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ABSTRACT: Engineering proteins to enhance thermal stability is a widely utilized approach for creating industrially relevant
biocatalysts. The development of new experimental datasets and computational tools to guide these engineering efforts remains an
active area of research. Thus, to complement the previously reported measures of T50 and kinetic constants, we are reporting an
expansion of our previously published dataset of mutants for β-glucosidase to include both measures of TM and ΔΔG. For a set of 51
mutants, we found that T50 and TM are moderately correlated, with a Pearson correlation coefficient and Spearman’s rank coefficient
of 0.58 and 0.47, respectively, indicating that the two methods capture different physical features. The performance of predicted
stability using nine computational tools was also evaluated on the dataset of 51 mutants, none of which are found to be strong
predictors of the observed changes in T50, TM, or ΔΔG. Furthermore, the ability of the nine algorithms to predict the production of
isolatable soluble protein was examined, which revealed that Rosetta ΔΔG, FoldX, DeepDDG, PoPMuSiC, and SDM were capable
of predicting if a mutant could be produced and isolated as a soluble protein. These results further highlight the need for new
algorithms for predicting modest, yet important, changes in thermal stability as well as a new utility for current algorithms for
prescreening designs for the production of mutants that maintain fold and soluble production properties.

■ INTRODUCTION

A common goal of enzyme engineering is the enhancement of
thermal stability.1 For industrial applications, improving a
protein’s robustness to thermal challenges or half-life at
elevated temperatures can often be the deciding factor for
the commercialization of a biocatalyst.2−5 Currently, the most
common approach for improving thermal stability is through
directed evolution methodologies,6,7 which can be time-
consuming, costly, and limited in the ability to search sequence
space. Computational design tools to predictably identify
single and combinatorial mutations that enhance thermal
stability are rapidly developing and growing in popularity.8−14

However, accurate predictions using computational tools to
guide protein stability design remain an active area of research
and is not always successful.
The use of large datasets on the mutational effect on protein

stability, such as ProTherm15 now maintained by ProtaBank,16

is often used to train computational methods for predicting
thermal stability. The datasets utilized generally consist of the
equilibrium constant of unfolding (Ku) or the melting

temperature of an enzyme (TM).
17 In our previous study, we

determined the thermal stability of 79 β-glucosidase B (BglB)
variants by finding T50, a type of kinetic stability that is
determined by the temperature at which a mutant’s residual
activity is reduced by 50% after a heat challenge over a defined
time.4,17,18 When analyzing this set of mutants using two
established computational programs (Rosetta ΔΔG and FoldX
PSSM) for predicting thermal stability, we found that there
was no significant correlation between the predictions and the
observed T50.

19

One hypothesis explaining the poor predictive performance
of the algorithms with the BglB dataset is that the algorithms
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are evaluated on TM, a direct measure of structural thermal
stability. However, the algorithms were being used to predict
T50, which is an indirect measure of the protein’s thermal
stability.17 Alternatively, the poor performance could have
come from the narrow T50 range (extreme variants are +6.06
and −5.02 °C from the wild type (WT)) as the algorithms are
generally benchmarked on larger changes in thermal stability
and ±3 °C may be within the error of the currently developed
algorithms. In this study, we evaluated both hypotheses.
To assess if there was a significant difference in TM and T50,

we developed a dataset of 51 BglB mutants (Figure 1) in which

both thermal stability measurements, T50 and TM, were
measured. Interestingly, for the set of 51 measurements,
there was only a modest correlation between T50 and TM, with
a Pearson coefficient correlation (PCC) and Spearman’s rank
correlation (SRC) of 0.58 and 0.47, respectively. This
highlights the difference in the physical properties being
measured using these two techniques, TM being the thermal
stability of the protein’s structural elements and T50 reporting
on the thermal stability to irreversible denaturation. However,
similar to the previous study,19 the relationship between the
predicted stability with the experimental TM only results in a
weak correlation not only with the previous algorithms
evaluated (Rosetta ΔΔG and FoldX PSSM) but also with
five other commonly used methods: ELASPIC, DeepDDG,
PoPMuSiC, SDM, and AUTO-MUTE. This result suggests
that while the two measurements are reporting on different
physical properties, this is not the key factor that led to the low
predictive accuracy of established algorithms on this dataset.
To evaluate the second hypothesis, that the changes in

thermal stability of the BglB dataset are too small for current
algorithms, we investigated the ability of the algorithms to
predict if a mutation reduced thermal stability to the point that
the protein could no longer be produced and isolated in a
soluble form. Analysis of the computational algorithms to
predict destabilization to the point where no soluble protein
could be isolated showed a significant enrichment based on the
calculated energetics of the mutants for several algorithms, the

most significant of which is for Rosetta ΔΔG. This supports
the hypothesis that the lack of performance on the BglB
dataset is due to the narrow range in changes observed for
thermal stability. These slight molecular changes, especially
interactions that are less than 1 kcal/mol, are challenging to
accurately model. This highlights the need for new algorithms
for predicting modest, yet important, changes in thermal
stability as well as a new utility for current algorithms for
prescreening designs for the production of mutants likely to
maintain protein structure and be produced as a soluble
protein.

■ METHODS

Mutant Selection, Protein Expression, and Purifica-
tion. Out of 79 mutants of BglB that were previously
characterized with T50 data,

19 51 variants with plasmid readily
available were transformed into chemically competent
Escherichia coli BLR (DE3) cells. The variants were produced
and purified, as previously described.14 Expression was carried
out by growing a 5 mL overnight culture in a 50 mL falcon
tube with a breathable seal in Terrific broth (TB) medium with
kanamycin while shaking at 250 rpm at 37 °C. After the initial
overnight culture, cells were spun down and resuspended in
fresh TB with kanamycin with 1 mM isopropyl β-D-1-
thiogalactopyranoside in a 50 mL falcon tube with a breathable
seal and incubated while shaking at 250 rpm at 18 °C for 24 h.
Then, the cells were spun down, lysed, and purified using
immobilized metal ion affinity chromatography, as previously
described.19 The purity of the protein samples was analyzed
using 12−14% SDS-PAGE (Figure SI 1-1), and the yield was
assessed based on the A280 for proteins that appeared >75%
pure in the SDS-PAGE analysis. Protein samples were
considered expressed if they were detectable in the SDS-
PAGE analysis and greater than 0.10 mg/mL using A280, as
previously described.19

Melting Temperature Assay. The melting temperature
(TM) of BglB was determined using the Protein Thermal Shift
(PTS) kit (Applied Biosystems, from Thermo Fisher
Scientific). Standard protocols provided by the manufacturer
were used. Protein concentrations ranged from 0.1−0.5 mg/
mL, and fluorescence reading was monitored with a
QuantaStudio 3 system from 20 to 90 °C. The temperature
melting curve was first smoothed with a 20 step sliding window
average (Script SI 2). TM was determined from the average of
three to four replicates at which the derivative was largest, and
all melting curves can be found in Figure SI 3.

ΔG Calculations from TM. Calculations were conducted,
as previously described.21 First, we assumed that the protein
follows the two-state folding mechanism, a binary conversion
of native state to full denaturation. Second, to derive
ΔG°unfolding, the fluorescence intensity was first translated
into fractions of folded (Pf) and unfolded (Pu) proteins of the
linear portion of the graph at different temperatures starting
from the minimum fluorescence (Fmin) to the maximum
fluorescence (Fmax) shown in eq 1.

= −
−
−

P
F F

F F
1f

min

max min (1)

By taking a two-state folding−unfolding model, the
equilibrium constant of unfolding (Ku) at different temper-
atures is then given by

Figure 1. Structure of BglB (PDB ID: 2JIE) from the bacterium
Paenibacillus polymyxa. PyMOL rendering20 of BglB showing the 28
sequence-positions (teal spheres) of the 51 mutants chosen out of the
original 92 previously expressed proteins for the TM analysis.19 The
reaction scheme of the hydrolysis of 4-nitrophenyl β-D-glucopyrano-
side by BglB used in the T50 study.

19
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=K
P
Pu

f

u (2)

We plotted ln Ku against 1/T using the van’t Hoff method
shown in eq 3 (Script SI 2), the −ΔH

Ris defined by the slope,
ΔS

R is the y-intercept, T is temperature, and R is the ideal gas
constant.

= − Δ + Δ
K

H
RT

S
R

ln u (3)

The Gibbs free energy of protein-unfolding can then be
determined using eq 4, where ΔG°unfolding is the unfolding
energy at a TRT of 298 K. All calculations can be found in
Script SI 2.

Δ ° = Δ − ΔG H T Sunfolding RT (4)

Molecular Modeling. Seven popular, readily accessible,
and recently developed molecular modeling methods, many of
them force-field and machine-learning-based, were evaluated
for their ability to recapitulate the experimental data: Rosetta
ΔΔG,22 FoldX,23 ELASPIC,24 DeepDDG,25 PoPMuSiC,26

SDM,27 and AUTO-MUTE (DDG).28 The crystal structure of
BglB (PDB ID: 2JIE) was used across seven different
algorithms. First, using a previously described method,19 the
2JIE structure was used as input to the Rosetta ΔΔG
application and run, as previously described (Script SI 5).
Briefly, 50 poses of the WT and the mutant were generated for
which 15 energy terms were reported from the score function
used.22 The three lowest system energy scores out of 50 from
WT and the mutant were averaged to give the final Rosetta
ΔΔG score. Second, for the FoldX position-specific scoring
metric (PSSM) protocol, the 2JIE structure was first
minimized for any potential inaccurate rotamer assignment
using the RepairPDB application.23 The repaired PDB
structure was mutated with single-point mutants and then
modeled using FoldX PSSM. The model was scored based on
17 terms within the FoldX force-field.23 Third, the ELASPIC
protocol first constructed a homology model of the WT using
the crystal structure, sequence, molecular, and energetics
information. Using the standard procedure described, the
FoldX algorithm was used to construct the mutant model. The
final mutational change is predicted using Stochastic Gradient
Boosted Decision Trees based on the energetic, chemical, and
structural features from FoldX.24,29 Fourth, using a curated
dataset derived from the Protherm database,15 DeepDDG used
their previously described shared residue pair neural network

structure to make a prediction of stability.25 The DeepDDG
output indicated that >0 kcal/mol could be considered stable,
whereas <0 kcal/mol could be considered unstable. Fifth,
PoPMuSiC estimated the stability of the WT structure and
mutants using 13 statistically potential terms, and an additional
two terms that account for the volume differences of the
residues between WT and the mutant.26 Sixth, the SDM
method evaluated mutational changes using a statistical
potential energy function based on environment-specific
substitution tables. These tables consisted of data such as
structural information, solvent accessibility of the sidechain,
and hydrogen bonding.27 Lastly, similar to SDM, the seventh
method, AUTO-MUTE, which predicts for ΔTM and ΔΔG,
utilized a statistical potential to calculate the environmental
changes of the residue compared to the WT.28 The protocol
was performed using tree regression at 23 °C and pH 7.5.
Apart from predicting ΔΔG, two additional methods were

used to evaluate the algorithms’ ability to predict ΔTM
changes. As mentioned above, the AUTO-MUTE prediction
using the Stability Changes (ΔTM) protocol was performed
with tree regression. Also, HotMuSiC was used to evaluate the
mutational effect with the temperature-dependent potential
and other statistical potential terms such as solvent
accessibility, structural, and sequence-based information.30

Pearson correlation coefficient (PCC) and Spearman’s rank
correlation (SRC) analyses were performed between their
respective ΔΔG (ΔΔG = ΔGmutants − ΔGWT) or the change in
total system energy (ΔTSE) of the nine computational
methods. Additionally, the available individual features within
the Rosetta ΔΔG and FoldX PSSM force field were further
evaluated against the TM dataset for correlation.
Finally, ΔTSE was evaluated against mutants that could be

isolated as a soluble protein and those that lost structural
integrity and either precipitated or were degraded and
therefore could no longer be isolated as a soluble protein
(nonisolated). A Student’s t-test was used to obtain p-values
for the nine computational methods. The two categories
between isolated and nonisolated protein were treated as an
independent sample using an unequal variance.

■ RESULTS
Evaluating the Relationship between TM and T50. To

the best of our knowledge, there has not been a large dataset
(>50 data points) directly comparing the TM and T50
relationship for a single set of protein mutants uniformly
produced and characterized. It is important to distinguish both
TM and T50 methods since the measurements are quantifying

Figure 2. Comparison of two different experimental thermal stability datasets and experimentally derived ΔΔG. (A) Relationship for each mutant
between T50 and TM. The PCC of 0.58 illustrates that the two methods are modestly positively correlated with mutations that are in the extreme
ends of the temperature range (±5 °C). (B) Evaluation of ΔTM with experimentally derived ΔΔG shows the two qualities are highly correlated
(PCC = −0.76), unlike (C) where the relationship between ΔT50 and experimentally derived ΔΔG has a PCC of −0.35.
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and reporting different structural and functional properties. TM
is the temperature at which half the enzyme is found in the
unfolded state over the folded state.17,31 This is often evaluated
through denaturation assays, where the thermodynamic
measurements (ΔGunfolding) can be obtained.31 This method
is generally a lower throughput method as purified protein is
required to obtain an accurate measurement for the structural
properties for the mutant being evaluated. T50 measures the
temperature of half-inactivation that leads to irreversible
unfolding,11,32 and it is determined by the reduction of half
of the enzymatic activity due heat challenges.17 This is a very
common assay for protein engineering due to its compatibility
with high-throughput assays and the ability to use cell lysates
to evaluate function.
To complement our previously measured dataset of T50, 51

of the 92 expressed proteins with available plasmids19 were
selected and evaluated for TM using the Protein Thermal Shift
assay to compare T50 and TM. The WT BglB TM was
determined to be 45.97 ± 1.03 °C, while the previously
determined T50 was 39.9 ± 0.1 °C.19 When evaluating the
entire dataset, the TM ranged between 37.1 and 54.3 °C,
slightly larger than what was observed for T50, which was
between 34.9 and 46.0 °C (Figure SI 1-2). The variant that
had the highest TM in this dataset was E167A, with a ΔTM of
54.3 °C (+8.33 °C), which was also observed to have a similar
increase in T50 compared with the WT (+6.06 °C).19 The
variant that had the lowest TM in this dataset was found to be
E225A, with a ΔTM of −8.9 °C, which had a corresponding
T50 of −3.1 °C.
The relationship between T50 and TM is plotted in Figure

2A. The PCC and SRC of 0.58 and 0.47, respectively, indicate
that the two methods are moderately positively correlated.
Correlation between methods increased in cases where
mutations resulted in extremely stable and unstable products,
for example, E167A and E225A, respectively. This is an
expected result for small changes (<3 °C) in thermal stability;
the differences in measurement methods would be expected to
play a more significant role than for larger changes (>5 °C).
The evaluation of ΔTM and ΔT50 with experimentally derived
ΔΔG is also plotted in Figure 2B,C, respectively. The PCC
and SRC show that the TM method and experimentally derived

ΔΔG are strongly correlated (PCC and SRC of −0.76),
compared to those between ΔΔG and T50 (PCC of −0.35 and
SRC of −0.24).

Evaluating Computational Stability Tools Using the
BglB TM Dataset. The computational evaluation of protein
stability of the current experimental TM dataset was analyzed in
the same manner as our previous study on T50.

19 An
energetically evaluated model for each mutant was generated
using established computational methods and subsequently
plotted as a function of TM to evaluate the calculated energies
related to the observed TM. The PCC and SRC for the most
commonly assessed term, the ΔTSE, was found to be highest
for FoldX PSSM (PCC of −0.34 and SRC of −0.35) with ΔTM
(Figure 3). Similarly, the FoldX PSSM correlations with
experimentally derived ΔT50 data were found to be −0.21 and
−0.16 for PCC and SRC, respectively. The overall relationship
between the ΔTSE and the ΔTM thermal stability dataset
slightly improved for FoldX, DeepDDG, PoPMuSiC, and
AUTO-MUTE (Figure SI 1-3), while Rosetta ΔΔG and
ELASPIC remained relatively unchanged with no significant
correlation. Interestingly, SDM was the only method where the
correlation with ΔT50 is stronger than that of ΔTM (Figure SI
1-3).
An analysis of individual energetic term from Rosetta ΔΔG

and FoldX PSSM did not uncover any specific feature in either
method’s energetic evaluation that was strongly correlated with
the TM dataset, as was previously observed for the T50 dataset

19

(Figure SI 4). The strongest PCC for TM against any of the
available energetic terms was 0.39 for the Δbackbone clash
term from FoldX PSSM and −0.31 for the Omega energy term
from Rosetta ΔΔG. To be consistent with the previous
performance assessment, we also evaluated the algorithms on
experimentally derived ΔΔG in this dataset (Figure 3). The
PCC and SRC of 0.39 and 0.36, respectively, between
experimental ΔΔG and ΔTSE for FoldX PSSM outperformed
six other algorithms that were compared. The correlation
between experimental ΔΔG with ΔTSE was not unexpected as
TM showed a correlation with ΔΔG with a PCC and SRC of
−0.76 (Figure 2B). Analysis of AUTO-MUTE and HotMuSiC
to predict for ΔTM revealed no significant correlation with the
experimental ΔTM (Figure SI 1-3).

Figure 3. Evaluation of the algorithms ΔTSE versus the experimentally derived ΔΔG and the TM and T50 datasets. The Pearson correlation
coefficient and Spearman’s rank correlation for each performance against three types of experimental data were determined. Five representative
comparisons are illustrated above, with four additional algorithms, SDM, AUTO-MUTE (DDG), AUTO-MUTE (ΔTM), and HoTMuSiC
provided in Figure SI 1-3. No algorithm resulted in a significant correlation between the calculated energies and the observed TM, T50, or ΔΔG for
this dataset.
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Based on this analysis, it is apparent that the general
performance of all given methods at best only weakly correlates
with the experimentally determined effects of the mutations.
This data fails to support the hypothesis that the lack of a
previously observed correlation of these established computa-
tional tools with observed changes in thermal stability in the
BglB dataset is due to the difference in the physical property
being measured.
Prediction of Mutant Soluble Expression. The current

dataset consists primarily of modest changes in thermal
stability of <5 °C, calculated to be ±4 kcal/mol of the WT,
and therefore may be challenging for current computational
methods to predict. However, this change has only been
analyzed in a fraction of the 129 mutants tested in the overall
BglB dataset. Of the 129 mutants, only 92 were found to be
produced and isolated in a soluble form. All purification
procedures are conducted at ∼20 °C. Since the WT has a T50
of 39.9 °C, any reduction in T50 of >18 °C would result in a
loss of structural stability from which insoluble aggregates or
proteolytic degradation would readily occur during production
and purification. In this case, the proteins would no longer be
able to be isolated in a soluble form similar to the WT protein.
Therefore, it seemed pertinent to evaluate if any of the nine
algorithms could differentiate variants in this dataset that could
be isolated as a soluble protein versus those that were not able
to be separated as a soluble protein.
For this evaluation, all of the previously reported 129

mutants were assessed using the nine algorithms following the
same methods used for T50 and TM. A mutant was generally
considered soluble if it was observed on an SDS-PAGE analysis
and had an A280 >0.1 mg/mL. The WT protein produced
using the methods described generally resulted in an average
A280 of 1.5 mg/mL, which would provide a >10-fold change
in yield for mutants having an A280 less than 0.1 mg/mL.
While factors other than thermal stability can affect production
and isolation of soluble protein, in this case, it is assumed that
the primary factor that decreases soluble protein yield is from
denaturation of the mutant protein either during expression or
purification. The results of this analysis are presented in Figure
4.
Of the nine algorithms evaluated, Rosetta ΔΔG, FoldX,

DeepDDG, PoPMuSiC, and SDM can capture the enrichment
of mutants isolated as a soluble protein. The differences were
evaluated for statistical significance using the Student’s t-test,
and the highest among the top five methods was shown for
Rosetta ΔΔG with a p-value of 1.0 × 10−5. In contrast,
enrichment was lower for ELASPIC, AUTO-MUTE (DDG),
AUTO-MUTE (ΔTM), and HotMuSiC with p-values of 0.06,
0.38, 0.65, and 0.07, respectively.
A few outliers were observed in all methods, except for

ELASPIC (Figure SI 1-4). For example, the mutant G15N for
both Rosetta ΔΔG and FoldX PSSM was identified as severely
energetically unfavorable, which is consistent with the
observation that this variant was not able to be isolated as a
soluble protein.

■ DISCUSSION
Both TM and T50 are methods commonly used to quantify
different physical aspects of protein thermal stability; however,
to date, there has been relatively little experimental data
collected to empirically evaluate the relationship of these two
measurements. Using a dataset of 51 protein mutants, we
observed that there is a moderate positive correlation (PCC of

0.58 and SRC of 0.47) between these two properties. The
theory comparing two methods has been extensively described
in the work of Hei and Clark.33 Briefly, T50 can only be used to
assess the temperature at which half of the protein is
irreversibly unfolded. Meanwhile, TM provides information
on the folded state of the protein regardless of whether or not
the unfolding events are irreversible. Therefore, it is not
surprising that there is only a moderate correlation between
the relationship of T50 and TM.
Mutants with extreme stability changes, such as E164A (>6

°C), usually exhibit a similar magnitude of change in TM and
T50 results. However, the majority of the mutants show a
change of ∼3 °C or less in this TM and T50 dataset being
analyzed, a range in which the relationship between TM and
T50 appears to be weaker. Therefore, analysis with larger
datasets with more extreme stability changes may reveal an
even stronger correlation between these two properties.
The relationship between ΔTM and the experimentally

derived ΔΔG of this dataset (PCC and SRC of −0.76) is not
expected to reach a perfect correlation since it is dependent on
the temperature at which ΔΔG was evaluated, as described by
Pucci et al.34 For example, the ΔΔG evaluated at TM of the
WT will yield a correlation closer to −1 and ΔΔG(25°C) will
lead to a lower correlation (−0.68).34
Consistent with our previous analysis, we found a lack of

performance using established computational tools when
predicting TM and T50 from the WT for this dataset. According
to Jia et al., stability prediction using the experimentally
derived free energy change of unfolding ΔΔG (kcal/mol)
outperforms the prediction using ΔTM (°C).35 However, in
this case, we saw no significant change in the predictive
performance for all seven computational tools compared to the
experimentally derived free energy change. In addition, we
found TM and ΔΔG to be strongly correlated with this dataset,
which may suggest that the improved performance is only
relevant for more diverse datasets composed of different
proteins as opposed to mutants of a single protein.

Figure 4. Computational prediction for the effect on mutant soluble
protein production using nine different algorithms. From left to right:
Rosetta ΔΔG, FoldX PSSM, ELASPIC, DeepDDG, PoPMuSiC,
SDM, AUTO-MUTE (DDG), AUTO-MUTE (ΔTM), and HoTMu-
SiC of soluble (green) and nonisolated protein (blue). In this case,
mutants that resulted in a significant (>10-fold) decrease in yield of
purified soluble protein are considered nonisolatable. Significance in
population differences was determined using a Student’s t-test. The
units (ΔTSE and ΔTM) of all algorithms are individually normalized
between 1 to −1. For visualization purposes, outliers were omitted
after normalization. Each graph without normalization and with
outliers can be found in Figure SI 1-4 and all raw values in Figure SI 4.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.9b04105
ACS Omega 2020, 5, 6487−6493

6491

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b04105/suppl_file/ao9b04105_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04105?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04105?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04105?fig=fig4&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b04105/suppl_file/ao9b04105_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b04105/suppl_file/ao9b04105_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.9b04105?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.9b04105?ref=pdf


While none of the computational methods demonstrated a
strong predictive power for the mutants in this study, Rosetta
ΔΔG, FoldX PSSM, ELASPIC, and PoPMuSiC all have
previously been shown to have high correlations with
experimental data (PCC between 0.69 to 0.83).22,26,29,36

This dataset with an experimental ΔΔG range of ±∼4 kcal/
mol is within the majority of the mutants observed in the
algorithms that were typically evaluated on (+8 to −5 kcal/
mol).17,25,26,29 One potential reason for the lack of perform-
ance could be that the structure used in this dataset has a
ligand bound structure, and often, the structures used in the
development of the methods were apoprotein structures.
However, using the PDBFlex database,37 a clustering of five
available PDBs of BglB from the bacterium P. polymyxa
showed an average RMSD of 0.234 and a maximum RMSD of
0.274, thus making BglB a rigid structure. As there are no
significant structural changes between the apo-form and holo-
form of the protein, it is unlikely that the exact structure used
for this study resulted in the low level of performance by the
algorithms. Another possibility is that the protein evaluated
here (BglB) is an outlier when compared to the proteins used
to develop the algorithms in terms of its structure−function
relationship. However, a related study to our analysis has been
conducted for human superoxide dismutase 1 in which a low
correlation is observed between experimental and predicted
stability.38 This further validates that current algorithms have
limited utility for proteins outside of those they were
benchmarked on. This limitation hindered by an over-
representation of protein families such as lysozyme, tryptophan
synthase, and ribonuclease in curated datasets is often utilized
in benchmarking.39 Thus, this highlights the importance of
generating high-quality and diverse datasets of more proteins
for evaluating and training new computational tools.
This study underlines the need for new computational tools

that can more accurately predict modest changes, rather than
major changes, in thermal stability. This becomes particularly
important because single-point mutants often increase thermal
stability by a few degrees at a time, while major changes are
more often produced from the synergistic effect of combining
multiple mutations.11,40−42 Furthermore, as larger datasets of
protein mutants with explicitly measured biophysical proper-
ties are generated, opportunities to explore combinations of
molecular modeling and machine learning methods will
become practical. These algorithms and datasets will enable
the development of robust predictors of thermal stability.
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