 

metadata (raster layer title, timeframe of the dataset, the subset of the original dataset that was used 

to calculate species climate envelope, and the download date), and links to access datasets and 

references. 
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Table S3.3. Principal Components Analysis (PCA) axes scores, trait contribution, trait 

correlational values and importance of components for 15 species of oaks (genus Quercus) grown 

in a common garden and eight traits that reflect different axes of plant-structure variation. 

 

Table S3.4. Differences in functional traits among 15 species of California native oaks belonging 

to three sections, as indicated in nested analyses of variance, with species nested within section. 

Traits deviating from assumptions of normality or homoscedasticity were log-transformed prior to 

the analysis (see legend below). Highlighted cells indicate variables differing significantly across 

sections or species (p ≤ 0.05). 

 

Table S3.5. Differences in functional traits among 15 species of California native oaks, as 

indicated in one-way analyses of variance. Traits deviating from assumptions of normality or 

homoscedasticity were log-transformed prior to the analysis (see legend below). Highlighted cells 

indicate variables differing significantly across species (p ≤ 0.05). 

 

Table S3.6. Associations of traits and environmental variables using ordinary least squares (OLS) 

regression tests across 15 California native oak species. Highlighted cells indicate significant 

relationships (p ≤ 0.05). 

 

Table S3.7. Associations of traits and environmental variables using phylogenetic generalized 

least squares (PGLS) tests across 15 California native oak species. Highlighted cells indicate 

significant relationships (p ≤ 0.05). 
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Table S3.8. Proportion of correlations uncovered within and across the hypothesized structure-

function trait clusters out of all possible correlations using the ahistorical correlations. 

 

Table S3.9. Proportion of correlations uncovered within and across the hypothesized structure-

function trait clusters out of all possible correlations using evolutionary correlations. 

 

Table S3.10. Trait-level plant network parameters. 
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Supplementary figure captions 

Figure S3.1. Maps showing the occurrences records of Quercus species used to estimate the mean 

climate of the native range of distribution of the 15 California native oak species sampled in this 

study. Inset we provide a picture of a typical leaf of one individual per species. Colors represent 

section within the genus Quercus: Lobatae (red), Protobalanus (yellow) and Quercus (blue). 

Symbols represent leaf habit, evergreen (circles) and deciduous (squares). 

 

Figure S3.2. Within and across species variation in the indicator trait of each structure-function 

cluster (one-way ANOVAs; Table S3.5). Panel (a) shows the mean height of sampled individuals, 

H, (b) the leaf area, LA, (c) the theoretical maximum stomatal conductance, Gmax, (d) the leaf mass 

per area, LMA, (e) the nitrogen concentration per leaf mass, Nmass, and (f) the water potential at 

turgor loss, ptlp. Colors represent section within the genus Quercus: Lobatae (red), Protobalanus 

(yellow) and Quercus (blue). Symbols represent leaf habit, evergreen (circles) and deciduous 

(squares). 

 

Figure S3.3. Networks showing the coordination of 90 functional traits measured in 15 species of 

California native oaks grown in a common garden. Networks were built from a matrix of trait-trait 

phylogenetic correlations (phylogenetic generalized least squares, PGLS; Table S3.7) and 

correlations were considered significant when p < 0.05. Colored nodes were hypothesized a priori 

to belong to each of the six structure-function clusters; the indicator traits of each cluster are 

highlighted in darker colors (Table S3.1). 
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Figure S3.4. Degree of connectedness, k, and betweeness, b, of the traits hypothesized a priori to  

to belong to each structure-function cluster. The indicator traits of each cluster are highlighted in 

darker colors (Table S3.1). 
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Figure S3.1 
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Figure S3.2 
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Figure S3.3 
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Figure S3.4 
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CHAPTER 4 

AN EXTENSIVE SUITE OF FUNCTIONAL TRAITS DISTINGUISHES HAWAIIAN 

WET AND DRY FORESTS AND ENABLES PREDICTION OF SPECIES VITAL 

RATES 

 

ABSTRACT 

The application of functional traits to predict and explain plant species’ distributions and vital rates 

has been a major direction in functional ecology for decades, yet numerous physiological traits 

have not yet been incorporated into the approach. Using commonly measured traits such as leaf 

mass per area (LMA) and wood density (WD), and additional traits related to water transport, gas 

exchange and resource economics, including leaf vein, stomatal, and wilting traits, we tested 

hypotheses for Hawaiian wet montane and lowland dry forests (MWF and LDF respectively): (1) 

forests would differ in a wide range of traits as expected from contrasting adaptation; (2) trait 

values would be more convergent among dry than wet forest species due to the stronger 

environmental filtering; (3) traits would be inter-correlated within “modules” supporting given 

functions; (4) relative growth rate (RGR) and mortality rate (m) would correlate with a number of 

specific traits, with (5) stronger relationships when stratifying by tree size, and (6) RGR and m can 

be strongly explained from trait-based models. The MWF species’ traits were associated with 

adaptation to high soil moisture and nutrient supply and greater shade tolerance whereas the LDF 

species’ traits were associated with drought tolerance. Thus, on average, MWF species achieved 

higher maximum heights than LDF species and had leaves with larger epidermal cells, higher 

maximum stomatal conductance and CO2 assimilation rate, lower vein lengths per area, higher 

saturated water content and greater shrinkage when dry, lower dry matter content, higher 



 93 

phosphorus concentration, lower nitrogen to phosphorus ratio, high chlorophyll to nitrogen ratio, 

high carbon isotope discrimination, high stomatal conductance to nitrogen ratio, less negative 

turgor loss point, and lower WD. Functional traits were more variable in the MWF than LDF, were 

correlated within modules, and predicted species’ RGR and m across forests, with stronger 

relationships when stratifying by tree size. Models based on multiple traits predicted vital rates 

across forests (R2 = 0.70-0.72; P < 0.01). Our findings are consistent with a powerful role of broad 

suites of functional traits in contributing to forest species’ distributions, integrated plant design, 

and vital rates. 
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INTRODUCTION 

Functional traits influence plant growth, reproduction and survival and thereby fitness (Lavorel & 

Garnier 2002; Violle et al. 2007), and thus can be used to predict vital rates (Poorter et al. 2008; 

Adler et al. 2014; Uriarte et al. 2016), habitat preferences (Shipley et al. 2017) and spatial 

distributions (Stahl et al. 2014). For decades, most studies have focused on relatively few 

commonly measured functional traits, with some justification given that overall trait variation can 

be simplified statistically into a few fundamental dimensions (Díaz et al. 2016; Messier et al. 

2017). However, several have argued that more extensive suites of traits would enable strong 

predictive and explanatory power (Reich 2014; Paine et al. 2015; Greenwood et al. 2017; Yang et 

al. 2018), and this argument has conceptual support because mechanistic models of growth and 

survival are sensitive to a broad set of traits as inputs (Marks & Lechowicz 2006; Sterck et al. 

2006; Osborne & Sack 2012). The traits measured in this study include well-studied functional 

traits within the leaf and wood “economics spectra” (LES and WES, respectively), that describe 

trade-offs in plant carbon balance with given traits contributing to either fast growth and resource 

turnover, or slow growth and longer tissue lifespans and stress tolerance (Wright et al. 2004; Chave 

et al. 2009). In addition, we included a wider set of traits recognized to have proximal 

physiological influence on water transport, gas exchange and resource economics. The aim of this 

study was to assess six key hypotheses derived from first principles in trait physiology and ecology 

(Table 4.1), utilizing 45 traits expected to show contrasting adaptation across forests, and/or to 

influence relative growth rate (RGRdbh and RGRbiom) and mortality (m) (Table 4.2). We pursued 

this aim while recognizing that many more traits than those we included play important roles, and 

that species differ in the traits with most important influence on vital rates.  
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First, we tested the ability of an extensive suite of traits to resolve variation between 

Hawaiian wet and dry forest species given their contrasting adaptation. We assessed traits which, 

based on the previous literature, would have specific mechanistic influences on resource 

acquisition, growth and stress tolerance (Table 4.2, with detailed reasoning in Appendix Table 

4.1). In particular, we expected that relative to the dry forest, the wet forest species would have 

shifted their traits values in the direction beneficial to their adaptation to greater availability of 

water and soil nutrients. Such trait shifts would include greater mean and maximum plant height 

(Koch et al. 2004; King et al. 2006); lower wood density (WD; (Hacke et al. 2001; Chave et al. 

2009; Gleason et al. 2016)) and seed mass (Gross 1984; Khurana & Singh 2004); higher overall 

rates of photosynthesis, and rates of electron transport and carboxylation (all per unit leaf area 

and/or dry mass), and higher values for the ratio of internal to ambient CO2 (ci:ca), related to higher 

values of carbon isotope discrimination (Dleaf; (Farquhar et al. 1989; Donovan & Ehleringer 1994; 

Franks et al. 2009; Wang et al. 2017)); larger and denser stomata and higher stomatal conductance 

(Hetherington & Woodward 2003; Franks & Farquhar 2007; Beaulieu et al. 2008; Franks et al. 

2009; Wang et al. 2015; Sack & Buckley 2016); higher densities of leaf major and minor veins 

and free ending veins  (Sack & Frole 2006; Brodribb et al. 2007; Sack & Scoffoni 2013; Iida et al. 

2016; Scoffoni et al. 2016); thinner and larger leaves of higher saturated water content and lower 

dry mass density, lower water mass and dry mass per area and lower dry matter content with lesser 

shrinkage in area under dehydration (Evans 1973; Niinemets 2001; Vendramini et al. 2002; Wright 

et al. 2004; Westoby & Wright 2006; Bartlett et al. 2012b; Ogburn & Edwards 2012; Sack & 

Scoffoni 2013; Scoffoni et al. 2014; Díaz et al. 2016); high foliar concentrations of nitrogen (N), 

phosphorus (P), and chlorophyll, and lower concentration of carbon (Lambers & Poorter 2004; 

Wright et al. 2004; Chaturvedi et al. 2011); lower N:P (Elser et al. 2000); and greater stomatal 
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opening relative to maximum aperture, and relative to N (Wright et al. 2001; Franks et al. 2009). 

Given that species of the wet forest are adapted to lower understorey irradiance also led to the 

expectation of lower rates of photosynthesis and greater Dleaf (Farquhar et al. 1989; Donovan & 

Ehleringer 1994; Franks et al. 2009; Evans 2013), larger leaf area (Niinemets 2001; Chaturvedi et 

al. 2011), lower LMA (Walters & Reich 1999; Sack et al. 2003b), lower N and P and higher C and 

chlorophyll concentration (Chl; Givnish 1988; (Niinemets 2001; Lusk & Warton 2007; Poorter 

2009; Chaturvedi et al. 2011); higher Chl to N ratio  (Givnish 1987); and lower stomatal and vein 

densities (Givnish 1987; Sack et al. 2012; Sack & Scoffoni 2013). The literature also supports 

contrasting hypotheses in which dry forest species gain drought tolerance by achieving higher 

photosynthetic activity when water is available, linked with smaller and more numerous stomata 

and epidermal cells (Maximov 1931; Grubb 1998; Scoffoni et al. 2011; Wang et al. 2017), higher 

vein densities (Sack & Scoffoni 2013), and high N and P per mass (Wright et al. 2001). We also 

expected the dry forest species to have more negative turgor loss point (Bartlett et al. 2012b), thick 

and small leaves (Sack et al. 2012; Wright et al. 2017) and high WD (Hacke et al. 2001; Chave et 

al. 2009; Gleason et al. 2016), and traits associated with high water use efficiency, reflected in as 

low ci:ca and carbon isotope discrimination (Farquhar et al. 1989; Donovan & Ehleringer 1994). 

Second, we tested the hypothesis that on average, species of the dry forest would have 

narrower ranges in trait values than the wet forest (Nathan et al. 2016). Two main processes of 

community assembly affect functional diversity at local scale: environmental (or habitat) filtering 

and biotic interactions (Chesson 2000; Cornwell et al. 2006; Asefa et al. 2017). In low-resource 

habitats, environmental filtering is expected to more strongly constrain trait diversity, as would 

the reduction of biotic interactions which would promote greater niche overlap (Weiher & Keddy 

1995; Lebrija-Trejos et al. 2010; Nathan et al. 2016). 
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 Third, we tested the hypothesis that traits would be inter-correlated in “modules” due to 

their contributions to given functions (Sack et al. 2003a; Li et al. 2015a) or “strategies” (Westoby 

et al. 2002). Modules are defined as clusters of traits that show co-variation among themselves, 

due to-selection, but are relatively independent of other clusters (Wagner & Altenberg 1996; 

Armbruster et al. 2014). Such co-selection has been a main explanation for why plant phenotypes 

are organized into dimensions (or axes), such as the leaf and wood economic spectra (Wright et 

al. 2004; Chave et al. 2009). Several of the newly added traits are expected to be mechanistically 

related to traits from the LES and WES and are therefore grouped within the same trait modules 

(Table 4.2). 

Fourth, we hypothesized that across species RGR and m would be positively correlated due 

to life history trade-offs, and parallel associations with given traits (Kitajima 1994; Russo et al. 

2010; Wright et al. 2010; Philipson et al. 2014; Visser et al. 2016). Thus, we hypothesized that 

RGR and m would relate positively to photosynthetic rate (Donovan & Ehleringer 1994; Franks et 

al. 2009); leaf area (Iida et al. 2016), N and P concentrations (Osone et al. 2008; Iida et al. 2016); 

the sizes and numbers of stomata (Hetherington & Woodward 2003; Wang et al. 2015); maximum 

stomatal conductance and vein densities (Hetherington & Woodward 2003; Iida et al. 2016), and 

negatively to LMA (Osone, Ishida & Tateno 2008; Wright et al. 2010; Iida et al. 2016); leaf 

thickness, density and dry matter content (Niinemets 2001; Iida et al. 2016); N:P (Elser et al. 

2000); and WD (Wright et al. 2010; Philipson et al. 2014; Visser et al. 2016). We also tested 

whether trait relationships with vital rates differed between forests (Kobe & Coates 1997; Lusk & 

Warton 2007).  

Fifth, we expected to uncover more relationships of traits with vital rates when accounting 

for tree size (Iida et al. 2014, 2016; Prado-Junior et al. 2016).  
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Finally, based on the expectations of strong trait-vital rate associations, we hypothesized 

that RGR and m can be predicted based on trait-based models. 

Our study focused on Hawaiian forests with low species diversity located across highly 

contrasting environments (Table 4.3) (Price & Clague 2002; Ostertag et al. 2014). By testing our 

framework of hypotheses, we more generally addressed the question of whether considering an 

extensive suite of mechanistic traits has value for trait-based ecological theory and applications. 

 

METHODS 

(For additional details for each methods section, see correspondingly-named section in the 

supplementary methods, Appendix 4.1) 

Study sites 

The study was based in forest dynamics plots (FDPs) on Hawai‘i Island within montane wet forest 

(MWF) and within lowland dry forest (LDF), part of the Hawai‘i Permanent Plot Network 

established in 2008-9 (HIPPNET; Fig. 4.1; Supplementary Methods; (Ostertag et al. 2014)). The 

MWF and LDF plots contrast strongly in climate and soil composition: the substrate in the MWF 

is formed from weathered volcanic material, and is old, deep, and moderately well-drained, while 

LDF has younger, shallow, and highly organic substrate (websoilsurvey.nrcs.usda.gov). The 

forests also have distinct species, with only Metrosideros polymorpha common to both, being the 

canopy co-dominant in the MWF and limited to a few individuals in the LDF. 

Both FDPs were established using the standard methodology of the Center for Tropical 

Forest Science global FDP network (Condit 1998). From 2008 to 2009, all live, native woody 

plants ≥1 cm diameter at breast height (DBH, at 130 cm), were tagged and mapped relative to 5 m 

× 5 m grids installed throughout the plots and measured for DBH (Ostertag et al. 2014). 
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Some of our study questions were addressed by comparing these single forests that were 

selected to be highly representative of their forest type, an approach previously used in many 

ecophysiological comparisons of forests (e.g., (Baltzer et al. 2008; Markesteijn et al. 2010; 

Blackman et al. 2012; Zhu et al. 2013; Falcão et al. 2015)). Notably, statistical differences between 

forests are not necessarily generalizable, but enable refined hypotheses for testing in future studies 

of replicate forests of each type. However, when predicting species’ vital rates from traits, 

statistical significance is expected to reflect a higher generality, as each species represents a 

replicate data point (Sokal & Rohlf 2012).  

  

Measurement of relative growth rate, mortality  

A total of 21,805 individual trees of 29 species from both forest plots were measured for DBH in 

the first census, 2008, and the 18,745 of those trees that were alive were remeasured in the second 

census in 2013. From individual plant DBH in both censuses, we used the function ‘AGB.tree’ 

available in the ‘CFTS R Package’ (ctfs.si.edu/Public/CTFSRPackage/) to calculate above ground 

biomass using allometric equations specific for “wet” and “dry” forests that use DBH and wood 

density as species-specific inputs following (Chave et al. 2005). We then calculated relative 

growth rates in DBH and above-ground biomass (RGRdbh and RGRbiom, respectively) as 

!"($%&)(!"($%))
*+

, where x is DBH or above-ground biomass and ∆t is the time between measurements 

(in years). RGRdbh is the most commonly used in the literature, but RGRbiom is arguably most 

relevant for relating mechanistically to traits on one hand, and to forest scale processes on the other 

(Gil-Pelegrín et al. 2017). Annual mortality rate (m) was calculated for each of the same 29 species 

using survival data from both censuses as , = .1 − 12&
2)
3
&
∆%5 × 100 , where N1 is the number of 
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live individuals at census 2, N0 is the number of live individuals at census 1, and ∆t is the time 

between measurements (in years; (Sheil et al. 1995)). Due to the potential for demographic 

stochasticity in small populations to affect vital rate estimates, species with <15 individuals were 

excluded from analyses of RGR and m (Fiske et al. 2008); for RGRdbh the mean coefficient of 

variation was fivefold higher for species with n > 15 than those with n < 15 individuals (80% and 

16% respectively). 

 

Seed mass and maximum height 

Species’ mean height (H) was calculated across all individuals in the plot, estimated from 

allometries (Ostertag et al. 2014), and maximum height (Hmax) was calculated as the 95th percentile 

height of each species. Seed dry mass values were compiled from seed banks across Hawai‘i (L. 

Sack & A. Yoshinaga, unpublished data).  

 

Sampling for leaf and wood trait measurements 

We sampled all native woody species from both forest dynamics plots, i.e., 20 species in the MWF 

and 15 species in the LDF (Table 4.3; Ostertag et al. 2014). Data were collected for five randomly 

selected individuals per species, given availability in the plot, but stomatal and venation traits were 

measured for only three randomly selected individuals; for this study, those three individuals per 

species were used for all trait analyses. For each individual, we used pole pruners to collect the 

most exposed mature branch grown in the current year, with no signs of damage and herbivory. 

Branches were carried to the lab in plastic with moist paper and rehydrated overnight under plastic 

before harvesting stem sections and fully expanded leaves and stems for all subsequent analyses. 

For compound-leafed species (Table 4.3), leaflets were used; for Acacia koa, phyllodes were used. 
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Leaf stomatal and venation traits  

We measured stomatal and venation traits on one leaf from each of three individuals per species. 

Stomatal measurements were obtained from microscopy images taken from nail varnish 

impressions of both leaf surfaces. We measured stomatal density (d) and stomatal index (i.e., 

differentiation rate, the number of stomata per numbers of stomata plus epidermal pavement cells, 

i), stomatal pore length (SPL), guard cell length and width (GCL, GCW), stomatal area (s), and 

epidermal pavement cell area (e) (Sack et al. 2006), and calculated the maximum theoretical 

stomatal conductance (gmax; (Franks & Farquhar 2007; Sack & Buckley 2016)). 

 For the venation traits, fixed leaves were cleared, stained and scanned for major vein 

density (VLAmajor) and the top, middle and bottom of each leaf were imaged under light microscope 

for measurements of minor and free ending vein densities (VLAminor and FEV) (Scoffoni et al. 

2011). Euphorbia multiformis var. microphylla (EUPMUL; Table 4.3), the single C4 species in the 

study (Yang et al. 2016), was removed from analyses of across-species correlations of vein traits 

with vital rates; C4 species are known to differ from C3 species in the relationship of photosynthetic 

rate to vein density, and thus would be expected to differ in their relationships of vital rates to vein 

traits (Ogle 2003).  

 

Leaf and wood economics and structure, and leaf composition 

Leaf structure and composition traits were measured in three leaves per studied individual. Leaf 

saturated mass was measured using an analytical balance (0.01 mg; XS205; Mettler-Toledo, OH, 

USA) and leaf thickness (LT) using digital calipers (0.01 mm; Fowler, Chicago, IL, USA). The 

leaf area (LA) was measured using a flatbed scanner and analyzed using the software ImageJ 

(http://imagej.nih.gov/ij/). After scanning, leaves were oven-dried at 70º for 72 h and their dry 
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mass and area were measured again. Leaf mass per area (LMA) was calculated as lamina dry mass 

divided by saturated area; leaf density (LD) as LMA divided by LT; saturated water content (SWC) 

as (saturated mass minus dry mass) divided by dry mass; water mass per area (WMA) as the 

(saturated mass minus dry mass) divided by saturated area; leaf dry matter content (LDMC) as dry 

mass divided by saturated mass; and percentage loss in area after drying (PLAdry) as the percent 

decline in area from saturated to dry leaves (Witkowski & Lamont 1991; Ogburn & Edwards 2012; 

Pérez-Harguindeguy et al. 2013). 

We measured wood density (WD) from one 5 cm-branch segment of each of the studied 

individuals after bark removal by water-displacement (Pérez-Harguindeguy et al. 2013). 

The concentration of leaf nitrogen, phosphorus, carbon per mass (Nmass, Pmass and Cmass), 

and carbon isotope ratio (δ13C) were determined using oven-dried leaves of three individuals per 

species by the University of Hawaii at Hilo Analytical Laboratory facility (Fry et al. 1996; Pérez-

Harguindeguy et al. 2013). Nmass and Pmass were converted into Narea and Parea by multiplying by 

LMA. The carbon isotope discrimination (Dleaf; in parts per thousand, ‰) was calculated following 

(Farquhar & Richards 1984). The chlorophyll concentration per area (Chl) was measured using a 

SPAD meter ((Monje & Bugbee 1992); SPAD-502, Konica Minolta, Japan), and the chlorophyll 

concentration per mass was determined by dividing by LMA.  

Turgor loss point (πtlp) was measured in three leaves per studied individual. We used a 

vapor-pressure osmometer (Vapro 5520, Wescor, US) to obtain the osmotic concentration (πo) of 

the leaves and used calibration equations to estimate πtlp (Bartlett et al. 2012a). 
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Estimating photosynthetic traits 

We estimated maximum rate of carboxylation per mass (Vcmaxmass) and electron transport rate 

(Jmaxmass) from leaf N and P concentrations per mass (Domingues et al. 2010). The ratio between 

intercellular CO2 concentration (ci) and ambient CO2 concentration (ca) was estimated from Dleaf 

(Farquhar et al. 1982; Franks et al. 2014). Estimates of leaf lifetime integrated CO2 assimilation 

rate (A̅mass) and stomatal conductance to CO2 (g̅cleaf) were derived from Vcmaxmass, Jmaxmass and 

isotope composition data using the Farquhar, von Caemmerer and Berry model (Franks et al. 

2009). To convert Vcmaxmass, Jmaxmass, and A̅mass to area-basis, we multiplied the trait values by 

LMA. We also calculated the ratio between g̅cleaf and gmax, an index of the degree that stomata are 

open on average relative to their anatomical maximum aperture (McElwain et al. 2016), and the 

ratio between gmax and Narea, which is negatively related to water retention for a given investment 

in photosynthetic machinery (Wright et al. 2001). 

 

Statistical analyses 

Differences in traits between MWF and LDF species were determined using nested ANOVAs with 

species nested within forest type, followed by a Tukey test at 5% probability when differences 

were detected (Sokal & Rohlf 2012). Differences between forests in traits established as species 

means (RGRs, m, H, Hmax and SM) were tested using t-tests. Traits that did not fulfill the normality 

and homocedasticity assumptions were log-transformed prior to analyses. To test whether trait 

variation differed between forests, we (a) performed F-tests to compare the variances in each trait 

(Minitab Release 17; State College, Pennsylvania, USA) and (b) calculated the coefficient of 

variation (CV; %) for each trait in each forest as 89:;<=>? = 	
A:;<=>?

B̅:;<=>? × 100D  and applied a 

paired t-test across all traits. 
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 Functional traits were grouped into six “modules” according to their contributions to given 

functions or “strategies”: the “stomatal morphology” module included traits such as d and s;  the 

“leaf venation” module included traits such as VLAminor and FEVs;  the “leaf and wood economics 

and structure” module included traits such as LMA and WD; the “leaf composition” module 

included leaf nutrient concentrations and |πtlp|; the “estimated photosynthesis” module included 

traits such as A̅mass and Vcmax; and the “plant size” module included traits such as Hmax and SM 

(Table 4.2).  

To investigate trait-trait and trait-vital rate relationships within and across modules we 

calculated Pearson’s correlations for untransformed and log-transformed data, to test for either 

approximately linear or non-linear (i.e., approximate power-law) relationships respectively, and 

the higher correlation value is reported in the text. These analyses were applied to all species from 

both forests (Table S4.4; described in the main text) and to species of each forest separately (Tables 

S4.5-S4.6). 

 We focus on frequentist statistical approaches, following the bulk of previous studies on 

trait-vital rate relationships. However, in the case of analyzing size-dependent changes in the 

relationships between vital rates (RGRdbh and m) and functional traits, we utilized a hierarchical 

Bayesian approach following (Iida et al. 2014), the most sophisticated previous approach for 

resolving such an influence. Detailed description of parameters, priors and MCMC settings are 

provided in the Appendix (supplementary methods, Appendix 4.1), and model code is available 

on GitHub (https://github.com/camilamedeiros/Medeiros_et_al_2018). 

RGRdbh for each individual ith tree of species j (RGRdbhij), was modeled as a linear function 

of the natural logarithm of the initial diameter, DBH1ij, based on two parameters estimated for 
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species j (akj; k=1, 2) and given the input of the initial stem diameter (DBH1i), the final stem 

diameter (DBH2i) and the census interval of the ith tree (Dti). 

 EFEdbhJK = LMK + LOK × ln(RST1J)   (Eq1) 

  ln(RST2J) = ln(RST1J) + EFEdbhJK × ∆VJ (Eq2) 

To estimate m for each individual ith tree belonging to species j (mij), we first calculated 

the probability of survival of the ith individual tree (pi) from observations of whether the tree 

survived the census period (Si = 1) or not (Si = 0). We assumed that Si followed a Bernoulli 

distribution of the probability of survival (pi).  

 WJ	~	SYZ[\]^^_( J̀)	     (Eq3) 

The pi of the ith tree was calculated from the per capita annual mortality rate, mij, adjusted 

to the census interval (Dti). which was a function of three species-specific parameters bkj (k = 1, 2, 

3). 

 J̀ = exp	(−,JK ×	∆VJ)    (Eq4) 

 ln(,JK) = dMK + dOK × ln(RST1J) +	deK × RST1J (Eq5) 

Posteriors were estimated via Markov Chain Monte Carlo implemented in JAGS (Just 

Another Gibbs Sampler; (Plummer 2007)) from R, using the package ‘R2Jags’. These analyses 

were carried out including all species from both forests.  

To analyze trait-demographic rate relationships for given plant size classes, we first 

calculated RGRdbh and m using equations 1 and 5, respectively, by using the posterior distribution 

of species-specific parameters a1 and a2 for RGRdbh (Table S4.7) and b1j, b2j and b3j for m (Table 

S4.7) and substituting the DBH1 term for a reference diameter at 1-cm DBH classes (Iida et al. 

2014). When the DBH of a size class exceeded a given species’ actual maximum DBH (calculated 

as the 95th percentile of the species’ individuals in the plots), that species was dropped from the 
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analysis in larger size classes. We then calculated the Kendall correlation coefficient (t) between 

the RGRdbh and m (calculated for each species in each 1-cm DBH class) and species’ mean values 

for functional traits. We decided to use Kendall correlation following (Iida et al. 2014) because of 

the typical non-normality of the size-class stratified vital rates (Prado-Junior et al. 2016). The 

maximum DBH class included in our analysis was 10 cm because analysis of correlations lost 

power with lower species numbers available to test at larger plant sizes (n < 9). To reduce the rate 

of false positive discoveries, the correlations were considered significant only when 99% of the 

probability distribution (used as credible interval) of f did not include zero, rather than 95% as in 

previous studies (Iida et al. 2014).  

 Finally, to test the ability of traits to predict plant RGRdbh, RGRbiom and m, we built multiple 

regression models that included as independent variables functional traits and a term for forest 

membership (site; coded as 0 for MWF species and 1 for LDF species). We selected 7 traits to 

include in the models, based on consideration of the 26 traits hypothesized a priori to 

mechanistically influence RGRdbh, RGRbiom and m. To avoid collinearity, we did not choose traits 

that were partially redundant, i.e., correlated, calculated in part from the same measurements, and 

involved within similar physiological processes and within the same trait category; e.g., we 

considered LMA and not leaf thickness, given that LMA equals leaf thickness × density; Table 4.2). 

We selected the trait most strongly correlated with vital rates from each trait module in Table 4.2, 

except for the “Leaf and wood economics and structure” module, from which we selected one leaf- 

and one wood-related trait.  

To compare model performance, we included only species that had complete observations 

for all traits (final sample size = 16 species; Table S4.8). To select the trait-based models that best 

predicted RGRdbh, RGRbiom and m, we used forward, backward and bidirectional procedures of 
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variable selection and compared models using Akaike Criterion (AIC) and Bayesian Information 

Criterion (BIC) using the ‘stepAIC’ function in the ‘MASS’ package (Table S4.9) and calculated 

the AIC corrected for small sample sizes (AICc) (Hurvich & Tsai 1989; Hastie & Pregibon 1992; 

Venables & Ripley 2002). To find the percentage contribution of each variable to the prediction 

of RGRdbh, RGRbiom and m, we performed a Hierarchical Partitioning Analysis using the ‘hier.part’ 

package (Chevan & Sutherland 1991).  

All statistical analyses and plots were performed using R software (R Core Team 2018)  

and packages available from the CRAN platform. 

 

RESULTS 

Variation in vital rates and functional traits between forests types 

On average, m was 39% higher in species from LDF than in species from MWF. Although several 

MWF species had higher growth rates than those of LDF, species means for RGRdbh and RGRbiom 

were statistically similar in the MWF and LDF (Fig. 4.2). 

 Traits varied strongly between and within forests. On average across the measured traits, 

16% of the total variation was accounted for by forest type, 73% by species-differences within 

forests, and 11% by individuals within species (nested ANOVAs; Table S4.1). The MWF showed 

stronger trait variation than the LDF; the variance was higher in the MWF for 20 traits, in the LDF 

for 6 traits and not different between forests on the remaining 19 traits (F-tests; Table S4.3), and 

on average across all traits, the coefficient of variation (CV) was 13.5 ± 0.8% in the MWF and 

10.1 ± 0.6% in the LDF (paired t-test; P < 0.001).  

Species from MWF and LDF differed in 24 of the 45 functional traits (53%) used to test 

hypotheses (Table 4.2, S4.1-S4.2; Fig. 4.2). MWF species had higher values on average for 
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stomatal index (i) and area (s) and dimensions of guard cells (GCL, GCW and SPL) and epidermal 

pavement cells (e), and MWF species had on average a 70% higher gmax (Fig. 4.2; Table 4.2-S4.1). 

Additionally, SWC and PLAdry were 47-49% higher in the MWF than in the LDF species, and A̅mass, 

g̅cleaf and ci:ca ratio were 28-33% higher for the MWF than the LDF (Fig. 4.2; Table 4.2-S4.1). The 

MWF species had 49 and 17% higher values than LDF respectively for Pmass and gmax:Narea species, 

and 82% higher Hmax (Table 4.2-S4.1-S4.2; Fig. 4.2). 

 Conversely, species from the LDF had higher values on average for VLAmajor, VLAminor, 

VLAtotal, and FEVs 46-70% than the MWF, and LDMC, WD and N:P 22-42% higher (Fig. 4.2; 

Table 4.2-S1). The LDF species also had a πtlp more negative by 0.6 MPa on average, and 25% 

lower Dleaf than MWF species (Fig. 4.2; Table 4.2-S4.1).  

 

Associations among vital rates 

Across forests, the two measures of relative growth rates (RGRdbh and RGRbiom) were strongly 

intercorrelated (r = 0.97; P < 0.001), and both were correlated with m (r = 0.55 and 0.57, 

respectively; P < 0.05; Fig. 4.3A-B). Within the LDF but not the MWF, m was positively correlated 

with RGRdbh and RGRbiom (r = 0.76 and 0.93, respectively; P < 0.05; Tables S4.5-S4.6).  

When using the Bayesian approach to account for plant sizes, we found positive 

correlations between m and both RGRdbh and RGRbiom in all size classes (t > 0; Fig. 4.3C-D). 

 

Trait-trait coordination 

Traits were highly inter-correlated within functional modules (i.e., stomatal morphology traits, 

venation traits, leaf and wood economics and structure traits, and compositional traits) when 

considering species from both forests together, and in the MWF and LDF separately (Appendix 

4.2. Supplementary results, “Trait-trait coordination”; Tables S4.4, S4.5 and S4.6). 
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Trait relationships with plant vital rates 

Overall, eight traits were correlated with RGRdbh and/or RGRbiom and seven were correlated with 

m (Table S4.4).  Of the 26 traits hypothesized to correlate with vital rates, three traits were 

correlated with RGRdbh, seven with RGRbiom, and two with m across all 35 species (Table S4.4). 

Thus, RGRdbh and RGRbiom were positively correlated with d, i and gmax (r ranged from 0.57-0.64; 

P < 0.05; Table S4.4 and S4.8; Fig. 4.4A-B), RGRbiom was negatively correlated with LMA and 

VLAminor (r = -0.5 and -0.56, respectively; P < 0.05; Table S4.5 and S4.9; Fig. 4.4D-E) and 

positively correlated with Pmass and A̅mass (r = 0.48 and 0.51, respectively; P < 0.05; Table S4.4 

and S4.8; Fig. 4.4C,F), and m was positively correlated with both Nmass and A̅mass (r = 0.5 and 0.61, 

respectively; P < 0.05; Table S4.8; Fig. 4.4G-H). 

 Given that species’ RGRs did not differ between forests, trait-RGR correlations within 

forests were tested but not explored (Tables 4.2, S4.2, S4.5 and S4.6). However, the forests differed 

in m, and in its trait correlations. In the MWF, m was positively correlated with LMA, LD, Narea, 

Parea, and Pmass, and with photosynthetic traits on both mass and area-basis, Jmaxarea, Jmaxmass, 

Vcmaxarea, Vcmaxmass, A̅area, A̅mass, and g̅cleaf (r ranged from 0.72 and 0.89; P < 0.05; Table S4.5). In 

the LDF, m was negatively correlated with LA, LMA, LT, Jmaxarea, Vcmaxarea, A̅area and g̅cleaf (r 

ranged from -0.76 and -0.91; P < 0.05; Table S4.6). Notably, the direction of the correlation across 

species between m and LMA differed between forests, resulting in positive relationships between 

m and area-based photosynthetic traits in the MWF and negative relationships in the LDF (Fig 

4.5A-B). Further, m was positively correlated with Pmass in the MWF (r = 0.89; P < 0.01; Table 

S4.5; Fig. 4.5C), and negatively correlated with LA in the LDF (r = -0.76; P < 0.05; Table S4.6; 

Fig. 4.5D). 
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Functional traits and size-dependent plant relative growth and mortality rates 

Many more trait correlations with relative growth rate were resolved when accounting for tree size 

using the Bayesian approach. Whereas three traits were correlated with RGRdbh without accounting 

for size class, when using the Bayesian approach to account for plant sizes, 18 traits were correlated 

with RGRdbh within at least one size class. Within given size classes RGRdbh was positively 

correlated with d, i, gmax, LDMC, LD, Cmass, ci:ca, g̅cleaf, gmax:Narea (Fig. 4.6A), Hmean, and Hmax, and 

negatively correlated with e, SWC, WMA, LA, PLAdry, g̅cleaf:gmax and SM (t > 0). 

 When accounting for plant size, we found correlations of m with 18 traits. In all size classes, 

m was positively correlated with Nmass, Jmaxmass, Vcmaxmass and A̅mass (t > 0), and negatively 

correlated with LT (t < 0). Within given size classes m was positively correlated with d (Fig. 4.6C), 

VLAmajor, Narea, Pmass (Fig. 4.6D), N:P, and g̅cleaf, and negatively correlated with s, GCL, GCW, WMA, 

Cmass, Chlarea:Narea, and gmax:Narea (t > 0). 

Notably, the finding of a greater number of significant relationships between traits and vital 

rates when stratifying by tree size was not based on the (appropriate) use of different correlation 

methods selected according to the distribution of the data, i.e., the Pearson r for the analyses of 

trait-vital rate correlations when averaging across all individuals for each species, and the Kendall 

tau when testing these correlations while stratifying by plant size (see Methods). To test this, we 

also determined the trait-vital rate correlations using Kendall tau when averaging across all 

individuals for each species, and as for the Pearson test, seven traits were correlated with RGRdbh 

and/or RGRbiom and seven were correlated with m. Thus, the finding that more trait-vital rate 

relationships are significant when stratifying by plant size is robust to the use of different 

correlation tests. 
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Predicting RGRdbh, RGRbiom and m from functional traits 

To predict RGRdbh, RGRbiom and m, we built multiple regression models that included the seven 

nonredundant traits most strongly correlated with vital rates among the 26 hypothesized a priori 

to influence vital rates (d, VLAminor, LMA, WD, Nmass, Pmass and A̅mass) and a term for forest 

membership (site; coded as 0 for MWF species and 1 for LDF species). The variable selection 

procedures (Table S4.9) indicated that d, VLAminor, Pmass and A̅mass were the best predictors for 

RGRdbh (adjusted R2 = 0.72; P < 0.001; Table 4.4, Fig. 4.7A); d, VLAminor, LMA and Pmass for 

RGRbiom (adjusted R2 = 0.70; P < 0.01; Table 4.3, Fig. 4.7B); and VLAminor, LMA, Pmass, A̅mass and 

site for m (adjusted R2 = 0.71; P < 0.001; Table 4.4, Fig. 4.7C).  

 

DISCUSSION 

Trait variation between Hawaiian wet and dry forests 

We found strong novel trait variation between Hawaiian wet and dry forests, demonstrating that 

these forests are highly distinct not only in climate and species composition, but also in diversity 

across an extensive set of traits. While previous studies have shown that wet and dry forests differ 

in functional traits (Santiago et al. 2004; Wright et al. 2004; Markesteijn et al. 2010; Brenes-

Arguedas et al. 2013; Fine et al. 2015), by including a far wider range of traits related to resource 

acquisitiveness and stress tolerance, our analyses highlight their power in multiple comparative 

and predictive applications of trait-based ecology.  

 The trait differences between forests aligned with their variation in vital rates. While the 

species of the two forests did not differ on average in RGR, the MWF species showed lower 

mortality rates than the LDF species, consistent with previous work showing higher mortality in 

drier forests elsewhere (Suarez & Kitzberger 2010; Gaviria et al. 2017). The lower mortality of 
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the MWF species is consistent with the greater supply of water and soil nutrients, related to greater 

accumulated weathering, organic material formation, N-fixation, and nutrient retention capacity, 

and its richer microbial community. The positive relationship of RGRs and m across all species 

was consistent with that found across species in temperate (Seiwa 2007; Iida et al. 2014) and 

tropical forests (Kitajima 1994; Wright et al. 2010; Philipson et al. 2014). Our finding of greater 

trait variation within the wet forest than the dry forest supports the expectations from first 

principles that the low resource availability in the dry forest would act as a strong environmental 

filter resulting in functional convergence, and/or promote greater niche overlap among species in 

the dry forest via fewer potential biotic interactions (Weiher & Keddy 1995; Lebrija-Trejos et al. 

2010; Kraft et al. 2014; Nathan et al. 2016).  

The greater soil resources in the MWF led to the expectation that species would possess 

traits associated with photosynthetic productivity and rapid growth. Consistent with this 

expectation, MWF species had higher values on average for i and s, dimensions of guard cells 

(GCL, GCW and SPL) and e, gmax, SWC, PLAdry, Pmass, Chlarea:Narea, A̅mass, g̅cleaf, ci:ca, gmax:Narea, Dleaf 

and Hmax and lower values for LDMC, WD, and N:P. By contrast, the higher temperature and lower 

rainfall of the LDF led to the expectation that species would possess drought tolerance traits. 

Indeed, LDF species had higher vein densities, |πtlp|, WD, and LDMC and lower values for PLAdry, 

stomatal dimensions, SWC and ci:ca ratio and A̅mass. Finally, the greater understorey shade of the 

MWF led to expectations of shade adaptation, confirmed for the lower values for vein densities 

and LDMC (Farquhar et al. 1989; Stratton et al. 2000; Niinemets 2001; Wright et al. 2004; Baltzer 

et al. 2008; Chave et al. 2009; Li et al. 2015a). Beyond these average differences among forests, 

trait values were consistent with known life history differences among species within and across 

forests. For example, Acacia koa, the fastest growing species overall, had notably high values for 
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stomatal dimensions and index, and estimated rates of electron transport and gas exchange; 

drought tolerant Osteomeles anthyllidifolia, had high |πtlp| and WD and low ci:ca ratio and A̅mass; 

and shade tolerant Hedyotis hillebrandii had high values for stomatal dimensions and LA, and low 

vein densities and WD.  

 

Trait correlations across species of wet and dry forests 

Our work supported the hypothesis that traits would be inter-correlated, within modules 

corresponding to a given organ or function (Sack et al. 2003a; Li et al. 2015a). These trait 

associations can indicate allometric relationships that arise developmentally, as are found among 

stomatal traits, vein densities and leaf size (Brodribb et al. 2010; Sack et al. 2012). Other trait-trait 

relationships within modules would arise from co-selection for optimal function, e.g., traits related 

to maximum gas exchange and RGR (Scoffoni et al. 2016), such as high gmax and Pmass; drought 

tolerance (Bartlett et al. 2016), such as high |πtlp| and A̅mass; or shade tolerance (Givnish et al. 2005), 

such as high LA and low WD. 

The numerous trait correlations across species results in a reduced trait “dimensionality”, 

by which most trait variation may be captured by few axes (Díaz et al. 2016). However, that finding 

does not in fact imply that traits are functionally redundant, as correlated traits can contribute semi-

distinctly to function and their consideration as separate parameters improves predictive and 

mechanistic modeling (Sterck et al. 2011; John et al. 2017). For example, while LMA is correlated 

with other traits that share structural or compositional bases (Finegan et al. 2015; John et al. 2017) 

such as LDMC or WMA, photosynthetic rates and nutrient concentrations, these traits can play non-

redundant roles in determining functions such as shade and drought tolerance and in influencing 

RGR and m (Tables S4.4-S4.6 and S4.10 for RGR traits).  
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Trait associations with relative growth rates and mortality rates  

Several novel trait correlations were found with mean RGRs and m across species that were 

expected from theory and that have potential for generality, including the relationships of RGRdbh, 

RGRbiom and/or m to A̅mass, and d, and several relationships were confirmed, such as with Hmax , 

LMA and WD, that were reported in previous studies of temperate (Iida et al. 2016) and/or tropical 

forests (Wright et al. 2010; Hérault et al. 2011; Finegan et al. 2015; Liu et al. 2016). The 

contrasting correlations of traits with m between the MWF and LDF, such as LMA and A̅area (Fig. 

4.6A-B), and the correlations of traits with m in one but not the other forest, such as for LA and 

Pmass (Fig. 4.6C-D), highlight the context-dependence of trait-vital rate relationships. In the MWF, 

a high LMA was associated with higher m, as expected given ist representing the more shade-

tolerant species in the understory, which tend to have higher mortality (Kobe & Coates 1997; Lusk 

& Warton 2007). Conversely, in the LDF, high LMA was related to lower m, as expected given its 

representing greater drought tolerance via a lower surface area: volume ratio, and/or a greater 

mechanical protection contributing to longer leaf lifespan and reduced respiration costs (Westoby 

et al. 2002; Wright et al. 2004; Falcão et al. 2015). 

Hawaiian forests also showed contrasting relationships of certain traits to vital rates than 

previously reported. For example, vein density contributes mechanistically to greater hydraulic 

conductance, photosynthetic productivity and RGR across diverse species, all else being equal 

(Sack & Frole 2006; Sack & Scoffoni 2013; Li et al. 2015a; Iida et al. 2016; Scoffoni et al. 2016; 

Brodribb et al. 2017). However, RGR was negatively related to vein density across the species of 

both forests. This negative correlation may reflect the covariation of vein density with other traits 

negatively related to RGR, including traits not considered, such as root traits, and/or it may arise 

from the high values for LDF species, which is consistent to their adaptation to higher potential 
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growth in the more limited periods when water is available, though this growth is not achieved 

integrated over time (Sack & Scoffoni 2013)).  

Our study also confirmed the hypothesis that stratifying by plant size improved the 

frequency of correlations of vital rates with given traits. Stratifying by size has previously been 

shown to improve resolution of correlations of RGR and m with traits such as vein densities, LA, 

LMA, SWC, LT, Nmass and Pmass, WD and Hmax (Iida et al. 2014, 2016; Prado-Junior et al. 2016), 

and our study expanded this finding to a wider range of traits. Stratifying by size reduces the 

confounding influence of ontogenetic shifts in vital rates on cross-species comparisons (Hérault et 

al. 2011). Notably, while we examined trait correlations with RGR and m for plants of given sizes, 

as in previous studies conducting this analysis, our trait values were only for the sampled trees of 

typical mature size. Future studies may further improve resolution of correlations by also 

considering ontogenetic variation in trait values. 

 

Trait-based predictions of vital rates 

Our study showed the value of a broad suite of functional traits for predicting vital rates. Models 

based on 7 selected traits could explain more than 70% of the variation in RGRdbh, RGRbiom and m 

(Table 4.4-S4.9, Fig. 4.7). The most parsimonious models for all three vital rates retained minor 

vein density and P per mass, and two of them included stomatal density, time integrated CO2 

assimilation rate and LMA. These findings highlight the potential of an approach based on an 

extensive suite of functional traits and the continued need to refine our mechanistic understanding 

of how suites of traits drive processes at the scale of individuals and whole forests.  
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Conclusions and limitations of the study 

We conclude that the use of an extensive suite of functional traits contributes power to (1) discover 

and resolve variation across species of forests, as expected from their contrasting adaptation, (2) 

compare functional convergence across ecosystems, (3) highlight novel trait-trait and (4) trait-vital 

rate associations, and (5) the mediating role of plant size in these associations, and (6) to predict 

RGR and m across species. Recent studies have applied trait data to mechanistic process models 

to predict forest vital rates, niche differentiation and productivity (Marks & Lechowicz 2006; 

Sterck et al. 2011; Fyllas et al. 2014). We propose that including an extensive suite of traits in 

such models will be a powerful avenue for future research on the functional ecology of contrasting 

communities, including vital rates and ultimately their responses to climate change and shifts in 

species’ distributions. An important avenue for future research is to consider the incorporation 

extended traits into estimating and testing species’ habitat preferences within and across forests, 

extending from recent work showing substantial power even based on few traits, such as leaf size, 

wood density, LMA, and seed size (Shipley et al. 2017). 

  We note that some of our study questions were carried out by comparing single forests of 

each type, and our findings suggest that the approach has value for further testing replicate forests 

of each type. Additionally, models are needed of the specific processes involved in vital rates, in 

which traits can be included along with climate, to resolve how specific trait variation scales up to 

influencing RGR and m. Our approach focused on the correlations of single traits and suites of 

traits with RGR and m, a central approach in trait-based ecology. However, given that upper level 

processes such as growth or species niche preferences depend on multiple traits, correlations may 

not reflect causal mechanisms, due to patterns of covariation with other traits (John et al. 2017; 

Shipley et al. 2017). Further, while our models predicting vital rates included site as a factor, that 
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approach does not fully incorporate trait-climate interactions, suggesting the value of mechanistic 

trait-based models that include climatic factors.  

 Including an extensive suite of functional traits can sharpen our characterization of species 

adaptation to their ecosystem and climatic preferences as well as predicting vital rates. Including 

traits in mechanistic process models for growth and species’ distributions will increase predictive 

power further. Such prediction is increasingly critical for species conservation, especially in 

ecosystems like Hawaiian forests, which are threatened in the face of development and ongoing 

climate change (Fortini et al. 2013) . Future work should also consider intraspecific variation in 

the wider set of traits, and its role in shaping species distributions within and between forests, as 

well as trait determination of microsite differences among species (Inman-Narahari et al. 2014). 

Given the power to predict vital rates, this work can enable scaling up from the traits of component 

species to ecosystem and eventually global vegetation processes, highlighting the enormous 

promise of increasing mechanistic information—from measurements, to analyses, to models—for 

clarifying and predicting processes in species and community ecology. 
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Table 4.1. Framework of hypotheses derived from first principles of trait-based physiology and 

ecology to test the application of an extensive suite of traits to resolve variation among forests and 

to enable prediction of vital rates across species. 

Hypothesis Explanation based on first 
principles 

References Test Support? 

1. Wet and dry 
forest species 
would differ in 
numerous traits 
as expected from 
contrasting 
adaptation 

Adaptation to contrasting 
climate and soil would lead to 
variation among species in 
numerous functional traits 
important in plant performance 

(Schimper 1898; 
Marks & 
Lechowicz 2006; 
Fine et al. 2015; 
Levine et al. 2017) 

Nested 
ANOVAs for 
individual-level 
traits and t-tests 
for species-level 
traits 

Yes  

2. Trait values 
would be more 
convergent 
among dry than 
wet forest species 
due to the 
selective pressure 
imposed by low 
resource 
availability 

Environmental filtering is 
expected to reduce functional 
diversity by constraining the 
range of possible trait states 
across habitats. 

(Cornwell et al. 
2006; Mayfield et 
al. 2009; Lebrija-
Trejos et al. 2010; 
Kraft et al. 2014; 
Nathan et al. 
2016; Asefa et al. 
2017) 

t-test on the 
coefficient of 
variation in 
traits from 
MWF and LDF; 
F-tests on the 
variance of each 
trait between 
MWF and LDF  

Yes 

3. Traits would be 
inter-correlated 
within functional 
“modules” 

Selection on multiple traits 
across environments would lead 
to trait-trait correlations within 
organs and functional modules 
due to common developmental 
pathway or function or benefit 
in given environments 

 (Sack et al. 
2003a; Givnish et 
al. 2005; Poorter 
et al. 2014; Li et 
al. 2015b)  

Pearson’s 
correlations 
between traits 
within 
functional 
“modules” 

Yes 

4. RGR and m 
would correlate 
with specific 
traits  

Given traits contribute 
mechanistically directly to 
RGRs and m in given habitats 

(Kitajima 1994; 
Grime 2006; 
Marks & 
Lechowicz 2006; 
Wright et al. 2010; 
Sack et al. 2013) 

Pearson’s 
correlations 
between specific 
traits and vital 
rates 

Yes 

5. RGR and m 
would correlate 
with traits more 
frequently when 
stratifying by tree 
size 

Ontogenetic- and size-related 
trends in traits and vital rates 
mean that trait-vital rate 
correlations would be reduced 
given comparison of species 
mean values when species vary 
in size distributions; stratifying 
by size should therefore 
strengthen trait-vital rate 
relationships 

(Iida et al. 2014; 
Prado-Junior et al. 
2016) 
 

Bayesian model 
to estimate vital 
rates in given 
sizes followed 
by Kendall’s 
correlations 
between traits 
and vital rates at 
each size 

Yes 

6. RGR and m can 
be predicted 
based on trait-
based models. 

Given relationships of vital rates 
with given traits, combinations 
of traits should be strongly 
predictive 

(Poorter et al. 
2008; Uriarte et al. 
2016; Thomas & 
Vesk 2017) 

Linear 
regression 

Yes 
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Table 4.2. Study traits relating to stomatal morphology, leaf venation, leaf and wood economics 

and structure, leaf composition, and estimated photosynthesis and plant size, and the vital rates 

measured for species from a montane wet forest (W) and a lowland dry forest (D) in Hawai‘i. For 

the traits, we provide symbols; units; hypotheses for given traits differences between forests and 

results from statistical tests; and hypotheses for correlations with vital rates (relative growth rate 

and mortality) and results from Pearson’s correlation tests (when one result is presented this 

represents species from both forests together, and when two results are presented these represent 

species in the wet and dry forests separately); and references supporting the hypotheses. ns 

indicates no significant difference at P < 0.05. “W” represents the expectation that, all else being 

equal, given the specific hypothesis, the wet forest would have a higher trait value than the dry 

forest on average; “D” that the dry forest would have the higher trait value on average; and “either” 

denotes the existence of multiple published hypotheses whereby either MWF or LDF could be 

expected to have the higher trait value (Table S4.1). Positive signs (+) indicate the expectation or 

finding of a positive correlation with relative growth rate and mortality rate; negative signs (-) 

indicate the opposite. For detailed reasoning behind each hypothesis and references see 

Supplemental Table S4.1. *P < 0.05; **P < 0.01; ***P < 0.001. 

Trait/ Vital rate Symbol Unit 
Hypotheses

W or D 
higher? 

W or D 
higher? 

Hypotheses 
trait-vital 

rate 
correlation 

Direction 
of trait-

vital rate 
correlation 

Source 

Stomatal 
morphology        

Stomatal density d stomata µm-2 either ns + +** 1-5 
Stomatal 
differentiation rate 
(or index) 

i stomata cell-1 either W* + +** 2-6 

Stomatal area s µm2 W W* + ns 1; 5; 7 
Guard cell length GCL µm W W*   “ 
Guard cell width GCW µm W W**   “ 
Pore length SPL µm W W*   “ 
Epidermal cell area e µm2 W W*   8 
Maximum stomatal 
conductance gmax mmol m-2 s-1 either W* + +* 2-5; 9-

10 
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Leaf venation        

Major vein density VLAmajor mm-1 either D*** + ns 2-4, 
11-15 

Minor vein density VLAminor mm-1 either D*** + ns 
ns “ 

Total vein density VLAtotal mm-1 either D*** + ns “ 
Free ending vein 
density FEV mm-2 either D**   “ 

Leaf and wood 
economics and 
structure 

       

Leaf area LA cm2 W ns + W ns; D -* 16-18 

Leaf mass per area LMA g m-2 either ns - W +*; D -* 12;18-
23 

Leaf thickness LT mm either ns - -* “ 
Leaf density LD g cm-3 either ns - W +*; D -* “ 
Leaf dry matter 
content LDMC g g-1 D D* - ns 18; 24 

Saturated water 
content SWC g g-1 either W**   25-27 

Water mass per area WMA g m-2 D ns   “ 
Percentage loss area 
(dry) PLAdry % W W**   28-29 

Wood density WD g cm-3 either D*** - ns 5; 30-
32 

Leaf composition        
Nitrogen 
concentration per 
leaf area 

Narea g m-2 either ns + W +*; D -* 2-5; 20 

Nitrogen 
concentration per 
leaf mass 

Nmass mg g-1 either ns + +* “ 

Phosphorus 
concentration per 
leaf area 

Parea g m-2 either ns + W +*; D -* “ 

Phosphorus 
concentration per 
leaf mass 

Pmass mg g-1 either W** + +* “ 

Chlorophyll 
concentration Chlarea SPAD either ns   2-4; 33 

Chlorophyll per 
mass Chlmass SPAD g-1 m2 either ns   “ 

Carbon 
concentration per 
leaf mass 

Cmass mg g-1 W ns   34-35 

Nitrogen/ 
phosphorus ratio N:P - either D** - ns 35 

Chlorophyll/ 
nitrogen per area 
ratio 

Chlarea:Narea SPAD g-1 m2 W ns   5 

Carbon isotope 
discrimination Dleaf ‰ W W***   36-37 

|Turgor loss point| |πtlp| MPa D D***   28 
Estimated 
photosynthesis        
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Electron transport 
rate per area Jmaxarea µmol m-2 s-1 either ns + W +*; D -* 2-4; 

36-38 
Electron transport 
rate per mass Jmaxmass nmol g-1 s-1 either ns + +* “ 

Maximum rate of 
carboxylation per 
area 

Vcmaxarea µmol m-2 s-1 either ns + W +*; D -* “ 

Maximum rate of 
carboxylation per 
mass 

Vcmaxmass nmol g-1 s-1 either ns + +* “ 

Ratio between 
intercellular and 
ambient CO2 

concentrations 

ci:ca - either W*** + ns 36-38 

Time integrated leaf 
CO2 assimilation 
rate per area 

A̅area µmol m-2 s-1 either ns + W +*; D -* 9 

Time integrated leaf 
CO2 assimilation 
rate per mass 

A̅mass nmol g-1 s-1 either W*** + +* “ 

Time integrated 
stomatal 
conductance 

g̅cleaf mmol m-2 s-1 either W** + W +*; D -* “ 

Time integrated/ 
maximum stomatal 
conductance ratio 

g̅cleaf: gmax - either ns   2-4; 9 

Maximum stomatal 
conductance/ 
nitrogen per area 
ratio 

gmax:Narea mmol g-1 s-1 W W**   40 

Plant size        
Mean height H m W ns   46-47 
Maximum height Hmax m W W*   “ 
Seed mass SM mg D ns   48-49 
Vital rates        
Relative growth rate 
(diameter 
increment) 

RGRdbh cm cm-1 year-1 either ns   5; 20; 
41 

Relative growth rate 
(biomass increment) RGRbiom Kg Kg-1 year-1 either ns   “ 

Mortality rate m % year-1 either D**   42-45 
References: 1. Hetherington & Woodward (2003); 2. Maximov (1931); 3. Grubb (1998); 4. Scoffoni et al. (2011); 5. 
Givnish (1988); 6. Sack & Buckley (2016); 7. Franks & Farquhar (2007); 8. Beaulieu et al. (2008); 9. Franks & 
Beerling (2009); 10. Wang et al. (2015); 11. Sack & Frole (2006); 12. Brodribb et al. (2007); 13. Sack & Scoffoni 
(2013); 14. Iida et al. (2016); 15. Scoffoni et al. (2016); 16. Sack et al. (2012); 17. Wright et al. (2017); 18. Niinemets 
(2001); 19. Evans (1973); 20. Wright et al. (2004); 21. Westoby & Wright (2006); 22. Lusk & Warton (2007);  23. 
Poorter et al. (2009); 24. Diaz et al. (2016); 25. Vendramini et al. (2002); 26. Sack et al. (2005); 27. Ogburn et al. 
(2012); 28. Bartlett et al. (2012); 29. Scoffoni et al. (2014); 30. Hacke et al. (2001); 31.Chave et al. (2009); 32. 
Gleason et al. (2016); 33. Chatuverdi et al. (2011); 34. Lambers & Poorter (2004); 35. Elser et al. (2000); 36. Farquhar 
et al. (1989); 37. Donovan & Ehleringer (1994); 38. Evans (2013); 39. Wang et al. (2017); 40. Wright et al. (2001); 
41. Gibert, A. et al. (2016); 42. Wright et al. (2010); 43. McDowell et al. (2008); 44. McDowell et al. (2018); 45. 
Kobe & Coates (1997); 46. Koch et al. (2004); 47. King et al. (2006); 48. Gross (1984); 49. Khurana & Singh (2004). 
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Table 4.3. List of all species from the montane wet forest (MWF) and lowland dry forest (LDF) sites in Hawai‘i with family, species 

code, growth form, leaf habit (evergreen, E; or deciduous, D) and type (simple, S; compound, C; or phyllode, P) and forest stratum. 

Nomenclature follows (Wagner et al. 1999). 

 
Species Family Code Growth Form Leaf habit 

and type 
Forest 
stratum 

Montane Wet Forest (MWF)      
Acacia koa A. Gray Fabaceae ACAKOA Tree E, P Canopy 
Broussaisia arguta Gaud. Hydrangeaceae BROARG Shrub E, S Understorey 
Cheirodendron trigynum (Gaud.) A. Heller Araliaceae CHETRI Tree E, C Canopy 
Cibotium chamissoi Kaulf. Cibotiaceae CIBCHA Tree fern E, C Understorey 
Cibotium glaucum (Sm.) Hook. & Arn. Cibotiaceae CIBGLA Tree fern E, C Understorey 
Cibotium menziesii Hook. Cibotiaceae CIBMEN Tree fern E, C Understorey 
Clermontia parviflora Gaud. ex A. Gray Campanulaceae CLEPAR Shrub E, C Understorey 
Coprosma rhynchocarpa A. Gray Rubiaceae COPRHY Tree E, S Sub-canopy 
Hedyotis hillebrandii (Fosb.) W.L. Wagner & D.R. Herbst Rubiaceae HEDHIL Shrub/Small tree E, S Understorey 
Ilex anomala Hook. & Arn. Aquifoliaceae ILEANO Tree E, S Sub-canopy 
Leptecophylla tameiameiae (Cham. & Schltdl.) C.M. Weiller Epacridaceae  LEPTAM Shrub E, S Understorey 
Melicope clusiifolia (A. Gray) T.G. Hartley & B.C. Stone Rutaceae MELCLU Shrub/Small tree E, S Understorey 
Metrosideros polymorpha Gaud. Myrtaceae METPOL_W Shrub/Tall tree E, S Canopy 
Myrsine lessertiana A. DC Myrsinaceae MYRLES Tree E, S Sub-canopy 
Myrsine sandwicensis A. DC Myrsinaceae MYRSAN Shrub/Small tree E, S Understorey 
Perrottetia sandwicensis A. Gray Celastraceae PERSAN Shrub/Small tree E, S Understorey 
Pipturus albidus (Hook. & Arn.) A. Gray Urticaceae PIPALB Shrub E, S Understorey 
Psychotria hawaiiensis (A. Gray) Fosberg Rubiaceae PSYHAW Tree E, S Sub-canopy 
Trematolobelia grandifolia (Rock) O. Deg. Campanulaceae TREGRA Shrub E, S Understorey 
Vaccinium calycinum Sm. Ericaceae VACCAL Shrub E, S Understorey 
Lowland Dry Forest (LDF)      
Euphorbia multiformis Gaud. ex Hook. & Arn. Euphorbiaceae EUPMUL Shrub D, S Understorey 
Diospyros sandwicensis (A. DC) Fosberg Ebenaceae DIOSAN Tree E, S Canopy 
Dodonaea viscosa Jacq. Sapindaceae DODVIS Shrub E, S Understorey 
Erythrina sandwicensis O. Deg. Fabaceae ERYSAN Tree D, C Canopy 
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Metrosideros polymorpha Gaud. Myrtaceae METPOL_D Shrub/Tall tree E, S Canopy 
Myoporum sandwicense A. Gray Scrophulariaceae MYOSAN Shrub/Small tree D, S Understorey 
Osteomeles anthyllidifolia (Sm.) Lindl. Rosaceae OSTANT Shrub E, C Understorey 
Pittosporum terminalioides Planch. ex A.G Pittosporaceae PITTER Tree E, S Understorey 
Pleomele hawaiiensis O. Deg. & I. Deg. Asparagaceae PLEHAW Tree E, S Sub-canopy 
Psydrax odorata (G. Forst.) A.C. Sm. & S.P. Darwin Rubiaceae PSYODO Shrub/Small tree E, S Understorey 
Santalum paniculatum Hook. & Arn. Santalaceae SANPAN Shrub/Tree E, S Canopy 
Senna gaudichaudii (Hook. & Arn.) H. Irwin & Barneby Fabaceae SENGAU Shrub D, C Understorey 
Sophora chrysophylla (Salisb.) Seem. Fabaceae SOPCHR Shrub/Tree D, C Canopy 
Sida fallax Walp. Malvaceae SIDFAL Shrub E, S Understorey 
Wikstroemia sandwicensis Meisn. Thymelaeaceae WIKSAN Shrub/Tree E, S Understorey 
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Table 4.4. Models selected by maximum likelihood to estimate relative growth rate in terms of 

diameter at breast height (A, RGRdbh) or above ground biomass (B, RGRbiom) or mortality rate (C, 

m). Independent variables included in the tested models included were those of each module (Table 

S4.7) that were most correlated with each dependent variable. We present the Pearson’s correlation 

coefficients on untransformed and log transformed data for the predicted variable and the 

independent variable, the multiple regression coefficient estimates and percent contribution of 

each trait to model fit. Full models and detailed model selection procedures using AICcs are 

presented in Table S4.8. 

Model Pearson’s correlation 
coefficient 

Multiple regression 
analyses coefficient 

estimate 

Hierarchical partition 
analyses 

(%) 
A) RGRdbh ~ d + VLAminor + Pmass + A̅mass  
intercept - 2.09e-02* - 
d 0.67**, 0.43 7.76e-05*** 53.2 
VLAminor -0.44, -0.49 -3.32e-03* 27.6 
Pmass 0.39, 0.25 -2.43e-02* 10.9 
A̅mass 0.36, 0.28 2.51e-04 8.32 
Adjusted multiple R2 - 0.72*** - 
B) RGRbiom ~ d + VLAminor + LMA + Pmass 
intercept - 6.58e-02* - 
d 0.65**, 0.4 2.01e-04*** 51.9 
VLAminor -0.50, -0.56* -4.78e-03* 20.0 
LMA -0.35, -0.48 -2.32 e-04 13.7 
Pmass 0.39, 0.25 -2.30e-02 14.4 
Adjusted multiple R2 - 0.70** - 
C) m ~ VLAminor + LMA + Pmass + A̅mass + site 
intercept - -2.59 - 
A̅mass 0.49, 0.73** 0.18** 39.1 
site - 6.65** 31.2 
LMA -0.35, -0.38 -0.03 15.9 
Pmass 0.16,0.42 -3.39 7.73 
VLAminor -0.13, -0.17 -0.60 6.09 
Adjusted multiple R2 - 0.70** - 

*P < 0.05; **P < 0.01; ***P < 0.001
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FIGURE CAPTIONS 

Figure 4.1. Contour map of the Pālamanui (LDF) and Laupāhoehoe (MWF) 4-ha plots on Hawai‘i 

Island. 

 

Figure 4.2. Radar graph illustrating percent difference in trait means between MWF and LDF 

species. The LDF species means were fixed arbitrarily as the 100% reference values (the dark red 

dotted line) and the black line indicates the percent difference between MWF species and LDF 

species. Traits are arranged according to putative traits modules previously defined (Table 4.1). 

Bold and *, P < 0.05. 

 

Figure 4.3. Relationships between relative growth rate (RGR) and mortality rate (m) across species 

of Hawaiian wet and dry forest. The top panels show the relationships across species mean values 

for m and (A) relative growth rate in terms of diameter at breast height, RGRdbh (B) and relative 

growth rate in terms of above-ground biomass, RGRbiom. The bottom panels show that the 

correlation of mortality with RGR is robust across size modules by plotting the Kendall correlation 

coefficient (!) between m and (C) RGRdbh and (D) RGRbiom against plant size class, with the gray 

line showing the number of species in each 1-cm diameter class (lower in larger size classes). *P 

< 0.05, **P < 0.01, ***P < 0.001. Top row: black symbols, Montane Wet Forest (MWF) species; 

gray symbols, Lowland Dry Forest (LDF).  RGRdbh = 0.01 + 0.001 * m; RGRbiom = 0.03 * m0.35. 

Bottom row: filled and open symbols represent significant correlations. We use Pearson correlation 

coefficient in plots A and B because the species means for m, RGRdbh and RGRbiom calculated 

across all individuals were normally distributed or became so after log-transformation, whereas 

we used Kendall’s correlation coefficient in plots C and D because after stratifying by plant size, 
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m remained non-normally distributed even after transformation. Notably, the RGR-m relationships 

can be discerned with either coefficient; when calculating Kendall’s coefficient for panels A and 

B, Kendall’s t was 0.32 (P = 0.07) and 0.35 (P = 0.048) respectively; for panels C and D, 

correlations were considered significant when the 99% credible interval of t did not include zero. 

 

Figure 4.4. Trait-vital rate relationships across Hawaiian wet and dry forest species, including 

relationships between relative growth rate in terms of diameter at breast height (RGRdbh) and (A) 

stomatal density and (B) maximum stomatal conductance; between relative growth rate in terms 

of above-ground biomass (RGRbiom) and (C) time integrated CO2 assimilation rate per mass, (D) 

leaf mass per area, (E) minor vein density, and (E) phosphorus per mass; and between mortality 

rate (m) and (G) time integrated CO2 assimilation rate per leaf dry mass, (H) nitrogen per leaf dry 

mass. Black symbols, Montane Wet Forest (MWF) species; gray symbols, Lowland Dry Forest 

(LDF). RGRdbh = 3.02e-03 + 5.51e-05 * d; RGRdbh = 0.01 + 0.004 * gmax; RGRbiom = 10e-03*A̅mass1.35; 

RGRbiom = 2.53 * LMA-0.858; RGRbiom = 0.17 * VLAminor-0.87; RGRbiom = 0.041 * Pmass0.97; m = 8e-05 * 

A̅mass2.40; m = 0.04 * Nmass1.67.  *P < 0.05, **P < 0.01, ***P < 0.001. 

 

Figure 4.5. Contrasting relationships between mortality rate and functional traits across forests, 

including (A) leaf mass per area, (B) time integrated CO2 assimilation rate per leaf area, (C) 

phosphorus concentration per leaf mass and (D) individual leaf area. Black symbols and curve, 

Montane Wet Forest (MWF) species; gray symbols and curve, Lowland Dry Forest (LDF). In (E), 

the black line and r represent the fit and Pearson’s regression coefficient including only wet forest 

species and the gray line are for LDF species only. mMWF = 5e-04 * LMA1.89 and mLDF = 4e8 * LMA-
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3.74; mMWF = -0.72 + 0.44 * A̅area and mLDF = 764699 * A̅area-5.43; m = 1.73 * Pmass2.38; m = 74.53 * 

LA-1.46.  *P < 0.05, **P < 0.01, ***P < 0.001. 

 

Figure 4.6. Estimating the influence of plant on the correlation of relative growth rate and 

mortality with given functional traits. Each panel shows the plot of the size-dependent Kendall 

correlation coefficient (!) between: (A) relative growth rate and maximum stomatal conductance 

and nitrogen per area ratio, gmax:Narea; (B) relative growth rate and maximum height, Hmax; (C) 

mortality rate and stomatal density, d; and (D) mortality rate and phosphorus concentration, Pmass. 

Open symbols represent non-significant results (the 99% credible interval of t included zero) and 

filled symbols significant correlations (the 99% credible interval of t did not include zero). The 

gray line shows the number of species in each 1-cm diameter class. 

 

Figure 4.7. Relationship between observed growth rate in terms of diameter at breast height 

(RGRdbh),  above-ground biomass (RGRbiom) and mortality rate (m) and the values predicted from 

models using the plant traits most correlated with each dependent variable: (A) RGRdbh = 2.09e-02 

+ (7.76e-05 * d) – (3.32e-03 * VLAminor) – (2.43e-02 * Pmass) + (2.51e-04 * A̅mass); (B) RGRbiom = 6.58 

e-02 + (2.01e-04 * d) – (4.78e-03 * VLAminor) – (2.32e-04 * LMA) – (2.3e-02 * Pmass); (C) m = -2.59 - 

(0.60 * VLAminor) – (0.03 * LMA) – (3.39 * Pmass) + (0.18 * A̅mass) + (6.64 * site). The dashed line 

represents the 1:1 relationship. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 4.1 
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Figure 4.2 
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Figure 4.3 
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Figure 4.4 
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Figure 4.5 
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Figure 4.6 
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Figure 4.7 
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Appendix 4.1. Supplementary methods 

Study sites 

The sites for the Hawaii forest dynamics plots were selected as ecologically relatively well 

preserved areas that are representative of a given forest type, with high native species cover, and 

a commitment by ownership to long-term conservation objectives. Notably, all forests in Hawai‘i 

are affected to some degree by altered trophic interactions due to invasion of non-native species 

or extinction of the native species, but this is not unique to Hawai‘i (Ziegler 2002; Harrison 2011; 

Ostertag et al. 2014). 

Montane wet forest MWF. The 4-ha Laupāhoehoe FDP 19º55’ N, 155º17’ W is located on the 

northeast slope of Mauna Kea volcano within the Laupāhoehoe Natural Hawai‘i Area Reserve, 

Hawaii Division of Forestry and Wildlife, which makes up the wet forest unit of the Hawai‘i 

Experimental Tropical Forest HETF. The mean elevation of the plot is 1120 m.a.s.l. with slopes 

of 0–20%, and the overall direction of downslope is northwards towards the Pacific Ocean. The 

substrate within the plot is 4,000-14,000 years old (Vitousek & Farrington 1997). Interpolated 

mean annual precipitation, based on analysis of climate station data over 30 years, is 3440 mm 

with no distinct dry season and mean annual air temperature is 16ºC (Crews et al. 1995; 

Giambelluca et al. 2013). The forest consists of evergreen broad-leaved trees, and the 25–28 m 

canopy is dominated by Metrosideros polymorpha Myrtaceae and to a lesser extent, Acacia koa 

Fabaceae, with abundant tree ferns. Vegetation at the MWF is highly representative of this forest 

type in Hawai‘i (Ostertag et al. 2014).  

Lowland dry forest LDF. The 4-ha Pālamanui FDP is a tropical dry forest, and an example of one 

of the world’s most endangered forest types. This FDP is located on a privately-owned tract of 

land on the northwest slope of Hualālai Volcano in the district of North Kona 240 m elevation, 19 
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º 44’ N, 155 º 59’ W. Geological substrate in the Pālamanui area consists of ‘a‘ālava with scattered 

pāhoehoe flows dating to 1,500–3,000 years old (Moore et al. 1987). Interpolated mean annual 

precipitation at the LDF site is 835 mm, with large within and between-year variability (Thaxton 

et al. 2010; Giambelluca et al. 2013). For the LDF, major rainfall events typically occur in the 

winter as low pressure storms ‘‘Kona lows’’ while summers tend to be dry and characterized by 

small convective storms. Mean daily air temperature is approximately 20ºC wrcc.dri.edu. Native 

vegetation consists of evergreen and deciduous broadleaved trees and shrubs that form an open-

canopy forest that reaches heights of 7–8 m dominated by Diospyros sandwicensis Ebenaceae and 

Psydrax odorata Rubiaceae, with an understory of non-native shrubs and grasses (Ostertag et al. 

2014). 

 

Measurement of relative growth rates 

A total of 21,805 individual trees of 29 species from both forest plots were measured for DBH in 

the first census, 2008, and the 18,745 of those trees that were alive were remeasured in the second 

census in 2013. The tree fern species (CIBCHA, CIBGLA, CIBMEN; Table 4.2), a monocot 

species (PLEHAW; Table 4.2), and two species that fulfilled the DBH requirement in only one of 

the two censuses (TREGRA and SIDFAL; Table 4.2) were included in trait analyses but not in 

growth and mortality analyses.  

 

Stomatal and venation traits 

We measured stomatal and vein traits on one leaf from each of three individuals per species. After 

rehydration, we fixed the leaves in FAA 48% ethanol: 10% formalin: 5% glacial acetic acid: 37% 
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water. From measured stomatal traits we calculated the maximum theoretical stomatal 

conductance gmax; (Franks & Farquhar 2007; Sack & Buckley 2016): 

#$%& =
()*+
+,..

 

In which b is a biophysical constant given as ( = /

0
, where D represents the diffusivity of CO2 and 

water in air m2 s-1 and v is the molar volume of air m3 mol-1, so b = 0.00126; m is a morphological 

constant based on scaling factors representing the proportionality of stomatal dimensions ) =

	 234

56.7895:	2
, with c, h, and j treated as constants for the estimation of gmax c, h and j = 0.5; d is 

stomatal density, and s is stomatal size (Franks & Farquhar 2007; Franks et al. 2009; McElwain et 

al. 2016). 

 For the venation traits, FAA-fixed leaves were cleared in 5% sodium hydroxide followed 

by bleach, and then stained with safranin and fast green and scanned for major vein density 

(VLAmajor). Minor and free ending vein densities (VLAminor and FEV) were obtained from 

microscopy images of the top, middle and bottom of each leaf used for VLAmajor. Detailed methods 

can be found in (Scoffoni et al. 2011). 

 

Leaf and wood economics and structure and leaf composition 

Leaf structure and composition traits were measured for three leaves per studied individual. Leaf 

saturated mass was measured using an analytical balance (0.01 mg; XS205; Mettler-Toledo, OH, 

USA) and leaf thickness LT using digital calipers (0.01 mm; Fowler, Chicago, IL, USA). The leaf 

area LA was measured using a flatbed scanner and analyzed using the software ImageJ 

(http://imagej.nih.gov/ij/). After scanning, leaves were placed in a drying oven at 70º for 72 h and 

their dry mass and area were measured again. From these measurements, we calculated the 
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percentage loss in area after dry PLAdry as the percent decline in area from saturated to dry leaves, 

;<=>?@ = 100 − D /EF	GEHG

IGJKEGJHL	GEHG
× 100N  

(Witkowski & Lamont 1991; Ogburn & Edwards 2012; Pérez-Harguindeguy et al. 2013). 

 To determine concentration of leaf nitrogen, phosphorus and carbon per mass (Nmass, Pmass 

and Cmass), and carbon isotope ratio (δ13C); used to determine carbon isotope discrimination,  

leaves from three individuals per species were oven-dried at 70°C for 72 h, and whole leaf samples, 

excluding the petioles, were ground, weighed and analyzed using high temperature combustion in 

an elemental analyzer (Costech ECS 4010; Valencia, California, USA), with effluent passed into 

a continuous flow isotope ratio mass spectrometer (ThermoFinnigan Delta V Advantage with a 

Conflo III interface; ThermoFisher Scientific; Walthan, Massachusetts, USA; Fry et al. 1996; 

Pérez-Harguindeguy et al. 2013). For Pmass, samples were dry ashed, dissolved in HCl and 

analyzed using inductively-coupled plasma-optical emission spectrometry (Varian Vista MPX 

Instrument, Varian Inc., Palo Alto, California USA; Porder, Paytan & Vitousek 2004).  

 The chlorophyll concentration per area Chl was measured using a SPAD meter, which 

provides a correlate of total chlorophyll a + b concentration per area in SPAD units (Monje & 

Bugbee 1992; SPAD-502, Konica Minolta, Japan). 

 The carbon isotope discrimination (Dleaf; in parts per thousand, ‰) was calculated 

following Farquhar & Richards (1984) and using values of d13C air for the Island of Hawaii 

available from Allison, Francey & Krummel (2003) as: 

∆PQ%R= 	
STUV%W?−	STUVPQ%R

1 +	S
TUVPQ%R

1000Y
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 The leaf 13C isotope composition d13Cleaf used to calculate Dleaf was obtained from pulverized 

whole leaves for each study individual at the University of Hawaii at Hilo Analytical Laboratory 

facility, using an Isotope Ratio Mass Spectrometer Delta V IRMS, Thermo-Fisher, US. 

 

Estimated photosynthesis traits 

Using leaf N and P concentrations per mass and equations available from Domingues et al. (2010), 

we estimated maximum rate of carboxylation per area (Vcmaxarea) and electron transport rate 

(Jmaxarea) as: 

Z[#T,(]^)_`%?Q%) = 	min	{ef + gf ×	Z[#T,(h$%ii);	ek +	gk × 	Z[#T,(;$%ii)} 

 and 

Z[#T,(m)_`%?Q%) = 	min	{nf + of × Z[#T,(h$%ii);	nk +	ok × 	Z[#T,(;$%ii)} 

 Where all coefficients are empirical constants: aN = -1.16, nN = 0.70, aP = -0.30, and nP = 

0.85; gN = -1.22, eN = 0.92, gP = -0.11, eP = 0.66.  The ratio between intercellular CO2 concentration 

(ci) and ambient CO2 concentration (ca) was estimated from d13Cleaf and Dleaf (Farquhar, O’Leary 

& Berry 1982; Franks et al. 2014) as: 

^W: ^% = 	 q
∆PQ%R − _
( − _

r 

Where _ is the carbon isotope fractionation due to diffusion of CO2 in air (4.4‰), ( is the 

fractionation associated with RuBP carboxylase taken as 30‰ and Dleaf is the carbon 

discrimination rate.  

 An estimate of leaf lifetime integrated CO2 assimilation rate (A̅area) and stomatal 

conductance to CO2 (g̅cleaf) were derived from Vcmaxmass, Jmaxmass and isotope composition data 

using the Farquhar, von Caemmerer and Berry model with assumed constants (Franks, Drake & 

Beerling 2009). A̅mass was calculated as: 
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=̅ = mint=u, =wx, 

=3 = 	]^)_`$%ii q
^yz − Γ∗

^yz + 622
r −	�>, 

=w = 	 m)_`$%ii q
^yz − Γ∗

4^yz + 296
r − �> 

where the CO2 compensation point in the absence of mitochondrial respiration (G*) was 37 µbar; 

and the mitochondrial respiration (Rd) was 0.01* Vcmaxmass. And g̅cleaf was calculated as: 

	#̅uPQ%R = 	
=̅

^% − ^W̅
, and	 

^W̅ = 	 ^% Ñ
∆PQ%R − 4.4
22.6

Ö 

where ca = 370 µmol mol-1, is the atmospheric CO2 mole fraction.  

 To convert Vcmaxmass, Jmaxmass, and A̅mass to area-basis, we multiplied the traits values by 

LMA. We also calculated the ratio between g̅cleaf and gmax, and the ratio between gmax and Narea. 

 

Statistical analyses 

We note that while we focus in this paper on frequentist statistical approaches as the most typically 

used in the field, we utilized a Bayesian approach to analyze the influence of tree size on trait-vital 

rate relationships, following (Iida et al. 2014), as this in our view is the most sophisticated existing 

analysis for testing that hypothesis. We estimated RGRdbh and m at 1-cm intervals of DBH for each 

species. 
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Estimation of regression coefficients of relative growth rate in terms of diameter at breast height 

(RGRdbh) using a hierarchical Bayesian approach 

Following Iida et al. (2014), to estimate size-dependent RGRdbh for each individual ith tree 

belonging to species j (RGRdbhij), we assumed that RGRdbhij is a linear function of the natural 

logarithm of the initial diameter, DBH1ij, with parameters for species j (akj; k=1, 2), that represent 

the sum of the community- and species-level parameters. We assumed that both parameters were 

normally distributed with mean µkj and precision gkij, N(µkj, gkij). µ1j and µ2j are normally distributed 

with vague but proper priors with mean centered in 0 and variance of 104, N(0,10-4). For the hyper-

prior gkij, we assumed a Gamma distribution with both shape and scale parameters set as 10-2, G(10-

2, 10-2). The natural logarithm of the final stem diameter DBH2i was calculated as the sum of the 

natural logarithm of initial stem diameter DBH1i and the product of RGRdbhij and the census 

interval of the i-th tree, Dti. 

ln(áàâ2W) = ln(áàâ1W) + �ä�dbhWw × ∆çW 

�ä�dbhWw = eTw + eéw × ln(áàâ1W) 

 
Posteriors were estimated via Markov Chain Monte Carlo implemented in JAGS Just Another 

Gibbs Sampler; (Plummer 2007) from R, using the package ‘R2Jags’. We ran the model for 90,000 

iterations and 3 chains, with a thinning of 150, and burn-in of 30,000. All parameters converged 

in less than 20 lags before thinning.  To test model fit, we plotted the observed species average 

RGRdbh against the species average RGRdbh predicted from the model and obtained an R2 = 0.96.  
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Estimation of regression coefficients of mortality rate (m) using a hierarchical Bayesian approach 

Following Iida et al. (2014), to estimate size-dependent m for each individual ith tree belonging to 

species j (mij), we first calculated the probability of survival of the ith individual tree (pi) from 

observations of whether the tree survived the census period (Si = 1) or not (Si = 0). We assumed 

that Si followed a Bernoulli distribution of the probability of survival (pi). The pi of the ith tree was 

calculated from the per capita annual mortality rate, mij, adjusted to the census interval (Dti). which 

was a function of the sum of species-specific parameters bkj (k = 1, 2, 3). b1j represented the initial 

mortality rate while parameters b2j and b3j represent the effect of DBH1 and ln(DBH1i) on mij. We 

assumed that all three parameters were normally distributed with mean µkj and precision gkij, N(µkj, 

gkij). µkj had vague but proper priors with means centered in 0 and variance of 104, N(0,10-4). For 

the hyper-prior distribution of gkij we used a Gamma distribution with both shape and scale 

parameters set as 10-2, G(10-2, 10-2). 

 
èW	~	àëíì[îZZï(ñW)	 

ñW = exp	(−)Ww ×	∆çW) 

ln()Ww) = öTw + öéw × ln(áàâ1W) +	öUw × áàâ1W 

 

We ran the model for 90,000 iterations and 3 chains, with a thinning of 150, and burn-in of 30,000, 

with a total of 120,000 iterations. All parameters converged in less than 20 lags before thinning.  

To test model fit, we plotted the observed species average m against the species average m 

predicted from the model and obtained an R2 = 0.97.  
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Appendix 4.2. Supplementary results 

Trait-trait coordination 

The alternative measures of relative growth rates RGRdbh and RGRbiom and mortality m were 

strongly intercorrelated (r ranged from 0.55 to 0.97; P < 0.05). Further, traits were highly inter-

correlated within functional categories i.e., stomatal morphology traits, venation traits, leaf and 

wood economics and structure traits, and compositional traits when considering species from both 

forests together, and in the MWF and LDF separately. We focus here on analyses of trait 

correlations across both forests Table S4.5, with complete results for individual forests provided 

in Tables S4.5-S4.6. 

 Traits related to stomatal and epidermal pavement cell size SPL, GCL, GCw, s, e were 

positively correlated (r = 0.64-0.97; P < 0.05).  Stomatal size traits also had a positive relationship 

with i and gmax (r = 0.39-0.87; P < 0.05). The d was statistically independent of stomatal size traits, 

but negatively related to e (r = -0.54; P < 0.01) and positively with i and gmax (r = 0.66 and 0.74, 

respectively; P < 0.001).  

 Venation traits were all positively intercorrelated. VLAminor was the main determinant of 

VLAtotal (r = 0.99; P < 0.001), and strongly correlated with FEVs and VLAmajor (r = 0.88 and 0.72, 

respectively; P < 0.001). 

 Leaf and wood economics spectrum and structure traits were intercorrelated. LMA was 

positively correlated with LT and LD (r = 0.34 and 0.64, respectively; P < 0.05). LT and LD were 

negatively correlated (r = -0.6; P < 0.001), and WMA was positively correlated with LT and 

negatively correlated with LD (r = 0.71 and -0.39, respectively; P < 0.05). WD and LDMC were 

positively correlated (r = 0.75; P < 0.001) and negatively correlated with SWC, WMA, LA, and 
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PLAdry (r = -0.36 to -0.74; P < 0.05). SWC, WMA, LA, and PLAdry were positively correlated (r = 

0.37-0.72; P < 0.05). 

 Leaf compositional traits were also inter-correlated: N and P in area and mass basis were 

positively intercorrelated (r = 0.46-0.79; P < 0.05) and negatively correlated with Chlarea: Narea (r 

ranged from -0.4 to -0.94; P < 0.05). N:P was positively related to N, and negatively to P (r ranged 

from -0.58 to 0.38; P < 0.05). Additionally, Parea and Pmass were negatively correlated with Cmass, 

Chlarea and |πtlp| (r ranged from -0.34 to -0.52; P < 0.05). |πtlp| was positively correlated with Cmass, 

N:P and Chlarea (r ranged from 0.38 to 0.44; P < 0.05 and negatively with Dleaf r = -0.43; P < 0.05). 

These relationships led to positive correlations among estimated photosynthesis traits Table S4.5 

as expected from their calculation, i.e., between Jmaxarea and Vcmaxarea (r = 0.99; P < 0.001) and 

Jmaxmass and Vcmaxmass (r  = 0.95; P < 0.001). Estimated photosynthesis traits were positively 

intercorrelated (r ranging from 0.4 to 0.98; P < 0.05), except for the gmax:Narea, which was 

negatively correlated with all area-basis traits in the category (r ranging from -0.37 to -0.75; P < 

0.05) and the ci:ca ratio, that was correlated only with g̅cleaf, g̅cleaf:gmax and gmax:Narea (r = 0.37 to 

0.61; P < 0.05).  

 Mean height H had a positive relationship with Hmax (r = 0.68; P < 0.001). 

Across trait categories, we found a strong negative relationship between stomatal morphology 

traits and venation traits, especially between VLAminor and s (r ranged from -0.4 to -0.66; P < 0.05). 

While most stomatal morphology traits were strongly correlated with vein traits, d was not. Vein 

traits also showed coordination with |πtlp| and WD, and Dleaf. Vein densities were positively 

correlated with |πtlp| and WD (r ranged from 0.39 to 0.71; P < 0.05), but negatively correlated with 

Dleaf (r ranged from -0.37 to -0.71; P < 0.05). Further, we found that |πtlp| and WD were negatively 

correlated with LA and PLAdry (r ranged from -0.43 to -0.63; Table S4.5); |πtlp| was positively 
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correlated with LMA (r = 0.46, respectively; P < 0.05), while WD was positively correlated with 

Cmass (r = 0.42; P < 0.05) and negatively correlated with Parea and Pmass (r = -0.6, respectively; P < 

0.05). Finally, |πtlp| and WD were negatively correlated with A̅mass, g̅cleaf and ci:ca ratio (r ranged 

from -0.42 to -0.57; P < 0.05). 
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Appendix Table 4.1. Expectations for variation between forests in given traits, based on adaptive functions described in the previous 

literature on diverse species, given that the montane wet forest MWF has greater water and nutrient availability and lower light 

availability in the understorey than the LDF. “W” represents the expectation that, all else being equal, given the specific hypothesis, the 

wet forest would have a higher trait value than the dry forest on average, and “D” that the dry forest would have the higher trait value 

on average.  

 

Trait 
Expectation based on:  

Water and nutrient availability higher in MWF than LDF Light availability higher in LDF 

Stomatal morphology 
  

d W. More stomata per area enables greater CO2 assimilation and promotes 
growth and competition (Hetherington & Woodward 2003) 
D. More stomata per area enables greater CO2 assimilation in times when water 
is available and is selected when the period of available water is shorter 
(Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 

D. Shade tolerant species tend to have fewer stomata per area 
reflecting their lower limitation by CO2 relative to irradiance 
(Givnish 1988) 

i W. Greater rates of stomatal development enable greater CO2 assimilation and 
promotes growth and competition (Sack & Buckley 2016) 
 D.  Greater rates of stomatal development enable greater CO2 assimilation in 
times when water is available and is selected when the period of available 
water is shorter (Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 

D. Shade tolerant species tend to have fewer stomata per 
epidermal cells reflecting their lower limitation by CO2 relative 
to irradiance (Givnish 1988) 

s W. Larger guard cells and stomata result in larger pores, enabling greater CO2 
assimilation and promotes growth and competition (Hetherington & 
Woodward 2003). Smaller, denser stomatal guard cells and pores may increase 
the efficiency of CO2 capture, and may enable more rapid stomatal responses 
to dehydration, protecting species facing drought (Franks & Farquhar 2007) 
 

W. Shade tolerant species tend to have larger stomatal guard 
cells and pores, consistent with their lower densities and possibly 
reflecting less selection for rapid responses to dehydration  
 (Givnish 1988) 

GCL “ “ 

GCW “ “ 

SPL “ “ 
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e W. Epidermal pavement cell size typically scales with stomatal size (Beaulieu 
et al. 2008) 

W. Epidermal pavement cell size typically scales with stomatal 
size (Beaulieu et al. 2008) 

   
gmax W. Higher gmax leads to higher potential CO2 assimilation rate (Franks & 

Beerling 2009; Wang et al. 2015) 
D. Higher stomatal conductance enables greater CO2 assimilation in times 
when water is available and is selected when the period of available water is 
shorter (Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 

D. Shade tolerant species tend to have lower stomatal 
conductance reflecting their lower limitation by CO2 relative to 
irradiance (Givnish 1988) 

Leaf venation   

VLAmajor W. Higher vein densities a would increase leaf hydraulic conductance and 
potentially photosynthetic rate and growth (Sack & Frole 2006; Brodribb, Feild 
& Jordan 2007; Sack & Scoffoni 2013; Iida et al. 2016; Scoffoni et al. 2016) 
D. Higher major vein densities will provide redundancy to protect from the 
detrimental effect of xylem embolism on leaf hydraulic function (Sack & 
Scoffoni 2013) 

D. Shade tolerant species tend to have larger leaves, which tend 
to possess lower major vein densities (Sack et al. 2012) 

VLAminor W. Higher vein densities a would increase leaf hydraulic conductance and 
potentially photosynthetic rate and growth (Sack & Frole 2006; Brodribb, Feild 
& Jordan 2007; Sack & Scoffoni 2013; Iida et al. 2016; Scoffoni et al. 2016) 
D. Higher minor vein densities enable greater stomatal conductance and CO2 
assimilation in times when water is available and is selected when the period of 
available water is shorter (Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 

 

D. Shade tolerant species tend to have lower minor vein 
densities, consistent with lower construction costs and their 
lower stomatal conductance reflecting their lower limitation by 
CO2 relative to irradiance (Sack & Scoffoni 2013) 

VLAtotal W. Higher vein densities a would increase leaf hydraulic conductance and 
potentially photosynthetic rate and growth (Sack & Frole 2006; Brodribb, Feild 
& Jordan 2007; Sack & Scoffoni 2013; Iida et al. 2016; Scoffoni et al. 2016) 
D. Higher major and minor vein densities and therefore total vein density 
enable greater leaf hydraulic safety and also stomatal conductance and CO2 
assimilation in times when water is available and is selected when the period of 
available water is shorter (Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 

 

D. Shade tolerant species tend to have lower vein densities, 
consistent with lower construction costs and their lower stomatal 
conductance reflecting their lower limitation by CO2 relative to 
irradiance (Sack & Scoffoni 2013) 

FEV W. Higher free ending vein densities would increase leaf hydraulic 
conductance and potentially photosynthetic rate (Sack & Scoffoni 2013) 
D. Higher free ending vein densities enable greater stomatal conductance and 
CO2 assimilation in times when water is available and is selected when the 
period of available water is shorter (Maximov 1931; Grubb 1998; Scoffoni et 
al. 2011) 

D. Shade tolerant species may have lower free ending vein 
densities, associated with lower stomatal conductance reflecting 
their lower limitation by CO2 relative to irradiance (Sack & 
Scoffoni 2013) 

Leaf and wood economics 
and structure 
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LA W. Smaller leaves have higher major vein densities, which would provide 
greater leaf hydraulic safety, and have thinner boundaries enabling leaves to 
stay cool especially when transpirational cooling is not possible during drought 
(Sack et al. 2012; Wright et al. 2017) 

W. Shade tolerant species tend to have larger leaves for greater 
efficiency in light capture relative to allocation to support 
(Niinemets 2001) 

LMA D. A lower LMA would be expected to promote more rapid relative growth 
rate, whereas a higher LMA would be associated with longer leaf lifetime and 
confer an advantage in stressful or low resource conditions (Evans 1973; 
Wright et al. 2004; Westoby & Wright 2006).  High LMA leaves also may 
enable lower cuticular transpiration rates when stomata close due to lower 
surface area: volume and thicker cuticles, and may have higher elastic moduli 
which may enable greater water retention in leaves with lower wilting points 
(Niinemets 2001; Wright et al. 2004; Brodribb, Feild & Jordan 2007) 

W. Shade-adapted evergreen species tend to have high LMA, 
associated with longer leaf lifespan and lower respiratory 
demand (Niinemets 2001; Lusk & Warton 2007; Poorter et al. 
2009) 
 
 

LT D. Thinner leaves are associated with lower LMA and thus higher potential 
relative growth rate, and thicker leaves with higher LMA, longer leaf lifetimes 
and slower relative growth rates (Evans 1973; Niinemets 2001; Wright et al. 
2004; Westoby & Wright 2006). Thicker leaves may also enable lower 
cuticular transpiration rates when stomata close due to lower surface area: 
volume and thicker cuticles, and may have higher elastic moduli which may 
enable greater water retention in leaves with lower wilting points (Niinemets 
2001; Wright et al. 2004; Brodribb, Feild & Jordan 2007) 

W. Shade-adapted evergreen species tend to have thicker leaves 
associated with higher LMA, longer leaf lifespan and lower 
respiratory demand (Niinemets 2001; Lusk & Warton 2007; 
Poorter et al. 2009) 

LD D. Less dense leaves are associated with lower LMA and thus higher potential 
relative growth rate, and denser leaves with higher LMA, longer leaf lifetimes 
and slower relative growth rates (Evans 1973; Niinemets 2001; Wright et al. 
2004; Westoby & Wright 2006). Denser leaves may have higher elastic moduli 
which may enable greater water retention in leaves with lower wilting points 
(Niinemets 2001; Wright et al. 2004; Brodribb, Feild & Jordan 2007) 

W. Shade-adapted evergreen species tend to have denser leaves 
associated with higher LMA, longer leaf lifespan and lower 
respiratory demand (Niinemets 2001; Lusk & Warton 2007; 
Poorter et al. 2009) 

LDMC D.  Lower LDMC is related to lower LMA and thus higher potential relative 
growth rate, and higher LDMC leaves with higher LMA, longer leaf lifetimes 
and slower relative growth rates.  Lower LDMC may also be linked with 
drought tolerance in certain ecosystems (Niinemets 2001; Diaz et al. 2016) 

D.  Lower LDMC is related to lower LMA, which may be linked 
with shade tolerance in evergreen forests see above (Niinemets 
2001; Diaz et al. 2016) 

SWC W.  Higher SWC is related to lower LMA and thus higher potential relative 
growth rate, and lower SWC leaves with higher LMA, longer leaf lifetimes and 
slower relative growth rates (Vendramini et al. 2002) 
D. High SWC may provide water storage to buffer low leaf water potentials 
during transpiration under soil and atmospheric drought, or to enable leaf 
survival after stomata close (Sack, Tyree & Holbrook 2005; Ogburn & 
Edwards 2012) 

D.  Lower SWC is related to higher LMA and longer leaf 
lifetimes, which would result in lower resource demand 
benefitting shade-tolerant evergreen species (Vendramini et al. 
2002) 

WMA D.  Lower WMA is related to lower LMA and thus higher potential relative 
growth rate, and higher SWC leaves with higher LMA, longer leaf lifetimes 
and slower relative growth rates (Vendramini et al. 2002). Conversely, high 
WMA may provide water storage to buffer low leaf water potentials during 

D.  Lower WMA is related to higher LMA and longer leaf 
lifetimes, which would result in lower resource demand 
benefitting shade-tolerant evergreen species (Vendramini et al. 
2002) 



 

 149 

transpiration under soil and atmospheric drought, or to enable leaf survival 
after stomata close (Sack, Tyree & Holbrook 2005; Ogburn & Edwards 2012) 

   
PLAdry W. Leaves resistant to shrinkage may have higher elastic moduli, which may 

enable greater water retention in leaves with lower wilting points (Bartlett, 
Scoffoni & Sack 2012; Scoffoni et al. 2014) 

 

NA 

WD D.  A lower WD, being associated with higher hydraulic conductance and 
lower construction cost, would be expected to promote more rapid relative 
growth rate, whereas a higher WD would be associated with longer wood 
lifetimes and lower vulnerability to xylem embolism at the cost of potential 
relative growth rate (Hacke et al. 2001; Chave et al. 2009; Gleason et al. 
2016).  

W. A higher WD is associated with greater shade tolerance, 
potentially due to investment in longer wood lifetimes and thus 
reduction of resource demand (Givnish 1988) 

Leaf composition 
  

Narea W. Higher nutrient concentrations per leaf area or mass are linked with more 
rapid photosynthetic rates per leaf area or mass respectively (Wright et al. 
2004) 
D. Higher nutrient concentrations enable greater CO2 assimilation in times 
when water is available and is selected when the period of available water is 
shorter (Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 

D. Lower nutrient concentrations are associated with shade 
tolerance due to lower resource demand and lower limitation by 
CO2 (Givnish 1988) 

Nmass “ “ 

Parea “ “ 

Pmass “ “ 

Chlarea W. Higher Chl concentration per leaf area or mass may be linked with more 
rapid photosynthetic rates per leaf area or mass respectively (Chatuverdi, 
Raghubanshi & Singh 2011) 
D. Higher Chl concentrations may enable greater CO2 assimilation in times 
when water is available and is selected when the period of available water is 
shorter (Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 

W. Higher Chl concentration per leaf area or mass may be linked 
with greater light harvesting potential, of benefit in the shade 
(Chatuverdi, Raghubanshi & Singh 2011) 

Chlmass “ “ 

Cmass W.  Higher carbon concentration per mass is related to lower N and P 
concentrations per mass, which would be related to lower photosynthetic rates 
per leaf mass (Lambers & Poorter 2004) 

W.  Higher carbon concentration per mass is related to lower N 
and P concentrations per mass, which would be related to 
resource demand and assimilation rates as expected in shade 
adapted species (Elser et al. 2000; Lambers & Poorter 2004) 

N:P D. N:P is expected to be higher under conditions when  Pmass  is lower and 
growth is slower (Elser et al. 2000) 

W. N:P is expected to be higher under conditions when Pmass is 
lower and growth is slower, as would be expected for shade-
adapted species (Elser et al. 2000) 
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Chlarea:Narea NA W. Shade adapted species are expected to invest more strongly in 
light relative to carbon reactions, and thus to chlorophyll relative 
to Rubisco (Givnish 1988) 

Dleaf W. Higher stomatal conductance values integrated over leaf lifetimes would 
promote higher CO2 assimilation rates and these would be associated with 
higher C isotope discrimination; drought tolerant species would have lower 
stomatal conductance over the leaf lifetime (Farquhar, Ehleringer & Hubick 
1989; Donovan & Ehleringer 1994) 

W.  Higher stomatal conductance values integrated over leaf 
lifetimes would be associated with higher C isotope 
discrimination; shade tolerant species would have lower stomatal 
conductance over the leaf lifetime reflecting their lower CO2 

limitation (Farquhar, Ehleringer & Hubick 1989; Donovan & 
Ehleringer 1994) 

|πtlp| D. Drought tolerant species should have lower wilting points i.e., higher |πtlp| to 
withstand lower soil water potentials (Bartlett, Scoffoni & Sack 2012) 

NA 

Estimated photosynthesis   

Jmaxarea W. Higher values for photosynthetic parameters would be associated with 
greater rates of CO2 assimilation and growth (Farquhar, Ehleringer & Hubick 
1989; Evans 2013) 
D.  Higher values for photosynthetic parameters would be associated with 
greater rates of CO2 assimilation and growth (Farquhar, Ehleringer & Hubick 
1989; Evans 2013) in times when water is available and is selected when the 
period of available water is shorter (Maximov 1931; Grubb 1998; Scoffoni et 
al. 2011) 

D.  Higher values for photosynthetic parameters would be 
associated with greater rates of CO2 assimilation and growth 
(Farquhar, Ehleringer & Hubick 1989; Evans 2013), and shade 
tolerant species would be expected to have lower growth 
associated with their lower resource demand 

Jmaxmass “ “ 

Vcmaxarea “ “ 
Vcmaxmass “ “ 

ci:ca W. Higher stomatal conductance values integrated over leaf lifetimes would be 
associated with higher ci:ca and should correspond to greater photosynthetic 
rates; drought tolerant species would have lower stomatal conductance over the 
leaf lifetime (Donovan & Ehleringer 1994; Wang et al. 2017).   

D.  Higher stomatal conductance values integrated over leaf 
lifetimes would be associated with higher ci:ca; shade tolerant 
species would have lower stomatal conductance over the leaf 
lifetime (Donovan & Ehleringer 1994) 

A̅area W. Higher photosynthetic rates should relate to greater productivity and 
competition, and drought tolerant species would have lower stomatal 
conductance and photosynthetic rates averaged over leaf lifetimes because of 
stomatal closure for water retention during dry periods (Franks & Beerling 
2009)  
 

D. Shade tolerant species would have lower stomatal 
conductance and photosynthetic rates averaged over leaf 
lifetimes because of stomatal closure for water retention during 
dry periods (Franks & Beerling 2009) 

A̅mass “ “ 

g̅cleaf W. Higher stomatal conductance should enable greater photosynthetic rates 
and thereby greater productivity and competition (Franks & Beerling 2009) 
 

“ 

g̅cleaf:gmax W. Leaves operating at a greater proportion of their anatomical maximum 
stomatal conductance should enable greater photosynthetic rates and thereby 
greater productivity and competition (Franks & Beerling 2009) 

NA 
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D. Leaves operating at a greater proportion of their anatomical maximum 
stomatal conductance should enable greater photosynthetic rates in times when 
water is available and is selected when the period of available water is shorter 
(Maximov 1931; Grubb 1998; Scoffoni et al. 2011) 
 

gmax:Narea W. Drought tolerant species should have lower stomatal conductance relative 
to photosynthetic rate and therefore relative to leaf nitrogen to enable higher 
water use efficiency (Wright, Reich & Westoby 2001) 

NA 

Whole plant size and growth   
RGRdbh,RGRbiom W. Wetter forests have more resources and should support faster relative 

growth due to higher photosynthetic rates, while drought tolerant species have 
more conservative water use, so are not able to support fast growth due to low 
photosynthetic rates (Wright et al. 2004; Gibert et al. 2016) 

D. Shade adapted species tend to grow slowly due to reduced 
competition and resource demand (Givnish 1988) 

m W.  Wetter forests have more resources and should support faster relative 
growth due to higher photosynthetic rates, but species will be more sensitive to 
disturbances and when the conditions are not favorable, which may lead to 
higher m (Wright et al. 2010; McDowell et al. 2018) 
D. In dry forests species are grow under low water availability, which may lead 
to death due to xylem cavitation when droughts are more intense (McDowell et 
al. 2008, 2018). 
 

W. Shading is expected to drive mortality in wet forests and has 
been associated with carbon starvation (Kobe & Coates 1997; 
Wright et al. 2010; McDowell et al. 2018) 

H W. Wetter forests have greater resources leading to preferential selection for 
mean and maximum height growth for increased competition, while in drier 
forests plants have lower allocation to mean and maximum height growth to 
maximize below ground allocation and minimize hydraulic pathlength 
susceptible to tension-driven embolism (Koch et al. 2004; King, Davies & 
Noor 2006) 

NA 

Hmax “ NA 

SM D. Species of more competitive ecosystems would have smaller seeds for 
greater dispersal potential (Gross 1984). Additionally, drought tolerant species 
would benefit from greater allocation to seed reserves to enable seedlings to 
establish rapidly when water is available (Khurana & Singh 2004) 

W. Shade tolerant species would frequently benefit from greater 
allocation to seed reserves to enable establishment in low 
resource conditions (Gross 1984) 
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SUPPLEMENTARY MATERIALS 

Supplementary data captions (see attached Excel Workbook) 

Table S4.1. Range of species mean trait values in species from a Hawaiian Montane Wet Forest 

(MWF) and a Lowland Dry Forest (LDF), with mean and standard error (SE), and nested ANOVA 

results, where species were nested in forest types, and both were fixed as independent variables. 

 

Table S4.2. t-test results table of analysis comparing the LDF and MWF. 

 

Table S4.3. F-test results table of analysis comparing the variance in traits in the LDF and MWF. 

 

Table S4.4. Correlation matrix with trait-trait correlation coefficients of the complete data-set 

(MWF + LDF species). 

 

Table S4.5. Correlation matrix with trait-trait correlation coefficients of MWF species. 

 

Table S4.6. Correlation matrix with trait-trait correlation coefficients of LDF species. 

 

Table S4.7. Median values and 95% credible intervals of probability distribution of the posterior 

demographic parameters estimated using a hierarchical Bayesian approach for the complete data-

set (MWF + LDF species). 

 

Table S4.8. Correlations between traits hypothesized to be correlated with growth and mortality 

with P-values corrected using the Benjamini & Hochberg method (1950). 



 

 153 

Table S4.9. Results from forward selection, backward elimination and stepwise regression 

procedures of variable selection for models to predict RGRdbh, RGRbiom and m.  



 

 154 

Supplementary figure captions 

Figure S4.1. Relationships between growth rate in terms of above-ground biomass and A stomatal 

density and B maximum stomatal conductance. Black symbols, Montane Wet Forest MWF 

species; gray symbols, Lowland Dry Forest LDF. RGRbiom = 3.02e-03 + 5.51e-05 * d; RGRbiom = 0.01 

+ 0.004 * gmax.  *P < 0.05, **P < 0.01, ***P < 0.001. 

  



 

 155 

 

Figure S4.1 
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CHAPTER 5 

THE PREDICTION OF SPECIES AND ECOSYSTEM CLIMATE DISTRIBUTIONS ON 

THE BASIS OF MECHANISTIC FUNCTIONAL TRAITS  

 

ABSTRACT 

Anticipating shifts in the distributions of species and ecosystems under climate change depends 

on understanding species’ preferred climate and their physiological vulnerability. Traits related to 

physiological tolerance have been widely used as a predictor of species preferred climate, however 

this assumption has remained controversial and largely untested. Here we show that mechanistic 

traits enable strong prediction of the mean warmest temperature, rainfall and aridity of the climatic 

range of diverse Californian plant species (n=107) and ecosystems (n= 6). The ability to predict 

climate from traits was stronger for species with narrow climate distributions, and was improved 

by sampling for traits closer to species’ mean climates. Our analyses showed the importance of 

characterizing species’ physiological vulnerabilities. We found species with less xeromorphic 

traits are projected to face greater climate aridification. The ability to predict a species’ preferred 

climate from its traits has potential to improve global dynamic vegetation models to predict the 

impact of climate change and the design and prioritization of conservation efforts to protect the 

most vulnerable species. 
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INTRODUCTION 

Functional traits have long held promise for predicting species’ climatic niches (Soberón 2007; 

Laughlin et al. 2012; Peterson et al. 2012; Pollock et al. 2012; Shipley et al. 2017a; Vesk et al. 

2020). Plant traits that influence growth, reproduction and survival (Lavorel & Garnier 2002; 

Violle et al. 2007; Poorter et al. 2008; Adler et al. 2014; Uriarte et al. 2016) are typically adapted 

or acclimated to environmental conditions (Albert et al. 2010a) and related to habitat type (Shipley 

et al. 2017b), geographic limits (Stahl et al. 2014) and abiotic and biotic conditions (Schimper 

1898; Grubb 1998; Reich et al. 2003; Kattge et al. 2011; Drenovsky et al. 2012; Liu et al. 2021) 

(Appendix Table 5.1 and Fig. 5.1). Due to the rapid changes in climate, there is a growing need to 

characterize species’ preferred habitats for conservation, and thus, increasing importance of 

measuring functional traits. Considering all living organisms, y vs. x plots of climate versus trait 

values are rare, with only a few examples, such as the prediction of species’ native temperature 

distributions from body size (“Bergmann’s Rule”) across animal species, though this trend has 

been only sometimes supported (Geist 1986; Smith et al. 1995; Meiri & Dayan 2003). A greater 

potential would be expected for plants, as a rich literature describes how numerous phenotypic 

traits that influence growth, reproduction and survival (Lavorel & Garnier 2002; Violle et al. 2007; 

Poorter et al. 2008; Adler et al. 2014; Uriarte et al. 2016) are adapted or acclimated to 

environmental conditions (Albert et al. 2010a), and are linked to species’ habitat type (Schimper 

1898; Grubb 1998; Reich et al. 2003; Kattge et al. 2011; Drenovsky et al. 2012; Shipley et al. 

2017a; Liu et al. 2021), and geographic limits (Stahl et al. 2014) (Appendix Table 5.1 and Fig. 

5.1).  

Yet, despite many enterprising paleoecological studies that have retrodicted past climates 

from fossil leaf traits, based on current trait-climate relationships (Wolfe 1978, 1995; Van Der 
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Burgh et al. 1993; McElwain & Chaloner 1995; Kürschner et al. 1996; Lockheart et al. 1997; 

McElwain 1998; Jacobs 1999; Royer 2001; Beerling & Royer 2002; Hatté & Schwartz 2003; 

Kowalski & Dilcher 2003; Greenwood 2007; Adams et al. 2008; Peppe et al. 2011, 2018; Yang et 

al. 2011, 2015a; Roth-Nebelsick et al. 2014; Steinthorsdottir et al. 2016; Eley & Hren 2018), only 

one pioneering study has tested the prediction of current climates, showing for trees of North 

America that climate distribution limits can be weakly predicted from easy to measure traits (Stahl 

et al. 2014), and no studies have directly tested the prediction of the mean of species’ climatic 

distributions. The dearth of this approach may be due to many known factors that could in principle 

decouple climatic distributions from traits across species, including differences between 

fundamental and realized niches (Walter 1979; Brown 1984; Hanski et al. 1993; Wiens 2011; Lee-

Yaw et al. 2016; Pérez-Ramos et al. 2019; Sheth et al. 2020), the indirect relationship between 

functional traits and fitness (Laughlin et al. 2020), intraspecific trait variation (Albert et al. 2010a, 

b; Violle et al. 2012; Siefert et al. 2015; Fyllas et al. 2020), trait multi-functionality (Sack & 

Buckley 2020), many-to-one mapping of traits to function (Alfaro et al. 2005; Marks & Lechowicz 

2006) and nonequilibrium processes (Dobzhansky 1950; DeAngelis & Waterhouse 1987; Stevens 

1989; Ohlemüller et al. 2008; Sheth et al. 2020) (Appendix Table 5.2).  

Indeed, while strong adaptation of traits to climate has been reported for closely related 

species within lineages (Cochrane et al. 2016; Abdala-Roberts et al. 2018; Fletcher et al. 2018; 

Skelton et al. 2018; de la Riva et al. 2019; Ramírez-Valiente et al. 2020), and on average for 

communities across climatic gradients (Violle et al. 2007; Kichenin et al. 2013; Jager et al. 2015; 

Asner et al. 2017), relationships can be highly variable (Wright et al. 2005; Ordoñez et al. 2009; 

Moles et al. 2014; Costa-Saura et al. 2016). For example, across different species sets, the 

relationships of leaf nitrogen concentration with mean annual precipitation across species have 
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been reported as weakly positive (Mitchell et al. 2018), weakly negative (Santiago et al. 2004; 

Swenson & Weiser 2010) or not significant (Wright et al. 2005; Moles et al. 2014; Mitchell et al. 

2018). However, the weakness of some reported trait-climate associations may have arisen at least 

in part from a range of methodological issues (Appendix Table 5.2). 

Here, we provide a novel procedure to test whether traits can predict mean climate variables 

of diverse species and ecosystems (Appendix Table 5.1), across a strong precipitation gradient in 

California, a biodiversity hotspot (Appendix Table 5.3 and Fig. 5.2a). We sampled co-occurring 

species at few sites to reduce the effects of plasticity and ecotypic variation (Albert et al. 2010a, 

b; Violle et al. 2012; Siefert et al. 2015; Fyllas et al. 2020), used structural, hydraulic and economic 

traits (Appendix Table 5.1) that are putatively adapted to climatic aridity (Appendix Table 5.1; 

Table S5.1 and Fig. 5.1), and incorporated phylogenetic structure (Felsenstein 1985; Opedal et al. 

2015). 

We also clarified why species would deviate from the climate-trait relationship. We 

calculated species’ trait-climate mismatch (Appendix Table 5.4) as their residuals from the all-

species’ trait vs. climate relationship, representing the degree that a species’ traits do not conform 

to expectations based on its current climate distribution (Fig. 5.3a). We considered factors that 

might influence the trait-climate mismatch. Given the potential importance of plasticity and 

ecotypic sources of intraspecific variation, the trait-climate mismatch might be related to the 

difference in climate between the site at which species were sampled for trait measurements and 

the mean climate of its native range (Browne et al. 2019), the climate sampling bias (Appendix 

Table 5.4 and Fig. 5.3b). We also tested if the trait-climate mismatch values would be related to 

natural climatic distribution breadth, as species with broader climatic distributions would have 

greater likelihood of being sampled at a site further away in climate from the mean of their natural 
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distribution (Fig. 5.3c). Finally, we tested whether species with traits adapted to climatic aridity 

will be protected from future climate change, as would be expected if arid-adapted species are 

those occupying locations subject to stronger aridification. We thus tested potential associations 

of species’ traits and trait-climate mismatch with projected reduction of current climate niche 

space.  

 

METHODS 

Study sites 

We focused on six contrasting ecosystem types representing the range of biogeographic conditions 

in the California and Desert floristic provinces (CAFP, DFP; Appendix Table 5.3 and Fig. 5.2a). 

Together, the six sites contain vegetation of types that represent >247 km2 of California, or 70% 

of its the terrestrial land area (Thorne et al. 2017). The sampling locations were distributed across 

a gradient of climatic aridity, including desert (Sweeney Granite Mountains Desert Research 

Center, part of the University of California Natural Reserve System, UCNRS), coastal sage scrub 

(located in the Centro de Investigación Científica y de Educación Superior de Ensenada and Cañon 

de Doña Petra, Baja California), chaparral (Stunt Ranch Santa Monica Mountains Reserve, 

UCNRS), montane wet forest (Yosemite Forest Dynamics Plot, part of the ForestGEO network 

(Anderson-Teixeira et al. 2015)), mixed riparian woodland (Onion Creek, near the Chickering 

American River Reserve, UCNRS) and mixed conifer-broadleaf forest (Angelo Coast Range 

Reserve, UCNRS). 

To test predictions of climate-trait relationships for species and ecosystems, we sampled 

single representative ecosystems of widespread types. This approach is typical of ecophysiological 

studies comparing communities (Baltzer et al. 2008; Markesteijn et al. 2010; Zhu et al. 2013; 



 172 

Blackman et al. 2014; Falcão et al. 2015; Medeiros et al. 2019), and enables rigorous tests of 

species’ and ecosystem trait relationships to climate. However, we note that statistical differences 

between single specific ecosystems in trait means are not necessarily generalizable to the 

ecosystem type, but can represent hypotheses to be tested in future studies using replicate 

ecosystems of each type. 

 

Sampling for leaf trait measurements 

We sampled species among the most abundant at each site according to reserve managers and 

forest inventories. The species included in this study are taxonomically diverse, representing 31 

plant families, and including many cases of closely related species that occur in contrasting 

environments (Fig. S5.1). Further, fifteen of the 107 species were selected in two ecosystems (and 

one species, Eriogonum fasciculatum in three ecosystems; Table S10). For 3-5 individuals of 14 

to 26 species per site we collected a mature, sun-exposed and non-epicormic branch, with no signs 

of damage and herbivory using pole pruners or a slingshot. Branches were transported to the lab 

in dark plastic bags with moist paper and rehydrated overnight in a dark saturated atmosphere 

before harvesting current-year grown, fully expanded leaves for all subsequent analyses. For 

compound-leafed species, whole leaves were used. 

 

Functional trait measurements 

Maximum tree height (Hmax) of all species was compiled from the Jepson Herbarium database 

(Jepson Flora Project 2021). When not available, the Hmax was recorded as the maximum value 

reported on the Jepson eFlora website (https://ucjeps.berkeley.edu/eflora/). The remaining 

functional traits were measured for three sun leaves per individual. Leaf saturated mass was 
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measured using an analytical balance (0.01 mg; XS205; Mettler-Toledo, OH, USA). Leaf area 

(LA) was measured using a flatbed scanner and analyzed using the software (ImageJ; 

http://imagej.nih.gov/ij/). After scanning, leaves were oven-dried at 70º for 72 h before 

measurement of dry mass. Leaf mass per area (LMA) was calculated as lamina dry mass divided 

by LA (Pérez-Harguindeguy et al. 2013).  

The concentrations of leaf nitrogen and carbon per mass (Nmass and Cmass) and the carbon 

isotope ratio (d13C) were determined from oven-dried leaves by the by continuous flow dual 

isotope analysis (Center for Stable Isotope Biogeochemistry, University of California, Berkeley; 

CHNOS Elemental Analyzer interfaced to an IsoPrime100 mass spectrometer) (Kaklamanos et al. 

2020). Nmass and Cmass were converted to a leaf area basis (Narea and Carea) by multiplying by LMA. 

The carbon isotope discrimination (D13C; in parts per thousand, ‰) was calculated following 

Farquhar and Richards(Farquhar & Richards 1984) as: ∆#$% = 	 (
)*+,-./	(

)*+01,2

#3	(
)*+01,2

#4445
, assuming d13Cair 

of -8 ‰ (NOAA Global Monitoring Laboratory 2018). 

We measured the wood density (WD) from 5-cm branch segments after bark removal using 

the water displacement method (Pérez-Harguindeguy et al. 2013). Branch segments were 

immersed in water and the mass of the displaced water was recorded; branch segments were then 

oven-dried at 70º for 120 h and their dry mass was measured. WD was calculated as the segment 

dry mass divided by the mass of displaced water. Turgor loss point (πtlp) was measured in two 

leaves from each of the 3-5 studied individuals. We used vapor-pressure osmometers (Vapro 5520 

and 5600, Wescor, US) to obtain the osmotic concentration of the leaves and published calibration 

equations to estimate πtlp (Bartlett et al. 2012a). 
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Environmental variables for species’ native ranges 

We obtained species occurrence data from the Global Biodiversity Information Facility (GBIF; 

references available in the Extended data) and we used R software (version 3.4.4 (R Core Team 

2018)) to extract and calculate the mean, range and standard deviation of environmental variables 

of known occurrences across the range of distribution of each species. We focused on the 

relationships of traits with the mean climate of species distributions rather than the minimum or 

maximum values; assuming that gene flow occurs among populations of a given species across its 

native range, species’ mean phenotypic trait values would be related to their mean climate (Sexton 

et al. 2009). 

Occurrence records were downloaded using the ‘rgbif’ package (Chamberlain et al. 2019) 

and filtered to keep herbarium records since 1950 and remove incomplete (latitude or longitude 

missing) and duplicated records, non-natural occurrences (e.g., records from botanical gardens or 

planted urban trees) (Riordan et al. 2015; Chamberlain et al. 2019). We calculated species climatic 

envelopes using species occurrence points and not maps of distribution ranges because we were 

interested in the relationship between species’ traits and climate variables, whereas range maps are 

based on ecological niche models (Harrison 1997; Peterson 1999) (ENMs) that are partially 

calculated from environmental variables, and thus could potentially introduce circularity in our 

climate analyses (Šímová et al. 2018). 

We extracted 30 environmental variables from open-access raster layers, relating to air 

temperature (WorldClim, CRU (Hijmans et al. 2005)), precipitation (WorldClim (Hijmans et al. 

2005)), aridity (CGIAR-CSI, NCAR-UCAR (Zomer et al. 2008)) and soil characteristics (ISRIC 

Soilgrids (Hengl et al. 2017)) (see Table S5 for detailed description, download links and references 

for each variable). The raster layers with the same resolution were stacked using the stack function 
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from the ‘raster’ package (Hijmans & van Etten 2012) and the environmental variables for each 

occurrence record were extracted using the extract function from the ‘dismo’ package (Hijmans et 

al. 2011). Due to their coarse resolution, these environmental variables are effective in 

characterizing large scale patterns but do not reflect differences in microclimate, i.e., temperature, 

water and nutrient availability, irradiance and soil composition (Perez & Feeley 2020). 

 

Species’ vulnerability to climate change 

We estimated the climate that would be experienced by each species according to future climate 

projections. The species-level projected future climate means were calculated as the average of 

four models that perform best in simulating both global and California climate (Lynn et al. 2015): 

the GFDL-CM3 (warm-dry; NOAA Geophysical Fluid Dynamics Laboratory, Princeton, N.J., 

USA), CNRM-CM5 (cool-wet; Centre National de Recherches Meteorologiques, Meteo-France, 

and Centre Europeen de Recherches et de Formation Avancee en Calcul Scientifique, Toulouse, 

France), CCSM4 (intermediate model; The National Science Foundation, The Department of 

Energy, and the National Center for Atmospheric Research, United States) and HadGEM2-CC 

(most distinct from the previous three; Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, 

UK). From the open-access raster layers of the four models above (downloaded from the 

WorldClim website (Hijmans et al. 2005)), we extracted a total of 19 bioclimatic variables 

obtained for two climate change scenarios, the Representative Concentration Pathway (RCP) 4.5 

and RCP 8.5 in 2070.  The RCP 4.5 represents a moderate optimistic emission, whereas the RCP 

8.5 represents a “high baseline” emission scenario (i.e., 90th percentile of a future without climate 

policy; a high emissions scenario would be the 95th percentile). We present analyses using the RCP 

8.5 scenario in the main text and results from the RCP 4.5 in the supplemental files to emphasize 
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the potential consequences of increased emissions and expansion of coal use on species 

distributions, though this extreme scenario may be averted if policies aimed at reducing emissions 

continues to expand (van Vuuren et al. 2011; Ritchie & Dowlatabadi 2017). 

After obtaining the current and projected future climate for the coordinates of all 

occurrences of each species, we calculated the percent of current occurrences that under projected 

future climates would shift to higher Tmax and/or lower MAP by ≥ 2 standard deviations (SDs) of 

the current climate distribution (projected loss of climatically suitable habitats, plch, %; Table 

S5.13). Since in a normal distribution 95% of the data would be distributed 2SDs above or below 

the mean, occurrences outside this range were considered potential statistical outliers from typical 

species’ climatic distribution. Thus, these occurrences were removed for the calculation of 

projected future species climatic distributions (Fig. S5.7). We used a 2 SD difference from the 

mean as a threshold because the typically recommended 3 SD threshold would include biologically 

unlikely values, such as negative MAP and Tmax close to 50°C (Iglewicz & Hoaglin 1993). 

 

Phylogenetic reconstruction 

Sequences for all 107 species were automatically downloaded from GenBank and aligned with 

MAFFT (multiple alignment using fast Fourier transform; Matrix Maker; 

github.com/wf8/matrixmaker) (Freyman & Thornhill 2016). We focused on eight genes, ITS, 

matK, MatR, ndhF, rbcl, trnL-trnF, 18S, and atpB. Each species was represented with at least one 

up to seven gene accessions, with an average of 3.3 genes. The genes were then concatenated for 

each species, and a maximum likelihood analysis of the phylogenetic relationships was conducted 

using a General Time Reversible (GTR) model of substitution (SeaView version 4) (Gouy et al. 

2010). To calibrate branch lengths, we used the chronos function in the R package ‘ape’(Paradis 
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& Schliep 2019). The species relationships recovered closely matched the Angiosperm Phylogeny 

Group consensus (Stevens 2019). The output of species branch lengths was utilized to incorporate 

species relatedness into downstream analyses. 

 

Statistical analyses 

All statistical analyses were performed and plots created using R software (versions 3.4.4 (R Core 

Team 2018) and 4.0.2 (R Core Team 2020)) and packages available from the CRAN platform. To 

test for differences among ecosystems in the mean climate their constituent species’ distributions, 

we performed one-way ANOVAs with each environmental parameter as the dependent variable 

and ecosystem as the independent variable using the aov function from the ‘stats’ package 

followed by a Tukey test at 5% probability when differences were detected using TuckeyC function 

from the package with the same name (Sokal & Rohlf 2012; R Core Team 2018). To test for 

differences in functional traits among ecosystems, we performed nested ANOVAs using the aov 

function, with functional traits coded as the dependent variable, ecosystem as the independent 

variable and species nested within ecosystems, followed by a Tukey test at 5% probability when 

differences were detected (Sokal & Rohlf 2012; R Core Team 2018). Trait and climate variables 

that did not fulfill the normality and homoscedasticity assumptions were log10-transformed prior 

to analyses. Variables that included both negative and positive numbers were incremented by a 

constant equal to the lowest species mean +1 before log-transformation, such that 1 was the lowest 

value for that variable (see Tables S5.2 and S5.6 for detailed description). Throughout the text, 

traits and climate variables were abbreviated in uppercase letters to differentiate them from the 

calculated indices of variation (Appendix Table 5.4), abbreviated in lowercase letters. 
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 To summarize the variation in functional traits and the mean climate of the range of 

distribution of species, we performed principal component analyses (PCAs) on species means of 

eight nonredundant functional traits and climate variables using the prcomp function in the ‘stats’ 

package (R Core Team 2018). All variables were log-scaled prior to analyses. We extracted the 

species scores (scaled to range from -1 to 1) of PC axes 1 and 2, and used them to summarize trait 

and climate main axes of variation in subsequent analyses. 

To test species’ trait-environment relationships while explicitly accounting for species 

relatedness, we performed phylogenetic generalized least-squares analyses (PGLS (Felsenstein 

1985; Freckleton et al. 2002; Harmon 2019)) using the pgls function from the ‘caper’ package 

(Orme et al. 2018) with lambda (l) optimized using maximum likelihood. For cross-species 

analyses that required single values for given species, for the 15 species that were collected at more 

than one site, we calculated the mean trait values across the sites and assigned those species to the 

site most similar in aridity index (AI) to the mean for the range of distribution of that species. 

Analyses were performed for untransformed and log-transformed data, to test for either 

approximately linear or non-linear (i.e., approximate power-law) relationships respectively. To 

test trait-environment relationships across sites we calculated Pearson’s correlations for 

untransformed and log-transformed data, and report the higher correlation value in the text (Table 

S5.4). 

To test the prediction of climate from traits, we applied statistical regression methods (Stahl 

et al. 2014) after considering issues relating to causality. While in regressing or predicting a y- 

from an x-variable, in the purest sense, y should causally depend on x, and not vice versa. However, 

studies of traits and climate, causality might run either or both ways. Thus, a species’ traits may 

depend on climate occupied during adaptation and acclimation, but the climate occupied by a 
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species would depend on its traits during processes such as immigration and community assembly. 

Notably, over very long scales of space and time (beyond those in this study), plant traits can 

influence climate (Boyce et al. 2009; Anderegg et al. 2019). To test the power of multiple traits to 

predict the mean environment of the distribution of each species within an evolutionary 

framework, we built multiple regression models using PGLS. We built models to predict maximum 

temperature of the warmest month (Tmax), mean annual precipitation (MAP), aridity index (AI), 

soil pH (SoilpH; high soil pH is associated with low concentration of exchangeable soil phosphate 

and iron (Tyler 1996)) and Climate-PC1 as dependent variables. We included eight of the 10 

functional traits measured in this study as independent variables; to avoid strong collinearity, given 

that we included Nmass, we did not include Narea and C:N  in this analysis. To select the trait-based 

models that best predicted the target climate variables, we tested all possible predictor 

combinations and compared models using AICc (code available on C.M.’s GitHub). To determine 

the percentage contribution of each trait to the prediction of climate variables, we performed a 

hierarchical partitioning analysis using the ‘hier.part’ package (Chevan & Sutherland 1991; Walsh 

& Mac Nally 2013). 

To test the influence of intraspecific variation on functional traits, for the 15 species that 

were sampled at more than one site we calculated a between-site variation index (bsv; Appendix 

Table 5.4) values for trait and climate variables, 6789 =
(;<=>/;9?>)

;<=>
, where i represents the species 

and maxi and mini are the maximum and minimum values of a trait or climate variable across sites 

(based on a commonly-used index, the phenotypic plasticity index (Valladares et al. 2000); Table 

S5.10). We analyzed the relationship across species among the trait and climate bsv indices using 

PGLS. 
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To test the ability to predict species’ trait values from species’ mean climate variables, we 

determined the relationships between the first axis of the Traits-PCA against that of the Climate-

PCA using PGLS. For convenience of presentation, we re-scaled Climate-PC1 values (multiplied 

all scores by -1) such that the relationship between Traits-PC1 and Climate-PC1 was positive, and 

greater Climate-PC1 represented greater climatic aridity, as Traits-PC1 generally corresponded to 

traits adapted to aridity (see Results “Trait variation in relation to climate across ecosystems” and 

Table S5.5). The residuals from this model were considered as the “trait-climate mismatch” (tcm), 

i.e., an estimate of the amount of trait variation not explained by climate (Appendix Table 5.4). By 

this definition, species with higher tcm values had higher values overall for traits corresponding to 

adaptation to aridity than would be expected from the all-species trait-climate relationships. Given 

the definition of tcm as residuals from the trait-climate relationship, tcm was statistically 

independent of environmental variables and the Climate-PC1 (PGLS; Table S7). Thus, we avoided 

the circularity that would have arisen if we had defined tcm as the residuals of climate vs. traits, 

given our subsequent tests of the relationship of tcm with climate variables, that is, climate 

sampling bias (csb) and the breadth of species’ climatic ranges. We calculated  csb as the difference 

in a given climate variable between the sampling location and the mean of the range of distribution 

of a species (Browne et al. 2019) (e.g., A76BCD = EFGH9IJ − EFG;J<?), by analogy to common 

garden studies that estimate “climate transfer distance” as the difference in a climate variable  

between the mean of the species’ distribution and the location of the common garden. We defined 

the breadth of a species’ climate niche as the 95th percentile – 5th percentile value. We tested 

whether across species, the tcm depended on the csb or the breadth of the climatic range using 

PGLS.  
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We tested the relationships of the projected loss of climatically suitable habitats (plch, %) 

with species’ traits, current climatic distribution means and tcm using PGLS. 

 

RESULTS 

Trait variation in relation to climate 

Species’ differed strongly in the ten measured functional traits within and across the six California 

ecosystems (Table S5.2 and Fig. 5.2c-j). For individual traits, the ecosystem types explained 15-

40% of variation, the species 42-79%, and 2-18% of variation was intraspecific (nested ANOVAs; 

Table S5.2). Species’ traits varied with climatic aridity as hypothesized based on mechanistic 

theory (Appendix Table 5.1 and Fig. 5.1). Thus, species of more arid ecosystems had lower water 

potentials at wilting point (i.e., more negative ptlp), higher leaf mass per area (LMA), nitrogen per 

leaf area (Narea), carbon-to-nitrogen ratio (C:N) and wood density (WD). By contrast, species of 

wetter ecosystems possessed traits associated with competitive resource use and photosynthetic 

productivity, including larger maximum height (Hmax), carbon isotope discrimination (D13C), leaf 

area (LA) and nitrogen per leaf mass (Nmass), and with anti-herbivory defense, such as carbon per 

leaf mass (Cmass). 

The strong covariation across California ecosystems (Baldwin 2014) in climate and in trait 

values was highlighted by principal component analyses (Climate-PCA and Traits-PCA). The first 

climate axis (Climate-PC1; Appendix Table 5.3and Fig. S5.2) encapsulated 79.1% of variation 

and corresponded to variables associated with climatic warmth and aridity across California, 

including higher mean annual temperature (MAT), maximum temperature of the warmest month 

(Tmax), lower aridity index (AI), and annual precipitation (MAP), and more basic soil (SoilpH). The 

second axis, Climate-PC2, explained 15.5% of variation and was related to the minimum 
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temperature of the coldest month (Tmin). The Traits-PCA also showed a strong correspondence 

with adaptation to aridity. Traits-PC1 explained 37.2% of variation, with high values 

corresponding to trait xeromorphism, i.e., small LA, high LMA, high WD, low Nmass and ptlp. Traits-

PC2, which explained 23.8% of variation, was strongly related to Hmax and Cmass (Table S5.5 and 

Fig. S5.2). Species’ Traits-PC1 scores increased on average from wetter to drier ecosystems (one-

way ANOVA; p<0.01; Table S5.6), and correlated with Climate-PC1 (phylogenetic generalized 

least squares, rphy = 0.59; p<0.001; Table S5.7 and Fig. 5.3a), and species’ Traits-PC2 scores were 

correlated with Climate-PC1 and 2 (rphy = 0.46 and -0.40, respectively; p<0.001; Table S5.7). 

 Across the 107 species of six California ecosystems, individual species traits associated 

with adaptation to aridity were strongly associated with lower Climate-PC1 scores, and/or 

individual climate traits related to aridity (Table S5.7 and Figs. 5.2b, S5.1).  

 

Trait-based climatic niche prediction 

The strong relationships of species’ traits with climate variables justified reversing the axes, to use 

species’ traits to predict the mean climate of their native distributions. We found that traits 

considered individually and in combination had substantial predictive power for multiple climate 

variables. Species’ Climate-PC1 scores were predicted by |ptlp| (Fig. 5.2b), LMA, Narea, C:N, WD, 

D13C, LA, Nmass and Cmass (|rphy|= 0.22-0.63; p < 0.05; Table S5.7 and Fig. S5.5), and species’ 

Climate-PC2 scores by Traits-PC2, D13C, C:N, Hmax, Nmass and Narea (|rphy| = 0.22-0.47; p < 0.05; 

Table S5.7). Across ecosystems, species’ average values for Climate-PC1 was predicted by those 

for |ptlp| (Fig. 5.2b-inset), Hmax, WD and Cmass (|rsite| = 0.83-0.94; p < 0.05; Table S5.4 and Fig S5.5-

insets), though species’ average Climate-PC2 were not predicted by average species trait values 

across ecosystems (Table S5.4). Individual traits also predicted individual mean climate variables 
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for species ranges, including MAT, Tmax, Tmin, MAP, Pwet, Pdry, AI, GDD and SoilpH (|rphy| ranged 

from 0.2 to 0.7; p < 0.05; Table S5.7). 

We applied two multivariate approaches to further validate the trait-based prediction of the 

mean of species’ climate distributions. First, we used phylogenetic regression models to predict 

Climate-PC1 based on eight traits selected for nonredundancy (Appendix Table 5.1), from which 

six traits were selected as best predictors of Climate-PC1, i.e., in order of importance, according 

to hierarchical partitioning analysis,  D13C, LMA, |ptlp|, Cmass, WD and Nmass; adjusted Rphy2 = 0.59; 

p < 0.001; Table S5.8 and Fig. 5.4a). When averaging species’ values for given ecosystems, the 

Climate-PC1 predicted by multivariate phylogenetic regression strongly predicted the average of 

observed Climate-PC1 scores (Rsite2 = 0.87; p < 0.01; Table S5.4 and Fig. 5.4a-inset). Multivariate 

phylogenetic regression models based on functional traits also predicted individual environmental 

variables, including Tmax, MAP, AI and SoilpH; the traits that were selected in the best-fit models 

for all four environmental variables and Climate-PC1 were D13C, LMA and Cmass (adjusted Rphy2 

ranged from 0.48 to 0.66; p < 0.001; Table S5.8 and Figs. 5.4a and S5.4). In a second approach, 

we used Traits-PC1 to predict Climate-PC1 across species (Rphy2 = 0.39; p<0.001; Table S5.9 and 

Fig. 5.4b), and averaging scores for species, across ecosystems (Rsite2 = 0.73; p < 0.05; Table S5.4 

and Fig. 5.4b-inset).  

 

Species trait-climate mismatch 

To test why species would deviate from the climate-trait relationship, we estimated species’ trait-

climate mismatch (tcm). We defined species’ tcm as their residuals from the across-species 

relationship of Trait-PC1 to Climate-PC1; higher values correspond to traits that are more 

xeromorphic than expected based on the mean climate of their distribution (Fig. 5.3a). The species 
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with highest tcm, i.e., those for which climate was most weakly predicted from traits, included 

especially those with high LMA and low ptlp , such as the conifers of the montane wet forest and 

mixed riparian woodland (Abies concolor, A. magnifica, Calocedrus decurrens, Juniperus 

occidentalis, Pinus albicaulis, P. contorta, P. lambertiana) and some of the most drought-tolerant 

species of each ecosystem (Adenostoma fasciculatum, Arctostaphylos nevadensis, Quercus 

vacciniifolia, Arctostaphylos patula and Larrea tridentata). 

 We tested whether tcm might arise due to plastic or ecotypic trait adjustment to climate, as 

this would may result in distance between species’ trait values in the sampled ecosystem relative 

to the mean of their natural distribution. First, we confirmed the importance of intraspecific trait 

variation with respect to climate, focusing on the fifteen of the sampled species that occurred in 

two ecosystems. Across the 15 species, indices for the intraspecific variation in traits between sites 

(“between site variation indices”, bsv, based on “plasticity index”(Valladares et al. 2000); 

Appendix Table 5.4) were correlated with indices for variation in climate between sites: bsv in 

|ptlp| was correlated with bsv in AI, MAP and Pwet; bsv in Nmass and N:C were correlated with bsv in 

GDD and/or Tmin; and bsv in Cmass was correlated with bsv in with SoilpH (|rphy| = 0.59-0.62; p < 

0.05; Tables S5.10-S5.11 and Fig. S5.6). 

 Given the importance of plastic and/or ecotypic trait variation with climate, we tested its 

potential to explain species’ tcm. Overall, species were sampled in locations representative of the 

mean of their natural climate distribution; the climate variables for the six ecosystems were 

correlated with the average of the mean climate variables of their component species’ natural 

distributions (Tmax, MAP, AI, SoilpH and Climate-PC1 scores; ordinary least squares regression, |r| 

= 0.85-0.96; p<0.05; Table S8; Fig S3). However, the matching of climate between sampling 

location and natural distributions varied across species. Indeed, considering the two variables most 
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important for defining the aridity gradient, Tmax and MAP, across species, tcm was related to the 

“climate sampling bias” (csb), i.e., the difference in climate between the species’ sampling site 

and the mean climate of its native range (Fig. 5.3b) (|rphy| = 0.21-0.24; p<0.05; Table S5.7 and Fig. 

5.5a-b). Thus, as expected based on plastic or ecotypic adjustment, species that were sampled at 

sites more arid than the mean of its range, had traits more xeromorphic than expected from the 

mean climate of its distribution (Figs. 5.3b and 5.5a-b). Additionally, species’ absolute values for 

trait-climate mismatch (|tcm|) were related to their climatic breadths (95th percentile – 5th 

percentile; Appendix Table 5.4) in Tmax (rphy = 0.24; p<0.05; Table S5.7 and Fig. 5.5c), as expected 

given that more widely-distributed species would be on average adapted to climates more different 

from the mean of their natural distribution (Fig. 5.3c). For Tmax, across species, csb and climatic 

breadth were statistically independent and each was associated independently with tcm (explaining 

23% and 77% respectively of the overall relationship of tcm with csb and climatic breadth; 

(hierarchical partitioning; Rphy2 = 0.16; p<0.001; Table S5.12). For MAP, species’ csb and climatic 

breadth values were correlated (rphy = 0.51; p<0.05; Table S5.7), and csb was sufficient to explain 

the relationship with tcm with no independent influence of climatic breadth (hierarchical 

partitioning; Rphy2 = 0.06; p<0.05; Table S5.12).  

 

Potential of traits to protect from climate-change related loss of climatically suitable habitats 

We found that species with xeromorphic traits will not be protected from anticipated climate 

aridification. We estimated species’ vulnerability to loss of climatically suitable habitats under 

future climate aridification (De Boeck et al. 2011; Duan et al. 2016; Hamerlynck et al. 2000) the 

percent of currently occupied locations that are projected for the year 2070 (Table S5.13) to 

increase in Tmax or decrease in MAP by more than two standard deviations from the current mean, 
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the projected loss of climatically suitable habitats (plch, %; Appendix Table 5.4). Species’ plch 

varied across species from 0 to 93%, with a median of 53% (Table S5.13); species with highest 

plch were Ceanothus incanus, Ceanothus velutinus, Chamaebatia foliolosa and Corylus cornuta 

(Fig. S5.3). On average, the plch was higher for species of wetter ecosystems (one-way ANOVA; 

p < 0.001; Table S5.6 and Fig. 5.6a), and those currently distributed with higher mean MAP and 

lower Tmax (more negative Climate-PC1 scores; rphy = -0.50; p < 0.001; Table S5.7 and Fig. 5.6b). 

Species with higher D13C, i.e., lower integrated water use efficiency, face greater plch (rphy = 0.20; 

p < 0.05; Table S5.7 and Fig. 5.6c). Further, species with higher tcm, i.e., those more xeromorphic 

than expected for their climate, face higher plch (rphy = 0.23; p < 0.05; Table S5.7 and Fig. 5.6d). 

 

DISCUSSION 

Our findings highlight the strong potential for traits to be used to estimate species’ climate 

adaptation in the present and to anticipate their future vulnerability. Mechanistic functional traits 

have strong power for prediction of the climate of species’ distributions and ecosystems. The 

striking correspondence of traits with climate variables would have arisen from millennia of 

evolution and community assembly matching plant physiology to climate (Mitchell et al. 2018), 

with a further reinforcement arising in cases when the ecosystems themselves influenced their 

local climate via the water cycle, soil accumulation and other processes (Bounoua et al. 2010; 

Crous 2019; Boyce & Lee 2010; Boyce et al. 2009; Wang et al. 2009). The generally poor 

explanatory power of many previous studies testing trait-climate relationships for diverse species 

at large geographical scales (Wright et al. 2001; Moles et al. 2014; Fyllas et al. 2020) may have 

arisen due to combining data for traits with less mechanistic significance, and from combining 

data across studies using varying methodology, and in addition to mismatch between species mean 
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climate and the local climate of their sampling location, especially when compiling large databases 

(Violle et al. 2007; Moles et al. 2014; Taugourdeau et al. 2014; Šímová et al. 2018; van der Plas 

et al. 2020; Vesk et al. 2020). Our approach depended on a novel procedure, including the 

measurement of multiple mechanistic traits for coexisting species using standardized protocols, 

and accounting for species’ evolutionary histories. This approach resolved relationships despite 

many potential sources for mismatch of species’ traits from their current climate distributions 

(Appendix Table 5.2). In particular, our quantification of tcm identified a strong influence of intra-

specific variation due to species’ plastic and ecotypic adjustments on species’ deviation from the 

all-species climate versus trait relationship (Table S5.10), such that climate sampling bias and 

climatic range breadth influence tcm (Table S5.7).  

 Thus, the great potential for prediction of species’ climate preferences from traits would 

be improved by sampling each species near to the center of its climate distributions. Further, we 

note that additional traits may significantly improve predictive power. Here, we focused on ten 

traits with theoretically-grounded support for a mechanistic importance, yet additional traits that 

contribute to vital rates and community assembly (Kraft et al. 2008, 2015; Poorter et al. 2008; 

Violle et al. 2011; Adler et al. 2014; Uriarte et al. 2016; Medeiros et al. 2019) include hydraulic 

vulnerability, stomatal and vein traits, photosynthetic responses and other nutrient concentrations, 

and in addition, life history traits such as seed size, especially if other life forms including non-

woody species were considered. Furthermore, finer scale climate data, including microclimate 

based on topography and vegetation cover, and higher resolution of trait variation within and 

among populations of given species would likely increase prediction capacity.  

 The majority of the California species sampled are predicted to suffer larger loss of 

climatically suitable habitats under future climate warming (Table S5.13). Notably, this analysis 
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focused on mean projected climate variables is conservative as an estimate of niche loss, as it does 

not account for temperature and precipitation extremes, including multi-year droughts (Parsons et 

al. 2018; Germain & Lutz 2020). Species distributed in cool and wet climates or with a broader 

native range of precipitation face a greater risk of niche contraction under a shifting climate (Table 

S5.7 and Fig. 5.6a-b). This analysis emphasizes the urgency of quantifying species’ climate 

vulnerability, as species with xeromorphic traits are not those facing the most extreme climate 

aridification.  

This approach holds immense promise for key applications for management of native, 

endemic and rare species in many systems worldwide. First, trait-based estimation of species’ 

current (and projected future) natural climatic ranges would enable existing and next generation 

dynamic global vegetation models (DGVMs) used to predict climate change impacts to improve 

the representation of range limits of species and plant functional types (Stahl et al. 2014; van 

Bodegom et al. 2014; Yang et al. 2015b, 2019). Second, the prioritization of species for 

conservation can ultimately be improved based on traits, i.e., focusing on those species most 

vulnerable (Foden et al. 2013; Loiseau et al. 2020). Third, the designation of habitats for the 

establishment of ex-situ conservation sites, can be informed by species’ traits, especially for 

species reduced to relictual populations,  extending previous approaches based on taxonomic and 

phylogenetic information (Brum et al. 2017) to prioritize physiological conservation efforts for the 

most vulnerable species. 
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FIGURE CAPTIONS 

Figure 5.1. The potential to predict plant climate distributions from mechanistic functional traits. 

Multiple traits are adapted and/or plastically adjusted to climatic aridity, from less xeromorphic in 

cool and wet climates to more xeromorphic in warm and dry climates (see Appendix Table 5.1 for 

expectations and rationales based on theory and previously published empirical work for each 

trait). Indeed, traits often adapt in suites due to co-optimization or trade-offs, conferring ensemble 

advantages in given environments. For example, “economics spectrum” traits tend to be correlated, 

such that rapidly-growing species of high resource environments have higher foliar nutrient 

concentrations and photosynthetic rates but shorter lived leaves than slow-growing species of 

lower-resource conditions (Wright et al. 2004; Reich 2014). Thus, xeromorphic species are 

expected to have smaller maximum heights (Hmax), and to have leaves with lower turgor loss point 

(πtlp; corresponding to more concentrated cell solutes as depicted) and lower carbon discrimination 

rate (D13C; corresponding to conservative stomatal opening as depicted), that are smaller in area 

(LA), higher in leaf mass per area (LMA; corresponding to denser or thicker leaves, as depicted), 

lower in leaf nitrogen per mass (Nmass) but higher in nitrogen per area (Narea; depicted with 

greenness), lower in leaf carbon per mass (Cmass; corresponding to greater herbivory, as depicted), 

and higher carbon to nitrogen ratio (C:N; reflecting greater investment in cell wall relative to 

chlorophyll as depicted) and higher wood density (WD, corresponding to more xylem cell wall 

tissue per area, as depicted). Created with BioRender.com. 

 

Figure 5.2. Ecosystems distributed across an aridity gradient from Baja California (Mexico) to 

northern California (US), and aligned adaptive trait variation. (a) Photographs of the study 

ecosystems sampled in the peak of the Spring growing season, set in a map showing the rainfall 
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gradient. (b) Illustration of an across species climate-trait relationship: the first axis of a principal 

components analysis of species’ climate variables (Climate-PC1) plotted against turgor loss point, 

πtlp (main panel; phylogenetic generalized least squares; l = 0.83; Table S5.7) and ecosystems 

(inset; ordinary least squares; Table S5.6); symbols as in Fig. 5.2a (**p < 0.01; ***p < 0.001). (c-

j) Variation across ecosystems, from wettest to driest, in the eight mechanistic functional traits 

included in predictive models (Fig. 5.4), (c) maximum plant height (Hmax; m), (d) leaf area (LA; 

cm2), (e) carbon isotope discrimination (D13C; ‰), (f) carbon per mass (Cmass; mg.g-1), (g) absolute 

turgor loss point (πtlp; -MPa), (h) wood density (WD; g.cm-3), (i) leaf mass per area, (LMA, g.m-2) 

and (j) nitrogen per mass (Nmass,; mg.g-1). All eight traits were significantly different across 

ecosystems (Nested ANOVAs; Table S5.2; p<0.001). 

 

Figure 5.3. The association of traits with climate across species and ecosystems, the derivation of 

trait-climate mismatch (tcm), and two potential influences arising from intra-specific trait 

variation. Symbols represent species of different ecosystems, with darker shades of blue 

representing greater water availability: mixed conifer-broadleaf forest (dark blue circles), mixed 

riparian woodland (triangles), montane wet forest (inverted triangles), chaparral (diamonds), 

coastal sage scrub (squares), desert (light blue circles). (a) A principal components analysis of 

species’ climate variables and trait variables yielded first axes (Traits-PC1 and Climate-PC1, 

respectively) that represented climatic aridity and trait values associated with adaptation to aridity, 

and the two are strongly related across species (main plot; phylogenetic generalized least squares; 

l = 0.85; Table S5.7) and ecosystems (inset; ordinary least squares; Table S5.6). Thus, the 

residuals from this relationship represent the trait-climate mismatch (tcm) where a species with 

higher values possesses traits more xeromorphic than expected from the all-species relationship. 
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(b) Given that species’ traits may adjust plastically or genetically (ecotypically) in relation to 

climate, the tcm may depend on the “climate sampling bias” (csb), i.e., the difference between the 

climate of the species’ sampling site (red or blue circle) and the mean climate of its native range 

(black star), where species sampled from a location more arid than the mean of its distribution 

would have a higher csb (red), and species sampled from a less arid location would have a lower 

csb (blue). (c) The magnitude of |tcm| may also depend on the breadth of species’ climatic ranges, 

as species with wider climatic ranges (blue versus red) will have a larger likelihood of their traits 

being adjusted by adaptation and plasticity to sites further from their mean (black squares) (**p < 

0.01; ***p < 0.001). 

 

Figure 5.4. Prediction of species’ native climate distribution means based on mechanistic 

functional traits for 107 species from six California ecosystems, demonstrated using two 

multivariate approaches. Symbols represent species of different ecosystems, with darker shades of 

blue representing greater water availability: mixed conifer-broadleaf forest (dark blue circles), 

mixed riparian woodland (triangles), montane wet forest (inverted triangles), chaparral 

(diamonds), coastal sage scrub (squares), desert (light blue circles). (a) Relationship of the first 

axis of a principal components analysis of species’ climate variables (Climate-PC1obs) to predicted 

values for Climate-PC1 based on functional traits using multiple regression: Climate-PC1pred = -

3.31 – (0.14 × LMA) - (0.18 × WD) – (0.04 × Nmass) + (1.13 × Cmass) + (0.70 × D13C) – (0.17 × ptlp); 

(phylogenetic generalized least squares, PGLS; l = 0.80; Table S5.8). (b) Relationship between 

the Climate-PC1obs and predicted values for Climate-PC1 based on the first axis of a principal 

components analysis of species’ traits, Traits-PC1 (Climate-PC1pred Traits-PC1; Fig 5.3a; PGLS; l = 

0.87; Table S5.9). Main plots show relationships for species, and inset plots show the relationships 
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among ecosystem mean values, with the dashed lines representing the 1:1 relationship and dotted 

red lines the confidence intervals (*p < 0.05; **p < 0.01; ***p < 0.001). 

 

Figure 5.5. Testing hypotheses for influences on trait-climate mismatch (tcm; the residuals from 

the all-species climate vs. traits relationship shown in Fig 5.3a) arising from intra-specific trait 

variation. Relationship between trait climate mismatch and species’ climate sampling bias in terms 

of (a) maximum temperature of the warmest month, csbTmax, and (b) mean annual precipitation, 

csbMAP (PGLS; l = 0.86 and 0.89, respectively; Table S5.7). (c) Relationship between the absolute 

trait-climate mismatch, |tcm|, and the range in maximum temperature of the warmest month, Tmax, 

of species climatic distributions (PGLS; l = 0.48; Table S5.7). Symbols represent species of 

different ecosystems, with darker shades of blue representing greater water availability: mixed 

conifer-broadleaf forest (dark blue circles), mixed riparian woodland (triangles), montane wet 

forest (inverted triangles), chaparral (diamonds), coastal sage scrub (squares), desert (light blue 

circles) (*p < 0.05). 

 

Figure 5.6. Species’ vulnerability to future climate aridification. Projected loss of climatically 

suitable habitats, plch, is the species predicted climatic niche loss under a pessimistic (“business-

as-usual”) climate change scenario in 2070 (Representative Concentration Pathway, RCP 8.5; see 

Table S5.13 for results from a moderate emission scenario, RCP 4.5). Symbols represent species 

of different ecosystems, with darker shade of blue representing greater water availability: mixed 

conifer-broadleaf forest (dark blue circles), mixed riparian woodland (triangles), montane wet 

forest (inverted triangles), chaparral (diamonds), coastal sage scrub (squares), desert (light blue 

circles). (a) Variation across ecosystems in plch. Each point represents a species (analysis of 
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variance; Table S5.10; p<0.001). Relationships (phylogenetic generalized least squares; l ranged 

from 0.46 to 0.59; Table S5.7) between (b) plch and the first axis of the climate PCA, Climate-

PC1, (c) the log-transformed plch and log-transformed carbon isotope discrimination, D13C, and 

(d) plch and the trait-climate mismatch, tcm. *p < 0.05; **p < 0.01; ***p < 0.001. 
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Fig. 5.2 
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Fig. 5.3 
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Fig. 5.4 
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Fig. 5.5 
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Fig. 5.6
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Appendix Table 5.1. Traits sampled for 107 California native woody species from six ecosystems distributed across a range of 

precipitation from Baja California (Mexico) to northern California (US), including symbols, units, and hypotheses for adaptation to 

climatic aridity (i.e., low precipitation, high temperature and high soil pH), based on previously published studies on a range of species, 

with references; a negative trend (indicated by “-”) indicates the trait would decrease from the mixed conifer-broadleaf forest to the 

desert, and a positive trend (indicated by “+”), indicates the trait would increase (Fig 5.1). 

Trait Symbol Units Hypothesized relationship with climatic aridity 
Reference for trends 
across species/ 
across ecosystems 

Maximum plant 
height Hmax m 

-; when resources are abundant a greater height would enable stronger competition, and when resources are limited 
and temperatures high, lower stature would enable greater allocation below ground and reduced hydraulic pathlength 
susceptible to tension-driven embolism (Koch et al. 2004; King et al. 2006) 

(Moles et al. 2009; 
Liu et al. 2019) 

Osmotic potential at 
turgor loss 
(|absolute|) 

|πtlp| MPa 
+; higher |πtlp| (or wilting point) indicates greater capacity to maintain cell volume and turgor pressure, and to 
maintain open stomata during dehydration. It is strongly correlated with drought tolerance within and across species, 
i.e., more tolerant species tend to have larger |πtlp| and to withstand lower soil water potentials (Bartlett et al. 2012b) 

(Fletcher et al. 2018; 
Griffin-Nolan et al. 
2019)/ (Bartlett et al. 
2012b) 

Carbon isotope 
discrimination Δ13C ‰ 

-; in C3 photosynthetic species, higher Δ13C values tend to correspond to high stomatal conductance integrated over 
leaf lifetimes, and may indicate higher CO2 assimilation rates, whereas lower values tend to correspond to higher 
water use efficiency (i.e., assimilation relative to transpiratory water loss) integrated over the leaf lifetime (Farquhar 
et al. 1989) 

(Hu et al. 2009) 

Leaf area LA cm2 

-; smaller leaves have thinner boundaries enabling leaves to avoid dangerous overheating on hot days and chilling on 
cool nights, and potentially to achieve higher gas exchange rates when soil is moist and temperatures are moderate 
(Gibson 1998). Additionally, smaller leaves have smaller veins and xylem conduits, and higher major vein densities, 
which can provide greater hydraulic safety during dehydration (Sack et al. 2012; Wright et al. 2017)  

(Wright et al. 2017) 

Leaf mass per area LMA g m-2 

+; higher LMA tends to confer longer leaf lifetimes and thus a conservative resource allocation that is adaptive for 
leaves that persist through multiple droughts and for species on low fertility soils. A high LMA may also correspond 
to higher elastic moduli which may enable greater water retention in leaves with lower wilting points (Evans 1973; 
Wright et al. 2004; Westoby & Wright 2006; John et al. 2017) Additionally a high LMA may  enable lower cuticular 
transpiration rates after stomata close due to lower surface area-to-volume ratio.  

(Lamont et al. 2002; 
Wright et al. 2005; 
He et al. 2006; de la 
Riva et al. 2016) 

Nitrogen per mass Nmass mg g-1 

-/+; higher Nmass tends to correspond to higher light-saturated photosynthetic rates per leaf mass, typical of species 
native to high resource availability(Wright et al. 2004). Higher Nmass can also provide drought adaptation by 
promoting both higher pulse-driven growth in periods of high water availability and a higher water use efficiency 
during moderate drought (Wright et al. 2001; Wright & Westoby 2002; Santiago et al. 2004) 

(Field & Mooney 
1986; Reich & 
Oleksyn 2004; 
Wright et al. 2005) 

Nitrogen per area Narea g m-2 
+; higher Narea  can also provide drought adaptation by promoting both higher pulse-driven growth in periods of high 
water availability and a higher water use efficiency during moderate drought (Cunningham et al. 1999; Wright et al. 
2001) 

(Wright et al. 2005; 
He et al. 2006) 
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Carbon per mass Cmass mg g-1 
-; higher Cmass is linked with higher lignin concentration, which may protect leaves against herbivory, thus a 
conservative resource allocation that is adaptive for leaves that persist through multiple droughts and for species on 
low fertility soils (Ma et al. 2018) 

(Ma et al. 2018) 

Carbon to nitrogen 
ratio C:N - 

+; higher C:N ratio reflects investment in structural support relative to photosynthesis, resulting in thicker, sturdier, 
cell walls and thus a conservative resource allocation that is adaptive for leaves that persist through multiple 
droughts and for species on low fertility soils (Fang et al. 2019) 

(Fang et al. 2019) 

 Wood density WD g cm-3 

+; higher WD is associated with longer wood lifetimes and with a conservative resource allocation strategy that is 
adaptive for species that persist through multiple droughts and for species on low fertility soils. In addition, higher 
WD can correspond to lower vulnerability to xylem embolism and survival during drought (Hacke et al. 2001; Chave 
et al. 2009; Gleason et al. 2016; Liang et al. 2021)  

(Preston et al. 2006; 
Thomas et al. 2007) 
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Appendix Table 5.2. Many factors, not mutually exclusive, that would potentially impede trait-

based prediction of the climate distribution of species and ecosystems by decoupling plant traits 

from the mean climate of their natural distributions, with supporting references. 

Factor Rationale 

Fundamental vs. realized 
niches 

A species’ current distribution (“realized niche”) may differ from that expected from its “fundamental 
niche”, i.e., the set of abiotic environmental conditions in which species is able to live, as determined by its 
traits and physiological limits, due to dispersal limitation, disturbance and biotic interactions including 
competition (Brown 1984; Hanski et al. 1993; Wiens 2011; Peterson et al. 2012; Lee-Yaw et al. 2016), 
which can alter distributions in the field (Walter 1979; Pérez-Ramos et al. 2019; Sheth et al. 2020). 

Traits and fitness are not 
directly related 

Functional traits are frequently used as a metric for fitness, and assumed to influence success in a given 
environment, but this equivalence is not always straight forward, as functional traits are related to fitness 
through vital rates, and thus they might not predict fitness in many systems (Laughlin et al. 2020).  

Trait plasticity and/or 
ecotypic differentiation 

Trait plasticity, i.e., shift of phenotype in accordance with growing conditions, is essential for plant species 
survival in many environments (Valladares et al. 2000). Likewise, populations of given species may adapt to 
different conditions, leading to ecotypic variation. Both plasticity and ecotypic differentiation would result in 
intraspecific trait variation across environments.  

If species are collected at sites distant from the mean climate of their range, then plastic and ecotypic trait 
adjustment might weaken the association of measured traits with mean climate, as species’ sampled trait 
values would reflect the sampled climate rather than the mean climate of the species’ native range (Albert et 
al. 2010a, b; Violle et al. 2012; Siefert et al. 2015; Fyllas et al. 2020). 

Trait multifunctionality 
Given traits may be multifunctional and thus optimized in evolution and plasticity to multiple environmental 
factors (e.g., a trait may shift with herbivory, nutrient availability and aridity) and thus may be far from 
optimal for individual environmental factors, such as single climate variables (Sack & Buckley 2020).  

Many-to-one mapping of 
traits to function 

Adaptation to environmental conditions may be achieved through multiple alternative combinations of traits, 
such that individual traits would be weakly associated with environmental conditions (Alfaro et al. 2005; 
Marks & Lechowicz 2006). 

Nonequilibrium 
processes 

Species’ distributions relate to dynamic processes including immigration, competition, evolution, and 
extinction under changing climates, and thus species’ traits may not necessarily match their current 
distributions, and might better relate to their distribution under historical climates (Dobzhansky 1950; 
DeAngelis & Waterhouse 1987; Stevens 1989; Ohlemüller et al. 2008; Sheth et al. 2020). 

Study methodology 

Traits with a limited direct mechanistic role 
Since the publication of the leaf economics spectrum (Wright et al. 2004), ecologists have focused on the 
relationships of a core set of 5-8 traits and climate. However, these putative traits are not always 
mechanistically adaptive to given climate variables. For example, the leaf mass per area, LMA, has been 
frequently measured and framed as a drought tolerance trait. However, in many systems, LMA does not 
necessarily confer drought tolerance (e.g., in tropical rainforests, high LMA may be found in drought 
sensitive trees), though but in some species sets it is co-selected for with other traits, such as low turgor loss 
point (Buckley et al. 1980; Bartlett et al. 2012b). 

Large variation in traits compiled from global databases 
The frequent use of measurements compiled in databases from disparate locations, collected with different 
methods and with uncertainty in trait mean estimation contributes to weakness in the reported trait-climate 
associations (Moles et al. 2014; Violle et al. 2015; Šímová et al. 2018; van der Plas et al. 2020; Vesk et al. 
2020). 
 
Missing data in global databases 
The relationship between given traits and climate variables might be weakened or missed due to many 
missing data points for species with restricted distributions and or/small populations, and for traits that are 
more measurement intensive (Taugourdeau et al. 2014). 

Lack of phylogenetic structure 
Since species have shared evolutionary histories, they cannot necessarily be considered independent data 
points. This nonindependence may violate one of the main assumptions of most statistical tests, so it is 
recommended that the phylogenetic structure is accounted for to fully resolve adaptive trait-trait and trait-
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environment relationships across species. Phylogenetic approaches thus have potential to explain the large 
interspecific variation in many functional traits (Perez & Feeley 2020).   

Microclimate 
Species climatic ranges are typically calculated from large databases with coarse resolution (usually between 
1 and 340 km2). While these climatic ranges are effective in characterizing large scale patterns, the strength 
of trait-climate relationships could be improved if variation in microclimates, i.e., temperature, water and 
nutrient availability, irradiance and soil composition, were accounted for (Opedal et al. 2015).  
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Appendix Table 5.3. Ecosystems sampled across an aridity gradient in California, including site 

names, latitude and longitude of the site centroid, mean annual precipitation (MAP; mm), mean 

annual temperature (MAT; °C), mean elevation (m), and number of species sampled. Site climate 

was obtained from a 5-hectare circular area around each site’s centroid.  

Ecosystem Site Latitude Longitude MAP 
(mm) 

MAT 
(ºC) 

Elevation 
(m) 

Number 
of species 

Desert 
Sweeney Granite Mountains 
Desert Center 

34.7813355 -115.6559781 156 19.7 819 24 

Coastal Sage 
Scrub 

Centro de Investigación 
Científica y de Educación 
Superior de Ensenada and 
Cañon de Doña Petra 

31.869475 -116.666892 294 16.7 342 14 

Chaparral 
Stunt Ranch Santa Monica 
Mountains Reserve 

34.0955321 -118.66148 407 16.9 339 25 

Montane Wet 
Forest 

Yosemite National Park 37.8529772 -119.8312939 938 10.1 1629 20 

Mixed Riparian 
Woodland 

Onion Creek 39.274627 -120.3654455 1123 5.96 2060 19 

Mixed conifer-
broadleaf forest 

Angelo Coast Range 
Reserve 

39.7185431 -123.6550498 1558 11.6 526 21 
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Appendix Table 5.4. Indices of variation presented in the study, including abbreviations, 

definition, references and calculation. 

 
Term Abbreviation Definition Calculation 

Trait-climate 
mismatch tcm 

The mismatch between the trait values measured for 
individuals occurring in the field and the trait values 
expected given the overall relationship of species’ 
traits to their climatic distributions. The tcm 
represents the degree that a species’ traits do not 
conform to expectations based on adaptation to its 
current climate distribution.  

Calculated as the residuals from the all-species’ 
trait vs climate relationship. In this study, species’ 
scores in principal component axes of climate 
variables were used, and scaled such that higher 
tcm represents traits more putatively adapted to 
aridity than expected, i.e., “hyperxeromorphic”. 
 
!"#$ = &'(	*+,-!(	./1$ 	−	2+34		*+,-!(	./1$ , 
 
where obs Traits PC1i is the measured Traits-PC1 
score and pred Traits PC1i is the Traits-PC1 score 
predicted from Climate-PC1 for each species i. 

Climate 
sampling bias csb 

The difference between the climate of the site where a 
species’ was sampled and the mean of its climatic 
distribution, calculated from current 
occurrences(Browne et al. 2019). 

"('$ = 	 "5-#,!3$6 − "57#,!38888888888$ , 
 
where climateij is the mean climate of the site j 
where species i was sampled from and climatei is 
the mean climate its distribution. 

Climatic 
breath - 

The difference between the maximum and the 
minimum value of a climate variable for locations in 
which a given species occurs. 

'+3,!ℎ$ = 	 95<=	23+"3>!-53$ − 	5<=	23+"3>!-53$ , 
 
where the 95th percentilei represents the maximum 
and the 5th percentilei represents the minimum 
values of a given climate variable for the range of 
distribution of each species i. 

Between-site 
variation bsv 

An index of variation in values for trait and climate 
variables of a given species sampled from multiple 
sites, a measure of the intra-specific variation (see 
Table S2). While the bsv calculation is based on the 
plasticity index(Valladares et al. 2000), the bsv for 
traits does not quantify species’ phenotypic plasticity, 
which can only be measured from controlled 
experiments, but rather a combination of genetic and 
plastic variation.  

'(?$ = (ABCDEA$FD)
ABCD

, 
 
where maxi is the maximum and mini is the 
minimum value of a given trait or climate variable 
for species i. 

Projected loss 
of climatically 
suitable 
habitats 

plch 

The percent of occurrences of a given species that 
would be potentially outside of a given species’ 
physiological limits under projected future climate 
change scenarios. 
 

Calculated as the percent of current occurrences 
that under projected future climates would shift to 
higher Tmax and/or lower MAP by ≥ 2 standard 
deviations of the current distributions of these 
climate variables. 
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SUPPLEMENTARY MATERIALS 

Supplementary data captions (see attached Excel Workbook) 

Table S5.1. (a) Environmental variables used to estimate climate for 107 species from six 

ecosystems across a climatic gradient in the California Floristic Province, including abbreviations, 

units, source database, metadata (raster layer title, timeframe of the dataset, the subset of the 

original dataset that was used to calculate species climate envelope, and the download date), and 

links to access datasets and references; (b) Future climate projection models, their sources, 

metadata (main characteristics, model developers, the subset of the original dataset that was used 

to calculate species climate envelope, download date), links to access datasets and references. 

 

Table S5.2. Differences in functional traits among species and ecosystems, as indicated in nested 

analyses of variance, with species nested within ecosystems for 107 species from six ecosystems 

across a climatic gradient in the California Floristic Province. Traits deviating from assumptions 

of normality or homoscedasticity were log-transformed prior to the analysis (see legend below). 

Different letters indicate significant differences among groups (Tukey test). Blue highlighted cells 

indicate variables differing significantly different across sites (p ≤ 0.05). 

 

Table S5.3. Principal Components Analysis (PCA) axes scores, climate variable contribution, 

climate variable correlational values and importance of components that explain ~60% of the 

variation in the climate of species’ native distribution for 107 species from six ecosystems across 

a climatic gradient in the California Floristic Province. Highlighted cells indicate strongest 

relationships (loadings > |0.6|). 
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Table S5.4. Associations of traits and environmental variables in a matrix presenting ahistorical 

correlation tests. In each cell, results are presented for Pearson tests on untransformed data and 

Pearson tests on log-transformed data. Blue highlighted cells indicate significant relationships for 

Pearson test on untransformed or log-transformed data (***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05). 

 

Table S5.5. Principal Components Analysis (PCA) axes scores, trait contribution, trait 

correlational values and importance of components that explain ~60% of the variation in key 

functional traits of 107 species from six ecosystems across a climatic gradient in the California 

Floristic Province. Highlighted cells indicate strongest relationships (loadings > |0.6|). 

 

Table S5.6. Differences in variables representing the climate of species’ native distribution among 

ecosystems, as indicated in one-way analyses of variance for 107 species from six ecosystems 

across a climatic gradient in the California Floristic Province. Variables tested included modelled 

values for current and future conditions, climate sampling bias and projected niche loss. Variables 

deviating from assumptions of normality or homoscedasticity were log-transformed prior to the 

analysis (see legend below). Different letters indicate significant differences among groups (Tukey 

test). Blue highlighted cells indicate variables differing significantly different across sites (p ≤ 

0.05). 

 

Table S5.7. Associations of traits and variables representing the climate of species’ native 

distribution for 107 species from six ecosystems across a climatic gradient in the California 

Floristic Province using phylogenetic generalized least squares (PGLS) tests. Blue highlighted 

cells indicate significant relationships (p ≤ 0.05). 
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Table S5.8. Multiple phylogenetic regression models predicting variables representing the climate 

of species’ native distribution from mechanistic functional traits for 107 species from six 

ecosystems across a climatic gradient in the California Floristic Province; the full models and best-

fit models built with log-transformed variables are shown. The best-fit models were chosen after 

AIC comparison of all possible models (DAICc < 2). Predictions were made of the first axis of a 

principal component analysis using 9 key climate and other environmental variables (Climate-

PCA; Fig. 5.4a) and additionally, with a subset of six variables that have future estimates available 

from WorldClim (Fig. S5.6a). We use the Climate-PCA with 9 variables to summarize current 

climate and use the Climate-PCA with 6 variables when testing relationships with predicted future 

climate (2070). We also show models predicting individual environmental variables (Fig. S5.5). 

N=107 species. 

 

Table S5.9. Phylogenetic regression models predicting the climate of species’ native distribution 

from mechanistic functional traits for 107 species from six ecosystems across a climatic gradient 

in the California Floristic Province using scores from the first axis of the principal component axis 

of climate variables (Climate-PCA) as the dependent variable. 

 

Table S5.10. Estimates of trait plasticity and environmental variation between sites for the fifteen 

species sampled in more than one ecosystem across a climatic gradient in the California Floristic 

Province. We present indices of between-site trait and climate variation [bsvtrait and bsvclimate; 

(MAX-MIN)/MAX; based on Valladares et al., 2000].  
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Table S5.11. Associations between trait plasticity and environmental variation between sites for 

the fifteen species sampled in more than one ecosystem across a climatic gradient in the California 

Floristic Province, assessed using phylogenetic generalized least squares (PGLS). Blue highlighted 

cells indicate trait relationships significant (p ≤ 0.05). 

 

Table S5.12. Multiple phylogenetic regression models to explain the trait-climate mismatch (tcm) 

from species' climate sampling bias (csb) and native ranges (95th - 5th percentile) of maximum 

temperature of the warmest month (Tmax) and mean annual precipitation (MAP) for 107 species 

from six ecosystems across a climatic gradient in the California Floristic Province.  

 

Table S5.13. Projected loss of climatically suitable habitats (plch) under future climatic 

aridification for 107 species from six ecosystems across a climatic gradient in the California 

Floristic Province, calculated as predicted percent reduction in number of occurrences given shifts 

of means of future climate scenarios (RCP 4.5 and 8.5 in 2070) 2 SDs above the maximum (for 

temperature variables, so warmer future) or below the minimum (for precipitation variables, so 

drier future) current climate means of the range of distribution of each species. 
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Supplementary figure captions 

Figure S5.1. Phylogenetic tree showing evolutionary relationships among 107 species from six 

California ecosystems. Symbols represent species of different ecosystems, with darker shades of 

blue representing greater water availability: mixed conifer-broadleaf forest (dark blue circles), 

mixed riparian woodland (triangles), montane wet forest (inverted triangles), chaparral 

(diamonds), coastal sage scrub (squares), desert (light blue circles). Species were categorized 

according to the ecosystem they were sampled in (or, for species that occurred in multiple sites, 

that with climate closest to the mean aridity index, AI, of their climatic distribution). 

 

Figure S5.2. Principal component analyses (PCA) of (a) mean climate variables for species’ 

ranges of distribution (Table S5.3) and (b) a set of non-redundant species traits for 107 species 

from six California ecosystems (Table S5.5). The climate variables included were mean annual 

temperature, MAT, maximum temperature of the warmest month, Tmax, minimum temperature of 

the coldest month, Tmin, mean annual precipitation, MAP, precipitation of the wettest month, Pwet, 

precipitation of the dryest month, Pdry, aridity index, AI, growing degree-days, GDD, and soil pH, 

SoilpH. For all tests of relationships with “Climate-PC1” we multiplied by “-1” so the relationship 

between Climate-PC1 and Traits-PC1 is positive, for clarity, as these reflected climatic aridity and 

adaptation to aridity respectively. The traits included were maximum adult height, Hmax, turgor 

loss point, ptlp (multiplied by “-1” prior to PCA), carbon isotope discrimination, D13C, leaf area, 

LA, leaf mass per area, LMA, foliar nitrogen and carbon concentrations, Nmass and Cmass, and wood 

density (WD). Symbols represent species of different ecosystems, with darker shades of blue 

representing greater water availability: mixed conifer-broadleaf forest (dark blue circles), mixed 
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riparian woodland (triangles), montane wet forest (inverted triangles), chaparral (diamonds), 

coastal sage scrub (squares), desert (light blue circles). 

 

Figure S5.3. Relationships between the modelled climate of six California ecosystems and the 

average modelled climate of species’ natural climatic distributions averaged for each ecosystem. 

(a) Maximum temperature of the warmest month, Tmax, (b) mean annual precipitation, MAP, (c) 

aridity index, AI, and (d) soil pH, SoilpH. Symbols represent species of different ecosystems, with 

darker shades of blue representing greater water availability: mixed conifer-broadleaf forest (dark 

blue circles), mixed riparian woodland (triangles), montane wet forest (inverted triangles), 

chaparral (diamonds), coastal sage scrub (squares), desert (light blue circles). The dashed gray 

lines represent the 1:1 relationship and the bars represent the standard errors of the x-axis means. 

*p < 0.05; **p < 0.01 (ordinary least squares; Table S5.4). 

 

Figure S5.4. Prediction of the mean climate of species’ distributions based on mechanistic 

functional traits for 107 species from six California ecosystems. Relationship between predicted 

and observed climate variables (phylogenetic generalized least squares; l ranged from 0.70 to 

0.76), (a) maximum temperature of the warmest month, Tmax, (b) mean annual precipitation, MAP, 

(c) aridity index, AI, and (d) soil pH, SoilpH. Refer to Table S5.8 for detailed model information. 

Inset plot shows the relationships for ecosystems based on averaging constituent species (ordinary 

least squares). Symbols represent species of different ecosystems, with darker shades of blue 

representing greater water availability: mixed conifer-broadleaf forest (dark blue circles), mixed 

riparian woodland (triangles), montane wet forest (inverted triangles), chaparral (diamonds), 

coastal sage scrub (squares), desert (light blue circles). The dashed lines represent the 1:1 
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relationship and dotted dark red lines represent the prediction intervals (*p < 0.05; **p < 0.01; 

***p < 0.001). 

 

Figure S5.5. Predicting the mean climate of species and ecosystems on the basis of mechanistic 

functional traits for 107 species from six California ecosystems. The first axis of the principal 

component analysis of climate variables (Climate-PC1; Fig S5.2) plotted against (a) log-

transformed maximum plant height, Hmax, (b) carbon isotope discrimination, D13C, (c) leaf area, 

LA, (d) leaf mass per area, LMA, (e) foliar nitrogen per mass, Nmass, (f) foliar nitrogen per area, 

Narea, (g) foliar carbon per mass, Cmass, (h) log-transformed carbon to nitrogen ratio, C:N, and (i) 

wood density, WD. Main plots show the relationships for species (phylogenetic generalized least 

squares; l ranged from 0.64-0.84; Table S5.7), and inset plots for ecosystems (ordinary least 

squares; Table S5.6). Symbols represent species of different ecosystems, with darker shades of 

blue representing greater water availability: mixed conifer-broadleaf forest (dark blue circles), 

mixed riparian woodland (triangles), montane wet forest (inverted triangles), chaparral 

(diamonds), coastal sage scrub (squares), desert (light blue circles) (*p < 0.05; **p < 0.01; ***p < 

0.001). 

 

Figure S5.6. The influence of plasticity on functional traits for 15 species that were sampled from 

more than one California ecosystem (Table S5.10). For the 15 species, the relationship of the 

between-site variation in the osmotic potential at turgor loss, bsvπtlp, with (a) the between-site 

variation in aridity, bsvAI, and (b) the mean annual precipitation, bsvMAP (phylogenetic generalized 

least squares; l = 0; Table S5.11). Similar relationships were found for other traits and climate 

variables (Table S5.11). *p < 0.05. 
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Figure S5.7. Projected loss of climatically suitable habitats (plch) for four California native 

species under a pessimistic (“business-as-usual”) climate change scenario (RCP 8.5; see Table S13 

for RCP 4.5 results, which reflect a “moderate emissions” scenario) in terms of maximum 

temperature of the warmest month, Tmax, and mean annual precipitation, MAP. Maps show the 

current occurrences (all points) and the occurrences projected as >2SD higher in mean maximum 

temperature of the warmest month (Tmax) and/or >2SD lower in mean annual precipitation (MAP) 

than current climate and would thus face extreme conditions if physiological adaption does not 

track changes in climate (red dots), to compare with occurrences that would be within the 2SD 

threshold (black dots). These four species were predicted to have the largest plch of the 107 species 

in this study: (a) Ceanothus velutinus of mixed riparian woodland, (b) Ceanothus incanus of mixed 

conifer-broadleaf forest, (c) Corylus cornuta of mixed conifer-broadleaf forest and (d) 

Chamaebatia foliolosa of montane wet forest. 
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Figure S5.1 
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Figure S5.2 
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Figure S5.3 
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Figure S5.4 
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Figure S5.5 
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Figure S5.6 
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Figure S5.7 
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CHAPTER 6 

VARIATION IN PLANT TRAIT NETWORKS ACROSS A GRADIENT OF ARIDITY IN 

CALIFORNIA 

 

ABSTRACT 

Plant ecological and physiological strategies are the result of multiple interactions among traits, 

and a deeper understanding of how traits involved in different axes of function are integrated can 

help us clarify how they contribute to species’ ecological specializations, biogeographic 

distributions, and tolerance of climate change. We quantified an extensive set of 84 functional 

traits in 114 unique species sampled from six key ecosystems across a gradient of aridity in the 

California Floristic Province (CAFP), including desert, coastal sage scrub, chaparral, montane wet 

forest, mixed riparian woodland and mixed conifer-broad-leaf- forest sites. From trait 

measurements we built plant trait networks (PTNs) of each ecosystem and tested how their 

architecture (i.e., tightness and complexity) varied with climate. Functional traits and their 

pairwise relationships varied strongly across ecosystems. The PTNs became tighter (i.e., the traits 

that make up the network were more interconnected) and more complex (i.e., divided into more 

subcomponents or clusters) from high to low aridity environments, indicating that under more 

intense environmental pressure plant communities tend to become more functionally redundant. 

The use of PTNs enabled greater clarity and improved examination of the wider range of key plant 

traits. 
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INTRODUCTION 

Functional traits are characteristics of an organism that influence their growth, reproduction and 

survival, and have long been used to predict species distributions, vital rates and responses to 

changing climates (Lavorel & Garnier 2002; Violle et al. 2007; Poorter et al. 2008; Adler et al. 

2014; Stahl et al. 2014; Medeiros et al. 2019). Indeed, a great deal of research is focusing on how 

plant ecophysiological traits contribute to determining the composition of communities and range 

of climates in which species survive and compete (Engelbrecht et al., 2007). Yet, the power of 

these approaches has rarely been tested using large sets of physiological traits, or across California 

communities (Jacobsen et al., 2008; Sandel, Corbin & Krupa, 2011; Kraft et al., 2014). This is 

partially due to the difficulty of measuring more time-consuming physiological traits and the 

challenge of interpreting the complex inter-relationships within large sets of traits (Sack et al. 

2013; Poorter et al. 2014; Messier et al. 2017; Belluau & Shipley 2018) 

 To deal with these issues, the field of functional ecology has dedicated much attention to 

the quest to find the “Holy Grail” traits, i.e., those that would efficiently summarize plant strategies 

alone or in combination with a few other traits, forming “axes” or “dimensions” of plant function 

(Grime 1979; Westoby 1998; Lavorel & Garnier 2002; Díaz et al. 2004, 2016; Wright et al. 2004; 

Funk et al. 2017). This approach is of practical use, providing approaches to estimate higher level 

processes, from species’ tolerances to ecosystem function based on species’ traits across a wide 

range of environments. Yet, that approach has been criticized as too reductionist, leading to low 

predictive value, and low resolution of true interactions among traits and important patterns of 

plant adaptation (He et al. 2020). Plant functional and ecological strategies are the result of multi-

trait interactions, so shifts in a single trait could have cascading effects not only on traits that are 

directly related to it (and thus belonging to the same functional axis), but also traits that are 
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involved in mechanisms that are co-optimized with that target trait (He et al. 2020; Sack & Buckley 

2020). Indeed, a deeper understanding of how traits involved in different axes of function (e.g., 

plant size, leaf and wood economics, photosynthesis, gas exchanges) are integrated can help us 

clarify how they contribute to species vital rates and tolerance to stresses across environments 

(Marks & Lechowicz 2006; Laughlin 2014; He et al. 2020). 

One approach that has been used to integrate and help visualize the complexity of trait 

intercorrelations are the plant trait networks, henceforth PTNs (Messier et al. 2017; Flores-Moreno 

et al. 2019; Kleyer et al. 2019; He et al. 2020; Li et al. in review). Networks based on nodes and 

edges are based in graph theory and with applications in the fields of neuroscience, behavioral 

psychology and, more recently, elemental composition analyses (Salt et al. 2008; Markett et al. 

2018; Tompson et al. 2018; Brooks et al. 2020; He et al. 2020). In these networks, traits are 

visualized as nodes and trait-trait relationships as connections of a network built from the statistical 

relationships between traits (Flores-Moreno et al. 2019; He et al. 2020). This approach also allows 

us to calculate parameters to describe the overall architecture of the network and the relative 

contribution of each trait to the overall topology (Flores-Moreno et al. 2019; He et al. 2020). Using 

these networks we can easily visualize traits that are involved in more than one function and can 

quantify how well connected a trait is relative to other traits in a network (Flores-Moreno et al. 

2019; He et al. 2020). We are also able to identify functional clusters (or axes or dimensions) using 

a clustering algorithm, so in addition to clarifying the overall trait-trait coordination, we are able 

to identify the functional clusters that emerge from statistical relationships alone (Messier et al. 

2017; Flores-Moreno et al. 2019; Kleyer et al. 2019; He et al. 2020). 

This PTN approach thus has immense potential to resolve relationships among multiple 

traits; it allows not only the identification of trait clusters but also the relative importance of traits 
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within the network. We are also able to extract parameters that describe the overall architecture of 

the PTNs, which enables testing of relationships between entire PTNs and climate (Flores-Moreno 

et al. 2019; He et al. 2020). The key PTN parameters we are interested in are related to the tightness 

and complexity of the networks. The tightness describes how interdependent the traits are within 

the network; in tight PTNs the traits have a higher proportion of connections relative to all the 

possible connections. The complexity describes the overall functional structure of the network; 

networks with more clusters and clusters formed by less traits have a higher complexity. In other 

words, high complexity means lower functional redundancy (Flores-Moreno et al. 2019; He et al. 

2020). 

In this study, we quantified an extensive set of 84 functional traits in 114 unique species 

sampled from six key ecosystems across a gradient of aridity in the California Floristic Province 

(CAFP), including desert, coastal sage scrub, chaparral, montane wet forest, mixed riparian 

woodland and mixed conifer-broad-leaf- forest sites (Figs. 6.1 and 6.2a), representing around 70% 

of the land area of California (Thorne et al. 2017). From trait measurements we built PTNs of each 

ecosystem and tested how their architecture (i.e., tightness and complexity) varies with climate. 

Because these communities have highly contrasting characteristics, this approach will provide 

greater power for generalization, and the functional trait database will be of enormous value for 

researchers worldwide, particularly as data are currently lacking for the hydraulic behavior and 

vulnerability to drought for Californian species outside Chaparral systems (Jacobsen et al., 2008; 

Pivovaroff et al., 2016; Avila-Lovera, Zerpa & Santiago, 2017).  

We expect that in the drier and/or hotter ecosystems, species will show constrained traits 

to improve water use efficiency and to tolerate water limitation, resulting in lower functional 

diversity and higher redundancy, and thus we hypothesized that PTNs will show lower 
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connectivity and modularity in high aridity environments. Conversely, we expect species from the 

wetter and/or cooler ecosystems to have a set of traits that would provide high photosynthetic and 

light capture efficiency to allow for fast growth, resulting in higher functional diversity. Thus, we 

hypothesize that PTNs will be more interconnected and complex in low aridity environments (Fig. 

6.1).  

 

METHODS 

Study sites 

We sampled branches from 683 trees from 114 unique species in six ecosystems representing the 

range of biogeographic conditions in the California and Desert floristic provinces (CAFP, DFP; 

Figs. 6.2a and S6.1). The species included in this study were taxonomically diverse, belonging to 

37 botanical families, of which Asteraceae, Rosaceae, Rhamnaceae, Ericaceae and Pinaceae were 

the most representative. The CAFP is a plant-diverse and endemism rich biodiversity hotspot and 

has recently and currently experienced extreme drought with strong impacts on vegetation 

composition and diversity (Baldwin, 2014; McIntyre et al., 2015). The threats imposed by drought 

and fire lead to extreme urgency in understanding ecosystem function; according to Baldwin, 2014, 

the CAFP is the only North American province recognized by Conservation International as 

featuring amongst the 35 largest global biodiversity hotspots. 

The six ecosystems included in this study were distributed across a gradient of climatic 

aridity, from dry to wet and warm to cool, and differed not only in their mean annual temperature 

and precipitation (MAT and MAP, respectively), but also their soil characteristics and plant 

community composition (Fig. S6.1). The desert site (Sweeney Granite Mountains Desert Research 

Center, part of the University of California Natural Reserve System, UCNRS) is characterized by 
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high MAT and low MAP concentrated in a few months a year. The soils are shallow, dry and basic. 

Most of the species are deciduous or semi-deciduous shrubs, such as Ambrosia salsola, Ephedra 

californica and E. nevadensis. The coastal sage scrub (located in the Centro de Investigación 

Científica y de Educación Superior de Ensenada and Cañon de Doña Petra, Baja California) is 

characterized by high MAT and low MAP. The soils are sandy, slightly acidic and very shallow. 

The landscape is dominated by sclerophyllous species, the majority being evergreen shrubs, such 

as Adenostoma fasciculatum, Peritoma arborea and Simmondsia chinensis. The chaparral site 

(Stunt Ranch Santa Monica Mountains Reserve, UCNRS) has a similar MAT to the coastal sage 

scrub coupled with higher MAP and deeper soils. The most common woody species are also 

evergreen shrubs, such as Arctostaphylos glauca, Malosma laurina and Salvia leucophylla. The 

montane wet forest (Yosemite Forest Dynamics Plot, part of the ForestGEO network (Anderson-

Teixeira et al. 2015)) is characterized by a relatively high mean annual precipitation and mesic 

temperatures coupled with deep and acidic soils. The majority of the species are deciduous shrubs, 

such as Rubus parviflorus and Vaccinium uliginosum, but a significant proportion of the total 

biomass is accounted for by Gymnosperm species, such as Abies concolor and Pinus lambertiana. 

The mixed riparian woodland (Onion Creek, near the Chickering American River Reserve, 

UCNRS) is characterized by high MAP and low MAT. The soils are deep, acidic and have a high 

moisture content. The most common species were ecologically diverse; we sampled a similar 

number of evergreen shrubs, such as Quercus vacciniifolia, evergreen trees, such as Pinus 

contorta, deciduous shrubs, such as Alnus incana, and deciduous trees, such as Populus 

tremuloides. The sixth and last ecosystem is a mixed conifer-broadleaf forest (Angelo Coast Range 

Reserve, UCNRS), and is characterized by a combination of high MAP, MAT, deep, acidic and 

high moisture soils. The most abundant species were also very ecologically diverse; we sampled 
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evergreen shrubs, such as Ceanothus incanus, evergreen trees, such as Umbellularia californica, 

deciduous shrubs, such as Cornus nuttalii, and deciduous trees, such as Quercus garryana. 

 

Sampling for leaf trait measurements 

We sampled species among the most abundant at each site according to reserve managers and 

forest inventories. For 3-5 individuals of 19 to 28 species per site we collected a mature, sun-

exposed and non-epicormic branch, with no signs of damage and herbivory using pole pruners or 

a slingshot. Branches were transported to the lab in dark plastic bags with moist paper and 

rehydrated overnight in a dark saturated atmosphere before harvesting current-year grown, fully 

expanded leaves for all subsequent analyses. For compound-leafed species, whole leaves were 

used. 

 

Epidermal morphology 

We measured epidermal traits on one leaf from each of three to five individuals per species. After 

rehydration, we fixed the leaves in FAA 48% ethanol: 10% formalin: 5% glacial acetic acid: 37% 

water. Epidermal measurements were obtained from microscopy images taken from nail varnish 

impressions of both leaf surfaces. From microscope images of the nail varnish peels we measured 

stomatal density (d), stomatal differentiation rate (or index; the number of stomata per numbers of 

stomata plus epidermal pavement cells, i), stomatal area (s), guard cell length and width (GCl, 

GCw), inner and outer stomatal pore length (SPil, SPol), epidermal pavement cell area (e) and 

trichome density (t). We then calculated the maximum theoretical stomatal conductance gmax 

(Franks & Farquhar 2007; Sack & Buckley 2016) as: 𝑔#$% =
'()*
*+.-

, in which b is a biophysical 

constant given as 𝑏 = /
0
, where D represents the diffusivity of CO2 and water in air m2 s-1 and v is 
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the molar volume of air m3 mol-1, so b = 0.00126; m is a morphological constant based on scaling 

factors representing the proportionality of stomatal dimensions 𝑚 =	 345

6+.-7869	3
, with c, h, and j 

treated as constants for the estimation of gmax c, h and j = 0.5; d is stomatal density, and s is stomatal 

size (Franks & Farquhar 2007; Franks et al. 2009a; McElwain et al. 2016). To determine leaf-level 

epidermal trait values, for cell dimensions, we calculated an average value as the arithmetic mean 

of the abaxial and adaxial surfaces. For leaf-level cell densities and gmax we calculated a total trait 

value as the sum of abaxial and adaxial values. All images were analyzed and anatomical traits 

were measured using the software ImageJ (http://imagej.nih.gov/ij/). 

 

Leaf economics and structure 

Leaf saturated mass was measured using an analytical balance (0.01 mg; XS205; Mettler-Toledo, 

OH, USA) and leaf thickness (LT) using digital calipers (0.01 mm; Fowler, Chicago, IL, USA). 

The leaf area (LA) was measured using a flatbed scanner and analyzed using the software ImageJ 

(http://imagej.nih.gov/ij/). After scanning, leaves were oven-dried at 70º for 72 h and their dry 

mass and area were measured again. Leaf mass per area (LMA) was calculated as lamina dry mass 

divided by saturated area; leaf density (LD) as LMA divided by LT; saturated water content (SWC) 

as (saturated mass minus dry mass) divided by dry mass; saturated water mass per area (SWMA) 

as the (saturated mass minus dry mass) divided by saturated area; leaf dry matter content (LDMC) 

as dry mass divided by saturated mass; percentage loss in area after drying (PLAdry) as the percent 

decline in area from saturated to dry leaves (Witkowski & Lamont 1991; Ogburn & Edwards 2012; 

Pérez-Harguindeguy et al. 2013). The petiole cross-sectional area (PA) was calculated as the area 

of an ellipse: 𝑃𝐴 =	 <𝜋 × ?)@
A
BC × <𝜋 × ?)D

A
BC × 	𝑙, where dx is the mean diameter at the x-axis of 

the petiole, dy is the mean diameter at the y-axis of the petiole and l is the petiole length. The 
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petiole to leaf area ratio (PA:LA) was calculated as the petiole area divided by the leaf area and the 

petiole mass per area (PMA) was calculated as petiole dry mass divided by saturated area.  

 

Wood economics and structure 

We measured wood density (WD) from one 5 cm-branch segment of each of the studied individuals 

after bark removal by water-displacement (Pérez-Harguindeguy et al. 2013). Branch segments 

were immersed in water and the mass of the displaced water was recorded; branch segments were 

then oven-dried at 70º for 120 h and their dry mass was measured. WD was calculated as the 

segment dry mass divided by the mass of displaced water. 

 

Leaf composition 

The concentrations of four macronutrients (potassium, calcium, phosphorus and magnesium) and 

12 micronutrients (iron, boron, manganese, sodium, zinc, copper, molybdenum, cobalt, aluminum, 

arsenic, cadmium, rubidium and strontium) were determined from ground oven-dried leaves using 

high throughput elemental profiling (ionomics; (Salt et al. 2008)) by the USDA-ARS/Danforth 

Center Ionomics facility at the Donald Danforth Plant Science Center. Elemental carbon and 

nitrogen concentrations and their isotope ratios (δ13C and δ15N) were measured by the University 

of California, Berkeley, Center for Stable Isotope Biogeochemistry, by continuous flow dual 

isotope analysis using a CHNOS Elemental Analyzer interfaced to an IsoPrime100 mass 

spectrometer (Fry et al. 1996; Pérez-Harguindeguy et al. 2013). The concentrations of nutrients 

were converted from mass basis into area-basis by multiplying by LMA. The carbon isotope 

discrimination (D13C; in parts per thousand, ‰) was calculated following (Farquhar & Richards 

1984). The chlorophyll concentration per area, Chlarea, was measured using a SPAD meter, which 
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provides a correlate of total chlorophyll a + b concentration per area in SPAD units ((Monje & 

Bugbee 1992); SPAD-502, Konica Minolta, Japan) and the chlorophyll concentration per mass 

was determined by dividing by LMA (Chlmass). From nutrient measurements we calculated the ratio 

of carbon to nitrogen (C:N), nitrogen to carbon (N:C) and nitrogen to phosphorus (N:P). 

We measured the turgor loss point (πtlp) in two leaves per studied individual. We used a 

vapor-pressure osmometer (Vapro 5520, Wescor, US) to obtain the osmotic concentration of the 

leaves and used calibration equations to estimate πtlp (Bartlett et al. 2012).  

 

Estimated photosynthetic traits 

We estimated maximum rate of carboxylation per mass (Vcmax mass) and electron transport rate (Jmax 

mass) from leaf N and P concentrations per mass (Domingues et al. 2010; Medeiros et al. 2019; 

Maréchaux et al. 2020). The ratio between intercellular CO2 concentration (ci) and ambient CO2 

concentration (ca) was estimated from D13C (Farquhar et al. 1982; Franks et al. 2014). Estimates 

of leaf lifetime integrated CO2 assimilation rate (Amass) and stomatal conductance to CO2 (gcleaf) 

were derived from Vcmax mass, Jmax mass and isotope composition data using the Farquhar, von 

Caemmerer and Berry model (Franks et al. 2009a). To convert Vcmax mass, Jmax mass, and Amass to 

area-basis, we multiplied the trait values by LMA. We also calculated the ratio between gcleaf and 

gmax, an index of the degree of stomatal opening relative to their anatomical maximum (McElwain 

et al. 2016), and the ratio between gmax and Narea, which is negatively related to water retention for 

a given investment in photosynthetic machinery (Wright et al. 2001). 
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Plant size and chromosome number 

Species maximum height (Hmax), seed dry mass values (SM) and the 2c number of chromosomes 

were compiled from the Ecological Flora of California database, part of the Jepson Flora Project 

(https://ucjeps.berkeley.edu/efc/). When not available, the Hmax was recorded as the maximum 

value reported on the Jepson eFlora website (https://ucjeps.berkeley.edu/eflora/).  

 

Climate of field sites 

From open-access raster layers, we extracted a total of 30 environmental parameters relating to air 

temperature (WorldClim, CRU; (Hijmans et al. 2005)), precipitation (WorldClim; (Hijmans et al. 

2005)), aridity (CGIAR-CSI, NCAR-UCAR; (Zomer et al. 2008)) and soil characteristics (ISRIC 

Soilgrids; (Hengl et al. 2017) from a 25-ha area around the centroid of each sampling location (see 

Table S1 for description, download links and references for each variable). Due to their coarse 

resolution, these environmental variables are effective in characterizing large scale patterns but do 

not reflect differences potential differences in microclimate within ecosystem, i.e., temperature, 

water and nutrient availability, irradiance and soil composition (Perez & Feeley 2020; Baird et al. 

2021). 

 

Plant trait networks 

To build the plant trait networks (PTNs), functional traits were considered nodes and trait 

correlations were considered edges. We built trait-trait correlation matrices for each ecosystem 

from species mean values using ordinary least squares regression (OLS). The strength of the trait-

trait relationships was described using correlation coefficients (r) and they were considered as 

edges if the p < 0.05. The matrices were then converted into adjacency matrices A = [ai,j], where 
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we assigned 1 to relationships that were above the significance threshold and 0 to those below the 

threshold (ai,j ϵ [0,1]). These networks were visualized and all network parameters were calculated 

using functions available in the ‘igraph’ package (version 1.2.6) in the R Software (R Core Team 

2020). 

We calculated five parameters to describe the overall topology of the PTNs, three that 

quantify the “tightness” of the PTN, the edge density (ED), the diameter (D) and the average path 

length (AL); and two parameters to quantify the “complexity” of the PTN, the average clustering 

coefficient (AC) and the modularity (Q) (He et al. 2020). The ED is the proportion of connections 

out of all possible connections, and thus, larger values of ED reflect a network that is more 

interconnected. AL is the network-averaged shortest distance between traits, and thus, high values 

reflect a high independence of traits. High values of D, which reflect high maximum shortest 

distances between traits in the network, also reflect a high independence of traits. AC is the 

network-averaged clustering coefficient of all traits, and thus, high values reflect a high division 

of the network into subcomponents. Q is the difference between the within-cluster connections 

and a null model where connections among traits are randomly distributed, and thus, high values 

reflect a tendency of the network to form clusters. 

We also calculated parameters to describe the importance of traits within PTNs, two that 

quantify the “connectedness” of each trait, the degree (K) and closeness (C); and two that quantify 

the “centrality” of each trait, the betweenness (B), and the clustering coefficient (CC). For each 

trait, K is defined as the number of connections for a given trait, representing its centrality within 

the network. C represents the mean shortest path between a focal trait and all other traits in the 

network, so traits with high C values are traits closely connected to many other traits. B is a 

measure of the number of shortest paths going through a focal trait, and thus high values of B 
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reflect a trait that is a good mediator, intermediating other trait relationships. CC is the proportion 

of connections between a focal trait and its neighboring traits out of all possible connections, and 

thus traits with high CC are those at the center of different trait clusters. Traits with the highest K 

were considered “hub traits” and traits with highest B were considered “mediator traits”. 

 

Statistical analyses 

All statistical analyses were performed and plots created using R software (version 4.0.2 (R Core 

Team 2020)) and packages available from the CRAN platform. We performed nested ANOVAs 

to test for differences in functional traits among ecosystems and species using the aov function, 

with functional traits coded as the dependent variable, ecosystem as the independent variable and 

species nested within ecosystem (Sokal & Rohlf 2012; R Core Team 2020). 

To test the relationships between the PTN parameters (ED, AL, D, AC and Q) and climate 

of the six ecosystems, we performed ordinary least squares regression analyses (OLS) using the 

lm function from the ‘stats’ package. We also tested the relationship between the number of species 

from each site used to build the PTNs and the network parameters. Analyses were performed in 

untransformed and log-transformed data, to test for either approximately linear or non-linear (i.e., 

approximate power-law) relationships, respectively. 

 

RESULTS 

Variation in traits across ecosystems 

We found strong variation in functional traits across species and ecosystems. Of the 83 measured 

traits, 78 differed across species and 69 across ecosystems. Most of the variation in traits was 

explained by differences across species, 64%, with intraspecific and ecosystems explaining 18% 
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each (Table S2). Overall, in the more arid ecosystems (desert, coastal sage scrub and chaparral), 

species had smaller, denser and thicker leaves with higher trichome density, higher saturated water 

mass per area and smaller reduction in leaf area when dry, denser wood and more negative turgor 

loss points than species from the more mesic ecosystems (montane wet forest, mixed riparian 

woodland and mixed conifer-broadleaf forest) (Table S6.2). Species from more arid ecosystems 

also had higher leaf concentrations of area-based nutrients and lower concentrations of mass-based 

nutrients, such as carbon, nitrogen, potassium and phosphorus, high carbon to nitrogen ratio, high 

nitrogen isotope concentration and low carbon isotope discrimination rates. The photosynthetic 

traits followed the same pattern as the leaf nutrient concentrations; the area-based rates were higher 

in species sampled from the more arid ecosystems, but the mass-based rates were higher in species 

sampled from the less arid ecosystems (Table S6.2). 

 

Variation in plant trait networks across ecosystems 

The architecture and properties of the plant trait networks varied significantly across ecosystems. 

The PTNs of the drier sites were “looser” and less complex than the PTNs built from species 

sampled in the more mesic sites (Fig. 6.2b). The traits of the drier sites PTNs were overall less 

interconnected and were grouped into a smaller number of clusters. That is, these networks had 

lower values of ED and AC and higher values of AL, D and Q than the networks of the more mesic 

sites (Table 6.1). 

 From the PTNs we were also able to identify traits that are central to the functioning of the 

networks, such as traits with high connectivity, K (hub traits), and traits with high betweenness, B 

(mediator traits). Across the PTNs from the six ecosystems, Carea, LMA, Vcmax area, Chlmass and N:C 

can be considered hub traits, with an average of 39.667, 39.333, 35.167, 32.333 and 30.667 
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connections each. The traits with highest values of B were the Kmass, Carea, LMA, LD and LDMC 

with average B of 113.752, 106.956, 100.024, 99.255 and 98.208 respectively (Fig. 6.3). 

 

Relationship between PTN architecture and climate 

The tightness and complexity of the PTNs varied with climate. The ED decreased with the mean 

annual temperature, MAT (r = -0.83; p<0.05; Table S6.5 and Fig. 6.4a) and increased with the 

soildepth (r = 0.84; p<0.05; Table S6.5 and Fig. 6.4d). The AL decreased with soildepth (r = -0.84; 

p<0.05; Table S6.5 and Fig. 6.4h) while AC decreased with MAT (r = -0.87; p<0.05; Table S6.5 

and Fig. 6.4i). The Q was the network parameter most strongly correlated with climate; Q increased 

with MAT (r = 0.90; p<0.05; Table S6.5 and Fig. 6.4m) and decreased with increasing mean annual 

precipitation, MAP, aridity index, AI, and soildepth (r ranging from -0.90 to -0.81; p<0.05; Table 

S6.5 and Figs. 6.4n-p). Four of the five PTN parameters were independent of the number of species 

included in the correlative matrix; AC, however, decreased with the number of species (r = -0.82; 

p<0.05; Table S6.5 and Fig. S6.3) 

 

DISCUSSION 

Functional traits and their correlative relationships varied strongly across ecosystems (Tables S6.2-

S6.3). In this study, we found that both the number and the direction of trait-trait relationships 

shifted across ecosystems in response to the climatic aridity, and that mean annual temperature 

and the soil depth were strongly associated with these shifts in trait intercorrelations (Lusk & 

Warton 2007; Medeiros et al. 2019). These results also indicate that different combinations of 

traits are selected for in different environments. For example, high photosynthetic rate is an 

advantageous trait for plants growing in resource-rich environments, since it allows them to grow 
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taller faster and thus outcompete co-occurring plants (Farquhar et al. 1989; Franks et al. 2009b). 

However, under water and nutrient limitation, the maintenance of fast photosynthetic rates could 

increase the risk of embolism and lead to hydraulic failure (Wong et al. 1979; Bartlett et al. 2016; 

Martin-StPaul et al. 2017; Henry et al. 2019). 

 This environmental “context-dependence” of the network of trait-trait relationships is 

likely a co-product of the multifunctionality of traits (Medeiros et al. 2019; Sack & Buckley 2020). 

Since each trait may be involved in multiple functions and/or the function of a given trait may be 

influenced indirectly by traits to which they are not mechanistically related, across environments 

different conformations of the trait-trait connections might be more advantageous and thus selected 

for (Sack & Buckley 2020). In this study, the PTNs became tighter (i.e., the traits that make up the 

network were more interconnected) and more complex (i.e., divided into more subcomponents or 

clusters) from high to low aridity environments. This pattern indicates that under more intense 

environmental pressure the plant communities tend to become more functionally redundant, likely 

because a smaller number of alternative trait combinations would be advantageous for survival 

and competition under the more restrictive growing conditions (He et al. 2020; Li et al. in review). 

Functional redundancy is associated with higher stability, given that it may help maintain 

ecosystem processes in the face of disturbances, such as extreme climatic events (Cowling et al. 

1994; Pillar et al. 2013; Biggs et al. 2020). The less arid and more resource-rich ecosystems are 

able to support a higher number of organisms, due to the larger amount of water and soil nutrients 

(Harrison et al. 2020). In these environments, plant species that become abundant tend to be highly 

specialized to use specific resources, thus in these sites we find PTN that reflect higher functional 

diversity (Spasojevic et al. 2014; Harrison et al. 2020). This PTN findings translated well into the 

species’ phenological strategies; in the more arid ecosystems we found dominance of one or two 
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functional types, while in the less arid ecosystems more combinations were abundant, without a 

clear dominating strategy (Spasojevic et al. 2014). 

 Our results of the analyses of the relationships between PTNs and the climate of the 

sampling location further corroborate our interpretation of the network-level architecture 

parameters above (Table 6.1). The topology of the PTNs shifted with the climate of sampling 

locations (Flores-Moreno et al. 2019; He et al. 2020; Li et al. in review). MAT and soildepth were 

the climate variables more strongly correlated with the topology of PTNs. In the sampling locations 

with shallower soils and warmer temperatures the PTNs were looser, with lower edge density and 

clustering coefficient and higher modularity (Fig. 6.4). The water availability (through MAP and 

AI) did not significantly influence the tightness of PTNs, but were negatively related to the 

modularity. The absence of a relationship between PTN tightness and water availability might be 

a result of the optimization of drought adaptation in species native across CAFP (Bohnert et al. 

1995; Harrison et al. 2020). The soildepth was the second environmental variable most correlated 

with PTN topology; possibly due to deeper soils being older and richer in nutrients, organic matter 

and water (Abd-Elmabod et al. 2017; Rajakaruna & Boyd 2019). Combined, MAT, MAP and 

soildepth were strong climatic drivers of PTN topology. 

 The PTNs allowed us to identify the traits with larger connectiveness, K, and betweenness, 

B, in each of the six ecosystems. These traits are of special importance for the functional stability 

of the ecosystem due to the dependence of other trait on these traits (Fig. 6.3) (Flores-Moreno et 

al. 2019; He et al. 2020; Li et al. in review). The traits that emerged as hub and mediator traits 

were traits typically associated with leaf structural support, photosynthesis and fluxes, so their 

relative importance within the network was not surprising. Although these traits are important hubs 

they might also be connected to more traits for different reasons. For example, LMA, the second 



 253 

most connected traits across all six ecosystems, is mechanistically involved in many aspects of 

physiology, such as photosynthesis and tolerance to drought (Pérez-Harguindeguy et al. 2013; 

Sack et al. 2013; de la Riva et al. 2016; John et al. 2017; Sack & Buckley 2020). It is also a 

component of many other traits since it mediates the conversion of trait values from mass to area-

based (Wright et al. 2004). It is also noteworthy that since traits are grouped according to their 

statistical relationships, traits that belong to functional modules with more traits will likely have 

more hub or mediator traits, but those are highly coordinated and at times functionally redundant 

(Li et al. in review). 

The use of PTNs enabled greater clarity and improved examination of the wider range of 

key plant traits. Our results reinforce the idea that traits have limited meaning when alone. Using 

a wide range of traits provides insight into the modular nature of trait function and overall 

physiological and ecological strategies of different plant species and ecosystems. Ultimately, PTNs 

provide a promising avenue to explore the adaptive strategies of plants and help with the 

identification of important candidate traits to include in models of future species distributions and 

ecosystem resilience in response to changes in climate. 
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Table 6.1. Network-level parameters that quantify the tightness (edge density, ED, diameter, D, 

and average path length, AL) and complexity (average clustering coefficient, AC, and the 

modularity, Q) of plant trait networks built from species sampled in sites across a climatic gradient 

in the California Floristic Province. Higher values of ED reflect more interdependence of traits 

within the network, higher D and AL reflect more independence of traits within the network; higher 

values of AC reflect a network that is divided into more subcomponents; higher values of Q reflect 

higher clustering of traits. 

 

Network 
Tightness Complexity 

ED AL D AC Q 

Desert 0.162 2.173 5 0.460 0.299 

Coastal sage scrub 0.132 2.528 6 0.516 0.408 
Chaparral 0.200 2.097 5 0.552 0.234 

Montane wet forest 0.269 2.003 5 0.684 0.072 

Mixed riparian woodland 0.258 2.002 5 0.648 0.061 

Mixed conifer-broadleaf forest 0.210 2.034 4 0.556 0.107 

Combined species 0.361 1.691 4 0.581 0.043 
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FIGURE CAPTIONS 

Figure 6.1. Variation in climate and hypothesized ecological characteristics across the sites 

representative of the six ecosystems included in this study. The climatic aridity (i.e., high 

temperatures, low precipitation and low aridity index) increased from the mixed conifer-broadleaf 

forest site to the desert site. We hypothesized the environmental pressure (i.e., stress) would 

increase with climatic aridity, due to the constraints imposed by the combination of low water 

availability and warm temperatures that results in a high vapor pressure deficit, resulting in higher 

risk of embolism and hydraulic failure. Conversely, we hypothesized the competitive pressure to 

increase from the desert to the mixed conifer-broadleaf forest site. In resource rich environments 

(i.e., high nutrient and water availability) more species are able to germinate, but due to high 

density of individuals, the competitive pressure would be higher (for light, for example), so slow 

growing species would be less competitive. The combination of low environmental and high 

competitive pressures would theoretically result in high functional diversity. Thus, we expect the 

functional diversity to increase from high to low climatic aridity, since to survive under high 

environmental pressure species would need highly specialized strategies to survive the lack of 

resources and under high competitive pressure, species would need to grow fast and have more 

potential niches to fill. These hypotheses would be reflected in the architecture of plant trait 

networks (PTNs) as looser and less modular networks in high aridity environments and more 

interconnected and complex networks in resource rich environments. 

 

Figure 6.2. Plant trait networks built from species sampled in six different ecosystems across the 

California Floristic province. (a) Map showing the centroid of the sampling location of each of the 

six ecosystems in a landscape of aridity. Symbols represent different ecosystems, with darker 
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shades of blue representing greater water availability: mixed conifer-broadleaf forest (dark blue 

circles), mixed riparian woodland (triangles), montane wet forest (inverted triangles), chaparral 

(diamonds), coastal sage scrub (squares), desert (light blue circles). (b) Plant trait networks (PTNs) 

built from species sampled in each of the six ecosystems. All networks were built from a matrix 

of trait-trait correlations, which were considered significant when p < 0.05. Nodes with the same 

colors were grouped into the same modules by the clustering algorithm (Table S3). 

 

Figure 6.3. Variation in trait-level parameters of the networks build from traits measured on 

species from six ecosystem types across the California Floristic Province. Each boxplot shows the 

median, interquartile range, and minimum maximum values of parameters describing trait 

connectivity and centrality (a) degree of connectedness, K, and (b) betweeness, B, across networks. 

Traits with high values of K were considered “hub traits” and traits with high values of B were 

considered “mediator traits” (Table S4). 

 

Figure 6.4. Relationships between network parameters and the climate of the sampling location 

of six ecosystem types across the California Floristic Province. Relationships between the mean 

annual temperature (MAT), mean annual precipitation, (MAP), aridity index (AI) and soil depth 

(soildepth) with the edge density, ED (a-d), average path length, AL (e-h), average clustering 

coefficient, AC (i-l), and modularity, Q (m-p). Symbols represent different ecosystems, with darker 

shades of blue representing greater water availability: mixed conifer-broadleaf forest (dark blue 

circles), mixed riparian woodland (triangles), montane wet forest (inverted triangles), chaparral 

(diamonds), coastal sage scrub (squares), desert (light blue circles). Solid lines describe the fit of 

ordinary least squares regression analyses (OLS; Table S5). *p < 0.05. 
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Figure 6.1 
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Figure 6.2 
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Figure 6.3 
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Figure 6.4 
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SUPPLEMENTARY MATERIALS 

Supplementary data captions (see attached Excel Workbook) 

Table S6.1. Environmental variables obtained for the six sites sampled across a climatic gradient 

in the California Floristic Province, including abbreviations, units, source database, metadata 

(raster layer title, timeframe of the dataset, the subset of the original dataset that was used to 

calculate species climate envelope, and the download date), and links to access datasets and 

references. 

 

Table S6.2. Differences in functional traits among species and ecosystems, as indicated in nested 

analyses of variance, with species nested within ecosystems for 136 unique species from six 

ecosystems across a climatic gradient in the California Floristic Province. Traits deviating from 

assumptions of normality or homoscedasticity were log-transformed prior to the analysis (see 

legend below). Different letters indicate significant differences among groups (Tukey test). 

Highlighted cells indicate variables differing significantly different across sites (p ≤ 0.05). 

 

Table S6.3. Associations of traits in a matrix presenting results of ahistorical correlation tests on 

log-transformed data for the complete set of 136 species. Highlighted cells indicate significant 

relationships (***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05). 

 

Table S6.4. Trait-level ahistorical plant network parameters for each of the six sites (built from 

the complete dataset with 136 species). 
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Table S6.5. Associations of plant trait network parameters from the PTN built from six ecosystems 

across the California Floristic Province and environmental variables of the sampling location. 

Matrix presents results of Pearson correlation tests on raw and log-transformed data. Highlighted 

cells indicate significant relationships (***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05). 
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Supplementary figure captions 

Figure S6.1. Diversity in growth and leaf habit, leaf morphology, maximum height, Hmax, seed 

mass, SM, leaf area, LA, stomatal density, d, stomatal size, s, and trichome density, t, across all 

136 species sampled from six ecosystem types across California. All pictures belong to CD 

Medeiros personal database, with the exception of the pictures of Mirabilis laevis and seeds of 

Vaccinium uliginosum and Aesculus californica, modified from Calscape.com (by Steven M. 

Norris) and WikiCommons. 

 

Figure S6.2. Plant trait network built from all 114 species sampled in six different ecosystems 

across the California Floristic province. Nodes with the same colors were grouped into the same 

clusters by the clustering algorithm (Table S6.3). 

 

Figure S6.3. Relationships between network parameters and the number of species included in the 

PTN of the six ecosystem types across the California Floristic Province. Relationships between 

the number of species with the tightness parameters (a) edge density, ED, (b) average path length, 

AL, (c) network diameter, D; and complexity parameters, (d) average clustering coefficient, AC, 

and (e) modularity, Q. Symbols represent different ecosystems, with darker shades of blue 

representing greater water availability: mixed conifer-broadleaf forest (dark blue circles), mixed 

riparian woodland (triangles), montane wet forest (inverted triangles), chaparral (diamonds), 

coastal sage scrub (squares), desert (light blue circles). Solid lines describe the fit of ordinary least 

squares regression analyses (OLS; Table S6.5). *p < 0.05. 
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Figure S6.1 
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Figure S6.2 
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Figure S6.3 
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 CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

My PhD focused on an increasingly critical topic in ecology and evolution—the integration of leaf 

and whole-plant traits to explaining and predicting plant vital rates and vegetation distributions 

with respect to climate. During my PhD, I have quantified a comprehensive set of leaf, stem and 

whole-plant traits and their relationships with vital rates and climate for study systems across 

scales, from ecotypes of model species Arabidopsis thaliana (Chapter 2), to species of the oak 

genus (Chapter 3), species of Hawaiian wet versus dry forest (Chapter 4), and species and 

ecosystems across California (Chapters 5 and 6). Beyond providing new synthesis of the variation 

of trait-climate relationships across scales, this work has led to specific discoveries, including the 

developmental basis of Arabidopsis stomatal adaptation to climate (Chapter 2), the evolution of 

California native oak species traits in modules (Chapter 3), the variation in traits and their influence 

on vital rates across species native to contrasting forests of Hawai‘i (Chapter 4), the statistical 

predictability of species’ climate distributions across California (Chapter 5) and the variation in 

the intercorrelated networks of traits across a gradient of aridity in California (Chapter 6). 

 More specifically, In Chapter 2, I found that across natural Arabidopsis ecotypes, the 

maximum stomatal conductance, gmax, was determined mainly by the epidermal cell size and the 

stomatal initiation rate, with a much smaller effect of the stomatal size. The anatomical 

determination of stomatal density and gmax by the epidermal cell size and the stomatal initiation 

rate suggests that these traits would be loci for selection, and potential targets for improved crops. 

By contrast, stomatal size was not a key driver of stomatal density or gmax, indicating that theory 

that gmax is strongly influenced by stomatal packing and the stomatal size vs. density trade-off— 
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which was weak in this study—would not apply across Arabidopsis ecotypes (Franks & Farquhar 

2007; Ohsumi et al. 2007; Franks et al. 2009; Camargo & Marenco 2011; Wang et al. 2015; 

Dittberner et al. 2018; Kardiman & Ræbild 2018; Yin et al. 2020). To our knowledge, this is the 

first study to show quantitatively that the maximum anatomical stomatal conductance and its 

relationship with climate is developmentally determined by the area of epidermal pavement cells 

and the stomatal initiation rate and not the stomatal size (Sack & Buckley 2016). 

In Chapter 3, in California oaks, I tested hypotheses for trait co-evolution within and across 

structure-function modules, defined based on ecophysiological theory (plant size, leaf size, flux-

related, economics, ecological stoichiometry and drought response modules). I also tested the 

contribution of shared evolutionary history to the formation of trait modules within plant trait 

networks (PTNs) and identified the key traits within the PTNs. I found that traits varied strongly 

among and within California oak species, with significantly more correlations within than among 

theoretically expected structure-function modules and strong influence of shared evolutionary 

histories. The central, “indicator traits” of the leaf size, ecological stoichiometry and drought-

tolerance modules were positively correlated with climatic aridity of species’ native distributions. 

Photosynthetic traits and the leaf turgor loss point were disproportionately important to the 

topology of the PTNs. Ultimately, the evolution of traits within modules highlights the complexity 

of the integrated phenotypes (He et al. 2020; Sack & Buckley 2020). 

In Chapter 4, I used functional traits to test hypotheses for Hawaiian wet montane and 

lowland dry forests (MWF and LDF respectively). I found that The MWF species’ traits were 

associated with adaptation to high soil moisture and nutrient supply, and greater shade tolerance, 

whereas the LDF species’ traits were associated with drought tolerance. On average, MWF 

species achieved greater maximum heights than LDF species and had leaves with larger 
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epidermal cells, higher maximum stomatal conductance and CO2 assimilation rate, lower vein 

lengths per area, higher saturated water content and greater shrinkage when dry, lower dry matter 

content, higher phosphorus concentration, lower nitrogen to phosphorus ratio, high chlorophyll 

to nitrogen ratio, high carbon isotope discrimination, high stomatal conductance to nitrogen ratio, 

less negative turgor loss point, and lower WD. Functional traits were more variable in the MWF 

than LDF. Across both forests, functional traits were correlated within modules, and predicted 

species’ RGR and m across forests, with stronger relationships when stratifying by tree size (Iida 

et al. 2014; Prado-Junior et al. 2016). Models based on multiple traits predicted vital rates across 

forests (R2 = 0.70-0.72; p < 0.01). Given the power to predict vital rates, this work can enable 

scaling up from the traits of component species to ecosystem and eventually global vegetation 

processes. 

In Chapter 5, I showed that species differed strongly in their functional traits within and 

across the six California ecosystems, with traits varying with climatic aridity as hypothesized 

based on mechanistic theory (Evans 1973; Farquhar et al. 1989; Cunningham et al. 1999; Hacke 

et al. 2001; Wright et al. 2001, 2004; Wright & Westoby 2002; Koch et al. 2004; Santiago et al. 

2004; King et al. 2006; Poorter et al. 2009; Bartlett et al. 2012; Sack et al. 2012; Gleason et al. 

2016; John et al. 2017; Ma et al. 2018; Fang et al. 2019; Liang et al. 2021). I showed that traits 

considered individually and in combination had substantial power to predict the mean values for 

climate variables representing the range of species and ecosystems, despite the strong influence 

of many factors, such as intra-specific variation due to species’ plastic and ecotypic adjustments, 

that could in principle decouple climatic distributions from traits across species (Dobzhansky 

1950; Walter 1979; Brown 1984; DeAngelis & Waterhouse 1987; Stevens 1989; Hanski et al. 

1993; Ohlemüller et al. 2008; Albert et al. 2010a, b; Wiens 2011; Violle et al. 2012; Siefert et al. 
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2015; Lee-Yaw et al. 2016; Pérez-Ramos et al. 2019; Fyllas et al. 2020; Laughlin et al. 2020; 

Sheth et al. 2020). I also showed that the potential for prediction of species’ climate preferences 

from traits was improved using my approach of including traits with mechanistic significance, 

and measured with consistent methodology and would be further increased by sampling each 

species near to the center of its climate distributions (Violle et al. 2007; Moles et al. 2014; 

Taugourdeau et al. 2014; Šímová et al. 2018; van der Plas et al. 2020; Vesk et al. 2020). 

In Chapter 6, I found strong variation in functional traits across California species of six 

ecosystems, with 78 of the 83 measured traits differing across species and 69 differing across the 

ecosystems. In the more arid ecosystems, species had smaller, denser and thicker leaves with 

higher trichome density, higher saturated water mass per area and smaller reduction in leaf area 

when dry, denser wood and more negative turgor loss points than species from the more mesic 

ecosystems. The topology of the PTNs shifted with the climate of sampling locations (Flores-

Moreno et al. 2019; He et al. 2020; Li et al. in review). In the sampling locations with shallower 

soils and warmer temperatures the PTNs were looser, with lower edge density and clustering 

coefficient and higher modularity (Fig. 4). The water availability did not significantly influence 

the tightness of PTNs, but was negatively related to the modularity. The traits that emerged as hub 

and mediator traits in the PTNs were traits typically associated with leaf structural support, 

photosynthesis and fluxes. These results reinforce the idea that traits have limited meaning when 

considered alone. Using a wide range of traits provides insight into the modular nature of trait 

function and overall physiological and ecological strategies of different plant species and 

ecosystems. Ultimately, PTNs provide a promising avenue to explore the adaptive strategies of 

plants and help with the identification of important candidate traits to include in models of future 

species distributions and ecosystem resilience in response to changes in climate. 
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My PhD work opens new possibilities for using mechanistically informative traits to 

parameterize process-based models to test the ability to predict growth and mortality rates from 

trait networks, spatial neighborhoods, local topography, and climate across forests worldwide. 

These models will be critical tools for predicting the trajectory of future climate change, and for 

identifying the species and ecosystems that require the most urgent management. 
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