
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Network Performance Improvements For Web Services : : An End-to-End View

Permalink
https://escholarship.org/uc/item/7h6975zs

Author
Radhakrishnan, Sivasankar

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7h6975zs
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Network Performance Improvements For Web Services – An End-to-End View

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in

Computer Science

by

Sivasankar Radhakrishnan

Committee in charge:

Amin Vahdat, Chair
George Papen
George Porter
Stefan Savage
Geoffrey M. Voelker

2014

Copyright

Sivasankar Radhakrishnan, 2014

All rights reserved.

The Dissertation of Sivasankar Radhakrishnan is approved and is accept-

able in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2014

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . ix

Acknowledgements . x

Vita . xiii

Abstract of the Dissertation . xv

Chapter 1 Introduction . 1
1.1 Challenges . 2

1.1.1 Wide Area Network Latency . 2
1.1.2 Data Center Network Infrastructure . 3
1.1.3 Co-tenancy and Network Performance Isolation 3

1.2 Efficient Networking for Modern Web Services . 4
1.2.1 TCP Fast Open . 4
1.2.2 Dahu . 6
1.2.3 SENIC . 7

1.3 Organization . 7

Chapter 2 Design and Implementation Principles . 8
2.1 Principles . 8

2.1.1 State Management Principle . 8
2.1.2 Short Circuiting Principle . 9
2.1.3 Inheritance Principle . 9

2.2 Implications of the Principles . 10
2.2.1 State Management Principle . 10
2.2.2 Short Circuiting Principle . 12
2.2.3 Inheritance Principle . 14

2.3 Summary . 15

Chapter 3 TCP Fast Open . 16
3.1 Introduction . 16
3.2 Motivation . 18

3.2.1 Google Server Logs Analysis . 19
3.2.2 Chrome Browser Statistics . 20

3.3 Design . 22

iv

3.3.1 Context and Assumptions . 22
3.3.2 Design Overview . 24
3.3.3 Cookie Design . 26
3.3.4 Security Considerations . 26
3.3.5 Handling Duplicate SYN Segments . 29
3.3.6 API Changes . 30

3.4 Deployability . 32
3.4.1 New TCP Options / Data in SYN . 32
3.4.2 Server Farms . 33
3.4.3 Network Address Translation (NAT) . 34
3.4.4 TCP Option Space . 34

3.5 Implementation . 34
3.5.1 Kernel Support . 35
3.5.2 Application Support . 36

3.6 Evaluation . 36
3.6.1 Whole Page Download Performance . 36
3.6.2 Server Performance . 39

3.7 Discussion . 40
3.7.1 One Time Cookies . 40
3.7.2 Data After SYN . 42
3.7.3 Server-side TFO Cache . 43
3.7.4 TCP Fast Open in Low Latency Networks 43
3.7.5 Cookie-less TCP Fast Open . 44

3.8 Related Work . 45
3.9 Summary . 47
3.10 Acknowledgments . 48

Chapter 4 Dahu: Commodity Switches for Direct Connect Data Center Networks 50
4.1 Introduction . 51
4.2 Motivation and Requirements . 53

4.2.1 Challenges . 54
4.2.2 Dahu Requirements and Design Decisions 56

4.3 Switch Hardware Primitives . 57
4.3.1 Port Groups With Virtual Ports . 58
4.3.2 Allowed Port Bitmaps . 60
4.3.3 Eliminating Forwarding Loops . 61

4.4 Switch software . 62
4.4.1 Background on HyperX Topology . 63
4.4.2 Non-Minimal Routing . 64
4.4.3 Traffic Load Balancing . 68
4.4.4 Load Balancing Algorithm . 71
4.4.5 Load Balancing Heuristic . 72

v

4.4.6 Fault Tolerance . 73
4.5 Deployability . 73
4.6 Evaluation . 75

4.6.1 Simulator . 75
4.6.2 HyperX Networks . 77
4.6.3 Fat-Tree Networks . 82
4.6.4 MPTCP in HyperX Networks . 83

4.7 Discussion . 85
4.8 Related Work . 86
4.9 Summary . 87
4.10 Acknowledgments . 88

Chapter 5 SENIC: Scalable NIC for End-Host Rate Limiting 89
5.1 Introduction . 90
5.2 Motivation . 92

5.2.1 The Need For Scalable Rate Limiting . 92
5.2.2 Limitations of Current Systems . 93

5.3 Design . 96
5.3.1 Service Model . 96
5.3.2 CPU and NIC Responsibilities . 96

5.4 Packet Scheduling in SENIC . 100
5.4.1 SENIC Packet Scheduling Algorithm . 100
5.4.2 Hierarchical Bandwidth Sharing . 103

5.5 Advanced NIC features . 104
5.5.1 OS and Hypervisor Bypass . 105
5.5.2 Other Features . 107

5.6 Implementation . 108
5.6.1 Software Prototype . 108
5.6.2 NetFPGA Prototype . 109

5.7 Evaluation . 112
5.7.1 Hardware Microbenchmarks . 113
5.7.2 Software Macrobenchmarks . 116

5.8 Practical Considerations . 121
5.9 Related Work . 123
5.10 Summary . 124
5.11 Acknowledgments . 125

Chapter 6 Conclusion . 126

Bibliography . 129

vi

LIST OF FIGURES

Figure 1.1. Overview of key networking challenges addressed in this dissertation 5

Figure 3.1. TCP handshake overhead for Google services 19

Figure 3.2. TCP handshake overhead for all web services accessed by Chrome
users on Windows . 21

Figure 3.3. TCP Fast Open connection overview . 24

Figure 3.4. Server application sample code . 31

Figure 3.5. Client application sample code . 32

Figure 3.6. CPU utilization vs. web server load . 39

Figure 4.1. Illustration of shortest and non-shortest path routing 54

Figure 4.2. Datapath pipeline for packet forwarding in Dahu 57

Figure 4.3. HyperX topology . 63

Figure 4.4. Restricting non-minimal forwarding . 66

Figure 4.5. Port group rebalancing algorithm . 70

Figure 4.6. Load balancing heuristic . 72

Figure 4.7. Simulator throughput vs. theoretical maximum 76

Figure 4.8. Throughput gain with Clique traffic pattern 79

Figure 4.9. Average hop count with Clique traffic pattern 79

Figure 4.10. Link utilization with Clique traffic pattern . 80

Figure 4.11. Dahu performance with Mixed Traffic Pattern 81

Figure 4.12. Throughput gain for k = 32 Fat-tree with Stride and Random (Rnd)
traffic patterns . 83

Figure 4.13. Dahu and MPTCP performance comparison 84

Figure 5.1. Comparison of CPU overhead and accuracy of current software and
hardware rate limiting approaches . 94

vii

Figure 5.2. SENIC— “Schedule and Pull” model . 98

Figure 5.3. SENIC hardware design . 99

Figure 5.4. Transmit schedule example . 102

Figure 5.5. SENIC architecture with NIC virtualization 105

Figure 5.6. SENIC hardware prototype packet scheduler overview 110

Figure 5.7. Maximum throughput per traffic class . 115

Figure 5.8. CDF of memcached latency at different loads 117

Figure 5.9. SENIC memcached latency . 118

Figure 5.10. SENIC memcached latency with UDP background traffic 119

Figure 5.11. Throughput achieved by UDP background traffic 120

viii

LIST OF TABLES

Table 2.1. Summary of implications of the principles . 10

Table 3.1. Average page load time for various websites for an emulated resi-
dential broadband user . 37

Table 5.1. Pros and cons of current hardware and software approaches to rate
limiting . 91

Table 5.2. Per-class metadata in NIC SRAM . 97

Table 5.3. Rate limiting accuracy as we vary the number of traffic classes, and
the rate limit per class . 113

ix

ACKNOWLEDGEMENTS

My graduate school career has been an extremely memorable and satisfying

experience. I have had the pleasure of collaborating with several incredibly smart people

and learning from them. I would like to take this opportunity to thank them.

First, I wish to express my gratitude to my advisor, Amin Vahdat who has been a

constant source of inspiration for me. He has relentlessly encouraged me to push further

and think beyond my limits. He has always inspired his students to aspire higher and set

ambitious goals, and instilled in them the confidence to achieve the goals. He pushed me

to think critically and deeply about problems, while persevering to solve them. I treasure

the values he inculcated in students such as humility, integrity, the importance of being a

team player, and the ability to lead and inspire others. Amin is a visionary and a great

researcher. It has been an honor to be his student.

Special thanks to George Porter for being a great mentor, and for working closely

with me on several projects. I enjoyed numerous thought provoking and insightful

discussions with George while brainstorming on various ideas. He spurred me to approach

problems systematically and rigorously to explore multiple alternatives while designing

solutions.

I had the privilege of collaborating with and learning from George Varghese

during my PhD. His immense enthusiasm and passion to discuss new ideas no matter

how simple or complex, how mundane or creative, made me always look forward to the

exciting conversations with him. He encouraged me to look at ideas with an unbiased

mind, and look at the potentially big impact that simple ideas can have.

I’d like to thank the sysnet faculty Geoffrey Voelker, Stefan Savage, and Alex

Snoeren who readily offered valuable advice and feedback on several of my projects. I

have learned immensely from all of them, and appreciate the deep, thoughtful, and often

hard questions that they brought up while brainstorming ideas. I am also thankful to

x

George Papen for serving on my committee and offering feedback on my dissertation.

I was fortunate to get to know several brilliant people at Google, and collaborate

with them during my PhD. My co-authors on different works Yuchung Cheng, Jerry

Chu, Arvind Jain, Barath Raghavan, and Abdul Kabbani have contributed immensely

to my learning. Numerous insightful discussions with them led me to get a deeper

understanding of several networking challenges, and better appreciate the importance of

designing practical and deployable systems.

During the course of my PhD, I have been lucky to work closely with several

fellow researchers, colleagues, and friends whose immense efforts helped materialize

several ideas into reality. I will always cherish the research discussions and stimulating

work days that I had with Malveeka Tewari, Rishi Kapoor, Vimalkumar Jeyakumar,

Yilong Geng, Mohammad Al-Fares, Radhika Niranjan, Nathan Farrington, Nelson Huang,

and Terry Lam.

I wish to thank Brian Kantor, and Cindy Moore for their help in setting up various

systems, for keeping them up and running, and for being so accommodating through

various deadlines. I would also like to thank the ever helpful UC San Diego academic

and administrative staff, particularly Julie Conner, Nadyne Nawar, Jennifer Folkestad,

and Kathy Krane.

Finally, I would like to thank my parents, for their unconditional support and

encouragement through the highs and lows of my Ph.D. This would definitely not have

been possible without them. This achievement is as much theirs as it is mine.

Chapter 3, in part, contains material as it appears in the Proceedings of the 7th

ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT

’11), Tokyo, Japan, December 2011. “TCP Fast Open”. Sivasankar Radhakrishnan,

Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath Raghavan. The dissertation author

was the primary investigator and author of this paper.

xi

Chapter 3, in part, contains material as it appears in the IETF Internet Drafts,

March 2011 – February 2014. “TCP Fast Open”. Yuchung Cheng, Jerry Chu, Sivasankar

Radhakrishnan, and Arvind Jain.

Chapter 4, in part, contains material as it appears in the Proceedings of the 9th

ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS ’13), San Jose, CA, October 2013. “Dahu: Commodity Switches for Direct

Connect Data Center Networks”. Sivasankar Radhakrishnan, Malveeka Tewari, Rishi

Kapoor, George Porter, and Amin Vahdat. The dissertation author was the primary

investigator and author of this paper.

Chapter 5, in part, contains material as it appears in the Proceedings of the 11th

USENIX Symposium on Networked Systems Design and Implementation (NSDI’14),

Seattle, WA, April 2014. “SENIC: Scalable NIC for End-Host Rate Limiting”. Sivasankar

Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, George Porter,

and Amin Vahdat. The dissertation author was the primary investigator and author of this

paper.

Chapter 5, in part, contains material as it appears in the Proceedings of the 5th

USENIX Conference on Hot Topics in Cloud Computing (HotCloud ’13), San Jose,

CA, June 2013. “NicPic: Scalable and Accurate End-Host Rate Limiting”. Sivasankar

Radhakrishnan, Vimalkumar Jeyakumar, Abdul Kabbani, George Porter, and Amin

Vahdat. The dissertation author was the primary investigator and author of this paper.

xii

VITA

2008 B.Tech., Indian Institute of Technology Madras, India

2010 M.S., University of California, San Diego

2014 Ph.D., University of California, San Diego

PUBLICATIONS

Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
George Porter, and Amin Vahdat. “SENIC: Scalable NIC for End-Host Rate Limit-
ing”. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’14), Seattle, WA, April 2014.

Sivasankar Radhakrishnan, Malveeka Tewari, Rishi Kapoor, George Porter, and Amin
Vahdat. “Dahu: Commodity Switches for Direct Connect Data Center Networks”. In
Proceedings of the 9th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS ’13), San Jose, CA, October 2013.

Sivasankar Radhakrishnan, Vimalkumar Jeyakumar, Abdul Kabbani, George Porter, and
Amin Vahdat. “NicPic: Scalable and Accurate End-Host Rate Limiting”. In Proceedings
of the 5th USENIX Conference on Hot Topics in Cloud Computing (HotCloud ’13), San
Jose, CA, June 2013.

Vinh The Lam, Sivasankar Radhakrishnan, Rong Pan, Amin Vahdat, and George Vargh-
ese. “NetShare and Stochastic NetShare: Predictable Bandwidth Allocation for Data
Centers”. In ACM SIGCOMM Computer Communication Review, pp. 5-11, July 2012.

Sivasankar Radhakrishnan, Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath Ragha-
van. “TCP Fast Open”. In Proceedings of the 7th ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT ’11), Tokyo, Japan, December
2011.

Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. “TCP Fast
Open”. IETF Internet Drafts, March 2011 – February 2014.

Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Bazzaz, Vikram
Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat. “Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data Centers”. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM ’10), New Delhi,

xiii

India, August 2010.

Amin Vahdat, Mohammad Al-Fares, Nathan Farrington, Radhika Niranjan Mysore,
George Porter, Sivasankar Radhakrishnan, “Scale-Out Networking in the Data Center”.
IEEE Micro, pp. 29-41, July/August, 2010.

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and
Amin Vahdat. “Hedera: Dynamic Flow Scheduling for Data Center Networks”. In
Proceedings of the 7th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI ’10), San Jose, CA, April 2010.

Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis
Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat. “PortLand:
A Scalable Fault-Tolerant Layer 2 Data Center Network Fabric”. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM ’09), Barcelona,
Spain, August 2009.

xiv

ABSTRACT OF THE DISSERTATION

Network Performance Improvements For Web Services – An End-to-End View

by

Sivasankar Radhakrishnan

Doctor of Philosophy in Computer Science

University of California, San Diego, 2014

Amin Vahdat, Chair

Modern web services are complex systems with several components that impose

stringent performance requirements on the network. The networking subsystem in turn

consists of several pieces, such as the wide area and data center networks, different de-

vices, and protocols involved in a user’s interaction with a web service. In this dissertation

we take a holistic view of the network and improve efficiency and functionality across

the stack. We identify three important networking challenges faced by web services in

the wide area network, the data center network, and the host network stack, and present

solutions.

xv

First, web services are dominated by short TCP flows that terminate in as few as

2-3 round trips. Thus, an additional round trip for TCP’s connection handshake adds a

significant latency overhead. We present TCP Fast Open, a transport protocol enhance-

ment, that enables safe data exchange during TCP’s initial handshake, thereby reducing

application network latency by a full round trip time. TCP Fast Open uses a security

token to verify client IP address ownership, and mitigates the security considerations

that arise from allowing data exchange during the handshake. TCP Fast Open is widely

deployed and is available as part of the Linux Kernel since version 3.6.

Second, provisioning network bandwidth for hundreds of thousands of servers

in the data center is expensive. Traditional shortest path based routing protocols are

unable to effectively utilize the underlying topology’s capacity to maximize network

utilization. We present Dahu, a commodity switch design targeted at data centers, that

avoids congestion hot-spots by dynamically spreading traffic uniformly across links, and

actively leverages non-shortest paths for traffic forwarding.

Third, scalable rate limiting is an important primitive for managing server network

resources in the data center. Unfortunately, software-based rate limiting suffers from

limited accuracy and high CPU overhead at high link speeds, whereas current NICs only

support few tens of hardware rate limiters. We present SENIC, a NIC design that natively

supports tens of thousands of rate limiters — 100x to 1000x the number available in NICs

today — to meet the needs of network performance isolation and congestion control in

data centers.

xvi

Chapter 1

Introduction

The Internet has seen immense growth over the last two decades and everyday,

more users are coming online. In 2012, an estimated 2.7 billion people used the Inter-

net [41]. People around the world are spending an increasing amount of time online.

There are a number of online services that people use almost on a daily basis such as

email, news, web search, online shopping, social networking, video streaming, entertain-

ment, and media services. The world is interconnected, making the network a critical

piece of worldwide infrastructure.

Web services are typically architected as multi-tiered applications, with many

different components, a number of stages, and many layers in the network stack alone.

They touch various aspects of networking, such as different kinds of networks involved in

a user’s interaction with a web service, different types of network devices, and protocols

operating across them. The network stack itself involves several components, and in this

dissertation, we will look at a few principles guiding the design and implementation of

different components of the network stack.

With the rise of mobile devices, web services are accessed from a diverse variety

of devices through diverse networks. The growth of cloud computing has led to many

services that once used to reside on individual user’s computers being moving to the

cloud. For example, users today leverage online services such as Google Docs and

1

2

Microsoft Office 365 to access and edit documents that are stored in the cloud and are

accessible from any device. These services also allow multiple users to collaboratively

edit and share documents, further increasing the appeal over their offline counterparts.

Internet users have been spending more and more time online, and web services have

become an integral part of how people access and consume information today. Further,

user expectations of web service performance has been increasing—web services are

expected to be fast, responsive, and provide relevant and fresh information.

In this dissertation, we take a holistic view of the network and improve effi-

ciency and functionality across the network stack. We identify three key challenges in

networking touched by web services and present solutions.

1.1 Challenges

If we look at how modern web services are used, Internet users connect to front-

ends or servers located in data centers. Data centers have complicated networks of their

own which have different characteristics from the Internet. With cloud based services

and server consolidation, many web services might be hosted within a single data center.

The data center network is shared, thereby necessitating performance isolation between

services sharing the network. Modern web services are complex systems whose design

and performance is deeply influenced by the network subsystem. In this section, we

describe three key networking challenges that impact the performance of web services.

1.1.1 Wide Area Network Latency

When a user accesses a web service by connecting to a server, Internet latency (or

wide area latency) is a challenge. Most web pages are composed of small web objects

that can be fetched in 2-3 round trips. With such short transfers, the web transfer latency

is primarily determined by the round trip time (RTT), or latency between the user and

3

the server, and the number of round trips to complete the transfer. The web transfer

latency has a strong impact on the responsiveness of the web service to the user, which

in turn heavily influences the user experience [66]. With RTT largely being constrained

by the speed of light and distance between the user and server (typical wide area RTTs

being 10s to 100s of milliseconds), reducing network transfer latency mainly comes

down to reducing the number of RTTs required to complete the transfer. Even a few

10s of milliseconds improvement in transfer latency causes a noticeable increase in user

satisfaction [98, 99].

1.1.2 Data Center Network Infrastructure

When a user request reaches the data center, it enters a network whose character-

istics are quite different from the wide area network. The data center network has low

latency (few 10s of microseconds) and high bandwidth (on the order of 10Gb/s or more

between any pair of servers). The network topology is generally well structured unlike

the Internet, and the network is managed by a single organization. Today, data centers

house anywhere from tens of thousands to hundreds of thousands of servers. These

servers communicate with each other not just to service the incoming user requests in

real time, but also to run other tasks such as indexing the web, data analysis etc. All these

tasks require a lot of bandwidth. In fact, the traffic within the data center far exceeds the

user generated traffic [42]. Designing a network that can provide the necessary bandwidth

at such a massive scale to hundreds of thousands of servers is expensive.

1.1.3 Co-tenancy and Network Performance Isolation

Within the data center, a server is usually shared by many different applications.

The network bandwidth on the server has to be shared by all these applications. With the

growth of cloud computing and services such as Amazon EC2, Microsoft Azure, Google

4

Compute Engine, several web services are hosted by these cloud service providers. The

use of shared infrastructure requires a means to provide isolation between different

tenants or services. With the rise of virtualized infrastructures and consolidation of

servers, there is an need to scale the mechanisms for providing isolation in the network.

Current server Network Interface Cards (NICs) are only capable of isolating few tens of

traffic classes [87], which is orders of magnitude less than the thousands of traffic classes

required to provide network performance isolation in a modern virtualized data center

shared by multiple tenants.

In summary, wide area network latency, efficient data center bandwidth utiliza-

tion, and scalable mechanisms for network performance isolation in the data center are

challenges that come in the way of designing high performance web services. We now

look at our contributions towards addressing these challenges.

1.2 Efficient Networking for Modern Web Services

In this dissertation, we take a holistic approach to improve efficiency or function-

ality across the board in different networking aspects that influence web services. TCP

Fast Open addresses the wide area network latency between users and data centers and

helps speed up short web transfers. Dahu looks at maximizing bandwidth utilization in

the data center network. SENIC offers a scalable rate limiting substrate, that is required

to provide network performance isolation when multiple services share the physical

network. Figure 1.1 illustrates the key networking challenges presented in this chapter

and the proposed solutions. We now present a brief overview of each.

1.2.1 TCP Fast Open

A typical webpage is composed of several web objects (44 objects on aver-

age [76]), each of which is small. A vast majority of HTTP requests made by users result

5

Wide Area
Long RTT

(10s – 100s of ms)

Data Center
High bandwidth

Low latency
(10Gb/s or more per server)

(10s of μs RTT)

Scalable Performance
Isolation

(1000s of flows per server)

TCP Fast Open Dahu SENIC

Long Web Response
Time

Maximizing Bandwidth
Utilization

Co-tenancy in
Data Centers

Web	 Service	 A	

Web	 Service	 B	

Web	 Service	 C	

Figure 1.1. Overview of key networking challenges addressed in this dissertation

in short transfers, that are just a few KB in size. TCP is the de facto protocol used for

HTTP transfers. First, a TCP connection is established from the user’s computer to the

server, second an HTTP request is sent to the server, and finally the server sends a HTTP

response back to the client. HTTP responses have an average size of 7.3KB [76], and are

usually transferred within 2-3 round trips to the client. The TCP connection setup phase

requires one full round trip time (RTT), before the client can send the HTTP request to

the server. This connection setup is a significant overhead for short web transfers.

TCP Fast Open is a transport layer mechanism that enables transfer of data during

TCP’s connection setup phase. It eliminates the connection setup overhead of TCP,

allowing data transfer to begin concurrently with TCP’s connection setup. This saves one

RTT for each connection, and for short web transfers, this has a significant impact on

the total response time. TCP Fast Open retains reliability, congestion control, and other

features offered by traditional TCP, while eliminating the connection setup overhead.

6

1.2.2 Dahu

Traditionally, large scale high bandwidth networks have taken one of two design

approaches. Supercomputers have built what are known as direct network topologies

(e.g. torus, hypercube) [26]. They rely on proprietary protocols running in switches and

NICs, along with application logic for making forwarding and routing decisions. These

networks are resource efficient, and offer sufficient capacity for common communication

patterns. Like most large scale networks, they offer multiple paths between servers to

meet the high bandwidth requirements, however these paths are of differing lengths, and

the routing scheme must fundamentally take advantage of these non-shortest paths to

leverage the full capacity offered by the network.

Data centers on the other hand, have adopted indirect networks, and embraced

commodity switches, with simple schemes for multipath routing such as Equal Cost Multi

Path (ECMP) routing. The applications are decoupled from network forwarding, making

the developer’s task easier. Topologies such as folded-clos and fat trees that are deployed

in data centers are great for worst case communication patterns. However for most

common workloads, they are over-provisioned, and result in high capital expenditure

(CAPEX). The limitations imposed by commodity switches and shortest path routing in

data centers, along with the need to decouple application logic from the network have

restricted data centers from adopting direct networks.

Dahu is a commodity switch design that bridges the benefits of the two approaches.

Dahu uses non-shortest path routing without coupling application logic to the network

topology. Dahu dynamically hashes flows onto the available paths in the network, thereby

improving network utilization, and reducing infrastructure costs for data centers.

7

1.2.3 SENIC

Server consolidation helps data centers statistically multiplex resources among

different applications or services. This necessitates careful resource scheduling, and

network bandwidth is no exception. Several recent proposals for bandwidth management

and congestion control in data centers rely on programmable rate limiters to enforce

bandwidth limits, and achieve network performance isolation between services. These

systems require thousands of rate limiters on each server to limit each flow from the

server. However, today’s NICs support only few tens of traffic classes, while current

software based solutions for enforcing rate limits do not work at high link speeds.

SENIC is a NIC design that natively supports tens of thousands of traffic classes

or queues in the NIC which can be individually rate limited. The key insight is to store

packet queues in host memory for each traffic class, schedule packets from different

classes, and pull the packets into the NIC on demand for scheduling. The late binding of

packet transfers to the NIC allows SENIC to scale to support thousands of traffic classes,

while still enforcing accurate hardware based rate limits at high link speeds.

1.3 Organization

The rest of this dissertation is organized as follows. Chapter 2 provides an

overview of the principles that guide the design and implementation of networking

systems. Chapter 3 presents TCP Fast Open, a transport layer solution to improve web

service response time. Chapter 4 presents Dahu, a commodity switch design that enables

the use of direct-connect topologies in data centers. Chapter 5 presents the design and

implementation of SENIC, a NIC that supports tens of thousands of traffic classes natively

in the NIC, to meet the requirements of network performance isolation in the data center.

Finally, Chapter 6 concludes this dissertation with a summary of contributions.

Chapter 2

Design and Implementation Principles

This chapter presents three overarching network design and implementation

guidelines or principles that are applicable to several systems and networking challenges.

In this chapter, we identify and articulate these principles to consciously exploit them

while designing network architectures and protocols. We’ll see how these principles are

applied to three solutions at different layers of the network stack, in different networks or

portions of the network touched by modern web services.

2.1 Principles

We present three principles that govern the challenges and solutions proposed in

this dissertation.

2.1.1 State Management Principle

Network protocols and algorithms have state that they operate on. With network-

ing problems, state is often distributed and the way it is distributed affects the processing

costs for protocols and algorithms. State distribution also affects the kind of synchroniza-

tion required among different network components and the overhead of achieving this

synchronization. Network devices have limited memory, e.g. switches, routers and NICs

have few KBs or MBs of memory for protocol state as well as packets. These factors

8

9

make state management an important consideration while designing networked systems.

The state management principle is as follows.

P1. Distribute state to leverage network component strengths. Use
hashing and implicit state in messages to achieve persistence.

2.1.2 Short Circuiting Principle

Latency is an important consideration while designing network protocols, and

networking device pipelines. The number of stages in a pipeline or algorithm has

an impact on end-to-end latency, reducing which is a goal or requirement for many

networking designs. There are significant gains to be had from optimizing latency for

the common case. For example, web search users wish to see results as soon as possible,

and even small increases in latency have a negative impact on user experience. So search

providers usually resort to returning results within a certain deadline even if they don’t

always have the best results. The short circuiting principle is as follows:

P2. Discard avoidable stages in network protocols and stacks. Short-
circuit for the optimal or common case.

2.1.3 Inheritance Principle

Network devices and protocols have evolved over time. Modern networks have

a lot of legacy infrastructure or investments to deal with. Both hardware and software

solutions to networking challenges have been developed and deployed over a long period

of time. Networking proposals that require radical changes to existing infrastructure are

hard to deploy, and often only see limited deployment in niche domains, or remain as

theoretical exercises. Note that while it is important to question traditional designs and

ideas, new solutions that aim for large scale adoption have a better chance of succeeding

when they have incremental deployment stories. The key to quick adoption is to innovate

on functionality and novelty of ideas, but have simple incremental deployment paths.

10

Table 2.1. Summary of implications of the principles

Principle TCP Fast Open Dahu SENIC
State

Management
Self certifying

tokens, stateless
servers

Flow hashing in
switches

Store transmit
queues in host

RAM
Short

Circuiting
Data transfer during

TCP handshake
Default shortest
path forwarding

Kernel or
hypervisor bypass

Inheritance Middlebox and TCP
backwards

compatibility

Simple changes to
commodity switch

silicon

Receive path
unmodified

The inheritance principle is as follows:

P3. Design backwards compatible and interoperable systems. Add new
functionality with minimal change to existing designs.

The ideas that see quick adoption are those that provide creative and innovative

functionality or improvement in performance, while requiring very simple or incremental

changes to prevailing deployments.

2.2 Implications of the Principles

We’ll now see how these principles guided the design and goals of TCP Fast

Open, Dahu, and SENIC. These systems are described in detail in the following chapters,

but this section gives a high level overview of how the above principles apply to the

designs presented in this dissertation. Table 2.1 presents a summary of the same.

2.2.1 State Management Principle

TCP Fast Open

Modern web services have multi-tiered architectures, and front-end servers at

large scale services like Google or Microsoft can service hundreds of thousands to

millions of requests per day. At this scale, any persistent state requirement on the server

for each client can add up to have a large memory footprint. Traditional TCP only

11

maintains state in the server when a client connection is active; when the connection

is closed, the server forgets about the connection and the client. If the server needs to

maintain any state across multiple connections from a single client, the overall memory

requirement of the server dramatically increases. TCP Fast Open is designed to avoid

this by pushing state to clients. A typical web user connects much fewer servers in a day,

than the number clients served by a popular server. In this way, distributing state to the

clients rather than storing it on web servers helps TCP Fast Open to scale, by avoiding

per-client state on servers when the respective clients are not connected to the server.

Most large scale services load balance user requests among a pool of servers

in a server farm. Multiple connections from the same client to the server farm might

be load balanced and serviced by different servers. Any client specific information on

servers must be shared by all these servers to be able to service requests. Instead, the

way TCP Fast Open addresses this challenge is by having the servers grant hash based

authenticating tokens to clients. When a client connects to a server, this token presented

by the client authenticates the client’s IP address which is implicitly contained in the

packet sent by the client. Server farms do not need run-time synchronization among the

servers to distribute authentication information about client IP addresses at the transport

layer in the network stack.

Dahu

Network switches typically forward packets of any particular host connection

(TCP or UDP flow) along persistent paths. This avoids frequent re-ordering of packets

belonging to a flow, which can have a negative impact on application performance. Dahu

switches use flow level hashing to forward packets along persistent paths. This avoids the

need to store per-flow state in the switches corresponding to each flow, but at the same

time ensures persistent paths for the flow since all packets of a particular flow have the

same hash and end up taking the same path through the network.

12

SENIC

NICs are highly memory constrained devices. They have on the order of a few

MB of memory for packet buffers and any other state requirements [64]. The primary

goal of SENIC is to scale the number of supported rate limited traffic classes or queues

in the NIC to tens of thousands, compared to the few tens of classes supported today.

Efficient state management and distribution is key to the SENIC design. SENIC stores

packet queues in the co-located host memory (DRAM), and pulls packets into the NIC

on demand for transmission. This avoids the need to store multiple packets and packet

descriptors in the NIC for each traffic class, thereby enabling SENIC to scale to a large

number of traffic classes. The late binding of packet DMA transfers to the NIC, and

computing the final schedule before pulling in packets from host memory are the key

design choices that result in a small memory requirement on the NIC to support thousands

of traffic classes.

2.2.2 Short Circuiting Principle

TCP Fast Open

The primary goal of TCP Fast Open is to short circuit the connection establishment

phase of TCP connections. TCP Fast Open allows data to be exchanged while the

connection handshake is still in progress, thereby reducing the time taken to transfer

data to the peer. This is really useful for web services, since a vast majority of HTTP

responses involve very short transfers that take only a few round trips [76]. Saving

one round trip time (RTT) provides substantial savings in response time for these web

services. TCP Fast Open does not completely eliminate the TCP connection handshake,

instead it allows the data transfer to begin concurrently with the connection handshake,

thereby reducing latency.

There are some scenarios, such as with non-standards compliant middleboxes,

13

that can prevent TCP Fast Open’s short-circuited connection handshake from successfully

completing. However, experimental data from the Internet indicates that this occurs only

for a small subset of connections [57]. In such cases, TCP Fast Open falls back to a

regular TCP 3-way handshake, and the connection just proceeds as in traditional TCP.

Thus, TCP Fast Open short-circuits the TCP connection for the common case where most

Internet users can successfully connect to web servers using TCP Fast Open’s concurrent

handshake and data transfer.

Dahu

Dahu is a commodity switch design for data center networks that enables the use

of direct-connect topologies. The key feature that Dahu offers is the ability to use non-

shortest path routing on demand. Direct connect topologies provide sufficient bandwidth

for most common communication patterns at lower cost than tree-based topologies, but

this is contingent upon the use of paths of different lengths between servers. As in current

multi-rooted tree based data center topologies, direct connect networks have multiple

paths between any pair of servers; however, unlike current data center topologies, these

paths are not all of the same length. The topology fundamentally requires the use of

non-shortest paths to leverage the full capacity offered by the network. Dahu switches

short circuit network traffic to take shortest paths by default, and enable longer paths on

demand, as the network load on shortest paths increases.

SENIC

SENIC is a NIC design that offers tens of thousands of rate limited traffic classes

natively in the NIC. SENIC supports kernel or hypervisor bypass on the transmit datapath.

This enables guest VMs in a virtualized environment, or even user applications in a non-

virtualized environment, to directly send packets to the NIC without having to go through

the hypervisor. Short circuiting the kernel reduces the latency in the host networking

stack for transmitting a packet [61]. SENIC offers mechanisms for rate limiting or

14

weighted sharing of bandwidth between traffic classes natively in the NIC hardware. This

allows bypassing the hypervisor, while still ensuring performance isolation among traffic

classes.

In a malicious environment, guest VMs may try to take advantage of hypervisor

bypass, and falsely classify packets into queues that have larger rate limits. SENIC

detects this through packet sampling and disables hypervisor bypass for these guest VMs,

forcing these guest VMs to send their traffic through the hypervisor. The common case,

where the guest VMs are non-malicious, can still take advantage of hypervisor bypass

even when it is disabled for some malicious guest VMs.

2.2.3 Inheritance Principle

TCP Fast Open

TCP Fast Open is designed to be compatible with NATs and other middleboxes

in the Internet. This was a specific design goal of TCP Fast Open so that it could be used

by as many Internet users as possible without any disruption to their regular network

traffic or any restrictions in terms of the networks where TCP Fast Open can be deployed.

TCP Fast Open is completely backwards compatible with traditional TCP endpoints.

This ensures TCP Fast Open can be deployed incrementally for different services, and

users can start using TCP Fast Open as and when services start supporting TCP Fast

Open. Further, the API for using TCP Fast Open is very simple—we use existing system

calls with new flags that enable TCP Fast Open functionality. This makes it easier for

programmers to take advantage of TCP Fast Open and also be assured that it would work

just like traditional TCP if the peer does not support TCP Fast Open.

Dahu

Dahu proposes a small set of simple hardware enhancements to existing commod-

ity data center Ethernet switches. The changes are confined to switches, which keeps

15

end-hosts simple and unmodified. The changes to the switch silicon are indirection layers

that allow better control over how flows are routed through the network, while providing

support for on-demand non-shortest path routing.

SENIC

The SENIC design involves a simple redistribution of host and NIC responsi-

bilities. The receive path is unmodified from current NICs. SENIC exposes the same

interface to the operating system as exposed by today’s NICs, except that it supports a lot

more traffic classes or queues. The interface for enqueueing packets to the NIC on the

transmit path, and dequeueing packets on the receive path are the same as they are with

traditional NICs. Thus SENIC can be used as a plug-in replacement for any traditional

NIC, but the operating system can easily take advantage of many more traffic classes

available natively in the NIC.

2.3 Summary

In this chapter, we looked at three overarching network design and implementa-

tion principles that apply to several challenges in systems and networking. The State

Management Principle argues for distributing state between network components to take

advantage of their strengths. The Short Circuiting Principle proposes eliminating or

bypassing avoidable stages in network protocols and stacks to improve performance for

the common case. The Inheritance Principle advocates the importance of innovating on

functionality and improving performance, while maintaining backwards compatibility

and having an incremental deployment plan. The following chapters present an in-depth

description of the design and implementation of TCP Fast Open, Dahu, and SENIC,

further elucidating how these principles are applied.

Chapter 3

TCP Fast Open

Today’s web services are dominated by TCP flows so short that they terminate a

few round trips after handshaking; this handshake is a significant source of latency for

such flows. In this chapter, we describe the design, implementation, and deployment of

the TCP Fast Open protocol, a new mechanism that enables data exchange during TCP’s

initial handshake. In doing so, TCP Fast Open decreases application network latency by

one full round-trip time, decreasing the delay experienced by such short TCP transfers.

We address the security issues inherent in allowing data exchange during the

three-way handshake, which we mitigate using a security token that verifies IP address

ownership. We detail other fall-back defense mechanisms and address issues we faced

with middleboxes, backwards compatibility for existing network stacks, and incremental

deployment. Based on traffic analysis and network emulation, we show that TCP Fast

Open would decrease HTTP transaction network latency by 15% and whole-page load

time over 10% on average, and in some cases up to 40%.

3.1 Introduction

While web pages have grown significantly in recent years, network protocols

have not scaled with them. Today’s pages are on average over 300KB each, but most

web objects are relatively small, with mean and median sizes of 7.3KB and 2.4KB

16

17

respectively [76]. As a result of the preponderance of small objects in large pages, web

transfer latency has come to be dominated by both the round-trip time (RTT) between

the client and server and the number of round trips required to transfer application data.

The RTT of a web flow largely comprises two components: transmission delay and

propagation delay. Though network bandwidth has grown substantially over the past two

decades thereby significantly reducing transmission delays, propagation delay is largely

constrained by the speed of light and therefore has remained unchanged. Thus reducing

the number of round trips required for the transfer of a web object is the most effective

way to improve the latency of web applications [12, 30, 91, 95].

Today’s TCP standard permits data exchange only after the client and server

perform a handshake to establish a connection. This introduces one RTT of delay for each

connection. For short transfers such as those common today on the web, this additional

RTT is a significant portion of the flows’ network latency [93]. One solution to this

problem is to reuse connections for later requests (e.g. HTTP persistent connections [59]).

This approach, while widely used, has limited utility. For example, the Chrome browser

keeps idle HTTP 1.1 TCP connections open for several minutes to take advantage of

persistent connections; despite this over one third of the HTTP requests it makes use

new TCP connections. A recent study on a large CDN showed that on average only 2.4

HTTP requests were made per TCP connection [2]. This is due to several reasons as we

describe in Section 3.2.

We find that the performance penalty incurred by a web flow due to its TCP

handshake is between 10% and 30% of the latency to serve the HTTP request, as we

show in detail in Section 3.2. To reduce or eliminate this cost, a simple solution is to

exchange data during TCP’s initial handshake (e.g. an HTTP GET request / response in

SYN packets). However, a straightforward implementation of this idea is vulnerable to

denial-of-service (DoS) attacks and may face difficulties with duplicate or stale SYNs.

18

To avoid these issues, several TCP mechanisms have been proposed to allow data to

be included in the initial handshake; however, these mechanisms were designed with

different goals in mind, and none enjoy wide deployment due to a variety of compatibility

and/or security issues [9, 10, 20].

In this chapter we propose a new TCP mechanism called TCP Fast Open (TFO)

that enables data to be exchanged safely during TCP’s initial handshake. At the core of

TFO is a security cookie that is used by the server to authenticate a client that is initiating

a TFO connection. We describe the details of TFO, including how it exchanges data

during the handshake, the protocol used for TFO cookies, and socket API extensions to

enable TFO. In addition, we analyze the security of TFO and examine both the potential

for new security vulnerabilities and their mitigation. We also describe our implementation

of TFO in the Linux kernel and in the Chrome web browser and present the performance

gains we see in our test-bed experiments. Finally we examine deployment issues and

related approaches.

3.2 Motivation

Latency and page load time are important factors that influence user satisfaction

with a website. Even small improvements in latency lead to noticeable increases in site

visits and user satisfaction, and result in higher revenues [66, 98, 99]. While it is well

known that small objects dominate web flows today, we sought to better understand

the actual performance characteristics of today’s flows and the performance bottlenecks

they experience. To do so, we analyzed both Google web server logs and Chrome

browser statistics to demonstrate that TCP’s handshake is a key performance bottleneck

for modern web transfers. Our intent is to highlight this practical problem through the

analysis of large scale data and to estimate the potential benefits of TFO.

19

 0

 5

 10

 15

 20

 25

 30

Search Image
thumbs

Map
tiles

Photos Gmail

T
C

P
 H

an
d
sh

ak
e

C
o

st
 [

%
]

Cold Req
All Req

Figure 3.1. TCP handshake time as a percentage of total HTTP request latency for
Google.com. For the “All Req” category, handshake time is amortized over all HTTP

requests for the Google service in question.

3.2.1 Google Server Logs Analysis

We begin by analyzing latency data from Google web server logs to study the

impact of TCP’s handshake on user-perceived HTTP request latency. We sampled a few

billion HTTP requests (on port 80) to Google servers world-wide over 7 consecutive days

in June 2011. These included requests to multiple Google services such as search, email,

and photos. For each sampled request, we measured the latency from when the first byte

of the request is received by the server to when the entire response is acknowledged. If

the request is the first one of the TCP connection, this latency also includes the TCP

handshake time since the browser needs to wait for the handshake to complete before

sending the request. Note that our latency calculation includes both server processing

time and network transfer time.

We define requests sent on new TCP connections as cold requests and those

that reuse TCP connections as warm requests. We segregate requests by service and

compute the fraction of time spent on TCP handshakes for cold requests. Similarly, we

compute the amortized cost of TCP handshakes over both cold and warm requests for

20

each service. The results shown in Figure 3.1 indicate that TCP handshakes account

for 8% to 28% of the latency of cold requests for most services. Even the amortized

cost for handshakes accounts for 5-7% of latency across both cold and warm requests,

including photo services where the average response size is hundreds of kilobytes. (The

only exception is GMail because it downloads javascript upon a cold request and reuses

the same connection for many subsequent warm requests.)

The cost of TCP handshakes is surprisingly high given that 92% of the requests

that we see use HTTP/1.1 which supports persistent HTTP connections. Moreover,

Google web servers keep idle connections open for several minutes. In theory, most

requests should reuse existing TCP connections to minimize the penalty of a TCP

handshake, but our analysis indicates this may not be happening. In order to understand if

this problem persists for other web sites and what its cause(s) might be, next we analyze

statistics from the Chrome web browser.

3.2.2 Chrome Browser Statistics

We processed Chrome browser statistics for 28 consecutive days in 2011; these

only cover Chrome users who have opted into statistics collection and only contain

anonymized data such as latency statistics. The statistics do however cover requests to

all websites and not just Google services. Across billions of sampled HTTP latency

records, we found that over 33% of requests made by Chrome are sent on newly created

TCP connections even though it uses HTTP 1.1 persistent connections. The restricted

effectiveness of persistent connections is due to several factors. Browsers today often

open tens of parallel connections to accelerate page downloads, which limits connection

reuse. Domain sharding or the placement of resources on different domains by content

providers to increase parallelism in loading web pages also exacerbates this issue. In

general, hosts and middle-boxes (NATs) also terminate idle TCP connections to minimize

21

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.1 1 10

Network Transaction Latency [s]

Cold Req
Cold Req no Hsk (sim)

All Req

Figure 3.2. CDF of the HTTP transaction network latency for Chrome Windows users.
The Y-axis is the cumulative distribution of HTTP requests in percentiles. “Cold Req”
and “Cold Req no Hsk (sim)” refer to requests that need to open new TCP connections,
but the latter excludes TCP connect time. “All Req” refers to all requests, including both

HTTP and HTTPS.

resource usage. The middle-box issue may be partly mitigated by using TCP keepalive

probes, but this could be prohibitively power hungry on mobile devices [94]. Major

mobile browsers close idle connections after mere seconds to conserve power.

To understand the latency impact of waiting for TCP’s handshake to complete

before transferring data, we plot the distribution of HTTP transaction network latency for

cold requests and all requests in Figure 3.2. We measured network transaction latency

from the time the browser schedules a request to the time it receives the entire response.

If the browser does not have an idle TCP connection available to serve the request, it

attempts to open a TCP connection. Thus TCP’s handshake time is included in the

network latency. Chrome also has a limit of 6 parallel connections per domain.

Figure 3.2 reveals that cold requests are often over 50% slower when compared

to all requests in the same percentile. For example, the median latencies of cold requests

and all requests are 549ms and 308ms, respectively. Many factors including DNS lookup,

TCP slow-start, SSL handshake, and TCP handshake, may contribute to this slowdown.

22

To isolate the cost of the TCP handshake, we plot network transaction latencies of cold

requests excluding TCP handshake time.1 This simulated distribution, labeled as “Cold

Req no Hsk” in the figure, suggests that TCP handshake accounts for up to 25% of the

latency between the 10th and 90th percentiles.

Thus the results of our analysis of both Google server logs and Chrome browser

statistics suggest that sending an HTTP request and response during a TCP handshake

can significantly improve HTTP transaction performance.2

3.3 Design

Our measurement results support the notion that eliminating one round trip from

a web flow can provide immediate, measurable performance gains. However, it may be

instructive to first consider the constraints we designed within and the assumptions we

made while working on TCP Fast Open.

3.3.1 Context and Assumptions

The current TCP specification actually allows a client to include data in its SYN

packet when initiating connections to servers, but forbids the servers from delivering the

data to applications until the 3-way handshake (3WHS) completes [80]. Suppose for the

moment that we were to remove this restriction, and simply enable ordinary TCP-based

client applications to send HTTP GET requests in TCP SYN packets and servers to

respond with data in their TCP SYN-ACK packets. While this would trivially meet

the needs of TCP Fast Open, it would open the protocol up to a straightforward denial-

of-service attack of both the server and arbitrary hosts: an attacker or set of attackers

1We measure TCP handshake time by the time it takes to finish the connect() system call in Chrome.
2We note that our estimates from Google server logs (which concern only requests for google.com) and

Chrome browser statistics (which are across the web) differ likely because Google has a lower RTT and
processing time than many other websites.

23

could send HTTP GET requests to a server while spoofing the source address of a victim

host, thereby causing the server both to perform potentially expensive request processing

and to send a potentially large response to a victim host. Thus we must build security

mechanisms into TFO to protect both the server and other hosts from such attacks.

Our goal in designing TCP Fast Open was to enable each end of a TCP connection

to safely transmit and process any received data while the 3WHS is still in progress.

However, there are several other constraints that we kept in mind and assumptions that

we were forced to make. For example, the TCP initial handshake is designed to deal with

delayed or duplicate SYN packets received by a server and to prevent such packets from

creating unnecessary new connections on the server; server applications are notified of

new connections only when the first ACK is received from the client. We found that to

manage stale or duplicate SYN packets would add significant complexity to our design,

and thus we decided to accept old SYN packets with data in some rare cases; this decision

restricts the use of TFO to applications that are tolerant to duplicate connection / data

requests. Since a wide variety of applications can tolerate duplicate SYN packets with

data (e.g. those that are idempotent or perform query-style transactions), we believe this

constitutes an appropriate trade-off.

Similarly, we make several assumptions about the setting in which TFO is de-

ployed. We assume that servers cannot maintain permanent or semi-permanent per-client

state since this may require too much server memory, and that servers may be behind

load balancers or other such network devices. A stateless-server design is more desirable

in this setting as it keeps state-management complexity to a minimum.

We also assume that servers cannot perform any operations to support TFO that

are not reasonable to implement on the kernel’s critical path (e.g. symmetric cryptography

is possible, but asymmetric is not). We assume that clients are willing to install new

software to support TFO and that small changes to applications are acceptable. Finally,

24

we assume that it is acceptable to leverage other security mechanisms within a server’s

domain (if needed) in concert with TFO to provide the required security guarantees.

3.3.2 Design Overview

SYN + TFO cookie request

SYN + ACK

ACK

Client Server

SYN-ACK + TFO cookie

SYN + TFO cookie + data

… regular TCP connection to
request cookie for future use

… continues like regular TCP
connection

Client caches cookie
for this server IP

Data in the SYN packet
also ACKed by server

Generates cookie by
encrypting client IP

Validates client TFO cookie +
accepts connection + data is
made available to application

More data packets sent
to client while handshake
is in progress

Figure 3.3. TCP Fast Open connection overview

Our primary goal in the design of TCP Fast Open is to prevent the source-address

spoofing attack mentioned above. To prevent this attack, we use a security “cookie”. A

client that wishes to use TFO requests a cookie—an opaque bytestring—from the server

in a regular TCP connection with the TCP Fast Open TCP option included, and uses that

cookie to perform fast open in subsequent connections to the same server. Figure 3.3

shows the usage of TFO. We begin by listing the steps a client performs to request a TFO

cookie from a server:

25

1. The client sends a SYN packet to the server with a Fast Open Cookie Request TCP

option.

2. The server generates a cookie by encrypting the client’s IP address under a secret

key. The server responds to the client with a SYN-ACK that includes the generated

Fast Open Cookie in a TCP option field.

3. The client caches the cookie for future TFO connections to the same server IP.

To use the fast open cookie that it received from a server, the client performs the following

steps:

1. The client sends a SYN with the cached Fast Open cookie (as a TCP option) along

with application data.

2. The server validates the cookie by decrypting it and comparing the IP address or

by re-encrypting the IP address and comparing against the received cookie.

(a) If the cookie is valid, the server sends a SYN-ACK that acknowledges the

SYN and the data. The data is delivered to the server application.

(b) Otherwise, the server drops the data, and sends a SYN-ACK that only ac-

knowledges the SYN sequence number. The connection proceeds through a

regular 3WHS.

3. If the data in the SYN packet was accepted, the server may transmit additional

response data segments to the client before receiving the first ACK from the client.

4. The client sends an ACK acknowledging the server SYN. If the client’s data was

not acknowledged, it is retransmitted with the ACK.

5. The connection then proceeds like a normal TCP connection.

26

3.3.3 Cookie Design

The TFO cookie is an encrypted data string that is used to validate the IP owner-

ship of the client. The server is responsible for generation and validation of TFO cookies.

The client or the active-open end of a connection simply caches TFO cookies and returns

these cookies to the server on subsequent connection initiations. The server encrypts

the source IP address of the SYN packet sent by the client and generates a cookie of

length up to 16 bytes. The encryption and decryption / validation operations are fast,

comparable to the regular processing time of SYN or SYN-ACK packets.

Without the secret key used by the server upon cookie generation to encrypt the

client’s IP address, the client cannot generate a valid cookie. If the client were able to

generate a valid cookie this would constitute a break of the underlying block cipher used

for encryption. The server periodically revokes cookies it granted earlier by rotating

the secret key used to generate them. This key rotation prevents malicious parties from

harvesting many cookies over time for use in a coordinated attack on the server. Also,

since client IP addresses may change periodically (e.g. if the client uses DHCP), revoking

cookies granted earlier prevents a client from mounting an attack in which it changes its

IP address but continues to spoof its old IP address in order to flood the new host that has

that old address.

3.3.4 Security Considerations

TFO’s goal is to allow data exchange during TCP’s initial handshake while

avoiding any new security vulnerabilities. Next we describe the main security issues that

arise with TFO and how we mitigate them.

27

SYN Flood / Server Resource Exhaustion

If the server were to always allow data in the SYN packet without any form

of authentication or other defense mechanisms, an attacker could flood the server with

spurious requests and force the server to spend CPU cycles processing these packets.

Such an attack is typically aimed at forcing service failure due to server overload.

As noted earlier, TFO cookie validation is a simple operation that adds very little

overhead on modern processors. If the cookies presented by the attacker are invalid,

the data in the SYN packets is not accepted. Such connections fall back on regular

TCP 3WHS and thus the server can be defended by existing techniques such as SYN

cookies [31].

If the cookies that the attacker presents are valid—and note that any client can

get a cookie from the server—then the server is vulnerable to resource exhaustion since

the connections are accepted, and could consume significant CPU and memory resources

on the server once the application is notified by the network stack. Thus it is crucial to

restrict such damage.

To this end, we leverage a second mechanism: the server maintains a counter

of total pending TFO connection requests either on a per service port basis or for the

server as a whole. This counter represents TFO connections that have been accepted

by the server but that have not been migrated to the fully-established TCP state, which

occurs only after receiving the first ACK from the peer (completion of 3WHS). When the

number of pending TFO connections exceeds a certain threshold (that is administratively

set), the server temporarily disables TFO and any incoming TFO requests fall back on

regular 3WHS. This allows the usual SYN flood defense techniques [31] to prevent

further damage until the pending TFO requests falls below the threshold. This limit

makes it possible for an attacker to overflow the limit and temporarily disable TFO on

28

the server, but we believe that this is unlikely to be of interest to an attacker since this

would only disable the TFO “fast path” while leaving the service intact.

There is another subtle but important difference between TFO and a regular TCP

handshake. When SYN flood attacks originally broke out in the late 1990s, they were

aimed at overflowing the short SYN backlog queues on servers that were used to store

information about incoming connection requests until the completion of 3WHS. In such

an attack, the attacker sends a stream of SYN packets with spoofed source IP addresses

until this SYN queue fills up. This causes new SYN packets to be dropped, resulting

in service disruption. The attacker typically uses spoofed source IP addresses that are

non-responsive; otherwise, the SYN-ACK would trigger a TCP RST from the host whose

IP has been spoofed. The TCP RST packet would terminate the connection request on

the server and free up the SYN queue, thereby defeating the attack.

With TFO, such RST packets from spoofed hosts would fuel the damage since the

RST will terminate the pending TFO request on the server, allowing another spoofed TFO

connection request to be accepted. To defend against this, any pending TFO connections

that get terminated by a RST should continue to be counted against the threshold for

pending TFO connections described previously until a timeout period has passed.

Amplified Reflection Attack

While regular TCP restricts the response from a server to just one SYN-ACK

packet, TFO allows the server to send a stream of data packets following the SYN-ACK

to the source IP address of the SYN packet. If not for the TFO cookie, this could be used

by an attacker to mount an amplified reflection attack against any victim of choice.

As mentioned in the previous section, the number of pending TFO connections on

the server has a system limit, so the server is protected from resource exhaustion beyond

the limit. This system limit also bounds the damage that an attacker can cause through

29

reflection from that server. However, the attacker can still create a reflection attack from

a large number of servers to a single victim host as follows.

First, the attacker has to steal or otherwise obtain a valid cookie from the target

victim. This likely requires the attacker to compromise or collude with the victim host or

network. If the victim host is already compromised, the attacker would likely have little

value in mounting a reflection attack against the host itself, but the attacker might still be

interested in mounting the attack to disrupt the compromised host’s network. The stolen

cookie is valid for a single server, so the attacker has to steal valid cookies from a large

number of servers and use them before they expire to cause a noticeable impact on the

compromised host’s network.

We argue that if the attacker has already compromised the target network or host,

then the attacker could directly start flooding the network from the compromised host

without the use of a reflection attack. If servers still want to mitigate such an attack, one

possible defense is to wait for the 3WHS to complete before sending data to the client.

The server would still accept data in the SYN packet and allow the application to process

it, but would make sure it is a valid connection—that is, 3WHS completes before sending

the response to the client. For many applications this modification would yield little

slowdown versus standard TFO as server processing time is often greater than the RTT

of the connection.

3.3.5 Handling Duplicate SYN Segments

The current TCP standard allows SYNs to carry data but forbids delivering the

data to the application until the connection handshake is completed in order to handle

duplicate SYNs. Although TFO does not retransmit SYNs with data, it’s possible that the

network duplicates SYN packets with data, causing the data to be replayed at the server.

Suppose a TFO client sends a SYN with data and actively closes the connection before

30

the duplicate SYN arrives at the server. The server, being passively closed, does not

retain any state about the closed connection, so accepts the duplicate SYN and processes

(replays) the data. If the duplicate is generated within a 2MSL timeout, the server is

likely to terminate the connection after receiving an RST since the client would process

the server’s SYN/ACK in the TIME WAIT state. Nevertheless, the request will have been

replayed.

One heuristic to address this is to extend the LAST ACK state for 2MSL duration

at the server (the passive close side) after receiving the final ACK from the client.

This prevents some delayed duplicate packets from reaching the server application.

Applications that are particularly intolerant to duplicate transactions, such as credit card

transactions or banking applications, already have application-level measures to ensure

idempotence. Alternatively, they can use a nonce to ensure that a transaction occurs only

once. This challenge already exists today in another form: users often click refresh in

web browsers if a page does not load quickly, resulting in duplicate transactions.

3.3.6 API Changes

One of our design goals was to avoid changes to socket libraries and to reuse

existing APIs as much as possible. This minimizes changes to applications that wish to

use TFO and poses less of a deployment hurdle.

The server side API to use TFO is extremely simple. A server application enables

TFO for incoming connections to a listening socket simply by enabling a new socket

option. Figure 3.4 shows sample code to enable TFO on the server. The remaining socket

calls (i.e. listen(), accept(), send(), recv(), etc.) remain unchanged.

On the client side, using TFO requires the application to provide a destination

IP address and port number, as well as the data to send. The sendto() and sendmsg()

system calls already provide such an interface; we extend them for use with TFO. When

31

sd = socket(...);

bind(sd, ...);

int tfo_opt = 1;

setsockopt(sd, SOL_TCP, TCP_LISTEN_TFO,

(void*)&tfo_opt, 4);

listen(sd, ...);

Figure 3.4. Server application sample code

these system calls are used on a regular TCP socket, the destination address is ignored

and they behave just like a send() call. When the new TFO flag is set, these calls are

modified to initiate a TFO connection.

If the TFO cookie for the destination IP address is available, a SYN packet with

the cookie and data is sent to initiate the TFO connection; the network stack handles

this decision without the application’s intervention. If the cookie is not available, it falls

back on a regular TCP three-way handshake and the data is queued up for transmission

when the 3WHS is completed. The SYN packet in this case also includes a TCP option

requesting a TFO cookie from the server for later use. In general, the use and handling

of TFO cookies is done by the networking stack and is completely transparent to the

application. Therefore no API is needed to expose them. After the first sendmsg() or

sendto() call, the rest of the socket calls from the application are unmodified.

The modified sendto() and sendmsg() calls return the number of bytes of data

queued up in the kernel or sent in the SYN packet. They can be used with blocking or

non-blocking sockets and their return values upon error are a combination of the error

messages returned by send() and connect(). Figure 3.5 shows sample code that a

client application can use to connect to a server using TFO.

Besides these, one could imagine additional less critical APIs that could be pro-

vided to expose TFO information related to the connection, such as whether a connection

32

sd = socket(...);

char msg[16] = "Hello TFO World";

send_len = sendto(sd, msg, 15, MSG_TFO,

server_addr, addr_len);

Figure 3.5. Client application sample code. The sendto() call with MSG TFO flag
combines connect() and send() functionalities.

was opened through a regular handshake or TFO, and whether a TFO attempt to a server

succeeded; APIs to set TFO secret keys and flush the TFO cache might also prove useful.

The TFO cookie handling is transparent to applications and the cookies received

by a client from a server are not directly readable by applications unless they have root

privileges to sniff packets on the client. This prevents malicious sites from using simple

browser hacks to trick users by making connections to other websites and stealing those

TFO cookies for mounting an amplified reflection attack.

3.4 Deployability

Given that the main goal of TFO is improving the performance of short transfers

such as the retrieval of web objects, being compatible with today’s network architecture

is key. Thus we designed TFO for incremental deployment. In doing so, we enabled it to

gracefully fall back on standard TCP to ensure that current and future TCP connections

can proceed in response to unexpected network events. In this section, we discuss the

challenges of incremental deployability and our responses to these challenges.

3.4.1 New TCP Options / Data in SYN

Our primary deployment concern with TFO is regarding how Internet routers,

middle-boxes, end-hosts, and other entities will handle new types of TCP packets such as

those with new TCP options, SYN packets with data, and the like, as such packets are

33

unusual in today’s networks. One study found that some middle-boxes and hosts drop

packets with unknown TCP options [57]. A more recent study found that 0.015% of

the top 10,000 websites do not respond with a SYN-ACK after receiving a SYN with a

non-standard or new TCP option [19]. Another study found that 6% of probed paths on

the Internet drop SYN packets containing data [52].

If a SYN packet with TCP Fast Open option set does not elicit a response within

the timeout period (regardless of where it is dropped), we simply retransmit the SYN

without any data or non-standard TCP options. In doing so, TFO falls back on a regular

TCP 3WHS and connectivity with the server is not lost. The client also caches the RTT to

the server in its cookie cache and sets the SYN retransmit timeout to 1.5×RT T , thereby

reducing the ordinarily longer SYN timeout. If TFO fails repeatedly to a given server, the

client remembers the server’s IP address and disables TFO for that server in the future.

3.4.2 Server Farms

Given that many large web services place servers in server farms, another point

of concern for us is how TFO would be used at such data centers. A common setup for

server farms is for many servers to be behind a load balancer, sharing the same server IP.

Client TCP connections are load balanced to different physical hosts, often without any

stored state about previous connections from the same client IP. Clients cache the TFO

cookie based on a server’s IP; TFO connections from a particular client might be load

balanced to a physical server different from the one that granted the TFO cookie. We use

TFO in this setting by sharing a common secret key (used for encrypting and decrypting

TFO cookies) among all the servers in the server farm. Secret key updates to the servers

are made at about the same time on all the servers.

34

3.4.3 Network Address Translation (NAT)

Network Address Translation (NAT) is another challenge for TFO. Hosts behind

a single NAT sharing the same public IP address are granted the same cookie for the

same server; nevertheless, the clients can all still use TFO. However some carrier-grade

NAT configurations use different public IP addresses for new TCP connections from the

same client. In such cases, the TFO cookies cached by the client would not be valid and

the server would fall back on a regular 3WHS and reject any data in the SYN packet.

Despite this, since the server would reply with an ordinary SYN-ACK, the use of TFO in

this scenario would not cause any latency penalty versus an ordinary TCP connection.

3.4.4 TCP Option Space

The availability of TCP option space in the SYN and SYN-ACK packets is an

issue since many options are negotiated in these packets. We analyzed the connections

seen at Google’s web servers and found that over 99% of incoming client connections

had sufficient option space to accommodate a TFO cookie option with an 8 or 16 byte

cookie in the SYN packets. Therefore, this is unlikely to be a concern for web traffic.

If other types of traffic use certain long TCP options (e.g. the TCP MD5 option),

and space is insufficient in the TCP options field to accommodate the TFO cookie, the

connection can safely fall back on regular 3WHS.

3.5 Implementation

We implemented TCP Fast Open in the Linux 2.6.34 kernel and are in the early

stages of deploying it across Google. The entire kernel patch is about 2000 lines of code

with about 400 lines used for the client-side TFO cookie cache. We also coordinated

with the developers of Chrome to implement TFO support within the browser.

35

3.5.1 Kernel Support

While the Linux TCP stack required fairly deep modification, a key aspect to both

the design and implementation of TFO is that it does not affect TCP congestion control.

That is, since congestion control only takes place after TCP’s handshake completes, and

TFO is only in use during the handshake, the two are entirely separate. Thus we did

not have to modify any code relating to congestion control in the Linux kernel. Also

note that the maximum number of data segments that a server can send before getting

acknowledgments from the client is dictated by the initial congestion window and receiver

window, but that neither of these values are affected by TFO. Our modifications included

alterations to incoming packet handling in the LISTEN, SYN SENT, and SYN RCVD

states and to the routines that transmit TCP packets (to include appropriate options as

required for TFO).

Our implementation uses a fixed size, 8 byte TFO cookie. We use the 128-bit

(16 byte) AES block cipher implementation available in the Linux Kernel CryptoAPI

to encrypt each client IP value; we truncate the result to 8 bytes to generate the cookie.

We pad IPv4 client IP addresses with zeros to create a 16 byte IP value while IPv6

addresses are used in full. To validate the cookie contained within an incoming TFO

request, the server recomputes the 8 byte cookie value based upon the incoming source IP

address and compares it to the cookie included by the client. The cookie generation and

validation operations add cryptographic processing overhead on the server. Many modern

processors include AES instructions in hardware and a single CPU core can support

tens of thousands of 16-byte AES encryptions per second [43]. This is greater than the

connection acceptance rate of many modern servers, and the processing overhead for this

cryptographic operation is only a small fraction of typical connection processing time.

For the cookie cache—which is used by client hosts’ network stacks—we imple-

36

mented a simple LRU policy that caches cookies, RTT, and MSS by server IP. While we

found that this policy worked well, this cache replacement policy is not in any way tied

to the protocol.

3.5.2 Application Support

Only small changes are required in user level applications. Server side applica-

tions need just a single additional line of code: a call to setsockopt() to set the TFO

socket option for the listen socket. Client side applications must replace connect() and

the first send() call with a single call to sendto() with the appropriate flags. In addi-

tion to using TCP Fast Open within our own custom socket programs, the Chrome web

browser was also modified to use TFO, as was the web server with which we performed

tests.

3.6 Evaluation

In this section we evaluate the performance improvement conferred by TCP Fast

Open in two contexts. First, we measure the whole-page download gains seen by a

TFO-enabled Chrome browser visiting popular websites. Second, we measure the more

surprising performance benefits of TFO on the server side.

3.6.1 Whole Page Download Performance

The primary goal of TFO is to eliminate one RTT of latency, thereby improving

the performance of short flows. This is particularly important for cold HTTP requests. In

Section 3.2, we estimated, based on Chrome browser statistics, that TFO could improve

HTTP transaction latency by up to 25%. Here we ask a more general question: how much

does TFO speed up whole-page downloads? Unfortunately, this question does not have a

straightforward answer. On average, major web pages consist of 44 resources distributed

37

Table 3.1. Average page load time (PLT) in seconds for various pages for an emulated res-
idential broadband user with a 4Mbps/256Kbps link. In all tests, the standard deviations

of PLT are within 5% of average except for amazon.com with 20ms RTT (7%).

Page RTT(ms) PLT : non-TFO (s) PLT : TFO (s) Improv.

amazon.com
20 1.54 1.48 4%

100 2.60 2.34 10%
200 4.10 3.66 11%

nytimes.com
20 3.70 3.56 4%

100 4.59 4.30 6%
200 6.73 5.55 18%

wsj.com
20 5.74 5.48 5%

100 7.08 6.60 7%
200 9.46 8.47 11%

TCP wikipedia page
20 2.10 1.95 7%

100 3.49 2.92 16%
200 5.15 3.03 41%

across 7 different domains [76], and modern browsers have complex scheduling routines

to fetch these resources using multiple parallel TCP connections.

First, we benchmarked several popular websites from the Alexa top 500 websites

list [5]. The test-bed for these experiments consists of a single machine (Intel Core 2

Quad CPU 2.4GHz, 8GB RAM) that runs our TFO-enabled Linux kernel and Chrome

browser. We used the Google web page replay tool to benchmark the web page download

latency for TFO-enabled Chrome and for standard Chrome [97]. The page replay tool

has two modes: record and replay. In record mode, the tool passively records all DNS

and TCP traffic sent from and received by the browser into a local database. In replay

mode, the tool runs a DNS server on the local machine and redirects the browser’s HTTP

requests to the local proxy run by the tool. The replay can also leverage dummynet

to emulate different network delays, bandwidths, and random packet loss [81]. All

connections during replay use the loopback interface with a reduced MTU of 1500 bytes.

In our experiment, we emulated a broadband user with 4Mbps downlink and

256Kbps uplink bandwidth and with a 128KB buffer; this is a popular configuration as

38

found by Netalyzer [50]. First, we used the tool to record the home pages of Amazon.com,

the New York Times, the Wall Street Journal, and the Wikipedia page for TCP3. We

then replayed each web page 20 times with and without TFO support in Chrome, and

did so with three different RTTs: 20ms, 100ms, and 200ms. Therefore, for each page

we gathered 120 samples. For each replay we performed a cold start of the browser and

used a new user configuration folder (with an empty cache) to avoid caching effects and

persistent connections to the replay tool’s proxy. Since all connections use the loopback

interface, the TFO-enabled browser always has a valid TFO cookie and thus sends the

cold HTTP requests in the SYN packet.

Thus for each replay with TFO-enabled browsing, we emulated a user with an

empty browser cache visiting the website with TFO-enabled servers. For each page, the

browser reports the page load time (PLT) that is measured from when the browser starts

processing the URL until the browser onload event begins [96].4 The PLT includes HTTP

redirects, accessing the local cache, DNS lookups, HTTP transactions, and processing

the root document. The results of the replays are shown in Table 3.1. As expected, TFO

improves the PLT when the RTT is high for all the sites we tested. When the RTT is

small and the network delay is only a small fraction of PLT, the resource processing time

would exceed network time, so the gains from TFO are expected to be small. But even

for pages heavy on content and with short emulated RTT (i.e. 20ms), TFO accelerates

PLT by 4–5%. Conversely, for simpler pages such as wikipedia, the browser spends most

of its time waiting for network transfers rather than processing the retrieved content, and

thus TFO offers significant improvements of 16% and 41% with 100ms and 200ms RTTs

respectively. The 200ms RTT figures roughly correspond to the expected performance

on mobile devices since mobile RTTs are typically on the order of 100–200ms [84].

3http://en.wikipedia.org/wiki/Transmission Control Protocol
4To extract the PLT from Chrome, we opened the browser’s javascript console and entered “perfor-

mance.timing.loadEventEnd - performance.timing.navigationStart”.

39

0 1000 2000 3000 4000 5000 6000

Connections per second

0

20

40

60

80

100

C
P
U

 u
ti

liz
a
ti

o
n
 [

%
]

Regular TCP

TCP Fast Open

Figure 3.6. CPU utilization vs. web server load

3.6.2 Server Performance

To measure the impact of TFO on the server, we wrote a client program that

generates HTTP 1.0 requests at a constant rate to an Apache server and fetches a 5KB

web page. We used client and server machines with configurations similar to that in

Section 3.6.1 and connected them through a Gigabit Ethernet switch; the RTT between

them was about 100µs. We limited the server machine to only use one CPU core and

measured the CPU utilization using OProfile to evaluate the overhead added by cookie

generation/validation operations and other TFO related processing. At each request rate,

we measured the average CPU utilization across four 5 minute long trials for regular

TCP and TFO. Figure 3.6 shows that server CPU utilization is nearly the same with

and without TFO—in fact the CPU utilization was marginally lower when using TFO

between 2000 and 5000 requests per second. We attribute this to the fewer packets that

the server has to process when TFO is enabled as the request is included in the SYN

packet. The AES encryption function used for cookie validation accounted for less than

0.3% of CPU utilization even at 6000 requests per second.

To further stress the connection setup process, we created another client load

generator that repeatedly makes TFO connections to the server and requests the default

40

Apache home page. This server response fits within a single response packet thereby

making the connection handshake a significant fraction of the entire connection. The

client program operates in a closed loop and maintains one outstanding request to the

server at any time; it creates a new connection to the server and sends another request as

soon as it receives one complete HTTP response. With regular TCP, the server was able

to sustain an average rate of 2876.4 transactions per second. Surprisingly, with the use

of TFO, the server’s sustained rate rose to 3548.7 transactions per second. This result is

likely due to several factors: (1) one RTT saved per request, (2) fewer CPU cycles spent

by the server to process each request (as the request is received in the SYN packet itself),

and (3) one system call saved per request on the client.

3.7 Discussion

Over the time that we spent discussing, designing, and implementing TCP Fast

Open we considered several alternative approaches to the design of TFO cookies, to the

semantics of TFO, to server-side attack mitigation, and alternative scenarios where TFO

is useful. Here we describe those approaches and discuss their benefits and drawbacks.

3.7.1 One Time Cookies

To prevent attacks in which a host reuses a cookie or cookies that it collects either

legitimately or illegitimately, next we discuss an alternative design approach that we

considered but ultimately did not implement (largely to keep the mechanism as simple as

possible). In this approach, each TCP Fast Open cookie is valid for only one Fast Open.

A client that wants to do more than one Fast Open must request more cookies to perform

those subsequent Fast Opens. All open TCP connections (regardless of how they were

opened) would have a limitation that they can only issue one Fast Open cookie for the

lifetime of the connection, and that a cookie cannot be issued until the server has received

41

at least one ACK from the client—this maintains a one-to-one relationship between the

number of currently valid cookies issued for a client-server pair and the number of TCP

handshakes the pair have completed at some time.

Thus, a client host would a) open a connection with a normal three-way hand-

shake, b) request a one-time Fast Open cookie, c) proceed as usual with the connection

and eventually close it, d) open a new connection using its Fast Open cookie, and e)

request a new cookie during this new connection. Clients that wish to open parallel

TFO connections to a server would acquire multiple cookies to the same server across

multiple regular TCP handshakes. In the (client) kernel, this approach would change the

abstraction slightly, from a one-to-one mapping from server IP to cookie to a set mapping

of server IP to a set of cookies; this change would not affect applications.

To implement one-time cookies, the zero-padding used for IPv4 addresses would

be replaced by a 64-bit unsigned integer counter during cookie computation, thus the

cookie would be the encryption of the concatenation of the server IP, client IP, and

counter. This ensures that each cookie is unique, even for the same client-server pair. In

this design, there need only be one counter per server, which is incremented whenever a

Fast Open cookie is issued to any host.

There are several methods that could be used to prevent cookie reuse. Standalone

servers would keep a lookup table to make sure that a cookie isn’t reused in some small

time window (e.g. a few minutes), and if it is, the server would fall back on a normal

handshake. For servers behind load balancers, the load balancers could either do the same

or, alternatively, could always hash the cookie value consistently to a destination back-

end server, thereby ensuring that if a cookie is reused then the same server will receive

the duplicate requests, so the client(s) will be caught. If no load balancer modification

is possible—as may be the case for large production web services—two options are

possible: a) the service simply allows for a cookie to be reused n times where n is

42

the number of servers behind a load balancer or b) the servers behind a load balancer

periodically exchange information about recently seen cookies.

While this one-time cookie approach is more complex, it may have the benefit

of thwarting some amplification and resource exhaustion attacks. Standalone servers or

server farms with load balancers modified as described above would also have another

benefit of providing TCP’s usual semantics and not be exposed to the duplicate SYN

issue since the cookie in a duplicate SYN would be rejected.

3.7.2 Data After SYN

Some applications may require the transmission of initial data requests that

cannot fit in a single packet. Thus the room provided by TFO in the SYN packet may

be insufficient. Our TFO protocol design can easily support transmission of additional

data packets following a TFO-enabled SYN packet (before receiving a SYN-ACK from

the server). However these data packets would have the ACK flag unset since the initial

sequence number of the server is unknown until the receipt of the SYN-ACK. Our

experiments revealed that Internet paths originating at several major ISPs drop data

packets without the ACK flag. In order to not introduce any additional deployment

constraints, we decided to disallow data packets sent by the client following a TFO-

enabled SYN packet. This effectively limits the amount of data to be sent by the client

during 3WHS to a single MSS; all this data must fit within the initial SYN packet. This

is sufficient for many client applications such as HTTP web requests. The server is not

limited in this way, and thus will be able to send up to what the advertised receive window

in the client’s SYN packet and TCP’s initial congestion window allow.

43

3.7.3 Server-side TFO Cache

TFO includes a counter of total pending TFO connection requests on a per service

port basis or for the whole server. Therefore it is possible for an attacker to force the

server to disable TFO for all clients by flooding the server with spurious TFO requests

using a cookie it obtained itself or using a stolen cookie from a compromised host.

The server can avoid disabling TFO for all clients by maintaining a small cache

of recently received TFO connection requests from different client IP addresses. For each

client IP address in the cache, the server stores the number of pending TFO connection

requests from the client IP. If the pending TFO requests from a particular client IP exceeds

the administratively set threshold, the server can selectively disable TFO for just that

client IP address. The cache can store, for example, 10,000 client IP addresses using a

modest amount of memory. The cache uses an LRU replacement policy.

The server would still have to maintain the global or listener port-level accounting

to serve as the final defense, but smaller thresholds may be used for individual client IP

addresses. This is because a large number of compromised hosts can mount a coordinated

attack in which they overflow the server-side cache and thus the cache entries replaced

are those with the client IP addresses of other compromised hosts which are also flooding

the server with spurious requests. Each client IP does not exceed the IP-level pending

request threshold before its entry gets evicted from the cache, but it soon sends more

spurious requests and is added to the cache again with its pending-requests counter reset.

The server-side cache increases the number of valid cookies that the attacker must steal

to disable TFO for everyone, but does not completely eliminate the possibility.

3.7.4 TCP Fast Open in Low Latency Networks

While TFO was motivated by short TCP transfers in the wide area network with

long RTTs, its applicability extends to low latency networks like data centers as well. In

44

the data center, applications often keep connections alive for extended periods of time

to avoid the connection setup overhead each time data has to be transferred to a peer.

Keeping many idle connections alive increases the server load and memory requirements.

TFO allows such applications to instantly begin data transfers on demand (just like UDP

transfers), while getting all the benefits of TCP like reliability and congestion control.

Some applications require on-demand fast one-packet ping-pong communication such

as sending a periodic short log message to a log server. TFO is again useful for such

applications to achieve fast reliable communication without having to maintain long lived

connections.

3.7.5 Cookie-less TCP Fast Open

The TFO cookie mechanism mitigates resource exhaustion and amplification

attacks. However cookies are not necessary if the server has application-level protection

or is immune to these attacks. For example a web server that only replies with a simple

HTTP redirect response that fits in the SYN-ACK packet may not care about resource

exhaustion. For such an application, the server could decide to disable TFO cookie

checks. Similarly, when TFO is used inside a data center between machines in a trusted

environment, the TFO cookie checks may be disabled.

Disabling the cookie checks simplifies both the client and the server, as the client

no longer needs to cache the cookie and the server no longer needs to check or generate

cookies. Disabling cookies also potentially simplifies configuration, as the server no

longer needs a secret key. In specific scenarios where it is safe to disable TFO cookies, the

server may choose to respond to a client with a null or empty cookie thereby indicating

to the client that it is free to send data in the SYN packet.

45

3.8 Related Work

Several instances of prior work aim to improve TCP performance by directly

eliminating the three-way handshake, or more generally by designing server-stateless

extensions. Here we attempt to place TCP Fast Open in context and compare the design

trade-offs that motivated prior work and motivate our work.

TCP Extensions for Transactions (T/TCP), among its other features, bypasses

TCP’s connection handshake, and thus shares both the goals and the challenges of

TFO [20]. T/TCP focuses its effort on combating old or duplicate SYNs, and does not

aim to mitigate security vulnerabilities introduced by bypassing 3WHS. Its TAO option

and connection count add complexity and require the server to keep state per remote host,

while still leaving it open for attack. It is possible for an attacker to fake a congestion

control value that will pass the TAO test. Ultimately its scheme is insecure, as discussed

by prior analyses [37, 73].

As noted earlier, our focus with TCP Fast Open is on its security and practicality,

and thus we made the design decision to allow old, duplicate SYN packets with data.

We believe this approach strikes the right balance, and makes TFO simpler and more

appealing to TCP implementers and application developers. While TFO’s vulnerability to

SYN flood attacks is no different from traditional TCP, the damage an attacker can inflict

on the server may be worse due to the additional cost of processing application level

data, and thus deserves careful consideration. Numerous prior studies discuss approaches

to mitigate ordinary SYN flood attacks (i.e., floods of SYN packets without data) [31].

However, none of these approaches, from stateless solutions such as SYN-cookies to

stateful solutions such as SYN Caches, can preserve data sent in SYN packets while

providing an effective defense. Thus we concluded that the best defense is to simply

disable TFO when a host is suspected to be under a SYN flood attack (e.g. when the

46

SYN backlog is filled). Once TCP Fast Open is disabled, normal SYN flood defenses

can be employed.

Like TCP Fast Open, TCPCT also allows SYN and SYN-ACK packets to carry

data, though TCPCT is primarily designed to eliminate server state during the initial

handshake, and to defend from spoofed denial-of-service attacks [9]. Therefore, TCPCT

and TFO are designed to meet different needs and are not directly comparable. A TCPCT-

enabled server does not keep any connection state during TCP’s initial handshake, and

thus the server side application must consume the data in the SYN packet and immediately

produce the response data to be included in the SYN-ACK packet. Otherwise, the

application’s response is forced to wait until the handshake completes. This approach

also constrains the application’s response size to only one packet. By contrast, TFO

allows the server to respond to data during the handshake even after the SYN-ACK is

sent. Therefore, we believe TFO is better suited to enabling data exchange during 3WHS

at least for web flows.

A recent proposal, Rapid-Restart [10], was proposed after the TFO IETF draft

and has similar goals. Rapid-Restart is based on TCPCT; both the server and the client

cache TCP control blocks after a connection is terminated, deviating from TCPCT’s

original design goal of saving server memory. The client sends a SYN with data and

the previously stored TCPCT cookie. The server accepts the connection if the cookie

and the IP match its cached copies. Rapid-Restart does not scale because it requires

per-connection state at the server. Moreover, Rapid-Restart cannot be used in server

farms because connection state is retained only by the server that processed the last

connection from the client, and a subsequent connection from that client may be directed

to a different server in the farm unless the load balancer is modified.

More recently Zhou et al. proposed ASAP which provides a solution to reduce

DNS and eliminate TCP handshake latency [103]. It employs public-key certificates

47

issued by a provenance verifier and signed by clients to ensure authenticity of requests to

a server. In doing so, it offers more generality at the expense of computational overhead

and incremental deployability.

Since none of the proposals we have discussed above are deployed, browser

vendors have developed their own feature – “PRECONNECT” to avoid TCP handshake

latency. Chrome and Internet Explorer 9 maintain a history of the domains for frequently

visited web pages. The browsers then speculatively pre-open TCP connections to these

domains before the user initiates any requests for them. Tests show this feature improves

overall page load time by 6-10% for the top 35 websites [13, 24]. The downside of this

approach is that it wastes server and network resources by initiating and maintaining idle

connections due to mis-speculation; the hit rate for these mechanisms is fairly low. TFO

offers similar performance improvement without the added overhead.

3.9 Summary

To improve the performance of short transfers, we proposed TCP Fast Open

(TFO), which enables data to be exchanged safely during TCP’s initial handshake.

Our analysis of both Google server logs and Chrome browser statistics shows that

handshaking has become a performance bottleneck for web transfers. TFO enables

applications to decrease request latency by one round-trip time while avoiding severe

security ramifications. At the core of TFO is a security cookie issued by the server to

authenticate clients that initiate TFO connections. We believe that this cookie mechanism

provides an acceptable defense against potential denial-of-service attacks. TFO is also

designed to fall back gracefully on regular TCP handshaking as needed.

Our goal—of including data in TCP SYN and SYN-ACK packets—is not novel.

The TCP standard already allows it, but forbids the receiver from processing the data

until the handshake completes. Several recent proposals achieve similar goals to TFO but

48

have not seen wide deployment. The main contribution of TFO is the simplicity of its

design, allowing rapid and incremental deployment while maintaining reasonable defense

against denial-of-service attacks. We believe TFO interoperates well with existing TCP

implementations, middle-boxes, server farms, and legacy server and client applications.

We have implemented TCP Fast Open in the Linux kernel and shown that it

imposes minimal performance overhead for clients and servers, with significant latency

improvement for short transfers. Our analysis and test-bed results show that TFO can

improve single HTTP request latency by over 10% and the overall page load time from

4% to 40%. At the time of writing this dissertation, TFO is under discussion at the IETF

for publishing as an Experimental Internet Standard [23]. TFO has been deployed on

Google’s web servers. TFO is available as a part of the mainline Linux kernel since

version 3.6 (client side support), and 3.7 (server side support). The Chrome browser has

application level support for users to leverage TFO. ChromeOS which is based on Linux

and Chrome is also TFO capable.

3.10 Acknowledgments

We thank the anonymous CoNEXT reviewers and our shepherd Kyoungsoo Park

for their comments. We are thankful to Mike Belshe for motivating this work and making

the Chrome browser an early adopter of TFO. We thank Adam Langley, Tom Herbert,

Roberto Peon, and Mathew Mathis for their insightful comments on early designs of

TFO. We would like to also thank the IETF tcpm working group for their comments and

feedback on the design. In particular, we wish to acknowledge the efforts of Bob Briscoe,

Michael Scharf, Gorry Fairhurst, Rick Jones, William Chan, Neal Cardwell, and Eric

Dumazet for offering their feedback and help in improving the design.

Chapter 3, in part, contains material as it appears in the Proceedings of the 7th

ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT

49

’11), Tokyo, Japan, December 2011. “TCP Fast Open”. Sivasankar Radhakrishnan,

Yuchung Cheng, Jerry Chu, Arvind Jain, and Barath Raghavan. The dissertation author

was the primary investigator and author of this paper.

Chapter 3, in part, contains material as it appears in the IETF Internet Drafts,

March 2011 – February 2014. “TCP Fast Open”. Yuchung Cheng, Jerry Chu, Sivasankar

Radhakrishnan, and Arvind Jain.

Chapter 4

Dahu: Commodity Switches for Direct
Connect Data Center Networks

Solving “Big Data” problems requires bridging massive quantities of compute,

memory, and storage, which requires a very high bandwidth network. Recently proposed

direct connect networks like HyperX [1] and Flattened Butterfly [47] offer large capacity

through paths of varying lengths between servers, and are highly cost effective for

common data center workloads. However data center deployments are constrained to

multi-rooted tree topologies like Fat-tree [3] and VL2 [35] due to shortest path routing

and the limitations of commodity data center switch silicon.

In this chapter we present Dahu1, simple enhancements to commodity Ethernet

switches to support direct connect networks in data centers. Dahu avoids congestion

hot-spots by dynamically spreading traffic uniformly across links, and forwarding traffic

over non-minimal paths where possible. By performing load balancing primarily using

local information, Dahu can act more quickly than centralized approaches, and responds

to failure gracefully. Our evaluation shows that Dahu delivers up to 500% improvement

in throughput over ECMP in large scale HyperX networks with over 130,000 servers,

and up to 50% higher throughput in an 8,192 server Fat-tree network.

1Dahu is a legendary creature well known in France with legs of differing lengths.

50

51

4.1 Introduction

Historically, high-speed networks have fallen into two main design spaces. High

performance computing (HPC) and supercomputing networks have typically adopted

direct network topologies, configured so that every switch has some servers connected

to it. The remaining ports in each switch are used to connect to other switches in the

topology (e.g. mesh, torus, hypercube). This type of network is highly resource efficient,

and offers high capacity through the presence of many variable-length paths between

a source and destination. However, the choice of which path to forward traffic over is

ultimately controlled by proprietary protocols in switches, NICs, and by the end-host

application logic. This increases the burden on the developer, and creates a tight coupling

between applications and the network.

On the other hand, scale-out data centers have adopted indirect network topologies,

such as folded Clos and Fat-trees, in which servers are restricted to the edges of the

network fabric. There are dedicated switches that are not connected to any servers, but

simply route traffic within the network fabric. Data centers have a much looser coupling

between applications and network topology, placing the burden of path selection on

network switches themselves. Given the limited resources and memory available in

commodity switches, data center networks have historically relied on relatively simple

mechanisms for choosing paths, e.g., Equal-Cost Multi-Path Routing (ECMP).

ECMP relies on static hashing of flows across a fixed set of shortest paths to

a destination. For hierarchical topologies like Fat-trees [3], shortest path routing has

been largely sufficient when there are no failures. However, recently proposed direct

network topologies like HyperX, BCube, and Flattened Butterfly [1, 36, 47], which

employ paths of different lengths, have not seen adoption in data centers due to the

limitations imposed by commodity data center switches and shortest path routing. ECMP

52

leaves lot of network capacity untapped when there is localized congestion or hot-spots

as it ignores uncongested longer paths while forwarding. Further, even in hierarchical

networks, ECMP makes it hard to route efficiently under failures, when the network is no

longer completely symmetric, and some non-shortest paths can be utilized to improve

network utilization.

Commodity switches and shortest path routing have led to hierarchical networks

in data centers. These restrictions on topology and routing also mean that higher level

adaptive protocols like MPTCP [75] are unable to take advantage of the full capacity of

direct networks because all paths are not exposed to them through routing/forwarding

tables.

The goal of Dahu is to bridge the benefits of direct connect networks—higher

capacity with fewer switches (lower cost) for common communication patterns—with

the lower complexity, commoditization, and decoupled application logic of data center

networks. To that aim, we present Dahu, a lightweight switch mechanism that enables us

to leverage non-shortest paths with loop-free forwarding, while operating locally, with

small switch state requirements and minimal additional latency. Dahu seeks to obtain the

benefits of non-shortest path routing without coupling the application to the underlying

topology. Dahu supports dynamic flow-level hashing across links, resulting in higher

network utilization. Dahu addresses the local hash imbalance that occurs with ECMP

using only local information in the switches.

Dahu makes the following contributions: (1) Novel hardware primitives to ef-

ficiently utilize non-minimal paths in different topologies with a modest increase in

switch state, while preventing persistent forwarding loops, (2) A virtual port abstraction

that enables dynamic multipath traffic engineering, (3) A decentralized load balancing

algorithm and heuristic, (4) Minimal hardware modifications for easy deployability, and

(5) Large scale simulations on networks with over 130K servers to evaluate Dahu’s per-

53

formance. Our evaluation shows that Dahu delivers up to 50% higher throughput relative

to ECMP in an 8,192 server Fat-tree network and up to 500% throughput improvement

in large HyperX networks with over 130,000 servers. We are encouraged by these results,

and believe that they are a concrete step toward our goal of combining the benefits of

HPC and data center network topologies.

4.2 Motivation and Requirements

Fully-provisioned multi-rooted tree topologies are ideal for targeting worst case

communication patterns—where all hosts in the network simultaneously try to commu-

nicate at access link speeds. However, common communication patterns have only few

network hot-spots and over-provisioning the topology for worst-case traffic results in

high CAPEX. Oversubscribing the multi-rooted tree topology would reduce CAPEX, but

network performance would also suffer in the common case since the oversubscribed

layers of the tree have even lower capacity to tolerate hot-spots.

Direct networks provide an interesting point in the design space of network

topologies, since they provide good performance for most realistic traffic patterns, at

much lower cost than fully-provisioned Clos networks [1, pg.8-9] [47, pg.6-8]. There are

two defining characteristics of direct networks which distinguish them from tree based

topologies. (1) Hosts are embedded throughout the structure of the network. Each switch

has some hosts connected to it. (2) There are many network paths between any pair

of servers—but they are of varying length. These properties of direct networks allow

more flexible use of overall network capacity, with slack bandwidth in one portion of the

network available to be leveraged by other congested parts of the network by forwarding

traffic along longer less congested paths. In a sense the oversubscription is “spread

throughout the network” rather than at specific stages or points in the topology.

Direct networks are very popular in HPC—Titan, the world’s second fastest

54

supercomputer, uses a 3D torus, a direct connect topology [92]. However, data centers

have been largely constrained to multi-rooted trees due to commodity switch silicon

and shortest path based routing protocols. Direct networks have significant potential

in meeting the bandwidth requirements for data centers, but have yet to see wide-scale

deployments. Dahu presents simple enhancements to commodity Ethernet switches (both

hardware and software) to support direct connect topologies in data centers.

4.2.1 Challenges

In order to deploy direct connect networks in data centers, we need to address the

following challenges:

(1) Non-shortest path routing: Current data center switches and routing proto-

cols only support routing over shortest paths. Direct networks, offer large path diversity

between servers, but the paths are of varying lengths, typically with only a small number

of shortest paths. Shortest path routing artificially constrains bandwidth utilization during

periods of localized congestion, and traffic to a destination could potentially achieve

higher throughput, if alternate longer paths are also used. Consider a simple mesh net-

work of four switches, as shown in Figure 4.1. In (a), the shortest path connecting the

sources and destinations is congested, by a factor of 3 with a resulting total bandwidth of

1Gbps. However, by sending some traffic flows over non-shortest path links, as shown in

(b), the total throughput can be increased to 3Gbps.

H1

H2
H3

H4
H5

H6

S1

S2 S3

S4 H1

H2
H3

H4
H5

H6

S1

S3

S4

S2

1G link

(a) Throughput = 1Gbps (b) Throughput = 3Gbps

Figure 4.1. (a) Shortest, and (b) Non-shortest path routing

55

(2) Cost-effective commodity switch hardware: Direct networks in supercom-

puters rely on custom designed silicon that is expensive and topology dependent. Routing

is typically integrated with proprietary protocols in NICs and switches. Data center net-

works on the other hand are built using low cost commodity off-the-shelf switches [3,35].

So commodity Ethernet switch silicon must be enhanced to provide the necessary features

to support direct connect topologies in the data center while keeping costs low.

(3) Dynamic traffic management: Although shortest path routing is the main

roadblock to deploying direct networks, the static nature of ECMP style forwarding in

switches presents a challenge—even for indirect networks. Hashing flows on to paths,

oblivious to current link demands or flow rates can result in imbalance, significantly

reducing achieved throughput compared to innate network capacity [4].

There have been several recent proposals for dynamic traffic engineering in data

centers. Centralized approaches like Hedera [4] and MicroTE [17] advocate a central

fabric scheduler that periodically measures traffic demands, and computes good paths for

bandwidth intensive flows to maximize bandwidth utilization. However they have long

control loops that only react to changes in traffic at timescales on the order of hundreds

of milliseconds at best, i.e. they are only effective for long lived flows. Further, scaling

such centralized approaches to very large numbers of flows in large scale data centers

presents challenges in terms of switch state requirements. MPTCP [75] is a transport

layer solution that splits flows into subflows that take different paths through the network,

and modulates the rates of subflows based on congestion. However, in direct networks,

MPTCP requires many subflows to probe the different paths, making it impractical for

short flows. We illustrate this in Section 4.6.4.

(4) Decouple applications and routing: Direct connect networks in supercom-

puters tightly couple application development and routing, which requires application

developers to be concerned with workloads, routing for certain expected application

56

behaviors, etc. Data center workloads are much more dynamic, and developers often

cannot predict the composed behavior of many co-located applications. Handling routing

functionality entirely in the network significantly simplifies application development as

is done in data centers today.

4.2.2 Dahu Requirements and Design Decisions

(1) On-demand non-shortest path routing: Dahu should only enable non-

minimal paths on demand when shortest paths do not have sufficient capacity. Using

shorter paths by default results in fewer switch hops and likely lower end-to-end latency

for traffic. Dahu must achieve this while ensuring there are no persistent forwarding

loops.

(2) Dynamic traffic engineering: Dahu chooses to load balance traffic primarily

using local decisions in each switch which helps react quickly to changing traffic demands

and temporary hot-spots. In addition, it inter-operates with other routing and traffic

engineering schemes.

(3) Readily deployable: Any proposed changes to switch hardware should be

simple enough to be realizable with current technology, with minimal required switch

state. Switches should still make flow-level forwarding decisions—i.e., packets of a

particular flow should follow the same path through the network to the extent possible.

This avoids excessive packet reordering, which can have undesirable consequences for

TCP. Moving flows to alternate paths periodically at coarse time scales (e.g., of several

RTTs) is acceptable.

(4) Generic/Topology Independent: The switch hardware should be topology

independent and deployable in a variety of networks including indirect networks. Non-

shortest path routing is also beneficial in the case of Clos topologies which are left

asymmetric and imbalanced under failures.

57

(5) Fault tolerant: Failures must be handled gracefully, and re-routing of flows

upon failure should only affect a small subset of flows, so that the effect of failures

is proportional to the region of the network that has failed. To prevent traffic herds,

Dahu should not move many flows in the network around when a single path fails or is

congested. Rather, it should be possible to make finer-grained decisions and migrate a

smaller subset of flows to alternate paths.

Dahu achieves these targets through a combination of switch hardware and

software enhancements, which we describe in Sections 4.3 and 4.4 respectively.

4.3 Switch Hardware Primitives

Dahu proposes new hardware primitives which enable better ways of utilizing

the path diversity in direct connect topologies, and addresses some of the limitations of

ECMP.

Prefix	
 Port Group ID	
 Prefix Bitmap	

192.7.2.X	
 11	
 001100100100	

10.2.1.X	
 4	
 110110010010	

Routing Table	

DST: 10.2.1.5

H1

H2	

Hk	

1A. Prefix
Lookup	

1B. Hash
Pkt Header 	

<<

2. Egress
Port Lookup	

3. Find Egress
Port Bitmap	

Packet Header	

<<

<<

CMP

Priority	

Encoder 	

K:1
Mux	

Port
Group 4	

2	

7	

11	

11	

10	

5	

7	

12	

AND

AND

AND	

OR

4. Find Allowed
Egress Ports	

6. Forward on
Egress Port P	

P

CMP

CMP

<<

<<

<<

5. Find Egress Port
with Highest Priority	

1

2

k

Data Operations	

Table Lookup	

<<

<<

Shift left input	

 i by j bits	

Shift left ‘1’ 	

by i bits	

i

i

j

CMP
j = 0 if i = 0

j = 1 otherwise
i j

Figure 4.2. Datapath pipeline for packet forwarding in Dahu

58

4.3.1 Port Groups With Virtual Ports

ECMP spreads traffic over multiple equal-cost paths to a destination. Internally,

the switch must store state to track which set of ports can be used to reach the destination

prefix. A common mechanism is storing a list of egress ports in the routing table,

represented as a bitmap. Dahu augments this with a layer of indirection: each router

prefix points to a set of virtual ports, and each virtual port is mapped to a physical port.

In fact, the number of virtual ports can be much larger than the number of physical ports.

We define a port group as a collection of virtual ports mapped to their corresponding

physical ports (a many-to-one mapping). The routing table is modified to allow a pointer

to a port group for any destination prefix instead of a physical egress port. When multiple

egress choices are available for a particular destination prefix, the routing table entry

points to a port group.

When the switch receives a packet, it looks up the port group for the destination

prefix from the routing table. It computes a hash based on the packet headers, similar

to ECMP, and uses this to index into the port group to choose a virtual port. Finally, it

forwards the packet on the egress port to which the virtual port is mapped. This port

group mechanism adds one level of indirection in the switch output port lookup pipeline,

which we use to achieve better load balancing, and support for non-shortest network

paths.

In hardware, a port group is simply an array of integers. The integer at index i is

the egress port number to which virtual port i in that port group is mapped. Each port

group has a fixed number of virtual ports. larger than the number of egress ports in the

Multiple destination prefixes in the routing table may point to the same port group. For

the rest of this chapter, the term member port of a port group is used to refer to a physical

port which has some virtual port in the port group mapped to it.

59

The virtual port to egress port mapping provides an abstraction for dynamically

migrating traffic from one egress port to another within any port group. Each virtual

port is mapped to exactly one egress port at any time, but this mapping can be changed

dynamically. A key advantage of the indirection layer is that when a virtual port is

remapped, only the flows which hash to that virtual port are migrated to other egress

ports. Other flows remain on their existing paths and their packets don’t get re-ordered.

All flows that map to a virtual port can only be remapped as a group to another egress

port. Thus, virtual ports dictate the granularity of traffic engineering, with more virtual

ports providing finer grained control over traffic. We propose that each port group have a

relatively large number of virtual ports—on the order of 1,000 for high-radix switches

with 64-128 physical ports. That means each virtual port is responsible for an average

of 0.1% or less of the total traffic to the port group. If required, the routing table can be

augmented with more fine grained forwarding entries.

Each port group keeps a set of counters corresponding to each member port

indicating how much traffic the port group has forwarded to that port. While having a

traffic counter for each virtual port provides fine grained state, it comes at a higher cost for

two reasons: (1) The memory required to store the counters is fairly large. For example,

a switch with 64 port groups, 1,024 virtual ports per port group, and 64 bit traffic counters

needs 512KB of on-chip memory just for these port group counters. (2) Reading all

65,536 counters from hardware to switch software would take a long time, increasing the

reaction time of traffic engineering schemes that use all these counters for computations.

Dahu uses the port group mechanism and associated counters to implement a novel load

balancing scheme described in Section 4.4.

60

4.3.2 Allowed Port Bitmaps

Port groups enable the use of multiple egress port choices for any destination

prefix. However, it is sometimes useful to have many egress ports in a port group, but use

only a subset of them for forwarding traffic to a particular prefix. One reason to do this is

to avoid forwarding on failed egress ports. Consider two prefixes in the routing table F1

and F2 both of which point to port group G1 which has member egress ports P1,P2,P3,P4.

Suppose a link fails and egress port P4 cannot be used to reach prefix F1, whereas all

member ports can still be used to reach F2. Now, one option is to create another port

group G2 with member ports P1,P2 and P3 only, for prefix F1. This can quickly result

in the creation of many port groups for a large network which might experience many

failures at once. We propose a more scalable approach where we continue to use the

existing port group, but restrict the subset of member ports which are used for forwarding

traffic to a particular destination.

For each destination prefix in the routing table, we store an allowed port bitmap,

which indicates the set of egress ports that are allowed to be used to reach the prefix. This

bitmap is only used when the routing table entry points to a port group. The bitmap is as

wide as the number of egress ports, and only the bits corresponding to the allowed egress

ports for the prefix are set. One way to restrict forwarding to the allowed egress ports

is to compute a hash for the packet and check if the corresponding port group virtual

port maps to an allowed egress port. If not, we compute another hash for the packet and

repeat until we find an allowed egress port.

To pick an allowed port efficiently, we propose a parallel scheme where the switch

computes 16 different hash functions for the packet in parallel. The first valid allowed

egress port among the hashed choices is used for forwarding. In case none of the 16 hash

functions picked an allowed egress port, we generate another set of 16 hash values for the

61

packet and retry. This is repeated some fixed number of times (say 2) to bound output port

lookup latency. If an allowed egress port is still not found, we just fall back to randomly

picking one of the allowed egress ports, i.e. we ignore the port group mechanism for this

packet and just hash it on to one of the allowed egress ports directly. We explore other

uses of the allowed port bitmap in Section 4.4.2.

Figure 4.2 illustrates the egress port lookup pipeline incorporating both port

groups and allowed egress port mechanisms. The switch supports a fixed number of

allowed port bitmaps for each prefix and has a selector field to indicate which bitmap

should be used. Dahu uses an allow all bitmap which is a hardwired default bitmap Ball

where all bits are set, i.e. all member ports of the port group are allowed. The shortest

path bitmap Bshort is an always available bitmap that corresponds to the set of shortest

path egress ports to reach the particular destination prefix. Unlike the Ball bitmap, Bshort

is not in-built and has to be updated by the switch control logic if port group forwarding

is used for the prefix. Its use is described in Sections 4.3.3 and 4.4.2. There can be other

bitmaps as well for further restricting the set of egress ports for a destination prefix based

on other constraints.

4.3.3 Eliminating Forwarding Loops

Dahu uses non-shortest path forwarding to avoid congestion hot-spots when

possible. The term derouting is used to refer to a non-minimal forwarding choice by a

switch. The number of times a particular packet has been derouted (routed on an egress

port not along shortest paths) is referred to as the derouting count. An immediate concern

with derouting is that it can result in forwarding loops. To prevent persistent forwarding

loops, Dahu augments network packets with a 4-bit field in the IP header to store the

derouting count. Switches increment this field only if they choose a non-minimal route

for the packet. Servers set this field to zero when they transmit traffic. In practice, the

62

derouting count need not be a new header field, e.g., part of the TTL field or an IP option

may be used instead.

When a switch receives a packet, if the derouting count in the packet header has

reached a maximum threshold, then the switch forwards the packet along shortest paths

only. This is enforced using the Bshort allowed port bitmap for the destination prefix

described earlier. The derouting count is also used while computing the packet hash. If

a packet loops through the network and revisits a switch, its derouting count will have

changed. The resulting change to the hash value will likely forward the packet along a

different path to the destination. Each switch also ensures that a packet is not forwarded

back on the ingress port that it arrived on. Further, in practice, only a few deroutings are

required to achieve benefits from non-minimal routing and the derouting count threshold

for the network can be configured by the administrator as appropriate. These factors

ensure that any loops that occur due to non-minimal routing are infrequent and don’t

hinder performance.

As with current distributed routing protocols, transient loops may occur in certain

failure scenarios. Dahu uses standard IP TTL defense mechanisms to ensure that packets

eventually get dropped if there are loops during routing convergence.

4.4 Switch software

Now we look at how Dahu’s hardware primitives can more efficiently utilize the

network’s available capacity. We describe how to leverage non-minimal paths, and then

look at dynamic traffic engineering to address local hash imbalances in switches. These

techniques rely on Dahu’s hardware primitives, but are independent and may be deployed

separately. We begin with some background on HyperX topology.

63

4.4.1 Background on HyperX Topology

We use the HyperX topology, a direct connect network for detailing how Dahu’s

hardware primitives are used, and for evaluating the techniques. This section summarizes

the HyperX topology and related terminology [1].

HyperX is an L-dimensional direct network with many paths of varying length

between any pair of servers. It can be viewed as a generalization of the HyperCube

topology. In an L-dimensional HyperCube, each switch’s position can be denoted by a

vector of L coordinates, each coordinate being 0 or 1. Any two switches that differ in

their coordinate vectors in exactly one dimension are connected by a bidirectional link.

Each switch has some fixed number T of servers attached to it. E.g., a regular cube is a

3-dimensional HyperCube with 8 switches and 12 edges.

1

2

3

4

1 Shortest path

2 4 3 Non-shortest paths
(deroute count = 1)

Ingress Switch Egress Switch

Dimension 1

Dimension 2

0,0 1,0 2,0

2,1

2,2

1,1 0,1

0,2 1,2

Figure 4.3. HyperX topology (L=2, S=3). Only switches and the links between them are
shown for clarity. The T servers connected to each switch are not shown in the figure.
The position of the switches is shown on a 2-dimensional lattice. The paths between
switches (0, 0) and (2, 0) with at most 1 derouting are shown. Ingress switch (0, 0) and

the egress switch (2, 0) are offset along dimension 1 and aligned along dimension 2.

A regular (L, S, T) HyperX, is a generalization of the HyperCube where the

switch coordinates in each dimension are integers in the range [0, S-1] rather than just 0

64

or 1. Again, any two switches whose coordinate vectors differ in only one dimension are

directly connected. Figure 4.3 shows an example of a 2-dimensional HyperX network

with the switches overlaid on a 2-D lattice. An offset dimension for a pair of switches

is one in which their coordinates differ. Similarly, an aligned dimension for a pair of

switches is one in which their coordinates are the same. Some examples of HyperX

topologies are: (1) A HyperCube is a regular HyperX with S=2, and (2) An L=1 HyperX

is just a fully connected graph.

4.4.2 Non-Minimal Routing

As described earlier, ECMP constrains traffic routes to the set of shortest paths

between any pair of switches. While this keeps path lengths low, it can also impose

artificial constraints on available bandwidth. Direct connect networks like HyperX have

many paths of differing length between any pair of nodes. In a HyperX switch Ss, there

are three classes of egress port choices to reach any destination switch Sd .

1. Set of shortest path egress ports to reach Sd . The size of the set is equal to the

number of offset dimensions, between the Ss and Sd , i.e. dimensions in which the

switch coordinates of Ss and Sd differ. In Figure 4.3, the egress port on switch (0,

0) along path 1 is a shortest path egress port.

2. Set of egress ports connected to neighbors along offset dimensions excluding the

shortest path egress ports. Each of these neighbors is at the same distance from Sd ,

equal to the shortest path distance from Ss to Sd . In Figure 4.3, the egress port on

switch (0, 0) along path 2 is in this set.

3. All the remaining ports that are connected to other switches. The egress ports

which connect to neighbors along dimensions already aligned with Sd are members

of this class. Each of these neighbors is one additional hop away from Sd as

65

compared to the shortest path distance from Ss to Sd . In Figure 4.3, the egress ports

on switch (0,0) along paths 3 and 4 are in this set.

Dahu’s port group mechanism and allowed port bitmaps enable switches to

efficiently route along non-minimal paths. The number of shortest and non-minimal path

egress ports for a single destination prefix is not limited artificially, unlike n-way ECMP.

The virtual port to physical port mapping, and allowed port bitmaps control how traffic

gets forwarded onto shortest paths and non-minimal paths. We now look in more detail

at how to enable non-minimal routing in direct connect networks.

Space saving techniques

A strawman solution for non-minimal routing is to create one port group for each

destination prefix. For each prefix’s port group, we make all appropriate physical ports

(both along shortest paths and non-minimal paths to the destination) members of the port

group. When a switch receives a packet, it looks up the port group for the destination

prefix, and hashes the packet onto one of the virtual ports in the port group. Use of some

of the corresponding egress ports results in non-minimal forwarding.

One characteristic of the HyperX topology is that in any source switch, the set

of shortest path egress ports is different for each destination switch. These ports must

be stored separately for each destination switch, thereby requiring a separate destination

prefix and a separate port group in case of the strawman solution. For a large HyperX

network, the corresponding switch memory overhead would be impractical. For example,

a network with 2,048 128-port switches, and 1,024 virtual ports per port group would

need 2 MB of on-chip SRAM just to store the port group mapping (excluding counters).

Thus, we seek to aggregate more prefixes to share port groups. We now describe some

techniques to use a small number of port groups to enable the use of non-minimal paths,

while using only shortest paths whenever possible.

66

In a HyperX switch, any egress port that is connected to another switch can be

used to reach any destination. However not all egress ports would result in paths of equal

length. Let us assume that we only use a single port group PGall , say with 1,024 virtual

ports. All physical ports in the switch connected to other switches are members of the

port group PGall . If we simply used this port group for all prefixes in the routing table,

that would enable non-minimal forwarding for all destinations.

Dahu uses the allowed port bitmap hardware primitive to restrict forwarding to

shorter paths when possible. If Dahu determines that only shortest paths need to be used

for a particular destination prefix, the Bshort allowed port bitmap for the prefix is used

for forwarding, even when the derouting count has not reached the maximum threshold.

Otherwise, the allowed port bitmap is expanded to also include egress ports that would

result in one extra hop being used and so on for longer paths. For HyperX, there are only

three classes of egress port choices by distance to destination as described earlier; in

our basic non-minimal routing scheme, we either restrict forwarding to the shortest path

ports or allow all paths to the destination (all member ports of PGall).

1.  Compute aggregate utilization (Agg) and capacity
(Cap) for all egress ports in the Bshort bitmap

2.  If Agg / Cap < Threshold,
Set allowed ports to Bshort (there is sufficient
capacity along shortest paths for this prefix)

Else, set allowed ports to Ball.

Figure 4.4. Restricting non-minimal forwarding

We now look at the question of how Dahu determines when additional longer

paths have to be enabled for a destination prefix to meet traffic demands. Switches already

have port counters for the total traffic transmitted by each physical port. Periodically

(e.g., every 10ms), the switch software reads all egress port counters, iterates over each

destination prefix, and performs the steps shown in Figure 4.4 to enable non-minimal

67

paths based on current utilization. It is straightforward to extend this technique to

progressively enable paths of increasing lengths instead of all non-minimal paths at once.

In summary, we have a complete mechanism for forwarding traffic along shorter paths

whenever possible, using just a single port group and enabling non-minimal routing

whenever required for capacity reasons.

Constrained non-minimal routing

As described earlier, in a HyperX network, each switch has three classes of

egress port choices to reach any destination. Based on this, Dahu defines a constrained

routing scheme as follows—a switch can forward a packet only to neighbors along offset

dimensions. If a packet is allowed to use non-minimal routing at a switch, it can only be

derouted along already offset dimensions. Once a dimension is aligned, we do not further

deroute the packet along that dimension. After each forwarding choice along the path

taken by a packet, it either moves closer to the destination or stays at the same distance

from the destination. We call this scheme Dahu constrained routing. For this technique,

we create one port group for each possible set of dimensions in which the switch is offset

from the destination switch. This uses 2L port groups where L, the number of dimensions

is usually small, e.g., 3–5. This allows migrating groups of flows between physical ports

at an even smaller granularity than with a single port group.

This technique is largely inspired by Dimensionally Adaptive, Load balanced

(DAL) routing [1]. However, there are some key differences. DAL uses per-packet

load balancing, whereas Dahu uses flow level hashing to reduce TCP reordering. DAL

allows at most one derouting in each offset dimension, but Dahu allows any number of

deroutings along offset dimensions until the derouting threshold is reached.

68

4.4.3 Traffic Load Balancing

Per-packet uniform distribution of traffic across available paths from a source to

destination can theoretically lead to very good network utilization in some symmetric

topologies such as Fat-trees. But this is not used in practice due to the effects of packet

reordering and faults on the transport protocol. ECMP tries to spread traffic uniformly

across shortest length paths at the flow level instead. But due to its static nature, there

can be local hash imbalances. Dahu presents a simple load balancing scheme using local

information at each switch to spread traffic more uniformly.

Each Dahu switch performs load balancing with the objective of balancing

or equalizing the aggregate load on each egress port. This also balances bandwidth

headroom on each egress port, so TCP flow rates can grow. This simplifies our design,

and enables us to avoid more complex demand estimation approaches. When multiple

egress port choices are available, we can remap virtual ports between physical ports, thus

getting fine grained control over traffic. Intuitively, in any port group, the number of

virtual ports that map to any member port is a measure of the fraction of traffic from

the port group that gets forwarded through that member port. We now describe the

constraints and assumptions under which we load balance traffic at each switch in the

network.

Design Considerations

Periodically, each switch uses local information to rebalance traffic. This allows

the switch to react quickly to changes in traffic demand and rebalance port groups more

frequently than a centralized approach or one that requires information from peers. Note

that this design decision is not fundamental–certainly virtual port mappings can be

updated through other approaches. For different topologies, more advanced schemes may

be required to achieve global optimality such as through centralized schemes.

69

We assume that each physical port might also have some traffic that is not re-

routable. So Dahu’s local load balancing scheme is limited to moving the remainder

of traffic within port groups. Dahu’s techniques can inter-operate with other traffic

engineering approaches. For example, a centralized controller can make globally optimal

decisions for placing elephant flows on efficient paths in the network [4], or higher layer

adaptive schemes like MPTCP can direct more traffic onto uncongested paths. Dahu’s

heuristic corrects local hashing inefficiencies and can make quick local decisions within

a few milliseconds to avoid temporary congestion. This can be complemented by a

centralized or alternate approach that achieves global optimality over longer time scales

of few hundreds of milliseconds.

Control Loop Overview

Every Dahu switch periodically rebalances the aggregate traffic on its port groups

once each epoch (e.g., every 10ms). At the end of each rebalancing epoch, the switch

performs the following 3 step process:

Step 1: Measure current load: The switch collects the following local informa-

tion from hardware counters: (1a) for each port group, the amount of traffic that the port

group sends to each of the member ports, and (1b) for each egress port, the aggregate

bandwidth used on the port.

Step 2: Compute balanced allocation: The switch computes a balanced traffic

allocation for port groups, i.e. the amount of traffic each port group should send in a

balanced setup to each of its member ports. We describe two ways of computing this in

Sections 4.4.4 and 4.4.5.

Step 3: Remap port groups: The switch then determines which virtual ports in

each port group must be remapped to other member ports in order to achieve a balanced

traffic allocation, and changes the mapping accordingly. We have the current port group

70

traffic matrix (measured) and the computed balanced traffic allocation matrix for each

port group to it member egress ports.

As mentioned in Section 4.3.1, a switch only maintains counters for the total

traffic from a port group to each of its member ports. We treat all virtual ports that map

to a particular member port as equals and use port group counters to compute the average

traffic that each of the virtual ports is responsible for. Then, we remap an appropriate

number of virtual ports to other member ports depending on the intended traffic allocation

matrix using a first-fit heuristic. In general, this remapping problem is similar to bin

packing.

0 1 2 3

0 4 1 2 --

1 -- 1 -- 2

BG 2 2 2 0

Agg 6 4 4 2

PG
Port

Initial Port Group (PG)
Utilizations

Step 1:
Balancing Port Group 0

Step 2:
Balancing Port Group 1

Step 3:
Balancing Port Group 0 (again)

0 1 2 3

0 2 ⅔ 1 ⅔ 2 ⅔ --

1 -- 1 -- 2

BG 2 2 2 0

Agg 4 ⅔ 4 ⅔ 4 ⅔ 2

PG
Port

0 1 2 3

0 2 ⅔ 1 ⅔ 2 ⅔ --

1 -- 0 -- 3

BG 2 2 2 0

Agg 4 ⅔ 3 ⅔ 4 ⅔ 3

PG
Port 0 1 2 3

0 2 ⅓ 2 ⅓ 2 ⅓ --

1 -- 0 -- 3

BG 2 2 2 0

Agg 4 ⅓ 4 ⅓ 4 ⅓ 3

PG
Port

Figure 4.5. Port group rebalancing algorithm. Egress ports that are not a member of
the port group are indicated by ‘—’. The last row of the matrix represents the aggregate
traffic (Agg) on the member ports (from port counters). The row indicating background

traffic (BG) is added for clarity and is not directly measured by Dahu.

71

4.4.4 Load Balancing Algorithm

We now describe an algorithm for computing a balanced traffic allocation on

egress ports. Based on the measured traffic, the switch generates a port group traffic

matrix where the rows represent port groups and columns represent egress ports in the

switch (see Figure 4.5). The elements in a row represent egress ports and the amount of

traffic (bandwidth) that the port group is currently forwarding to those egress ports. If

an egress port is not a member of the port group corresponding to the matrix row, then

the respective matrix element is zeroed. Additionally, the Aggregate utilization row of

elements stores the total bandwidth utilization on each egress port. This is the bandwidth

based on the egress port counter, and accounts for traffic forwarded by any of the port

groups, as well as background traffic on the port that is not re-routable using port groups,

such as elephant flows pinned to the path by Hedera.

We first pick a port group in the matrix and try to balance the aggregate traffic

for each of the member ports by moving traffic from this port group to different member

ports where possible. To do this, Dahu computes the average aggregate utilization of

all member ports of the port group. Then, it reassigns the traffic for that port group to

equalize the aggregate traffic for the member ports to the extent possible. If a member

port’s aggregate traffic exceeds the average across all members, and the member port

receives some traffic from this port group then we reassign the traffic to other member

ports as appropriate. Dahu performs this operation for all port groups and repeats until

convergence. To ensure convergence, we terminate the algorithm when subsequent

iterations offload less than a small constant threshold δ . Figure 4.5 shows the steps in the

algorithm. Host facing ports in the switch can be ignored when executing this algorithm.

72

4.4.5 Load Balancing Heuristic

The load balancing algorithm considers all physical ports and port groups in

the switch and aims to balance the aggregate load on all of them to the extent possible.

However, the algorithm may take many steps to converge for a large switch with many

ports and port groups. We now describe a quick and practical heuristic to compute the

balanced traffic allocation. The key idea behind the heuristic is to offload traffic from the

highest loaded port to the least loaded port with which it shares membership in any of

the port group, instead of trying to balance the aggregate load on all ports. By running

the heuristic quickly, the switch can balance the port groups at time scales on the order

of a few milliseconds.

1.  Sort the physical ports by their aggregate
utilization

2.  Offload traffic from the highest loaded port H1 to
the least loaded port with which it shares
membership in any port group

3.  Continue offloading traffic from H1 to the least
loaded ports in order until they are completely
balanced or H1 runs out of lesser loaded ports to
offload to.

Figure 4.6. Load balancing heuristic

The heuristic, as described in Figure 4.6, is repeated for some fixed number R (say

16) of highest loaded switch ports, and has a low runtime of around 1ms. The runtime

depends on the number of physical ports and port groups in the switch and is independent

of the number of flows in the system. Our research grade implementation of the heuristic

for our simulator running on a general purpose x86 CPU showed average runtimes of

few 10’s of microseconds to 0.5 milliseconds, even for large networks with over 130,000

servers. We believe an optimized version targeted at a switch ARM or PPC processor

73

can run within 1ms with a small DRAM requirement of under 10 MB. In the rest of this

chapter, we employ this heuristic for load balancing.

4.4.6 Fault Tolerance

Dahu relies on link-level techniques for fault detection, and uses existing protocols

to propagate fault updates through the network. If a particular egress link or physical

port Pf on the switch is down, the virtual ports in each port group which map to Pf

are remapped to other member ports of the respective port groups. The remapping is

performed by switch software and the actual policy could be as simple as redistributing

the virtual ports uniformly to other egress ports or something more complicated.

On the other hand, when the switch receives fault notifications from the rest of

the network, a specific egress port Pf may have to be disabled for only some destination

prefixes because of downstream faults. We use the allowed port bitmaps technique

described in Section 4.3.2 to just disable Pf for specific prefixes. The virtual port to

physical port mappings in the port groups are left unchanged. In both scenarios, the only

flows migrated to other egress ports are ones that were earlier mapped to the failed egress

port Pf . When a physical port comes up, some virtual ports automatically get mapped to

it the next time port groups are balanced.

4.5 Deployability

Deployability has been an important goal during the design of Dahu. In this

section, we look at two primary requirements for adding Dahu support to switches: the

logic to implement the functionality, and the memory requirements of the data structures.

To our knowledge, existing switch chips do not provide Dahu-like explicit hard-

ware support for non-minimal routing in conjunction with dynamic traffic engineering.

However, there are some similar efforts including Broadcom’s resilient hashing fea-

74

ture [21] in their modern switch chips which is targeted at handling link failure and live

topology updates, and the Group Table feature in the recent OpenFlow 1.1 Specifica-

tion [69] which uses a layer of indirection in the switch datapath for multipath support.

The increasing popularity of OpenFlow, software defined networks [49], and custom

computing in the control plane (via embedded ARM style processors in modern switch

silicon) indicates a new trend that we can leverage where large data centers operators are

adopting the idea of a programmable control plane for the switches. The need for switch

hardware modification to support customizable control plane for switches is no longer a

barrier to innovation, as indicated by the deployment of switches with custom hardware

by companies like Google [38].

To implement the hardware logic, we also need sufficient memory in the chip

to support the state requirements for Dahu functionality. We now briefly estimate this

overhead. Consider a large Dahu switch with 128 physical ports, 64 port groups with

1,024 virtual ports each, 16,384 prefixes in the routing table, and support for up to two

different allowed port bitmaps for each prefix. The extra state required for all of Dahu’s

features is a modest 640 KB. Of this, 64 KB each are required for storing the virtual to

physical port mappings for all the port groups, and the port group counters per egress port.

512 KB is required for storing two bitmaps for each destination prefix. A smaller 64 port

switch would only need a total of 352 KB for a similar number of port groups and virtual

ports. This memory may come at the expense of additional packet buffers (typically

around 10 MB); however, recent trends in data center congestion management [7, 8]

indicate that trading a small amount of buffer memory for more adaptive routing may be

worthwhile.

75

4.6 Evaluation

We evaluated Dahu through flow-level simulations on both HyperX and Fat-tree

topologies. Overall, our results show:

1. 10-50% throughput improvement in Fat-tree networks, and 250-500% improvement

in HyperX networks compared to ECMP.

2. With an increase of only a single network hop, Dahu achieves significant improve-

ments in throughput.

3. Dahu scales to large networks of over 130,000 nodes.

4. Dahu enables MPTCP to leverage non-shortest paths and achieve higher throughput

with fewer subflows.

The evaluation seeks to provide an understanding of Dahu’s effect on throughput

and hop count in different network topologies (HyperX and Fat-tree) under different

traffic patterns. We first present a description of the simulator that we used for our

experiments and the methodology for validating its accuracy. We simulate HyperX

networks, large and small, and measure throughput as well as expected hop count for

different workloads. We then move on to evaluate Dahu on an 8,192 host Fat-tree network

using two communication patterns. We conclude this section by evaluating how MPTCP

benefits from Dahu through the use of non-shortest paths.

4.6.1 Simulator

We evaluated Dahu using a flow level network simulator that models the per-

formance of TCP flows. We used the flow level simulator from Hedera [4], and added

support for decentralized routing in each switch, port groups, allowed port bitmaps, and

the load balancing heuristic. The Dahu-augmented Hedera simulator evaluates the AIMD

76

behavior of TCP flow bandwidths to calculate the total throughput achieved by flows in

the network.

We built a workload generator that generates open-loop input traffic profiles for

the simulator. It creates traffic profiles with different distributions of flow inter-arrival

times and flow sizes. This allows us to evaluate Dahu’s performance over a wide range of

traffic patterns, including those based on existing literature [16, 35]. Modeling the AIMD

behavior of TCP flow bandwidth instead of per-packet behavior means that the simulator

does not model TCP timeouts, retransmits, switch buffer occupancies and queuing delay

in the network. The simulator only models unidirectional TCP data flows but not the

reverse flow for ACKs. We believe this is justified, since the bandwidth consumed by

ACKs is quite negligible compared to data. We chose to make these trade-offs in the

simulator to evaluate at a large scale—over 130K servers, which would not have been

possible otherwise.

We simulated five seconds of traffic in each experiment, and each switch rebal-

anced port groups (16 highest loaded ports) and recomputed prefix bitmaps every 10ms.

For non-shortest path forwarding, switches used 80% of available capacity along shortest

paths to the destination as the threshold utilization to dynamically enable non-shortest

paths. These values were chosen based on empirical measurements.

0 20 40 60 80 100 120 140
Network Load(# Switches sending traffic)

0

200

400

600

800

1000

1200

1400

1600

1800

B/
W

 (G
bp

s)

Theoretical max
Dahu
C-Dahu
Theoretical ECMP
Simulated ECMP

Figure 4.7. Simulator throughput vs. theoretical maximum

77

Simulator Validation: To validate the throughput numbers reported by the

simulator, we generated a range of traffic profiles with a large number of long-lived

flows between random hosts in a (L=3, S=8, T =48) HyperX network with 1Gbps links;

(L, S, T defined in Section 4.4.1). We computed the theoretical maximum bandwidth

achievable for the traffic patterns by formulating maximum multi-commodity network

flow problems and solving them using the CPLEX [25] linear program solver—both for

shortest path routing and non-minimal routing. We also ran our simulator on the same

traffic profile.

As shown in Figure 4.7 the aggregate throughput reported by the simulator was

within the theoretical maximum for all the traffic patterns that we validated. In case of

shortest path forwarding, the theoretical and simulator numbers matched almost perfectly

indicating that the ECMP implementation was valid. With non-minimal forwarding,

the simulator’s performance is reasonably close to the theoretical limit. Note that the

multi-commodity flow problem simply optimizes for the total network utilization whereas

the simulator and TCP in general, also take fairness into account.

In addition, we also explicitly computed the max-min fair flow bandwidths for

these traffic profiles using the water-filling algorithm [18]. We compared the resulting

aggregate throughput to those reported by the simulator. For all evaluated traffic patterns,

the simulator throughput was within 10% of those reported by the max-min validator.

This small difference is because the TCP’s AIMD congestion control mechanism only

yields approximate max-min fairness in flow bandwidths whereas the validator computes

a perfectly max-min fair distribution.

4.6.2 HyperX Networks

We first evaluate Dahu with HyperX networks which have many paths of differing

lengths between any source and destination. Dahu’s non-shortest path We simulate a

78

(L=3, S=14, T =48) HyperX network with 1Gbps links, as described in [1]. This models

a large data center with 131,712 servers, interconnected by 2,744 switches, and an

oversubscription ratio of 1:8.

We seek to measure how Dahu’s non-minimal routing and load balancing affect

performance as we vary traffic patterns, the maximum derouting threshold, and non-

minimal routing scheme (constrained or not). We run simulations with Clique and Mixed

traffic patterns (described next), and compare the throughput, average hop count and link

utilizations for Dahu and ECMP. In the graphs, Dahu-n refers to Dahu routing with at

most n deroutings. C-Dahu-n refers to the similar Constrained Dahu routing variant.

Clique Traffic Pattern

A Clique is a subset of switches and associated hosts that communicate among

themselves; each host communicates with every other host in its clique over time. This

represents distributed jobs in a data center which are usually run on a subset of the server

pool. A typical job runs on a few racks of servers. There could be multiple cliques (or

jobs) running in different parts of the network. We parameterize this traffic pattern by i)

clique size, the number of switches in the clique, and ii) total number of cliques in the

network. In this experiment, we vary the total number of cliques from 64 to 768, keeping

the clique size fixed at 2 switches (96 servers). Each source switch in a clique generates

18Gbps of traffic with 1.5 MB average flow size.

Bandwidth: Figure 4.8 shows the bandwidth gains with Dahu relative to ECMP

as we vary the number of communicating cliques. Dahu offers substantial gains of

400-500% over ECMP. The performance gain is highest with a smaller number of cliques,

showing that indeed derouting and non-shortest path forwarding can effectively take

advantage of excess bandwidth in HyperX networks. This validates a major goal of this

work, which is improving the statistical multiplexing of bandwidth in direct network

79

64 128 256 512 768
Number of Cliques

0

100

200

300

400

500

600

700

%
 G

ai
n

in
 b

/w
 o

ve
r E

CM
P

Dahu-1
C-Dahu-1

Dahu-4
C-Dahu-4

Figure 4.8. Throughput gain with Clique traffic pattern

topologies. As the number of cliques increases, the bandwidth slack in the network

decreases, and the relative benefit of non-minimal routing comes down to around 250%.

Dahu and constrained Dahu have similar performance for the same derouting threshold.

We further find that a large derouting threshold provides larger benefit with less

load, since there are many utilized on average, bandwidth slack reduces, and a derouting

threshold of one starts performing better.

0

2

4

6

8

10

Av
g

Ho
p

Co
un

t

ECMP
Dahu-1
C-Dahu-1

Dahu-4
C-Dahu-4

Figure 4.9. Average hop count with Clique traffic pattern

Hop count: Beyond raw throughput, latency in an important performance metric

that is related to network hop count. Figure 4.9 shows the average hop count for each

80

routing scheme. Dahu delivers significantly higher bandwidth with a small increase in

average hop count. Average hop count increases with increase in derouting threshold.

For smaller derouting threshold, the hop count is similar to that of ECMP while still

achieving most of the bandwidth improvements of non-minimal routing. Note that the

small error bars indicate that the average hop count is similar while varying the number

of cliques.

0.0 0.2 0.4 0.6 0.8 1.0
CDF

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 L
in

k
ut

ili
za

tio
n

ECMP
Dahu-1
C-Dahu-1

Dahu-4
C-Dahu-4

Figure 4.10. Link utilization with Clique traffic pattern (number of cliques = 512)

Link utilization: Figure 4.10 shows the CDF of inter-switch link utilizations

for ECMP and Dahu for the experiment with 512 cliques. With shortest path routing,

90% of the links have zero utilization, whereas Dahu achieves its bandwidth gains by

utilizing available capacity on additional links in the network. Also, we see that a single

derouting can achieve most of the overall bandwidth gains while consuming bandwidth

on significantly fewer links in the network thereby sparing network capacity for more

traffic.

81

0 1 2 3 4 5
Time (sec)

0

2

4

6

8

10

12

14

B/
W

 x
 1

00
0

(G
bp

s)

ECMP
C-Dahu
Dahu

(a) Load = 4.5Gbps/switch

0 1 2 3 4 5
Time (sec)

0

2

4

6

8

10

12

14

B/
W

 x
 1

00
0

(G
bp

s)

ECMP
C-Dahu
Dahu

(b) Load = 17.5Gbps/switch

0 1 2 3 4 5
Time (sec)

0

2

4

6

8

10

12

14

B/
W

 x
 1

00
0

(G
bp

s)

ECMP
C-Dahu
Dahu

(c) Load = 33.5Gbps/switch

Figure 4.11. Dahu performance with Mixed Traffic Pattern

82

Mixed Traffic Pattern

The “mixed traffic pattern” represents an environment with a few hot racks that

send lot of traffic, representing jobs like data backup. For this traffic pattern, we simulate

50 cliques with 10 switches in each. Every switch acts as a network hot-spot and has

flows to other members of is varied from 3Gbps to 32Gbps. We also generate random

all-to-all traffic between all the hosts in the network. This background traffic creates an

additional load of 1.5Gbps per source switch with average flow size of 200 KB.

Figure 4.11 shows that for low load levels (4.5Gbps total load per switch) ECMP

paths are sufficient to fulfill demand. As expected, total bandwidth achieved is same for

both ECMP and Dahu. However, at high load (17.5Gbps and 33.5Gbps per switch) Dahu

performs significantly better than ECMP by utilizing available slack bandwidth.

4.6.3 Fat-Tree Networks

To illustrate Dahu’s generality, we evaluate it in the context of a Fat-tree topology.

Fat-trees, unlike HyperX, have a large number of shortest paths between a source and

destination, so this evaluation focuses on Dahu’s load balancing behavior, rather than

its use of non-shortest paths. We compare Dahu with ECMP, with hosts communicating

over long lived flows in a k = 32 Fat-tree (8,192 hosts). We consider these traffic patterns:

(1) Stride: With n total hosts and stride length x, each host i sends traffic to host (i + x)

mod n. (2) Random: Each host communicates with another randomly chosen destination

host in the network. To study the effect of varying overall network load, we pick a subset

of edge switches that send traffic to others and vary the number of hosts on each of these

edge switches that originate traffic.

Figure 4.12 shows that Dahu achieves close to 50% improvement with stride

traffic patterns. The load balancing heuristic local hash imbalances and improves total

throughput. For random traffic patterns, Dahu outperforms ECMP by 10-20%. Overall,

83

Stride
16

Stride
256

Rnd
10%
load

Rnd
20%
load

Rnd
30%
load

Rnd
40%
load

Rnd
60%
load

Rnd
75%
load

0

10

20

30

40

50

%
G

a
in

 i
n
 b

/w
 o

v
e
r

E
C

M
P

Dahu

Figure 4.12. Throughput gain for k = 32 Fat-tree with Stride and Random (Rnd) traffic
patterns

Dahu is better able to utilize network links in Fat-tree networks than ECMP, even when

only shortest-path links are used.

4.6.4 MPTCP in HyperX Networks

MPTCP is a recent host-based transport layer solution for traffic engineering [75].

MPTCP relies on splitting each flow into multiple subflows that take different paths

through the network, and modulates the amount of data transmitted on each subflow based

on congestion, thus improving the network utilization. In this section, we evaluate how

MPTCP benefits from Dahu non-shortest path routing, and the additional improvements

achieved using Dahu dynamic load balancing.

We extended the htsim packet level simulator [39] (used to evaluate MPTCP

in [75]), to simulate a (L=3, S=10, T =20) HyperX network with 100 Mbps links. This

network has 1000 switches, 20,000 hosts and an oversubscription ratio of 1:4. We chose a

smaller topology and lower link speed due to the higher computational overhead of packet

level simulations. We generated a random permutation matrix (without replacement), and

selected a subset of source-destination pairs to create long lived flows, with 50% of total

hosts sending traffic. To evaluate the impact of non-shortest path routing, we ran MPTCP

84

 0

 100

 200

 300

 400

 500

 600

 700

 800

8 16 64 128

T
h

ro
u

g
h

p
u

t
(i
n

 G
b

p
s
)

Number of subflows

MPTCP-ECMP
MPTCP-1Der

Dahu

Figure 4.13. MPTCP-ECMP, MPTCP-1Der, and Dahu performance for L=3, S=10,
T =20 HyperX topology. Results obtained from packet level simulations for MPTCP and

flow level simulations for Dahu.

under two scenarios: (1) ECMP style shortest-path routing (MPTCP-ECMP), and (2)

Dahu-style non-shortest path routing with one allowed deroute but no load balancing

(MPTCP-1Der). To understand the additional impact of Dahu’s load balancing, we also

ran the Dahu simulator on the same topology and traffic pattern by treating each subflow

as an independent TCP flow.

Since we used a packet level simulator for MPTCP and a flow level simulator for

Dahu, we also validated that the two simulators reported comparable throughput results

under identical scenarios [74, pg.12].

Figure 4.13 shows that Dahu’s non-shortest path routing unlocks 300% more

bandwidth compared to ECMP. With MPTCP-1Der, throughput increases with the number

of subflows, indicating that in order to effectively leverage the large path diversity in

direct connect networks, MPTCP needs to generate a large number of subflows, making it

unsuitable for short flows. Dahu, on the other hand, is able to achieve a similar throughput

with 8 subflows that MPTCP-1Der achieves with 64 or 128 subflows, and can also handle

short flows with efficient hash rebalancing. At the transport layer, MPTCP has no way of

85

distinguishing between shortest and non-shortest paths and can leverage Dahu for better

route selection. These results indicate that Dahu effectively enables MPTCP to leverage

non-shortest paths, and achieve much better network utilization in direct networks with

fewer subflows.

4.7 Discussion

As seen in Section 4.6, Dahu exploits non-minimal routing to derive large benefits

over ECMP for different topologies and varying communication patterns. Yet, there is a

scenario where non-minimal routing can be detrimental. This occurs when the network as

a whole is highly saturated; shortest path forwarding itself does well as most links have

sufficient traffic and there is no “unused” capacity or slack in the network. With Dahu, a

derouted flow consumes bandwidth on more links than if it had used just shortest paths,

thereby contributing to congestion on more links. In large data centers, this network

saturation scenario is uncommon. Networks have lower average utilization although

there may be hot-spots or small cliques of racks with lot of communication between them.

Usually, there is network slack or unused capacity that Dahu can leverage. The network

saturation case can be dealt with in many ways. For example, a centralized monitoring

infrastructure can periodically check if a large fraction of the network is in its saturation

regime and notify switches to stop using non-minimal paths.

Alternatively, a simple refinement to the localized load balancing scheme can

be used which relies on congestion feedback from neighboring switches to fall back to

shortest path forwarding in such high load scenarios. Network packets are modified to

store 1 bit in the IP header which is updated by each switch along the path of a packet

to indicate whether the switch used a shortest path egress port or derouted the packet.

A switch receiving a packet checks if two conditions are satisfied: (1) It doesn’t have

enough capacity to the destination along shortest paths alone, and (2) The previous hop

86

derouted the packet. If both conditions are satisfied, it sends congestion feedback to

the previous hop notifying it to stop sending derouted traffic through this path for the

particular destination prefix, for a certain duration of time (say 5ms). This solution is

discussed further in [74].

4.8 Related Work

There have been many recent proposals for scale-out multipath data center topolo-

gies such as Clos networks [3, 35, 54], direct networks like HyperX [1], Flattened

Butterfly [47], DragonFly [48], and even randomly connected topologies proposed in

Jellyfish [89]. Many current proposals use ECMP-based techniques which are inadequate

to utilize all paths, or to dynamically load balance traffic. Routing proposals for these

networks are limited to shortest path routing (or K-shortest path routing with Jellyfish)

and end up under-utilizing the network, more so in the presence of failures. While DAL

routing [1] allows deroutes, it is limited to HyperX topologies. In contrast, Dahu proposes

a topology-independent, deployable solution for non-minimal routing that eliminates

routing loops, routes around failures, and achieves high network utilization.

Hedera [4] and MicroTE [17] propose a centralized controller to schedule long

lived flows on globally optimal paths. However they operate on longer time scales and

scaling them to large networks with many flows is challenging. While DevoFlow [27]

improves the scalability through switch hardware changes, it does not support non-

minimal routing or dynamic hashing. Dahu can co-exist with such techniques to better

handle congestion at finer time scales.

MPTCP [75] proposes a host based approach for multipath load balancing, by

splitting a flow into multiple subflows and modulating how much data is sent over

different subflows based on congestion. However, as a transport protocol, it does not

have control over the network paths taken by subflows. Dahu exposes the path diversity

87

to MPTCP and enables MPTCP to efficiently utilize the non-shortest paths in a direct

connect network. There have also been proposals that employ variants of switch-local

per-packet traffic splitting [29,102]. With Dahu, instead of per-packet splitting, we locally

rebalance flow aggregates across different paths thereby largely reducing in-network

packet reordering.

Traffic engineering has been well studied in the context of wide area networks.

TeXCP [45], MATE [32], and REPLEX [33] split flows on different paths based on

load, however their long control loops make them inapplicable in the data center context

which requires faster response times to deal with short flows and dynamic traffic changes.

FLARE [90] exploits the inherent burstiness in TCP flows to schedule “flowlets” (bursts

of packets) on different paths to reduce extensive packet reordering.

Finally, a key distinction between Dahu and the related traffic engineering ap-

proaches is that Dahu actively routes over non-shortest paths in order to satisfy traffic

demand. Dahu decouples non-minimal routing and its mechanism for more balanced

hashing and offers a more flexible architecture for better network utilization in direct

connect networks.

4.9 Summary

Existing solutions for leveraging multipath in the data center rely on ECMP which

is insufficient due to its static nature and inability to extend beyond shortest path routing.

We present a new switch mechanism, Dahu, that enables dynamic hashing of traffic onto

different network paths. Dahu exploits non-shortest path forwarding to reduce congestion

while preventing persistent forwarding loops using novel switch hardware primitives

and control software. We present a decentralized load balancing heuristic that makes

quick, local decisions to mitigate congestion, and show the feasibility of proposed switch

hardware modifications. We evaluate Dahu using a simulator for different topologies and

88

different traffic patterns and show that it significantly outperforms shortest path routing

and complements MPTCP performance by selecting good paths for hashing subflows.

4.10 Acknowledgments

Chapter 4, in part, contains material as it appears in the Proceedings of the 9th

ACM/IEEE Symposium on Architectures for Networking and Communications Systems

(ANCS ’13), San Jose, CA, October 2013. “Dahu: Commodity Switches for Direct

Connect Data Center Networks”. Sivasankar Radhakrishnan, Malveeka Tewari, Rishi

Kapoor, George Porter, and Amin Vahdat. The dissertation author was the primary

investigator and author of this paper.

Chapter 5

SENIC: Scalable NIC for End-Host
Rate Limiting

Rate limiting is an important primitive for managing server network resources.

Unfortunately, software-based rate limiting suffers from limited accuracy and high CPU

overhead, and modern NICs only support a handful of rate limiters. In this chapter,

we present SENIC, a NIC design that can natively support 10s of thousands of rate

limiters—100x to 1000x the number available in NICs today. The key idea is that the

host CPU only classifies packets, enqueues them in per-class queues in host memory, and

specifies rate limits for each traffic class. On the NIC, SENIC maintains class metadata,

computes the transmit schedule, and only pulls packets from host memory when they are

ready to be transmitted (on a real time basis). We implemented SENIC on NetFPGA,

with 1000 rate limiters requiring just 30KB SRAM, and it was able to accurately pace

packets. Further, in a memcached benchmark against software rate limiters, SENIC is

able to sustain up to 250% higher load, while simultaneously keeping tail latency under

4ms at 90% network utilization.

89

90

5.1 Introduction

Today’s trend towards consolidating servers in dense data centers necessitates

careful resource management. It is hence unsurprising that there have been several recent

proposals to manage and allocate data center network bandwidth to different services, ten-

ants, and traffic flows. This can be a challenge given the bursty and unpredictable nature

of data center traffic, which has necessitated new designs for congestion control [72].

Many of these recent proposals can be realized on top of a simple substrate of

programmable rate limiters. For example, Seawall [87], Oktopus [11], EyeQ [44] and

Gatekeeper [83] use rate limiters between pairs of communicating virtual machines to

provide tenant rate guarantees. QCN [6] and D3 [100] use explicit network feedback to

rate limit traffic sources. Such systems need to support thousands of rate limited flows or

traffic classes, especially in virtual machine deployments.

Unfortunately these new ideas have been hamstrung by the inability of current

NIC hardware to support more than a handful of rate limiters (e.g., 8–128) [40, 58]. This

has resulted in delegating packet scheduling functionality to software, which is unable to

keep up with line rates, while diverting CPU resources away from application processing.

As networks get faster, this problem will only get worse since the capabilities of individual

cores will likely not increase. We are left with a compromise between precise hardware

rate limiters that are few in number [51, 87] and software rate limiters that support more

flows but suffer from high CPU overhead and burstiness (see Table 5.1). Software rate

limiters also preclude VMs from bypassing the hypervisor for better performance [61,65].

The NIC is an ideal place to offload common case or repetitive network functions.

Features such as segmentation offload (TSO), and checksum offload are widely used to

improve CPU performance as we scale communication rates. However, a key missing

functionality is scalable rate limiting.

91

Table 5.1. Pros and cons of current hardware and software approaches to rate limiting

Property Hardware Software
Scales to many classes × X

Works at high link speeds X ×
Low CPU overhead X ×

Precise rate enforcement X ×
Supports hypervisor bypass X ×

In this work, we present SENIC, a NIC architecture that combines the scalability

of software rate limiters with the precision and low overhead of hardware rate limiters.

Specifically, in hardware, SENIC supports 10s of thousands of rate limiters, 100–1000x

the number available in today’s NICs. The key insight in SENIC is to invert the current

duties of the host and the NIC: the OS stores packet queues in host memory, and classifies

packets into them. The NIC handles packet scheduling and proactively pulls packets

via host memory DMA for transmission. This late-binding enables SENIC to maintain

transmit queues for many classes in host memory, while the NIC enforces precise rate

limits in real-time.

Our contributions are: (1) identifying the limitations of current operating system

and NIC capabilities, (2) the SENIC design that provides scalable rate limiting with

low CPU overhead, and supports hypervisor bypass, (3) a unified scheduling algorithm

that enforces strict rate limits and gracefully falls back to weighted sharing if the link

is oversubscribed, and (4) evaluating SENIC through implementation of a software

prototype and a hardware 10G-NetFPGA prototype. Our evaluation shows that SENIC

can pull packets on-demand and achieve (nearly) perfect packet pacing. SENIC sustains

43–250% higher memcached load than current software rate limiters, and achieves low

tail latency under 4ms even at high loads. SENIC isolates memcached from bandwidth

intensive tenants, and sustains the configured rate limits for all tenants even at high loads

(9Gb/s), unlike current approaches.

92

5.2 Motivation

We motivate SENIC by describing two capabilities which rely on scalable rate

limiting, then describe the limitations of current NICs which prevent these capabilities

from being realized.

5.2.1 The Need For Scalable Rate Limiting

Scalable rate limiting is required for network virtualization as well as new ap-

proaches for data center congestion control, as we now describe.

Network Virtualization: Sharing network bandwidth often relies on hierarchical

rate limiting and weighted bandwidth sharing. For example, Gatekeeper [83], and

EyeQ [44] both rate limit traffic between every communicating source-destination VM

pair, as well as use weighted sharing across source VMs on a single machine. With

greater server consolidation and increasing number of cores per server, the number of

rate limiters needed is only expected to increase.

To quantify the number of rate limiters required for network virtualization, we

observe that Moshref et al. [63] cite the need for 10s of thousands of flow rules per server

to support VM-to-VM rules in a cluster with 10s of thousands of servers. Extending

these to support rate limits would thus necessitate an equal number of rate limiters. For

example, if there are 50 VMs/server, each communicating with a modest 50 other VMs,

we need 2500 rate limiters to provide bandwidth isolation. Furthermore, supporting

native hardware rate limiting is necessary, since VMs with latency sensitive applications

may want to bypass the hypervisor entirely [61, 65].

Data Center Congestion Control: Congestion control has typically been an

end-host responsibility, as exemplified by TCP. Bursty correlated traffic at high link

speeds, coupled with small buffers in commodity switches can result in poor application

93

performance [72]. This has led to the development of QCN [6], DCTCP [7], HULL [8],

and D3 [100] to demonstrate how explicit network feedback can be used to pace or

rate limit traffic sources and reduce congestion. In the limit, each flow (potentially

thousands [16]) needs its own rate limiter.

5.2.2 Limitations of Current Systems

Today, rate limiting is performed either (1) in hardware in the NIC, or (2) in

software in the OS or VM hypervisor. We consider these alternatives in detail.

Hardware Rate Limiting

Modern NICs support a few hardware transmit queues (8-128) that can be rate

limited. When the OS transmits a packet, it sends a doorbell request1 to the NIC notifying

it of the packet and the NIC Tx ring buffer to use. The NIC DMA’s the packet descriptor

from host RAM to its internal SRAM memory. The NIC uses an arbiter to compute the

order in which to fetch packets from different Tx ring buffers. It looks up the physical

address of the packet in the descriptor, and initiates a DMA transfer of the packet contents

to its internal packet buffer. Eventually a scheduler decides when different packets are

transmitted.

A straightforward approach of storing per-class packet queues on the NIC does

not scale well. For instance, even storing 15KB packet data per queue for 10,000

queues requires around 150MB of SRAM, which is too expensive for commodity NICs.

Likewise, storing large packet descriptor ring buffers for each queue is also expensive.

1A doorbell request is a mechanism whereby the network driver notifies the NIC that packet(s) are
ready to be transmitted.

94

8 16 32 64 256 512
number of classes

0

10

20

30

Ke
rn

el
 C

PU
 U

til
. (

%
)

Rate: 1 Gb/s

8 16 32 64 256 512
number of classes

0

0.1

0.2

0.3

No
rm

al
iz

ed
 s

td
de

v Rate: 1 Gb/s htb
hwrl
hwrl+

8 16 32 64 256 512
number of classes

0

10

20

30

Ke
rn

el
 C

PU
 U

til
. (

%
)

Rate: 5 Gb/s

8 16 32 64 256 512
number of classes

0

0.1

0.2

0.3

No
rm

al
iz

ed
 s

td
de

v Rate: 5 Gb/s

8 16 32 64 256 512
number of classes

0

10

20

30

Ke
rn

el
 C

PU
 U

til
. (

%
)

Rate: 9 Gb/s

8 16 32 64 256 512
number of classes

0

0.1

0.2

0.3

No
rm

al
iz

ed
 s

td
de

v Rate: 9 Gb/s

Figure 5.1. Comparison of CPU overhead and accuracy of software (Linux htb) and
hardware (hwrl, hwrl+) rate limiting. At high rates (5Gb/s and 9Gb/s), hwrl ensures
low CPU overhead and high accuracy, while htb is unable to drive more than 6.5Gb/s of
aggregate throughput. Accuracy is measured as the ratio between the standard deviation
of successive packet departure time differences, to the ideal. For instance, at 0.5Gb/s,
1500B packets should depart at times roughly 24us apart, but a “normalized stddev” of

0.2 means the observed deviation from 24us was as much as ∼4.8us.

Software Rate Limiting

Operating systems and VM hypervisors support rate limiting and per-class priori-

tization; for example, Linux offers a configurable queueing discipline (QDisc) layer for

enforcing packet transmission policies. The QDisc can be configured with traffic classes

from which packets are transmitted by the operating system.

In general, handling individual packets in software imposes high CPU overhead

due to lock contention and frequent interrupts for computing and enforcing the schedule.

To reduce CPU load, the OS transfers packets to the NIC in batches, leveraging features

like TSO. Once these batches of packets are in the NIC, the operating system loses control

over packet schedules; packets may end up being transmitted at unpredictable times

95

on the wire, frequently in large bursts (e.g., 64KB with 10Gb/s NICs) of back-to-back

MTU-sized packets transmitted at the full line rate.

Quantifying Software Overheads: Accurate rate limiting is challenging at

10Gb/s and higher. For instance, at 40Gb/s, accurately pacing 1500B packets means

sending a packet approximately every 300ns. Such accuracy is difficult to achieve even

with Linux’s high resolution timers, as servicing an interrupt can easily cost thousands of

nanoseconds. To quantify the overhead of software rate limiting, we benchmarked Linux’s

Hierarchical Token Bucket (htb), and compared it to the hardware rate limiter (hwrl) on

an Intel 82599 NIC. The tests were conducted on a dual 4-core, 2-way hyperthreaded

Intel Xeon E5520 2.27GHz server running Linux 3.6.6.

We use userspace UDP traffic generators to send 1500B packets, and compare htb

and hwrl on two metrics—OS overhead and accuracy—for varying number of classes.

Each class is allocated an equal rate (total rate is 1Gb/s, 5Gb/s, or 9Gb/s). When the

number of classes exceeds the available hardware rate limiters (16 in our setup), we

assign classes to them in a round robin fashion (shown as hwrl+). OS overhead is the total

fraction of CPU time spent in the kernel across all cores, and includes overheads in the

network stack, packet scheduling, and servicing interrupts. To measure how well traffic

is paced, we use a hardware packet sniffer at the receiver, which records timestamps with

a 500ns precision. These metrics are plotted in Figure 5.1; the shaded bars indicate that

many classes are mapped to one hardware rate limiter (hwrl+).

These experiments show that implementations of rate limiting in hardware are

promising and deliver accurate rate limiting at low CPU overheads. However, they only

offer few rate limiters, in part due to limited buffering on the NIC. Figure 5.1 shows that

htb, while scalable in terms of the number of queues supported, is unable to pace packets

at 9Gb/s, resulting in inaccurate rates.

96

5.3 Design

In the previous section, we described limitations of today’s software and hardware

approaches to rate limiting. The primary limitation in hardware today is scalability on

the transmit path; we do not modify the receive path. In light of this, we now describe

the design of the basic features in SENIC, and defer more advanced NIC features to

Section 5.5. We begin with the service model abstraction.

5.3.1 Service Model

SENIC has a simple service model. The NIC exposes multiple transmit queues

(classes), each with an associated rate limit. When the sum of rate limits of active classes

does not exceed link capacity, each class is restricted to its rate limit. When it exceeds

link capacity (i.e., the link is oversubscribed), SENIC gracefully shares the capacity in

the ratio of class rate limits.

5.3.2 CPU and NIC Responsibilities

To enforce a service model, we need a packet scheduler, and must store state for

all classes. The state and functionality are spread across the CPU/host and the NIC.

State: Memory on the NIC (typically SRAM) is expensive, and we therefore use

it to only store metadata about the classes. To store packet queues, SENIC leverages the

large amount of host memory. Table 5.2 shows an example class metadata structure; the

total size for storing 10,000 classes is about 300kB of SRAM. Note that the Myricom

10Gb/s NIC has 2MB SRAM [64].

Functionality: At a high level, the CPU classifies and enqueues packets in

transmit queues, while the NIC computes a schedule that obeys the rate limits, pulls

packets from queues in host memory using DMA, and transmits them on to the wire.

The NIC handles all real time per-packet operations and transmit scheduling of packets

97

Table 5.2. Per-class metadata in NIC SRAM. Total size = 30B

Entry Bytes Description
Queue management

ring buffer 4 Aligned address of the head
of the ring buffer

buffer size 2 Size of ring buffer (entries)
head index 2 Index of first packet
tail index 2 Index of last packet

Head packet descriptor
head paddr 8 Address of the first packet
head plen 2 Length of the first packet (B)
pkt offset 2 Next segment offset into the

packet (for TSO)
Scheduler state (say for token bucket scheduler)

rate mbps 2 Rate limit for the queue
tokens bytes 2 Number of bytes that can be

sent from the queue without
violating rate limit

timestamp 4 Last timestamp at which to-
kens were refreshed

from different classes based on their rate limits. This frees up the CPU to batch network

processing, which reduces overall CPU utilization. This architecture is illustrated in

Figure 5.2, which we now describe in detail.

CPU Functionality

As in current systems, the OS manages the NIC and initializes the device, cre-

ates/deletes classes, and configures rate limits. The OS is also in charge of classifying

and enqueueing packets in appropriate queues. In both cases, the OS communicates with

the NIC through memory-mapped IO. For instance, when the OS enqueues a packet (or a

burst of packets) into a queue, it notifies the NIC through a special doorbell request that

it writes to a device-specific memory address.

98

Host RAM

NIC

Wire

. . . FIFO queues
(or ring buffers)

Packet
Scheduler

Arbitrarily
many

1

2

3

1.  Schedule	 per-‐class	 queues	 stored	 in	 host	 RAM	
2.  DMA	 packet	 from	 host	 memory	 to	 NIC	 buffer	
3.  Transmit	 packet	

Figure 5.2. SENIC— “Schedule and Pull” model

NIC Functionality

The NIC is responsible for all per-packet real time operations on transmit queues.

Since it has limited hardware buffer resources, the NIC first computes the transmit sched-

ule based on the rate limits. It then chooses the next packet that should be transmitted, and

DMAs the packet from the per-class queue in host memory to a small internal NIC buffer

for transmitting on to the wire. Figure 5.3 shows a schematic of the SENIC hardware and

related interfaces from software.

Metadata: The NIC maintains state about traffic classes to enforce rate limits.

In the case of a token bucket scheduler, each class maintains metadata on the number

of tokens, and the global state is a list of active classes with enough tokens to transmit

the next packet. The memory footprint is small, easily supporting 10,000 or more traffic

classes with a few 100kB of metadata.

Scheduling: The NIC schedules and pulls packets from host memory on demand

at link speed. Packets are not pulled faster, even though PCIe bandwidth between the

NIC and CPU is much higher. This late binding reduces the size of NIC hardware buffers

99

CPU

CPU

PCIe x16

Doorbell FIFO
DbDb

Completion FIFO
CmplCmpl

Class table

Packet
Scheduler

PC
Ie

 c
on

tro
lle

r

SENIC

DM
A

En
gi

ne

DMA-able
Host DRAM

Memory
Mapped IO

Doorbell
FIFO

Completion
FIFO

PktPktPkt

Ring
Buffer

Figure 5.3. SENIC hardware design. Once the NIC DMAs a packet from host memory,
there is further processing (e.g. checksum offloads) before the packet is transmitted on
the wire. This chapter focuses on the scheduler and the NIC interaction with the operating

system and software stack.

required for storing packets. It also avoids head-of-line blocking, and allows the NIC

to quickly schedule newly active classes or use updated rate limits. This offloading of

scheduling and real time work to the NIC is what enables SENIC to accurately enforce

rate limits even at high link speeds.

Other Functionality: The NIC does more tasks than just state management and

rate limiting. After the packet is DMA’d onto NIC memory, there is a standard pipeline of

operations that we leave unmodified. For instance, NICs support TCP and IP checksum

offloading, VLAN encapsulation, and send completions to notify the CPU when it can

reclaim packet memory.

100

5.4 Packet Scheduling in SENIC

SENIC employs an internal scheduler to rate limit traffic classes. The task of

packet scheduling can be realized using a number of algorithms such as Deficit Round

Robin (DRR) [88], Weighted Fair Queueing (WFQ) [28], Worst-case Fair weighted Fair

Queueing (WF2Q) [15], or simple token buckets. The choice of algorithm impacts the

sharing model, and packet delay bounds. For instance, token buckets support rate limits,

but DRR is work-conserving; simply arbitrating across token buckets in a DRR-like

fashion can result in bursty transmissions [14].

In this section, we start with our main requirements to pick the appropriate

scheduling algorithm. We desire hierarchical rate limits, so the above work-conserving

algorithms (DRR, WFQ, etc.) do not directly suit our needs. We now describe a unified

scheduling algorithm that supports hierarchies and rate limits.

5.4.1 SENIC Packet Scheduling Algorithm

Recall that the service model exposed by SENIC is rate limits on classes, with

fallback to weighted sharing proportional to the class rates. We begin by describing

a scheduling algorithm which can enforce this service model. We leverage a virtual

time based weighted sharing algorithm, WF2Q+ [14], and modify its system virtual time

(V) computation to support strict rate limiting with a fallback to weighted sharing. The

algorithm computes a start (S) and finish (F) time for every packet based on the class

rate wi. Packets with S≤V are considered eligible, and the algorithm transmits eligible

packets in increasing order of their finish times.

Computing Start and Finish Time: Since each class is a FIFO, the start and

finish times are maintained only for the packets at the head of each transmit queue. The

start time Si of a class Ci is only updated when a packet is dequeued from that class or a

101

packet is enqueued into a previously empty class. The finish time Fi is updated whenever

Si is updated. Si and Fi for each flow Ci are computed in the same way as in WF2Q+, as

follows:

Si =

 max(Fi,Venq) on enqueue into empty queue

Fi on dequeue

Fi = Si +
L
wi

where Venq is the system time V (described below) when the packet is enqueued, and L is

the head packet’s length.

System Time Computation: WF2Q+ computes a work-conserving schedule

where at least one class is always eligible to transmit data. To enforce strict rate limits,

SENIC incorporates the notions of real time and the link drain rate (R) to compute the

transmit schedule. The system time is increased by 1 unit (bytetime), in the time it takes

to transmit 1B of data at link speed, and thus incorporates the link’s known drain rate R

(e.g. 10Gb/s).

SENIC supports graceful fallback to weighted sharing when the link is oversub-

scribed. When the link is oversubscribed, we slow the system time V down to reflect

the marginal rate at which the active flows are serviced. Without loss of generality, let

the rate limits of flows Ci be represented as fractions wi of the link speed R. We define

the rate oversubscription factor φ to be the sum of rate limits (weights) of currently

backlogged classes or flows in the system; φ = 0 when no flows are active. The scheduler

modifies the system time V to slow down by the rate oversubscription factor and proceed

at most as fast as the link speed. V is computed as:

V (0) = 0

V (t + τ) =V (t)+Rτ×max(1,φ)

102

where τ is a single packet transmission period, or contiguous link idle period, or the

period between successive updates to φ . Given the system time, the start and finish

times of all classes, we schedule packets in the same order as WF2Q+, i.e. in order of

increasing finish times among all eligible classes at the time of dequeueing.

0 2000 4000 6000 8000 10000
Real Time (bytetime)

Idle

C2

C1

Tx = 3000
L = 750

Tx = 5250
L = 2250

Tx = 10500
L = 750

S = 0
F = 7500

Tx = 1500
L = 1500

S = 7500
F = 15000

Tx = 9000
L = 1500

S = 0
F = 3750

Tx = 0
L = 1500

S = 3750
F = 7500

Tx = 3750
L = 1500

S = 7500
F = 11250

Tx = 7500
L = 1500

Figure 5.4. Transmit schedule example. Link is not oversubscribed. The interval
between the vertical dashed lines indicates repeating sequence in the transmit schedule
(only 1 repetition shown for clarity). S, F , L as defined in the text. Tx is the time when a

particular packet transmission or idle period starts.

Example: We now look at an example transmit schedule computed using these

time functions. Assume a 10Gb/s link with two continuously backlogged classes C1 and

C2 (with rate limits 4Gb/s and 2Gb/s respectively). The transmit schedule is shown in

Figure 5.4. The values of Si and Fi are computed using rate limits as a fraction of link

speed (so w1 = 0.4 and w2 = 0.2). All packets are 1500B in length.

If we consider a single iteration (7500 bytetimes), C1 transmits 3000B, C2 trans-

mits 1500B, and the link is idle for (750 + 2250 = 3000 bytetimes). Thus C1 achieves

3000 / 7500 = 0.4 of link capacity and C2 achieves 1500 / 7500 = 0.2 of link capacity.

The link remains idle for 40% of the time in each iteration, thereby enforcing strict rate

limits. Notice also that the packets are appropriately interleaved and accurately paced.

103

Delay Guarantees: The advantage of using virtual time based scheduling al-

gorithms is that they offer strong per-packet delay guarantees. Specifically, WF2Q+

guarantees that the finish time of a packet in the discretized system is no more than a

bounded delay from an ideal fluid model system. SENIC’s unified scheduling algorithm

offers similar strong guarantees. Algorithms such as DRR do not have such strong

guarantees [14].

5.4.2 Hierarchical Bandwidth Sharing

So far we discussed a flat rate limiting scheme. In practice, it may be desirable to

group classes and enforce another rate limit on the group. For example, an approach useful

in multi-tenant environments is a two level hierarchy where the first level implements

strict rate limits for each VM on the server, and the second level provides weighted

sharing between the flows originating from each VM.

It is possible to enforce any hierarchical allocation by modulating the rate limits

of hardware traffic classes. Control logic in the hypervisor can measure demands and

hardware counters, and adjust the rates based on preconfigured limits. We instead now

describe an extension to the virtual time based scheduler described above to support a

simple two level hierarchy.

Sharing Model: We define an L1 (level 1) class as one which is directly attached

to the root of the hierarchy. An L2 (level 2) class is attached to an L1 class. Each class is

configured with a rate limit. The L1 classes only support strict rate limits, i.e. sum of rate

limits of active L1 classes should not exceed link capacity. L2 classes support strict rate

limiting, but fallback to weighted sharing in the ratio of their rate limits when the active

L2 classes within an L1 class oversubscribe the rate limit of that L1 class. An L1 class

might be a leaf or an internal class while L2 classes can only be leaves.

Start and Finish Time Computation: SENIC only computes time variables for

104

leaf classes as packets are “enqueued” and “dequeued” only at the leaves. For L1 leaf

classes, the scheduler computes start and finish times as usual, using the rate limits of the

respective classes. For each L1 class, it maintains a rate oversubscription factor φL1 , of

active L2 classes within the L1 class. For L2 classes, to compute finish time, the scheduler

scales the rate limits and uses the minimum of (1) the configured rate limit wi of the L2

class, and (2) the scaled rate limit of the parent L1 class based on L2’s share, given as:

wiscaled = min
(

wi,wL1×
wi

φL1

)

System Time Computation: System time is purely based on real time and link

drain rate R, as the L1 classes are configured such that they never oversubscribe the link.

This condition can be easily met even if weighted sharing is required at level 1 of the

hierarchy, by simply having the host driver periodically measure demand and adjust the

rate limits of the L1 classes.

Summary: Driven by requirements to support rate limits, we described a schedul-

ing algorithm incorporating both weighted sharing and rate limiting into one coherent

algorithm. We also extended the algorithm to support two-level rate limits across classes

and groups of classes. We realized the unified scheduling algorithm on top of QFQ [22],

which in turn implements WF2Q+ efficiently. The metadata structure for this QFQ based

scheduler is around 40B per class, and it needs only 10kB of global state, thereby scaling

easily to 10,000 classes.

5.5 Advanced NIC features

This section touches upon advanced features in today’s NICs that are impacted

by SENIC’s design, and how we achieve similar functionality with SENIC.

105

Guest 1 Driver (Data Plane)

Host Driver
(Control Plane)

QueueFlow
TCP
/IP

SENIC
Hardware

Guest 2 Driver (Data Plane)

Guest 1
VNIC

Guest 2
VNIC

Figure 5.5. SENIC architecture, with each guest given a virtualized slice of the NIC
(VNIC) using SR-IOV

5.5.1 OS and Hypervisor Bypass

Many applications benefit from bypassing the OS network stack to meet their

stringent latency and performance requirements [46, 67]. Further, high-performance

virtualized workloads benefit from bypassing the hypervisor entirely, and directly access

the NIC [61, 65]. To support such requirements, modern NICs expose queues directly to

user-space, and include features that virtualize the device state (ring buffers, etc.) through

technologies like Single-Root IO Virtualization (SR-IOV [71]). We now describe how

SENIC provides these features.

Configurable SR-IOV Slices or VNICs: SENIC leverages SR-IOV to expose

multiple VNICs. Each VNIC is allocated a configurable number of queues, and guest

VMs directly transmit and receive packets through the VNICs, as shown in Figure 5.5.

Guest VMs are only aware of queues for their respective VNICs (which is standard

SR-IOV functionality), thereby ensuring isolation between transmit queues of different

guest VMs. A simple lookup table on the NIC translates VNIC queue IDs to actual queue

IDs. A host SENIC driver provides the interface for the hypervisor to configure VNICs,

106

allocate queues, and configure rate limits. A guest driver running in the VM provides a

standard interface to enqueue packets into different queues on the VNIC.

Classifying Packets: SENIC relies on the operating system to classify and

enqueue packets in the right traffic classes or queues. The host driver residing in the

hypervisor maintains the packet classification table. It exports an OpenFlow [68] like

API to configure traffic classes and rate limits. When SR-IOV is enabled, the hypervisor

is bypassed in the datapath. SENIC therefore relies on the guest VM to perform packet

classification.

The guest driver maintains a cached copy of the packet classification table. When

the guest driver receives a packet from the network stack for transmission, it looks up its

guest packet classification table for a match. If no match is found, it makes a hypercall

to the hypervisor for a lookup and caches the matching rule. The actual mapping to the

appropriate queue is also cached in the socket data structure to avoid repeated lookups

for each packet of a flow. The hypervisor can also proactively setup rules in guest

classification tables. Once the rules are cached in the guest, the hypervisor is completely

bypassed during packet transmission.

Untrusted Guests: It may be unwise to trust guests to classify packets correctly.

However, we argue this is not an issue. Even though SR-IOV ensures that a VM can only

place packets in queues for its own VNIC, the guest may ignore the hypervisor-specified

classification among its queues. We adopt a trust-but-verify approach to ensure that guest

VMs do not cheat by directing packets to queues with higher rate limits. The key idea is

that the hypervisor need not look at every packet to ensure rate limits are not violated, but

instead only look at a sampled subset of packets. Since classification is used to provide

QoS, sampling packet headers and verifying their classification is sufficient to identify

violations. The administrator can be alerted to misbehaving guests, or they can be halted,

or forced to give up SR-IOV, and rely on the hypervisor for future packet transmissions.

107

5.5.2 Other Features

Below we describe few other features that are affected by SENIC’s design.

Segmentation Offload: TCP Segmentation Offload (TSO) is a widely available

NIC feature to reduce CPU load by transferring large (upto 64KB) TCP segments to the

NIC, which are then divided into MTU sized segments and transmitted with appropriately

updated checksums and sequence numbers. SENIC only pulls MTU sized portions of

the packet on demand from host memory queues before transmission. This avoids long

bursts from a single class, and enables better interleaving and pacing. SENIC augments

per-queue metadata with a TSO-offset field that indicates which portion of the packet

at the head of the queue remains to be transmitted. When interleaving packets, SENIC

does not cache packet headers for each class on the NIC, thereby keeping NIC SRAM

requirements low. When transmitting TSO packets, SENIC issues two DMA requests:

one for the packet header, and another for the MTU sized payload based on TSO-offset.

Scatter-Gather: A related optimization is scatter-gather, where the NIC can

fetch packet data spread across multiple memory regions, e.g., the header separately

from the payload. In such cases, SENIC stores the location of the next segment to be

transmitted for each queue and fetches descriptors and data on demand.

Handling Concurrency: The design assumed each transmit queue corresponds

to one traffic class. To allow multiple CPU cores to concurrently enqueue packets to a

class, the SENIC design is extended to support some number of queues (say 8) for each

class. Round robin ordering is used among queues within a class, whenever the class

gets its turn to transmit. This is easily accomplished by separately storing head and tail

indices for each queue in the class metadata table, an active queue bitmap and round

robin counter for each class.

108

Priority Scheduling: SENIC can easily also support strict priority scheduling

between transmit queues of a class instead of round-robin scheduling. In this case, a

priority encoder picks the highest priority active class. One use case is for applications to

prioritize their traffic within a given rate limit.

5.6 Implementation

We have implemented two SENIC prototypes:

1. A software prototype using a dedicated CPU core to perform custom NIC process-

ing. This implements the unified QFQ-based rate limiting and weighted sharing

scheduler described in Section 5.4.1.

2. A NetFPGA-based hardware prototype designed to run microbenchmarks and

evaluate the feasibility of pulling packets on demand from host memory for trans-

mission. For engineering expediency, this prototype relies on a simpler, token

bucket scheduler (without hierarchies).

We now describe both prototypes in detail. Both prototypes are available for

download at http://sivasankar.me/senic/.

5.6.1 Software Prototype

The software prototype is implemented as a Linux kernel module with modest

changes to the kernel. The network packet scheduler is implemented in a new Linux

queueing discipline (QDisc) kernel module. We also modified the Linux tc utility to

enable us to configure the new QDisc module. As described in Section 5.4, SENIC’s

packet scheduling algorithm is implemented on top of the Quick Fair Queueing (QFQ)

scheduler available in the Linux kernel.

http://sivasankar.me/senic/

109

Transmit Queues and Rate Limits: The SENIC QDisc maintains per-class

FIFO transmit queues in host memory as linked lists. We configure classification rules

via tc, and also set a rate limit for each class.

Enqueueing Packets: In Linux, when the transport layer wants to transmit a

packet, it hands it down to the IP layer, which in turn hands it to the QDisc layer. When

the QDisc receives a packet from IP, it first classifies the packet, then enqueues it in the

corresponding queue, marking the class as active.

Dedicated CPU Core for Packet Scheduling: In today’s kernel, the dequeue

operation starts right after enqueue. However, to mimic NIC functionality, we modified

the kernel so the enqueue call immediately returns to the caller, and dedicate a CPU core

to perform all NIC scheduling (i.e. dequeueing). The dedicated CPU core runs a kernel

thread that computes the schedule based on configured rate limits, and pulls packets from

the active transmit queues when they should be transmitted. Packets are transferred to

the physical NIC using the standard NIC driver. We disabled TSO to control the transmit

schedule at a fine granularity and avoid traffic bursts.

5.6.2 NetFPGA Prototype

We now describe our SENIC hardware implementation on a NetFPGA [55]. The

primary hardware components of SENIC are (a) the packet scheduler with the class table,

(b) doorbell FIFOs to process notifications from the host, and (c) completion FIFOs

to send notifications to the host. Each component maintains its own independent state

machine and executes in parallel. Figure 5.6 below zooms into the operation of the packet

scheduler. We now describe each component in detail.

110

Class table
Token
Bucket
Sched

CF
Packet buffers

(SRAM) to receive
DMA responses

DMA Controller

1 2

Doorbell FIFO

3PCIe x16
to host memory

Further processing
(e.g. TSO, checksum

offloads, etc.)

4

Figure 5.6. The 4 stages of scheduling a packet: (1) pick a class for dequeueing, (2)
submit work-request to the class-fetch (CF) module, (3) DMA descriptors and packet

payload from the class, (4) handoff packet payload for further processing.

Packet Scheduler

The scheduler operates on the class metadata table (SRAM block), and performs

the following operations:

• It cycles through all active classes (i.e., classes with at least one enqueued packet),

and determines if a class has enough tokens to transmit a packet (i.e., whether it is

eligible). If not, the scheduler refreshes the class’s tokens and continues with other

classes.

• If the class is eligible, the scheduler submits a work-request to a ‘class-fetch’ (CF)

module and disables the class. Each CF module has a small FIFO to accept requests

from the scheduler.

• If the CF module’s FIFO is full, the scheduler stalls and waits for feedback from

the CF module.

• In parallel, the scheduler processes any pending doorbell requests that modify the

111

class metadata table. For instance, if the doorbell request is an enqueue operation,

the scheduler parses the class ID in the request and updates the class table.

Class-Fetch Module

The class-fetch (CF) module is given a class entry, and its task is to dequeue as

many packets as possible until limited by (a) the tokens available for the class, or (b)

the burst size of the class. The class entry only stores the descriptor for the first packet.

Therefore the CF dispatches DMA requests to (a) fetch the descriptor of the next packet

in the ring buffer, and (b) fetch the packet payload of the first descriptor stored in the

class entry. The module then synchronously waits for the first DMA to complete, and

repeats the process until it exhausts the class tokens, or burst size. Finally, it issues (a)

feedback to the scheduler with the new class entry state (updated tokens, tail pointer, and

the first packet descriptor), and (b) a completion notification for the class.

The latency to make a scheduling decision, and the DMA fetch latency determine

the maximum achievable throughput. We evaluate this in detail in Section 5.7.1.

Host Notifications

SENIC uses standard notification mechanisms to synchronize state between the

NIC and the host: doorbell requests and completions. Doorbells update class state on the

NIC (e.g., new packets and new rates), and completions notify the host about transmitted

packets and processed doorbells. Doorbells and completions are stored in FIFO ring

buffers, on the NIC and host respectively.

Doorbells: The doorbell is a 16B message written by the host to the memory

mapped doorbell FIFO on the NIC. The FIFO is a circular buffer—the host enqueues at

the tail while the NIC dequeues at the head. The host synchronizes the head index when

it receives completions from the NIC, thereby freeing FIFO entries.

112

Completions: The NIC issues completions by DMA’ing an entry into the com-

pletion FIFO in host memory and interrupting the CPU. Each entry indicates (1) the class

and number of packets transmitted from the class, or (2) the number of doorbell requests

processed. This information is used by the host to reclaim packet memory, and doorbell

FIFO entries. These event notifications are similar to BSD’s kqueue mechanism [53].

Avoiding Write Conflicts: Note that the CF module’s feedback, and host notifi-

cations both modify the class entry state. However, the feedback only modifies tokens,

the first packet’s length and address; the host notification only modifies the tail index. If

the class’s rate changes while it is being serviced, the new rate takes effect only the next

iteration when the scheduler refreshes tokens.

5.7 Evaluation

This section dissects SENIC to answer the following aspects of the system:

• How scalable and accurate are the hardware rate limiters? We synthesized our

hardware prototype with 1000 rate limiters. At 1Gb/s, we found the mean inter-

packet timing was within 10ns of ideal, and the standard deviation was 191ns (less

than 1.6% of the mean).

• How many packets should be pipelined for achieving line rate at various link

speeds? This value depends on the scheduling and DMA latency, and the dominant

factor is the DMA latency across the PCIe bus.

• How effective is SENIC at supporting high loads and delivering low latency

compared to state of the art software rate limiters? We compare SENIC against

Linux HTB and a Parallel Token Bucket (PTB) implementation in software (used

in EyeQ [44]). We found that at very low load, all approaches have comparable

113

latencies. But SENIC sustains 55% higher load compared to PTB, and 250%

higher than HTB while keeping memcached 99.9th percentile latency under 3ms.

• How effectively can SENIC isolate different tenants—memcached latency sensitive

tenants and a background bandwidth intensive UDP tenant? We found that SENIC

could comfortably sustain the configured 3Gb/s of UDP traffic and nearly 6Gb/s

of memcached traffic with tail latency under 4ms. However, HTB and PTB had

trouble sustaining more than 1.4Gb/s of UDP traffic. SENIC sustains 233% higher

memcached load compared to HTB and 43% higher than PTB.

5.7.1 Hardware Microbenchmarks

Scalability and Accuracy

Due to limitations on the number of outstanding DMA requests2, and pipeline

datawidth, we were unable to sustain more than 3Gb/s packet transmission rate, and we

restrict our tests to rates less than 3Gb/s.

Table 5.3. Rate limit accuracy as we vary the number of rate limiters N, and the rate per
class. We see that SENIC is within 10−2% of ideal even as we approach the maximum

throughput we could push through the NetFPGA (3Gb/s).

N Rate µ±σ Rel. error in µ

500 1Mb/s 12ms ± 7.1us 3.1×10−6

1 10Mb/s 1.2ms ± 233ns 1.5×10−6

10 1.2ms ± 240ns 1.5×10−6

100 1.2ms ± 1.3µs 2.3×10−5

1 100Mb/s 120µs ± 87ns 1.7×10−7

10 120µs ± 173ns 1.6×10−6

1 1Gb/s 11.25µs† ± 161ns 3.5×10−4

3 11.25µs† ± 191ns 3.8×10−4

Table 5.3 shows the rate limiting accuracy of one of the classes, as we vary

the number of eligible classes on the NIC. We measure accuracy by timestamping
2Our NetFPGA stalls the processor if it has more than 2 outstanding DMA requests. Others have

reported a similar issue with the Virtex5 FPGA [101].

114

every packet with a clock resolution of 10ns, and retrieving the inter-packet timestamp

difference for packets of that one class. We compute the mean (µ) and standard deviation

(σ), and also the relative error in µ as |µempirical−µideal|/µideal. We see that SENIC very

accurately enforces the configured rate even with 500 classes each operating at 1Mb/s.

†Note: NetFPGA supports rates that are of form 12.8Gb/s/K, where K is an

integer. Therefore, though we set the rate limit to 1Gb/s, the output will 12.8/12 Gb/s

(1.067Gb/s), for which the inter-packet time is 11.25µs.

Scheduler Latency

We dig deeper into how long it takes for a scheduling operation in hardware. On

the NetFPGA, the SRAM has a datawidth of 512 bits (64B), an access latency of 1 cycle,

and enough bandwidth to support one operation (either a read or a write) every cycle. In

the worst case, each scheduler iteration takes at most 5 cycles:

• 1 for reading the class metadata from SRAM.

• 1 for refreshing the tokens and CF-enqueue.

• 1 SRAM write for processing CF-feedback.

• 2 for processing a doorbell: 1 for reading the class metadata from SRAM, and 1

for updating class metadata and writing it back.

We synthesized our NetFPGA prototype at 100MHz (10ns per clock cycle),

and therefore, it takes no more than 50ns to make a scheduling decision. We expect a

production-quality NIC to have a higher clock rate, and thus a faster scheduler. For in-

stance, the ASIC in Myricom 10Gb/s Ethernet NIC runs at a clock rate of 364.6MHz [64].

The QFQ based scheduler takes about twice as many cycles as simple token buckets [22],

so with a higher clock rate, it can still complete in 50ns.

115

Maximum Per-Class Throughput

In this experiment, we first analyze the DMA latency which affects the achievable

throughput per-class. We measure the time interval between sending a DMA request

from the CF-module to fetch 16B from host memory, and receiving the response. We

find that the average latency is L = 1.25µs (σ = 40ns) with the NetFPGA platform

(using a second generation PCIe x8 bus). However, the number is often better with a

production-quality NIC. For instance, the DMA latency on an Intel NIC was found to be

close to 200ns [77].

0 200 400 600 800 1000 1200 1400 1600
Packet size (bytes)

0

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

N=1,L=0.20µs

N=2,L=0.20µs

N=1,L=1.25µs

N=2,L=1.25µs

Figure 5.7. Maximum throughput per class as a function of the packet size, and the
number N of CF modules operating in parallel, and the DMA latency L. We see that
the achievable throughput on the NetFPGA (L = 1.25µs) with N = 1 is 9.23Gb/s with

1500B packets (if not for the DMA request constraints described earlier).

Recall that the CF-module processes each class by issuing a DMA request for

the class’s second packet descriptor, followed by the request for the class’s first packet

payload. With a burst size of 1 packet per class, the maximum achievable throughput

per class depends on the sum of DMA latency and scheduler latency. For instance, if

the scheduler takes 50ns to dispatch a class to the CF module, the DMA latency to

fetch a packet descriptor is 1250ns, and burst size is 1 packet, the maximum achievable

throughput per-class is about 1500B (MTU) every 1300ns. Therefore, to achieve line rate

116

we can instantiate multiple CF modules, and the scheduler dispatches classes to them in

parallel. Further, using TSO, or multiple queues per class enables higher throughput per

class. Figure 5.7 shows the trend.

5.7.2 Software Macrobenchmarks

We ran experiments with our software based SENIC prototype to evaluate the

application level performance when SENIC is used for rate limiting traffic.

Memcached

We conducted an experiment with several memcached tenants sharing a cluster—

10 tenants on each machine in an 8 node cluster. Each node is a dual 4-core, 2-way

hyperthreaded Intel Xeon E5520 2.27GHz server, with 24GB of RAM, a 10Gb/s NIC

(Intel or Myricom), and running Linux 3.9.0. Each tenant was allocated 1 CPU hyper-

thread on each machine, and 2GB of RAM. One machine (Msrv) had 10 memcached

server instances—1 for each tenant. We pre-populated them with 12B-key, 2KB-value

pairs. Each of the other 7 machines (Mcli) ran 10 memcached client processes that sent

GET requests to the respective tenant’s memcached server instance.

Rate limits were configured for each memcached client-server pair. The total rate

limit was 9.5Gb/s on Msrv, and 6Gb/s on Mcli machines. Each tenant got an equal share

of the total rate, divided equally among its own destinations. These limits were chosen to

be large enough that memcached would not be bandwidth limited. We ran experiments

using HTB, PTB, and the SENIC software prototype.

We define the unit rpstc, requests per second per tenant per client, to denote the

load on the system. For instance, 2,000 rpstc means each of the 7 client instances of each

tenant generates a load of 2,000 req/s, resulting in a total load on Msrv of 140,000 req/s.

Latency: We varied the client load (2000, 3000 rpstc) and observed the latency

117

0.5 1.0 1.5
Latency (msec)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

til
es

2000 rpstc

HTB
PTB
SENIC

0.5 1.0 1.5
Latency (msec)

0.0

0.2

0.4

0.6

0.8

1.0 3000 rpstc

Figure 5.8. CDF of memcached response latency at different loads. SENIC, HTB and
PTB have similar latency at 2,000 rpstc, but HTB latency shoots up at 3,000 rpstc.

distribution of memcached responses (Figure 5.8). The total egress bandwidth utilization

on Msrv is quite low at 2.3Gb/s and 2.9Gb/s respectively at the two loads. At 2,000 rpstc,

we observed that HTB, PTB and SENIC perform similarly. But at 3,000 rpstc, HTB’s

latency suffers a drastic hit, whereas PTB and SENIC are able to keep up. With HTB,

requests keep getting backlogged as the scheduler is the bottleneck and is unable to push

packets out of the server fast enough. At the fairly low load of 3,000 rpstc, PTB has

marginally lower latency than the SENIC software prototype due to the cache misses

incurred for pulling and transmitting all packets from a single CPU core. A hardware

SENIC implementation would not have this penalty.

Throughput: We varied the memcached load and measured the average, 99th,

and 99.9th percentile latency in each case. Figure 5.9 shows that SENIC could comfort-

ably handle 7,000 rpstc, sustaining 55% higher load compared to PTB, and 250% higher

than HTB. We stopped at 7,000 rpstc as that was the maximum load the cluster could

sustain even without any rate limiters (with the default Linux multi queue QDisc).

While the SENIC software prototype is much better than HTB and PTB, a

hardware SENIC implementation would perform even better as there would not be cache

118

1000 2000 3000 4000 5000 6000 7000
Load (rpstc)

0

5

10

15

20

La
te

nc
y

(m
se

c)

Average

HTB
PTB
SENIC

1000 2000 3000 4000 5000 6000 7000
Load (rpstc)

0

5

10

15

20

La
te

nc
y

(m
se

c)

99th percentile

HTB
PTB
SENIC

1000 2000 3000 4000 5000 6000 7000
Load (rpstc)

0

5

10

15

20

La
te

nc
y

(m
se

c)

99.9th percentile

HTB
PTB
SENIC

Figure 5.9. Memcached response latency at different loads (average, 99th perc. and
99.9th perc. latency). We see that SENIC easily sustains 7,000 rpstc (which was also the
maximum load the cluster sustained without any rate limiting). However HTB and PTB

latencies spike up at much lower loads.

misses for each transmit operation. Further, if hypervisor bypass is used by VMs to

communicate directly with SENIC hardware, the relative latency and throughput benefits

of the hardware solution would be even more.

119

1000 2000 3000 4000 5000
Load (rpstc)

0

5

10

15

20

La
te

nc
y

(m
se

c)

Average

HTB
PTB
SENIC

1000 2000 3000 4000 5000
Load (rpstc)

0

5

10

15

20

La
te

nc
y

(m
se

c)

99th percentile

HTB
PTB
SENIC

1000 2000 3000 4000 5000
Load (rpstc)

0

5

10

15

20

La
te

nc
y

(m
se

c)

99.9th percentile

HTB
PTB
SENIC

Figure 5.10. Memcached latency at different loads, with configured background all-to-all
UDP traffic of 3Gb/s from each server. We see that SENIC could sustain 5,000 rpstc
(network throughput was roughly equal to the configured limit of 6Gb/s). HTB and PTB

on the other hand, fell over at lower loads.

120

Memcached and UDP Tenant Isolation

To evaluate how effectively SENIC can isolate different tenants, we repeated

the above experiments with 1 co-located UDP tenant on each machine, that generates

all-to-all UDP traffic as fast as it can. The total rate limit was set at 3Gb/s for UDP traffic,

and 6Gb/s for memcached on each machine—divided equally among respective tenants

and destinations. The maximum memcached bandwidth utilization we tested was around

5.75Gb/s on Msrv, so memcached was again not bandwidth limited.

Memcached Latency and Throughput: As shown in Figure 5.10, SENIC was

able to sustain 5,000 rpstc memcached throughput (5.75Gb/s) with 99.9th percentile

latency around 4ms while simultaneously delivering very close to the configured 3Gb/s

of total UDP tenant traffic on the memcached server machine. On the other hand, HTB

was only able to sustain 1,500 rpstc, while PTB sustained 3,500 rpstc.

1000 2000 3000 4000 5000
Load (rpstc)

0

1

2

3

4

5

UD
P

th
ro

ug
hp

ut
 (G

b/
s) HTB

PTB
SENIC

Figure 5.11. Throughput achieved by UDP background traffic. The configured rate
limit was 3Gb/s. We found that SENIC could sustain very close to the configured 3Gb/s

throughput, but HTB and PTB had trouble delivering more than 1.3Gb/s.

UDP Tenant Throughput: We measured the total throughput the UDP tenant

achieved on Msrv as it was the primary machine under heavy overall load. Figure 5.11

shows that while SENIC sustained the configured 3Gb/s of throughput for the bandwidth

121

intensive UDP tenant, HTB and PTB had difficulty keeping up. Even at lower mem-

cached loads, HTB and PTB had trouble delivering more than 1.3Gb/s UDP throughput.

Measurements showed that the CPU cores allocated to the UDP tenant were highly

loaded, indicating that current software approaches suffer when CPU load increases and

the tenants with high CPU load might notice degraded performance as the rate limiter is

unable to keep up.

5.8 Practical Considerations

SENIC’s design goals expose a tension in its implementation. Its on-board packet

scheduler must be able to transfer sequences of individual packets from a potentially

large number of traffic classes for fine-grained rate control. Yet, to drive high line rates,

it must support a high overall DMA transfer rate to transfer packets from host memory to

the wire. Thus, the performance of SENIC is upper-bounded by the performance of the

host’s underlying DMA subsystem.

Today’s NICs rely on a number of optimizations to drive high link rates, while

lowering their impact on the DMA subsystem. For example, when TSO is enabled, they

can transfer the packet header just once from memory and cache it on the NIC. The

NIC can then pull in the rest of the payload (issuing the appropriate DMA operations),

combine it with the cached header and transmit MTU-sized segments. SENIC’s design

supports interleaving MTU-sized segments from different traffic classes, depending on

their configured rates and burst sizes. Because the number of such classes can be quite

large, SENIC does not cache packet headers on the NIC for each class. Thus, SENIC’s

impact on the underlying DMA subsystem is going to be greater than a traditional NIC

with TSO. We now briefly examine this impact.

In the absence of TSO, SENIC requires the same number of DMA transfers from

host memory as current NICs—one for each packet, in addition to the packet descriptors.

122

However when TSO is active, SENIC issues a DMA operation for the header in addition

to one for the payload, for each MTU-sized segment. Note that NICs today are capable of

processing many more DMA transfers per second than required for handling MTU-sized

frames at line rate. This headroom allows SENIC to drive high line rates even when TSO

is enabled, despite the larger number of DMA transfers it requires.

To ground this claim experimentally, we examined the DMA subsystem perfor-

mance of both 10Gb/s and 40Gb/s commercial NICs. Using a Myricom 10Gb/s NIC,

we were able to sustain a throughput of 13–14 million 64 byte packets per second (pps).

Since packets were randomly spread across host memory, each packet required at least

one DMA transfer, and thus the NIC can sustain roughly the same number of DMA

transfers per second.

For 40Gb/s, we used a Mellanox Connect-X3 NIC [58] to transmit 64 byte

packets. We observed that it could only support about 13.1 Mpps, which is less than the

rate required to sustain 40Gb/s with 64 byte packets. However, using MTU-sized frames,

and TSO disabled, it was able to drive 3.25 Mpps, which was sufficient to sustain line

rate at 40Gb/s.

These reference points allow us to gauge the performance of SENIC at both

10Gb/s and 40Gb/s. For instance, at 40Gb/s, SENIC would require 3.25×2 = 6.5 million

DMA transfers per second (to DMA both payloads and headers) to achieve line rate. This

is well under the 13.1 million transfers per second we were able to sustain on the same

NIC. Hence, we believe that SENIC can support line rate performance with TSO enabled

for MTU-sized segments. Since SENIC does not introduce additional DMA requests for

non-TSO packets, it should perform comparably to current commercial NICs.

123

5.9 Related Work

We classify related work into two parts: (1) hardware improvements, and (2) soft-

ware improvements, some of which try to work around limited hardware capabilities. The

NIC hardware datapath has only recently received attention from the research community

in light of the requirements listed in Section 5.2.

Hardware Efforts: Commercial NICs support transport offloading to support

millions of connection endpoints, such as ‘queue pairs’ in InfiniBand [78], or TCP sockets

in case of TCP offload engines [60]. The SENIC design is simpler as we only offload

rate limiting, and leave the task of reliable delivery to software.

Recent work [61, 85] calls for changes in the NIC architecture in light of low-

latency applications (e.g. RAMCloud [34]), and virtualized environments (e.g. public

clouds). Such efforts are complementary to SENIC, which focuses only on scaling

transmit scheduling. ServerSwitch [56] presented a programmable NIC to support packet

classification and configurable congestion management. ServerSwitch can directly benefit

from the large number of rate limiters in SENIC.

A number of efforts have focused on scalable packet schedulers in switches [62,

79]. A NIC is conceptually no different from a switch; however, switch schedulers have

to deal with additional complexity due to limited on-chip SRAM, and the fact that they

cannot control the exogenous traffic arrival rate. Thus, commercial switches often resort

to simpler approaches like AFD [70] which can scale to 1000s of policers, but can only

drop packets (instead of accurate pacing). On the other hand, the NIC being the first hop

is in a unique position—its design can be made considerably simpler by leveraging host

DRAM to store all packets. This approach enables SENIC to simultaneously scale to,

and accurately pace, a large number of traffic classes.

Software Efforts: An alternate approach to deal with limited NIC rate limiters is

124

to share them in some fashion, which has been explored by approaches like vShaper [51]

and FasTrak [65]. SENIC eases the burden on such approaches, as we believe the NIC is

particularly amenable to large-scale rate limiting by taking advantage of host DRAM.

However, if unforeseen applications require more rate limiters than SENIC can offer,

such techniques come in handy.

IsoStack [86] proposed offloading the entire TCP/IP network stack to dedicated

cores. Our SENIC software prototype mimics this approach (offloading only the sched-

uler to a dedicated core), which explains the performance benefits in our evaluation.

Architectures for fast packet IO such as Netmap [82] are orthogonal to SENIC, and they

only stand to benefit from scalable rate limiting in the NIC.

5.10 Summary

Historically, the NIC has been an ideal place to offload common network tasks

such as packet segmentation, VLAN encapsulation, checksumming, and rate limiting

is no exception. Today’s NICs offer only a handful of rate limiters, however new

requirements such as performance isolation and OS-bypass for low-latency transport

demand more rate limiters. We argued why it makes sense to pursue a hardware offload

approach to rate limiting: at data center scale, a custom ASIC is cheaper than dedicating

CPU resources for a task that requires real time packet processing. We implemented a

proof-of-concept NIC on the NetFPGA to demonstrate the feasibility of scaling hardware

rate limiters to thousands of queues. We believe the NIC hardware is the cost-effective

place to implement rate limiting, especially as we scale the bandwidth per-server to

40Gb/s and beyond.

125

5.11 Acknowledgments

This research was supported in part by the NSF through grants CNS-1314921 and

CNS-1040190. Additional funding was provided by a Google Focused Research Award.

We would like to thank our shepherd Saikat Guha and the anonymous NSDI reviewers.

Chapter 5, in part, contains material as it appears in the Proceedings of the 11th

USENIX Symposium on Networked Systems Design and Implementation (NSDI’14),

Seattle, WA, April 2014. “SENIC: Scalable NIC for End-Host Rate Limiting”. Sivasankar

Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, George Porter,

and Amin Vahdat. The dissertation author was the primary investigator and author of this

paper.

Chapter 5, in part, contains material as it appears in the Proceedings of the 5th

USENIX Conference on Hot Topics in Cloud Computing (HotCloud ’13), San Jose,

CA, June 2013. “NicPic: Scalable and Accurate End-Host Rate Limiting”. Sivasankar

Radhakrishnan, Vimalkumar Jeyakumar, Abdul Kabbani, George Porter, and Amin

Vahdat. The dissertation author was the primary investigator and author of this paper.

Chapter 6

Conclusion

Modern web services are complex systems that have sophisticated network sub-

systems. In this dissertation, we took a holistic look at how web services are designed

and used, identified three key networking challenges they face, and presented solutions.

TCP Fast Open is an improvement to TCP, that enables data transfer to begin

instantly without any delay for setting up a connection. This has a significant impact

on the latency for short TCP transfers such as HTTP web requests, which was one of

the driving use cases for the design. TCP Fast Open enables the safe exchange of data

during TCP’s 3-way handshake, without compromising on server security or making the

server susceptible to denial-of-service attacks. TCP Fast Open relies on a simple security

cookie granted by the server to authenticate clients connecting to it using TCP Fast Open,

providing defense against denial-of-service attacks. Authenticating client IP addresses

through the cookie also helps protect against amplified reflection attacks. TCP Fast

Open has a simple design, enabling rapid and incremental deployment. It interoperates

well with middle-boxes, traditional TCP implementations, and server farms. The simple

API for applications enables web services to easily use TCP Fast Open, and we believe

this can have a significant impact on reducing web service latency. TCP Fast Open is

widely deployed and is available as part of the Linux kernel since version 3.6. It has been

deployed across all of Google’s web servers. At the time of writing this dissertation, TCP

126

127

Fast Open is under discussion at the IETF for publishing as an Experimental Internet

Standard [23]. The Chrome web browser has application level support for users to take

advantage of TCP Fast Open.

Dahu is a switch mechanism for commodity data center switches, that enables the

adoption of direct connect networks in data centers. Existing data center multipath designs

are constrained by the static nature of ECMP, and the inability of commodity switches to

go beyond shortest path routing. Dahu enables dynamic hashing of traffic along different

network paths. Further, Dahu actively exploits non-shortest path forwarding to reduce

congestion, while preventing persistent forwarding loops. We presented a decentralized

load balancing heuristic that can quickly respond to congestion by making local decisions

in switches, and be more reactive than centralized approaches. Dahu enables data centers

to adopt direct connect topologies, and build networks that provision the required capacity

with fewer switches for common communication patterns. Dahu offers the same ease of

use, decoupled application logic, and lower complexity and commoditization of current

data center network designs that use commodity switches. We believe this can maximize

network utilization in the data center.

Network performance isolation in the data center is a problem that has had

significant interest recently. With the rise of virtualization and the increasing level of

statistical multiplexing of resources in the data center, performance isolation has become

an important consideration. Server consolidation, and the increasing density of compute,

storage, and bandwidth resources in servers makes this problem more challenging as

many more services share physical resources. SENIC is a scalable NIC design that

supports tens of thousands of traffic classes natively in the NIC to meet the needs of

performance isolation in the data center. SENIC can be used as a plug in replacement

for today’s NICs — it exposes the same familiar interface to the operating system to

enqueue packets to the NIC for transmission, and to configure rate limits or weights for

128

different traffic classes on the NIC. SENIC also supports hypervisor and kernel bypass to

reduce software packet processing overheads, and to reduce the latency in the datapath.

We built a hardware and a software prototype to demonstrate the feasibility and benefits

of the SENIC design. We showed that as link speeds to servers increase to 40Gb/s and

beyond, the NIC hardware is the most cost-effective place to implement rate limiting and

performance isolation.

The design of modern web services, and the relentless focus on improving

performance has made network design an important consideration. Today’s planetary

scale services have stringent performance needs from the network. The complexity of the

networking subsystem requires a holistic approach to consider the challenges, identify the

key components that have a large impact on network performance, and design solutions

that are innovative, but that can be incrementally or easily deployed at a large scale.

Bibliography

[1] Jung Ho Ahn, Nathan Binkert, Al Davis, Moray McLaren, and Robert S. Schreiber.
HyperX: Topology, Routing, and Packaging of Efficient Large-Scale Networks.
In Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis (SC), 2009.

[2] Mohammad Al-Fares, Khaled Elmeleegy, Benjamin Reed, and Igor Gashinsky.
Overclocking the Yahoo! CDN for Faster Web Page Loads. In Proceedings of the
ACM SIGCOMM Conference on Internet Measurement (IMC), 2011.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable, Com-
modity Data Center Network Architecture. In Proceedings of the ACM Special
Interest Group on Data Communication (SIGCOMM), 2008.

[4] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic Flow Scheduling for Data Cen-
ter Networks. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2010.

[5] Alexa top 500 global sites. http://www.alexa.com/topsites. Retrieved 4 October
2011.

[6] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha, Rong Pan, B. Prabhakar,
and M. Seaman. Data Center Transport Mechanisms: Congestion Control Theory
and IEEE Standardization. In 46th Annual Allerton Conference on Communication,
Control, and Computing, 2008.

[7] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
center TCP (DCTCP). In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2010.

[8] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vah-
dat, and Masato Yasuda. Less Is More: Trading a Little Bandwidth for Ultra-Low
Latency in the Data Center. In Proceedings of the USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), 2012.

129

http://www.alexa.com/topsites

130

[9] William Allen Simpson. TCP Cookie Transactions (TCPCT), 2011. RFC 6013.

[10] William Allen Simpson. TCP Cookie Transactions (TCPCT) Rapid Restart, July
2011. IETF Internet draft (work in progress).

[11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards
Predictable Datacenter Networks. In Proceedings of the ACM Special Interest
Group on Data Communication (SIGCOMM), 2011.

[12] Mike Belshe. More Bandwidth Doesnt Matter (Much). http://www.belshe.com/
2010/05/24/more-bandwidth-doesnt-matter-much/. Retrieved 9 March 2014.

[13] Mike Belshe. The Era of Browser Preconnect. http://www.belshe.com/2011/02/
10/the-era-of-browser-preconnect/. Retrieved 9 March 2014.

[14] Jon C. R. Bennett and Hui Zhang. Hierarchical Packet Fair Queueing Algorithms.
In Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM), 1996.

[15] Jon C.R. Bennett and Hui Zhang. WF2Q : Worst-case Fair Weighted Fair Queueing.
In Proceedings of the IEEE International Conference on Computer Communica-
tions (INFOCOM), 1996.

[16] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Char-
acteristics of Data Centers in the Wild. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement (IMC), 2010.

[17] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. MicroTE:
Fine Grained Traffic Engineering for Data Centers. In Proceedings of the ACM
Conference on Emerging Networking Experiments and Technologies (CoNEXT),
2011.

[18] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 1987.

[19] Andrea Bittau, Michael Hamburg, Mark Handley, David Maziers, and Dan Boneh.
The Case for Ubiquitous Transport-Level Encryption. In Proceedings of the
USENIX Security Symposium, 2010.

[20] R. Braden. T/TCP – TCP Extensions for Transactions Functional Specification,
1994. RFC 1644.

[21] Broadcom Smart-Hash Technology. http://www.broadcom.com/collateral/wp/
StrataXGS SmartSwitch-WP200-R.pdf. Retrieved 9 March 2014.

[22] Fabio Checconi, Luigi Rizzo, and Paolo Valente. QFQ: Efficient Packet Scheduling
With Tight Guarantees. IEEE/ACM Transactions on Networking (TON), June 2013.

http://www.belshe.com/2010/05/24/more-bandwidth-doesnt-matter-much/
http://www.belshe.com/2010/05/24/more-bandwidth-doesnt-matter-much/
http://www.belshe.com/2011/02/10/the-era-of-browser-preconnect/
http://www.belshe.com/2011/02/10/the-era-of-browser-preconnect/
http://www.broadcom.com/collateral/wp/StrataXGS_SmartSwitch-WP200-R.pdf
http://www.broadcom.com/collateral/wp/StrataXGS_SmartSwitch-WP200-R.pdf

131

[23] Yuchung Cheng, Jerry Chu, Sivasankar Radhakrishnan, and Arvind Jain. TCP
Fast Open. http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-07, February 2014.
IETF Internet Draft.

[24] Chromium by “pre-connect” to accelerate web browsing. http://goo.gl/KPoNW.
Retrieved 4 October 2011.

[25] CPLEX Linear Program Solver. http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/. Retrieved 9 March 2014.

[26] Cray XT3 Supercomputer. http://www.craysupercomputers.com/downloads/
CrayXT3/CrayXT3 Datasheet.pdf, Retrieved 4 March 2014.

[27] Andrew R. Curtis, Jeffrey C. Mogul, Jean Tourrilhes, Praveen Yalagandula, Puneet
Sharma, and Sujata Banerjee. DevoFlow: Scaling Flow Management for High-
Performance Networks. In Proceedings of the ACM Special Interest Group on
Data Communication (SIGCOMM), 2011.

[28] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing
Algorithm. In Proceedings of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM), 1989.

[29] Advait Abhay Dixit, Pawan Prakash, and Ramana Rao Kompella. On the Efficacy
of Fine-Grained Traffic Splitting Protocols in Data Center Networks. Techni-
cal Report Purdue/CSD-TR 11-011, Department of Computer Science, Purdue
University, 2011.

[30] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert,
Amit Agarwal, Arvind Jain, and Natalia Sutin. An Argument for Increasing TCP’s
Initial Congestion Window. ACM SIGCOMM Computer Communication Review
(CCR), July 2010.

[31] Wesley Eddy. TCP SYN Flooding Attacks and Common Mitigations, 2007. RFC
4987.

[32] Anwar Elwalid, Cheng Jin, Steven Low, and Indra Widjaja. MATE: MPLS Adap-
tive Traffic Engineering. In Proceedings of the IEEE International Conference on
Computer Communications (INFOCOM), 2001.

[33] Simon Fischer, Nils Kammenhuber, and Anja Feldmann. REPLEX: Dynamic Traf-
fic Engineering Based on Wardrop Routing Policies. In Proceedings of the ACM
Conference on Emerging Networking Experiments and Technologies (CoNEXT),
2006.

[34] Mario Flajslik and Mendel Rosenblum. Network Interface Design for Low Latency
Request-response Protocols. In Proceedings of the USENIX Annual Technical
Conference (ATC), 2013.

http://tools.ietf.org/html/draft-ietf-tcpm-fastopen-07
http://goo.gl/KPoNW
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.craysupercomputers.com/downloads/CrayXT3/CrayXT3_Datasheet.pdf
http://www.craysupercomputers.com/downloads/CrayXT3/CrayXT3_Datasheet.pdf

132

[35] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. VL2: A Scalable And Flexible Data Center Network. In Proceedings
of the ACM Special Interest Group on Data Communication (SIGCOMM), 2009.

[36] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data Centers. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM), 2010.

[37] Charles M. Hannum. Security problems associated with T/TCP. http://www.mid-
way.org/doc/ttcp-sec.txt, 1996. Retrieved 4 October 2011.

[38] Urs Hölzle. OpenFlow @ Google. Talk at Open Networking Summit, 2012.

[39] MPTCP htsim simulator. http://nrg.cs.ucl.ac.uk/mptcp/implementation.html. Re-
trieved 9 March 2014.

[40] Intel 82599 10GbE Controller. http://www.intel.com/content/dam/www/public/
us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf. Retrieved 9
March 2014.

[41] Internet World Stats: Usage and Population Statistics. http://www.
internetworldstats.com/stats.htm, Retrieved 14 January 2014.

[42] Cisco Global Cloud Index: Forecast and Methodology. http://www.cisco.
com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/
Cloud Index White Paper.pdf, Retrieved 4 March 2014.

[43] Keon Jang, Sangjin Han, Seungyeop Han, Sue Moon, and Kyoungsoo Park.
SSLShader: Cheap SSL acceleration with commodity processors. In Proceedings
of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2011.

[44] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Changhoon Kim, and Albert Greenberg. EyeQ: Practical Network Performance
Isolation at the Edge. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

[45] Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the
Tightrope: Responsive Yet Stable Traffic Engineering. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM), 2005.

[46] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin
Vahdat. Chronos: Predictable Low Latency for Data Center Applications. In
Proceedings of the ACM Symposium on Cloud Computing (SoCC), 2012.

http://www.mid-way.org/doc/ttcp-sec.txt
http://www.mid-way.org/doc/ttcp-sec.txt
http://nrg.cs.ucl.ac.uk/mptcp/implementation.html
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/82599-10-gbe-controller-datasheet.pdf
http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf

133

[47] John Kim, William J. Dally, and Dennis Abts. Flattened butterfly: A Cost-efficient
Topology for High-radix networks. In Proceedings of the International Symposium
on Computer Architecture (ISCA), 2007.

[48] John Kim, William J. Dally, Steve Scott, and Dennis Abts. Technology-Driven,
Highly-Scalable Dragonfly Topology. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), 2008.

[49] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A Distributed
Control Platform For Large-scale Production Networks. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
2010.

[50] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. Net-
alyzr: Illuminating the Edge Network. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement (IMC), 2010.

[51] Gautam Kumar, Srikanth Kandula, Peter Bodik, and Ishai Menache. Virtualizing
Traffic Shapers for Practical Resource Allocation. In Proceedings of the USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), 2013.

[52] Adam Langley. Probing the viability of TCP extensions. http://www.imperialviolet.
org/binary/ecntest.pdf.

[53] Jonathan Lemon. Kqueue - A Generic and Scalable Event Notification Facility. In
Proceedings of the USENIX Annual Technical Conference (ATC), 2001.

[54] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson. F10:
A Fault-Tolerant Engineered Network. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2013.

[55] John W Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. NetFPGA - An Open Platform
for Gigabit-rate Network Switching and Routing. In Proceedings of the IEEE
International Conference on Microelectronic Systems Education, 2007.

[56] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan, Haitao
Wu, Yongqiang Xiong, Rui Gao, and Yongguang Zhang. ServerSwitch: A Pro-
grammable and High Performance Platform for Data Center Networks. In Proceed-
ings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2011.

[57] Alberto Medina, Mark Allman, and Sally Floyd. Measuring Interactions Between
Transport Protocols and Middleboxes. In Proceedings of the ACM SIGCOMM
Conference on Internet Measurement (IMC), 2004.

http://www.imperialviolet.org/binary/ecntest.pdf
http://www.imperialviolet.org/binary/ecntest.pdf

134

[58] Mellanox Connect-X3. http://www.mellanox.com/related-docs/prod adapter
cards/ConnectX3 EN Card.pdf. Retrieved 9 March 2014.

[59] Jeffrey C. Mogul. The Case for Persistent-Connection HTTP. ACM SIGCOMM
Computer Communication Review (CCR), October 1995.

[60] Jeffrey C. Mogul. TCP Offload Is a Dumb Idea Whose Time Has Come. In Pro-
ceedings of the USENIX Workshop on Hot Topics in Operating Systems (HotOS),
2003.

[61] Jeffrey C. Mogul, Jayaram Mudigonda, Jose Renato Santos, and Yoshio Turner.
The NIC Is the Hypervisor: Bare-Metal Guests in IaaS Clouds. In Proceedings of
the USENIX Workshop on Hot Topics in Operating Systems (HotOS), 2013.

[62] Sung-Whan Moon, Jennifer Rexford, and Kang G Shin. Scalable Hardware
Priority Queue Architectures for High-Speed Packet Switches. ACM Transactions
on Computer Systems (TOCS), November 2000.

[63] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan. Scalable
Rule Management for Data Centers. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2013.

[64] Myri-10G PCI Express Network Adapter. https://www.myricom.com/products/
network-adapters/10g-pcie-8b-2s.html, Retrieved 25 September 2013.

[65] Radhika Niranjan Mysore, George Porter, and Amin Vahdat. FasTrak: Enabling
Express Lanes in Multi-Tenant Data Centers. In Proceedings of the ACM Confer-
ence on Emerging Networking Experiments and Technologies (CoNEXT), 2013.

[66] The need for speed. http://www.technologyreview.com/files/54902/GoogleSpeed
charts.pdf. Retrieved 4 October 2011.

[67] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout, and Mendel
Rosenblum. Fast Crash Recovery in RAMCloud. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2011.

[68] OpenFlow Consortium. http:://www.openflow.org. Retrieved 9 March 2014.

[69] OpenFlow Switch Specification - Version 1.1. http://www.openflow.org/
documents/openflow-spec-v1.1.0.pdf. Retrieved 9 March 2014.

[70] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. Approximate Fairness
Through Differential Dropping. ACM SIGCOMM Computer Communication
Review (CCR), April 2003.

http://www.mellanox.com/related-docs/prod_adapter_cards/ConnectX3_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/ConnectX3_EN_Card.pdf
https://www.myricom.com/products/network-adapters/10g-pcie-8b-2s.html
https://www.myricom.com/products/network-adapters/10g-pcie-8b-2s.html
http://www.technologyreview.com/files/54902/GoogleSpeed_charts.pdf
http://www.technologyreview.com/files/54902/GoogleSpeed_charts.pdf
http:://www.openflow.org
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

135

[71] PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Technology.
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-
iov-technology-paper.html, Retrieved 25 September 2013.

[72] Amar Phanishayee, Elie Krevat, Vijay Vasudevan, David G. Andersen, Gregory R.
Ganger, Garth A. Gibson, and Srinivasan Seshan. Measurement and Analysis of
TCP Throughput Collapse in Cluster-based Storage Systems. In Proceedings of
the USENIX Conference on File and Storage Technologies (FAST), 2008.

[73] T/TCP Vulnerabilities. Phrack Magazine, 8(53), July 1998.

[74] Sivasankar Radhakrishnan, Rishi Kapoor, Malveeka Tewari, George Porter, and
Amin Vahdat. Dahu: Improved Data Center Multipath Forwarding. Technical
Report UCSD/CS2013-0992, Department of Computer Science, University of
California, San Diego, February 2013.

[75] Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. Improving Datacenter Performance and Robustness
with Multipath TCP. In Proceedings of the ACM Special Interest Group on Data
Communication (SIGCOMM), 2011.

[76] Sreeram Ramachandran. Web metrics: Size and number of resources. http:
//code.google.com/speed/articles/web-metrics.html. Retrieved 9 March 2014.

[77] RAMCloud RPC Performance Numbers. https://ramcloud.stanford.edu/wiki/
display/ramcloud/RPC+Performance+Numbers, Retrieved 25 September 2013.

[78] RDMA Aware Networks Programming User Manual. http://www.mellanox.com/
related-docs/prod software/RDMA Aware Programming user manual.pdf, Re-
trieved 25 September 2013.

[79] Jennifer Rexford, Flavio Bonomi, Albert Greenberg, and Albert Wong. A Scal-
able Architecture for Fair Leaky-Bucket Shaping. In Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM), 1997.

[80] Transmission Control Protocol, 1981. RFC 793.

[81] Luigi Rizzo. Dummynet: A Simple Approach to the Evaluation of Network
Protocols. ACM SIGCOMM Computer Communication Review (CCR), January
1997.

[82] Luigi Rizzo. netmap: a novel framework for fast packet I/O. In Proceedings of
the USENIX Annual Technical Conference (ATC), 2012.

[83] Henrique Rodrigues, Jose Renato Santos, Yoshio Turner, Paolo Soares, and Dor-
gival Guedes. Gatekeeper: Supporting Bandwidth Guarantees for Multi-tenant

http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://code.google.com/speed/articles/web-metrics.html
http://code.google.com/speed/articles/web-metrics.html
https://ramcloud.stanford.edu/wiki/display/ramcloud/RPC+Performance+Numbers
https://ramcloud.stanford.edu/wiki/display/ramcloud/RPC+Performance+Numbers
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf
http://www.mellanox.com/related-docs/prod_software/RDMA_Aware_Programming_user_manual.pdf

136

Datacenter Networks. In Proceedings of the USENIX Workshop on I/O Virtualiza-
tion, 2011.

[84] Peter Romirer-Maierhofer, Fabio Ricciato, Alessandro D’Alconzo, Robert Franzan,
and Wolfgang Karner. Network-Wide Measurements of TCP RTT in 3G. In
Proceedings of the Workshop on Traffic Monitoring and Analysis. Springer-Verlag,
2009.

[85] Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
John K Ousterhout. It’s Time for Low Latency. In Proceedings of the USENIX
Workshop on Hot Topics in Operating Systems (HotOS), 2011.

[86] Leah Shalev, Julian Satran, Eran Borovik, and Muli Ben-Yehuda. IsoStack: Highly
Efficient Network Processing on Dedicated Cores. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2010.

[87] Alan Shieh, Srikanth Kandula, Albert Greenberg, and Changhoon Kim. Seawall:
Performance Isolation for Cloud Datacenter Networks. In Proceedings of the
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), 2010.

[88] M. Shreedhar and George Varghese. Efficient Fair Queueing Using Deficit Round
Robin. In Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM), 1995.

[89] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:
Networking Data Centers Randomly. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2012.

[90] Shan Sinha, Srikanth Kandula, and Dina Katabi. Harnessing TCPs Burstiness
using Flowlet Switching. In Proceedings of the ACM Workshop on Hot Topics in
Networks (HotNets), 2004.

[91] Peng Sun, Minlan Yu, Michael J. Freedman, and Jennifer Rexford. Identifying
Performance Bottlenecks in CDNs through TCP-Level Monitoring. In Proceedings
of the ACM SIGCOMM Workshop on Measurements Up the Stack, 2011.

[92] Titan Supercomputer. http://www.olcf.ornl.gov/support/system-user-guides/titan-
user-guide/. Retrieved 9 March 2014.

[93] J. Touch, J. Heidemann, and K. Obraczka. Analysis of HTTP performance.
USC/ISI Research Report 98-463, December 1998.

[94] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang. An
Untold Story of Middleboxes in Cellular Networks. In Proceedings of the ACM
Special Interest Group on Data Communication (SIGCOMM), 2011.

http://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/
http://www.olcf.ornl.gov/support/system-user-guides/titan-user-guide/

137

[95] Zhen Wang, Felix Xiaozhu Lin, Lin Zhong, and Mansoor Chishtie. Why are
Web Browsers Slow on Smartphones. In Proceedings of the Workshop on Mobile
Computing Systems and Applications (HotMobile), 2011.

[96] Zhiheng Wang. Navigation Timing. http://dvcs.w3.org/hg/webperf/raw-file/tip/
specs/NavigationTiming/Overview.html. Retrieved 9 March 2014.

[97] Web Page Replay Tool. http://code.google.com/p/web-page-replay/. Retrieved 9
March 2014.

[98] Web performance and ecommerce. http://www.strangeloopnetworks.com/
resources/#Infographics. Retrieved 4 October 2011.

[99] When seconds count. ftp://ftp.software.ibm.com/software/au/downloads/
GomezWebSpeedSurvey.pdf, Retrieved 4 March 2014.

[100] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. Better
Never than Late: Meeting Deadlines in Datacenter Networks. In Proceedings of
the ACM Special Interest Group on Data Communication (SIGCOMM), 2011.

[101] Xilinx User Community Forums: ML506 board: Why my DMA IP hangs
OS? http://forums.xilinx.com/t5/PCI-Express/ML506-board-Why-my-DMA-IP-
hangs-OS/td-p/94298, Retrieved 25 September 2013.

[102] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy
Katz. DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks.
In Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM), 2012.

[103] Wenxuan Zhou, Qingxi Li, Matthew Caesar, and Brighten Godfrey. ASAP: A Low-
Latency Transport Layer. In Proceedings of the ACM Conference on Emerging
Networking Experiments and Technologies (CoNEXT), 2011.

http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html
http://dvcs.w3.org/hg/webperf/raw-file/tip/specs/NavigationTiming/Overview.html
http://code.google.com/p/web-page-replay/
http://www.strangeloopnetworks.com/resources/#Infographics
http://www.strangeloopnetworks.com/resources/#Infographics
ftp://ftp.software.ibm.com/software/au/downloads/GomezWebSpeedSurvey.pdf
ftp://ftp.software.ibm.com/software/au/downloads/GomezWebSpeedSurvey.pdf
http://forums.xilinx.com/t5/PCI-Express/ML506-board-Why-my-DMA-IP-hangs-OS/td-p/94298
http://forums.xilinx.com/t5/PCI-Express/ML506-board-Why-my-DMA-IP-hangs-OS/td-p/94298

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Challenges
	Wide Area Network Latency
	Data Center Network Infrastructure
	Co-tenancy and Network Performance Isolation

	Efficient Networking for Modern Web Services
	TCP Fast Open
	Dahu
	SENIC

	Organization

	Design and Implementation Principles
	Principles
	State Management Principle
	Short Circuiting Principle
	Inheritance Principle

	Implications of the Principles
	State Management Principle
	Short Circuiting Principle
	Inheritance Principle

	Summary

	TCP Fast Open
	Introduction
	Motivation
	Google Server Logs Analysis
	Chrome Browser Statistics

	Design
	Context and Assumptions
	Design Overview
	Cookie Design
	Security Considerations
	Handling Duplicate SYN Segments
	API Changes

	Deployability
	New TCP Options / Data in SYN
	Server Farms
	Network Address Translation (NAT)
	TCP Option Space

	Implementation
	Kernel Support
	Application Support

	Evaluation
	Whole Page Download Performance
	Server Performance

	Discussion
	One Time Cookies
	Data After SYN
	Server-side TFO Cache
	TCP Fast Open in Low Latency Networks
	Cookie-less TCP Fast Open

	Related Work
	Summary
	Acknowledgments

	Dahu: Commodity Switches for Direct Connect Data Center Networks
	Introduction
	Motivation and Requirements
	Challenges
	Dahu Requirements and Design Decisions

	Switch Hardware Primitives
	Port Groups With Virtual Ports
	Allowed Port Bitmaps
	Eliminating Forwarding Loops

	Switch software
	Background on HyperX Topology
	Non-Minimal Routing
	Traffic Load Balancing
	Load Balancing Algorithm
	Load Balancing Heuristic
	Fault Tolerance

	Deployability
	Evaluation
	Simulator
	HyperX Networks
	Fat-Tree Networks
	MPTCP in HyperX Networks

	Discussion
	Related Work
	Summary
	Acknowledgments

	SENIC: Scalable NIC for End-Host Rate Limiting
	Introduction
	Motivation
	The Need For Scalable Rate Limiting
	Limitations of Current Systems

	Design
	Service Model
	CPU and NIC Responsibilities

	Packet Scheduling in SENIC
	SENIC Packet Scheduling Algorithm
	Hierarchical Bandwidth Sharing

	Advanced NIC features
	OS and Hypervisor Bypass
	Other Features

	Implementation
	Software Prototype
	NetFPGA Prototype

	Evaluation
	Hardware Microbenchmarks
	Software Macrobenchmarks

	Practical Considerations
	Related Work
	Summary
	Acknowledgments

	Conclusion
	Bibliography

