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Mixtures of Linear Regression with Measurement Errors

Weixin Yao∗ and Weixing Song†

Abstract

Existing research on mixtures of regression models are limited to directly observed

predictors. The estimation of mixtures of regression for measurement error data im-

poses challenges for statisticians. For linear regression models with measurement error

data, the naive ordinary least squares method, which directly substitutes the observed

surrogates for the unobserved error-prone variables, yields an inconsistent estimate for

the regression coefficients. The same inconsistency also happens to the naive mixtures

of regression estimate, which is based on the traditional maximum likelihood estimator

and simply ignores the measurement error. To solve this inconsistency, we propose

to use the deconvolution method to estimate the mixture likelihood of the observed

surrogates. Then our proposed estimate is found by maximizing the estimated mixture

likelihood. In addition, a generalized EM algorithm is also developed to find the es-

timate. The simulation results demonstrate that the proposed estimation procedures

work well and perform much better than the naive estimates.

Key words: EM algorithm; Mixture regression models; Measurement errors; Switching

regression models.
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1 Introduction

Mixtures of regression models are well known as switching regression models in econometrics

literature, which were first introduced by Goldfeld and Quandt (1976). These models are used

to investigate the relationship between interested variables coming from several unknown

latent components. The model setting for mixtures of regression models can be stated as

follows. Let Z be a latent class variable with P (Z = j | X = x) = πj for j = 1, 2, · · · ,m,

where x is a p-dimensional vector. Given Z = j, suppose that the response y depends on x

in a linear way

y = xT βj + εj,

where βj = (β1j, . . . , βpj)
T and εj ∼ N(0, σ2

j ). Then the conditional distribution of Y given

X = x can be written as

Y |X = x ∼
m∑

j=1

πjN(xT βj, σ
2
j ). (1.1)

For more information about the mixtures of regression models (1.1), please see, for example,

McLachlan and Peel (2000) and Frühwirth-Schnatter (2006). The unknown parameters in the

model (1.1) can be estimated by the maximum likelihood estimator using the EM algorithm

(Dempster et al., 1977). Many applications of mixture of regression models can be found in

literature, such as in econometrics (Wedel and DeSarbo, 1993; Frühwirth-Schnatter, 2001),

and in biology and epidemiology (Wang et al., 1996; Green and Richardson, 2002).

In this article, we will assume that the number of components m is known. When it

is unknown, many methods have been proposed to choose the order m. See, for example,

the AIC and BIC methods (Leroux, 1992), distance measures based methods (Chen and

Kalbfleisch, 1996; James, Priebe, and Marchette, 2001; Charnigo and Sun, 2004; Woo and
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Sriram, 2006; Ray and Lindsay, 2008), and hypothesis testing based methods (Chen, Chen,

and Kalbfleisch, 2001, 2004). Recently, Chen and Li (2009) and Li and Chen (2010) proposed

an EM test approach for testing the order of finite mixtures.

To the best of our knowledge, most existing estimation procedures for mixtures of re-

gression models are limited to directly observed predictors. The estimation of mixtures

of regression for measurement error data imposes challenges for statisticians. For linear

regression models with measurement error data, it is well known that the naive ordinary

least squares method, which directly substitutes the observed surrogates for the unobserved

error-prone variables, yields an inconsistent estimate for the regression coefficients. For more

information about linear regression with measurement errors, see Fuller (1987). The same

inconsistency also happens to the naive mixture of regression estimate, which is based on

the traditional maximum likelihood estimator and simply ignores the measurement error.

To remove the inconsistency, a deconvolution technique will be used to estimate the mixture

likelihood of the observed surrogates, more details will be given later. The proposed esti-

mate is found by maximizing the estimated mixture likelihood of the observed surrogates.

A generalized EM algorithm is developed to maximize the estimated mixture likelihood.

The ascending property of the proposed algorithm is proved. Using simulation results, we

demonstrate that the proposed estimation procedures work well and perform much better

than the naive estimates which simply ignore the measurement error.

The rest of this paper is organized as follows. In Section 2, we propose the new estima-

tion procedure to account for the measurement error. A generalized EM algorithm is also

proposed to estimate the mixtures of regression with measurement error. In Section 3, we

use the simulation study and a real data application to illustrate our proposed estimation

procedure. In Section 4, we summarize the proposed method and give a short discussion.

The proofs of the ascending property of the proposed algorithm are deferred to Appendix.
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2 Mixtures of regression with measurement error

2.1 Introduction to the new method

In this section, we consider the mixtures of regression when the X or part of the X in (1.1)

can not be observed directly and instead the surrogate, denoted by W, of X is observed.

The mixtures of regression with measurement error model assumes that

P (Z = j | W,X) = πj

Y |X = x,Z = j,W ∼ N(xT βj, σ
2
j )

W = X + U (2.1)

where W is an observed surrogate of X and U is the measurement error and independent of

(X,Y,Z). Denote by fU(u) the density of U (some elements of U might have degenerate

distributions if the corresponding elements of X are measured without errors). We first

consider the situation in which the distribution of U , fU(u), is known, we will study the case

when it is unknown later on.

The naive estimation method for the model (2.1) will simply ignores the measurement

error U and estimate θ = (β1, σ1, π1, . . . , βm, σm, πm) by maximizing the log-likelihood

n∑
i=1

log

{
m∑

j=1

πj

σj

φ
{
(yi −wT

i βj)/σj

}
}

, (2.2)

where φ(·) is the normal density for standard normal N(0, 1). Similar to the least squares

method for linear regression with measurement error, the naive estimate by maximizing

(2.2) is not consistent, since the wrong model and likelihood function are used. We will also

demonstrate this inconsistency using our simulation studies in Section 3.
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If σjs are unequal, it is well known that the log-likelihood function (2.2) is unbounded and

goes to infinity if one observation exactly lies on one component line and the corresponding

component variance goes to zero. When the likelihood is unbounded, we define the MLE as

the maximum interior/local mode. Hathaway (1985) provided some theoretical support of

using the maximum interior/local mode. There has been considerable research dealing with

the unbounded mixture likelihood issue. See, for example, Hathaway (1985, 1986), Chen,

Tan, and Zhang (2008), and Yao (2010).

In order to account for the measurement error in the mixture of regression model, we

need to find the conditional density of Y given W . Given Z = j, the conditional density of

Y given W = w is

fj(y | w, θj) =

∫
f(y | x, θj)f(x | w)dx =

1

σj

∫
φ

{
(y − xT βj)/σj

}
f(x | w)dx (2.3)

where θj = (β1j, . . . , βpj, σj)
T . For simplicity of notation, here, we use f(·) to denote the

generic density. Therefore Y | W = w ∼ ∑m
j=1 πjfj(y | w, θj), and the log-likelihood for θ

is

logL(θ) =
n∑

i=1

log

{
m∑

j=1

πjfj(yi | wi, θj)

}
, (2.4)

where θ = (π1, θ1, . . . , πm, θm)T . Then our proposed new estimate of θ is the maximizer of

(2.4). A generalized EM algorithm to maximizer (2.4) will be provided in Section 2.2.

In many cases, f(x | w) might be unknown. Denote by f̂(x | w) the estimated conditional

distribution of x given w. Then we propose to estimate θ by maximizing the estimated log-

likelihood

logL̂(θ) =
n∑

i=1

log

{
m∑

j=1

πj f̂j(yi | wi, θj)

}
, (2.5)
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where

f̂j(y | w, θj) =
1

σj

∫
φ

{
(y − xT βj)/σj

}
f̂(x | w)dx.

We will provide the method of estimating f(x | w) in Section 2.3. Denote by θ̂ the maximizer

of (2.5).

2.2 Estimation Algorithm

To maximize (2.4) (or (2.5)) is not trivial. Here, we propose a generalized EM algorithm to

maximize (2.4). Define a vector of component indicator zi = (zi1, . . . , zim)T , where

zij =





1, if (wi, yi) is from the j-th component;

0, otherwise.

Then the complete log-likelihood function for the complete data {(wi, yi, zi),

i = 1, . . . , n}, by omitting some irrelevant constants, is

lc(θ) =
n∑

i=1

m∑
j=1

zij {log πj + log fj(yi | wi, θj)} .

Based on the properties of EM algorithm, in the (k + 1)th E step, we need to calculate

E
{

lc(θ) | θ(k),y
}

, where y = (y1, . . . , yn)T and θ(k) is the estimate of θ at kth step. Since

lc(θ) is a linear function of zij’s, in the E step, we only need to calculate

p
(k+1)
ij = E

{
Zij | θ(k),y

}
=

π
(k)
j fj(yi | wi, θ

(k)
j )

∑m
l=1 π

(k)
l fj(yi | wi, θ

(k)
j )

, i = 1, . . . , n, j = 1, . . . , m. (2.6)
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In the M step, we need to find θ by maximizing

Q(θ) = E
{

lc(θ) | θ(k),y
}

=
n∑

i=1

m∑
j=1

p
(k+1)
ij {log πj + log fj(yi | wi, θj)}. (2.7)

Hence

π
(k+1)
j =

1

n

n∑
i=1

p
(k+1)
ij , (2.8)

and θj is the maximizer of
n∑

i=1

p
(k+1)
ij log fj(yi | wi, θj). (2.9)

Therefore, βj = (β1j, . . . , βpj)
T is the solution of

0 =
∂Q(θ)

∂βj

=
n∑

i=1

p
(k+1)
ij

∂ log fj(yi | wi, θj)

∂βj

=
n∑

i=1

p
(k+1)
ij

∫
φ{(yi − xT βj)/σj}(yi − xT βj)xf(x | wi)dx

fj(yi | wi, θj)σ3
j

≈σ−2
j

[
n∑

i=1

p
(k+1)
ij yi

∫
τ

(k+1)
ij (x)xdx−

{
n∑

i=1

p
(k+1)
ij

∫
τ

(k+1)
ij (x)xxT dx

}
βj

]
,

where

τ
(k+1)
ij (x) = f(x | θ(k)

j , yi,wi) =
φ{(yi − xT β

(k)
j )/σ

(k)
j }f(x | wi)

fj(yi | wi, θ
(k)
j )σ

(k)
j

(2.10)

is the conditional density of x given the wi, yi and the current estimate θ
(k)
j . Hence, based

on the above approximation, we can update βj by

β
(k+1)
j =

{
n∑

i=1

p
(k+1)
ij

∫
τ

(k+1)
ij (x)xxT dx

}−1 {
n∑

i=1

p
(k+1)
ij yi

∫
τ

(k+1)
ij (x)xdx

}
. (2.11)
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The σ2
j is the solutions of

0 =
∂Q(θ)

∂σ2
j

=
n∑

i=1

p
(k+1)
ij

[∫
φ{(yi − xT βj)/σj}(yi − xT βj)

2f(x | w)dx

2σ5
j fj(yi | wi, θj)

− 1

2σ2
j

]

≈(2σ4
j )
−1

n∑
i=1

p
(k+1)
ij

[∫
τ

(k+1)
ij (x)(yi − xT β

(k+1)
j )2dx− σ2

j

]
.

Based on the above approximation, we can update σj by

σj
(k+1) =




{
n∑

i=1

p
(k+1)
ij

}−1 n∑
i=1

p
(k+1)
ij

∫
τ

(k+1)
ij (x)

{
yi − xT β

(k+1)
j

}2

dx




1/2

. (2.12)

If we assume σj’s are equal, i.e., σ1 = σ2 = · · · = σm = σ, then we can update σ by

σ(k+1) =

[
n−1

n∑
i=1

m∑
j=1

p
(k+1)
ij

∫
τ

(k+1)
ij (x)

{
yi − xT β

(k+1)
j

}2

dx

]1/2

. (2.13)

We will prove in Theorem 2 that the iterations from (2.10) to (2.12) can be also considered

as an EM algorithm for the the objective function (2.9) with xi’s as missing latent variables

(See the proof of Theorem 2 in the Appendix for more detail). Therefore, one may run

the full iteration of (2.10) — (2.12) to get the update value θ(k+1). However, based on

the properties of EM algorithm, each iteration from (2.10) to (2.12) increases the objective

function (2.9) and thus suffice for the monotone increasing of (2.4) for the whole algorithm

from (2.6) to (2.12).

Based on the above descriptions, we propose the following generalized EM algorithm

(GEM; Dempster, Laird, and Rubin 1977) to estimate θ.

Algorithm 1. Starting with θ(0), in (k + 1)th step

E-Step: Calculate the classification probabilities p
(k+1)
ij ’s using (2.6).

8



M-Step: Update πj’s, βj’s and σj’s based on (2.8), (2.11), and (2.12).

Theorem 1. Each iteration of the E and M steps in Algorithm 1 will monotonically increase

the log-likelihood (2.4), i.e.,

log L(θ(k+1)) ≥ log L(θ(k)),

for all k, where log L(θ) is defined in (2.4).

2.3 Estimation of f(x | w)

Notice that

f(x | w) =
fX(x)f(w | x)

fW (w)
,

where f(w | x) = fU(w−x) is assumed to be known and fW (w) can be estimated by kernel

density estimator. In fact, the proposed estimation procedure in Algorithm 1 for θ does not

depend on fW (w), since it does not involve the unknown parameters. Therefore, we only

need to estimate fX(x) in order to estimate f(x | w). Estimating fX(x) when fU is given

has been a long standing research problem for measurement error model. In this article, we

use the nonparametric deconvolution method to estimate fX(x) .

For any p-dimensional density function L, let φL denote its characteristic function and

define

Kh(x) =
1

(2π)p

∫

Rp

exp(−it′x)
φL(t)

φU(t/h)
dt, i =

√−1,

where h is a positive number. Then the deconvolution kernel estimate of f(x) with the

bandwidth h is defined as

f̂(x) =
1

nhp

n∑
i=1

Kh

(
x−wi

h

)
. (2.14)

The asymptotic properties of this deconvolution kernel estimate of f(x) were thoroughly
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discussed in literature. See Stefanski and Carroll (1986, 1990), Fan (1991a,1991b) and the

references therein for more details. Very often the deconvolution kernel function Kh is not

tractable, but in some particular cases, Kh does have explicit forms. For example, Fan and

Truong (1993) showed that if fU(u) has double exponential distribution

fU(u) = (
√

2σ)−1 exp(−
√

2|u|/σ),

then

Kh(x) =
1√
2π

exp

(
−x2

2

)[
1− σ2

2h2
(x2 − 1)

]
,

and if fU(u) has normal distribution N(0, σ2), then

Kh(x) =
1

π

∫ 1

0

cos(tx)(1− t2)3 exp

(
σ2t2

2h2

)
dt.

If f(x) has a parametric form, then one can certainly construct more efficient estimates.

In our examples, in order to reduce the dependence of our method on the parametric as-

sumption of fX(x) and enhance the generality of our method, we will use the nonparametric

deconvolution method to estimate fX(x). Based on our empirical study, the proposed esti-

mate based on nonparametric deconvolution method is not very sensitive to the distribution

assumption of the measurement error.

Remark: If fU(u) is only unknown due to the covariance matrix ΣU = Cov(U), for

example if U is normal with mean zero with unknown covariance matrix, we can estimate

ΣU based on the partially replicated observations, Wij = Xi +Uij for j = 1, . . . , Ji (Carroll,

et al. 2006, chap 3). Let W̄i = J−1
i

∑Ji

i=1 Wij and Ūi = J−1
i

∑Ji

i=1 Uij. Then a consistent
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estimate of ΣU is

Σ̂U =
n∑

i=1

Ji∑
j=1

(Wij − W̄i)(Wij − W̄i)
T /

n∑
i=1

(Ji − 1).

Note that Cov(Ūi) = J−1
i ΣU . By mimicking the idea of linear regression with measurement

error, we can also use a bias corrected estimation equation weighted by the classification

probabilities to update βj’s in the M step of Algorithm 1

β
(k+1)
j = arg min

βj

n∑
i=1

p
(k+1)
ij

{
(yi − W̄T

i βj)
2 − J−1

i βT
j Σ̂Uβj

}
. (2.15)

2.4 Bandwidth Selection

When f(x) is assumed to be unknown, we need to estimate it first based on the deconvolution

method proposed in Section 2.3. Therefore, a choice of a bandwidth h for (2.14) is needed. In

practice, data driven methods can be used for bandwidth selection, such as cross-validation

(CV). Denote by D as the full data set. We then partition D into a training set Rl and test

set Tl, D = Tl ∪ Rl l = 1, · · · , J . We use the training set Rl to obtain the estimates θ̂. We

consider a likelihood version CV, which is given by

CV =
J∑

l=1

∑
q∈Tl

log

{
m∑

j=1

π̂j f̂j(yq | wq, θ̂j)

}
. (2.16)

The optimal bandwidth is selected when CV is maximized. Based on our empirical experi-

ence, the cross-validation tends to provide a smaller bandwidth than the optimal one.
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3 Examples

In this section, the sampling behavior of the proposed mixture of regression estimate with

measurement error is examined by a Monte Carlo simulation study.

Example 1: We generate the independent and identically distributed (i.i.d.) data {(xi, yi, wi),

i = 1, . . . , n} from the model

Y =




−12 + 4X + ε1, if Z = 1;

12− 4X + ε2, if Z = 2.

W = X + U ,

where Z is the latent component indicator of Y with P (Z = 1) = 0.4, X ∼ Unif(2, 4), ε1 ∼
N(0, 1), and ε2 ∼ N(0, 1). Note that the above two lines intersect each other at X = 3, which

is the center of Unif(2, 4). Therefore, the two components have some overlap around X = 3.

To study the effect of measurement error distribution of U on the proposed estimator, we

consider the following two cases:

Case I: U has a normal distribution with mean zero.

Case II: U has a double exponential distribution with mean zero.

The variance of U is chosen so that the reliability ratio (Fuller, 1987):

r =
Var(X)

Var(X) + Var(U)
= 0.70. (3.1)

For each simulated data set, we estimate the mixture of regression parameters by three

methods:

(a) the naive method which ignores the measurement error and maximizes (2.2) directly,
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(b) the proposed new method assuming a normal measurement error (New-Norm).

(c) the proposed new method assuming a double exponential measurement error (New-

Double).

As will be demonstrated in this simulation study, the proposed estimate is very robust to

the distribution assumption of the measurement error.

We compare the performance of different methods based on the mean squared errors

(MSE). For example, for π1,

MSE(π̂1) =
1

500

500∑
t=1

(π̂1t − π1)
2

where π̂1t is the estimate of π1 based on tth replication and π1 is the true value, which is 0.4

in this example.

Similar to Bordes, Chauveau, and Vandekerkhove (2007), we use the true initial values for

θ in our GEM algorithm, in order to avoid the possible bias introduced by different starting

values among replications or label switching issues (Diebolt and Robert, 1994; Stephens,

2000; Yao and Lindsay, 2009; Yao, 2012a, 2012b).

In Table 1 and 2, we report the relative efficiency between the naive method and our

proposed new methods based on the ratio of the MSE of the naive method to that of the

proposed estimators. From the Tables, we can see that the new methods, which incorporate

the measurement error, work much better than the naive method and the gain can be

substantial even for small sample size. In addition, it can be seen that the new methods are

very robust to the distribution assumption of the measurement error.

Example 2 (Tone perception data): In the tone perception experiment of Cohen (1984),

a pure fundamental tone was played to a trained musician with electronically generated

13



Table 1: Relative efficiency, Proposed vs Naive (normal measurement error).

Sample size β10 β11 β20 β21 σ1 σ2 π1

n=100
New-Norm 5.615 7.142 4.802 6.386 1.354 2.580 2.048

New-Double 4.896 6.204 4.447 5.858 1.712 3.179 1.772

n=200
New-Norm 15.585 19.671 14.942 19.515 3.042 5.230 2.521

New-Double 15.015 19.088 14.200 18.286 3.863 5.829 2.486

n=400
New-Norm 35.187 42.905 35.998 45.643 8.460 14.843 4.341

New-Double 33.628 41.445 29.529 37.398 7.891 14.763 4.336

Table 2: Relative efficiency, Proposed vs Naive (double exponential measurement error).

Sample size β10 β11 β20 β21 σ1 σ2 π1

n=100
New-Norm 2.644 2.704 2.688 2.834 1.661 1.997 1.947

New-Double 2.922 3.066 2.743 2.896 2.593 3.372 1.852

n=200
New-Norm 5.654 5.752 6.348 6.626 3.470 5.084 1.835

New-Double 6.467 6.549 7.621 7.978 5.044 7.558 1.909

n=400
New-Norm 9.048 9.283 13.231 13.457 5.344 7.059 1.860

New-Double 11.204 11.499 17.435 17.824 7.079 9.566 1.945

overtones added, which were determined by a stretching ratio of x. x = 2 corresponds to the

harmonic pattern usually heard in traditional definite pitched instruments. The musician

was instructed to tune an adjustable tone to the octave above the fundamental tone. y

gives the ratio of the adjusted tone to the fundamental, i.e., y = 2.0 would be the correct

tuning for all x-values. The tuning ratio, which is the ratio between adjusted tone and the

fundamental tone, was recorded for 150 trials from the same musician. The purpose of this

experiment was to see how this tuning ratio affects the perception of the tone. Furthermore,

the experiment was designed to determine if either of two musical perception theories was

reasonable (see Cohen, 1980 for more detail). A scatter plot of these data can be found in

14



Figure 1 and two lines are evident which correspond to the behavior indicated by the two

musical perception theories.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
1

1.5

2

2.5

3

3.5

x

y

Figure 1: The scatter plot of the original tone perception data and the fitted regression lines by

different methods when the measurement error is added. The predictor is actual tone ratio and the

response is the perceived tone ratio by a trained musician. The solid lines are based on the new

method, the dash-dash lines are based on the naive method, and the dash-dot lines are based on

the oracle method.

To see the impact of measurement error, under the constraint (3.1), we add a measure-

ment error N(0, 0.32) to the predictor x. Denote by W the surrogate of X. We fit the data

(W,Y ) using both naive method, which ignores the measurement error, and the proposed

new method assuming double exponential error. For comparison, we also add an oracle

method which uses the (X,Y ) directly. We plot these fits in Figure 1. From Figure 1, we

can see that the regression lines estimated by the new method and the oracle method are

almost overlap. However, the naive estimate has some bias for one of the component lines.

Table 3 reports the mixtures of regression parameter estimates. For comparison, we also

include the new method assuming the normal measurement error, which is the true one.
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Table 3: Regression parameter estimates for the tone perception data with measurement
error

Oracle Naive method New-Double New-Norm

β10 1.892 1.943 1.908 1.909

β11 0.055 0.029 0.046 0.046

β20 -0.038 0.596 -0.057 -0.043

β21 1.007 0.725 1.041 1.015

σ1 0.063 0.049 0.048 0.048

σ2 0.114 0.281 0.201 0.203

π1 0.674 0.747 0.752 0.751

From the table, it can be seen that both new methods have closer results to the oracle one

than the naive method. The naive estimate has larger bias for β20 and β21. In addition, both

new methods, assuming different measurement errors, provide similar results. Therefore, our

new method is not every sensitive to the distribution assumption of the measurement error.

4 Concluding Remarks

In this article, we proposed a method to estimate the mixture of linear regression with mea-

surement errors by maximizing the “corrected” log-likelihood (2.4). In addition, we also

proposed a generalized EM algorithm to compute the MLE. The simulation results demon-

strate that the proposed estimation procedures work well and perform much better than the

naive MLE which simply ignores the measurement error. Note that the generic identifiabil-

ity of finite mixtures of regression models does not follow from the generic identifiability of

Gaussian mixtures. It will be interesting to know whether we can use the similar identifiabil-

ity conditions of Hennig (2000) for regular mixtures of regression along with the assumption

on fU(u) and fX(x) to insure the identifiability of the model (2.1), when the measurement
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error exists. This requires more research. In addition, it will be also interesting to investi-

gate the asymptotic properties of proposed estimates. However, we think the proof won’t be

easy since it involves both the measurement error and the nonparametric estimated density

f(x | w).

APPENDIX: PROOFS

Proof of Theorem 1:

logL̂(θ(k+1))− logL̂(θ(k)) =
n∑

i=1

log

{∑m
j=1 π

(k+1)
j fj(yi | wi, θ

(k+1)
j )

∑m
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(k)
j fj(yi | wi, θ

(k)
j )

}

=
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{
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π
(k)
j fj(yi | wi, θ

(k)
j )
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(k)
j )

π
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(k)
j )
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=
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π
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π
(k)
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j )

}
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m∑
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p
(k+1)
ij log

{
π

(k+1)
j fj(yi | wi, θ

(k+1)
j )

π
(k)
j fj(yi | wi, θ

(k)
j )

}

Therefore,

logL̂(θ(k+1))− logL̂(θ(k)) ≥ 0

if we can prove
n∑

i=1

m∑
j=1

p
(k+1)
ij log

{
π

(k+1)
j fj(yi | wi, θ

(k+1)
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(k)
j fj(yi | wi, θ
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Let e
(k)
i = yi − xT

i β
(k)
j . Then,

n∑
i=1
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by noting that β
(k+1)
j in (2.11) and σ
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