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ABSTRACT OF THE THESIS

Applying Distributed Learning of Deep Neural Networks to Improve Their Classification

Accuracy on Radio-Frequency Datasets

by

Gregory Kyle Kenneth Schuette

Master of Science in Chemistry

University of California, Los Angeles, 2020

Professor Louis-Serge Bouchard, Chair

This thesis aims to improve on the current classification capabilities of deep neural networks

on two types of radio-frequency data: radar and OFDM packets. In radar, applying neu-

ral networks to Automatic Target Recognition problems is a well-developed field, especially

using the MSTAR database. However, existing state-of-the-art methods require precise pre-

conditioning of radar data and are unsuited to applications with a large number of radar

target classes. Therefore, we asked whether distributed learning can increase the generaliz-

ability and scalability of neural networks in these tasks. To test this, we applied distributed

learning via Multi-Stage Training and a new network architecture, the Convolutional Multi-

Stage Network, to provide a scalable, generalized treatment of radar data for more practical

applications. This method was shown to outperform traditional neural network architectures

on a new radar dataset. A similar approach was applied to the OFDM data with the goal of

identifying specific radio-frequency transmitters for network security purposes. The task of

identifying OFDM packet transmitters has previously been performed successfully, though

with precise data collection methods. Data collection methods on a live network will likely

include imperfect recording times, so we sought to improve network robustness to time-

shifted OFDM packets. It was shown that the Convolutional Multi-Stage Network improved

robustness to time-shifting of the radio-frequency data over the Multi-Stage Network, which

ii



was the previous-best method. Simple preconditioning of the data using variations of the dis-

crete wavelet transform further improved robustness to time-shifting of the radio-frequency

data using both network architectures. These results are significant, as they provide a new

avenue for applying neural networks to radio-frequency in difficult, real-world applications.
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shown. Each is required to be a boolean value, i.e. 0 or 1. Each input im is

multiplied by the corresponding weight wm. The products are then summed.

The sum’s value is compared to the threshold value θ, determining whether the

neuron’s output, O, should be 0 or 1. . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Four common transfer functions are shown. (a) The sinusoidal transfer function

is plotted. This function goes R→ [−1, 1]. (b) The hyperbolic transfer function

is plotted. This function goes R→ (−1, 1). (c) The rectified linear unit (ReLU) is

shown. The ReLU transfer function goes R → [0,∞). (d) The softplus function

is plotted. This continuous, smooth function approximates the ReLU transfer

function. The softplus function goes R→ (0,∞). . . . . . . . . . . . . . . . . . 9

1.3 A sample FCN is shown. This has an input size of 16, two hidden layers with ten

neurons each, and an output layer of size 1. Note that this is also the structure of

an MLP, which is discussed further in Section 1.4. The input layer takes the two-

dimensional input and vectorizes it. Each hidden layer operates on the output

from the layer immediately preceding it. The output layer operates on the output

of the final hidden layer. The specific operation at one node per layer is shown

to the right. f2, f3, and f4 refer to the transfer function at the second, third,

and fourth overall layer, respectively. All outputs at a given layer are placed in a

vector, as shown in Eq. 1.18. This figure was produced in part using [1]. . . . . 11
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1.4 A two-dimensional kernel is shown in red operating on a two-dimensional input.

The operation from Eq. 1.21 is shown occuring at two different indices on the

input. These correspond to the green and yellow subsets of the input matrix. In

this example, strides of length 1 are taken in both the x- and y-directions. With

3x3 input and 2x2 kernel, this results in an output of size 2x2, as there are two

possible positions in both the x- and y-directions. Each output value is placed in

the two-dimensional output, shown in blue, in the proper relative positions. . . . 16

1.5 A CNN with two convolutional layers and a three-dimensional input is shown.

This three-dimensional input can be considered a two-dimensional object with

two channels, providing a depth of 2. Within each rectangular prism, a unit

cell (1x1x1, where length 1 can be seen in the “depth” dimension) represents

an individual value. Two filters are shown in blue, one per convolutional layer.

Each filter is composed of multiple kernels stacked in the third dimension (depth).

The number of kernels matches the depth of the convolutional layers’ input, i.e.

filters are composed of two stacked kernels in the first convolutional layer, and

filters are composed of nine stacked kernels in the second convolutional layer. As

such, two-dimensional convolutions are performed at each convolutional layer as

the three-dimensional filter shifts to all available positions on the layer’s input.

This produces a two-dimensional output for each filter, represented as a slice in

the convolutional layers’ outputs. Multiple filters of equal sizes (not shown) pro-

duce multiple two-dimensional outputs, which are stacked to produce the three-

dimensional convolutional layer outputs. The output of the second convolutional

layer is vectorized to be used in a series of fully-connected layers at the end of

the network. The vertical columns in the fully-connected layers represent the

vectorized data fed into each fully-connected layer. This figure was produced in

part using [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



1.6 A sample MSN is shown attempting to identify an RF transmitter based on a

section of an OFDM packet. Each data point in the sample data is fed into

every node. Each node is an MLP, as shown. As FCNs, these all data entering

each node passes independently through each neuron in the each layer. Each

MLP outputs one value for the input sample. In this example, there are 12
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1.7 One stage of a Multi-Stage Network is shown performing a forward pass on a full

set of input data. Each column in the stage’s input is one input sample. In the
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Their outputs of size one are then concatenated into one-dimensional vectors.

There is one output vector (stage output) per one input vector (input sample).

One stage’s output is the next stage’s input, except in the case of the final stage.

The final stage’s output is the network’s output. This figure was produced in

part using [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.8 Here, the training process for one stage of MST is shown. First, subsets of the
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network target for each is a 0 or 1 depending on the training sample’s identity.

This figure was produced in part using [1]. . . . . . . . . . . . . . . . . . . . . . 36
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2.1 The 17 radar targets are shown. Object size can be approximated using the 47

cm wide by 30.5 cm deep cardbord platform. Definitions for the 0, 45, and 90◦

orientations are shown in (i) via red arrows on the empty cardboard platform.

Object #17 is shown in its 0, 45, and 90◦ orientations in (ii), (iii), and (iv), re-

spectively. Unless otherwise noted, photos are taken from the radar’s perspective

at a 45◦ orientation. The objects vary in size and composition, affecting rRCS. (0)

Platform: Roughly 60◦ from the radar’s perspective. (1) Object 1: Empty metal

(copper) box with hole on top face. (2) Object 2: Metal box (closed cover) with

home-built circuit. (3a) Object 3: Plastic toolbox (closed). (3b) Object 3: Open;

data was collected with the toolbox closed. (4) Object 4: Metal box (open cover)

with custom circuit. (5a) Object 5: Plastic box (closed). (5b) Object 5: Open;

data was collected with the box closed. (6) Object 6: DC power supply (metal

cover). (7) Object 7: Front cover of a power amplifier (metal) at 90◦ orientation.

(8) Object 8: Rogers duroid laminate (copper) at 90◦ orientation. (9) Object 9:

Data transfer switch box (with plastic cover). (10) Object 10: Variable capacitor

box (metal cover). (11) Object 11: Data transfer switch box (with metal cover).

(12) Object 12: Port converter (metallic). (13) Object 13: Data transfer switch

box (with plastic and metal cover). (14) Object 14: Vise (metal) at 0◦ orienta-

tion. (15) Object 15: Metal box. (16) Object 16: Chemistry hotplate stirrer.

(17) Object 17: Black Decker drill at 0◦ orientation. This figure was produced

by Greg Schuette. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 (a) A 3D model of the Vivaldi antennas used in the simulation of the S11 param-

eter is shown in two orientations. This was produced by Yubin Cai. (b) The S21

parameter of the empty chamber is shown. The red line shows the S21 parameter

trace as calculated via the simulation and Eq. 2.1. The blue line shows the S21

parameter trace a trace collected with the experimental setup. The values are

shown in decibels, as is traditional. This plot was produced by Greg Schuette

and Yubin Cai. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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2.3 The setup of the chamber is depicted with dimensions shown. Figure created by

Yubin Cai. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 S21 parameters (raw data, log-magnitude traces) for all 17 objects at their re-

spective 0◦ orientation. Traces show the raw data as acquired without any post

processing or averaging. (a) Several of the targets (objects #1, 2, 4, 6, 13 and

15) have S21 parameters with obvious differences in the log-magnitude plot. (b)

Other targets (objects #3, 5, 7, 8, 9, 10, 11, 12, 14, 16 and 17) exhibit S21

parameters with no obvious visual differences. . . . . . . . . . . . . . . . . . . . 46

2.5 S21 parameters for two targets (objects #1 and #17) at three different orienta-

tions (the objects and a definition of orientation are indicated in Fig. 2.1). No

noise removal or averaging was performed on the traces shown. (a) Object #1 is

shown at 0, 45, and 90◦ orientations, each of which is easily identifiable. Objects

#2, 4, 6, and 13 (not shown here) also demonstrate easily distinguishable orien-

tations. (b) Object #17 is shown at 0, 45, and 90◦ orientations, each of which

are indistinguishable. Orientations for Objects #9, 10, 11, 14, and 16 (not shown

here) were also visually indistinguishable from their log-magnitude plots. Figure

produced by Greg Schuette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 The CWT scalograms for each target-orientation combination are shown. This

figure was produced by Greg Schuette. . . . . . . . . . . . . . . . . . . . . . . . 50
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2.7 The CMSN structure used in this paper is shown. An example input data object

is shown at the top. For any individual object, one trace from each of the 0,

45, and 90◦ orientations are grouped into one sample; these are named Angle 1,

Angle 2, and Angle 3, respectively. The real components of each orientation are

placed side-by-side, as are the imaginary components of each orientation. The

block of real values is then placed side-by-side with the block of imaginary values

to produce the two-dimensional input data of size 6x1600. This is then fed into

twelve CNN nodes in the first stage. Each of these is trained to classify the radar

target, resulting in 17 outputs each. The 17 outputs (from the softmax layer)

from each of the 12 CNNs are concatenated to yield a stage output of size 204.

This is inputted to the second stage, which is composed of 68 MLPs (labeled FCN

in the figure). Each of these has an output of size 1, and these are concatenated

to produce a stage output of size 68. This same process continues through the

third and fourth network stages. The output at the fourth stage is grouped by the

radar target each MLP attempts to identify. These values are averaged, yielding

one value for each class. The value closest to 1 is chosen as the ‘winner,’ and

the corresponding radar target is identified. This figure was produced by Khalid

Youssef. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Three groupings of time-domain OFDM packets are shown. In each case, the

signal’s absolute value is shown. (a) One thresholded sample from each of the 12

transmitters is shown. Significant variance is visible. (b) 12 thresholded samples

from a single transmitter are shown. Moderate variance between trials is visible.

(c) One thresholded OFDM packet is shown with 19 different shifts in the time

domain. These shifts are -9, -8, ..., 8, and 9. The same signal is clearly seen,

though the time translation makes classification by neural networks more difficult. 62
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3.2 The wavelet and approximation coefficients for several groups of OFDM packets

using the dwt command and `fk4' mother wavelet in MATLAB are shown.

Though the total length of each vector is 257, only the first 64 values are shown.

This is for two reason: The first 64 values are fed into the neural networks, and

it also improves data visualization in this figure. (a), (c), and (e) show wavelet

coefficients. (b), (d), and (f) show approximation coefficients. (a) and (b) show

the results of one sample from each of 12 transmitter classes. Large variation is

seen between samples. (c) and (d) show the results of 12 samples from a single

transmitter class. A moderate amount of variation between samples is seen. (e)

and (f) show the results of one sample shifted 19 times. This yields data for 19

DWTs, one shift for each of -9, -8, ..., 8, and 9 prior to transformation. Significant

variance is seen. This is expected due to the lack of time invariance for the DWT. 65

3.3 Plots of the ninth-scale wavelet coefficients and ninth-scale approximation co-

efficients for the MODWT using the `fk4' mother wavelet in MATLAB are

shown. (a) The ninth-scale wavelet coefficients for one sample from each of 12

RF transmitter classes are shown. Signals appear similar between transmitters,

though related features are shifted slightly with respect to the index. (b) The

ninth-scale approximation coefficients for the same traces as in (a) are shown.

Significant variation between transmitters is seen. (c) The ninth-scale wavelet

coefficients for nine separate samples taken with the same transmitter are shown.

Notable variation is seen, though there is less shifting along the index than in (a).

(d) The ninth-scale approximation coefficients for the same traces as in (c) are

shown. Little variation is seen with one exception. (e) The ninth-scale wavelet

coefficients for a single sample translated in time is shown. A total of 19 curves

are shown, corresponding to pre-MODWT time-translation shifts of -9, -8, ..., 8,

and 9. Variation in magnitude is seen, though equivalent features appear at the

similar indices. (f) The ninth-scale approximation coefficients for the same traces

as described in (e) are shown. Little variation is seen with time translation. . . 67
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low indices. (c) and (d) use 10 samples from the same transmitter class. Little

variation between trials is seen at low indices. (e) and (f) use 19 examples versions

of the same OFDM packet. Prior to the DTCWT, this packet is shifted 18 times,

and one unshifted sample is maintained. This results in one sample shifted -9,

-8, ..., 8, and 9 times. Significant invariance to these shifts is noted. . . . . . . 70
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DTCWT, and the results are shown. Significant variation by class is seen at
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CHAPTER 1

Introduction

The topic of this thesis is relatively non-traditional for a Chemistry degree. To account

for this and hopefully guide future students from non-traditional backgrounds hoping to

learn about machine learning, this thesis is written with the assumption that a reader has

no prior knowledge regarding deep learning. This Introduction serves to provide a basic

understanding of the concepts and mathematical underpinnings of deep learning as it relates

to Multi-Stage Training (MST), a technique utilized and expanded upon in later sections.

MST is a UCLA invention [2, 3].

Classification tasks are worked with throughout this thesis. The goal of these tasks is

to use a neural network to interpret input data as belonging to some specified group. For

example, a classic problem is to use a neural network to identify handwritten digits from

28x28 pixel black-and-white images; this is typically performed with the Modified National

Institute of Standards and Technology (MNIST) dataset [4]. Tasks discussed in Chapter 2

considers identifying objects based on their radar signatures, and Chapter 3 considers identi-

fying specific radio-frequency (RF) transmitters based on their fingerprints. Here, we discuss

the progression to modern deep neural networks which enable these applications.

1.1 Artificial Neurons

Most deep neural networks consist of basic functional units known as neurons. These have

a relatively long history and a well-defined mathematical form.

1



Figure 1.1: The McCulloch-Pitts Neuron is shown. A generalized number of inputs i are shown. Each is required

to be a boolean value, i.e. 0 or 1. Each input im is multiplied by the corresponding weight wm. The products are

then summed. The sum’s value is compared to the threshold value θ, determining whether the neuron’s output,

O, should be 0 or 1.

1.1.1 McCulloch-Pitts Neuron

True biological neurons are simultaneousy digital – either “fire” and propagate an electrical

signal, or don’t fire and halt an electrical signal – and analog, permitting a continous range

of output signal amplitudes when firing occurs [5]. In an attempt to simulate these, the

first artificial neuron was developed in 1943 by McCulloch and Pitts [6, 7]. In doing so,

these researchers treated biological neurons as purely digital [6, 7]. Effectively, this is a

decision-making process performed by a basic unit which the authors sought to replicate

mathematically [7]. To do this, they developed the McCulloch-Pitts Neuron, shown in

Fig. 1.1.

These neurons could output one of two values based on input data: a 1 or a 0 [8]. This

is performed via a simple composite function, generally denoted f(g(~x, ~w)) [8]. Here, ~x is

the neuron’s input represented by a vector of ones and zeros, i.e. xi ∈ {0, 1} ∀ xi ∈ ~x. ~w

is a vector containing each of the neuron’s weights, which are described further throughout

Section 1.1. These vectors can be any length N ∈ N, though should be of equal length [9].

Each element of ~x is limited to being a one or a zero, as these represent each prior neuron

either firing fully or not firing at all, respectively [8]. g(~x, ~w) represents the function
N∑
i=1

wi∗xi,
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where each wi ∈ R is known a sfingle weight [8]. For the McCulloch-Pitts Neuron, these

weights are chosen manually [6]. Another component of the equation, the threshold value

Θ, is chosen for the function f [8]. Using the threshold value, the function f is a simple

piecewise function, and the artificial neuron is as follows [6, 9]:

f(g(~x, ~w)) =


1 if g(~x, ~w) ≥ Θ

0 Otherwise

(1.1)

where xi ∈ {0, 1} ∀ xi ∈ ~x

In other words, the composition f ◦g takes some input ~x and list of weights ~w and decides

whether or not the neuron should fire. This can be understood as a boolean expression, or a

true or false statement. In practice, this allows a neuron to distinguish between two types of

inputs based on the output value of g when proper weights are chosen [6]. Weights, threshold

values, and other modifiable values in a network are known as the parameters of the network.

One simple example of this is preparing a McCulloch-Pitts Neuron to fire whenever fewer

than five of ten input neurons had fired. For this, we can set all ten weights equal to -1. We

also set the threshold value equal to -4. We then have:

f(g(~x, ~w)) =


1 if −

10∑
i=1

xi ≥ −4

0 else

(1.2)

In this function, for every input of 1 (“prior neuron i fired”), the value of g decreases by

1. For every input of 0 (“prior neuron i did not fire”), the value of g is unchanged. Thus,

the output value of g(~x, ~w) is a negative tally of how many input neurons fired. If five or

more neurons fired, then the value is less than or equal to -5. Thus, the “true” value for

“fewer than five of ten input neurons had fired” should be outputted whenever the output

of g(~x, ~w) is greater than or equal to -4. This “true” value corresponds to the output of 1,

while the “false” value corresponds to 0. The conversion of the output of g to the binary

output is performed by f .
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More practically, several fundamental boolean operations can be performed by a McCulloch-

Pitts Neuron [8]. These are: AND, OR, AND NOT, NOR, NAND, and NOT functions [8].

The McCulloch-Pitts Neuron for each of these is shown below with a simple corresponding

truth table for a small number of inputs.

AND:

f(g(~x, ~w)) =


1 if

N∑
i=1

xi ≥ N

0 Otherwise

(1.3)

x1 x2 g(~x, ~w) f(g(~x, ~w))

0 0 0 0

0 1 1 0

1 0 1 0

1 1 2 1

OR:

f(g(~x, ~w)) =


1 if

N∑
i=1

xi ≥ 1

0 Otherwise

(1.4)

x1 x2 g(~x, ~w) f(g(~x, ~w))

0 0 0 0

0 1 1 1

1 0 1 1

1 1 2 1
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AND NOT:

f(g(~x, ~w)) =


1 if x1 − x2 ≥ 1

0 Otherwise

(1.5)

x1 x2 g(~x, ~w) f(g(~x, ~w))

0 0 0 0

0 1 -1 0

1 0 1 1

1 1 0 0

NOR:

f(g(~x, ~w)) =


1 if −

N∑
i=1

xi ≥ 0

0 Otherwise

(1.6)

x1 x2 g(~x, ~w) f(g(~x, ~w))

0 0 0 1

0 1 -1 0

1 0 -1 0

1 1 -2 0

NAND:

f(g(~x, ~w)) =


1 if −

N∑
i=1

xi > −N

0 Otherwise

(1.7)
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x1 x2 g(~x, ~w) f(g(~x, ~w))

0 0 0 1

0 1 -1 1

1 0 -1 1

1 1 -2 0

NOT:

f(g(x,w)) =


1 if − x ≥ 0

0 Otherwise

(1.8)

x g(~x, ~w) f(g(~x, ~w))

0 0 1

1 -1 0

While novel, this artificial neuron was extremely limited in function [6]. Furthermore,

the necessity for a human operator to set all parameters greatly limited the purpose of these

neurons in applications outside simple boolean operations [6]. Even here, it fails for use in

all operations, as the XOR function cannot be represented by the McCulloch-Pitts Neuron

[6]. The XOR function can be written as “either x1 or x2, but not more and not less than

one of these.” Thus, other researchers saught to develop these neurons for more general use

[6, 8].

1.1.2 Perceptrons and ADALINE

Notably, Frank Rosenblatt developed the classical perceptron in 1958 [6, 8]. This artificial

neuron allowed the input of non-boolean values. In other words, the artificial neuron’s input

is permitted to be ~x ∈ RN [6, 10]. Thus, the classical perceptron can be represented by the
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function [6, 10]:

f(g(~x, ~w)) =


1 if

N∑
i=1

wi ∗ xi ≥ Θ

0 else

(1.9)

where ~x ∈ RN

where wi values are not required to be manually selected. Instead, the classical perceptron

introduced the ability to “learn,” or be algorithmically trained by data [6, 10]. This training

process is further discussed in Section 1.3. With the introduction of classical perceptrons,

a new convention came to prominence: The threshold value is subtracted from both sides,

and the new function is compared to zero to determine the proper boolean output [8].

Furthermore, this parameter’s name was changed from a threshold value to a bias, and its

symbolic representation became w0 [8]. This yields:

f(g(~x, ~w)) =


1 if (

N∑
i=1

wi ∗ xi)− w0 ≥ 0

0 else

(1.10)

where ~x ∈ RN

In 1960, the adaptive linear element (ADALINE) was introduced [6, 10]. This improve-

ment took the classical perceptron and modified its output; the ADALINE simply returns

the value g(~x, ~w), providing a continous output rather than a boolean value [6, 8, 10]. This

alters the connection between artificial and biological neurons, as the ADALINE’s output

can no longer be described as the firing (or lack of firing) of a neuron. Despite this, the term

“artificial neuron” is still used to describe this mathematical object [6]. The ADALINE is

represented by:

g(~x, ~w) =
N∑
i=1

wi ∗ xi − w0 (1.11)

where ~x ∈ RN
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1.1.3 Modern Neurons and Nodes

For the purposes of this thesis, ADALINE is the final relevant development to deep learning

from deep learning’s first wave of popularity, which ended in 1969 [6]. We should note that

each artificial neuron discussed so far is a linear model [6]. In other words, fixing all values

except one individual input xi, weight wj, or bias w0 forms a function which is a line when

plotted prior to thresholding. This, in fact, caused the end of the first wave of popularity,

as critics showed that this greatly limited their application [6]. As discussed in section 1.1.1,

the McCulloch-Pitts Neuron cannot learn the XOR function. In fact, this is true for all

linear models [6, 11]. Studies throughout the 1960s exposed further weaknesses, including

that parity – whether an odd or even number of inputs is activated – could not be solved by

a single-layer perceptron, and the figure-ground problem – being able to distinguish relevant

information from a background – could only be solved with impractically large networks [11].

To solve these issues, we can introduce nonlinearities via activation functions, also known

as transfer functions [12]. These functions are applied to a neuron’s output and can be

any non-linear function mapping from the real number line (i.e. all possible outputs of the

ADALINE neuron) to some other set of numbers [12]. The most common activation function

today is the rectified linear unit (ReLU), which can be written simply as max(0, g(x)) where

g(x) is the output of the ADALINE artificial neuron [6]. Despite the popularity of ReLU,

the primary transfer function used in this thesis will be the hyperbolic tangent function,

or [12]:

tanh(x) =
sinh(x)

cosh(x)
=
e2x − 1

e2x + 1
(1.12)

A plot of the hyperbolic tangent function (Eq. 1.12), ReLU function (Eq. 1.13), sine function

(Eq. 1.14), and softplus function (Eq. 1.15) are shown in Fig. 1.2. The softplus functions

can be found at [13]. Using sine as a transfer function is a relatively new technique yielding

promising results in image-processing problems [14]. Networks utilizing sine as a transfer
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Figure 1.2: Four common transfer functions are shown. (a) The sinusoidal transfer function is plotted. This

function goes R → [−1, 1]. (b) The hyperbolic transfer function is plotted. This function goes R → (−1, 1).

(c) The rectified linear unit (ReLU) is shown. The ReLU transfer function goes R → [0,∞). (d) The softplus

function is plotted. This continuous, smooth function approximates the ReLU transfer function. The softplus

function goes R→ (0,∞).

function are known as sinusoidal representation networks (SIREN) [14].

f(x) = max (0, x) (1.13)

f(x) = (1.14)

f(x) = ln (1 + ex) (1.15)

9



This combined unit of an ADALINE artificial neuron and a transfer function, sometimes

called a node [6, 12], will be used as the basic building block of all networks throughout the

remainder of this thesis. Thus, our basic functional unit can be represented as:

output = f(
N∑
i=1

wi ∗ xi − w0) (1.16)

Here, ~x ∈ RN is the node’s input; wi for i = 0 and i ∈ {1, ..., N} are the node’s bias and

weights, respectively; and f is the transfer function.

For the remainder of this thesis, “neuron” will refer to the functional unit described in

Eq. 1.16. This version of the neuron is used in many neural networks, several of which are

discussed further in Section 1.2.

1.2 Neural Networks

The first neural network was described in 1959 by Bernard Widrow and Marcian Hoff [15].

This network, known as MADALINE or “Many ADALINE”, consisted of several sequental

layers of ADALINE neurons; each neuron is connected to every neuron in both the preceding

and succeeding layers [16]. This is considered a fully-connected network, whose modern form

is described in Section 1.2.1.

Later, in the late 1980s and early 1990s, convolutional neural networks were introduced.

These networks greatly expanded the capabilities of neural networks, as discussed in Sec-

tion 1.2.2.

1.2.1 Fully-Connected Neural Networks

Fully-connected, feed-forward neural networks (FCN) are networks with distinct and subse-

quent layers [17]. A layer can be visualized as a vector of neurons while the network can

be visualized as a series of layers whose neurons are connected via mathematical operation;

this is shown in Fig. 1.3. Each layer’s output is a vector where each element is the output
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Figure 1.3: A sample FCN is shown. This has an input size of 16, two hidden layers with ten neurons each, and

an output layer of size 1. Note that this is also the structure of an MLP, which is discussed further in Section 1.4.

The input layer takes the two-dimensional input and vectorizes it. Each hidden layer operates on the output

from the layer immediately preceding it. The output layer operates on the output of the final hidden layer. The

specific operation at one node per layer is shown to the right. f2, f3, and f4 refer to the transfer function at the

second, third, and fourth overall layer, respectively. All outputs at a given layer are placed in a vector, as shown

in Eq. 1.18. This figure was produced in part using [1].

of one neuron in the layer. This is shown in Eq. 1.18. Fundamentally, there are three types

of layers.

The first layer, known as the input layer, is directly provided the data input by a user [6,

18]. The input to each subsequent layer is taken as the output from the layer immediately

preceding it [6, 18]. The passing of data from one layer to the next continues until the final

layer, known as the output layer, is reached [6, 18]. The output layer provides the final

output of the FCN. Any layer that is neither the input nor the output layer is known as a

hidden layer because both its input and output remain unseen by the user; these values are

only transiently produced during network operation [6, 18].
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The input layer contains one neuron per element of the network’s input [18]. The output

value for each of these neurons corresponds exactly to the value of one element of the original

input, i.e. each neuron has a weight of one for a single element of the input and zeros for all

else (and no two neurons have a weight of one for the same input element), a linear activation

function of slope 1, and a bias of 0 [18]. More simply put, consider that each element of the

input is uniquely labeled numerically, and each input neuron is labeled in the same manner.

Then the weights for each neuron are:

wnm =


1 if n = m

0 Otherwise

(1.17)

where n is the neuron’s label, and m is the label of an element of the input. To simplify

notation and calculations through the rest of the network, the input layer’s output is placed

in a vector with each entry corresponding to one neuron in the input layer. In other words,

the input layer serves to vectorize the network’s input data [18].

For example, if a network’s input consists of matrix B ∈ RNxM, then the input layer

contains N ∗M neurons. A bijective labeling scheme is chosen such that each element of the

input matrix contains a unique value m ∈ {1, ...,N∗M}. This could be that element bkl ∈ B

is relabeled i(l−1)∗N+k. Then, for the arbitrarily-chosen nth neuron in the input layer, we see

that the neuron’s output is simply in, or the nth element of the input matrix.

A user is permitted to choose the number of hidden layers when designing an FCN [6, 18].

While therefore not required, at least one hidden layer is generally included in a network [6,

18]. A user has more choice when designing their network, as any number of neurons may be

placed in a hidden layer [6, 18]. The choices a user can make about a network’s architecture

are known as hyperparameters [18]. In this thesis, each neuron within a given layer will

utilize the same activation function.

Continuing our prior example, choose the activation function f and Nh1 neurons for the

first hidden layer. Recall that each neuron’s input is the full vector produced by the prior

layer. Thus, the output of a hidden layer is written:
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~o2 =


f(

N∗M∑
i=1

w1,2,i ∗ o1,i − w1,2,0)

...

f(
N∗M∑
i=1

wNh1,2,i ∗ o1,i − wNh1,2,0)

 (1.18)

where wm,n,i indicates the ith weight corresponding to the mth neuron in the nth layer; wm,n,0

represents the the mth neuron’s bias in the nth layer; and om,n represents the nth output of

the mth layer.

To simplify notation and decrease the difficulty of programming neural networks, Eq. 1.18

is converted to its matrix expression. The layer is also generalized so that the following is

valid for any hidden layer:

~oj = f




w1,j,1 . . . w1,j,Nh(j-1)

...
. . .

...

wNhj,j,1 . . . wNhj,j,Nh(j-1)




oj−1,1
...

oj−1,Nh(j-1)

 −


w1,j,0

...

wNhj,j,0


 (1.19)

In Eq. 1.19, j represents the overall layer index starting with input layer numbered as

1. For example, the input layer would have a j value of 1, the first hidden layer would have

a j value of 2, etc. ~oj represents the output of the jth layer. Nhj represents the number of

neurons in layer j.

As stated, a user can select any number of hidden layers, each with any number of

neurons. This choice of hyperparameters typically depends on the intended application of

the network. For example, large networks can learn to identify objects from complicated

datasets, but smaller networks are less prone to “memorizing” the training set which helps

prevent overfitting [19]. Regardless of specific internal architecture, however, the output

from the final hidden layer is treated as the input to the output layer.

The mathematics of an output layer are very similar to the hidden layers. However, there

is the added ‘restriction’ that the number of neurons in the output layer must be equal to
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the number of outputs of the network [6, 18]. Thus, Eq. 1.19 only needs minor adjustments

to represent the output layer:

~o = f




w1,j,1 . . . w1,j,Ni

...
. . .

...

wNo,j,1 . . . wNo,j,Ni




oj−1,1
...

oj−1,Ni

 −


w1,j,0

...

wNo,j,0


 (1.20)

In Eq. 1.20, No represents the number of outputs, and ~o represents the final network

output.

1.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a newer type of neural network. Yann LeCun

was the main developer of these networks beginning in 1989 [6]. These networks effectively

analyze data whose positioning is important [6]. This includes analyzing images – an ex-

ceptionally difficult task with fully-connected networks – and time-series data [6, 20]. The

unique characteristic of CNNs is that a convolution operation is performed in at least one

layer [6]. Compare this to the FCNs in Section 1.2.1 which only use standard matrix mul-

tiplication. Convolutions may be performed on continuous data, though the discrete form

is simpler and all that is relevant for CNNs. Furthermore, most CNNs utilize the discrete

cross-correlation operation rather than a true convolution [6]. Thus, we focus on the dis-

crete, two-dimensional cross-correlation operation here. Following convention, however, this

operation will be referred to as a convolution. Eq. 1.21 provides a single output value during

this process, where Eq. 1.21 is iterated to yield multiple outputs [6]. Multiple output values

yield a two-dimensional output as this operation is iterated.

S (i, j) = (K ∗ I) (i, j) =
N∑
n=1

M∑
m=1

I (i+m, j + n)K (m,n) (1.21)

Here, the input I is two-dimensional. S (i, j) represents the output when the two-

dimensional kernel K operates on I at the (i,j)th position. K is of dimension NxM , which is
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generally smaller than the input’s size and can never be larger. The sum indicates element-

by-element multiplication of K on the rectangular subset of I beginning with indices (i,j)

and ending with indices(i+M ,j +N), followed by a sum of each resulting value [21].

Convolutional layers require the use of objects known as kernels, which can operate

over multi-dimensional data [6, 21]. For two-dimensional convolutions, a kernel is a two-

dimensional matrix of weights [21]. As stated before, kernels perform element-by-element

multiplication on a subset of the input data [21]. These products are then summed [21].

This sum represents one output of the convolutional layer [6, 21]. When the layer’s input is

two-dimensional, this value represents a single output from the convolutional layer [21]. A

kernel is typically chosen to be smaller than the two-dimensional data on which it is operated

to enable different portions of the input to be analyzed by the filter in different positions.

Thus, to operate on all of the input data, the kernel is progressively shifted – or convolved –

across the two-dimensional subsection of the data, and the same operation shown in Eq. 1.21

is performed at each position at which the kernel is placed [6, 21]. The outputs from each of

these operations are placed in a grid, with each output placed in a location corresponding

to the kernel’s relative position when calculated [21]. This convolution process is illustrated

Fig. 1.5.

The rate at which the kernel is convolved across the input data is called its stride. The

stride may vary in different directions, though it represents how many “steps” the filter is

shifted between operations. Here, a step size of 1 is considered moving one column right or

one row down for movements in the x- or y-direction, respectively. Effectively, this implies

that after Eq. 1.21 is performed in the (1,1)th position, the same operation is performed in the

(1+a,1)th position, where a is the step size in the x-direction. This is performed sequentially,

with strides taken in the x-direction until the kernel leaves the input’s bounds. Once this

occurs, a stride is taken in the y-direction, and the kernel is placed back on the left side of

the input, so that the operation in Eq. 1.21 is performed at the (1,1 + b)th position, where

b is the step size in the y-direction. In the y-position 1 + b, the kernel is again convolved

in the x-direction until it leaves the bounds, at which point a second step is taken in the
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Figure 1.4: A two-dimensional kernel is shown in red operating on a two-dimensional input. The operation

from Eq. 1.21 is shown occuring at two different indices on the input. These correspond to the green and yellow

subsets of the input matrix. In this example, strides of length 1 are taken in both the x- and y-directions. With

3x3 input and 2x2 kernel, this results in an output of size 2x2, as there are two possible positions in both the x-

and y-directions. Each output value is placed in the two-dimensional output, shown in blue, in the proper relative

positions.

y-direction. The outputs at each unique position are placed in a two-dimensional grid. Each

output is placed in the (k,l)th position, where k steps were taken in the x-direction and l

steps were taken in the y-direction to produce the index at which Eq. 1.21 was performed.

with of outputs, and this grid is a slice of the layer’s output. A diagram of this process can

be seen in Fig. 1.4.

If the convolutional layer’s input is three-dimensional and two-dimensional convolutions

are still desired, filters are typically created [21]. In this case, a filter is a three-dimensional

matrix composed of multiple kernels concatenated in the z-direction. Each kernel is of equal

size and, in general, the number of kernels composing the filter is chosen to be the depth of

the input – also known as the number of channels [21]. In other words, when the filter is

applied to a three-dimensional input, the filter will be convolved in the x- and y-directions,

though convolutions will not be performed in the z-direction because the filter and input data
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are equal in size in this dimension. The products from element-by-element multiplication

between the filter and one subsection of the input are summed, and a single bias may be

subtracted [6, 21]. This yields a two-dimensional output, analagous to the kernel output

description shown in Fig. 1.4 [21]. If multiple filters are used, their outputs are concatenated

in the final dimension to produce a three-dimensional input to the next layer [21]. This is

shown in Fig. 1.5. Also, Eq. 1.22 represents this operation for one filter location, analagous

to Eq. 1.21

S (i, j) = (F ∗ I) (i, j) =
N∑
n=1

M∑
m=1

L∑
l=1

I (i+m, j + n, l)F (m,n, l)− b (1.22)

Here, F represents a filter composed of L kernels, each of size NxM . The input is of

size L in the third dimension. b represents the bias, which is often omitted in convolutional

layers. All other variables are as described below Eq. 1.21.

Recall that this description of kernels and filters refers specifically to the two-dimensional

convolution case. More generally, n-dimensional convolutions involve an n-dimensional kernel

and (n+1)-dimensional filter [21].

CNNs can be customized in many ways, with far more features than are discussed here,

though expanding on this is best left to outside resources. For this thesis, it is more important

to understand what these convolutional layers enable.

First, if filters contain more than one weight and the input data’s dimension sizes are

not manipulated, then the output of a given layer will be smaller than the input. Notably,

this is done with generally fewer parameters than an FCN layer [22]. With effective weights,

this can serve to extract relevant features for multiple applications, including classification

tasks [21, 23]. This all implies that data can be decreased in size with a relatively lightweight

layer, all while maintaining information about the important features in the data [22].

Another imporant quality is that CNNs are able to learn the spatial dependencies of

features in multi-dimensional objects [22]. Through various methods, these can be made

to be shift- and rotational-invariant [22]. This shift-invariance property enables effective
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Figure 1.5: A CNN with two convolutional layers and a three-dimensional input is shown. This three-dimensional

input can be considered a two-dimensional object with two channels, providing a depth of 2. Within each

rectangular prism, a unit cell (1x1x1, where length 1 can be seen in the “depth” dimension) represents an

individual value. Two filters are shown in blue, one per convolutional layer. Each filter is composed of multiple

kernels stacked in the third dimension (depth). The number of kernels matches the depth of the convolutional

layers’ input, i.e. filters are composed of two stacked kernels in the first convolutional layer, and filters are

composed of nine stacked kernels in the second convolutional layer. As such, two-dimensional convolutions are

performed at each convolutional layer as the three-dimensional filter shifts to all available positions on the layer’s

input. This produces a two-dimensional output for each filter, represented as a slice in the convolutional layers’

outputs. Multiple filters of equal sizes (not shown) produce multiple two-dimensional outputs, which are stacked

to produce the three-dimensional convolutional layer outputs. The output of the second convolutional layer is

vectorized to be used in a series of fully-connected layers at the end of the network. The vertical columns in the

fully-connected layers represent the vectorized data fed into each fully-connected layer. This figure was produced

in part using [1].
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learning of time-shifted data, as discussed in Chapter 3.

1.3 Training Methods

Both FCNs and CNNs are powerful tools if parameters that allow a network to perform its

intended function effectively are known, where parameters refer to the weights and biases of

a network. However, networks that perform non-trivial tasks frequently contain thousands

or millions of parameters [6, 24]. Furthermore, the inner workings of a neural network are

typically difficult to understand and lack clear explanation of what each parameter does,

leading the term ”black box” to be used to describe neural networks by many [25]. Thus, in

all practical cases, a human cannot simply select the correct parameters for a neural network

as was implicitly shown for the McCulloch-Pitts Neuron in Section 1.1.1. Instead, a method

known as training the network is employed [6].

To train a network, a training set is required [6, 24]. In the case of supervised training

– which this thesis exclusively discusses – this set consists of data samples and their corre-

sponding targets, or desired network outputs [6, 24]. (Depending on the context, a target

is sometimes referred to as its ground truth. These terms are subtly different, though the

distinction is unimportant with the particular data treatment in this thesis. Therefore, the

term target will be used universally.)

To compare the quality of different sets of parameters, the loss function is introduced

as a figure of merit or as a distance metric to measure the distance between desired output

and actual output. The loss function quantifies the loss between a network’s output and its

target, where the loss is a scalar value which is larger for worse network outputs [6, 26]. For

example, a common loss function is the sum square error (SSE) [27, 28], written as:

` (~x, ~w) =
1

2

M∑
i=1

N∑
j=1

(fj (~xi, ~w)− ti,j)2 (1.23)

where M is the number of samples, ~xi, in the training set; ` (~x) is the total loss; N is the

length of each output vector; and ~ti is the target for the ith sample in the training set.
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f represents total operation of the neural network to produce the length-N vector output

f (~xi, ~w) from the input sample ~xi. Rewriting in vector notation, this becomes:

` (~x, ~w) =
1

2

M∑
i=1

(
f (~xi, ~w)− ~ti

)T (
f (~xi, ~w)− ~ti

)
(1.24)

where f (~xi) and ~ti are column vectors in RN . In this thesis, the SSE loss function is utilized

unless otherwise stated. Though the loss function will necessarily be a function of parameters

and input data, the rest of this section omits the data objects to ease notation. Additionally,

to follow external sources more consistently, the parameter vector will be rewritten as ~x.

Because worse network outputs yield larger losses, a natural goal is to minimize the

loss function’s output. This will indirectly improve a network’s output [6]. To do this,

optimization algorithms are utilized.

The general form of an optimization problem known as a mathematical program is [27]:

Maximize h(~x)

Subject to ~x ∈ Ω ⊆ RN

where h : RN → R. During optimization, the elements of ~x are updated until an input yielding

a maximum value of h is found [27]. (Because the true goal is to minimize loss while training

neural networks, the function h represents the opposite of the loss function, i.e. ` = −h.)

The adjustable variables contained in ~x represent the neural network’s parameters [6]. Each

update of the parameters is known as an iteration [26]. It is important to note that many

of these algorithms locate a function’s local extremum – not its global extremum – and,

furthermore, that the training of a neural network is halted once the first of several specified

convergence criteria is satisfied [6, 27]. (These criteria generally include, but are not limited

to: maximum iterations were performed; satisfactory error was achieved; and minimum

gradient was achieved [6].) Therefore, unless training was halted due to the function having

a very small gradient, these final solutions do not generally correspond exactly to a local

minimum [6].
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Thus, to choose parameters for a neural network to perform satisfactorily, random param-

eters are chosen (a process known as network initialization) and training is performed [6, 29].

Several training algorithms are described below.

1.3.1 First-Order Training

In the context of deep learning, first-order training methods are training algorithms based

on gradient descent. These methods only use the network’s first derivatives to minimize

the loss function [30]. Because networks have multiple parameters, this is a multidimen-

sional optimization problem, and the gradient must be calculated. Hence, in mathematical

optimization, these algorithms are frequently known as gradient methods, though gradient

descent is a more common term in deep learning [27]. It is important to emphasize that the

gradient is taken with respect to the network parameters, not the input data; this is because

parameters may be modified, but the input data must be treated as fixed constants.

When minimizing a function, the iteration of gradient methods takes the form [27]:

~xk+1 = ~xk − αk∇`(~xk) (1.25)

where ~xk represents a vectorized form of a neural network’s parameters after k training

iterations; αk represents the learning rate – proportional to the distance traveled in the

gradient’s direction – used in the k + 1th training iteration; ` denotes the application of the

loss function on the neural network with the parameters contained in ~x; and ∇ represents

the nabla operator (which provides the gradient of `) [27, 31].

With knowledge of multivariable calculus, the logic of this algorithm is easy to under-

stand. The gradient denotes the direction of most rapid ascent, so moving parameters in

the opposite direction – subtraction of αk∇` (~xk) – decreases the loss function’s output. The

algorithm can also be understood by manipulating the first-order Taylor expansion [27]:

` (~xk − αk∇` (~xk)) = ` (~xk) + ((~xk − αk∇` (~xk))− ~xk) · ∇` (~xk) +O
(
α2
k

)
(1.26)

21



= ` (~xk)− αk||∇` (~xk)||2 +O
(
α2
k

)
(1.27)

Here, and in the rest of this thesis, ||·|| denotes the L2 norm.

In practice, choosing step sizes to best minimize a function is a challenging and/or

computationally-heavy task. In an attempt to solve this, different methods for choosing

the step size provides the main difference between most first-order training algorithms.

The first of these methods, steepest descent, was introduced by Cauchy in 1847 [30]. In

this method, the optimal step size is calculated during every training iteration [27, 30]. How-

ever, this requires an additional minimization process which is computationally expensive to

perform during every training iteration, so other methods – such as fixed-step-size gradient descent

– are frequently more practical [27, 30]. In this method, a small α is chosen and held con-

stant throughout all training iterations [27]. Of course, “small” is relative, though the default

value for fixed-step-size gradient descent in MATLAB is 0.01 and is a good first guess [32].

Unfortunately, with a fixed step size, a decrease in loss is not guaranteed [27]. If the loss

function diverges during training, a smaller step size should be chosen.

Other first-order methods are common, though a number of issues persist among these.

Most notably, first-order algorithms experience a slow rate of convergence, meaning that

many thousands of iterations are frequently necessary to achieve satisfactory network per-

formance [28, 33]. Despite this fact, first-order methods are popular, as they benefit from

low computational complexity [28, 33].

1.3.2 Second-Order Training

In contrast to first-order methods, second-order training methods utilize a function’s second

derivatives to minimize the loss function with respect to a network’s parameters. In the

multivariable case, this information is encoded in the Hessian matrix, or matrix of second

derivatives [28]. These second derivatives provide information regarding the curvature of the

loss function’s surface. This additional information enables better step size selection to be
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selected. One example of second-order methods is Newton’s method, whose derivation starts

with a Taylor expansion [27, 28]:

` (~xk + δx) ≈ ` (~xk) + (δ~x)T ∇` (~xk) +
1

2
(δ~x)T H (~xk) (δ~x) ≡ q (~xk + δ~x) (1.28)

Here, H(~xk) denotes the Hessian matrix calculated with respect to network parameters con-

tained in ~xk ∈ RN , with N equal to the number of parameters in the network; δ~x is a vector

containing the change in each parameter as a variable; and all other objects are as described

in Section 1.3.1. To continue, assume the Hessian is positive definite and say ~x∗ = ~xk + δx∗

denotes the coordinates which minimize the quadratic function q(~x) [27]. It is important to

note that the function q is convex due to the assumption that the Hessian is positive definite,

as this allows a global minimum to be found. The first-order necessary condition requires

the gradient at q’s minimum to be zero [27], so:

∇q (~x∗) = ∇q (~xk + δ~x∗) = ~0 = ∇` (~xk) +H (~xk) (δ~x∗) (1.29)

⇒ ~0 = (H (~xk))
−1∇` (~xk) + δ~x∗ (1.30)

⇒ δ~x∗ = − (H (~xk))
−1∇` (~xk) (1.31)

⇒ ~x∗ = ~xk + δ~x∗ = ~xk − (H (~xk))
−1∇` (~xk) (1.32)

Thus, the global minimum of the convex function q is computed in a single step. However,

q is merely an approximation of the loss function’s local terrain, so ~x∗ will rarely correspond

to the loss function’s local minimum [27]. Rather, this process is iterated, and the local

minimum is approached with a quadratic rate of convergence [27, 34]. Therefore, ~x∗ is

renamed ~xk+1, and Newton’s method is written:

~xk+1 = ~xk − (H (~xk))
−1∇` (~xk) (1.33)
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As stated, this method assumes the Hessian matrix is positive definite [27]. For this to be

true, good initial parameters must be selected; Newton’s method only has local convergence [34].

However, initial parameters are typically chosen randomly, so Newton’s method frequently

diverges for neural networks [28]. Another downside to Newton’s method is the need to

calculate the Hessian, which has high computational complexity [28]. Furthermore, invert-

ing the Hessian is costly; even the best algorithms require at least O(N2.373) operations to

compute the inverse [35]. Finally, it is also possible for the Hessian matrix to be singular –

the inverse does not exist – so that an iteration of Newton’s Method cannot be performed.

To address these issues, several improvements are made.

1.3.3 Quasi-Newton Method

The complexity of calculating the Hessian of a matrix can be mitigated under certain con-

ditions. For example, consider utilizing the sum square error loss function described in

Eqs. 1.23 and 1.24. For this section, the notation is simplified by defining [28]:

ei,j ≡ ` (~w, ~xi)j − ti,j (1.34)

where each component on the right hand side is as defined in Section 1.3, and w is included

to represent the parameters. Then Eq. 1.23 can be rewritten as [28]:

` (~w, ~x) =
1

2

M∑
i=1

N∑
j=1

e2i,j (1.35)

The derivative of this loss with respect to a single parameters becomes:

∂` (~w, ~x)

∂wk
=

M∑
i=1

N∑
j=1

ei,j
∂ei,j
∂wk

(1.36)
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Therefore, the gradient is:

∇` (~x) =
M∑
i=1

N∑
j=1


ei,j

∂ei,j
∂w1

...

ei,j
∂ei,j
∂wP

 (1.37)

Here, P is defined as the total number of parameters in the network. This can be further

simplified using a matrix [28]:

∇` (~x) =



∂e1,1
∂w1

∂e1,1
∂w2

· · · ∂e1,1
∂wP

∂e2,1
∂w1

∂e2,1
∂w2

· · · ∂e2,1
∂wP

...
... · · · ...

∂eM,1

∂w1

∂eM,1

∂w2
· · · ∂eM,1

∂wP

∂e1,2
∂w1

∂e1,2
∂w2

· · · ∂e1,2
∂wP

...
... · · · ...

∂eM,N

∂w1

∂eM,N

∂w2
· · · ∂eM,N

∂wP



T 

e1,1

e2,1
...

eM,1

e1,2
...

eM,N


(1.38)

Note: The (M ∗ N)xP matrix in Eq. 1.38 is the loss function’s Jacobian, which is denoted

J . Also, the column vector in Eq. 1.38 is denoted ~e.

Taking a second derivative of Eq. 1.36, each entry of the Hessian takes the form [28]:

∂2` (~w, ~x)

∂wk∂wl
=

M∑
i=1

N∑
j=1

(
∂ei,j
∂wk

∂ei,j
∂wl

+ ei,j
∂2ei,j
∂wk∂wl

)
(1.39)

Explicitly taking second derivatives is still required. To avoid this, assume that the second

sum in Eq. 1.39 is nearly zero [28, 36], i.e.:

M∑
i=1

N∑
j=1

ei,j
∂2ei,j
∂wk∂wl

≈ 0 (1.40)
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The Hessian can now be rewritten as:

H ≈



∂e1,1
∂w1

∂e1,1
∂w2

· · · ∂e1,1
∂wP

∂e2,1
∂w1

∂e2,1
∂w2

· · · ∂e2,1
∂wP

...
... · · · ...

∂eM,1

∂w1

∂eM,1

∂w2
· · · ∂eM,1

∂wP

∂e1,2
∂w1

∂e1,2
∂w2

· · · ∂e1,2
∂wP

...
... · · · ...

∂eM,N

∂w1

∂eM,N

∂w2
· · · ∂eM,N

∂wP



T 

∂e1,1
∂w1

∂e1,1
∂w2

· · · ∂e1,1
∂wP

∂e2,1
∂w1

∂e2,1
∂w2

· · · ∂e2,1
∂wP

...
... · · · ...

∂eM,1

∂w1

∂eM,1

∂w2
· · · ∂eM,1

∂wP

∂e1,2
∂w1

∂e1,2
∂w2

· · · ∂e1,2
∂wP

...
... · · · ...

∂eM,N

∂w1

∂eM,N

∂w2
· · · ∂eM,N

∂wP


= JTJ (1.41)

Only calculating first derivatives is simpler than calculating second derivatives. There-

fore, approximating the Hessian as in Eq. 1.41 greatly simplifies the computational com-

plexity when applying second-order methods to neural networks [28]. In fact, this Hessian

approximation is used to approximate Newton’s Method in the Gauss-Newton Method, also

known as the Quasi-Newton Method, written as [28, 36]:

~wk+1 = ~wk −
(
JTJ

)−1
JT~e (1.42)

Due to the Hessian’s approximation, this method does not experience fully-quadratic

convergence, but rather superlinear convergence [37].

1.3.4 Levenberg-Marquardt Training

As shown in Section 1.3.3, utilizing the Gauss-Newton Method decreases the computational

complexity of second-order training. However, the approximated Hessian is not guaranteed

to be invertible, nor is it guaranteed to be positive definite; this is easily proven by considering

a scenario where all second derivatives are equal to zero. Fortunately, all positive definite

matrices are invertible [38]. Therefore, finding a method to guarantee that the approximate

Hessian is a positive definite matrix is desirable, as this guarantees both properties. An
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NxN matrix H is positive definite if and only if it has the property [38]:

∀ ~w ∈ RN \ {~0}, ~wTH ~w > 0 (1.43)

Consider the approximate Hessian from Eq. 1.41. Assume it is some arbitrary, real-valued

NxN matrix H, and also consider the NxN identity matrix I. Clearly, the identity matrix

is positive definite, as:

∀ ~w ∈ RN \ {~0}, ~wT I ~w = ||~w||2 > 0 (1.44)

Now consider the behavior of the matrix formed by summing H and I.

~wT (H + I) ~w = ~wTH ~w + ||~w||2 (1.45)

Because H is an arbitrary matrix, the value of ~wTH ~w may be any real number. Therefore, for

a fixed ~w 6= ~0, the value in Eq. 1.45 may be any real number. Thus, a combination coefficient,

µ, is introduced and multiplied by the identity matrix to form the following [28]:

H + µI (1.46)

µ can be chosen to guarantee that this matrix is positive definite. µ should always be chosen

as a positive value. Before proving this, define the following for ease of notation:

SN−1 ≡ {~y ∈ RN s.t. ||~y|| = 1} (1.47)

Start the proof by choosing w0 with the property:

~w0 ∈ SN−1 s.t. ~wT0H ~w0 ≤ ~wTH ~w ∀ ~w ∈ SN−1 (1.48)
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Also choose:

µ > − ~w
T
0H ~w0

||~w0||2
= −~wT0H ~w0 ≥ −~wTH ~w (1.49)

⇒ µ > −~wTH ~w ∀ ~w ∈ SN−1 (1.50)

⇒ ~wTH ~w + µ = ~wTH ~w + µ~wT I ~w = ~wT (H + µI) ~w > 0 ∀ ~w ∈ SN−1 (1.51)

Note the following:

∀ ~w ∈ RN \ {~0},∃ ~w′ ∈ SN−1, c ∈ R+ s.t. ~w = c~w′ (1.52)

⇒ ~wT (H + µI)~w = c2 ~w′T (H + µI)~w′ (1.53)

Of course:

∀ c ∈ R \ {0}, c2 > 0 (1.54)

Thus, combining Eqs. 1.51, 1.53, and 1.54, it is clear that choosing µ as in Eq. 1.49 yields:

~wT (H + µI)~w > 0 ∀ ~w ∈ RN \ {~0} (1.55)

Therefore, for any matrix H, a µ can be chosen so that H+µI is an invertible, positive definite

matrix. This implies stable convergence, and equivalent proofs of this are available [27, 39].

This fact led to the development of the Levenberg-Marquardt Algorithm (LM), whose

update rule for µ attempts to provide stable convergence while including maximum benefit

from second-order information. In this method, the initial µ value is guessed and updated

with each iteration to avoid calculation of the threshold value in Eq. 1.49. This provides

functional µ values with very little computational complexity.
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Modifying Eq. 1.42 with Eq. 1.46 yields the standard form of LM, written:

~wk+1 = ~wk −
(
JTJ + µI

)−1
JT~e (1.56)

This is the standard form of LM used to train neural networks [28, 40, 41].

Like the Quasi-Newton Method, LM experiences superlinear convergence, meaning the

rate of convergence should be “fast” compared to first-order methods [28]. The rate of

convergence on any given iteration, however, is largely dependent on the relative values of

H and µ [41]. Specifically, when µ is large relative to the elements of H, the inverse of

H + µI resembles the inverse of µI [41]. This implies that LM will approximate gradient

descent with approximate learning rate 1
µ

when µ is large [41]. This is clear by manipulating

Eq. 1.56, combining it with Eq. 1.38, and comparing the result to Eq. 1.25:

~wk+1 = ~wk −
(
JTJ + µI

)−1
JT~e ≈ ~wk −

1

µ
IJT~e = ~wk −

1

µ
∇f(~w) (1.57)

Conversely, when µ is small in magnitude compared to the elements of the approximate

Hessian’s main diagonal, Eq. 1.56 approximates the Quasi-Newton Method (Eq. 1.42) [41]:

Choose |µ| � |hi,i| ∀ hi,i ∈
(
JTJ

)
(1.58)

⇒ JTJ + µI ≈ JTJ (1.59)

⇒
(
JTJ + µI

)−1 ≈ (JTJ)−1 (1.60)

⇒ ~wk+1 = ~wk −
(
JTJ + µI

)−1
JT~e ≈ ~wk − (JTJ)−1JT~e (1.61)

Combining the above, it is clear that µ must be chosen carefully [28, 41]. The general

method is to choose a “large” initial value for µ [28, 41]. (“Large” is, of course, a relative

term, and it represents a blind guess about the magnitudes of the loss function’s second
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derivatives. For reference, the default initial value of µ is 0.001 in MATLAB [40].) By

starting with a large value of µ, gradient descent will move the parameters towards a good

initial “guess” of the optimal parameters [28, 39, 40, 41].

This progressively-better guess will eventually yield a positive-definite matrix allow, at

which point µ should be minimized so that the superior convergence rate of the Quasi-Newton

Method is realized [28, 39, 40, 41]. In practice, µ is typically adjusted at the end of each

iteration [28, 39, 40, 41]. If error increases, the parameters are returned to their prior value

and µ is increased [28, 39, 40, 41]. Conversely, if an iteration is successful, the value of µ is

decreased [28, 39, 40, 41]. (Some sources recommend multiplying µ by 10 after unsuccessful

iteration attempts and dividing by 10 after successful iterations [28]. These are the default

adjustments in MATLAB, as well [40].)

In some suggested implementations of LM, an iteration is only attemped a certain number

of times before the parameters are adjusted despite an increase in loss [28]. This implemen-

tation is used throughout this thesis, as seen in the code in Chapter 4.

Other modifications to LM exist, as well. Notably, the computational complexity of the

method was dramatically decreased by including accelerated matrix inversion [42, 43, 44, 45].

This method sacrifices some accuracy in the matrix inversion in exchange for significantly

faster computation[42]. This allows iterations to be performed rapidly, decreasing the train-

ing time for networks using LM [42].

The Levenberg-Marquardt Algorithm provides a method to achieve superlinear conver-

gence with a relatively simple calculation of the Hessian [28, 40, 41]. However, for large

networks, the computational cost of inverting the approximate Hessian causes LM to un-

derperform when compared to gradient methods [35, 40]. Additionally, memory issues can

become an issue as the matrix being inverted increases in size at a rate of the number

of parameters squared [40, 41]. This served as motivation for Youssef et al., who intro-

duced Multi-Stage Training to decrease size of the Hessian matrix being inverted and allow

Levenberg-Marquardt training of large networks [35].
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1.4 Multi-Stage Training and Multi-Stage Networks

To summarize the discussion of training algorithms so far, recall that first-order training

algorithms require minimal computational complexity, but linear convergence implies that

many iterations are required to locate a solution (Section 1.3.1). Conversely, second-order

training algorithms can converge to a solution quadratically; therefore, these methods typ-

ically converge to a solution in fewer iterations than first-order algorithms (Section 1.3.2).

However, second-order methods suffer from unstable convergence [28]. This issue was solved

with the introduction of the Levenberg-Marquardt algorithm; this algorithm yields stable

convergence and provides a superlinear rate of convergence that approaches quadratic con-

vergence after successive successful iterations that result in a very small value of the com-

bination coefficient µ (Section 1.3.4). However, large networks with many parameters yield

very large matrices that are memory-intensive and require significant resources to invert,

meaning Levenberg-Marquardt is not frequently used in practice (Section 1.3.4).

One solution to this problem is Multi-Stage Training (MST), which enables second-order

training of large networks with limited compuational resources [35]. In its simplest form,

an MST network – known as a Multi-Stage Network (MSN) – is analogous to a small FCN.

As described in Section 1.2.1, the first layer of an FCN – known as a stage in an MSN –

interacts directly with input data while subsequent layers use the prior layer’s output as

their input. The final layer’s output is the network’s output, and this may be used for line

fitting, classification, or other applications for which other deep neural network are used.

Understanding the MSN architecture will better enable understanding of MST, so this is

discussed first.

The difference between an MSN and a standard FCN is that each “neuron” is itself a

small FCN. These intermediate FCN “neurons” are called Multi-Layer Perceptrons (MLP).

In classification tasks, each MLP is trained to output a 1 for one particular class and a 0 for

all other classes [35]. In other words, each MLP is trained to learn to distinguish a single

class from among a larger group. Thus, it is natural to choose an integer multiple of the

number of classes as the number of MLPs in any given stage. This way, an equal number of
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MLPs attempt to identify each class. This architecture is shown attempting to classify an

orthogonal frequency-division multiplexing (OFDM) packet in Fig. 1.6.

While the MLP structure is flexible, most implementations use an MLP with two hidden

layers, each with 10-15 neurons [35]. Each hidden layer’s activation functions depend on the

particular application, though the output layer generally has a linear transfer function [35].

A notable exception to this general structure is discussed in Section 3.3.1.

Due to their relatively small sizes, each MLP may be efficiently and quickly trained using

second-order methods by avoiding the computation and memory bottlenecks generally seen

with larger networks. These superior training algorithms result in good solutions for each

MLP while performing relatively few training iterations. It is important to note that each

MLP is independently trained and initialized [35]. A notable benefit provided by this is that

different MLPs will generally learn different network parameters corresponding to different

local minima of the loss function. In other words, each MLP generally learns unique features

of the training data. Thus, after data is processed by a single stage of the MSN, multiple

features of that input have been targeted by specialized networks.

Do note, however, that an MLP’s output is not – and should not generally be – exactly

a 0 or 1. Because an MLP’s output lies on a continuum, additional information is retained

prior to passing data to the next layer that would otherwise be removed by limiting the

output to boolean values.

For example, consider an identification task. When using MST, each MLP is trained to

identify a single object by outputting a 1 for a single class and a 0 for anything else. Perhaps

two classes, A and B, share a feature that other objects do not share. Now consider an

MLP which attempts to identify class A using this feature. If the feature is distinguishable

between classes A and B, the MLP may achieve 100% accuracy identifying class A, i.e. the

MLP’s output is greater than or equal to 0.5 whenever a pattern from class A is inserted,

but the output is less than 0.5 whenever any other class is inserted. However, because the
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Figure 1.6: A sample MSN is shown attempting to identify an RF transmitter based on a section of an OFDM

packet. Each data point in the sample data is fed into every node. Each node is an MLP, as shown. As FCNs,

these all data entering each node passes independently through each neuron in the each layer. Each MLP outputs

one value for the input sample. In this example, there are 12 output nodes for 12 RF transmitter classes, with

each output node attempting to identify one transmitter. The value nearest 1 is selected as the ‘winner,’ so

the output is changed into a vector of boolean values with a 1 at the position corresponding to the transmitter

identified. This figure was produced in part using [1].
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feature analyzed by this MLP is also seen in B, perhaps the MLP’s mean output is:

< Output >=


0.72 if Class A

0.39 if Class B

-0.04 Otherwise

(1.62)

In this situation, this MLP identifies Class A while also identifying the presence of the

analyzed feature in Class B. This information will be useful when attempting to identify

Class B in further stages.

It should be clear that there are many hyperparameters to consider when designing an

MSN. In the simple form described thus far, these are: The number of stages; the number of

MLPs per stage; the number of hidden layers per MLP per stage; and the activation functions

for each MLP’s layers. In Chapter 2, further modifications are explored, representing recent

research.

Considering the MSN structure and its properties discussed above, it should be clear

that MST varies significantly from the standard approach of training all network parameters

simultaneously. Now, the training process is discussed more clearly.

Data processing can be performed in any number of ways, though each sample should

be vectorized before inserting it to the MSN. This input is placed into each MLP in the

first stage in the same way. In other words, the network input is used as the input to each

individual MLP in the first stage. However, to aid generalization of the network and avoid

memorizing data while also reducing computation time during training, each MLP is trained

with a small batch from the total training set [35]. Thanks to a different subset of training

data, the landscape of the loss function will appear slightly different at each node. This

promotes different final parameters which corresponds to analyzing different features within

the data.

Once the first stage is trained, the stage’s output must be calculated and passed to the

second stage, where it is used as the updated training data. To perform a forward pass
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Figure 1.7: One stage of a Multi-Stage Network is shown performing a forward pass on a full set of input data.

Each column in the stage’s input is one input sample. In the first stage, several MLPs are shown side-by-side,

each acting on all of the data. Their outputs of size one are then concatenated into one-dimensional vectors.

There is one output vector (stage output) per one input vector (input sample). One stage’s output is the next

stage’s input, except in the case of the final stage. The final stage’s output is the network’s output. This figure

was produced in part using [1].

through the first stage, insert the entire training set – not just the subset used for training

– through each of the MLPs in this stage. The output of each MLP is, of course, of size

1 for each data sample. The output’s length for any given data sample, however, will be

equal to the number of MLPs in the stage. To achieve this, the output from each MLP is

concatenated. This process is illustrated in Fig. 1.7.

As training continues through each stage, this identical process is repeated: Train the

nth stage with the output from the (n-1)th stage, randomly producing subsets of the stage’s

training data for each MLP; once each MLP is trained, pass all of the training data forward

through each MLP and concatenate the outputs. This is shown in Fig. 1.8.

Additional data processing at each stage should create better predictions than the prior

stage. As such, the number of MLPs can be decreased from one stage to the next [35].

Therefore, the size of each input is decreased for succesive stages as the data’s information is

compressed. Therefore, the number of parameters in each MLP in later stages will generally

decrease, barring significant changes in MLP architecture between stages. This makes it

computationally feasible to increase the number of data samples used to train each MLP in
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Figure 1.8: Here, the training process for one stage of MST is shown. First, subsets of the full training set are

produced for each of the nodes in a stage. The subset at each node is unique and random. Each MLP attempts

to identify a single class, so the network target for each is a 0 or 1 depending on the training sample’s identity.

This figure was produced in part using [1].

later stages [35]. See Chapter 3 for an example of this.

Once the MSN is trained, it can, of course, be used to classify data in a validation set. To

do this, the data is operated on each stage sequentially as described above. The final stage’s,

is a vector of length equal to the number of MLPs in this stage – not a single number. To

choose a single-valued output at this stage corresponding to a single class, multiple techniques

can be devised. In this thesis, the output of all MLPs which seek to identify a given class

are averaged. This results in one output per class. The class whose output is closest to 1 is

chosen as the winner. Code for this can be seen in Chapter 4.

In practice, multi-stage training was shown to improve classification accuracy of different

radio frequency (RF) transmitter and receiver combinations [35]. In fact, the MSN trained

with Levenberg-Marquardt was able to classify these devices with an accuracy of 96.8%

while traditional, large FCNs and CNNs – each trained with first order methods – yielded

accuracies of 84.8% and 67.3% accuracy, respectively.

A major development in this thesis is utilizing this general outline of MST while expand-
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ing upon the permitted architectures for MSN. This ultimately reveals that imporvements

can be made to MSN which provide equal or better accuracy with significantly decreased

compuation time.
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CHAPTER 2

From Multi-Stage Networks to Convolutional

Multi-Stage Networks

Section 1.4 introduced Multi-Stage Training (MST) and the original outline for designing

multi-stage networks (MSN). These are large networks constructed using many smaller net-

works, now renamed nodes. Training is performed independently on each node in the overall

network. Thus, only a subset of the MSN’s parameters are trained with any given itera-

tion. This distributed training allows the highly-effective Levenberg-Marquardt (LM) train-

ing algorithm to be used to train large networks without suffering the effects of memory

and computational limitations generally encountered with large networks and second-order

methods.

However, the MSN structure proposed in Section 1.4 is highly rigid, allowing only multi-

layer perceptrons (MLP) to act as the network’s nodes. Fundamentally, this restriction

is not required. As such, Youssef et al., introduced the Convolutional Multi-Stage Network

(CMSN) [46]. A CMSN is similar in structure to the MSN, but the nodes in the first stage are

convolutional neural networks (CNN) rather than MLPs. This allows the CMSN to benefit

from the CNN properties discussed in Section 1.2.2, most notably robustness to shifting of

the input data and a reduced number of network parameters in each node of the first stage.

In theory, the first quality should enable more robust analysis of data which may not be

uniformly oriented, while the second quality simplifies the overall network when input data

is exceptionally large.

As a proof-of-concept for this network structure, a radar target classification experiment

was performed [46].
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2.1 Problem Description and Motivation

Radar is a valuable technology for visualizing objects at a distance. In large part, this is

due to its ability to perform in a wide range of atmospheric and weather conditions. Radar’s

lack of attentuation in the face of adverse conditions is due its use of radio frequency (RF)

radiation, which has long wavelengths.

At a basic level, radar systems operate in a fairly simple manner. First, a strong pulse of

RF radiation is emitted. This travels through the air until an object is encountered. These

objects may absorb, reflect, or scatter the RF pulse, and the total interaction is generally

a combination of these. The reflected RF radiation is received by the radar system and

used to locate an object. The relative amount of energy reflected depends on the RF pulse’s

wavelength and polarization, as well as the interacting object’s size, shape, and material

composition [46].

This object-dependent interaction results in unique returning signals. Theoretically, this

object-by-object uniqueness can be used to identify the object that returned the RF pulse:

Planes, helicopters, missiles, etc. A very effective radar system and data analysis scheme

should be able to distinguish between different subsets of each of these classes, e.g. accurately

distinguishing between an F/A-18 Hornet fighter jet and a civilian Gulfstream IV.

This information has many valuable applications, and perhaps the most important is

avoiding tragic loss of life in military accidents. Consider, for example, the 2020 missile

strike on Ukranian International Airlines flight PS752 over Iran which tragically resulted in

176 deaths [47]. The official cause of this accident was “missile fire due to human error,”

and it is concievable that having a radar system which automatically identified the aircraft

as civilian may have prevented this loss of life.

This problem and others motivate the need for automatic target recognition (ATR) using

radar data. This field has been developed over several decades. The prototype dataset, the

Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset, was collected

by the US Air Force in 1995 and 1996 [48]. This dataset consists of synthetic-aperture radar

39



(SAR) readings of multiple ground-based military machines [48]. Today, clever techniques

consistently enable greater than 99% accuracy on these datasets [49, 50, 51, 52, 53, 54, 55, 56].

However, the MSTAR dataset is relatively small, and many techniques are specifically

tailored to solving that dataset – not providing a general method that scales with a large

number of radar targets and that can be applied to many data types. These techniques

involve a variety of data pre-processing techniques that are tailored to SAR, and neural

networks which are the proper size for specifically identifying the number of classes in the

MSTAR dataset.

Fortunately, the composite structure of CMSN makes it inherently scalable. Therefore,

a CMSN should be capable of learning many classes by simply adding more nodes to the

network, and the distributed training method allows the potentially massive network to be

trained without additional computational resources. Additionally, the inclusion of CNNs in

a CMSN should allow the network to automatically learn a range of data features that would

be missed by MLP nodes. This potentially removes the need for precise data preprocessing

techniques, enabling its automated application to many types of radar signals. Thus, CMSN

potentially provides an opportunity for a scalable end-to-end radar classification scheme.

All further work in this chapter may be attributed to [46].

2.2 Data Collection

In collaboration with the Prof. Yahya Rahmat-Samii laboratory, we used an anechoic cham-

ber to collect radar data from 17 objects taken from electrical engineering and chemistry

laboratories. Each object was oriented in three different ways, defined as 0, 45, and 90◦.

The objects and a description of the orientations are shown in Fig. 2.1. Data collection was

primarily performed by Greg Schuette.

For each object-orientation combination, 12 trials were performed, and the objects were

intentionally moved by small amounts between trials to add noise to the data. Each trial

was represented by an S21 parameter trace consisting of 1601 complex-valued datapoints,
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Figure 2.1: The 17 radar targets are shown. Object size can be approximated using the 47 cm wide by 30.5

cm deep cardbord platform. Definitions for the 0, 45, and 90◦ orientations are shown in (i) via red arrows on

the empty cardboard platform. Object #17 is shown in its 0, 45, and 90◦ orientations in (ii), (iii), and (iv),

respectively. Unless otherwise noted, photos are taken from the radar’s perspective at a 45◦ orientation. The

objects vary in size and composition, affecting rRCS. (0) Platform: Roughly 60◦ from the radar’s perspective.

(1) Object 1: Empty metal (copper) box with hole on top face. (2) Object 2: Metal box (closed cover) with

home-built circuit. (3a) Object 3: Plastic toolbox (closed). (3b) Object 3: Open; data was collected with the

toolbox closed. (4) Object 4: Metal box (open cover) with custom circuit. (5a) Object 5: Plastic box (closed).

(5b) Object 5: Open; data was collected with the box closed. (6) Object 6: DC power supply (metal cover).

(7) Object 7: Front cover of a power amplifier (metal) at 90◦ orientation. (8) Object 8: Rogers duroid laminate

(copper) at 90◦ orientation. (9) Object 9: Data transfer switch box (with plastic cover). (10) Object 10: Variable

capacitor box (metal cover). (11) Object 11: Data transfer switch box (with metal cover). (12) Object 12: Port

converter (metallic). (13) Object 13: Data transfer switch box (with plastic and metal cover). (14) Object 14:

Vise (metal) at 0◦ orientation. (15) Object 15: Metal box. (16) Object 16: Chemistry hotplate stirrer. (17)

Object 17: Black Decker drill at 0◦ orientation. This figure was produced by Greg Schuette.
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each representing linear amplitude versus frequency. The 1601 points were equally spaced

on the range of 675 MHz to 8.5 GHz; this represents an ultra-wide bandwidth (UWB) range.

The anechoic chamber has band rejection over frequencies from 1 MHz to 10 GHz, thus

shielding environmental noise and chamber reflections over the entire range of frequencies at

which data was collected. The data was collected using two vertically-oriented TSA900 900

MHz - 12 GHz PCB Vivaldi Antennas (RFSPACE Inc., Atlanta, GA). These were attached

to a model E5071C 9 kHz-8.5 GHz ENA Series (Agilent, Santa Clara, CA) vector network

analyzer (VNA). The data was collected in the VNA’s Smith Chart mode. This equipment

was calibrated by Yubin Cai.

Multiple traces of the empty chamber were collected to calculate the background signal

and validate the experimental setup, shown in Fig. 2.2. A plot depicting a representative

trial of the background trace is shown in Fig. 2.3. The background signal stems from the

coupling of the antennae, as confirmed by an S11 parameter simulation in free space for our

setup. This simulation was performed by Yubin Cai, and the S11 parameter simulation was

converted to the S21 parameter, also shown in Fig. 2.2. The S11 parameter was converted

to the S21 parameter using Eq. 2.1 [57, 58].

|S21| ≡ |VRx|
|VTx|

= (1− |S11|2)( λ

4πr
)GA, (2.1)

For Eq. 2.1, the antennae are assumed to have identical gain and reflection coefficients

without loss of polarization. λ represents wavelength of the radio-frequency radiation. r is

the distance between the receiver (Rx) and transmitter (Tx) antennae. GA is the λ-dependent

antenna gain. Finally, |VRx| (|VTx|) represents the voltage at the receiver (transmitter)

antenna.

2.3 Data Analysis: Non-AI

As discussed in Section 2.1, many effective methods exist to accomplish ATR on the MSTAR

dataset. However, these typically combine semi-manual data pre-processing techniques and
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Figure 2.2: (a) A 3D model of the Vivaldi antennas used in the simulation of the S11 parameter is shown in two

orientations. This was produced by Yubin Cai. (b) The S21 parameter of the empty chamber is shown. The red

line shows the S21 parameter trace as calculated via the simulation and Eq. 2.1. The blue line shows the S21

parameter trace a trace collected with the experimental setup. The values are shown in decibels, as is traditional.

This plot was produced by Greg Schuette and Yubin Cai.

Figure 2.3: The setup of the chamber is depicted with dimensions shown. Figure created by Yubin Cai.
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artificial intelligence techniques [49, 50, 51, 52, 53, 54, 55, 56]. Here, two separate manual

data analysis techniques are utilized, each emphasizing the difficulty of manually classifying

objects based on the S21 parameter.

The work in this section was performed primarily by Greg Schuette.

2.3.1 Naive Data Analysis

We first attempted to classify objects by analyzing the log-magnitude plot of the S21 param-

eter for each object-orientation combination. Because this corresponds to the magnitude of

the received signal, higher values correspond to a larger amount of reflected energy. There-

fore, objects with large radar cross sections (RCS), which reflect relatively large amounts of

energy and yield relatively large signals, should show high values in these plots at relevant

frequencies. These radar cross sections indicate how much energy may be reflected by an

object and is due to a combination of object size, orientation, and material composition.

See Table 2.1 for the calculated relative RCS (rRCS) of each object; details of the calcu-

lation are discussed in the figure description. In addition to the overall RCS, objects with

different dimensions or material compositions will reflect certain frequencies more effectively

than others, providing another parameter to use for identification. Table 2.1 also shows

signal-to-noise ratio (SNR) results for each object-orientation combination.

To visualize these object-dependent qualities for classification attempts, the log-magnitude

plots of the S21 parameter for each of the 17 objects in their different orientations were cre-

ated. Plots of each object in their respective 0◦ orientations are shown in Fig. 2.4.

Several objects could be identified using this method. The identifiable objects were those

with large RCSs, which tended to be large, metallic objects. This is shown in Fig. 2.4

(a). Here, different objects’ signals maintain different overall magnitudes and often include

several unique points with unusually effective reflection.

Despite these object-dependent qualities and several successes, manual identification of

most targets via this method proved difficult. This is visualized in Fig. 2.4 (b). Here, all
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Object SNR, 0◦ SNR, 45◦ (dB) SNR, 90◦ (dB) rRCS, 0◦ rRCS, 45◦ rRCS, 90◦

1 20(10) 13(8) 19(9) 0.9(3) 0.10(2) 1.0(4)

2 14(7) 14(7) 8(7) 0.34(5) 0.10(2) 0.4(1)

3 13(7) 14(8) 12(7) 0.10(2) 0.10(2) 0.14(2)

4 12(7) 14(7) 11(6) 0.22(6) 0.09(3) 0.17(3)

5 14(8) 13(7) 14(8) 0.10(2) 0.10(2) 0.17(4)

6 12(8) 13(7) 10(6) 0.23(3) 0.10(3) 0.17(2)

7 13(8) 13(8) 14(9) 0.10(3) 0.10(2) 0.5(2)

8 12(7) 14(8) 13(8) 0.10(3) 0.10(3) 0.20(3)

9 12(6) 14(7) 10(6) 0.10(3) 0.10(3) 0.11(3)

10 10(6) 13(7) 12(7) 0.12(3) 0.09(3) 0.09(3)

11 10(6) 14(8) 11(6) 0.12(2) 0.09(3) 0.10(3)

12 10(6) 13(7) 10(6) 0.14(3) 0.09(3) 0.11(3)

13 11(7) 12(7) 10(6) 0.23(2) 0.10(3) 0.11(3)

14 11(6) 13(7) 12(7) 0.11(3) 0.09(3) 0.10(3)

15 14(8) 11(6) 11(7) 0.44(5) 0.10(3) 0.14(2)

16 11(7) 13(7) 11(6) 0.10(3) 0.10(3) 0.10(3)

17 12(7) 13(7) 13(7) 0.10(3) 0.10(3) 0.10(3)

Table 2.1: SNR and rRCS values for each object (1–17) and their three orientations are shown. The standard

deviation of each signal is shown in parentheses. Twelve traces were recorded for each object in each orientation.

112 traces of the empty anechoic chamber were recorded. The arbitrary SNR values were calculated by first

calculating the magnitude at each point in each trace. An average of the 112 empty chamber traces was

produced to minimize noise, and this mean trace was subtracted from each object-orientation trace to remove

the background signal. Next, averages of 100 consecutive points were calculated for each possible position in

each trace to reduce noise when calculating the maximum signal. The highest average was taken as the signal’s

magnitude. A flat region in each trace was located, and the standard deviation of 100 points in the flat region

was calculated to determine noise. The maximum signal was divided by this noise to calculate SNR, which

was then converted to decibels. Relative radar cross sections (rRCS) were determined by first calculating the

area under the background-subtracted S21 traces. This was performed in MATLAB using the trapezoidal rule.

This represents a total radar signal or ”pulse amplitude.” The pulse amplitudes were averaged for each object-

orientation combination. Each average was then divided by the largest signal to yield a value between 0 and 1.

All calculations were performed by Greg Schuette.
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(a) (b)

Figure 2.4: S21 parameters (raw data, log-magnitude traces) for all 17 objects at their respective 0◦ orientation.

Traces show the raw data as acquired without any post processing or averaging. (a) Several of the targets (objects

#1, 2, 4, 6, 13 and 15) have S21 parameters with obvious differences in the log-magnitude plot. (b) Other targets

(objects #3, 5, 7, 8, 9, 10, 11, 12, 14, 16 and 17) exhibit S21 parameters with no obvious visual differences.

signals appear nearly identical to the background signal in the low frequency range due to the

the strength of antenna coupling at low frequencies. Noise between trials made it impossible

to find identifying features for objects with low RCSs in the high frequency range.

Furthermore, several objects’ orientations are distinguishable after object classification.

These tend to be large, metallic objects with low symmetry. These objects have different

physical cross sections when reoriented, yielding different RCSs, as well. One partial ex-

ception to this trend is Object #1, whose cross sections are very similar in the 0 and 90◦

orientations. Object #1’s S21 traces at different orientations are shown in Fig. 2.5 (a). Here,

the 0 and 90◦ orientations yield very strong signals. This is likely because Object #1 is a

large copper box, and one of two faces on the box is directly opposite the antennae in the

0 and 90◦ orientations. The fact that these two faces of equal size, relative positioning,

and composition are still distinguishable is likely due to the crimped copper seam, visible

in Fig. 2.1, which is on the right and left in the 0 and 90◦ orientations, respectively. This

provides slight asymmetry between these orientations. Note also that when the box is in

the 45◦ orientation, the signal is very weak. This is most likely because the box’s faces are

oriented in a way that scatters light rather than reflecting it towards the antennae.

However, most objects lack any clear distinguishing characteristics between orientations.
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(a) (b)

Figure 2.5: S21 parameters for two targets (objects #1 and #17) at three different orientations (the objects

and a definition of orientation are indicated in Fig. 2.1). No noise removal or averaging was performed on the

traces shown. (a) Object #1 is shown at 0, 45, and 90◦ orientations, each of which is easily identifiable. Objects

#2, 4, 6, and 13 (not shown here) also demonstrate easily distinguishable orientations. (b) Object #17 is shown

at 0, 45, and 90◦ orientations, each of which are indistinguishable. Orientations for Objects #9, 10, 11, 14, and

16 (not shown here) were also visually indistinguishable from their log-magnitude plots. Figure produced by Greg

Schuette

One example, Object #17, is shown in Fig. 2.5 (b). This is due to weak overall signals and

relatively high noise in the high-frequency range between trials, making readings in these

regions inconsistent between trials.

Further development of this method may work for identifying particular objects in a

particular situation. However, the tested conditions are ideal: An anechoic chamber removed

environmental noise; very precise equipment was used; the objects were at a short range;

and only one object was in the field of view for any given measurement. Thus, this method

is unrealistic in real world applications, so a more robust manual analysis was investigated.

2.3.2 Time-Frequency Analysis

The analysis in Section 2.3.1 relied purely on the frequency domain of the S21 parameter.

Theoretically, one could perform a Fourier transform to analyze the data in the time do-

main. However, a more effective method for human interpretation is time-frequency analysis,

allowing both domains to be visualized simultaneously.
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This analysis was based on the theory from [59]. Note that the x- any y-axes represent the

time and frequency, respectively, in time-frequency plots. Thus, vertical lines in these plots

correspond to many frequencies reaching the receiving antenna simultaneously, which indi-

cates a broad reflection [59]. Conversely, horizontal lines correspond to a single frequency (or

small range of frequencies) reaching the receiving antenna over an extended period of time;

this implies that these frequencies are resonant within the target object, becoming trapped

and being emitted towards the receiving antenna over time [59]. Curves and diagonal lines

also appear: Signals starting at low frequency/early time and proceeding to high frequen-

cy/late time correspond to material dispersion; signals starting at high frequency/early time

and proceeding to low frequency/late time correspond to structural dispersion [59]. These

features indicating specific interactions within each object are thus more easily visualized

with time-frequency analysis.

The time-frequency method used was the two-dimensional continuous wavelet transform

(CWT). These use inner products to compare a signal to an analyzing function, known as

the mother wavelet [35, 60]. The general form of this computation is [60]:

C (a, b, f (t) , ψ (a, b) (t)) =

∫ ∞
−∞

f (t)
1

a
ψ∗ (a, b) (t) dt (2.2)

Here, C represents the wavelet coefficient at a single scale a > 0 and position (in time) b.

ψ is the analyzing function, and ∗ indicates a complex conjugate. t represents time, and f

represents the signal being transformed. An analagous calculation can be performed for the

frequency-domain signal. This calculation is repeated across a range of scales and positions

to attain values for the two-dimensional plot [60].

These calculations were performed using the cwt command in MATLAB and a Morlet

mother wavelet. This analyzing function is represented by [61]:

ψ (a, b) (t) =
1

a
exp

[
iω0

(
t− b
a

)]
exp

[
−
(
t− b
a

)2

/2σ2

]
(2.3)

Here, ω0 is the frequency, and σ is a measure of spread.
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This calculation was performed on the linear-scaled, complex-valued S21 parameter data

described in Section 2.2. Generally, the CWT plot, known as a scalogram, is displayed as the

magnitude squared at each location. However, due to poor visualization using this method,

a natural logarithm was performed on each component’s magnitude square. This increased

the amount of visible information for each plot. 12 plots were produced for each object-

orientation combination, corresponding to all 12 trials. The 12 plot values for each object-

orientation combination were then averaged at each location in the plot. These averages are

shown in Fig. 2.6. For the empty chamber, 12 CWT plots from each of three days of data

collection were produced by the same method as for the object-orientation plots. The 12

empty-chamber CWT plots were averaged for each day, and these are also shown in Fig. 2.6.

Calibration drift over the course of the data collection period is visible in the Empty

Chamber calculations in Fig. 2.6. This was considered acceptable for the purposes of the

experiment, as slight variation between measurements increased the difficulty of the machine

learning task in Section 2.4. For the manual identification plots shown in Fig. 2.6, however,

a best representative example for each object was chosen.

As in Section 2.3.1, objects with large RCSs were identifiable. For example, strong reflec-

tions are visible for the 0 and 90◦ orientations for Object #1 just after the 0.05 microsecond

time point. Many object-orientation combinations yield identifying characteristics in the

0.05-0.075 microsecond, sub-1 GHz window of the plots. Most object-orientation combina-

tion’s signals were overwhelmed by the background signal, though remained more readily

identifiable than in Section 2.3.1. Despite this relative success, this classification task is ex-

cessively tedious and is not scalable to a large number of objects due to the small variation

between plots at different radar targets.

Also note that this was performed on ideal data, as discussed in Section 2.3.1. Thus, in

the real world, identifying characteristics are expected to be even more difficult to locate.

This motivates the development of a more robust, machine learning-based approach to the

radar classification task.
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Figure 2.6: The CWT scalograms for each target-orientation combination are shown. This figure was produced

by Greg Schuette.
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2.4 Data Analysis: Machine Learning

Section 2.3 emphasizes the need for a robust, computer-based method of ATR. Several

traditional network architectures were thus used to gauge their viability for the task. The

success of these were then compared to the results of a CMSN. The work in this section was

primarily performed by Khalid Youssef, and it is adapted from [46]. Note that only objects

– not orientations – were identified using these machine learning approaches.

2.4.1 Data Preparation

Minimal data preprocessing was performed on the dataset [46]. This is to emphasize the

ability of CMSNs to perform end-to-end classification, but a normalization process was still

performed. First, the real and imaginary components of each trace were independently

centered at zero by subtracting their mean. These components were then independently

divided by their respective standard deviation. Note also that only the first 1600 of 1601

points in each trace were used.

Twelve data samples were produced for each object by combining the traces of each

orientation into two-dimensional matrices. These were of length 1600 in one dimension – the

length of each trace – and of length 6 in the other dimension – three orientations, with the

real and imaginary portions placed in separate rows. This is shown at the top of Fig. 2.7.

2.4.2 Traditional Machine Learning Techniques

Four traditional machine learning techniques were used as a comparison to CMSN. These

were: CNN, CNN Comittee, FCN, and FCN Comittee [46].

Convolutional Neural Network A CNN architecture containing four convolutional lay-

ers was used. Each convolutional layer is followed by batch normalization, a rectified linear

unit (ReLU) activation, and a pooling layer, in that order. Following the final convolutional

pooling layer is a hidden fully-connected layer. This is followed by an output layer with
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Figure 2.7: The CMSN structure used in this paper is shown. An example input data object is shown at the

top. For any individual object, one trace from each of the 0, 45, and 90◦ orientations are grouped into one

sample; these are named Angle 1, Angle 2, and Angle 3, respectively. The real components of each orientation

are placed side-by-side, as are the imaginary components of each orientation. The block of real values is then

placed side-by-side with the block of imaginary values to produce the two-dimensional input data of size 6x1600.

This is then fed into twelve CNN nodes in the first stage. Each of these is trained to classify the radar target,

resulting in 17 outputs each. The 17 outputs (from the softmax layer) from each of the 12 CNNs are concatenated

to yield a stage output of size 204. This is inputted to the second stage, which is composed of 68 MLPs (labeled

FCN in the figure). Each of these has an output of size 1, and these are concatenated to produce a stage output

of size 68. This same process continues through the third and fourth network stages. The output at the fourth

stage is grouped by the radar target each MLP attempts to identify. These values are averaged, yielding one value

for each class. The value closest to 1 is chosen as the ‘winner,’ and the corresponding radar target is identified.

This figure was produced by Khalid Youssef.
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17 neurons – due to 17 radar target classes – and corresponding softmax and classification

layers. The CNN was trained for a maximum of 50 epochs using the ADAM optimizer, with

additional stopping criteria depending on validation error.

CNN Committee Twelve CNNs identical to those described above were trained on the

dataset. Each CNN was initialized independently, so different local minima in the loss

function should be located and different final network parameters located. When classifying

data, each network was run independently, and a majority vote determined the committee’s

classification decision.

Fully-Connected Network The FCN contained two hidden layers, each with 200 neu-

rons. The output layer consisted of 17 neurons followed by the softmax activation function

and a classification layer. 100 epochs of ADAM were used to train the FCN. However, net-

work parameters were saved after each epoch, and the network parameters yielding minimum

validation loss were chosen for the network weights.

FCN Committee The FCN Committee consisted of twelve FCNs identical to the one

described above. As with the CNN Committee, each network was independently initialized,

and a majority vote determined the committee’s classification decision.

2.4.3 CMSN Used for ATR

Finally, a CMSN was used to classify the radar targets. The first stage consisted of twelve

CNNs identical to those described in Section 2.4.2. However, each CNN in the CMSN was

only trained for three epochs via the ADAM optimizer. The output from the softmax layer

– not the classification layer – for each CNN was concatenated; this retains information

otherwise lost when the classification layer chooses a value of 1 for one output node and a

value of 0 for the other 16 output nodes. The output size of this stage is 12 (number of

CNN nodes) x 17 (number of outputs at each CNN), or 204. This serves as the input to the
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second stage of the CMSN.

The remaining CMSN stages are similar to the MSN described in Section 1.4. There were

three of these stages, consisting entirely of MLPs. Four MLPs targeting each class were used

in each of these stages, for a total of 68 nodes per stage. Therefore, the output at each stage,

after concatenation, is of size 68. Each MLP contained two hidden layers with 10 neurons

per layer.

Classification decisions were based on the fourth stage’s output. Recall that four MLPs

target each class in this stage. The output of these four MLPs were averaged to provide a

single output value for each class. The output value closest to 1 is chosen as the ‘winner,’

and the network predicts that the corresponding class is represented by the data inserted to

the network.

2.4.4 Results

The most difficult classification task – and the only discussed here – attempted to classify all

17 objects. 11 samples were used for training and 1 for testing per class across all methods.

This was repeated twelve times so that each trace was used for testing exactly one time.

With each of these data splits, five trials were perfomed. This yields 12x5 or 60 total trials.

The mean percent validation accuracy is shown below for each network structure.

Method CMSN CNN FCN CNN Committee FCN Committee

Accuracy (%) 99.10 63.95 14.30 63.37 18.27

2.5 Conclusion and Future Work

This work began by using manual classification methods on the S21 parameter for 51 object-

orientation combinations. This data was collected in ideal conditions, yet classification

success was limited. If environmental noise, moving targets, multiple objects within range,

etc., are included, specific identification of objects will likely be nearly impossible via these

methods.
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Machine learning methods proved more robust. Specifically, the CMSN consistently out-

performs other methods by large margins in difficult conditions. The best competing method,

CNN, yielded results of 63.95% accuracy. This compares to CMSN, which maintained vali-

dation accuracy of 99.10%. In other words, the CNN was incorrect 100−63.95
100−99.10 = 40.06 times

as often as CMST.

Additionally, real-world applications will include many more potential classes of radar

target. Larger networks will be necessary to classify all of these successfully. Fortunately,

the natural scalability of CMSN enables its use with an increasing number of radar target

classes. This scalability is, in large part, due to the distributed training of MST, which

allows a very large network to be trained with limited computational resources regardless

of full network size. The other methods, however, will require an ever-increasing amount

of RAM and computational power to perform individual iterations, as each update tracks

information about every network parameter simultaneously. Thus, CMSN is proposed as a

potential solution to fully-automate ATR.

Further work should include larger datasets and a larger number of classes. Additionally,

more difficult conditions should be tested to investigate ways to make CMSN more robust

to environmental noise, moving radar targets, and other variables.
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CHAPTER 3

Using Data Pre-Processing and CMSN to Improve

Robustness to Time Shifts in RF Data Identification

In its primary introductory paper in 2017, multi-stage training (MST) was used to train a

multi-stage network (MSN) which identified radio frequency (RF) transmitters [35]. This

paper was motivated by a desire to increase the security of devices which communicate in

the RF frequency range [35]. These devices are insecure for a variety of reasons, but a

device’s ability to accurately identify another device with which it is communicating can

lessen the potential of transmitting sensitive information to a false impersonator of the

intended receiver.

Electronic devices can be impersonated with the proper software. Therefore, hardware

abnormalities must be used to distinguish good and bad actors on a secure network. This is

possible due to inexact qualities within each component of a transmitter; manufacturing tol-

erances allow each component to be imperfect, and the culmination of specific imperfections

in a device result in a unique fingerprint in the RF signal [62].

Youssef et al., 2017 showed that an MSN can effectively distinguish between RF transmit-

ter/receiver pairs based on their transmitted Orthogonal Frequency Division Multiplexing

(OFDM) packets [35, 63]. However, this analysis was performed on a dataset collected with

stationary devices in good conditions. To deploy a neural network capable of identifying

bad actors in the real world, messier data must be effectively analyzed. To explore this, the

same dataset as used in [35, 63] is utilized. However, the data is artificially shifted in the

time domain to mimic the effects of an inexact data collection method which could occur in

day-to-day use cases. Two methods are utilized to increase robustness to these shifts in time:
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1) Data pre-processing via use of different discrete wavelet transforms, some of which are

quasi-time-invariant, and 2) the use of the convolutional multi-stage networks (CMSN) to

take advantage the convolutional neural nework’s (CNN) inherent robustness to data shifting

discussed in Section 1.2.2.

3.1 Summary of Prior Results and Description of Data

Many techniques have historically been used to analyze RF data. For example, automatic

target recognition (ATR) is a field with much interest, with identification accuracies of targets

on the well-known Moving and Stationary Target Acquisition and Recognition (MSTAR)

database approaching 100% with modern algorithms [49, 50, 51, 52, 53, 54, 55, 56]. However,

this dataset concerns X-band synthetic-aperture radar images [48]. Thus, the developed

methods are valuable for certain military applications, though they remain disconnected

from the anti-spoofing problem identified in [35, 63].

To better represent this challenge, an OFDM RF packet dataset was collected [35, 63].

Data was collected using six radios and two transmitters for a total of 12 transmitter classes

to be identified [35, 63]. There are 1000 OFDM packets per class, each a complex-valued

OFDM packet in the time domain 10,000 time points in length [35, 63]. Further information

regarding the dataset can be found at [35, 63]. This dataset is used throughout this chapter

of the thesis.

This dataset is relevant, as OFDM packets are used for wideband digital communications

including WLAN Wi-Fi, 4G mobile communications, television broadcasts, and many other

direct communication techniques [64, 65]. In this field, there has been work to use AI to

classify signal types and perform and interpret channel coding, modulation, and parametric

estimation [66, 67]. However, research directly applying machine learning to identify specific

RF emitter devices remains sparse [35, 63]. Thus, the application of deep neural networks

to this problem was novel.

This problem fundamentally seeks to extract the features which are unique from one
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transmitter to the next due to slight hardware differences [35]. Thus, the propensity for an

MSN to extract multiple features, as discussed in Section 1.4, provided a natural motive

to apply these networks to this problem. The results were very promising, with the MSN

trained via Levenberg-Marquardt significantly outperforming standard fully-connected net-

work (FCN), CNN, and support vector machine (SVM) architectures [35, 63]. Additionally,

data preconditioning proved valuable.

As discussed in Section 2.3.2, CWTs provide a two-dimensional representation of signals.

This alternative representation of the data is useful for analyzing data in many situations,

including by a neural network. Indeed, the CWT was successfully used to improve the

classification results using a CNN front-end on an MSN in [35]. Impressively, this yielded

99.95% accuracy on the validation set when only 10% of the total data was used to train

the network, and with only 6 of 12 classes used to train the first of three MSN stages [35].

This compares to a maximum of 98.7% accuracy for a standard MSN that used all 12

classes to train every stage. The best results across other methods trained with 10% data

were 87.3% (CNN), 84.8% (FCN), 87.6% (SVM Pearson VII Universal Kernel), and 67.6%

(SVM PolyKernel) [35, 63]. The success when using the CWT likely stems at least in part

from the superior representation of data to the network. However, a CWT does not add

information despite its expansion of the data’s size, and the result of this transform is, in

fact, redundant [60]. Thus, the CNN front-end was necessary to recompress the data prior

to insertion to the MSN.

To further explore and improve on this, other methods of manipulating data represen-

tation to the network were investigated. These data transformations are less redundant

than the CWT, permitting smaller first-stage nodes to be used without needing to omit

most of the transformed data. Additionally, the same calculations were performed using

minimally-altered time-domain data. These calculations were performed using the network

architectures and training parameters described in Section 3.3.
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3.2 Preparation of Data

As stated at the beginning of this chapter, the dataset used in this chapter is the same

as used in [35, 63]. Each OFDM packet contains 10,000 datapoints in the time domain,

and most of this information is not necessary to achieve good classification results. Rather,

subsets of the data samples were used, and the rising edges of the OFDM pulse were located

and aligned [35, 63]. This was done via a thresholding process [35, 63].

3.2.1 Data Thresholding

To threshold the data, the real components of each packet were analyzed alone. Specifically,

the first point for each packet whose real portion was greater than or equal to 0.05 became

the first data point in the collected subset. 0.05 was chosen, as it is significantly larger than

the noise while also being small enough to locate the beginning of the rising edge [35].

For example, assume that a thresholded vector of length 500 was desired. Also assume

that the first point in the original OFDM packet whose real component is greater than or

equal to 0.05 is the 501st index. Then the subset collected in the new vector is the data

between and including the 501st and 1000th index of the original OFDM packet.

The data preparation in all sections in this chapter except 3.2.5 utilize this same thresh-

olding process. This serves to locate the signal’s rising edge of each OFDM packet, where the

individual hardware characteristics most affect the signal. Thus, this thresholding process

locates a subset of the data with a relatively large amount of information to use for the

transmitter classification task.

3.2.2 Time-Domain Data

To produce the time-domain data, the RF data was first thresholded via the method de-

scribed in Section 3.2.1. Vectors of length 64 were collected.

For the MSN data (Method I), the absolute value of each vector was taken. After this,
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each trace was translated in time a total of 18 times. These correspond to shifts of -9, -8,

-7, ..., -1, 1, ..., 7, 8, and 9 units from the original signal. This was done by iterating the

following in MATLAB for each trace and shifting amount:

1 % Initialize the vector which will hold the artificially-shifted data

2 % Note: original vector is a column vector

3 new vector = zeros( size(original vector, 1), 1);

4

5 % Shift to the left

6 if n < 0

7 % Place the preserved data into the new vector

8 new vector(1:end+n) = original vector(1-n:end);

9

10 % Find the slope at the corresponding end

11 m = original vector(end) - original vector(end-1);

12

13 % Use the slope to simulate the data at the end, with some noise

14 for i = 1:abs(n)

15 % Randomly select a slope within 10% of the original slope's value

16 m1 = m * (rand*.2 + 0.9);

17 % Use this slope to choose a value for missing section of data

18 new vector(end+n+i) = original vector(end) + m1 * i;

19 end

20

21 % Shift to the right

22 else

23 new vector(n+1:end) = original vector(1:end-n);

24 m = original vector(2) - original vector(1);

25 for i = 1:n

26 m1 = m * (rand*.2 + 0.9);

27 new vector(n+1-i) = original vector(1) - m1 * i;

28 end

29 end
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Here, n represents the amount to shift by. Note that traces with no artificial shifting remain

in the dataset.

From this full set of data, six subsets were produced. Each of the six subsets contains

data with different amounts of overall shifting. These are labeled 0, 1, 3, 5, 7, and 9. The

nth subset contains all of the data shifted to each of -n, -n+1, ..., 0, ... n-1, and n positions.

Note that this implies ‘subset 0 ⊂ subset 1 ⊂ subset 3 ⊂ subset 5 ⊂ subset 7 ⊂ subset 9 =

full dataset.’

Data preparation for the CMSN (Method II) was similar to Method I. Again, the OFDM

packets were thresholded as outlined in 3.2.1, and a vector length of 64 was chosen. This

time, however, the shifting code was performed on the complex-valued data. This resulted in

six complex-valued subsets, again with maximum shifts of 0, 1, 3, 5, 7, and 9 units. Finally,

real-valued network input data of size 2x64 was produced by placing the real and imaginary

components of each vector side-by-side.

Sample plots of the time-domain data is shown in Fig. 3.1.

3.2.3 Discrete Wavelet Transforms

As stated in Section 3.1, the two-dimensional CWT yields a redundant representation of

the RF signal. This is useful for visualization purposes, and it was also shown to improve

the classification performance of MSNs analyzing OFDM RF packets [35]. However, it

generally requires a larger neural network to analyze this input due to its expansion of the

data’s size. In an attempt to improve the data’s representation to the network while also

keeping the necessary size of input nodes relatively small, the single-level, one-dimensional

discrete wavelet transform (DWT) was investigated. The total output size of this transform

is the size of the original signal plus 2, yet a signal can be completely reconstructed; the

signal’s information content is maintained in a non-redundant manner. The DWT’s ability

to improve MSN robustness to shifting is also investigated.

The DWT is similar to the Discrete Fourier Transform (DFT) [68]. The DFT decomposes
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Figure 3.1: Three groupings of time-domain OFDM packets are shown. In each case, the signal’s absolute value

is shown. (a) One thresholded sample from each of the 12 transmitters is shown. Significant variance is visible.

(b) 12 thresholded samples from a single transmitter are shown. Moderate variance between trials is visible. (c)

One thresholded OFDM packet is shown with 19 different shifts in the time domain. These shifts are -9, -8, ..., 8,

and 9. The same signal is clearly seen, though the time translation makes classification by neural networks more

difficult.
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a signal into sinusoidal basis functions, each dependent on a unique frequency [68]. The

resulting transform can be perfectly transformed back into the original signal, meaning that

no information is lost [68].

The DWT, however, decomposes a signal into a set of orthogonal wavelet basis func-

tions [68]. Unlike the sinusoidal functions in a DFT, the wavelet functions are nonzero

over only a subset of the signal’s length [68]. These functions are derived from a common

mother wavelet ψ which is dilated, translated, and scaled [68]. In the DWT, each mother

wavelet is paired with a scaling function φ to allow complete reconstruction, analagous to

the Continuout Wavelet Tranformation (CWT) reconstruction shown in Eq. 3.1 [69].

x (t) =
∞∑

n=−∞

c (n)φ (t− n) +
∞∑
j=0

∞∑
n=−∞

d (j, n) 2j/2ψ
(
2jt− n

)
(3.1)

Here, x represents the original signal [69]. j represents the scale, whose maximum value

in the DWT is limited by the length of the input signal [69]. c (n) represents the nth scaling

(or approximation) coefficient, and d (j, n) represents the nthwavelet (or detail) coefficient at

the jth scale [69]; the number of coefficients is also necessarily limited by signal length in

the DWT. All data utilizing a standard DWT in this chapter utilizes the scaling coefficients

and/or the first-scale wavelet coefficients, though higher scales are utilized in the MODWT

and DTCWT, discussed in Section 3.2.4 and Section 3.2.5, respectively. These coefficients

can be calculated by the discrete analogue of Eq. 3.2 and Eq. 3.3 [69].

c (n) =

∫ ∞
−∞

x (t)φ (t− n) dt (3.2)

d (j, n) = 2j/2
∫ ∞
−∞

x (t)ψ
(
2jt− n

)
(3.3)

The mother wavelet used in this experiment was the Fejér-Korovkin filter. This was

implemented using the dwt command in MATLAB, and the 'fk4' command was used to

specify a high-frequency Fejér-Korovkin filter for the single-level transformation.
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The dwt command in MATLAB requires that the input be real-valued [70]. Additionally,

the input to a DWT must be of length 2N for some integer N [71]. Thus, to produce the

DWT data, the RF data was first manipulated according to Method I in Section 3.2.2, except

vector lengths of 512 (29) were chosen. This produces six subsets of the data, as described

in Section 3.2.2.

Next, the dwt command in MATLAB was used to perform the DWT. The dwt command

provides two outputs: Detail coefficients and approximation coefficients for the first-level

decomposition [70]. Each of these is a vector of length N
2

+ 1, where N is the length of the

signal placed into the function [70]. Because the data inputted to the function is 512 points

long, each of the returned vectors is length 257, for a total of 514 datapoints after the wavelet

decomposition.

64 datapoints from the DWT were chosen to create vectors of length 64 used as input to

the neural networks. Specifically, the first 32 points from each of the detail and approximation

coefficient vectors were concatenated.

The wavelet and approximation coefficients for several groupings of data are shown in

Fig. 3.2.

3.2.4 Maximal Overlap Discrete Wavelet Transforms

The DWT was investigated for its ability to increase robustness to shifting in the time

domain. However, the DWT is not generally invariant to shifts in time [71]. As such, the

maximal overlap discrete wavelet transform (MODWT) was also investigated for its ability

to improve robustness against shifting.

The mathematics of the MODWT is similar to that of the DWT. However, there are

several important qualitative differences [71]. For the purposes of this study, the most

important differences are (1) the MODWT is redundant, and (2) the MODWT is invariant

to circular shifts of data [71]. The latter provides the potential to minimize alignment

artifacts of the starting data – i.e. artifacts due to shifting in time of the RF data [71]. The
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Figure 3.2: The wavelet and approximation coefficients for several groups of OFDM packets using the dwt

command and `fk4' mother wavelet in MATLAB are shown. Though the total length of each vector is 257,

only the first 64 values are shown. This is for two reason: The first 64 values are fed into the neural networks,

and it also improves data visualization in this figure. (a), (c), and (e) show wavelet coefficients. (b), (d), and (f)

show approximation coefficients. (a) and (b) show the results of one sample from each of 12 transmitter classes.

Large variation is seen between samples. (c) and (d) show the results of 12 samples from a single transmitter

class. A moderate amount of variation between samples is seen. (e) and (f) show the results of one sample

shifted 19 times. This yields data for 19 DWTs, one shift for each of -9, -8, ..., 8, and 9 prior to transformation.

Significant variance is seen. This is expected due to the lack of time invariance for the DWT.
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former, however, decreases information density. This decreases the amount of information

inputted to the MSN when equal vector lengths are compared.

Prior to performing the MODWT, the data was prepared by utilizing Method I described

in Section 3.2.2. However, vectors of length 512 were utilized. This is, in part, because the

MODWT requires real-valued input. Unlike the DWT, however, the MODWT does not

require vectors of length 2N. Rather, the length 512 was chosen to maintain consistency

with Section 3.2.3.

The MODWT was implemented using the modwt command in MATLAB. The 'fk4'

mother wavelet was chosen, as in Section 3.2.3. With an input of size 512 (29), the MODWT

can perform a nine-level transformation. Thus, the modwt function returns a 10x512 matrix.

The first nine rows provide the wavelet coefficients for the nine 2k scales [72]. The tenth row

provides the scaling coefficients for the 29 scale [72].

Plots of these components are shown in Fig. 3.3. As shown, the ninth scale varies little

depending on the data’s shifting. Additionally, the scaling coefficients vary greatly depending

on transmitter, yet are robust to shifting and are consistent within a transmitter class. Thus,

these two components were chosen to construct network input data. To do this, vectors of

length 64 were produced by concatenating the first 32 components of the scaling coefficient

vector with the ninth-scale wavelet coefficients’ 160th to 181st components, inclusive.

3.2.5 Dual Tree Wavelet Transforms

In another attempt to minimize the effects of shifting of the RF data in the time domain,

the Dual Tree Complex Wavelet Transform (DTCWT) was utilized. This method bene-

fits from improved (though imperfect) shift invariance. It is also less redundant than the

undecimated DWT [73]; the undecimated DWT is very similar to the MODWT discussed

in Section 3.2.4, so information is expected to be more compact with the DTCWT than

the MODWT. This increased shift invariance and decreased redundancy provide rationale

for potentially better results than in the other methods. These qualities are achieved by

performing two independent multi-scale DWTs with specially-designed wavelet and scaling
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Figure 3.3: Plots of the ninth-scale wavelet coefficients and ninth-scale approximation coefficients for the

MODWT using the `fk4' mother wavelet in MATLAB are shown. (a) The ninth-scale wavelet coefficients

for one sample from each of 12 RF transmitter classes are shown. Signals appear similar between transmitters,

though related features are shifted slightly with respect to the index. (b) The ninth-scale approximation coef-

ficients for the same traces as in (a) are shown. Significant variation between transmitters is seen. (c) The

ninth-scale wavelet coefficients for nine separate samples taken with the same transmitter are shown. Notable

variation is seen, though there is less shifting along the index than in (a). (d) The ninth-scale approximation

coefficients for the same traces as in (c) are shown. Little variation is seen with one exception. (e) The ninth-scale

wavelet coefficients for a single sample translated in time is shown. A total of 19 curves are shown, corresponding

to pre-MODWT time-translation shifts of -9, -8, ..., 8, and 9. Variation in magnitude is seen, though equiva-

lent features appear at the similar indices. (f) The ninth-scale approximation coefficients for the same traces as

described in (e) are shown. Little variation is seen with time translation.
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filters.

The two multi-scale DWTs are known as trees, hence the name “Dual Tree” Complex

Wavelet Transform [73]. This requires two distinct two-channel filter banks [73]. The wavelet

and scaling functions of one tree must be the Hilbert transforms of the wavelet and scaling

functions from the other tree [73]. These are known as Hilbert pairs, and they have the

property that each frequency component in one can be generated by performing a quarter-

shift on the frequency component of the other [69]. For example, Eq. 3.4 shows that cosine

and sine functions form a Hilbert pair [69].

cos
(
nω − π

2

)
= sin (nω) (3.4)

Additionally, the filters within a tree must obey the perfect reconstruction (PR) condition,

whose sufficient conditions are shown in Eq. 3.5 and Eq. 3.6 [74].

L̃
(
eiω
)
L
(
eiω
)

+ H̃
(
eiω
)
H
(
eiω
)

= 2e−iKω (3.5)

L̃
(
eiω
)
L
(
ei(ω+π)

)
+ H̃

(
eiω
)
H
(
ei(ω+π)

)
= 0 (3.6)

Here, H and L correspond to the high- and low-pass filters, respectively [74]. High-

and low-pass filters correspond to the wavelet and scaling functions, respectively. Therefore,

filters cannot be arbitrarily chosen [73].

The final output of the DTCWT is complex [73]. This results by combining the wavelet

coefficients from each tree, where one tree provide the real components and the other tree

provides the imaginary components of the final output [74, 73].

Unlike with the other methods, the OFDM packets were not thresholded prior to per-

forming the DTCWT. However, the signal being transformed must still be real-valued [75].

As such, the absolute value of the entire OFDM packet of 10,000 is taken; like the MODWT,

the DTCWT does not require lengths of 2N. This vector of length 10,000 is then shifted in
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time in the same manner as described in Section 3.2.2. These modified traces are then used

to produce equivalent data subsets as described in Section 3.2.2.

The DTCWT was implemented using the dualtree command in MATLAB. This specif-

ically corresponds to the Kingsburgy Q-Shift 1-Dimensional Dual-Tree Complex Wavelet

Transform [75]. This name comes from the use of the orthogonal Q-shift Hilbert wavelet in

use; this filter is of length 10 and satisfies the required Hilbert transform condition [75].

As implemented for this thesis, the dualtree command returns three objects. The first

is a list of the final-level approximation coefficients, which are ignored. The other two are

cells of size 13x1. These correspond to the 13-level transform. (213 = 8192 is the largest

power of 2 which remains less than 10,000, or the length of the input signal.) The first of

these cells contains the wavelet coefficients at each level. These values are complex, with

the real and imaginary components coming from the different trees [75]. The second cell

contains the approximation coefficients at each level. These are real-valued. Sample plots

for the DTCWT are shown in Fig. 3.4.

After transforming each signal, the seventh level was chosen to produce the MSNs’ inputs.

For the MSNs, the absolute value of the first 32 wavelet coefficients and the unmodified values

of the 11th to 42nd approximation coefficients were concatenated. These indices were chosen

for their consistency within transmitter classes and with shifting, but relatively large variance

between transmitter classes. This can be seen in Fig. 3.4. For comparison, equivalent plots

for the second scale are shown in Fig. 3.5. Similar results are noted for both scales.

For the CMSN data, the absolute value of the first 64 wavelet coefficients were placed

side-by-side with the unmodified 11th to 74th approximation coefficients, producing a real-

valued 2x64 neural network input.

3.3 Multi-Stage Training Applied to Time-Shifted RF Data

Two network architectures were used when investigating the effectiveness of the different

data preparation methods. The first is a traditional MSN, similar in size to that used in [35,
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Figure 3.4: Data utilizing the DTCWT are shown. (a), (c), and (e) show the absolute value of the seventh-

scale wavelet coefficients for the DTCWT for different groups of data. (b), (d), and (f) show the seventh-scale

approximation coefficients for the DTCWT of different groups of data. (a) and (b) use the same group of data.

Here, one OFDM packet from each of twelve transmitter classes is used to perform the DTCWT, and the results

are shown. Significant variation by class is seen at low indices. (c) and (d) use 10 samples from the same

transmitter class. Little variation between trials is seen at low indices. (e) and (f) use 19 examples versions

of the same OFDM packet. Prior to the DTCWT, this packet is shifted 18 times, and one unshifted sample is

maintained. This results in one sample shifted -9, -8, ..., 8, and 9 times. Significant invariance to these shifts is

noted.
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Figure 3.5: Data utilizing the DTCWT are shown. (a), (c), and (e) show the absolute value of the second-

scale wavelet coefficients for the DTCWT for different groups of data. (b), (d), and (f) show the second-scale

approximation coefficients for the DTCWT of different groups of data. (a) and (b) use the same group of data.

Here, one OFDM packet from each of twelve transmitter classes is used to perform the DTCWT, and the results

are shown. Significant variation by class is seen at low indices. (c) and (d) use 10 samples from the same

transmitter class. Little variation between trials is seen at low indices. (e) and (f) use 19 examples versions

of the same OFDM packet. Prior to the DTCWT, this packet is shifted 18 times, and one unshifted sample is

maintained. This results in one sample shifted -9, -8, ..., 8, and 9 times. Significant invariance to these shifts is

noted.
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63]. This architecture was used on each of the datasets. The second network architecture

was a CMSN. Calculations were performed on the time-domain data to both serve as a

baseline when evaluating the effectiveness of the data preparation methods and to compare

the effectiveness of the CMSN versus MSN with minimal data preparation.

3.3.1 MSN Structure

Each MSN used had identical architectures. The second and third stages of this MSN

structure follow the description from Section 1.4, though the first stage was performed in a

new way. The network contained three stages in total.

The first stage consisted of 60 FCNs, five per class. Initially, many nodes in this stage

would learn to output 0.0833 (1/12, the number of classes) regardless of network input.

Most likely, this indicates that the corresponding local minimum in the loss function was

easy to find. This hindered network performance. To solve this problem, each node was

permitted two outputs. These would target [1,0] or [0,1] if the target was the desired class

or some other, respectively. In other words, network targets of 1 were replaced by [1,0], and

network targets of 0 were replaced by [0,1]. Each node had two hidden layers, each with

15 neurons. The output size required an two output neurons. Also, the output neurons

were followed by the cross-entropy loss function. MATLAB built-in functions do not permit

jacobian training with the cross-entropy loss function, as the assumption made in Eq. 1.40 is

not valid in that case. As such, these nodes were trained with the scaled conjugate gradient

training algorithm. Each FCN was trained with 100 iterations, though training was stopped

prematurely if loss decreased below 0.0001.

FCN outputs in the first stage always add to 1 due to the use of the softmax function on

the network outputs. As such, keeping both outputs for any sample is redundant – one value

can always be calculated exactly from the other. Thus, the first output at each stage was

taken, and the second output discarded. This yields one output per FCN. These outputs

were concatenated for a stage output of size 60.

The second stage consisted of 48 MLPs, four per class. The output stage consisted of 36
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MLPs, three per class. Every MLP in the MSN contained two hidden layers, each with 15

neurons. Each hidden layer used the hyperbolic tangent transfer function.

The Levenberg-Marquardt training algorithm was used to train the second and third

stages. MLPs in the second stage were trained for 150 iterations. MLPs in the third stage

were trained for 200 iterations. Training was prematurely stopped if the sum-square error

decreased below 0.00001, and 0.000001 for MLPs in the second and third stages, respectively.

For final classification, the outputs from final-stage nodes corresponding to the same class

were averaged. This yields one output per class. The output closest to 1 is chosen as the

‘winner,’ and the corresponding transmitter is chosen as the output class.

When training the MSNs, 90% of the total dataset was used for training and 10% for

validation.

3.3.2 CMSN Structure

Each CMSN calculation in this chapter was performed with one of two CMSN architectures,

a larger and smaller network. Each consisted of four stages, one with CNN nodes and three

with MST nodes.

The first stage contained CNN nodes. The input to each is 2×64. In an attempt to

analyze the first dimension thoroughly, it is padded on each side. This brings the total size

to 4×64. This then passes through three convolutional layers, each followed by a ReLU

activation.

The first convolutional layer consists of three filters, each of size 2×16×1. This yields

an output of size 3×49×3. The next layer consists of six filters, each of size 2×16×3. This

yields an output of size 2×34×6. The final convolutional layer consists of twelve filters, each

of size 2×16×6. This yields an output of size 1×19×12.

The final convolutional layer is followed by the fully-connected output layer. This has

12 neurons, one for each of 12 transmitter classes. This layer utilizes the softmax activation

function.
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The first convolutional layer contains 3×2×16×1 = 96 weights. The second contains

6×2×16×3 = 576 weights. The third contains 12×2×16×6 = 2304 weights. Finally, the

fully-connected output layer contains (1×19×12)×12 = 2736 weights. Each filter and each

fully-connected neuron has one bias, adding 33 parameters total. Thus, each node has 5745

parameters, making these small enough to be easily trained via second-order methods.

Each of the twelve transmitter classes is assigned a unique integer identifier between 1

and 12. During training, the target for class n ∈ {1, ..., 12} is a vector containing a 1 in the

nth position and 0’s elsewhere. The Levenberg-Marquardt training algorithm was initially

chosen for this stage. This was perfomed identically as described in Section 1.3.4, except

the updates were performed based on whether the cross-entropy loss decreased. This loss

function helps emphasizes error in the position whose output should be 1. This helps ensure

that a local minimum with an informationless, uniform output equal to 0.0833 (1/12) is

not approached, which frequently occurred when using mean-square error. However, testing

revealed that training the CNN frontend with stochastic gradient descent and the cross-

entropy loss function yielded better results, so this was used instead.

The smaller network utilized 5 nodes in the first stage, while the larger network utilized

10 nodes in the first stage.

Each of the remaining stages consisted of MLPs. The smaller network architecture uti-

lized 24 MLPs in each of these stages. This corresponds to 24 / 12 = 2 MLPs targeting

each individual class at each stage. The larger network architecture utilized 48, 36, and 24

MLPs in the second, third, and fourth stage, respectively. This corresponds to 4, 3, and

2 MLPs per class per stage. For both network architectures and in each MLP stage, each

MLP contained two hidden layers, each with 15 neurons. Training was performed with the

Levenberg-Marquardt algorithm and mean-square loss function.

Following the final stage, the output for each MLP targeting the same class was averaged.

This yields one network output for each class, 12 in total. The class whose output value is

closest to 1 is chosen as the ‘winner,’ and the corresponding transmitter is decided to have

produced the signal inputted to the network.
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When training the CMSN, 10% of the total dataset was used to train the networks, and

90% was used for validation.

3.4 Results

The time-domain, DWT, MODWT, and DTCWT data preparation methods were all used

to train MSNs of identical architecture. Increasing the amount of time-shifted data in the

training set improved the validation accuracy outcome in every case. The DTCWT perfomed

better than all other methods under most conditions. However, the MODWT performed

best under the hardest condition – training with no shifting and validating with maximum

shifting. The MODWT outperformed the DWT and time-domain data preparation methods

more moderately under most conditions. The DWT outperformed the time-domain data

modestly under most conditions. Under easier conditions – training with maximum shifting

– classification accuracy was high for all data preparation methods and validation sets,

though the DTCWT performed the best with 100% accuracy. Detailed results are shown in

Tables 3.1, 3.2, 3.3, and 3.4.

The method generally yielding highest accuracy for time-shifted datasets was the DTCWT.

As such, this method was chosen to train the CMSN as a comparison to the time-domain

data. On time-domain data, the CMSN yielded better results than the MSN for time-shifted

data. However, it underperformed compared to the MSN on unshifted data. When using

the DTCWT data, the same trend is seen when comparing MSN to CMSN. These results

are shown in Table 3.5.

3.5 Conclusion

The results in Tables 3.1, 3.2, 3.3, and 3.4 show that the DWT, MODWT, and DTCWT

improve the MSN’s robustness to time-shifting of OFDM packets during classification tasks.

These results are confirmed when comparing Time-Domain 1 and DTCWT columns in Ta-

ble 3.5, which correspond to identical networks and training schemes aside from the inputted

75



Train

0 1 3 5 7 9

0 99.33(0) 99.37(6) 99.8325(0) 99.5(2) 99.46(6) 99.8(2)

1 81(2) 99.33(0) 99.7487(0) 99.5(1) 99.5(1) 99.7(1)

V
al
id
a
ti
on

S
et

3 56.5(1) 72(2) 99.665(0) 99.52(2) 99.35(8) 99.7(2)

5 45.5(7) 56(3) 85(1) 99.40(5) 99.36(9) 99.6(2)

7 39(1) 47(3) 71.8(7) 91.290(8) 99.17(6) 99.6(2)

9 35(2) 41(2) 61(9) 79.1(9) 89.37(2) 99.4(2)

Table 3.1: The results when using time-domain data with the MSN are shown. Two trials were performed for

each value. The mean value is shown. The corresponding standard deviation is shown in parentheses, where the

standard deviation’s first significant figure appears in the last digit of the listed mean value. Different entries

within a column correspond to using the same (trained) MSN to classify data in different validation subsets. The

numbers at the top of a column and left of a row indicate which training and validation subset were used for the

calculation, respectively. Section 3.2.2 discusses what is contained in each subset.

Train

0 1 3 5 7 9

0 99.33(0) 99.7(1) 99.7(1) 99.5(3) 99.8325(0) 99.539(6)

1 86(2) 99.58(4) 99.83(8) 99.6(3) 99.8046(0) 99.6650(0)

V
al
id
at
io
n
S
et

3 67(2) 82(1) 99.719(9) 99.5(2) 99.78(6) 99.69(2)

5 57(3) 70(1) 89.7(3) 99.5(2) 99.78(7) 99.65(3)

7 50(3) 62(2) 79.54(9) 93.2(2) 99.63(6) 99.60(2)

9 45(3) 56(2) 72.0(4) 85.5(8) 94.3(2) 99.4799(0)

Table 3.2: The results when using DWT data with the MSN are shown. Two trials were performed for each

value. The mean value is shown. The corresponding standard deviation is shown in parentheses, where the

standard deviation’s first significant figure appears in the last digit of the listed mean value. Different entries

within a column correspond to using the same (trained) MSN to classify data in different validation subsets. The

numbers at the top of a column and left of a row indicate which training and validation subset were used for the

calculation, respectively. Section 3.2.3 discusses what is contained in each subset.
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Train

0 1 3 5 7 9

0 99.3(3) 99.7(1) 99.4(3) 99.46(6) 99.3(3) 99.29(6)

1 98.8(2) 99.7(1) 99.3(2) 99.4137(0) 99.4(2) 99.30(8)

V
al
id
at
io
n
S
et

3 94.9(8) 97.3(7) 99.2(1) 99.41(2) 99.3(2) 99.27(7)

5 88.5(1) 90.3(9) 94.9(7) 99.26(1) 99.3(2) 99.26(5)

7 80.564(8) 82(1) 85(2) 93.7(3) 99.3(2) 99.23(6)

9 73.2(3) 75(2) 76(4) 85.87(7) 96.6(4) 99.19(5)

Table 3.3: The results when using MODWT data with the MSN are shown. Two trials were performed for

each value. The mean value is shown. The corresponding standard deviation is shown in parentheses, where the

standard deviation’s first significant figure appears in the last digit of the listed mean value. Different entries

within a column correspond to using the same (trained) MSN to classify data in different validation subsets. The

numbers at the top of a column and left of a row indicate which training and validation subset were used for the

calculation, respectively. Section 3.2.4 discusses what is contained in each subset.

Train

0 1 3 5 7 9

0 99.9162 99.9581 100 100 100 100

1 99.9372 99.9581 100 100 100 100

V
a
li
d
at
io
n
S
et

3 99.2462 99.9581 100 100 100 100

5 91.6667 99.7069 100 100 100 100

7 79.7948 95.8333 99.0787 100 100 100

9 65.9966 77.3869 99.33 99.9868 100 100

Table 3.4: The results when using DTCWT data with the MSN are shown. One trial was performed for each

value. Different entries within a column correspond to using the same (trained) MSN to classify data in different

validation subsets. The numbers at the top of a column and left of a row indicate which training and validation

subset were used for the calculation, respectively. Section 3.2.5 discusses what is contained in each subset.
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Trial

Time-Domain 1 Time-Domain 2 Time-Domain 3 Time-Domain 4 DTCWT

0 91.26 93.58 96.35 95.18 98.68

1 83.26 89.00 91.32 89.94 98.80

V
al
id
a
ti
on

S
et

3 67.19 74.35 75.06 74.40 98.56

5 57.21 63.53 64.04 63.58 97.97

7 50.83 56.25 56.91 56.32 96.64

9 46.85 50.91 51.69 51.48 94.38

Table 3.5: Validation accuracies for three cases using the CMSN are shown. Each column corresponds to a

single CMSN trained under different conditions. In each case, 10% of data was used to train the network, and

no time-shifted data was included in the training set. Rows correspond to validation accuracies for the different

validation subsets, described in Section 3.2.2 and 3.2.5. For columns Time-Domain 1, Time-Domain 3, and

DTCWT, nodes were trained for 10, 15, 20, and 25 iterations each for the first, second, third, and fourth network

stages, respectively. For Time-Domain 2, nodes were trained for 15, 100, 150, and 200 iterations each for the

first, second, third, and fourth network stages, respectively. For Time-Domain 4, nodes were trained for 10, 50,

100, and 150 iterations each for the first, second, third, and fourth network stages, respectively. The CMSNs

used in columns Time-Domain 1, Time-Domain 2, and DTCWT included 5, 24, 24, and 24 nodes for the first,

second, third, and fourth nodes, respectively. The CMSNs used in columns Time-Domain 3 and Time-Domain

4 had 10, 48, 36, and 24 nodes in the first, second, third, and fourth stages, respectively. Each Time-Domain

column represented networks trained with Time-Domain data prepared via Method II from Section 3.2.2. The

DTCWT column corresponds to a network trained with the DTCWT data described in Section 3.2.5.
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data. These improvements are minor with the DWT, moderate with the MODWT, and sig-

nificant with the DTCWT. This order most likely stems from the near shift-invariance of the

MODWT and DTCWT combined with the decreased redundancy of the DTCWT compared

to the MODWT. However, it is unclear whether the additional benefit of DTCWT relative

to the DWT, MODWT, and time-domain data is entirely a result of the DTCWT itself; not

thresholding the data may be a significant factor. Therefore, future work should include

performing the DTCWT calculations on data prepared with thresholding and shifting in an

identical manner as the other methods.

The results also indicate that the CMSN provides an inherent improvement in robust-

ness to time-shifting of the OFDM packets in classification tasks. This seems clear when

comparing the classification results of the MSN architecture – the previous-best method on

standard time-domain data – to the CMSN architecture. The CMSN yields noticeably better

results on the shifted data despite significantly fewer training iterations and significantly less

training data. This is clear when comparing the Time-Domain 1 and DTCWT columns in

Table 3.5 to the 0 column in Tables 3.1 and 3.4, respectively. In the most difficult task for

each of these – validation on a dataset including shifts up to magnitude 9 – the MSN yielded

35 and 66% validation accuracies for the time-domain and DTCWT data, while the CMSN

yielded 46.85 and 94.38%.

However, the CMSN underperforms on unshifted data when compared to the MSN. The

results in the Time-Domain 2 column of Table 3.5 reveal that simply increasing training

iterations does not improve the unshifted results significantly. However, increasing CMSN

size improved the unshifted results, as indicated in the Time-Domain 3 column of Table 3.5.

Increasing training iterations did not improve results with the larger network, as indicated

by comparing the Time-Domain 3 to the Time-Domain 4 columns in Table 3.5. The un-

derperformance of CMSN in unshifted data can thus be attributed to one of three causes:

1) Limits the CMSN architecture, 2) poorly chosen CMSN hyperparameters, or 3) the use

of a smaller amount of training data. Thus, to better understand how to improve CMSN

results for effective RF identification, a CMSN should be trained with 90% training data
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for a better comparison to the training method of the MSN, and more CMSN architectures

should be tested.

80



CHAPTER 4

Selected Code

The preparation of this thesis required much coding. The most significant development, a

generalized classification CMSN and MSN scheme, was programmed in Python using Py-

Torch. Several supporting functions were required for this, and they were included in the

MSN class.

The generalized MSN class was developed to produce classification-oriented MSNs and

convolutional CMSNs in PyTorch. This development is important, as these networks were

previously tedious to implement, often requiring custom code when altering network archi-

tectures, training functions, etc. Furthermore, MSN and CMSN had not previously been

implemented in PyTorch.

One of the supporting functions is the PyTorch implementation of the Levenberg-Marquardt

training algorithm. Importantly, the implementation of Levenberg-Marquardt in PyTorch

can be applied to CNNs. This is important, as MATLAB and PyTorch do not have this

functionality built in.

Another key benefit to producing the general CMSN structure in PyTorch is that the

code is written with a CUDA implementation selectable by the user. This allows the network

to propagate and train on CUDA-enabled GPUs, significantly improving training times.

However, due to pending publications, this code is not included in the thesis. Rather,

code for a generalized MSN scheme is shown written in MATLAB.
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4.1 Code Description and Code

The following MSN code may be used to easily implement standard MST. Here, “standard”

means that the description from Section 1.4 is followed.

The code in Section 4.1.1 has multiple restrictions. For example, the code only per-

mits MLPs as nodes. Additionally, each MLP must have two hidden layers. The train

function is MATLAB is used to train each node of the network. This limits the number

of training functions available, though Levenberg-Marquardt may be used. The benefits of

Levenberg-Marquardt discussed in Section 1.3.4 motivate the use of the train function over

the alternative trainNetwork function. A list of valid training algorithms can be found

at [76].

Despite these limitations, there are a number of generalized MSN characteristics for

MSNs produced via the code in Section 4.1.1. Each generalized component is described in

the comments of Listing 4.8 and the functions it calls.

Additional benefits in this code are the use of a GPU for training MLPs, when available.

This can be seen in Listing 4.5. Additionally, multiple nodes within each stage are trained in

parallel, further enhancing MSN training times. This can be seen in Listing 4.4, where the

parfor-loop trains each node targeting an individual class in parallel. Finally, during forward

computation of the MSN, nodes within a stage operate in parallel. In addition to this, each

node performs its computation on a GPU, when available. These improvements enhance the

rate at which the network operates, and the corresponding code is shown in Listing 4.2.

4.1.1 Code

First, the functions that perform forward computation of the MSN are shown. These func-

tions are nested, with Lising 4.1 calling Listing 4.2

1 function [X] = MSN forward(X,MSN)

2 % MSN FORWARD This function operates an MSN in the forward direction.
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3 % X represents input data, and it should be inserted to this function with

4 % proper dimensions for the MSN frontend

5 % MSN Is a 1xN cell, where N is equal to the number of stages in the

6 % MSN. Each element of the cell is another cell of size 1xM i, ...

where M is

7 % the number of nodes in the iˆth stage

8

9 for k = 1:length(MSN)

10 X = MSN stage forward(X,MSN{1,k});

11 end

12

13 end

Listing 4.1: The MSN forward function operates in a simple manner. An MSN is defined as a cell in MATLAB.

This cell’s length is equal to the number of stages. Each stage must be performed sequentially, and the output of

one stage is the input to the following stage. As such, each stage is operated in the forward direction sequentially.

This is generalized for number of stages.

1 function [out] = MSN stage forward(X,stage)

2 %MSN STAGE FORWARD This function performs the forward computation of an

3 %individual stage of an MSN, concatenating the output properly

4 % X is the input data to the network. It should already have proper

5 % dimensions when inserted to this function

6 % stage is a 1xM cell, where M is the number of nodes in the stage. Each

7 % element of stage is an individual MLP.

8

9 % Preallocate the output matrix.

10 out = zeros(length(stage),size(X,2));

11

12 try

13 gpuArray(1) % Does not work if no GPU is available; sends to catch

14 parfor k = 1:length(stage)

15 out(k,:) = stage{1,k}(X,'useGPU','yes');

16 end
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17 catch

18 parfor k = 1:length(stage)

19 out(k,:) = stage{1,k}(X);

20 end

21 end

22

23 end

Listing 4.2: This code performs forward computation of a single stage of MSN. The output is concatenated to

be directly prepared for insertion to the following MSN stage. The forward computation of a stage is parallelized,

and computations are performed ona GPU, when available.

Next, code to initialize and train an MSN is shown. Again, these functions are nested,

as Listing 4.3 calls Listing 4.4, and Listing 4.4 calls Listing 4.5.

1 function [MSN] = train MSN(data,targets,MSN Details)

2 %TRAIN MSN This takes training data, training targets (as a vector of class

3 %labels as integers from 1:nClasses), and a cell containing the training

4 %data for stages/nodes

5 % The final output is an MSN, encoded as a 1xN cell, with N the number of

6 % network stages

7

8 % MSN Details cell holds multiple components to train each stage

9 % MSN Details{1,i} corresponds to the iˆth stage of the network

10 % MSN Details{1,i}{1,1}: nNodes % int, for the iˆth stage

11 % MSN Details{1,i}{1,2}: train frac % double, for iˆth stage

12 % MSN Details{1,i}{1,3}: train fcn % str, for each node at stage i

13 % MSN Details{1,i}{1,4}: loss fcn % str, for each node at stage i

14 % MSN Details{1,i}{1,5}: nNeurons % int, for each node at stage i

15 % MSN Details{1,i}{1,6}: nIt % int, for each node at stage i

16 % MSN Details{1,i}{1,7}: loss goal % double, for each node at ...

stage i

17

18 % Initialize the MSN object
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19 % length(MSN Details) corresponds to the number of stages

20 MSN = cell(1,length(MSN Details));

21

22 % Train the network/fill in all nodes, etc.

23 for k = 1:length(MSN)

24 MSN{1,k} = train stage(data,targets,MSN Details{1,k}{1,1},...

25 MSN Details{1,k}{1,2},{MSN Details{1,k}{1,3},...

26 MSN Details{1,k}{1,4},MSN Details{1,k}{1,5},...

27 MSN Details{1,k}{1,6},MSN Details{1,k}{1,7}});

28 data = MSN stage forward(data,MSN{1,k});

29 end

30

31 end

Listing 4.3: This function can be directly called by a user to initialize and train an MSN, given the proper inputs.

Descriptions for each input object are shown as comments at the top of the function. The function operates by

training each stage sequentially via the train stage function. The input data is then updated by performing a

forward computation of the newly-trained stage. This iterates until the entire MSN is trained

1 function [stage] = train stage(data,target,nNodes,train frac,stageData)

2 %TRAIN STAGE This function is used to train one stage of an MSN via MST

3 % data is the stage's input data

4 % train frac is the fraction of training data that should be used to train

5 % each node

6 % nNodes is a positive integer representing the number of nodes used in

7 % this stage. Each node is assumed to be an MLP with two hidden layers,

8 % and each hidden layer has nNeurons neurons per hidden layer. The

9 % output layer should have one output

10 % target is a vector of target classes. Each class should be an integer

11 % from 1 to nClasses, with every integer in between populated

12 % stageData is a cell with multiple components, corresponding to the

13 % train node function:

14 % stageData{1,1} = train fcn % str

15 % stageData{1,2} = loss fcn % str
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16 % stageData{1,3} = nNeurons % int

17 % stageData{1,4} = nIt % int

18 % stageData{1,5} = loss goal % double

19

20 % Calculate the number of classes that should be targeted

21 nClasses = length(unique(target));

22

23 % Check that a valid number of nodes were selected for this stage

24 if mod(nNodes,nClasses) 6=0

25 error(strcat('Improper number of nodes used in one or more stages.',...

26 '\nnNodes should be an integer multiple of nClasses'));

27 end

28

29 % Calculate the number of nodes targeting each class

30 nodes per target = nNodes / nClasses;

31

32 % Calculate the number of data samples which should be used for each node

33 % Default to train frac of 1 if invalid value used

34 if train frac ≤ 0 | | train frac > 1

35 nSamples = size(data,2);

36 else

37 nSamples = floor(size(data,2) * train frac);

38 end

39

40 % Initialize the stage cell which will hold all nodes

41 stage = cell(1,nNodes);

42

43 %%%%%%%%%%%%%%%%%%%%%%%%%

44 % Train each of the nodes

45

46 for k = 1:nClasses

47 % Create/update the tar object, which is a vector of 0's and 1's that

48 % serve as a target for an individual node attempting to target an

49 % individual class
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50 clear tar

51 % Place 1's at target class, 0's elsewhere

52 tar = double(target == k);

53

54 n = (k-1)*nodes per target; % necessary to use parfor loop with the

55 % indexing of the cell

56 % Train all of the MLPs targeting this one class

57 parfor i = 1:nodes per target

58 % Shuffle the data by using an index

59 idx = 1:size(data,2);

60 idx = idx(randperm(length(idx)));

61 node = ...

train node(data(:,idx(1:nSamples)),tar(:,idx(1:nSamples)),...

62 stageData{1,1},stageData{1,2},stageData{1,3},stageData{1,4},...

63 stageData{1,5});

64 stage{1,n + i} = node;

65 end

66 end

67

68 %{

69 % m is a counter that will switch which class is targeted when appropriate

70 m = nodes per target;

71 target class = 0;

72 for k = 1:nNodes

73 % Create/update the tar object, which is a vector of 0's and 1's that

74 % serve as a target for an individual node attempting to target an

75 % individual class

76 if m == nodes per target

77 clear tar

78 m = 0;

79 target class = target class + 1;

80 tar = double(target == target class);

81 end

82
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83 % Shuffle the data by using an index

84 idx = 1:size(data,2);

85 idx = idx(randperm(length(idx)));

86

87 % Initialize/Train the node and place in stage cell

88 stage{1,k} = train node();

89

90 % Update m

91 m = m + 1;

92 end

93 %}

94 end

Listing 4.4: The train stage function is shown. This function takes training data and targets for a given stage,

as well as several stage architecture and training parameter commands. It returns a fully-trained stage. Note that

this function shuffles data before training each node, and it allows subsets of the shuffled training data to be used

at each node. Each node targeting the same class is trained in parallel. This can be easily modified to train nodes

targeting any class in parallel. If, however, the copying of data to multiple workers is too memory-intensive, a

sequential version of the code is placed as a comment at the bottom of the function. This may replace the prior

for-loop.

1 function [MLP] = train node(data,target,train fcn,...

2 loss fcn,nNeurons,nIt,loss goal)

3 %TRAIN NODE This function initializes and trains an MLP. It takes:

4 %training data; the targets for that training data; a training function

5 %declaration; a loss function declaration; a loss threshold to end training

6 %early; a maximum number of iterations to perform; a declaration of number

7 %of neurons per hidden layer.

8

9 %{

10 Assumptions:

11 Transfer function in hidden layers: tanh (implemented as tansig... default)

12 Transfer function in output layer: linear

13 Number hidden layers: 2
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14 Number neurons output layer: 1

15

16 The first dimension of data should be the length of the input vectors

17 %}

18

19 % Prepare the MLP

20 MLP = feedforwardnet([nNeurons,nNeurons],train fcn);

21 MLP.performFcn = loss fcn;

22 MLP.trainParam.epochs = nIt;

23 MLP.trainParam.goal = loss goal;

24 MLP.trainParam.showWindow = false;

25

26

27 % Initialize/Train the network

28 % Use GPU if possible

29 try

30 gpuArray(1); % Does not work if no GPU; sends to catch

31 MLP = train(MLP,data,target,'useGPU','yes');

32 catch

33 MLP = train(MLP,data,target);

34 end

35 end

Listing 4.5: The train node function is shown here. This function takes training data and targets for an individual

node and returns a trained MLP. Each MLP trained with this function has two hidden layers, each with a hyperbolic

tangent transfer function. These are the default values for a feedforward network in MATLAB. An output layer

with one neuron and a linear transfer function is also mandatory. Modifying this function can be done easily,

however, if different MLP characteristics are desired.

Finally, a function used to find the single-value output of an MSN is shown. This is then

used to produce a function which takes just data, a pre-trained MSN, and the number of

classes to output a vector of identified classes.

1 function [votes] = vote(X,nClasses)
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2 % VOTE This function takes data X (which should be the output of an MSN)

3 % and the number of classes nClasses. It uses this information to vote ...

on a

4 % winning class (final network output).

5 % This function assumes that networks are trained so that outputs of the

6 % first (number of nodes in the final layer) / (nClasses) = N nodes target

7 % the first class, then nodes (N+1):2N target the second class, ...

8

9 % Preallocate a matrix to hold the AVERAGE outputs for each class for each

10 % data sample

11

12 avgs = zeros(nClasses,size(X,2));

13

14 % Find all the proper average values

15 nodes per class = size(X,1) / nClasses;

16 for k = 1:nClasses

17 avgs(k,:) = mean(X(((k-1)*nodes per class+1):k*nodes per class,:),1);

18 end

19

20 % X is no longer needed. Delete to free RAM

21 clear X

22

23 % Preallocate the votes matrix

24 votes = zeros(1,size(avgs,2));

25

26 % Vote on the proper answers

27 % The value closest to 1 corresponds to the identified class in each case

28 % If two classes tie, the smaller class number is taken rather than

29 % outputting two values

30 for k = 1:size(avgs,2)

31 temp = abs(avgs(:,k)-1);

32 votes(k) = find(min(temp) == temp,1);

33 end

34
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35 end

Listing 4.6: Here, the vote function is shown. This takes the output of an MSN and determines which class was

identified by the network. It operates by calculate the average output at nodes targeting the same class. The

average value closest to 1 is then selected as the identified class.

1 function [X] = MSN operation(X,MSN,nClasses)

2 %MSN OPERATION This function performs the forward compuation of the ...

MSN. it

3 %then takes the output and uses the vote function to provide the identified

4 %classes. A row vector containing all identified classes is returned

5

6 X = MSN forward(X,MSN);

7 X = vote(X,nClasses);

8

9 end

Listing 4.7: Here, the MSN operation function is shown. This function uses an MSN, a data matrix, and an

integer identifying the number of classes. It returns a row vector containing the class outputs for each data

sample.

4.2 Using the Code

In this section, a toy problem is shown. This serves as an example so that the reader will

understand how to call the train MSN function to create an MSN with desired training

parameters and MSN hyperparameters.

In this toy problem, 10 classes are produced, each representing the output values of 10

common functions over the domain [0,π). Noise of up to magnitude 0.2 is randomly added

to each point within each sample.

An MSN is then trained to identify a function based on the output. 10 nodes are used in

each stage, with one node targeting each class. Each MLP contains five neurons in each of
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two hidden layers. Each node may be trained for up to five epochs, though training is halted

prematurely if mean-square error drops below 0.01, 0.001, or 0.0001 for the first, second,

and third stage, respectively. The Levenberg-Marquardt training algorithm is used for each

node within the network.

Nodes are trained with randomly-generated subsets of the training set. These subsets

are 40%, 60%, and 80% of the total size of the training set for the first, second, and third

stages, respectively.

Each criterion is inputted to the MSN Details cell, which is then inserted to the train MSN

function. The MSN Details cell has dimensions 1×N, where N is the number of stages de-

sired in the network. The number of stages does not need to be specified anywhere else.

Each element of the MSN Details cell is another cell, this time of dimension 1×7. Each

element of this cell is described as a comment in Listing 4.8.

The data object placed into the train MSN function must be of dimension L×M. Here,

L is the length of each data sample, and M is the number of data samples. Each column

in this matrix is an independent data sample; data must be vectorized prior to being used

in the train MSN function. The targets object must be a 1×M vector of integers. Here,

M is the same as before. Each element of the targets vector provides the class label of the

corresponding column vector in the data matrix, e.g. data(:,k) has identity targets(k).

In the following example, 100% accuracy on both training and validation sets is common.

When calculating these accuracies, an example for using a pre-trained MSN is shown. For any

data sample, the output of the MSN is an integer value associated with the class identified.

1 % Create 10 example classes; place in the data object

2

3 data = zeros(20,10000);

4 targets = zeros(1,10000);

5 % Sine

6 data(:,1:1000) = repmat(sin(0:.05*pi:pi*.99)',1,1000);

7 target(1:1000) = 1;
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8 % Cosine

9 data(:,1001:2000) = repmat(cos(0:.05*pi:pi*.99)',1,1000);

10 target(1001:2000) = 2;

11 % Hyperbolic Tangent

12 data(:,2001:3000) = repmat(tanh(0:.05*pi:pi*.99)',1,1000);

13 target(2001:3000) = 3;

14 % Linear

15 data(:,3001:4000) = repmat((0:.05*pi:pi*.99)',1,1000);

16 target(3001:4000) = 4;

17 % -Linear

18 data(:,4001:5000) = repmat(-1*(0:.05*pi:pi*.99)',1,1000);

19 target(4001:5000) = 5;

20 % -Sine

21 data(:,5001:6000) = repmat(-sin(0:.05*pi:pi*.99)',1,1000);

22 target(5001:6000) = 6;

23 % -Cosine

24 data(:,6001:7000) = repmat(-cos(0:.05*pi:pi*.99)',1,1000);

25 target(6001:7000) = 7;

26 % -Hyperbolic Tangent

27 data(:,7001:8000) = repmat(-tanh(0:.05*pi:pi*.99)',1,1000);

28 target(7001:8000) = 8;

29 % ¬inverse

30 data(:,8001:9000) = repmat((1./(1 + (0:.05*pi:pi*.99)))',1,1000);

31 target(8001:9000) = 9;

32 % - ¬inverse

33 data(:,9001:10000) = repmat(-(1./(1+(0:.05*pi:pi*.99)))',1,1000);

34 target(9001:10000) = 10;

35

36 % Add noise to the data

37 data = data + rand(20,10000)*.4 - repmat(.2,20,10000);

38

39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40 % Split into train/val sets (50/50) randomly

41 idx = 1:10000;
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42 idx = idx(randperm(length(idx)));

43 trainData = data(:,idx(1:5000));

44 valData = data(:,idx(5001:end));

45 trainLabel = target(idx(1:5000));

46 valLabel = target(idx(5001:end));

47 clear data target

48

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

50 % Design the MSN

51

52 % Use 3 stages

53 MSN Details = cell(1,3);

54

55 % MSN Details cell holds multiple components to train each stage

56 % MSN Details{1,i} corresponds to the iˆth stage of the network

57 % MSN Details{1,i}{1,1}: nNodes % int, for the iˆth stage

58 % MSN Details{1,i}{1,2}: train frac % double, for iˆth stage

59 % MSN Details{1,i}{1,3}: train fcn % str, for each node at stage i

60 % MSN Details{1,i}{1,4}: loss fcn % str, for each node at stage i

61 % MSN Details{1,i}{1,5}: nNeurons % int, for each node at stage i

62 % MSN Details{1,i}{1,6}: nIt % int, for each node at stage i

63 % MSN Details{1,i}{1,7}: loss goal % double, for each node at ...

stage i

64

65 % Stage 1 Details

66 MSN Details{1,1}{1,1} = 10; % 3 Nodes per class -- 30 Nodes for Stage

67 MSN Details{1,1}{1,2} = 0.4; % Use 40% of training data to train each node

68 MSN Details{1,1}{1,3} = 'trainlm'; % Use Levenberg-Marquardt

69 MSN Details{1,1}{1,4} = 'mse'; % Use mean-square error

70 MSN Details{1,1}{1,5} = 5; % 5 neurons/hidden layer at each node

71 MSN Details{1,1}{1,6} = 5; % up to 5 iterations at each node

72 MSN Details{1,1}{1,7} = .01; % Halt training if loss ≤ .01

73

74 % Stage 2 Details
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75 MSN Details{1,2}{1,1} = 10; % 3 Nodes per class -- 30 Nodes for Stage

76 MSN Details{1,2}{1,2} = 0.6; % Use 60% of training data to train each node

77 MSN Details{1,2}{1,3} = 'trainlm'; % Use Levenberg-Marquardt

78 MSN Details{1,2}{1,4} = 'mse'; % Use mean-square error

79 MSN Details{1,2}{1,5} = 5; % 5 neurons/hidden layer at each node

80 MSN Details{1,2}{1,6} = 5; % up to 5 iterations at each node

81 MSN Details{1,2}{1,7} = .001; % Halt training if loss ≤ .001

82

83 % Stage 3 Details

84 MSN Details{1,3}{1,1} = 10; % 3 Nodes per class -- 30 Nodes for Stage

85 MSN Details{1,3}{1,2} = .8; % Use 80% of training data to train each node

86 MSN Details{1,3}{1,3} = 'trainlm'; % Use Levenberg-Marquardt

87 MSN Details{1,3}{1,4} = 'mse'; % Use mean-square error

88 MSN Details{1,3}{1,5} = 5; % 5 neurons/hidden layer at each node

89 MSN Details{1,3}{1,6} = 5; % up to 5 iterations at each node

90 MSN Details{1,3}{1,7} = .0001; % Halt training if loss ≤ .0001

91

92 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

93 % Train the MSN

94 MSN = train MSN(trainData,trainLabel,MSN Details);

95

96 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

97 % Test the training and validation accuracies of the MSN

98

99 A = MSN operation(trainData,MSN,length(unique(trainLabel)));

100 trainAccuracy = 100 * sum(A == trainLabel,'all') / length(trainLabel);

101 disp(strcat('Training Accuracy: ',string(trainAccuracy),'%'));

102

103 A = MSN operation(valData,MSN,length(unique(trainLabel)));

104 valAccuracy = 100 * sum(A == valLabel,'all') / length(valLabel);

105 disp(strcat('Validation Accuracy: ',string(valAccuracy),'%'));

Listing 4.8: A script which solves the described toy probems is shown. Comments while building the MSN Details

cell describe what each element represents.
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4.3 Future Work

The code in Section 4.1.1 is helpful for training standard MSNs in MATLAB. However, there

are multiple functionalities not included that should be added.

It is currently easy to modify the architecture of MLPs by simply modifying the code in

Listing 4.5. However, more freedom should be included so that MLP architecure – number

of hidden layers, number of outputs per MLP, etc. – can be easily modified stage-by-stage.

Additionally, the CMSN is not supported. This important development should be included

to allow the benefits of a CNN stage to be realized in a user-friendly manner.
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