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ABSTRACT OF THE DISSERTATION

Learning Visual Correspondences across Instances and Video Frames

by

Xueting Li

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, December 2021

Professor Ming-Hsuan Yang, Chair

Correspondence is ubiquitous in our visual world. It describes the relationship of two

images by pointing out which parts in one image relate to which parts in the other

image. It is the fundamental task in many computer vision applications. For instance,

object tracking essentially studies the correspondence of different parts on the same

object through time, while semantic segmentation links the same semantic parts of

different objects through space. Furthermore, the study of correspondence facilitates

many applications such as structure from motion or label propagation through video

frames. However, correspondence annotation is notoriously hard to harvest. Existing

work either utilize synthesized data (e.g., optical flow from a game engine) or other

human annotations (e.g., semantic segmentation), leading to domain limitation or

tedious human efforts.

My research focuses on learning and applying correspondence in computer vision

tasks in a self-supervised manner to resolve these limitations. I start by introducing

a method that learns reliable dense correspondence from videos in a self-supervised

manner. Next, I discuss two methods that utilize correspondence between images or

video frames to facilitate 3D mesh reconstruction. To begin with, I present a work

that learns a self-supervised, single-view 3D reconstruction model that predicts the

3D mesh shape, texture, and camera pose of a target object with a collection of

2D images and silhouettes. Then, based on the two methods discussed above, the

intuitive question is that can we combine the correspondence learned in the first work

and the mesh reconstruction model in the second work to solve mesh reconstruction

xiv



from video frames? Thus, in the last work, I demonstrate an algorithm to reconstruct

temporally consistent 3D meshes of deformable object instances from videos in the

wild.
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Chapter 1

Introduction

1



2

1.1 What is correspondence?

Visual correspondence is a fundamental concept in computer vision. It describes

relationships between different images by determining the parts that relate to each

other in the images. Correspondence exists ubiquitously in computer vision tasks.

For instance, in image classification [36, 59], objects assigned to the same class (e.g.,

all humans) are correspondences. Or in pose estimation [88, 113], the same joint of

different objects in the same category (e.g., hands of all humans) are correspondences.

Specifically, in this thesis, we consider two types of correspondences – temporal and

semantic correspondences.

Temporal correspondences [69, 131, 107, 21, 43] describe the movement and ap-

pearance changes of the same object at different frames in a video. Thanks to the

continuity of our visual world (i.e., our visual world seldom changes abruptly), the

same objects such as the bear claws in Figure 1.1(a), usually appear repeatedly in

adjacent video frames, with slight movement and changes in appearance. In this

thesis, we introduce a method [69] that learns such temporal correspondences from

large-scale unlabeled videos as well as its application in helping mesh reconstruction

from video frames [67].

Semantic correspondences [42, 76, 146] refer to the corresponding semantic parts

in different objects in the same category. Taking the bird images in Figure 1.1(b) as

an example, the wings of different birds are semantic correspondences. Such seman-

tic correspondences provide abundant knowledge about the underline 3D shapes of

objects in the images and we show how to utilize them for unsupervised single-view

mesh reconstruction [68].

1.2 Self-supervised Correspondence Learning and

Application

As a cornerstone task in computer vision, correspondence learning has been well

studied in the past decades [131, 69, 42, 76]. However, annotating correspondences

between images requires tedious human efforts, especially for pixel-wise dense corre-

spondence labeling (e.g., optical flow). Existing work bypass this limitation either
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(a) Temporal Correspondence (b) Semantic Correspondence

Figure 1.1: (a) Temporal correspondence. Image credit: The DAVIS-2017 dataset [95]. (b)

Semantic correspondence. Image credit: The SCOPS method [42].

by harvesting correspondence annotations from game engines [6], or utilizing indirect

annotations such as semantic segmentation [72, 30] as supervisions. Yet, the former

presents a large domain gap when applied to real-world images, and the latter still

requires a large number of labeling efforts. To resolve these limitations, my research

focuses on learning and utilizing correspondences in a self-supervised manner.

Self-supervised methods have spurred great interest in the computer vision com-

munity due to their data efficiency [35, 11, 13]. The key and the difficulty for such

methods lie in developing self-supervised signals and constraints for network train-

ing. This dissertation demonstrates how to learn temporal correspondences from

unlabeled videos using color as the self-suerpvision signal. I also introduce how to

utilize temporal and semantic correspondences to facilitate unsupervised 3D mesh

reconstruction for images and videos.

1.3 Contributions

The contributions of this dissertation include:

• We propose a self-supervised method [69] to find accurate correspondences at
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different levels across video frames, which outperforms state-of-the-art meth-

ods on a variety of visual correspondence tasks, e.g., video instance and part

segmentation, keypoints tracking, and object tracking.

• We introduce a self-supervised, single-view 3D reconstruction model that pre-

dicts the 3D mesh shape, texture, and camera pose of a target object with a

collection of 2D images and silhouettes, by utilizing semantic correspondences

across images [68]. Through various experiments on several categories of de-

formable and rigid objects, we demonstrate that our unsupervised method per-

forms comparably if not better than existing category-specific reconstruction

methods learned with supervision.

• We present an algorithm to reconstruct temporally consistent 3D meshes of

deformable object instances from videos in the wild without requiring annota-

tions of 3D mesh, 2D keypoints, or camera pose for each video frame by using

temporal correspondences [67]. We demonstrate that our algorithm recovers

temporally consistent and reliable 3D structures from videos of non-rigid ob-

jects, including those of animals captured in the wild – an extremely challenging

task rarely addressed before.

1.4 Dissertation Overview

The rest of the text is organized as follows: In Chapter 2, we introduce a method

that learns temporal correspondence from large-scale unlabeled videos. Next in Chap-

ter 3, we apply semantic correspondence in unsupervised mesh reconstruction from

images. We further demonstrate how to use learned temporal correspondence to

reconstruct consistent shapes from videos in Chapter 4. Finally, we conclude this

dissertation and discuss future work in Chapter 5.



Chapter 2

Self-supervised Temporal

Correspondence Learning

5
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2.1 Overview

In this chapter, we propose to learn reliable dense correspondence from videos in

a self-supervised manner. Our learning process integrates two highly related tasks:

tracking large image regions and establishing fine-grained pixel-level associations be-

tween consecutive video frames. We exploit the synergy between both tasks through

a shared inter-frame affinity matrix, which simultaneously models transitions between

video frames at both the region- and pixel-levels. While region-level localization helps

reduce ambiguities in fine-grained matching by narrowing down search regions, fine-

grained matching provides bottom-up features to facilitate region-level localization.

Our method outperforms the state-of-the-art self-supervised methods on a variety

of visual correspondence tasks, including video-object and part-segmentation prop-

agation, keypoint tracking, and object tracking. Our self-supervised method even

surpasses the fully-supervised affinity feature representation obtained from a ResNet-

18 pre-trained on the ImageNet.

2.2 Introduction

Learning representations for visual correspondence is a fundamental problem that

is closely related to a variety of vision tasks: correspondences between multi-view

images relate 2D and 3D representations, and those between frames link static images

to dynamic scenes. To learn correspondences across frames in a video, numerous

methods have been developed from two perspectives: (a) learning region/object-level

correspondences, via object tracking [3, 110, 118, 98, 128] or (b) learning pixel-level

correspondences between multi-view images or frames, e.g., via stereo matching [87]

or optical flow estimation [73, 107, 43, 79].

However, most methods address one or the other problem and significantly less

effort has been made to solve both of them together. The main reason is that meth-

ods designed to address either of them optimize different goals. Object tracking fo-

cuses on learning object representations that are invariant to viewpoint and deforma-

tion changes, while learning pixel-level correspondence focuses on modeling detailed

changes within an object over time. Subsequently, the existing supervised methods
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for these two problems often use different annotations. For example, bounding boxes

are annotated in real videos for object tracking [137]; and pixel-wise associations are

generated from synthesized data for optical flow estimation [6, 21]. Datasets with

annotations for both tasks are scarcely available and supervision, here, is a further

bottleneck preventing us from connecting the two tasks.

In this chapter, we demonstrate that these two tasks inherently require the same

operation of learning an inter-frame transformation that associates the contents of

two images. We show that the two tasks benefit greatly by modeling them jointly

via a single transformation operation which can simultaneously match regions and

pixels. To overcome the lack of data with annotations for both tasks we exploit

self-supervision via the signals of (a) Temporal Coherency, which states that objects

or scenes move smoothly and gradually over time; (b) Cycle Consistency, correct

correspondences should ensure that pixels or regions match bi-directionally and (c)

Energy Preservation, which preserves the energy of feature representations during

transformations. Since all these supervisory signals naturally exist in videos and are

task-agnostic, the transformation that we learn through them can generalize well to

any video without restriction on domain or object category.

Our key idea is to learn a single affinity matrix for modeling all inter-frame trans-

formations through a network that learns appropriate feature representations that

model the affinity. We show that region localization and fine-grained matching can

be carried out by sharing the affinity in a fully differentiable manner: the region

localization module finds a pair of patches with matching parts in the two frames

(Figure 2.1, mid-top), and the fine-grained module reconstructs the color feature by

transforming it between the patches (Figure 2.1, mid-bottom), all through the same

affinity matrix. These two tasks symbiotically facilitate each other: the fine-grained

matching module learns better feature representations that lead to an improved affin-

ity matrix, which in turn generates better localization that reduces the search space

and ambiguities for fine-grained matching (Figure 2.1, right).

The contributions of this work are summarized as: (a) A joint-task self-supervision

network is introduced to find accurate correspondences at different levels across video

frames. (b) A general inter-frame transformation is proposed to support both tasks

and to satisfy various video constraints – coherency, cycle, and energy consistency. (c)
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Figure 2.1: Our method (c) compared against (a) region-level matching (e.g., object track-

ing), and (b) pixel-level matching, e.g., matching by colorization [120]. We propose a

joint-task framework which conducts region-level and fine-grained matching simultaneously

and which are supported by a single inter-frame affinity matrix A. During training, the two

tasks improve each other progressively. To illustrate this, we unroll two training iterations

and illustrate the improvement with the red box and arrow.

Our method outperforms state-of-the-art methods on a variety of visual correspon-

dence tasks, e.g., video instance and part segmentation, keypoints tracking, and ob-

ject tracking. Our self-supervised method even surpasses the fully-supervised affinity

feature representation obtained from a ResNet-18 pre-trained on the ImageNet [18].

2.3 Related Work

Learning correspondence in time is widely explored in visual tracking [3, 110, 118,

98, 128] and optical flow estimation [107, 73, 43]. Existing models are mainly trained

on large annotated datasets, which require significant efforts. To overcome the limit

of annotations, numerous methods have been developed to learn correspondences in a

self-supervised manner [126, 131, 120]. Our work focuses on learning correspondence

with self-supervision, and we discuss the most related methods here.

Object-level correspondence. The goal of visual tracking is to determine a bound-

ing box in each frame based on an annotated box in the reference image. Most

methods belong to one of the two categories that use: (a) the tracking-by-detection

framework [1, 48, 124, 65], which models tracking as detection applied independently
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to individual frames; or (b) the tracking-by-matching framework that models cross-

frame relations and includes several early attempts, e.g., mean-shift trackers [17, 143],

kernelized correlation filters (KCF) [39, 70], and several works that model correlation

filters as differentiable blocks [81, 82, 14, 127]. Most of these methods use annotated

bounding boxes [137] in every frame of the videos to learn feature representations for

tracking. Our work can be viewed as exploiting the tracking-by-matching framework

in a self-supervised manner.

Fine-grained correspondence. Dense correspondence between video frames has

been widely applied for optical flow and motion estimation [79, 107, 73, 43], where

the goal is to track individual pixels. Most deep neural networks [43, 107] are trained

with the objective of regressing the ground-truth optical flow produced by synthetic

datasets [6, 21]. In contrast to many classic methods [79, 73] that model dense

correspondence as a matching problem, direct regression of pixel offsets has limited

capability for frames containing dramatic appearance changes [5, 104], and suffers

from problems related to domain shift when applied to real-world scenarios.

Self-supervised learning. Recently, numerous approaches have been developed

for correspondence learning via various self-supervised signals, including image [64]

or color transformation [120] and cycle-consistency [131, 126]. Self-supervised learning

of correspondence in videos has been explored along the two different directions – for

region-level localization [131, 126] and for fine-grained pixel-level matching [120, 58].

In [126], a correlation filter is learned to track regions via a cycle-consistency con-

straint, and no pixel-level correspondence is determined. [131] develops patch-level

tracking by modeling the similarity transformation of pixels within a fixed rectangu-

lar region. Conversely, several methods learn a matching network by transforming

color/RGB information between adjacent frames [120, 63, 58]. As no region-level

regularization is exploited, these approaches are less effective when color features are

less distinctive (see Figure 2.1(b)). In contrast, our method learns object-level and

pixel-level correspondence jointly across video frames in a self-supervised manner.



10

=2
2

=2
2

⨂ ⨂ ⨂ ⨂

Region-level	localization Fine-grained	matching

-<$ -<<

F

JH

G:
KI K7

JH

J:

⨂ Matrix	multiplication GT Predict
Data	flow
Gradient	flow

E

Figure 2.2: Main steps of proposed method. Blue grids represent the reference-patch p1’s

and target-frame f2’s feature maps that are shared by the region-level localization (left box)

and fine-grained matching (right box) modules. Apf is the affinity between p1 and f2, and

App is that between p1 and p2. p2 is a differentiable crop from the frame f2. The maps lx

and ly are the coordinates of pixels on a regular grid. All modules are differentiable, where

the gradient flow is visualized via the red dashed arrows.

2.4 Approach

Video frames are temporally coherent in nature. For a pair of adjacent frames,

pixels in a later frame can be considered as being copied from some locations of an

earlier one with slight appearance changes conforming to object motion. This “copy”

operator can be expressed via a linear transformation with a matrix A, in which

Aij = 1 denotes that the pixel j in the second frame is copied from pixel i in the first

one. An approximation of A is the inter-frame affinity matrix [118, 77, 131]:

Aij = κ(f1i, f2j) (2.1)

where κ denotes some similarity function. Each entry Aij represents the similarity

of subspace pixels i and j in the two frames f1 ∈ RC×N1 and f2 ∈ RC×N2 , where

f ∈ RC×N is a vectorized feature map with C channels and N pixels. In this work,

our goal is to learn the feature embedding f that optimally associates the contents of

the two frames.

One free supervisory signal that we can utilize is color. To learn the inter-frame

transformation in a self-supervised manner, we can slightly modify (2.1) to generate

the affinity via features f learned only from gray-scale images. The learned affinity



11

is then utilized to map the color channels from one frame to another [120, 77], while

using the ground-truth color as the self-supervisory signal.

One strict assumption of this formulation is that the paired frames need to have

the same contents – no new object or scene pixel should emerge over time. Hence,

the existing methods [120, 77] sample pairs of frames either uniformly, or randomly

within a specified interval, e.g., 50 frames. However, it is difficult to determine a

“perfect” interval as video contents may change sporadically. When transforming

color from a reference frame to a target one, the objects/scene pixels in the target

frame may not exist in the reference frame, thereby leading to wrong matches and an

adverse effect on feature learning. Another issue is that a large portion of the video

frames are “static”, in which the sampled pair of frames are almost the same and

cause the learned affinity to be an identity matrix.

We show that the above problems can be addressed by incorporating a region-level

localization module. Given a pair of reference and target frames, we first randomly

sample a patch in the reference frame and localize this patch in the target frame

(see Figure 2.2). The inter-frame color transformation is then estimated between the

paired patches. Both localization and color transformation are supported by a single

affinity derived from a convolutional neural network (CNN) based on the fact that the

affinity matrix can simultaneously track locations and transform features discussed

in this section.

2.4.1 Transforming Feature and Location via Affinity

We sample a pair of frames and denote the 1st frame as the reference and the

2nd one as the target. The CNN can be any effective model, e.g., ResNet-18 [36]

with the first 4 blocks that takes a gray-scale image as input. We compute the

affinity and conduct the feature transformation and localization on the top layer of

the CNN, with features that are one-eighth the size of the input image. This ensures

the affinity matrix to be memory efficient and each pixel in the feature space to

contain considerable local contextual information.

Transforming feature representations. We adopt the dot product for κ in (2.1)

to compute the affinity, where each column can be interpreted as the similarity score
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between a point in the target frame to all points in the reference frame. For dense

correspondence, the inter-frame affinity needs to be sparse to ensure one-to-one map-

ping. However, it is challenging to model a sparse matrix in a deep neural network.

We relax this constraint and encourage the affinity matrix to be sparse by normaliz-

ing each column with the softmax function, so that the similarity score distribution

can be peaky and only a few pixels with high similarity in the reference frame are

matched to each point in the target frame:

Aij =
exp(f⊤

1if2j)∑
k exp(f

⊤
1kf2j)

, ∀i ∈ [1, N1], j ∈ [1, N2] (2.2)

where the variable definitions follow (2.1). The transformation is carried out as

ĉ2 = c1A, where A ∈ RN1×N2 , and ci has the same number of entries as fi and can

be features of the reference frame or any associated label, e.g., color, segmentation

mask or keypoint heatmap.

Tracing pixel locations. We denote lj = (xj, yj), l ∈ R2×N as the vectorized

location map for an image/feature with N pixels. Given a sparse affinity matrix, the

location of an individual pixel can be traced from a reference frame to an adjacent

target frame:

l12j =

N1∑
k=1

l11k Akj, ∀j ∈ [1, N2] (2.3)

where lmn
j represents the coordinate in frame m that transits to the jth pixel in frame

n. Note that lnn (e.g., l11 in (2.3)) usually represents a canonical grid as shown in

Figure 2.3.

2.4.2 Region-level Localization

In the target frame, region-level localization aims to localize a patch randomly

selected from the reference frame by predicting a bounding box (denoted as “bbox”)

on a region that shares matching parts with the selected patch. In other words, it is a

differential region of interest (ROI) with learnable center and scale. We compute an

N1 ×N2 affinity Apf according to (2.2) between feature representations of the patch

in the reference frame, and that of the whole target frame (see Figure 2.2(a)).
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Locating the center. To track the center position of the reference patch in the

target frame, we first localize each individual pixel of the reference patch p1 in the

target frame f2, according to (2.3). As we obtain the set l21, with the same number

of entries as p1, that collects the coordinates of the most similar pixels in f2, we can

compute the average coordinate C21 = 1
N1

∑N1

i=1 l
21
i of all the points, as the estimated

new position of the reference patch.

Scale modeling. For region-level tracking, the reference patch may undergo sig-

nificant scale changes. Scale estimation in object tracking is challenging and existing

methods mainly enumerate possible scales [3, 126] and select the optimal one. In

contrast, the scale can be estimated by our proposed model. We assume that the

transformed locations l21 are still distributed uniformly in a local rectangular region.

By denoting w as the width of the new bounding box, the scale is estimated by:

ŵ =
2

N1

N1∑
i=1

∥∥xi − C21(x)
∥∥
1

(2.4)

where the xi is the x-coordinate of the i
th entry in the l21. We note that (2.4) can be

proved by using the analogous continuous space. Suppose there is a rectangle with

scale (2w, 2h) and with its center located at the origin of a 2D coordinate plane. By

integrating points inside of it, we have:

1

w

∫ w

−w

∥x∥1 dx =
2

w

∫ w

0

xdx = w (2.5)

This represents the average absolute distances w.r.t. the center when transforming

to the discrete space. The estimation of height is conducted in the same manner.

Moving as a unit. An important assumption in the aforementioned ROI estima-

tion in the target frame is that the pixels from the reference patch should move in

unison – this is true in most videos, as an object or its parts typically move as one

unit at the region level. We enforce this constraint with a concentration regulariza-

tion [149, 42] term on the transformed pixels, with a truncated loss to penalize these
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points from moving too far away from the center:

Lc =

0,
∥∥l12j (x)− C12(x)

∥∥
1
≤ w and

∥∥l12j (y)− C12(y)
∥∥
1
≤ h

1
N2

∑N2

j=1

∥∥l12j − C12
∥∥
2
, otherwise

(2.6)

This formulation encourages all the tracked pixels, originally from a patch, to be

concentrated (see Figure 2.3) rather than being dispersed to other objects, which is

likely to happen for methods that are based on pixel-wise matching only, e.g., when

matching by color reconstruction, pixels of different objects having similar colors may

match each other, as shown in Figure 2.1(b).

2.4.3 Fine-grained Matching

Fine-grained matching aims to reconstruct the color information of the located

patch in the target frame, given the reference patch (see Figure 2.1). We re-use the

inter-frame affinity Apf by extracting a sub-affinity matrix App containing the columns

corresponding to the located pixels in the target frame, and by using it for the color

transformation described in the formulations in Section 2.4.1. To make the color

feature compatible with the affinity matrix, we train an auto-encoder that learns to

reconstruct an image in the Lab space faithfully (see the encoder E and the decoder

D in Figure 2.2). This network also encodes global contextual information from the

color channels. We show that using the color feature instead of pixels significantly

reduces the errors caused by reconstructing color directly in the image space [120] (see

Table 2.1, ours vs. [120]). In the following, we introduce self-supervisory signals as

regularization for fine-grained matching. For brevity, we denote A as the sub-affinity,

l and f as the vectorized coordinate and feature map, respectively, for the paired

patches.

Orthogonal regularization. Another important constraint, cycle-consistency, for

the transformation of both location [131] and feature [77] is the orthogonal regular-

ization. For a pair of patches, we encourage every pixel to fall into the same location

after one cycle of forward and backward tracking, as shown in Figure 2.3 (middle and

right):
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Figure 2.3: Concentration (left) and orthogonal (right) regularization. The dots denote

pixels in feature space. The orange arrows show how they push the pixels.

ˆl12 = l11A1→2, ˆl11 = ˆl12A2→1 (2.7)

Here we specifically add m → n to denote affinity transforming from the frame m

to n, i.e., Am→n = κ(fm, fn). Similarly, the cycle-consistency can be applied to the

feature space:

f̂2 = f1A1→2, f̂1 = f̂2A2→1 (2.8)

We show that enforcing cycle-consistency is equivalent to regularizing A to be orthog-

onal : With (2.7) and (2.8), it is easy to show that the optimal solution is achieved

when A−1
1→2 = A2→1. Inspired by recent style transfer methods [26, 77], the color

energy represented by the Gram-matrix should be consistent such that f1f
⊤
1 = f2f

⊤
2 ,

which derives that A⊤
1→2 = A2→1 is the goal to reconstruct the color information.

Thus, it is easy to show that regularizing A as orthogonal automatically satisfies the

cycle constraint. In practice, we switch the role of reference and target to perform the

transformation, as described in (2.7) and (2.8). We use the MSE loss between both

ˆl11 and l11, f̂1 and f1, and specifically replace A2→1 with A⊤
1→2 in Eq. (2.8) to enforce

the regularization. Namely, the orthogonal regularization provides a concise mathe-

matical formulation for many recent works [131, 126] that exploit cycle-consistency

in videos.
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Concentration regularization. We additionally apply the concentration loss (i.e.,

Eq.(2.6) without the truncation) in local, non-overlapping 8 × 8 grids of a feature

map, to encourage local context or object parts to move as an entity over time.

Unlike [131, 103] where local patches are regularized by similarity transformation via

a spatial transformation network [46], this local concentration loss is more flexible by

allowing arbitrary deformations within each local grid.

2.5 Experiments

We compare with state-of-the-art algorithms [120, 126, 131] on several tasks: in-

stance mask propagation, pose keypoints tracking, human parts segmentation prop-

agation and visual tracking.

2.5.1 Network Architecture

As shown in Figure 2.2, our model consists of a region-level localization module

and a fine-grained matching module that share a feature representation network (see

Figure 2.2). We use the ResNet-18 [36] as the network for fair comparisons with [120,

131]. The patch randomly cropped from the reference frame is of 256 × 256 pixels.

We carry out all our experiments on servers equipped with four 16GB Tesla V100

GPUs.

Training. We first train the auto-encoder in the matching module (the encoder

“E” and decoder “D” in Figure 2.2) to reconstruct images in the Lab space using the

MSCOCO [72] dataset. We then fix it and train the feature representation network

using the Kinetics dataset [54]. For all experiments, we train our model from scratch

without any level of pre-training or human annotations. The objectives include:

(a) concentration loss (Section 2.4.2 and 2.4.3), (b) color reconstruction loss and

(c) orthogonal regularization (Section 2.4.3). Involving the localization module from

the beginning in the training process prevents the network from converging because

poor localization makes matching impossible. Thus we first train our network using

patches cropped at the same location with the same size in the reference and target

frame respectively. Fine-grained matching is conducted between the two patches for
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10 epochs. We then jointly train the localization and matching module for another

10 epochs. We train our model using Adam [56] as the optimizer with a learning

rate of 10−4 for the warm-up and 0.5× 10−4 for the joint training of the localization

and matching modules. We set the temperature in the softmax layer applied to the

affinity matrix to 1 which empirically achieves best performance.

Inference. In the inference stage, we directly apply the affinity learned to transform

color feature representations, on different types of inputs, e.g., segmentation masks

and keypoint maps. We use the same testing protocol as Wang et al. [131] for all

tasks. Similar to [131], we adopt a recurrent inference strategy by propagating the

ground truth segmentation mask or keypoint heatmap from the first frame, as well as

the predicted results from the preceding n frames onto the target frame. We average

all n+1 predictions to obtain the final propagated map (n is 1 for the VIP, and 7 for

all the other tasks). For fair comparisons, we also use the k-NN propagation schema

as Wang et al. [131] and set k = 5 for all tasks. To compare with the ResNet-18

trained on the ImageNet with classification labels, we replace our learned network

weights with it and leave other settings unchanged for fair comparisons.

2.5.2 Instance Segmentation Propagation on the DAVIS-2017

dataset

Figure 2.4 (a), Figure 2.5 and Figure 2.6 show the propagated instance masks.

Table 2.1 lists quantitative results of all evaluated methods based on the Jacaard

index J (IOU) and contour-based accuracy F . We use the full 480p images during

inference for our model. For fair comparisons we test the model by Wang et al. [131]

with the resolution of 480p, in addition to the result reported using 400×400 images.

Our model performs favorably against the self-supervised state-of-the-art methods.

Specifically, our model outperforms Wang et al. [131] by 13.3% in J and 16.6% in F .

and is even 6.9% better in J and 4.1% better in F than the ResNet-18 model [36]

trained on ImageNet [18] with classification labels.

Furthermore, we demonstrate that by including the localization module during

inference, our model can exclude noise from background pixels. In Figure 2.7, we
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Figure 2.4: Visualization of the propagation results. (a) Instance mask propagation on the

DAVIS-2017 [95] dataset. (b) Pose keypoints propagation on the J-HMDB [47] dataset.

(c) Parts segmentation propagation on the VIP [150] dataset. (d) Visual tracking on the

OTB2015 [137] dataset.

visualize the process of including the localization module during inference. Given the

instance mask of the first frame, we first propagate each point (marked as green) from

the reference frame to the target frame by localizing a bbox on it before matching.

Instead of directly applying the center, we refine the center at inference by applying

the mean-shift algorithm, i.e.,

Ct =

∑N
i=1 K(li − Ct−1)li∑N
i=1 K(li − Ct−1)

(2.9)

where li is the coordinate of the ith pixel, the C is the center of all li at the tth

iteration, and K(a−b) = e∥a−b∥2 . Scale is estimated via Eq. 2.4 as well, see the bboxes

in Figure 2.7. The green points in Figure 2.7 illustrate the individually propagated

points and the red bounding box indicates the estimated bounding box of an object

in the target frame. We then propagate the instance segmentation mask within the

bounding box in the reference frame to the bounding box in the target frame. Since

the propagation is carried out within two bounding boxes instead of the entire frames,

we can minimize noise introduced by background pixels as shown in Figure 2.5 (d)

and (e).
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(a) Reference frame (b) ResNet-18 (c) Wang et al. (d) Ours (e) Ours-track (f) Target ground truth

Figure 2.5: Qualitative comparison with other methods. (a) Reference frame with instance

masks. (b) Results by the ResNet-18 trained on ImageNet. (c) Results by Wang et al. [131].

(d) Ours (global matching). (e) Ours with localization during inference. (f) Target frame

with ground truth instance masks.

Table 2.1: Evaluation of instance segmentation propagation on the DAVIS-2017 dataset [95].

Model Supervised Dataset J (Mean) J (Recall) F(Mean) F(Recall)
SIFT Flow [73] × - 33.0 - 35.0 -
DeepCluster [8] × YFCC100M [112] 37.5 - 33.2 -

Transitive Inv [130] × - 32.0 - 26.8 -
Vondrick et al. [120] × Kinetics [54] 34.6 34.1 32.7 26.8

Wang et al. [131] (400× 400) × VLOG [25] 43.0 43.7 42.6 41.3
Wang et al. [131] (480p) × VLOG [25] 46.4 50.1 50.0 48.0

mgPFF [58] × - 42.2 41.8 46.9 44.4
Lai et al. [63] × Kinetics [54] 47.7 - 51.3 -

ours × Kinetics [54] 56.8 65.7 59.5 65.1
ours-track × Kinetics [54] 57.7 67.1 60.0 65.7

ResNet-18(3 blocks) ✓ ImageNet [18] 49.4 52.9 55.1 56.6
ResNet-18(4 blocks) ✓ ImageNet [18] 40.2 36.1 42.5 36.6

FlowNet2 [43] ✓ FlyingThings3D [83] 26.7 - 25.2 -
PWC-Net [107] ✓ FlyingThings3D [83] 35.2 34.0 37.4 33.1
SiamMask [129] ✓ YouTube-VOS [141] 54.3 62.8 58.5 67.5

OSVOS [7] ✓ ImageNet,DAVIS [95] 56.6 63.8 63.9 73.8

The quantitative evaluation of this improved model outperforms the model that

does not include the localization module during inference. (see “Ours-track” vs.

“Ours” in Table 2.1)

2.5.3 Ablation Studies on the DAVIS-2017 Dataset

We carry out ablation studies to see the contributions of each term, as shown in

Figure 2.8 and Table 2.2. Note that inference is conducted between a pair of full-size

frames without localization.

Region-level Localization. Our model trained with the region-level localization

module is able to place the individual points all within a reasonable local region

(Figure 2.8 (c)). We show that the model can accurately capture both region-level

shifts (e.g., person moving forward), and subtle deformations (e.g., movement of body
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PropagationsInput

Figure 2.6: Instance mask propagation results.

parts), while preserving the correct spatial relations among all the points. In contrast,

the model trained without the localization module tends to model global matching,

leading to less accurate preservation of the local spatial relationships among points,

e.g., the red points in Figure 2.8 (d) tend to cluster together as shown in the cyan

circle. Consistent quantitative results can also be found in Table 2.2 (c), where the J
and F measures drop 2.5% and 0.9%, respectively, when trained without the localiza-

tion module. We also discover that the localization module should always be trained

together with the concentration loss to satisfy the assumption in Section 2.4.2(Ta-

ble 2.2(f)(g)).

Concentration regularization. The concentration regularization encourages lo-

cality during the transformation process, i.e. points within a neighbourhood in the

reference frame stay together in the target frame. The model trained without it

tends to introduce outliers, as shown in the cyan circle of Figure 2.8(e). Table 2.2

(b)(e) demonstrate the contribution of this concentration regularization term, e.g.,

compared to (b), the J in (e) decrease by 8% without this regularization term.
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PropagationsInput

Figure 2.7: Visualization of the process of including the localization module during inference.

(a)	Reference	frame (b)	Target	frame (c)	Ours (d)	w/o	L (e)	w/o	C (f)	w/o	O (g)	w/o	all

Figure 2.8: Visualization of the ablation studies. Given a set of points in the reference frame

(a), we visualize the results of propagating these points on to the target frame (b). “L”,

“C”, “O” and “all” correspond to the localization modules, concentration or orthogonal

regularization, or all of them (d-g).

Orthogonal regularization. The orthogonal regularization term enforces points

to match back to themselves after a cycle of forward and backward transformation.

As shown in Figure 2.8 (f), the model trained without the orthogonal regularization

term is less effective in preserving local structures. The effectiveness of the orthogonal

regularization is also validated quantitatively at Table 2.2 (e) and (f).

Table 2.2: Ablation studies. The minus sign “-” indicates training without the specific

module or regularization. “L”, “O” and “C” mean the localization module, orthogonal and

concentration regularization, respectively. The last column (“(g) -all”) shows results of a

baseline model trained without any of “L”, “O” or “C”.

Metric (a) Ours-track (b) Ours (c) -L (d) -O (e) -C (f) -O&C (g) -all
J (Mean) 57.7 56.3 53.8 55.2 48.3 44.3 45.7
F (Mean) 61.3 59.2 58.3 58.7 52.4 49.6 52.3
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Table 2.3: Tracking results on OTB2015 [137]

Model Supervised AUC score (%)
UDT [126] × 59.4

Ours × 59.2
ResNet-18 ✓ 55.6

Supervised [3] ✓ 58.2

2.5.4 Tracking Pose Keypoint Propagation on the J-HMDB

Dataset

We demonstrate that our model learns accurate correspondence by evaluating it

on the J-HMDB dataset [47], which requires precise matching of points compared to

the coarser propagation of masks. Given the 15 ground truth human pose keypoints

in the first frame, we propagate them to the remaining frames. We quantitatively

evaluate performance using the probability of correct keypoint (PCK) metric [145],

which measures the ratio of joints that fall within a threshold distance from the

ground truth joint locations. We show quantitative evaluations against the state-of-

the-art methods in Table 2.5 and qualitative propagation results in Figure 2.4(b).

Our model performs well versus all self-supervised methods [131, 120] and notably

achieves better results than ResNet-18 [36] trained with classification labels [18].

2.5.5 Visual Tracking on the OTB Dataset

Other than the tasks that require dense matching, e.g., segmentation or keypoints

propagation, the features learned by our model can be applied to object matching

tasks such as visual tracking, because of its capability of localizing an object or a

relatively global region. Without any fine-tuning, we directly integrate our network

trained via self-supervision into a classic tracking framework [126, 98] based on cor-

relation filters, by replacing the Siamese network in [126, 98] with our model, while

keeping other parts in the tracking framework unchanged. Even without training with

a correlation filter, our features are general and robust enough to achieve comparable

performance on the OTB2015 dataset [137] to methods trained with this filter [126],

as shown in Table 2.3. Figure 2.4(d) shows that our learned features are robust
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Table 2.4: Segmentation propagation on VIP [150].

Model Supervised mIoU AP r
vol

DeepCluster. [8] × 21.8 8.1
Wang et al. [131] × 28.9 15.6

Ours × 34.1 17.7
ResNet-18 ✓ 31.8 12.6

Fully Supervised [99] ✓ 37.9 24.1

Table 2.5: Kepoints propagation on J-HMDB [47].

Model Supervised PCK@.1 PCK@.2
Vondrick et al. [120] × 45.2 69.6
Wang et al. [131] × 57.3 78.1

Ours × 58.6 79.8
ResNet-18 ✓ 53.8 74.6

Fully Supervised [144] ✓ 68.7 92.1

against occlusion (left), object scale, as well as illumination changes (right) and can

track objects through a long sequence (hundreds of frames in the OTB2015 dataset).

2.5.6 Semantic and Instance Propagation on VIP Dataset

We evaluate our method on the VIP dataset [150], which includes dense human

parts segmentation masks on both the semantic and instance levels. We use the

same settings as Wang et al. [131] and resize the input frames to 560× 560. For the

semantic propagation task, we propagate the semantic segmentation maps of human

parts (e.g., arms and legs) and evaluate performance via the mean IoU metric. For

the part instance propagation task, we propagate the instance-level segmentation

of human parts (e.g., arms of the first person or legs of the second person) and

evaluate performance via the mean average precision of the instance-level human

parsing metric [66]. Table 2.4 shows that our method performs favourably against all

self-supervised methods and notably the ResNet-18 model trained on ImageNet with

classification labels for both tasks. Figure 2.4(c) shows sample semantic segmentation

propagation results. Interestingly, our model correctly propagates each part mask

onto an unseen instance (the woman which does not appear in the first frame) in the

second example.
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2.5.7 Texture Propagation

PropagationsInput

Figure 2.9: Texture Propagation.

In Figure 2.9, we show results of texture propagation. Following Wang et al. [131],

we overlay a texture map on the object in the first video frame, then propagate this

texture map across the rest of the video frames. As shown in Figure 2.9, our model

is able to preserve the texture well during propagation, this indicates that our model

is able to find precise correspondences between video frames.

2.6 Conclusions

In this chapter, we propose to learn correspondences across video frames in a self-

supervised manner. Our method jointly tackles region-level and pixel-level correspon-

dence learning and allows them to facilitate each other through a shared inter-frame

affinity matrix. Experimental results demonstrate the effectiveness of our approach

versus the state-of-the-art self-supervised video correspondence learning methods, as

well as supervised models such as the ResNet-18 trained on ImageNet with classifi-

cation labels.
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3.1 Overview

In this chapter, we learn a self-supervised, single-view 3D reconstruction model

that predicts the 3D mesh shape, texture and camera pose of a target object with a

collection of 2D images and silhouettes. The proposed method does not necessitate

3D supervision, manually annotated keypoints, multi-view images of an object or a

prior 3D template. The key insight of our work is that objects can be represented

as a collection of deformable parts, and each part is semantically coherent across

different instances of the same category (e.g., wings on birds and wheels on cars).

Therefore, by leveraging part segmentation of a large collection of category-specific

images learned via self-supervision, we can effectively enforce semantic consistency

between the reconstructed meshes and the original images. This significantly reduces

ambiguities during joint prediction of shape and camera pose of an object, along

with texture. To the best of our knowledge, we are the first to try and solve the

single-view reconstruction problem without a category-specific template mesh or se-

mantic keypoints. Thus our model can easily generalize to various object categories

without such labels, e.g., horses, penguins, etc. Through a variety of experiments

on several categories of deformable and rigid objects, we demonstrate that our un-

supervised method performs comparably if not better than existing category-specific

reconstruction methods learned with supervision.
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3.2 Introduction

(a) (g)(b) (c) (d) (e) (f)

… … …

semantic parts 
in the 2D space

semantic parts 
in the UV space

semantic parts 
in the 3D space

semantic parts consistency 
between 2D and 3D

Figure 3.1: Self-supervision with semantic part consistency (a–d): (a) Images of different

objects in the same category (e.g., birds in this example). (b) Semantic part segmentation

for each image learned via self-supervision. (c) Canonical semantic UV map for the category.

(d) Semantic part segmentation on meshes. Single-view 3D Mesh reconstruction (e–g):

Reconstruction (inference) of each single-view image (e) is demonstrated in (g), along with

semantic labels of the mesh in (f).

Recovering both 3D shape and texture, and camera pose from 2D images is

a highly ill-posed problem due to its inherent ambiguity. Existing methods re-

solve this task by utilizing various forms of supervision such as ground truth 3D

shapes [15, 132, 125], 2D semantic keypoints [49], shading [37], category-level 3D

templates [61] or multiple views of each object instance [142, 53, 133, 100]. These

types of supervision signals require tedious human effort, and hence make it chal-

lenging to generalize to many object categories that lack such annotations. On the

other hand, learning to reconstruct by not using any 3D shapes, templates, or key-

point annotations, i.e., with only a collection of single-view images and silhouettes

of object instances, remains challenging. This is because the reconstruction model

learned without the aforementioned supervisory signals leads to erroneous 3D recon-

structions. A typical failure case is caused by the “camera-shape ambiguity”, wherein,

incorrectly predicted camera pose and shape result in a rendering and object bound-

ary that closely match the input 2D image and its silhouette, as shown in Figure 3.2

(c) and (d).
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Interestingly, humans, even infants who have never been taught about objects in

a category, tend to mentally reconstruct objects in that category by perceiving them

as a combination of several basic parts, e.g., a bird has two legs, two wings, and one

head, etc., and use the parts to associate all the divergent instances of the category.

By observing object parts, humans can also roughly infer the relative camera pose

and 3D shape of any specific instance. In computer vision, a similar intuition is

formulated by the deformable parts model, where objects are represented as a set of

parts arranged in a deformable configuration [23, 94].

Inspired by this intuition, we learn a single-view reconstruction model from a col-

lection of images and silhouettes. We utilize the semantic parts in both the 2D and

3D space, along with their consistency to correctly estimate shape and camera pose.

Specifically, we first leverage self-supervised co-part segmentation (SCOPS [42]) to

decompose 2D images into a collection of semantic parts (Figure 3.1(b)). By exploit-

ing the property of semantic part invariance, which states that the semantic part

label of a point on the mesh surface does not change even when the mesh shape

is deformed, we associate the semantic parts of different object instances with each

other and build a category-level canonical semantic UV map (Figure 3.1(c)). The

semantic part label of each point on the reconstructed mesh surface (Figure 3.1(d))

is then defined by this canonical semantic UV map. Finally, we resolve the aforemen-

tioned “camera-shape ambiguity” and learn the self-supervised reconstruction model

by encouraging the consistency of semantic part labels in both the 2D and 3D space

(Figure 3.1, orange arrow). Furthermore, we train our model by iteratively learning

(a) instance-level reconstruction and (b) a category-level template mesh from scratch.

Thus, our model also does not require a pre-defined 3D template mesh or any other

shape prior. Our main contribution is a 3D reconstruction model that is able to:

• Conduct single-view mesh reconstruction without any of the following forms

of supervision: category-level 3D template prior, annotated keypoints, camera

pose or multi-view images. In other words, the model can be generalized to

other categories which do not have well-defined keypoints, e.g., penguin.

• Leverage the semantic part invariance property of object instances of a category

as a deformable parts model.
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• Learn a category-level 3D shape template from scratch via iterative learning.

• Perform comparably to the state-of-the-art supervised methods [49, 61] trained

with either pre-defined templates or annotated keypoints, while also improving

the self-supervised semantic co-part segmentation model (SCOPS [42]).

3.3 Related Work

3D Shape Representation

Various representations have been explored for 3D processing tasks, including

point clouds [22], implicit surfaces [84, 75], triangular meshes [49, 53, 74, 51, 125,

89, 132] and voxel grids [15, 27, 32, 116, 133, 142, 153, 34]. Among these, while

both voxels and point clouds are more friendly to deep learning architectures (e.g.,

VON [134, 152], PointNet [96, 97], etc), they suffer either from issues of memory

inefficiency or are not amenable to differentiable rendering. Hence, in this work, we

adopt triangular meshes [49, 53, 74, 51, 125, 89, 132] for 3D reconstruction.

Single-view 3D Reconstruction

Single-view 3D reconstruction [15, 27, 32, 116, 133, 142, 153, 22, 37] aims to

reconstruct a 3D shape given a single input image. One line of works have explored

this ill-posed task with varying degree of supervision. Several methods [125, 89, 132]

utilize image and ground truth 3D mesh pairs as supervision. This either requires

significant manual annotation effort [139] or is restricted to synthetic data [9]. More

recently, a few works [53, 74, 51, 12] avoid 3D supervision by taking advantage of

differentiable renderers [53, 74, 12] and the “analysis-by-synthesis” approach, with

either multiple views, or known ground truth camera poses.

To further relax constraints on supervision, Kanazawa et al. [49] explored 3D re-

construction from a collection of images of different instances. However, their method

still requires annotated 2D keypoints to infer camera pose correctly. It is also the

first work to propose a learnable category-level 3D template shape, which, however,

needs to be initialized from a keypoint-dependent 3D convex hull. Similar problem

settings have also been explored in other methods [109, 135, 38], but with object
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(d) CMR, no camera, no 
template prior

(c) CMR, no camera(b) CMR (e) Ours, no camera, no 
template prior

(a) Input Image

Figure 3.2: Comparison with baselines. Each reconstructed mesh is rendered in the original

view of the input image and the frontal view of the bird. (b) Shows the result from CMR

with camera pose and template prior supervision. (c) Shows CMR with only template prior.

(d) Shows CMR without both types of supervision where the model completely fails to learn

the texture and shape. In contrast, our model in (e) reconstructs correctly even without

supervision from camera pose or a template prior.

categories restricted to rigid or structured objects, such as cars or faces. Different

from all these works, we target both rigid and non-rigid objects (e.g., birds, horses,

penguins, motorbikes and cars shown in Figure 3.1 (e)-(g)) and propose a method

that jointly estimates a 3D mesh, texture, and camera pose from a single-view image,

using only a collection of images with silhouettes as supervisions. In other words, we

do not require 3D template priors, annotated keypoints, or multi-view images.

Self-supervised Correspondence Learning

Our work is also related to self-supervised cross-instance correspondence learning,

via landmarks [111, 149, 40, 105], part segments [16, 42], or canonical surface map-

ping [61]. We utilize self-supervised co-parts segmentation [42] to enforce semantic

consistency, which was originally proposed purely for 2D images. The work of [61]

learns a mapping function that maps pixels in 2D images to a predefined category-

level template in a self-supervised manner. However, it dose not use the learned

correspondence for 3D reconstruction. We show that our work, despite having a fo-

cus on 3D reconstruction, outperforms [61] at learning 2D to 3D correspondences as

well.
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3.4 Approach

To fully reconstruct the 3D mesh of an object instance from an image, a network

should be able to jointly predict the shape and texture of the object, and the camera

pose of the image. We start with the existing network from [49] (CMR) as the

baseline reconstruction network. Given an input image, CMR extracts the image

features using an encoder E and jointly predicts the mesh shape, camera pose and

mesh texture by three decoders Dshape, Dcamera and Dtexture. The mesh shape V is

reconstructed by predicting vertex offsets ∆V to a category-specific shape template

V̄ , while the camera pose θ is represented by a weak perspective transformation. To

reconstruct mesh textures, the texture decoder outputs a UV texture flow (Iflow) that

maps pixels from the input image to the UV space. A pre-defined mapping function

Φ further maps each pixel in the UV space to a point on the mesh surface.

One of the key elements for the CMR method to perform well is to exploit man-

nually annotated semantic keypoints for (i) precisely pre-computing the ground truth

camera pose for each instance, and (ii) estimating a category-level 3D template prior.

However, annotating keypoints is tedious, not well-defined for most object categories

in the world and impossible to generalize to new categories. Thus, we propose a

method within a more scalable, but challenging self-supervised setting without using

manually annotated keypoints to estimate camera pose or a template prior.

Not surprisingly, simply taking out the keypoints supervision, as well as all the

related information (i.e., the camera pose and the template prior) from the CMR

network makes it unable to predict camera pose and shape correctly, as shown in Fig-

ure 3.2(c) and (d). This is due to the inherent ambiguity of hallucinating 3D meshes

from only single-view 2D observations, where the model trivially picks a combination

of camera pose and shape that yields the rendering that matches the given image

and silhouette. Consider an extreme case, where the model predicts the front view

for all instances, but is still able to match the image and silhouette observations by

deforming each instance mesh accordingly.

In this work, we propose a framework (Figure 3.3) designed for self-supervised

mesh reconstruction learning, i.e., with only a collection of images and silhouettes

as supervision. The framework consists of: (i) A reconstruction network (green box)
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Figure 3.3: Overview.(a) Green box: The reconstruction network. (b) Red box: Semantic

part consistency constraint, see Section 3.4.1 for more details. (c) Blue box: Computing

the canonical semantic UV map and the template shape using the reconstruction network,

see Section 3.4.2. The red dashed arrows show that the gradients from the semantic part

consistency constraint facilitate shape and viewpoint estimation.

that has the same architecture as [49] – it consists of an image encoder E and three

decoders Dshape, Dcamera and Dtexture that jointly predict the mesh deformation ∆V ,

texture flow Iflow and camera pose θ for the instance in the image. (ii) A semantic

consistency constraint (red box in Figure 3.3) that regularizes the learning of module

(i) and largely resolves the aforementioned “camera-shape ambiguity” under the self-

supervised setting. We introduce this module in Section 3.4.1. (iii) A module that

learns the canonical semantic UV map and category-level template from scratch (blue

box in Figure 3.3). This module is iteratively trained with module (i) and discussed

in Section 3.4.2.

3.4.1 Resolving Camera-Shape Ambiguity via Semantic Con-

sistency

In this section, we show the key to solving the “camera-shape ambiguity” is to

make use of the semantic parts of object instances in both 3D and 2D. Specifically,

we exploit the fact that (i) in the 2D space, self-supervised co-part segmentation [42]

provides correct part segments for a majority of the object instances, even for those

with large shape variations (see Figure 3.1(b)); and (ii) in the 3D space, semantic

parts are invariant to mesh deformations, i.e., the semantic part label of a specific



33

point on the mesh surface is consistent across all reconstructed instances of a category.

We demonstrate that this semantic part invariance allows us to build a category-level

semantic UV map, namely the canonical semantic UV map, shared by all instances,

which in turn allows us to assign semantic part labels to each point on the mesh.

By enforcing consistency between the canonical semantic map and an instance’s part

segmentation in the 2D space, the camera-shape confusion can be largely resolved.

Part Segmentation in 2D via SCOPS [42]

SCOPS is a self-supervised method that learns semantic part segmentation from

a collection of images of an object category (see Figure 3.1(b)). The model leverages

concentration and equivariance loss functions, as well as part basis discovery to output

a probabilistic map w.r.t. the discovered parts that are semantically consistent across

different object instances.

Part Segmentation in 3D via Canonical Semantic UV Map

Given the semantic part segmentation of 2D images estimated by SCOPS, how can

we obtain the semantic part labels for each point on the mesh surface? One intuitive

way is to obtain a mapping from the 2D image space to the 3D shape space. Therefore,

we propose to first utilize the learned texture flow Iflow by our reconstruction network

that naturally forms a mapping from the 2D image space to the UV texture space,

and then further map the semantic labels from the UV space to the mesh surface by

the pre-defined mapping function Φ. We denote the semantic part segmentation of

image i as P i ∈ RH×W×Np (see Figure 3.3 in the blue bbox), where H and W are the

height and width of the image, respectively and Np is the number of semantic parts.

By mapping P i from the 2D image space to the UV space using the learned texture

flow, we obtain a “semantic UV map” denoted as P i
uv ∈ RHuv×Wuv×Np , where Huv and

Wuv are the UV map’s height and width, respectively.

Ideally, all instances should result in the same semantic UV map – the canonical

semantic UV map for a category, regardless of shape differences of instances. This is

because: (i) the semantic part invariance states that the semantic part labels assigned

to each point on the mesh surface are consistent across different instances; and (ii)
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the mapping function Φ that maps pixels from the UV space to the mesh surface is

pre-defined and independent of deformations in the 3D space, such as face location

or area changes. Thus, the semantic part labels of pixels in the UV map should also

be consistent across different instances.

However, if we directly sample the individual P i via the learned texture flow Iflow,

the obtained semantic UV maps are indeed very different between instances, as shown

in Figure 3.3 (blue box). This is caused by the fact that (i) the part segmentation

predictions produced by the self-supervised SCOPS method are noisy, and (ii) tex-

ture flow prediction is highly uncertain for the invisible faces of the reconstructed

mesh. Therefore, we approximate the canonical semantic UV map, denoted as P̄uv

by aggregating the individual semantic UV maps:

P̄uv =
1

|U|
∑
i∈U

I iflow(P
i), (3.1)

where I iflow(P
i) indicates the sampling of P i by Iflow and U is a subset of selected

training samples with accurate texture flow prediction. Note that when we update

the canonical semantic UV map using Eq 3.1, to avoid using training samples with

outliers, e.g., those caused by inaccurate prediction of I iflow, we choose an exemplar

training example with the smallest perceptual distance objective, and form the set

U of the top k training samples that have the most similar semantic UV maps (as

measured by the L2 norm) to the exemplar. Through this aggregation process, P̄uv

produces a mean semantic UV map, which effectively eliminates outliers (i.e., in-

stances with incorrect SCOPS), as well as the noisy pixel-level predictions.

Semantic Consistency between 2D and 3D

As mentioned above, because our model learns via self-supervision and only relies

on images and silhouettes that do not provide any semantic part information, it

suffers from the “camera-shape ambiguity” introduced in Section 3.2. Take row (i)

in Figure 3.4 as an example. The model erroneously forms the wing’s tip in the

reconstructed bird by deforming the mesh faces assigned to the “head part” (colored

in red). This incorrect shape reconstruction, associated with an incorrect camera pose,

however, can yield a rendering that matches the observed image and its silhouette.
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Figure 3.5: The process of texture cycle consistency constraint computation.

This ambiguity, although is not easy to spot by only comparing the rendering

of the reconstruction with the input image, however, can be identified once the se-

mantic part label for each point on the mesh surface is available. One can tell that

the reconstruction in row (i) of Figure 3.4 is wrong by comparing the rendering of

the semantic part labels on the mesh surface and the 2D SCOPS part segmentation.

Only when the camera pose and shape are both correct, will the rendering and the

SCOPS segmentation be consistent, as shown in row (ii) in Figure 3.4. This observa-

tion inspires us to propose a probability and a vertex-based constraint that facilitate

correct camera pose and shape learning by encouraging the consistency of semantic

part labels in both 2D images and in the mesh surface.

Probability-based constraint. For each reconstructed mesh instance i, we map

the canonical semantic UV map P̄uv onto its surface by the UV mapping Φ and

render it using the predicted camera pose θi. We denote the projection from 3D to

2D as R. We constrain the projected probability map to be close to the SCOPS part

segmentation probability map P i by computing the loss:

Lsp =
∥∥P i −R(Φ(P̄uv); θ

i)
∥∥2

. (3.2)

We empirically found the mean squared error (MSE) metric to be more robust than

the Kullback–Leibler divergence for comparing two probability maps.

Vertex-based constraint. We also propose a vertex-based constraint to enhance

semantic part consistency by enforcing that 3D vertices assigned a part label p, after

being projected to the 2D domain with the predicted camera pose θi, align with the
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area assigned to that part in the input image:

Lsv =

Np∑
p=1

1

|V̄p|
Chamfer(R(V̄p; θ

i), Y i
p ), (3.3)

where V̄p is the set of vertices on a learned category-level 3D template V̄ (see Sec-

tion 3.4.2) with the part label p, Y i
p is the set of 2D pixels sampled from the part p

in the original input image and Np is the number of parts. Here we use the Chamfer

distance, because the projected vertices and pixels with the same part label p in the

input image do not have a strictly one-to-one correspondence.

Note that, V̄p is a set of vertices on the category-level shape template V̄ as opposed

to each instance reconstruction V i, since using V i results in a degenerate solution

where the network only alters 3D shape to satisfy this vertex-based constraint, rather

than the camera pose. Instead, using V̄ drives the network towards learning the

correct camera pose, in addition to shape.

3.4.2 Progressive Training

We train the framework in Figure 3.3 via progressive training based on two con-

siderations: (a) building the canonical semantic UV map, introduced in Section 3.4.1,

requires reliable texture flows to map the SCOPS from images to the UV space. Thus

the canonical semantic UV map can only be obtained after the reconstruction net-

work is able to predict texture flow reasonably well, and (b) a canonical 3D shape

template [49, 61] is desirable, since it speeds up the convergence of the network [49]

and also avoids degenerate solutions when applying the vertex-based constrain as

introduced in Section 3.4.1. However, jointly learning the category-level 3D shape

template and the instance-level reconstruction network leads to undesired trivial solu-

tions. Thus, we propose an expectation-maximization (EM) style progressive training

procedure below. In the E-step, we train the reconstruction network with the cur-

rent template and canonical semantic UV map fixed, and in the M-step, we update

the template and the canonical semantic UV map using the reconstruction network

learned in the E-step.
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E-step: Learning Instance-specific Reconstruction

In the E-step, we fix the canonical semantic UV map as well as the category-level

template and train the reconstruction network mainly with the following objectives.

(i) A negative IoU objective [51] between the rendered and the ground truth sil-

houettes for shape learning. (ii) A perceptual distance objective [148, 49] between

the rendered and the input RGB images for texture learning. (iii) The probability

and vertex-based constraints introduced in Section 3.4.1 to resolve the “camera-shape

ambiguity” under the self-supervised setting. (iv) A texture consistency constraint

to facilitate accurate texture flow learning that will be introduced in Section 3.4.3.

(v) Smoothness Term. We utilize a graph Laplacian constraint to encourage the

reconstructed mesh surface to be smooth [49, 74], and adopt an edge regulariza-

tion to penalize irregularly-sized faces as in [125, 28]. More details can be found in

[49, 74, 125, 28]. (vi) Adversarial Training. To constrain the reconstructed meshes to

look plausible from all views, we also introduce adversarial training [29] into the mesh

reconstruction framework [51]. We render the reconstructed mesh from a randomly

sampled camera pose to obtain an image Ird, and pass it together with a random real

image Irl into a discriminator. By learning to discriminate between the real and ren-

dered images, the discriminator learns shape priors and constrains the reconstruction

model to generate meshes that are plausible from all viewpoints. The adversarial loss

is:

Ladv(R,D) = EIrl [logD(Irl)] + EIrd [log (1−D(Ird))], (3.4)

where R and D are the reconstruction and discriminator networks, respectively. Fig-

ure 3.6 illustrates the adversarial objective. Note that in the first E-step, the template

is a sphere and hence the probability and vertex-based constraints are not used.

M-step: Canonical UV Map and Template Learning

In the M-step, we compute the canonical semantic UV map introduced in Sec-

tion 3.4.1 and learn a category-level template from scratch, i.e., from a sphere prim-

itive. As far as we know, we are the first method that learns a category-level tem-

plate from scratch. This is in contrast to existing methods [61], where the template

is either a readily available instance mesh from the category or is estimated from
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Figure 3.6: Detailed network Architecture and Objectives.

annotated keypoints [49]. Jointly learning the shape template along with the recon-

struction network does not guarantee a meaningful “mean shape” which encapsulates

the most representative characteristics of objects in a category. Instead, we propose

a feed-forward template learning approach: the template starts out as a sphere and

is updated every K training epochs by:

V̄t = V̄t−1 +Dshape(
1

|Q|
∑
i∈Q

E(I i)), (3.5)

where V̄t and V̄t−1 are the updated and current templates, respectively, I i is the

input image passed to the image encoder E and Dshape is the shape decoder (see

the beginning of Section 3.4). Q is a set of training images with consistent mesh

predictions. Instead of using all training samples to obtain the averaged feature, we

select a subset of the training samples to form a set Q and compute the averaged

feature for the samples in this set. In the following, we explain why and how to form

this set Q used in Eq. 3.5. Empirically we found that for several categories, there exist

ambiguities that produce inconsistent mesh reconstructions, e.g., side-view images of

horses could be reconstructed with their heads on either the left or the right side.

Aggregating such instance meshes leads to incorrect estimation of the category-level

template. To resolve this, we select a subset of reconstructed meshes whose viewpoints

roughly match (e.g. horses with heads on the left side). To do so, from the meshes

reconstructed for all the training images, we first choose the instance with the most

“reliable” reconstruction results, i.e., the instance whose rendered silhouette has the

largest intersection over union (IoU) with its corresponding ground truth silhouette,
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as an exemplar (e.g. a horse shape with its head on the left). We then use the

top k training samples with meshes that are most similar to the exemplar mesh to

form the subset Q in Eq. 3.5 (e.g., all chosen horse samples have heads on the left).

We measure the similarity between an individual instance mesh and the exemplar

mesh by computing the IoU between their rendered silhouettes. The template V̄t is

the mean shape of instances in a category for the current epoch, which enforces a

meaningful shape (e.g., the template looks like a bird) rather than an arbitrary form

for the category.

3.4.3 Texture Cycle Consistency Constraint

One issue with the learned texture flow is that the texture of 3D mesh faces with

a similar color (e.g., black) can be incorrectly sampled from a single pixel location of

the image. Thus we introduce a texture cycle consistency objective to regularize the

predicted texture flow (i.e., 2D→3D) to be consistent with the camera projection (i.e.,

3D→2D). As shown in Figure 3.5, considering the pixel marked with a yellow cross in

the input image, it can be mapped to the mesh surface through the predicted texture

flow Iflow along with the pre-defined mapping function Φ introduced in Section 3.4.

Meanwhile, its mapping on the mesh surface can be re-projected back to the 2D

image by the predicted camera pose, as shown by the green cross in Figure 3.5. If the

predicted texture flow conforms to the predicted camera pose, the yellow and green

crosses would overlap, forming a 2D → 3D → 2D cycle.

Formally, given a triangle face j, we denote the set of input image pixels mapped

to this face by texture flow as Ωj
in. We further infer the set of pixels (denoted as Ωj

out)

projected from the triangle face j in the rendering operation by taking advantage

of the probability map W ∈ R|F |×(H×W ) in the differentiable renderer [74] where

|F |, H,W are the number of faces, height and width of the input image, respectively.

Each entry in Wm
j indicates the probability of face j being projected onto the pixel

m. We compute the geometric center of both sets (Ωj
in and Ωj

out), denoted by Cj
in and

Cj
out, respectively as:

Cj
in =

1

Nc

Nc∑
m=1

Φ(Iflow(Gm))j; Cj
out =

∑H×W
m=1 Wm

j × Gm∑H×W
m=1 Wm

j

, (3.6)
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where G ∈ R(H×W )×2 is a standard coordinate grid of the projected image (containing

pixel location (u, v) values), and Φ is the fixed UV mapping that, along with the

texture flow Iflow maps pixels from the 2D input image to a mesh face j, as discussed

in the beginning of Section 3.4. Nc is the number of pixels in the input image mapped

to each triangular face and × indicates multiplication between two scalars. We con-

strain the predicted texture flow to be consistent with the rendering operation by

encouraging Cj
in to be close to Cj

out:

Ltcyc =
1

|F |

|F |∑
j=1

∥∥Cj
in − Cj

out

∥∥2

F
. (3.7)

We note that while not targeting 3D mesh reconstruction directly, a similar intuition,

but with a different formulation was also introduced in [61].

3.5 Experimental Results

We first introduce our experimental settings in Section 3.5.1, and present quali-

tative evaluations for the bird, horse, motorbike and car categories in Section 3.5.4.

Quantitative evaluations and ablation studies for the contribution of each proposed

module are discussed in Section 3.5.5 and Section 3.5.6, respectively.

3.5.1 Experimental Settings

We validate our method on both rigid objects, i.e., car and motorcycle images

from the PASCAL3D+ dataset [140], and non-rigid objects, i.e., bird images from the

CUB-200-2011 dataset [122], horse, zebra, cow images from the ImageNet dataset [18]

and penguin images from the OpenImages dataset [62]. We use progressive training

(Section 3.4.2) to learn the model parameters. In each E-step, the reconstruction

network is trained for 200 epochs and then used to update the template and the

canonical semantic UV map in the M-step. The only exception is in the first round

(a round consists of one E and M-step), where we train the reconstruction network

without the semantic consistency constraint. This is because, at the beginning of

training, Iflow is less reliable, which in turn makes the canonical semantic UV map

less accurate.
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3.5.2 Network Architecture

We present the details of our network architecture as well as training objectives

in Figure 3.6. We use the same network as in CMR [49], where: (i) the encoder is the

ResNet18 network [36] with four residual blocks and is pretrained on the ImageNet [18]

dataset, (ii) the shape decoder consists of one fully connected layer to decode shape

deformation ∆V , (iii) the texture decoder contains two fully-connected layers followed

by eleven upsample and convolution layers to predict the texture flow Iflow, (iv) the

camera pose decoder contains three parallel fully connected layers to predict the scale,

translation and rotation, respectively and these three parameters together compose

the camera pose θ. Note that we use the one camera hypothesis in the first EM

training round and use the multiple camera hypothesis (eight camera hypothesis)

as in [61, 44, 115] to avoid local minima in the subsequent rounds. To render the

reconstructed meshes, we utilize the Soft Rasterizer [74] instead of the Neural Mesh

Renderer [53] used in the CMR [49]. This is because it provides the probability map

described in Section 3.4.3 for the texture cycle consistency constraint.

3.5.3 Network Training

We train the reconstruction network with an initial learning rate of 1e-4 and

gradually decay it by a factor of 0.5 every 2000 iterations. The network is trained

for two EM training rounds (each training round contains one E and M-step) on four

NVIDIA Tesla V100 GPUs for two days. We found that two rounds of EM training

are sufficient to generate high-quality reconstruction results. During the inference

stage, the model takes 0.022 seconds to reconstruct a 3D mesh from a 256×256 sized

single-view image on a single NVIDIA Tesla V100 GPU. In Figure 3.7, we show the

learned template shape as well as the semantic parts after the first (left figure) and

second M-steps (right figure), where both the template shape and the semantic parts

after the second M-step are better than the first.
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(a) Template with semantic parts after first EM 
training round

(b) Template with semantic parts after second
EM training round

Figure 3.7: Visualization of the learned template and semantic parts. Notice the improve-

ments of the template after the second M-step compared to the first, i.e., better feet shape

in the red and yellow circles, and a part of the head (blue circle) that was mistakenly as-

signed to the background (colored in black) in the first step is corrected (colored in red) in

the second M-step.

3.5.4 Qualitative Results

Thanks to the self-supervised setting, our model is able to learn from a collection

of images and silhouettes (e.g., horse and cow images [18] and penguin images [62]),

which cannot be achieved by existing methods [49, 125, 142, 53] that require extra

supervisory signals.

Template and Semantic Parts on 3D Meshes

We show the learned templates for the bird, horse, motorbike and car categories

in Figure 3.8 and Figure 3.9, which capture the shape characteristics of each category,

including the details such as the beak and feet of a bird, etc. We also visualize the

canonical semantic UV map by showing the semantic part labels assigned to each

point on the template’s surface. For instance, bird meshes have four semantic parts

– head (red), neck (green), belly (blue) and back (yellow) in Figure 3.8, which are

consistent with the part segmentation predicted by SCOPS [42].

Instance 3D Reconstruction

We show the results of 3D reconstruction from each single-view image in Figure 3.8

(b)-(d) and Figure 3.9 (b). Our model can reconstruct instances from an object

category with highly divergent shapes, e.g., a thin bird in (b), a duck in (c) and a
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(a)

(b)

(c)

(d)

Figure 3.8: Learned template and instance reconstructions from single-view images. (a)

The learned template shape (first three columns) and semantic parts (last four columns).

(b)-(d) 3D reconstruction from a single-view image. In each row from left to right, we show

the input image, reconstruction rendered using the predicted camera view and from four

other views.

flying bird in (d). Our model also correctly maps the texture from each input image

onto its 3D mesh, e.g., the eyes of each bird as well as fine textures on the back of the

bird. Furthermore, the renderings of the reconstructed meshes under the predicted

camera poses (2nd and 3rd columns in Figure 3.8 and Figure 3.9) match well with

the input images in the first column, indicating that our model accurately predicts

the original camera view.

We show more qualitative results for birds in Figure 3.11. We also show one

application of our model to reconstruct 3D meshes of 2D bird paintings in Figure 3.10.

Reconstruction of rigid objects (cars and motorbikes) is demonstrated in Figure 3.13,

horses and cows in Figure 3.12, and penguins and zebras in Figure 3.14. Note that

we use six semantic parts for the car category to encourage the SCOPS method [42]

to differentiate between the fronts and the sides of cars. For other objects, we use

four semantic parts.
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(a) input image (b) mesh reconstruction (c) semantic template

Figure 3.9: More reconstruction results. Visualization of instance-level reconstructions and

semantic templates for the horse, motorbike and car categories.

3.5.5 Quantitative Evaluations

As a self-supervised approach, our model is more practically suited to reconstruct

many non-rigid objects, e.g., animals captured in the wild that do not have 3D ground

truth meshes available. Therefore, we treat the bird category [122] as the major one

for qualitative evaluation, through the task of keypoint transfer following previous

work [61]. Given a pair of source and target images of two different object instances

from a category, we map a set of annotated keypoints from the source image to the

target image by first mapping them onto the learned shape template and then to the

target image. Each mapping can be carried out by either the learned texture flow or

the camera pose, as explained below.

To validate 3D reconstruction results, we also evaluate our model on rigid objects,

e.g., cars [140], in terms of 3D IoU. However, we note that reconstruction of such rigid

objects for which the ground truth 3D meshes/CAD models are easy to obtain, is not

the major focus of this self-supervised method.

We first evaluate shape reconstruction on the bird category. Due to a lack of

ground truth 3D shapes in the CUB-200-2011 dataset [122], we follow [49] and com-

pute the mask reprojection accuracy – the intersection over union (IoU) between

rendered and ground truth silhouettes. As shown in Table 3.1, our model is able to
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Input Shape SCOPS Predicted Cam Other Views

Figure 3.10: Results of applying our reconstruction model on bird paintings.

Table 3.1: Quantitative evaluation of mask IoU and keypoint transfer (KT) on the CUB

dataset [122]. The comparisons are against the baseline supervised models [49, 61].

(a) Metric (b) CMR [49] (c) CSM [61] (d) Ours
Mask IoU ↑ 0.706 - 0.734

KT (Camera) ↑ 47.3 - 51.2
KT (Texture Flow) ↑ 28.5 48.0 58.2

achieve comparable if not better mask reprojection accuracy compared to CMR [49],

which unlike our method is learned with additional supervision from semantic key-

points. This indicates that our model is able to predict 3D mesh reconstructions and

camera poses that are well matched to the 2D observations.

Next, we evaluate shape reconstruction on the car category. Although PAS-

CAL3D+ [140] provides “ground truth” meshes (the most similar ones to the image in

a mesh library), our reconstructed meshes are not aligned with these “ground truth”

meshes since our self-suerpvised model is free to learn its own “canonical reference

frame”. Thus, to quantitatively evaluate the intersection over union (IoU) between

the two meshes, following CMR [49], we exhaustively search a set of scale, translation
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Table 3.2: Ablation studies of each proposed module by evaluating mask IoU and keypoint

transfer (KT) on the CUB-200-2011 dataset [122].

(a) Metric (b) Ours (c) w/o Ltcyc (d) w/o Lsv & Lsp (e) with original [42]
Mask IoU ↑ 0.734 0.731 0.744 0.731

KT (Camera) ↑ 51.2 48.5 29.0 48.7
KT (Texture Flow) ↑ 58.2 51.0 32.8 52.9

and rotation parameters that best align to the “ground truth” meshes. Our method

achieves an IoU (0.62) that is comparable to CMR [49] (0.64), even though the latter

is trained with keypoints supervision.

Consider two different instances of a category as source and target images. To

evaluate learned texture flow via keypoint transfer, given an annotated keypoint ks in

a source image (s), we map it to a triangle face (Fj) on the template using its learned

flow Isflow. We then find all pixels (Ωj) in the target image (t) that are mapped to the

same triangle face Fj, by its texture flow I tflow and compute the geometric center of

all pixels in Ωj. We compare the location of the geometric center of Ωj to the ground

truth keypoint kt and find the percentage of correct keypoints (PCK) as those that fall

within a threshold distance α = 0.1 of each other [61]. Figure 3.16 demonstrates qual-

itative visualizations of the keypoint transfer using texture flow and Table 3.1 shows

that the texture flow learned by our method, even without supervision, outperforms

the 2D→3D mappings learned by the supervised methods [49, 61].

To evaluate the learned camera pose via keypoint transfer, we first find the 3D

template’s vertex v that corresponds to a source image’s annotated 2D keypoint ks by

rendering all 3D vertices using its predicted pose θs. Then, v is the vertex whose 2D

projection lies closest to the keypoint ks. Next, we render the point v with a target

image’s predicted pose θt and compare it to its ground truth keypoint kt to compute

PCK. Figure 3.16(b) demonstrates the keypoint transfer results by the predicted

camera pose. Table 3.1 shows that our model achieves favourable performance against

the baseline method [49].
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3.5.6 Ablation Studies

In this section, we first discuss the contribution of each proposed module: (i) The

semantic consistency constraint discussed in Section 3.4.1. (ii) The texture cycle con-

sistency introduced in Section 3.4.3. We evaluate on the CUB-200-2011 dataset [122]

and use the mask reprojection accuracy as well as the keypoint transfer (via texture

flow and via camera pose) accuracy discussed in Section 3.5.5 as our metrics.

As shown in Table 3.2 (b) vs. (d) our baseline model trained without the semantic

consistency constraint performs much worse at the keypoint transfer task than our

full model, indicating this baseline model predicts incorrect texture flow and cam-

era views. We note that this baseline model achieves better mask IoU because the

model trained without any constraint is more prone to overfit to the 2D silhouette

observations.

Our model trained without the texture cycle consistency constraint achieves worse

performance (Table 3.2 (b) vs.(c)) at transferring keypoints using the predicted tex-

ture flow. This proves the effectiveness of the texture cycle consistency constraint in

encouraging the model to learn better texture flow.

Next, we show the results of three more baselines in Figure 3.15. The experimental

settings for each are illustrated in Table 3.3 and are the following: (a) a basic model

trained with only the texture cycle consistency constraint described in Section 3.4.3,

but without any other proposed modules, i.e., the category-level template, the se-

mantic consistency constraint and the adversarial training; (b) learning the model in

(a) together with the category-level template; and (c) learning the model in (b) with

the additional semantic consistency constraint.

As shown in Figure 3.15, the basic model (a) reconstructs meshes that only appear

plausible from the observed view to match the 2D supervision (images and silhou-

ettes). It fails to generate plausible results for unobserved views, e.g., for all the 3

examples. On adding template shape learning (see Section 3.4.2) to (a), the model in

(b) learns more plausible reconstruction results across different views. This is because

it is easier for the model to learn residuals w.r.t a category-level template compared

to w.r.t a sphere, to match the 2D observations. However, without semantic part

information, the model still suffers from the “camera-shape ambiguity” discussed in
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Table 3.3: Settings of each baseline models in Section 3.5.6.

Module category-level template semantic consistency adversarial training
baseline (a) × × ×
baseline (b) ✓ × ×
baseline (c) ✓ ✓ ×

Ours ✓ ✓ ✓

Table 3.4: Ablation studies of the probability and vertex-based semantic consistency con-

straints by evaluating the mask IoU and the keypoint transfer (KT) task on the CUB-200-

2011 dataset [122].

(a) Metric (b) Ours (c) w/o Lsv (d) w/o Lsp original [42]
Mask IoU ↑ 0.734 0.6069 0.6418

KT (Camera) ↑ 51.2 30.7 51.0
KT (Texture Flow) ↑ 58.2 29.5 53.3

Section 3.2. For instance, the head of the template is deformed to form the tail and

the wing’s tip in the first and second examples, respectively in Figure 3.15. By addi-

tionally including the semantic consistency constraint in the model (c), the network is

able to reduce the “camera-shape ambiguity” and predict the correct camera pose as

well as the correct shape. Furthermore, adding adversarial training introduces better

reconstruction details, as shown in Figure 3.15 (d). For instance, the bird may have

more than two feet without the adversarial training constraint as demonstrated in

the third example in Figure 3.15.

In addition, we demonstrate the effectiveness of the texture flow consistency con-

straint by visualizing the keypoint transfer results in Figure 3.16. The model trained

without this constraint performs worse than our full model, especially when the bird

has a uniform color, e.g., the second and the last examples in Figure 3.16. Fig-

ure 3.16 also shows that the proposed method performs favourably against the base-

line CSM [61] method.

Finally, we show an ablation study of the probability and vertex-based seman-

tic consistency constraints in Table 3.4, where both constraints contribute to the

reconstruction network.
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3.6 Failure Case and Limitations

(a) (b) (c) (d)

Figure 3.17: Failure cases. (a) Input images. (b) Semantic part segmentations predicted

by the SCOPS method. (c) Reconstructed meshes. (d) Reconstructed meshes with the

canonical semantic UV map.

Our method performs sub-optimally for objects with large concavities and objects

with a genus greater than 0, such as horses and chairs. It captures the major shape

characteristics of each instance but ignores some details, e.g., the two wings of flying

birds, and the legs of zebras or horses are not separated, as shown in Figure 3.8 and

Figure 3.9. Moreover, our method utilizes the SCOPS method to provide semantic

part segmentation, and so it suffers when the semantic part segmentation is not

accurate, as shown in the first row of Figure 3.17 or if the SCOPS model fails to

discover meaningful parts for a certain category, such as airplanes, as shown in the

supplementary document of [42]. We leave these failure cases and limitations to future

works.

3.7 Conclusion

In this work, we learn a model to reconstruct 3D shape, texture and camera

pose from single-view images, with only a category-specific collection of images and

silhouettes as supervision. The self-supervised framework enforces semantic consis-
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tency between the reconstructed meshes and images and largely reduces ambiguities

in the joint prediction of 3D shape and camera pose from 2D observations. It also

creates a category-level template and a canonical semantic UV map, which capture

the most representative shape characteristics and semantic parts of objects in each

category, respectively. Experimental results demonstrate the efficacy of our proposed

method in comparison to the state-of-the-art supervised category-specific reconstruc-

tion methods.
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ShapeInput SCOPS Predicted Cam Other Views

Figure 3.11: More qualitative results of birds.
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Input Shape SCOPS Predicted Cam Other Views

/

Figure 3.12: More qualitative results of horses and cows.
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Input Shape SCOPS Predicted Cam Other Views

Figure 3.13: More qualitative results of motorbikes and cars.
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Figure 3.14: More qualitative results of zebras and penguins.
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Figure 3.15: Visualization of the contribution of each module. The settings of baselines (a),

(b), (c) can be found in Table 3.3
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Figure 3.16: Visualization of keypoint transfer using texture flow.



Chapter 4

Mesh Reconstruction from Videos

via Temporal Correspondence
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4.1 Overview

In this chapter, we present an algorithm to reconstruct temporally consistent 3D

meshes of deformable object instances from videos in the wild. Without requiring

annotations of 3D mesh, 2D keypoints, or camera pose for each video frame, we pose

video-based reconstruction as a self-supervised online adaptation problem applied to

any incoming test video. We first learn a category-specific 3D reconstruction model

from a collection of single-view images of the same category that jointly predicts the

shape, texture, and camera pose of an image. Then, at inference time, we adapt the

model to a test video over time using self-supervised regularization terms that exploit

temporal consistency of an object instance to enforce that all reconstructed meshes

share a common texture map, a base shape, as well as parts. We demonstrate that

our algorithm recovers temporally consistent and reliable 3D structures from videos

of non-rigid objects including those of animals captured in the wild – an extremely

challenging task rarely addressed before.

4.2 Introduction

When we humans try to understand the object shown in Figure 4.1(a), we instantly

recognize it as a “duck”. We also instantly perceive and imagine its shape in the 3D

world, its viewpoint, and its appearance from other views. Furthermore, when we

see it in a video, its 3D structure and deformation become even more apparent to

us. Our ability to perceive the 3D structure of objects contributes vitally to our rich

understanding of them.

While 3D perception is easy for humans, 3D reconstruction of deformable objects

remains a very challenging problem in computer vision, especially for objects in the

wild. For learning-based algorithms, the key bottleneck is the lack of supervision.

It is extremely challenging to collect 3D annotations such as 3D shape and camera

pose [15, 53]. Consequently, existing research mostly focuses on limited domains (e.g.,

rigid objects [71], human bodies [50, 147] and faces [136]) for which 3D annotations

can be captured in constrained environments. However, these approaches do not gen-

eralize well to non-rigid objects captured in naturalistic environments (e.g., animals).
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In non-rigid structure from motion methods [4, 86], the 3D structure can be partially

recovered from correspondences between multiple viewpoints, which are also hard to

label. Due to constrained environments and limited annotations, it is nearly impossi-

ble to generalize these approaches to the 3D reconstruction of non-rigid objects (e.g.,

animals) from images and videos captured in the wild.

Instead of relying on 3D supervision, weakly supervised or self-supervised ap-

proaches have been proposed for 3D mesh reconstruction. They use annotated 2D

object keypoints [49], category-level templates [61, 60] or silhouettes [68]. However,

to scale up learning with 2D annotations to hundreds of thousands of images is still

non-trivial. This limits the generalization ability of current models to new domains.

For example, a 3D reconstruction model trained on single-view images, e.g., [49], pro-

duces unstable and erratic predictions for video data. This is unsurprising, due to

perturbations over time. However, the temporal signal in videos should provide us an

advantage instead of a disadvantage, as recently shown on the task of optimizing a

3D rigid object mesh w.r.t. a particular video [154, 71]. The question is, can we also

take advantage of the redundancy in temporal sequences as a form of self-supervision

in order to improve the reconstruction of dynamic non-rigid objects?

In this work, we address this problem with two important innovations. First, we

strike a balance between model generalization and specialization. That is, we train

an image-based network on a set of images, while at test time we adapt it online to

an input video of a particular instance. Test-time training [108] is non-trivial since no

labels are provided for the video. The key is to introduce self-supervised objectives

that can continuously improve the model. To do so, we exploit the UV texture

space, which provides a parameterization that is invariant to object deformation. We

encourage the sampled texture, as well as a group of object parts, to be consistent

among all the individual frames in the UV space, as shown in Figure 4.1(a). Using

this constraint of temporal consistency, the recovered shape and camera pose are

stabilized considerably and are adapted to the current video.

One bottleneck of existing image-based 3D mesh reconstruction methods [49, 68]

is that the predicted shapes are assumed to be symmetric. This assumption does not

hold for most non-rigid animals, e.g., birds tilting their heads, or walking horses, etc.

Our second innovation is to remove this assumption and to allow the reconstructed
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Figure 4.1: By utilizing the consistency of texture, shape and object parts correspondences

in videos (red box) as self-supervision signals in (a), we learn a model that reconstructs

temporally consistent meshes of deformable object instances in videos in (b).

meshes to fit more complex, non-rigid poses via an as-rigid-as-possible (ARAP) con-

straint. As another constraint that does not require any labels, we enforce ARAP

during test-time training as well, to substantially improve shape prediction. We use

two image-based 3D reconstruction models for training (i) a weakly supervised one

(i.e., with object silhouettes and 2D keypoints provided), and (ii) a self-supervised

one where only object silhouettes are available. The image-based models are then

adapted to in-the-wild bird and zebra videos collected from the internet. We show

that for both models, our innovations lead to an effective and robust approach to

deformable, dynamic 3D object reconstruction of non-rigid objects captured in the

wild.

4.3 Related Work

3D object reconstruction from images. A triangular mesh has long been used

for object reconstruction [49, 53, 74, 51, 125, 89, 132]. It is a memory-efficient rep-

resentation with vertices and faces, and is amenable to differentiable rendering tech-

niques [53, 74]. The task of 3D reconstruction entails the simultaneous recovery of the

3D shape, texture, and camera pose of objects from 2D images. It is highly ill-posed

due to the inherent ambiguity of correctly estimating both the shape and camera pose

together. A major trend of recent works is to gradually reduce supervision from 3D
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vertices [15, 132, 125], shading [37], or multi-view images [142, 53, 133, 100, 71] and

move towards weakly supervised methods that instead use 2D semantic keypoints [49],

or a category-level 3D template [61]. This progress makes the reconstruction of ob-

jects, e.g., birds, captured in the wild possible. More recently, self-supervised meth-

ods [68, 136, 52] have been developed to further remove the need for annotations.

Our method exploits different levels of supervision: weak supervision (i.e., using 2D

semantic keypoints) and self-supervision to learn an image-based 3D reconstruction

network from a collection of images of a category (Section 4.4.1).

Non-rigid structure from motion (NR-SFM). NR-SFM aims to recover the

pose and 3D structure of a non-rigid object, or object deforming non-rigidly over

time, solely from 2D landmarks without 3D supervision [4]. It is a highly ill-posed

problem and needs to be regularized by additional shape priors [4, 155]. Recently,

deep networks [57, 86] have been developed that serve as more powerful priors than

the traditional approaches. However, obtaining reliable landmarks or correspondences

for videos is still a bottleneck. Our method bears resemblances to deep NR-SFM [86],

which jointly predicts camera pose and shape deformation. Differently from them,

we reconstruct dense meshes instead of sparse keypoints, without requiring labeled

correspondences from videos.

3D object reconstruction from videos. Existing video-based object reconstruc-

tion methods mostly focus on specific domains, e.g., videos of faces [24, 114] or human

bodies [117, 2, 19, 50, 147], where dense labelling is possible [119]. To augment video

labels, [50] formulates dynamic human mesh reconstruction as an omni-supervision

task, where a combination of labeled images and videos with pseudo-ground truth

are used for training. For human video-based 3D pose estimation, [92] introduces

semi-supervised learning to leverage unlabeled videos with a self-supervised compo-

nent. Dealing with specific application domains, all the aforementioned works rely on

predefined shape priors, such as a parametric body model (e.g., SMPL [78]) or a mor-

phable face model. While our work also exploits unlabeled videos, we do not assume

any predefined shape prior, which, practically, is hard to obtain for the majority of

objects captured in the wild.
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Optimization-based methods. Optimization-based methods have also been ex-

tensively explored for scene or object reconstruction from videos. Several works [151,

123, 101, 93] first obtain a single-view 3D reconstruction and then optimize the mesh

and skeletal parameters. Another line of methods is developed to optimize the weights

of deep models instead, to render more robust results for a video of a particular in-

stance [117, 71, 80, 156]. Our method falls into this category. While [117] enforces

consistency between observed 2D and a re-projection from 3D, [71, 80] take a further

step and encourage consistency between frames via a network that inherently encodes

an entire video into an invariant representation. In this work, instead of limiting to

rigid objects as [71], or depth estimation as [80], we recover dynamic meshes from

videos captured in the wild – a much more challenging problem that is rarely explored.

4.4 Approach

Our goal is to recover coherent sequences of mesh shapes, texture maps and camera

poses from unlabeled videos, with a two-stage learning approach: (i) first, we learn

a 3D mesh reconstruction model on a collection of single-view images of a category,

described in Section 4.4.1; (ii) at inference time, we adapt the model to fit the sequence

via temporal consistency constraints, as described in Section 4.4.2. We focus on

the weakly-supervised setting in Section 4.4.1 and 4.4.2, where both silhouettes and

keypoints are annotated in the image dataset. We then describe how to generalize

the approach to a self-supervised setting, where only silhouettes are available in the

image dataset in Section 4.4.3.

Notations. We represent a textured mesh with |V | vertices (V ∈ R|V |×3), |F | faces
(F ∈ R|F |×3) and a UV texture image (Iuv ∈ RHuv×Wuv×3) of height Huv and width

Wuv. Similarly to [49], we use a weak perspective transformation to represent the

camera pose θ ∈ R7 of an input image. We denote R(·) as a general projection,

which can represent (i) a differentiable renderer [74, 53] to render a mesh to a 2D

silhouette as R(V, θ), or a textured mesh to an RGB image as R(V, θ, Iuv) (we omit

mesh faces F for conciseness); (ii) or a projection of a 3D point v to the image space

as R(v, θ). The Soft Rasterizer [74] is used as the differentiable renderer in this work.
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Figure 4.2: Overview. We show the single-view image reconstruction network on the left

and the test-time training procedure to adapt it to a video on the right. Bold red arrows

indicate invariance constraints in Section 4.4.2.

4.4.1 Single-view Mesh Reconstruction

In the first stage, we train a network with a collection of category-specific images

that jointly estimates the shape, texture, and camera pose of an input image. Simi-

larly to [49], we predict a texture flow Iflow ∈ RHuv×Wuv×2 that maps pixels from the

input image to the UV space. A predefined UV mapping function Φ [41, 49] is then

used to map these pixels from the UV space to the mesh surface. With a differen-

tiable renderer [74], we train the network with supervision from object silhouettes,

texture, and the Laplacian objectives as in [49, 68]. More details of learning texture

and camera pose can be found in [49]. An overview of our reconstruction framework

is shown in Figure 4.2(a).

Recovering asymmetric shapes. We propose a novel shape reconstruction mod-

ule as shown in Figure 4.2(a). The key idea is to remove the symmetry requirement of

object shapes, which is employed by many prior works [49, 68]. This is particularly im-

portant for recovering dynamic meshes in sequences, e.g., when a bird rotates its head

as shown in Figure 4.5, its mesh is no longer mirror-symmetric. Prior works [49, 68]

model object shape by predicting vertex offsets from a jointly learned 3D template.

Simply removing the symmetry assumption for the predicted vertex offsets leads to

excessive freedom in shape deformation, e.g., see Figure 4.5(f). To resolve this, we

learn a group of Nb shape bases {Vi}Nb
i=1, and replace the template by a weighted

combination of them, denoted as the base shape Vbase. Compared to a single mesh

template, the base shape Vbase is more powerful in capturing the object’s identity



64

and saves the model from predicting large motion deformation, e.g., of deforming a

standing bird template to a flying bird. The full shape reconstruction can be obtained

by:

V = Vbase +∆V, Vbase =

Nb∑
i=1

βiVi, (4.1)

where the ∆V encodes the object’s asymmetric non-rigid motion and {βi}Nb
i=1 are

learned coefficients.

The computation of our shape bases is inspired by parametric models [78, 157,

158], where the basis shapes are extracted from an existing mesh dataset [102] or

toy scans [158]. However, we make our model completely free of 3D supervision

and obtain the bases by applying K-Means clustering to all meshes reconstructed by

CMR [49]. We use each cluster center as a basis shape in our model.

Keypoint re-projection. In the weakly-supervised setting, the 2D keypoints are

provided that semantically associate different instances. When projected onto the

mesh surface, the same semantic keypoint (e.g., the tail keypoint in the orange circle

in Figure 4.3(a)) for different object instances should be matched to the same face

on the mesh (the tail keypoint in the orange circle in Figure 4.3(d)). To model the

mapping between the 3D mesh surface and the 2D keypoints, prior work [49] learns

an affinity matrix that describes the probability of each 2D keypoint mapping to

each vertex on the mesh. The affinity matrix is shared among all instances and is

independent of individual shape variations. However, this approach is sub-optimal

because: (i) Mesh vertices are a subset of discrete points on a continuous mesh surface

and so their weighted combination defined by the affinity matrix may not lie on it,

leading to inaccurate mappings of 2D keypoints. (ii) The mapping from the image

space to the mesh surface described by the affinity matrix, in our case, however, is

already modeled by the texture flow. Hence, it is potentially redundant to learn both

of them independently.

In this work, we re-utilize texture flow to map 2D keypoints from each image to

the mesh surface. We first map each 2D keypoint to the UV space that is independent

of shape deformation (Figure 4.3(b)). Ideally, each semantic keypoint from different

instances should map to the same point in the UV space as discussed above. In
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Figure 4.3: 3D canonical keypoints computation: (a) annotated 2D keypoints and their

location heatmaps; (b) keypoint heatmaps mapped to the UV space using learned texture

flows; (c) aggregated canonical keypoint heatmaps in the UV space; (d) canonical key-

points on different instance mesh surface. Φ(·) is the UV mapping function discussed in

Section 4.4.1

practice, this does not hold due to inaccurate texture flow prediction. To accurately

map each keypoint to the UV space, we compute a canonical keypoint UV map as

shown in Figure 4.3(c) by: (i) mapping the keypoint heat map in Figure 4.3(a) for

each instance to the UV space via its predicted texture flow, and (ii) aggregating

these keypoint UV maps in Figure 4.3(b) across all instances to eliminate outliers

caused by incorrect texture flow prediction.

We further utilize the pre-defined UV mapping function Φ discussed above to

map each semantic keypoint from the UV space to the mesh surface. Given the 3D

correspondence (denoted as Ki
3D) of each 2D semantic keypoint Ki

2D, the keypoint

re-projection loss enforces the projection of the former to be consistent with the latter
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by:

Lkp =
1

Nk

Nk∑
i=1

∥∥R(Ki
3D, θ)−Ki

2D

∥∥, (4.2)

where Nk is the number of keypoints.

As-rigid-as-possible (ARAP) constraint. Without any pose-related regulariza-

tion, the predicted motion deformation ∆V often leads to erroneous random defor-

mations and spikes as shown in Figure 4.5(f), which do not faithfully describe the

motion of a non-rigid object. Therefore, we introduce an as-rigid-as-possible (ARAP)

constraint [106, 33] to encourage rigidity of local transformations and the preserva-

tion of the local mesh structure. Instead of solving the optimization in [106, 33], we

reformulate it as an objective that ensures that the predicted shape V is a locally

rigid transformation from the predicted base shape Vbase by:

Larap(Vbase, V ) =

|V |∑
i=1

∑
j∈N (i)

wij

∥∥(V i − V j)−Ri(V
i
base − V j

base)
∥∥, (4.3)

where N (i) represents the neighboring vertices of a vertex i, wij and Ri are the cotan-

gent weight and the best approximating rotation matrix, respectively, as described

in [106].

Objectives summary for image reconstruction model We summarize the ob-

jectives used in the single-view reconstruction model (Figure 4.6(a)) as follows: (i)

foreground mask loss: a negative intersection over union objective between rendered

and ground truth silhouettes [49, 68, 51]; (ii) foreground RGB texture loss: a per-

ceptual metric [49, 68, 148] between rendered and input RGB images; (iii) mesh

smoothness: a Laplacian constraint [49, 68] to encourage smooth mesh reconstruc-

tion; (iv) keypoint re-projection loss: as discussed in Section 4.4.1; and (v) the ARAP

constraint: described in Section 4.4.1. The weight for each objective is set to 3.0, 3.0,

0.0008, 5.0 and 10.0.

4.4.2 Online Adaptation for Videos

Applying the image-based model developed in Section 4.4.1 independently to each

frame of an unseen video usually results in inconsistent mesh reconstruction (Fig-
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Figure 4.4: Part correspondence constraint. (a) Input frame and part propagations. (b)

Predicted texture flows. (c) Part UV map. (d) Aggregated video-level part UV map. (e)

Base shape and differentiable renderer. (f) Part rendering.

ure 4.8(a)), mainly due to the domain differences in video quality, lighting conditions,

etc. In this section, we propose to perform online adaptation to fit the model to in-

dividual test video, which contains a single object instance that moves over time.

Inspired by the keypoint re-projection constraint described in Section 4.4.1, we resort

to the UV space, where the (i) RGB texture, and (ii) object parts of an instance

should be constant when mapped from 2D via the predicted texture flow, and in-

variant to shape deformation. By enforcing the predicted values for (i) and (ii) to be

consistent in the UV space across different frames, the adapted network is regularized

to generate coherent reconstructions over time. In the following, we describe how to

exploit the aforementioned temporal invariances as self-supervisory signals to tune

the model.
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Part correspondence constraint. We propose a part correspondence constraint

that utilizes corresponding parts of each video frame to facilitate camera pose learning.

The idea bears resemblance to NR-SFM methods [86, 57], but in contrast, we do not

know the ground truth correspondence between frames. Instead, we resort to an

unsupervised video correspondence (UVC) method [69]. The UVC model learns an

affinity matrix that captures pixel-level correspondences among video frames. It can

be used to propagate any annotation (e.g, segmentation labels, keypoints, part labels,

etc.), from an annotated keyframe to the other unannotated frames. In this work, we

generate part correspondence within a clip: we ”paint” a group of random parts on

the object, e.g., the vertical stripes in Figure 4.2(f), on the first frame and propagate

them to the rest of the video using the UVC model.

Given the propagated part correspondences in all the frames, we map them to

the UV space via the texture flow, similar to our approach for the canonical keypoint

map (Section 4.4.1). We then average all part UV maps to obtain a video-level part

UV map (“UV parts” in Figure 4.1(a)) for the object depicted in the video. We

map the part UV map to each individually reconstructed mesh, and render it via

the predicted camera pose of each frame (see Figure 4.1(a), bottom). Finally, we

penalize the discrepancy between the parts being rendered back to the 2D space, and

the propagated part maps, for each frame. As the propagated part maps are usually

temporally smooth and continuous, this loss implicitly regularizes the network to

predict coherent camera pose and shape over time. In practice, instead of minimizing

the discrepancy between the rendered part map and the propagation part map of a

frame, we found that it is more robust to penalize the geometric distance between

the projections of vertices assigned to each part with 2D points sampled from the

corresponding part as:

Lc =

Nf∑
j=1

Np∑
i=1

1

|V j
i |
Chamfer(R(V j

i , θ
j), Y j

i ), (4.4)

where Nf is the number of frames in the video, Np = 6 is the number of parts and

V j
i are vertices assigned to part i. Here we utilize the Chamfer distance because the

vertex projections R(V j
i , θ

j) do not strictly correspond one-to-one to the sampled 2D

points Y j
i .
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We summarize the part correspondence constraint in details in Figure 4.4. Given

the propagated parts in each frame in Figure 4.4(a), we map them to the UV space

with the predicted texture flow in Figure 4.4(b) and obtain part UV maps in Fig-

ure 4.4(c). By aggregating these part UV maps, i.e., averaging, we minimize noise in

each individual part UV map and obtain a video-level part UV map in Figure 4.4(d).

This video-level part UV map is shared by all frames in the video. Thus, for each

frame, we wrap the video-level part UV map onto the base shape prediction and

render it under the predicted camera pose as shown in Figure 4.4(f). Finally, we

encourage consistency between part renderings and part propagations, as shown by

the red arrow in Figure 4.4. Through the differentiable renderer, the loss implicitly

improves both the predicted camera pose.

Texture invariance constraint. Based on the observation that object texture

mapped to the UV space should be invariant to shape deformation and stay constant

over time, we propose a texture invariance constraint to encourage consistent texture

reconstruction from all frames. However, naively aggregating the UV texture maps

from all the frames via a scheme similar to the one described for keypoints and parts,

leads to a blurry video-level texture map. We instead enforce texture consistency

between random pairs of frames, via a swap loss. Given two randomly sampled

frames I i and Ij, we swap their texture maps I iuv and I juv, and combine them with

the original mesh reconstructions V i and V j as:

Lt = dist(R(V i, θi, I juv)⊙ Si, I i ⊙ Si) + dist(R(V j, θj, I iuv)⊙ Sj, Ij ⊙ Sj), (4.5)

where Si and Sj are the silhouettes of frame i and j, respectively and dist(·, ·) is the
perceptual metric used in [148, 49, 68].

Base shape invariance constraint. As discussed in Section 4.4.1, our shape

model is represented by a base shape Vbase and a deformation term ∆V , in which

the base shape Vbase intuitively corresponds to the “identity” of the instance, e.g.,

a duck, or a flying bird, etc. During online adaptation, we enforce the network to

predict consistent Vbase to preserve the identity, via a swapping loss function:

Ls = niou(R(V j
base +∆V i, θi), Si) + niou(R(V i

base +∆V j, θj), Sj), (4.6)
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where V i
base and V j

base are the base shapes for frame i and j; ∆V i and ∆V j are the

motion deformations for frame i and j; and niou(·, ·) denotes the negative intersection
over union (IoU) objective [51, 68]. All other notations are defined in Eq. 4.5.

As-rigid-as-possible (ARAP) constraint. Besides the consistency constraints,

we keep the ARAP objective, as discussed in Section 4.4.1, during online adaptation

since it also does not require any form of supervision. We found that the ARAP

constraint can obviously improve the qualitative results, as visualized for the online

adaptation procedure in Figure 4.7.

Online adaption. During inference, we fine-tune the model on a particular video

with the invariance constraints discussed above, along with a silhouette and a texture

objective, a Laplacian term as in [49, 68], and the ARAP constraint discussed in

Section 4.4.1. The foreground masks used for the silhouette and texture objective

are obtained by a segmentation model [10] trained with the ground truth foreground

masks available for the image collection.

To obtain accurate part propagation of object parts by the UVC [69] model,

we employ two strategies. Firstly, we fine-tune all parameters in the reconstruction

model on sliding windows instead of all video frames. Each sliding window includes

Nw = 50 consecutive frames and the sliding stride is set to Ns = 10. We tune the

reconstruction model for Nt = 40 iterations with frames in each sliding window. We

show the test-time tuning process in Figure 4.6(b). Within each sliding window, we

encourage the consistency of UV texture, UV parts as well as base shape of all frames.

Secondly, instead of ”painting” random parts onto the first frame and propagating

them to the rest of the frames sequentially in a window, we ”paint” random parts

onto the middle frame (i.e. the Nw

2
th frame) in the window and propagate the parts

backward to the first frame as well as forward to the last frame in the window. This

strategy improves the propagation quality by decreasing the propagation range to

half of the window size.

We summarize the objectives used in the online adaptation process (See Fig-

ure 4.6(b)) in the following. Since it is feasible to predict a segmentation mask via a

pretrained segmentation model, we make use of the predicted foreground mask and
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compute the (i), (ii), and (iii) losses (mentioned above) similarly to the image-based

training. We also adopt the the ARAP constraint described in Section 4.4.1, and the

three invariance constraints as discussed in Section 4.4.2 for online adaptation. The

weight for each objective is set to 0.1, 0.5, 0.0006, 2.0 and 2.0 (texture invariance),

1.0 (part correspondence), 1.0 (base shape invariance).

4.4.3 Self-supervised Setting

Our model can also be easily generalized to a self-supervised setting in which

keypoints are not provided for the image datasets. In this setting, the template prior

as well as camera poses in the CMR method [49] computed from the keypoints are no

longer available. This self-supervised setting is trained differently from the weakly-

supervised one in the following: (i) The first stage still assumes shape symmetry

to ensure stability when training without keypoints. (ii) It learns a single template

from scratch via the progressive training in [68]. (iii) We train this model without

the keypoints re-projection and the ARAP constraints in Section 4.4.1. (iv) Without

the shape bases, the base shape invariance constraint is thus removed in the online

adaptation procedure. Other structure and training settings in the self-supervised

model are the same as in the weakly-supervised model discussed in Section 4.4.1

and 4.4.2.

4.5 Experiments

We conduct experiments on animals, i.e., birds and zebras. We evaluate our

contributions in two aspects: (i) the improvement of single-view mesh reconstruction,

and (ii) the reconstruction of a sequence of frames via online adaptation. Due to the

lack of ground truth meshes for images and videos captured in the wild, we evaluate

the reconstruction results via mask and keypoint re-projection accuracy, e.g., we

follow, and compare against [49] to evaluate the model trained on the image dataset.

We also describe a new bird video dataset that we curate and evaluate the test-time

tuned model on it in the following.
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(a) Input (b) Base shape (c) Ours (d) View1 (e) View2 (g) CMR [13](f) No ARAP

Figure 4.5: Mesh reconstructions from single-view images. All meshes are visualized from

the predicted camera pose except for (d) and (e), where the reconstructions in (c) are

visualized from two extra views. Meshes in (f) are reconstructed by a model trained without

the ARAP constraint.

4.5.1 Experimental Settings

Datasets. We first train image reconstruction models, discussed in Section 4.4.1, for

the CUB bird [122] and the synthetic zebra [157] datasets. For test-time adaptation on

videos, we collect a new bird video dataset for quantitative evaluation. Specifically,

we collect 19 slow-motion, high-resolution bird videos from YoutTube, and 3 bird

videos from the DAVIS dataset [55]. For each slow-motion video collected from the

Internet, we apply a segmentation model [10] trained on the CUB bird dataset [122]

to obtain its foreground segmentation for online adaptation.

Evaluation metrics. We evaluate the image-based model on the testing split of

the CUB dataset. Note that for keypoint re-projection, instead of using the keypoint

assignment matrix in [49], we apply the canonical keypoint UV map to obtain the

3D keypoints (Section 4.4.1). For the video dataset, we annotate frame-level object

masks and keypoints via a semi-automatic procedure. We train a segmentation model

and a keypoint detector [31] on the CUB dataset. Then, we manually adjust and filter

out inaccurate predictions to ensure the correctness of the ground-truth labels. To

evaluate the accuracy of mask re-projection, we compute the Jacaard index J (IoU)

and contour-based accuracy F proposed in [95], between the rendered masks and the

ground truth silhouettes of all annotated frames.
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In addition, to further quantitatively evaluate shape reconstruction quality, we

animate a synthetic 3D bird model and create a video with 520 frames in various

poses such as flying, landing, walking etc., as shown in Figure 4.12. We then compare

the predicted mesh with the ground truth mesh using Chamfer distance every 10

frames.

Network architecture. For fair comparisons to the baseline method [49], we train

our model using the same network as [49], i.e., ResNet18 [36] with batch normalization

layers [45] as the encoder, we call this model “ACMR” in the following, which is short

for “asymmetric CMR”. However, ACMR cannot be well adapted to test videos due

to the batch normalization layers and the domain gap between images and videos

(see Table 4.2(d)). Thus, we train a variant model where we use ResNet50 [36]

as our encoder and replace all the batch normalization layers in the network with

group normalization layers [138]. We call this variant model “ACMR-vid”. All test-

time training is carried out on the ACMR-vid model unless otherwise specified. In
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(a) Image reconstruction model (b) Illustration of the sliding window scheme

Figure 4.6: Frameworks. For the purposes of illustration only, we show the test-time tuning

process in (b) with a sliding widow size of 3 and sliding stride of 2. In all our experiments,

we use a sliding window size of 50 and stride of 10. The gray dashed box shows the previous

sliding window while the orange box shows the current sliding window.

Figure 4.6(a), we show details of our single-view reconstruction network. Given an

input image, the network jointly predicts texture, shape and camera pose. By utilizing

a differentiable renderer [74], we are able to utilize 2D supervision, i.e. silhouettes

and input images.
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Network training. Taking the weakly-supervised setting as an example, to train

the image reconstruction model, we first warm up the model without the motion

deformation branch, the keypoint re-projection objective, or the ARAP constraint

for 200 epochs. This warm-up process effectively avoids the trivial solution where the

model solely depends on the motion deformation branch for shape deformation while

ignoring the base shape branch. We then train the full image reconstruction network

with all objectives for another 200 epochs.

Training on zebra images and videos We adopt a different scheme to train a

single-view reconstruction model on zebras: (i) since natural zebra images labeled

with keypoints are not publicly available, we adopt a synthetic dataset [156], (ii)

zebras have more complex shapes with large concavities. Therefore, it is not suit-

able to learn the shape by deforming from a sphere primitive. Instead, we utilize a

readily available zebra mesh as a template and learn motion deformation on top of

it. We first train an image reconstruction model using the synthetic dataset provided

by [156]. Similarly as [156], we utilize the silhouettes, keypoints, texture maps as

well as partially available UV texture flows as supervision. For shape reconstruction,

instead of the utilizing the SMAL parametric model [158], we use the proposed shape

module, i.e. combination of base shapes and motion deformation. Due to the limited

motion of zebras, we only use one base shape, which is a readily available zebra mesh

with 3889 vertices and 7774 faces. For camera pose prediction, we use the perspective

camera pose discussed in Section 4.4.1 as well as in [49]. Due to the limited capacity

of a single UV texture map, we also model the texture map by cutting the UV texture

map into four pieces and stitch them together similarly as in [156]. We note that this

“cutting and stitching” operation does not influence the mapping and aggregation of

the part UV maps discussed in Section 4.4.2.

4.5.2 Qualitative Results

Mesh reconstruction from images. In Figure 4.5 and Figure 4.18, we show vi-

sualizations of reconstructed bird meshes from single-view images. Thanks to the

“motion deformation branch” discussed in Section 4.4.1, the proposed ACMR model

is able to capture asymmetric motion of the bird such as head rotation (Figure 4.5(c)),
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Without
ARAP

Full 
model

Input frame Observed view Unobserved view Input frame Observed view Unobserved view

Figure 4.7: Qualitative comparison of online adaptation with/without the ARAP constraint.

(a)

(d)

(c)

(b)

Figure 4.8: Mesh reconstruction from video frames. (a) Input video frames. (b) Recon-

struction from the model trained only on single-view images. (c) Reconstruction from the

model test-time trained on the video without the invariance constraints in Section 4.4.2.

(d) Reconstruction from the proposed video reconstruction model.

which cannot be modeled by the baseline method [49] (Figure 4.5(g)). We also demon-

strate mesh reconstruction for the zebra category in Figure 4.17.

Online adaptation on a video. We visualize the reconstructed meshes by our

ACMR-vid model for video frames in Figure 4.8. Without online adaptation, the

ACMR-vid model independently applied to each frame suffers from a domain gap

and shows instability over time (Figure 4.8(b)). With online adaption as discussed

in Section 4.4.2, the ACMR-vid model reconstructs plausible meshes for each video

frame as shown in Figure 4.8(c) and (d). Specifically, to demonstrate the effectiveness

of the proposed invariance constraints, we also show reconstructions of an ACMR-vid

model trained without all the invariance constraints in Figure 4.8(c), which predicts

less reliable shape, camera pose as well as texture compared to our full ACMR-

vid model. Finally, we visualize the effectiveness of ARAP for online adaptation
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Figure 4.9: Camera stability visualization. We visualize differences between adjacent camera

pose predictions. The blue and red lines represent the model trained only with images and

the test-time tuned model, respectively.

in Figure 4.7. Without this constraint, the reconstructed meshes are less plausible,

especially from unobserved views.

Camera Pose Stability To visually demonstrate the effectiveness of the test-time

training process that stabilizes camera pose prediction, we visualize the differences

of camera pose predictions between adjacent frames in Figure 4.9. Compared to the

model that is only trained on images, the proposed method predicts more stable

camera poses that change smoothly over time.

Keypoints Re-projection for Image-based Reconstruction We visualize re-

projected keypoints on test images in Figure 4.10, where the corresponding quantita-

tive results are presented in Section 4.5.3, Table 4.1. The proposed ACMR model is

able to predict more accurate keypoints compared to the CMR [49] method, especially

when the bird performs an asymmetric pose, e.g. first row in Figure 4.10.
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CMR [13] Ours GT CMR [13] Ours GT

Figure 4.10: Visualization of re-projected keypoints of the single-view image reconstruction

model.

Bases Visualization We visualize the eight shape bases obtained by applying

KMeans clustering to all reconstructed meshes by the CMR [49] method for birds

in Figure 4.11(a). We also show the bases obtained by applying PCA to the bottle-

neck features of the image encoder. Note that the latter fails to discover rare shape

modes (e.g., duck and flying bird) in the dataset as shown in Figure 4.11(b). Thus

we choose to use KMeans to obtain shape bases.

4.5.3 Quantitative Results

Evaluations on the image dataset. As shown in Table 4.1(b) vs. (c), our ACMR

model achieves comparable mask IoU and higher keypoints re-projection accuracy
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(a) Applying KMeans to reconstructed meshes by CMR [13]

(b) Applying PCA to feature space of CMR [13]

Figure 4.11: Bases visualization.

Table 4.1: Quantitative evaluation of mask IoU and keypoint re-projection (PCK@0.1) on

the CUB dataset [122].

(a) Metric (b) CMR [49] (c) ACMR
(d) ACMR,
no ∆V

(e) ACMR,
no ARAP

(f) ACMR-vid

Mask IoU ↑ 0.706 0.708 0.647 0.758 0.773
PCK@0.1 ↑ 0.810 0.855 0.790 0.857 0.895

compared to the baseline model [49] with the same network architecture. This con-

firms the correctness of both the reconstructed meshes as well as that of the predicted

camera poses. In addition, our ACMR-vid model achieves even better performance

as shown in Table 4.1(f). We note that our full ACMR model does not quantitatively

outperform the model trained without the ARAP constraint, because the motion

deformation ∆V freely over-fits to the mask and keypoint supervision without any

regularization. However, the model without the ARAP constraint visually shows

spikes and unnatural deformations as shown in Figure 4.5(f).

Evaluations on the video dataset. As shown in Table 4.2(b) and (c) vs. (e), by

using the proposed online adaptation method discussed in Section 4.4.2, the model

tuned on videos achieves higher J and F scores compared to the model trained only

on images. This indicates that the test-time trained model successfully adapts to
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Ref. parametric model any video label? controlled consistency

[3] DAM GT cam Yes texture

[4] kinematics GT cam Yes keypoints

[5] SMPL large-scale videos (unlabeled) No shape

[6] SMPL 3D GT Yes supervised

ours none one video (unlabeled) No texture, shape, parts

Table 2: Comparisons of settings with [3-4] in R4’s review. “cam” for camera, “GT” for ground truth.

Input

Base

Full

Time

Figure 1: Reconstruction of animated synthetic 3D bird video. Figure 4.12: Reconstructions of an animated video clip.

Table 4.2: Quantitative evaluation of mask re-projection accuracy on the bird video dataset.

“(T)” indicates the model is test-time trained on the given video., Lc, Lt, Ls are defined in

Eq. 4.4, 4.5, 4.6 respectively.

(a) Metric (b) CMR [49] (c) ACMR (d) ACMR (T)
(e) ACMR-vid (T),

no Lc, Lt, Ls
(f) ACMR-vid (T)

J (Mean) ↑ 0.554 0.686 0.706 0.836 0.868
F(Mean) ↑ 0.209 0.363 0.406 0.666 0.756

unlabeled videos and can reconstruct meshes that conform well to the frames. The

performance of the model is further improved by adding the correspondence, texture,

and shape invariance constraints discussed in Section 4.4.2 during online adaptation,

as shown in Table 4.2(f).

Evaluation on animated sequences. We apply the proposed model to an

animated video clip and compare the predicted mesh with the ground truth mesh

using Chamfer distance every 10 frames. We show the qualitative reconstructions in

Figure 4.12 and quantitative evaluation results in Table 4.4. The proposed ACMR

method outperforms the baseline CMR [49] model and is further improved via the

proposed online adaptation strategy discussed in Section 4.4.2.
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Figure 4.13: Keypoints annotation using the Labelme [121] toolkit.

Keypoint Re-projection Accuracy on Videos We evaluate the keypoint re-

projection accuracy on the 22 videos we collected. To create the ground truth key-

points, we follow the protocol of the CUB dataset [122] to annotate 15 semantic

keypoints every five frames in each video, via the Labelme [121] toolkit (see Fig-

ure 4.13 for the annotation interface.) Visualizations of the re-projected keypoints by

different methods are visualized and compared in Figure 4.14.

Since we do not have the keypoint assignment matrix proposed in [49], we employ

the canonical keypoint UV map to obtain the 3D keypoints (Section 4.4.1). The

keypoint re-projection is done by (i) warping the canonical keypoint UV map to

each individual predicted mesh surface; (ii) projecting the canonical keypoint back

to the 2D space via the predicted camera pose; (iii) comparing against the ground

truth keypoints in 2D. This evaluation implicitly reveals the correctness of both the

predicted shape and camera pose for the mesh reconstruction algorithm, especially

for objects that do not have 3D ground truth annotations.
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(a) CMR [13] (b) ACMR
(c) ACMR-vid, no 

!!, !", !# (d) ACMR-vid (e) Ground Truth

Figure 4.14: Visualization of re-projected keypoints on videos. We use white circles to

highlight the keypoints for better visualization.

Compared to frame-wisely applying the CMR [49] (Table 4.3 (b)) or the ACMR

model (Table 4.3 (c)) discussed in Section 4.4.1, the test-time tuned model achieves

higher PCK score, as shown in Table 4.3 (f). It verifies the effectiveness of the

proposed test-time training scheme and the invariance constraints. Essentially, as we

noted in Section 4.4.1, although the original ACMR, i.e., using the ResNet-18 [36] as

image encoder with batch normalization layers [45] in Table 4.3 (c), achieves relatively

promising results, it is hard to adapt this model to new domains like low-quality videos

(e.g., when switching from the .eval() mode to the .train() mode in PyTorch [91]).

The performance drops significantly after test-time tuning as shown in Table 4.3 (d).
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Table 4.3: Keypoint re-projection evaluation on videos. “(T)” indicates the model is test-

time trained on the given video., Lc, Lt, Ls are defined in Eq. 4.4, Eq. 4.5 and Eq. 4.6,

respectively.

(a) Metric (b) CMR [49] (c) ACMR (d) ACMR (T)
(e) ACMR-vid (T),

no Lc, Lt, Ls
(f) ACMR-vid (T)

PCK@0.1 ↑ 0.514 0.751 0.424 0.644 0.794

Table 4.4: Evaluation on synthetic data.

Metric CMR [49] ACMR ACMR (T)
Chamfer↓ 0.016 0.015 0.012

Evaluations for self-supervised setting (Section 4.4.3). After online adapta-

tion, this model too, achieves both a higher J score (0.843 vs. 0.582) and F score

(0.678 vs. 0.256) compared to the model pre-trained on the image dataset, i.e., our

method reconstructs promising dynamic 3D meshes without annotating any keypoint

for training.

4.6 Ablation Studies

4.6.1 The Role of Shape Base

To demonstrate the superiority of using a set of shape bases versus using a single

template, we train a baseline model where we replace the shape combination branch

with the template obtained by the CMR approach [49]. This setting is equivalent

to a using a single shape base (denoted as single base). We show quantitative and

qualitative comparisons with the proposed ACMR model in Table 4.5 and Figure 4.15,

respectively. As shown in Table 4.5(b) vs. (c), the model trained with a single base

Table 4.5: Quantitative comparison of the single base model with the proposed ACMR

model.

(a) Metric (b) Single base (c) ACMR
Mask IoU ↑ 0.605 0.708
PCK@0.1 ↑ 0.655 0.855
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Table 4.6: Ablation study on the ARAP constraint in online adaptation.

(a) Metric (b) without ARAP (c) ACMR-vid (T)
J (Mean) ↑ 0.875 0.868
F(Mean) ↑ 0.782 0.756
PCK@0.1↑ 0.815 0.794

template struggles to fit the final shape when the instance is largely different from the

given template (also shown in Figure 4.15). In contrast, the proposed ACMR model

with 8 shape bases performs favorably against the single base model.

Input Single base ACMR Input Single base ACMR

Figure 4.15: Qualitative comparison of the single base model with the proposed ACMR

model with multiple shape bases. The single base model suffers when the instance is largely

different from the template, e.g. flying bird or a duck.

4.6.2 ARAP Constraint in Online Adaptation

To verify the effectiveness of using the ARAP constraint in the online adaptation

process, we test-time tune on the videos without this constraint. Although performing

online adaptation without the ARAP constraint yields better quantitative evaluations

as shown in Table 4.6, the reconstructed meshes are not plausible from unobserved

views, as shown in Figure 4.7.
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4.7 Failure Cases

Our work is the first to explore the challenging task of reconstructing 3D meshes

of deformable object instances from videos in the wild. Impressive as the performance

is, this challenging task is far from being fully solved. We discuss failure cases and

limitations of the proposed method in the following. To begin with, we focus on

genus-0 objects such as birds and zebras in this work. Thus our model suffers when it

is generalized to objects with large concave holes such as chairs, humans etc. Second,

our work struggles to reconstruct meshes from videos with large motion and lighting

changes as well as occlusion, (see Figure 4.16 and the accompanying video). This is

mainly due to the failure in correctly propagating parts by the self-supervised UVC

model [69], which is out of scope of this work. We leave all these failure cases and

limitations to future works.

t=10 t=20

t=30 t=40

t=50 t=60

Figure 4.16: Failure cases. Our model fails when there is occlusion (e.g., t = 50, t stands

for frame number) or large lighting changes (e.g., t = 60). Please refer to the accompanying

video for more details of this test video.
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4.8 Conclusions

We propose a method to reconstruct temporally consistent 3D meshes of de-

formable objects from videos captured in the wild. We learn a category-specific

3D mesh reconstruction model that jointly predicts the shape, texture, and camera

pose from single-view images, which is capable of capturing asymmetric non-rigid

motion deformation of objects. We then adapt this model to any unlabeled video

by exploiting self-supervised signals in videos, including those of shape, texture, and

part consistency. Experimental results demonstrate the superiority of the proposed

method compared to state-of-the-art works, both qualitatively and quantitatively.
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Input Observed View Other views

Figure 4.17: Visualization of reconstructed zebras.
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(a) Input (b) Base 
shape

(c) Ours (d) View1 (e) View2 (g) CMR 
[13]

(f) No ARAP

Figure 4.18: More qualitative reconstruction results on CUB birds [122].
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5.1 Conclusion

In this dissertation, I first introduce a method that learns temporal correspondence

from videos and then apply both semantic and temporal correspondence to facilitate

3D shape reconstruction for images and videos. Specifically, I demonstrate:

• A model that learns correspondences across video frames in a self-supervised

manner by jointly tackling region-level and pixel-level correspondence learning

and allowing them to facilitate each other through a shared inter-frame affin-

ity matrix. Experimental results demonstrate the effectiveness of the proposed

approach versus the state-of-the-art self-supervised video correspondence learn-

ing methods, as well as supervised models such as the ResNet-18 trained on

ImageNet with classification labels.

• An algorithm that reconstructs 3D shape, texture and camera pose from single-

view images, with only a category-specific collection of images and silhouettes

as supervision. The self-supervised framework enforces semantic consistency

between the reconstructed meshes and images and largely reduces ambiguities

in the joint prediction of 3D shape and camera pose from 2D observations.

It also creates a category-level template and a canonical semantic UV map,

which capture the most representative shape characteristics and semantic parts

of objects in each category, respectively. Experimental results demonstrate the

efficacy of the proposed method in comparison to the state-of-the-art supervised

category-specific reconstruction methods.

• A method that reconstructs temporally consistent 3D meshes of deformable

objects from videos captured in the wild. I first learn a category-specific 3D

mesh reconstruction model that jointly predicts the shape, texture, and camera

pose from single-view images, which is capable of capturing asymmetric non-

rigid motion deformation of objects. I then adapt this model to any unlabeled

video by exploiting self-supervised signals in videos, including those of shape,

texture, and part consistency. Experimental results demonstrate the superiority

of the proposed method compared to state-of-the-art work, both qualitatively

and quantitatively.
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5.2 Future Work

The three work discussed in this dissertation open the door to unsupervised tem-

poral correspondence learning and 3D mesh reconstruction from images and videos.

They can be improved from several aspects:

• One promising direction is to learn temporal correspondence using transform-

ers [20]. Vision transformer has spurred great interest due to its powerful ca-

pacity in modeling long-range spatial and temporal relationship in both images

and videos. The UVC model discussed in Chapter 2 can only model the cor-

respondences well between a limited number of frames, i.e., around 50 frames.

Thus, it could potentially benefit from the powerful capacity of transformers to

capture long-range correspondences in video frames. Such a design could also

improve the work described in Chapter 4, where the sliding window schema can

be removed if a model that captures long-range correspondence is available.

• For the work in Chapter 3 and Chapter 4, we represent the 3D shapes as meshes.

Though well studied, the representation capacity of meshes is limited. For in-

stance, they cannot precisely capture details in objects or model objects with a

genus greater than zero. Recently, implicit functions [90, 85] have become pop-

ular due to their flexibility and high representation capacity. Thus, one future

work is to employ implicit functions for unsupervised 3D shape reconstruction

from videos and images. This could generalize the proposed models to more

complex categories, e.g., chairs, bookshelves, etc.
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