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A B S T R A C T   

The Kling-Gupta efficiency, hereafter referred to as KG efficiency rather than its common abbreviation KGE, 
proposed by Gupta et al. (2009) has become a widely used metric for evaluating the goodness-of-fit of n-vectors 
of observations, ỹ = [ ỹ1 ỹ2 … ỹn ]

⊤, and corresponding model simulations, y(θ) =
[
y1(θ) y2(θ) … yn(θ)

]⊤. This 
metric rectifies some of the shortcomings of the coefficient of determination, R2, also known to hydrologists as 
the efficiency of Nash and Sutcliffe (1970), by using a Euclidean-distance based weighting of the correlation, bias 
and temporal variability of the observed, ̃y, and simulated, y(θ), data. But as the KG efficiency is not borne out of 
assumptions with respect to the statistical distribution of the residuals, e(θ) = ỹ − y(θ), we cannot formally 
characterize its uncertainty. The NS efficiency suffers a similar problem, yet, statistical theory postulates that its 
confidence intervals should follow a beta distribution in certain special cases. Without a formal description of the 
confidence intervals of the KG efficiency, we cannot (amongst others) quantify parameter uncertainty, compute 
confidence and prediction limits on simulated model responses, inform decision makers about critical modeling 
uncertainties, evaluate model adequacy and assess the information content of calibration data. More funda-
mentally, without confidence intervals we cannot establish whether the KG efficiency is a consistent, efficient 
and unbiased estimator. In this paper we present an empirical description of the confidence intervals of the KG 
efficiency. We relate the unknown probability distribution of the KG efficiency to the measurement errors of the 
training data record, ỹ, and use the bootstrap method to carry out statistical inference. We illustrate our method 
by application to a simple linear regression function for which the least squares parameter confidence regions are 
exactly known and two hydrologic models of contrasting complexity. The empirical parameter confidence re-
gions and/or intervals of the KG efficiency are compared to those derived from generalized least squares, 
objective function contouring and Bayesian analysis using Markov chain Monte Carlo simulation. The marginal 
parameter distributions of the KG efficiency are generally well described by a normal distribution. Results further 
confirm that the distribution of the KG efficiency is a complex function of data length and the magnitude, dis-
tribution and structure of the measurement errors. This prohibits an analytic description of the empirical con-
fidence regions and/or intervals of the KG efficiency and reiterates the need for the bootstrap method.   

1. Introduction and scope 

Consider a dynamic system model, M (θ,X) : ℝd→ℝn, which simu-
lates a n-record, y = [y1 y2 … yn ]

⊤, of a single output variable for a d- 
vector of parameter values, θ = [θ1 θ2 … θd ]

⊤, with θ ∈ ℝp, and array, 
X, of constants and input variables required under the supposition or 
hypothesis that they govern, by causality using physical laws of nature 
(e.g. mathematical function(s)), the simulated output. The array, X, may 
characterize the system’s initial state and/or invariant (distributed) 
properties and document the evolution of its spatiotemporal control 
inputs (forcing/explanatory variables), but is of no particular interest 

here. Therefore, we suppress use of this symbol and write instead, y =

M (θ), for the vector-valued form of the model with respect to θ. 
A key task is now to determine suitable values of the parameters, θ, 

so that the model output, y, approximates as closely and consistently as 
possible the observed system behavior, ̃y = [ ỹ1 ỹ2 … ỹn ]

⊤. We may now 
write, ỹ = M (θ)+ ε, where ε = [ε1 ε2 … εn ]

⊤ signifies a n × 1 vector of 
measurement errors. The common paradigm in the statistical literature 
is to hypothesize a measurement error distribution, Pn(ε), of the data, ̃y, 
and exploit this assumption in the construction of an objective function, 
F(θ). For example, if the measurement errors satisfy the so-called 
Gauss–Markov assumptions and (i) have a zero mean, E(εi) = 0, (ii) 
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constant variance, Var(εi) = σ2
ε , for all i ∈ N+, and (iii) are uncorrelated, 

Cov(εi,εj) = 0, for all i ∕= j, then minimization of the well-known sum of 
squared residuals 

FSSR(θ) =
∑n

i=1
(̃yi − yt(θ) )2

, (1)  

will lead to minimum variance estimates of the parameters, θ. The SSR is 
strictly positive, meaning that FSSR(θ) > 0 for θ ∈ ℝp, possibly with 
exception of one or more points at which FSSR(θ) = 0. As complex sys-
tems do not admit a perfect characterization, the residuals between 
model and data, ei(θ) = ỹi − yi(θ) for all i = (1,2,…,n), will, on average, 
be substantially larger than the data measurement errors, εi (Gupta 
et al., 1998; Beven and Binley, 1992; Beven, 2006; Kavetski et al., 2006; 
Vrugt and Beven, 2018). Nonetheless, the residuals are expected to 
absorb the consequences of model misspecification, an inadequate 
characterization of the system properties and errors in the forcing/ 
explanatory variables and initial states and behave statistically in a 
similar way as the measurement errors. 

In this paper we distinguish between formal and informal measures 
of the goodness-of-fit. To clarify this terminology, formal measures of 
the goodness-of-fit such as the FSSR(θ) are the result of the rigorous 
application of statistical theory and demand explicit (and testable!) as-
sumptions about the probabilistic properties of the residuals. These 
hypotheses can be verified aposteriori using regression diagnostics. This 
involves the use of statistical tests for (i) variance homogeneity (Gold-
feld and Quandt, 1965; Breusch and Pagan, 1979; White, 1980), (ii) 
serial correlation (Durbin and Watson, 1950; Durbin and Watson, 1951; 
Breusch, 1978) and (iii) normality (Anderson and Darling, 1952; Sha-
piro and Wilk, 1965) of the residuals. These diagnostic checks provide 
guidance on further stages of model development, hence, constitute an 
important advantage of the use of formal goodness-of-fit measures. 
Informal measures of the goodness-of-fit on the contrary do not make 
assumptions about the expected structure and/or distribution of the 
residuals. Examples include the coefficient of determination, R2, better 
known to hydrologists as the Nash–Sutcliffe (NS) efficiency (Nash and 
Sutcliffe, 1970) and the Kling-Gupta (KG) efficiency (Gupta et al., 2009). 
The use of these metrics has profound consequences, the most important 
of which for this paper is that the lack of clarity in the assumptions about 
the expected distribution of the residuals prohibits an objective char-
acterization of the confidence and prediction intervals of the parameters 
and simulated output. 

In the past decades, a large number of goodness-of-fit measures have 
been used to fit hydrologic models to data. This includes the use of (a) 
formal objective and/or likelihood functions that result from the 
application of first principles with respect to the statistical properties of 
the residuals such as the SSR in Eq. (1) and weighted formulations 
thereof with/without treatment of serial correlation and/or hetero-
scedasticity within the context of weighted and/or generalized least 
squares (Tasker, 1980; Stedinger and Tasker, 1985; Kavetski et al., 2006; 
Kavetski et al., 2006), (b) equivalent likelihood functions (Sorooshian 
and Dracup, 1980; Kuczera, 1983; Bates and Campbell, 2001), possibly 
augmented with skew and/or kurtosis (Schoups and Vrugt, 2010; 
Scharnagl et al., 2015; Ammann et al., 2019) within the context of 
maximum likelihood estimation and Bayesian inference, (c) informal 
metrics of fit such as the NS (Nash and Sutcliffe, 1970), KG (Gupta et al., 
2009; Knoben et al., 2019) and diagnostic (Schwemmle et al., 2021) 
efficiencies and possible nonparametric variants (Pool et al., 2018) and 
other improvements (Lamontagne et al., 2020) within the context of 
model calibration and/or evaluation, (d) pseudo-likelihood functions 
within the context of the GLUE methodology (Beven and Binley, 1992; 
Freer et al., 1996; Beven and Freer, 2001), (e) informal statistical 
measures of the quality-of-fit such as the coefficient of determination 
and percentage bias within the context of multiple criteria methods 
(Gupta et al., 1998; Boyle et al., 2000), (f) hydrologic signatures within 
the context of model diagnostics (Gupta et al., 2008; Yilmaz et al., 2008; 

Westerberg et al., 2011), (g) summary metrics within the context of 
approximate Bayesian computation (Vrugt and Sadegh, 2013; Sadegh 
and Vrugt, 2013) and (h) tolerable ranges within the context of limits of 
acceptability (Beven, 2006; Vrugt and Beven, 2018), regional sensitivity 
analysis (Spear and Hornberger, 1980; Spear et al., 2020) and the 
parameter identification method based on the localization of informa-
tion (Vrugt et al., 2002). This arrangement in groups should not imply 
that certain goodness-of-fit metrics are only used within a particular 
context. For example, the KG efficiency is not only used as objective 
function for model calibration but also serves its purpose in model di-
agnostics (e.g. see Rakovec et al. (2019)). 

Since the publication by Gupta et al. (2009), the Kling-Gupta (KG) 
efficiency has become a widely used metric for evaluating the goodness- 
of-fit of n-vectors of model simulations, y(θ) =

[
y1(θ) y2(θ) … yn(θ)

]⊤, 
and corresponding observations, ̃y = [ ỹ1 ỹ2 … ỹn ]

⊤. This metric rectifies 
some of the shortcomings of the popular Nash–Sutcliffe (NS) efficiency 
by using a different, Euclidean-distance based, weighting of the corre-
lation, bias and temporal variability of the observed and simulated data. 
But this adjustment to the weights of the hydrograph descriptors does 
not solve the fundamental problem of how to characterize the confi-
dence and prediction limits of the KG efficiency. We face a similar 
problem with the NS efficiency, yet, for certain special cases we can 
construct its confidence intervals using the beta distribution (Draper and 
Smith, 1998) albeit this is rarely done in the literature. Without a 
description of the confidence intervals of the KG efficiency, we cannot 
(amongst others) quantify parameter uncertainty, derive confidence and 
prediction limits on simulated model responses, assess regional re-
lationships between model parameters and catchment characteristics 
(Kuczera and Parent, 1998), inform decision makers about critical 
modeling uncertainties, evaluate model adequacy and assess the infor-
mation content of calibration data (Vrugt et al., 2006). More funda-
mentally, without confidence intervals we cannot establish whether the 
KG efficiency is a consistent, efficient and unbiased estimator. 

This paper is concerned with the empirical1 description of the con-
fidence intervals of the KG efficiency. As this estimator lacks a funda-
mental basis in statistical regression theory, we relate the (distribution 
of the) KG efficiency to the measurement errors of the training data 
record, ỹ, and resort to the bootstrap method of Efron (1979) to char-
acterize its confidence and prediction intervals. Section 2 presents a 
small sample correction in the decomposition of the NS efficiency of 
Gupta et al. (2009) as prerequisite to the exact definition of the KG ef-
ficiency. This is followed by Section 3 which describes our methodology 
for estimating the uncertainty of the KG efficiency. We frame our 
methodology within the context of generalized least squares and alter-
nate between theory and examples involving simple linear regression 
and nonlinear regression of the rainfall-discharge transformation. We 
compare the confidence limits of the KG efficiency against those derived 
from least squares estimation. Finally, Section 4 concludes our paper 
with a summary of the main findings. 

2. The mean squared residual 

In this section we briefly review the origins of the KG efficiency 
which has led to its current use. To this end, we first present the now 
widely known decomposition of the widely used mean squared residual 
but with proper treatment of the population and sample variances of the 
measured, ỹ, and simulated, y(θ), data. 

1 We use the wording empirical confidence intervals to emphasize the heuristic 
nature of the confidence intervals of informal goodness-of-fit metrics such as 
the KG efficiency 
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2.1. Decomposition 

The SSR is intimately related to the mean squared residual2 or MSR 

FMSR(θ) =
1
n

∑n

i=1
(ỹi − yi(θ) )2

, (2)  

which, as its name suggests, is the average squared difference between 
the measured and simulated values and, thus, a multiple of 1/n of the 
SSR. Note that the MSR has units equal to the squared dimension of the 
measurements used. The MSR, in turn, may be normalized by the vari-
ance of the training data, σ2

ỹ
, to yield the well-known coefficient of 

determination, R2 ∈ ( − ∞,1], as follows 

R2 = 1 −

∑n

i=1
(̃yi − yi(θ) )2

∑n

i=1

(
ỹi − mỹ

)2
= 1 −

nMSR
nσ2

ỹ

= 1 −
MSR

σ2
ỹ

, (3)  

where mỹ signifies the mean of the observed data 

mỹ =
1
n
∑n

i=1
ỹi, (4)  

and s2
ỹ 

is an estimate of the unknown population variance, σ2
ỹ 

s2
ỹ
=

1
n − 1

∑n

i=1

(
ỹi − mỹ

)2
. (5)  

As a reminder, it is common practice to use the Greek letters, μ and σ2, 
for the theoretical (or population) mean and variance and to use lower 
case letters, m and s2, for their sample estimates derived from the data 
(e.g. see Lamontagne et al. (2020)). This difference in notation is 
important and consequential for small sample sizes. 

For the sample variance, s2
ỹ
, to be an unbiased estimator of the true 

(population) variance, σ2
ỹ
, of the n-record of measured data, ỹ, we must 

divide by n − 1 rather than n in the denominator of Eq. (5). This is also 
known as Bessel’s correction and a consequence of the use of the sample 
mean, mỹ, rather than the (unknown) population mean, μỹ. According to 

Eq. (5), the sum term, 
∑n

i=1(ỹi − mỹ)
2, must equal (n − 1)s2

ỹ
, hence, the 

coefficient of determination in Eq. (3) may be written as 

R2 = 1 −
nMSR

(n − 1)s2
ỹ

, (6)  

The R2 measures the proportion of the variance of the measured data 
that is explained by the model, M (θ). As the denominator of Eq. (3) does 
not depend on the model output, y, the parameters, θ, that maximize the 
coefficient of determination, R2, will minimize the SSR. Nonetheless, the 
R2 is classified as an informal metric of quality-of-fit as its definition 
does not follow from assumptions regarding the nature of the residuals, 
or more precisely, the measurement errors. The R2 is also known as the 
Nash–Sutcliffe efficiency among hydrologists and used widely as mea-
sure of model performance of watershed models. 

Gupta et al. (2009) has shown that we can decompose the MSR into 
three different terms 

MSR = 2σyσỹ(1 − r)+
(
σỹ − σy

)2
+
(
mỹ − my

)2
, (7)  

where r ∈ [ − 1, 1] measures the strength of linear association between 
the measured and simulated data 

r =
Cỹy
̅̅̅̅
s2

ỹ

√ ̅̅̅̅
s2

y

√ =

1
n− 1

∑n

i=1

(
ỹi − mỹ

)(
yi − my

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n− 1

∑n

i=1

(
ỹi − mỹ

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n− 1

∑n

i=1

(
yi − my

)2
√ , (8)  

which is also known as Pearson’s sample correlation coefficient. 

2.2. Small sample correction of the NS efficiency 

Eq. (7) will return biased values of the MSR if users insert sample 
variances, s2

ỹ 
and s2

y , of the measured and simulated data, respectively 

(Lamontagne et al., 2020). We consider this commonplace situation in 
Appendix A and should use instead the following expression 

MSR =

(
2n − 2

n

)

sỹsy(1 − r)+
(

n − 1
n

)
(
sỹ − sy

)2
+
(
mỹ − my

)2
. (9)  

The two formulations, Eqs. (7) and (9), are almost similar except for the 
use of the sample standard deviations, sỹ and sy, of the measured and 
simulated data and the multiplicative constants, (2n − 2)/n and 
(n − 1)/n, in front of the first and second term, respectively. These two 
multipliers are the result of Bessel’s correction and yield unbiased esti-
mates of the MSR for small n, say, n < 20. The two multiplicative con-
stants approach unity for large n, and, thus, can be removed without 
harm for multi-year records of daily discharge measured at the catch-
ment outlet. 

We can now combine Eqs. (3) and (9) to yield the following 
expression for the R2 and, thus, NSE (see Appendix B) 

R2 = 2
(

sy

sỹ

)

rỹy −

(
sy

sỹ

)2

−
( n

n − 1

)(mỹ − my

sỹ

)2

= NSE = 2αr − α2 − cβ2
n.

(10)  

A similar decomposition of the NSE into three components of correla-
tion, conditional/unconditional bias and/or relative variability was 
presented by Murphy (1988) and Gupta et al. (2009) but assume 
knowledge of the (unknown) population means and variances of the 
measured and simulated data, ỹ and y(θ), respectively. As a result, our 
decomposition in Eq. (10) adds a unitless multiplier, c = n/(n − 1), to the 
third term of Eq. (4) of Gupta et al. (2009). The dimensionless scalars, 
α > 0 and βn ∈ R, measure the relative variability in the simulated and 
observed values and the normalized bias, respectively 

α =
sy

sỹ
and βn =

mỹ − my

sỹ
, (11)  

and r ∈ [ − 1,1] is the well-known sample correlation coefficient of 
Pearson in Eq. (8). If, instead, we work with the statistical definition, δ 
(-), of bias 

δ =
m ỹ − my

mỹ
(12)  

then we yield the sample equivalent of the theoretical definition of the 
efficiency, E, of Lamontagne et al. (2020) as follows 

R2 = 2αr − α2 − cC− 2
ỹ

δ2 = NSE (13)  

where Cỹ = sỹ/mỹ is the well known coefficient of variation of the 
measured data and, again, c = n/(n − 1), is a testament to Bessel’s 
correction. The use of the standardized bias in Eq. (13) simplifies 

2 The definition mean squared error (MSE) is widespread in the literature, but 
inconsistent when its computation involves unobservable errors. The word 
error implies a difference between an observed value and its true value. As our 
measurements of system behavior are imperfect, the residuals, e(θ) = ỹ − y(θ), 
are estimates of the errors under the assumed model, y = M (θ). Hence, we 
should use the word residual instead. 
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comparison across models and/or watersheds (Lamontagne et al., 2020). 

2.3. The Kling-Gupta efficiency 

Drawing inspiration from the decomposition of the NSE, Gupta et al. 
(2009) proposed a new criterion, the so-called Kling-Gupta (KG) effi-
ciency, to read 

KG = 1 − ED, (14)  

where ED equals the Euclidean distance of (α, β, r) to the so-called ideal 
point, (1,1,1), and is computed using 

ED =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(α − 1)2
+ (β − 1)2

+ (r − 1)2
√

, (15)  

where β = my/mỹ is a unitless measure of the bias (β ∈ R). Like the R2, 
and, thus NSE, the KG efficiency can take on values between minus in-
finity and one, where unity implies a perfect fit to the measured data. 
Gupta et al. (2009) has demonstrated the advantages of the KG effi-
ciency over the widely used NSE. This has stimulated widespread use of 
the KG efficiency in hydrology for evaluating the goodness-of-fit be-
tween model simulations, y, and corresponding observations, ỹ. One 
potential concern with the application of the KG efficiency is that the 
three components, α, β and r, of Eq. (15) are ratios of product moments 
that are known to exhibit enormous bias for skewed data such as daily 
streamflow records (Lamontagne et al., 2020; Vogel and Fennessey, 
1993; Barber et al., 2019). This problem persists even for long stream-
flow time series and should be avoided. Lamontagne et al. (2020) pre-
sents improved estimators of the NSE and KG efficiency in controlled 
Monte Carlo experiments. 

This paper is not concerned with a formal mathematical analysis of 
the empirical sampling properties of the KG efficiency as in Lamontagne 
et al. (2020) but rather focuses attention on the confidence intervals of 
this estimator. As the KG efficiency is an informal measure of the 
goodness-of-fit, its optimal parameter estimates, θ*, that maximize Eq. 
(14) do not enjoy a formal description of their confidence intervals. This 
impairs our ability to quantify model parameter and predictive uncer-
tainty of the KG efficiency. In fact, most hydrologic signatures that are 
used in watershed model diagnostics suffer a similar limitation. 
Certainly, we would favor a statistical description of the empirical dis-
tribution of the KG efficiency. A quantitative description of the empirical 
confidence intervals of the KG efficiency serves many practical tasks and 
purposes of which uncertainty quantification of model parameter and 
simulated output is most important from the perspective of this paper. 
More fundamentally, this knowledge of the confidence intervals of the 
KG efficiency is a necessary requirement for a formal analysis of the 
asymptotic behavior, consistency, efficiency and unbiasedness of this 
estimator. 

3. Empirical description of uncertainty of the Kling-Gupta 
efficiency 

We present our empirical description of the uncertainty of the KG 
efficiency. We frame our methodology within the context of generalized 
least squares and alternate between theory and ensuing case studies 
using parameter estimation problems in linear and nonlinear regression. 
This order of presentation helps to convey our arguments and method-
ology and should help readers understand how current developments 
relate to statistical regression theory. Certainly, we should not ignore 
and/or forget about least squares methods in our efforts to push forward 
the envelope in hydrologic model calibration and evaluation. 

3.1. Linear regression 

3.1.1. Theory 
To clarify our approach, we write the measurements of the training 

record as follows 

ỹ = y + ε, (16)  

where y = [y1 … yn ]
⊤ is the “true” response of the data generating sys-

tem, S. We would want our simulated output to mimic as closely and 
consistently as possible this unobserved, measurement error-free, 
response. To help uncover and replicate the unobserved true response, 
y, we must make some assumptions about the nature and distribution of 
the measurement errors, ε. When the εi’s in Eq. (16) are expected to have 
a zero-mean with constant variance, σ2

ε , then the MSR will provide a 
meaningful assessment of model performance. This constancy assump-
tion, however, does not do justice to variables such as river discharge 
whose measurement errors increase with the measured flow level, ỹ, 

and, thus, εi∼
D

N (0, σ2
εi
) ∀i ∈ (1, …, n), where the symbol, ∼D , means 

distributed according to. 
The magnitude and structure of the measurement errors of the 

training data, ỹ, will exert control on the quality of the parameter esti-
mates, hence, this information should be incorporated in the MSR esti-
mator for a meaningful comparison of the measured and modeled 
system response. This extension of the MSR to correlated and/or het-
eroscedastic measurement errors is also known as generalized least 
squares and was first described by Aitken (1936). He showed that if the 
measurement errors, ε = [ε1 ε2 … εn ]

⊤, have (i) a zero mean, E(εi) = 0 ∀

i = (1,2,…, n) and (ii) covariance matrix, Cov(ε) = E(ε⊤ε) = Σε, then 
minimization of the generalized least squares (GLS) objective function 

FGLS(θ) = e(θ)⊤Σ− 1
ε e(θ), (17)  

produces unbiased and minimum variance estimates of the parameters, 
θ. The symbol ⊤ denotes matrix transpose and turns the n × 1 residual 
vector, e(θ), into a row vector so as to have matching inner dimensions 
in Eq. (17). The diagonal entries of the n × n measurement error 
covariance matrix, Σε, specify the variances of the measurement errors 
of the ̃yi’s, while the off-diagonal entries list the pairwise covariances of 
εi and εj for all i, j ∈ (1,2,…, n) and i ∕= j. To better understand the inner 
workings of the vector-matrix–vector product of Eq. (17) we define the 

n × n weight matrix, W, to be the square root of Σ− 1
ε , so that W = Σ− 1

2
ε , 

and, thus, W⊤W = Σ− 1
ε . Then, Eq. (17) can be written as a vector inner 

product, FGLS(θ) = ε(θ)⊤ε(θ), of the homogenized and/or decorrelated 
residuals, ε(θ) = We(θ). The entries of the n × 1 vector ε(θ) are also 
referred to as partial residuals or innovations. 

When the measurement errors are known to be uncorrelated, the off- 
diagonal entries of Σε and, thus, W, are zero and Eq. (17) specializes to a 
weighted sum of squared residuals (WSSR) objective function 

FWSSR(θ) =
∑n

i=1

(ỹi − yi(θ) )2

σ2
εi

=
∑n

i=1
w2

i ei(θ)2 =
∑n

i=1
εi(θ)2, (18)  

where the weights, wi = 1/σεi ∀i ∈ (1,…,n), on the main diagonal of W 
are equal to the reciprocal of the measurement error standard deviations 
and ε(θ) = [ε1(θ) ε2(θ) … εn(θ) ]⊤ is the n × 1 vector of homogenized 
(partial) residuals. In the case of homoscedastic errors, the weights, wi, 
are all equal, hence, we can write, Σε = σ2

ε In, where In is the identity 
matrix of size n and the WSSR reduces to a multiple of 1/σ2

ε of the SSR. 
The use of the n × n covariance matrix of the measurement errors, Σε, 

places the GLS and, thus, WSSR, objective functions on a firm statistical 
footing. Suppose that we would like to fit the linear regression function, 
ỹ = Dθ+ ε, with n × p design matrix, D, and p × 1 parameter vector, θ =
[

θ1 θ2 … θp
]⊤, to the n entries, ̃y1, ỹ2,…, ỹn, of the training data record, 

ỹ, with n × n measurement error covariance matrix, Σε. The GLS 
parameter values, ̂θ, can be obtained by setting the derivative of Eq. (17) 
with respect to θ to zero to yield 
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θ̂ =

⎡

⎢
⎢
⎣

θ̂1
θ̂2
⋮
θ̂p

⎤

⎥
⎥
⎦ =

(
D⊤Σ− 1

ε D
)− 1D⊤Σ− 1

ε ỹ. (19)  

where C(θ̂) =
(
D⊤Σ− 1

ε D
)− 1 equals the p × p variance–covariance matrix 

of the GLS parameters. This positive-definite matrix p × p matrix defines 
an elliptical distribution, a generalization of the multivariate normal 
distribution, with density function 

p(θ) = kψ
(
(θ̂ − θ)⊤C(θ̂)− 1

(θ̂ − θ)
)

(20)  

where k is a normalization constant and the scalar function, ψ(x), 
returns the unnormalized density at x. The 100γ% confidence region of 
the GLS parameter values, is now made up all parameter vectors, θ ∈ ℝp, 
that lie inside the space delineated by 

(θ̂ − θ)⊤C(θ̂)− 1
(θ̂ − θ) ⩽ f

(
pγ , p, n − p

)
, (21)  

at the critical value, pγ = γ. The above inequality describes an ellipse for 
p = 2, an ellipsoid in three dimensions and a hyperboloid in p-dimen-
sional Cartesian parameter space, Rp, although other shapes can occur. 
The principal axes (volume, shape) and orientation (direction, angle) of 
the confidence region of the hyperboloid are determined by the inverse 
parameter covariance matrix, also referred to as Fisher information 
matrix, I (θ), after Sir Ronald Aylmer Fisher (1890–1962). The larger 
the values of I (θ) = D⊤Σ− 1

ε D, the stronger the curvature of FGLS(θ), and 
the smaller the uncertainty of the parameters (and, thus, volume of the 
confidence region). 

To link our assumptions about the probabilistic properties of the 
measurement errors, ε, to the GLS parameters, θ̂, we write the n × n 
covariance matrix of the measurement errors, Σε = σ2

ε V, and, thus, 

ε ∼
D

N n
(
0, σ2

ε V
)
. In the case of homoscedastic and uncorrelated mea-

surement errors, V = In, otherwise, the nonsingular n × n matrix V may 
have unequal diagonal elements (heteroscedasticity) and/or off- 
diagonal entries that are non-zero. The p × p parameter covariance 
matrix, C(θ), can now be written as follows 

C(θ) = s2
ε
(
D⊤V− 1D

)− 1
, (22)  

with corresponding geometric description of the 100γ% confidence re-
gion 

(θ̂ − θ)⊤D⊤V− 1D(θ̂ − θ)
s2

ε
⩽ f
(
pγ , p, n − p

)
, (23)  

where s2
ε is the sample variance of the weighted (homogenized and/or 

decorrelated) residuals 

s2
ε =

e(θ̂)⊤V− 1e(θ̂)
n − p

. (24)  

According to the definition of the chi-square distribution, the sum of 
squares of the weighted residuals in the numerator of Eq. (24) will 
follow a multiple, σ2

ε , of the χ2-distribution with n − p degrees of 

freedom. This implies that s2
ε ∼

D σ2
ε χ2

n− p/(n − p), with loss of one degree of 
freedom for each parameter of the regression function. Analogously, the 
sum of squares of p weighted parameter deviations from the center, θ̂, of 
the ellipsoidal region defined in the numerator of Eq. (23) will follow a 
multiple, σ2

ε , of the chi-square distribution with p degrees of freedom, 

thus, (θ̂ − θ)⊤D⊤V− 1D(θ̂ − θ) ∼D σ2
ε χ2

p . If we put everything together, we 
yield 

(25)  

The ratio of two chi-squared variates, u1 and u2, with ν1 and ν2 degrees 
of freedom 

X =
u1/ν1

u2/ν2
, (26)  

produces a variate, X, which follows a F -distribution, F (ν1, ν2) with ν1 
and ν2 degrees of freedom. Thus, the joint 100γ% confidence region of 
the GLS parameters, θ̂, now satisfies 

(θ̂ − θ)⊤D⊤V− 1D(θ̂ − θ) ⩽ ps2
εF− 1

F

(
pγ ∣p, n − p

)
, (27)  

where F− 1
F (pγ ∣p, ν) signifies the inverse of the Fisher-Snedecor cumula-

tive distribution function (cdf) with p and ν = n − p degrees of freedom at 
the critical value, pγ = γ. The inverse cdf is also called the quantile or 
percent-point function and returns the value, x, of random variable, X, at 
which P(X⩽x) = pγ. In other words, the inverse cdf, F− 1

X (pγ ∣⋅), of some 
univariate distribution, X (⋅), returns the unique real number, x, so that 
FX (x∣⋅) = pγ. For long training data records, ỹ, the distribution of the 
sample variance of the weighted residuals in the denominator of Eq. (25) 
reduces to σ2

ε and the 100γ% confidence region becomes 

(θ̂ − θ)⊤D⊤V− 1D(θ̂ − θ) ⩽ ps2
εF− 1

χ2

(
pγ ∣p

)
. (28)  

Multivariate confidence regions are difficult to visualize, and, thus, 
pseudo-univariate intervals may be determined instead from the diag-
onal entries of the p × p parameter covariance matrix, C(θ̂), as follows 

θγ = θ̂ ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Diag(C(θ̂) )
√

F− 1
T

(
1
2
(1 − γ)∣n − p

)

, (29)  

where F− 1
T (pγ ∣ν) is the inverse of the Student’s t-cumulative distribution 

function at cumulative probability (percentile), pγ = 1
2 (1 ± γ), and de-

grees of freedom, ν = n − p. These confidence intervals are projections of 
the confidence region on individual parameter axes. For γ = 0.95 we 
yield a 95% parameter confidence interval and the critical t-value, 
F− 1

T (pγ ∣ν), equals 12.71,2.57 and 1.96 for n = 1, n = 5 and n→∞, 
respectively. 

Confidence limits of the least squares simulated output, ŷ = Dθ̂ =
[
ŷ1 ŷ2 … ŷn

]⊤, of the linear regression function, ỹ = Dθ+ ε, can be 
computed as follows 

ŷi,γ = ŷi ± F− 1
T

(
pγ ∣ν

)
sε

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

d⊤
i

(
D⊤V− 1D

)− 1di

√

, (30)  

where d⊤
i signifies the ith row of the design matrix and i = (1,2,…,n). 

The confidence intervals follow a normal distribution with mean equal 
to the least squares output, ŷi = di θ̂, and variance determined by di and 

parameter covariance matrix, C(θ̂) = s2
ε
(
D⊤V− 1D

)− 1. 

3.1.2. Application: linear function 
To illustrate the application of Eqs. (27) and (29), please consider 

Fig. 1a which presents a contour plot of the GLS objective function for a 
simple regression function, yi = f(a, b, ti) = ati + b, using synthetic 
training data, ̃y = y+ ε, created using a = 1, b = 2, t = (1, 2,…,50) and 

measurement errors, ε ∼
D

N n(0,Σε), drawn at random from a n-variate 
normal distribution with zero mean and n × n covariance matrix, Σε =

σ2
ε V, where σ2

ε = 1
2 and V = In. In vector form, the regression function 

reads, yi = d(̃ti )θ, where d(̃ti ) = [ t̃i 1 ] signifies the ith row of the n × p 
design matrix, D, and θ = [a b ]⊤. The colored ellipses portray the 100γ% 
confidence regions of a (slope) and b (intercept) using γ = 0.50 (light 
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gray), γ = 0.90 (light-medium gray), γ = 0.95 (medium gray) and γ =

0.99 (dark gray). The dotted blue lines portray separately the 2.5% and 
97.5% percentiles that make up the 95% confidence intervals of the 
regression model parameters, a and b, derived from Eq. (29). The red 
plus characterizes the GLS solution of a and b. 

The 100γ% confidence region of the slope and intercept, a and b, 
equals a thin ellipse that centers on the least squares solution (red cross). 
The length and direction of the two principal axes of the ellipse are given 
by the eigenvalues and eigenvectors, respectively, of the parameter 
covariance matrix, C(θ). As a result, the 99% confidence region of the 
two parameters, a and b, is simply a multiple of their 95% region. The 
ellipses enclose values of the slope and intercept, (a, b), which the 
training data, ỹ, suggests are statistically acceptable at a given confi-
dence level, γ. The univariate 95% confidence intervals of the slope and 
intercept (blue dotted lines) underestimate their bivariate counterparts, 
nevertheless, provide a reasonable description of the individual 
parameter ranges. One should be careful, however, in interpreting these 
intervals for a and b as a joint confidence region. Indeed, points in the 
bottom-left or upper-right corners of the rectangular region delineated 
by the univariate 95% intervals may seem reasonable for (a,b), yet, the 
joint 95% confidence region of the two parameters as characterized 
exactly by the ellipse in medium gray, demonstrates that points in the 
white region are inadequate. In other words, the hypercube defined by 
expression (29) can be very different from the proper joint confidence 
region of the parameters. This discrepancy between univariate and 
multivariate confidence intervals is well known in the statistical litera-
ture (Draper and Guttman, 1995), and researchers usually present uni-
variate confidence intervals only. In the general case with p > 3 
parameters the differences between the marginal and joint confidence 
regions are typically larger and more difficult to visualize. Therefore, 
most researchers resort to univariate confidence intervals only. Note 
that one can change the projection of the confidence regions on the 
parameter axes and/or adapt the rectangular block to have an equal size 
(volume) as the ellipsoidal region (Draper and Guttman, 1995). For 

example, Press et al. (1992) suggests replacing F− 1
T

(
1
2 (1 − γ)∣n − p

)

in 

Eq. (29) with F− 1
χ2

(
pγ ∣p

)
. This may result in a better agreement of the 

confidence interval block and its ellipsoidal counterpart(s), yet, for 
reasons demonstrated herein, this univariate description of parameter 
uncertainty cannot replace the joint confidence region. 

Certainly, the mathematical description of the confidence region in 
Eq. (27), is only exact for regression functions with valid basis functions. 
Then, the n × p design matrix, D, is fixed and the principal axes of the 
ellipse described by D⊤V− 1D are independent of θ ∈ ℝp. For all other 

functions, the sensitivity (design) matrix will depend on the parameter 
values and the confidence region expressed in Eq. (27) is at best only an 
approximation of the true multivariate parameter uncertainty. This is no 
grounds for panic, but simply a reason to change the approach to how we 
construct the confidence regions. Fortunately, the GLS objective func-
tion is rooted in statistical theory, and, therefore, we can choose among 
several different methods to describe exactly the multivariate parameter 
uncertainty. This includes (among others) (i) contouring of the GLS 
objective function, (ii) Monte Carlo simulation and (iii) the bootstrap 
method. These three methods are fundamentally different, but share in 
common an exhaustive description of the GLS cost function in the 
neighborhood of θ̂. As the first of these two methods demand use of 
formal goodness-of-fit measures and/or likelihood functions which 
originate from residual assumptions (see Appendix C), in their current 
form they are not capable of characterizing parameter uncertainty 
associated with the application of informal quality of fit metrics such as 
the KG efficiency. Hence, we focus our attention on the bootstrap 
method as this approach best suits our application as will be demon-
strated next. 

Fig. 1b illustrates the results of the bootstrap method of Efron (1979) 
by application to the regression function, yi = f(a,b, ti) = ati + b, used 
herein. The scatter plot visualizes (â, b̂) data pairs derived from the 
repeated application of Eq. (19) to N = 10, 000 different realizations, 
ỹr = ỹ+ ε, of the training data record, ỹ, drawn at random from the n- 
variate normal distribution with mean, ỹ, and covariance matrix, Σε =

s2
ε V, and, thus, ̃yr ∼

D
N n(ỹ,s2

ε V). This is equivalent to our formulation of 

the training data in Eq. (16) with measurement errors, ε ∼
D

N n
(
0, s2

ε V
)
. 

The variance of the homogenized residuals, s2
ε , is computed from the GLS 

solution, θ̂, using Eq. (24). The bootstrap samples are color coded based 
on their percentiles of the GLS objective function of Eq. (17) computed 
using the measured training data, ỹ, not the replicate records. The 
100γ% confidence region(s) of the slope and intercept derived from the 
bootstrap method match exactly their analytic counterparts of Eq. (27). 
This is true for all critical values. The small imperfections in the outside 
perimeter of the outermost ellipse sampled by the bootstrap method 
highlights the need for a sufficiently large sample size. This frontier 
demarcates the edges of the 99% confidence region and is characterized 
by the most improbable realizations of the training data record. We also 
witness an excellent agreement between the univariate 95% bootstrap 
confidence intervals of a and b and their analytic values derived from Eq. 
(29). 

In summary, if we perturb the measured data, ỹ = [ ỹ1 ỹ2 … ỹn ]
⊤, 

according to the assumptions of the GLS estimator, then the optimized 
parameter values for each replicate record, ỹr, of the training data, ỹ, 

Fig. 1. Illustrative example of parameter confi-
dence regions and confidence intervals: (a) Con-
tour plot of the generalized least squares objective 
function of Eq. (17) for a linear regression func-
tion, f(θ, t) = at + b, using 0.97⩽a⩽1.025 and 
1.30⩽b⩽2.60. The contour lines are labeled and 
coded using a copper colormap. The bivariate 
100γ% confidence regions of the slope, a, and 
intercept, b, defined by Eq. (27) are displayed with 
a gray color scheme using γ = 0.50, γ = 0.90, γ =

0.95 and γ = 0.99, respectively. The dashed blue 
lines display the univariate 95% confidence in-
tervals of the slope and intercept computed from 
Eq. (29); (b) bivariate scatter plot of the N = 10,
000 optimized values of a and b derived from the 
bootstrap method. The color of the dots signifies 
the confidence level derived from the bootstrap 
samples. The dashed blue lines portray the uni-
variate 95% intervals of a and b. The red cross 
highlights the minimum of the GLS objective 
function.   
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define a p-variate distribution with probability density function synon-
ymous to Eq. (20) and 100γ% confidence region(s) described by Eq. 
(27). This is the underlying idea of approximate Bayesian computation 
(see e.g. Vrugt and Sadegh (2013)) and allows for an exact description of 
parameter uncertainty in the absence of convenient closed-form solu-
tions for their confidence regions and/or intervals such as Eqs. (29) and 
(27) for the GLS, WSSR and/or SSR objective functions. Next, we should 
confirm that these conclusions also hold for regression functions with 
invalid basis functions. 

3.2. Nonlinear regression 

3.2.1. Theory 
The regression function, f(θ, t) = at+ b, of the first case study sat-

isfies the linearity condition 

f (θ + Δθ, ti) = f (θ, ti) + d⊤
i Δθ, (31)  

where d⊤
i = [ ti 1 ] is the ith row of the n × p design matrix, D, and i = (1,

2,…,n). This linearity condition does not hold for regression functions 
whose output depends nonlinearly on their parameters. Then, the en-
tries of the design matrix, D, may not only depend on the explanatory 
variable, t, but also on the values of one or more parameters. This is 
commonplace in hydrology and has two important implications. The 
GLS parameter values, θ̂, cannot be determined from the closed-form 
solution in Eq. (19) but instead must be estimated using an iterative 
search and/or optimization method. Furthermore, we should not expect 
Eqs. (29) and (30) to provide an exact description of the 100γ% 

confidence intervals of the parameters and simulated output. Next, we 
illustrate the application of the bootstrap method to nonlinear 
regression. 

3.2.2. Application: a hydrologic toy model 
Our second case study considers a simple 3-parameter hydrologic 

model comprised of two linear reservoirs organized in parallel (see 
Fig. 2). 

This model has two state variables, Sf and Ss, with units of mm, and 
three parameters, the unitless rainfall distribution coefficient, D ∈ (0,1], 
and the recession constants, Ks and Kf , of the slow and fast reservoirs, 
respectively, with dimensions of reciprocal day. We set, D = 0.65,Ks =

0.035 and Kf = 0.7 and create a 5-year simulation of daily discharge, 
y = [y1 y2 … yn ]

⊤ (in mm/day) via an analytic solution using as model 
input a hypothetical record of daily rainfall data. Each entry of the 
discharge simulation is subsequently perturbed with a heteroscedastic 

measurement error, ε ∼
D

N n(0,Σε), to yield, ỹt = yt + εt . The n × n 
measurement error covariance matrix, Σε = cV, where c = 0.01 and the 
n × n matrix V has zeros everywhere except for the main diagonal which 
lists the squared values of the n simulated discharges. This amounts to a 
heteroscedastic measurement error with standard deviation equal to 
10% of the simulated discharge. We would now like to use the measured 
data, ỹ = [ ỹ1 ỹ2 … ỹn ]

⊤, to determine the confidence regions of the 
parameters. As the model does not have valid basis functions, we cannot 
write the model in matrix form and must use an optimization method to 
minimize the GLS objective function in Eq. (17). We assume perfect 
knowledge of the measurement errors, thus, admit Σε to our analysis. 

Fig. 2. Schematic illustration of the three parameter 
hydrologic model. Grey boxes, labeled in red, corre-
spond to fictitious control volumes which control the 
transformation of rainfall into river discharge. Arrows 
portray the fluxes into and out of the compartments, 
including daily precipitation, Pt , the inflows, (1 − D)Pt 

and DPt , to the fast and slow reservoirs (in mm/d), 
and the fast, Qf , and slow, Qs, reservoir’s contribution 
to the discharge. This simple model admits an analytic 
solution for the simulated discharge.   

Fig. 3. Bivariate scatter plots of the parameter pairs of the three-parameter hydrologic model, (a) (D,Kf), (b) (Kf ,Ks) and (c) (Ks,D), using the bootstrap method (top 
panel) and DREAM algorithm (bottom panel). The samples are color coded to reveal their respective confidence levels, γ = 0.5 (light gray), γ = 0.90 (light-medium 
gray), γ = 0.95 (medium gray) and γ = 0.99 (dark gray). The optimum parameter values are separately indicated in each graph with a red cross. 
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Fig. 3 (top panel) presents the results of the bootstrap method using 
repeated minimization of the GLS objective function in Eq. (17) for 

replicate samples, ̃yr ∼
D

N n(ỹ,Σε), of the measured discharge record. The 
gray tints of the bootstrap samples differ based on their confidence levels 
including, γ = 0.5 (light gray), γ = 0.90 (light-medium gray), γ = 0.95 
(medium gray) and γ = 0.99 (dark gray). The red cross in each graph 
indicates the GLS optimum. The bottom panel serves as our benchmark 
and presents scatter plots of the bivariate samples of the posterior dis-
tribution derived from the DREAM algorithm (Vrugt et al., 2009). In 
keeping with the GLS assumptions, we must specify a uniform prior 
parameter distribution in connection with the likelihood function of Eq. 
(C4) in Appendix C with σ̂2

ε = 0.01. 
The bivariate confidence regions of the parameter pairs appear 

symmetric around their optimum value with sampling density that de-
creases away from the center of the point clouds. The confidence regions 
are well described by ellipses, and their diagonal orientation suggests 
the presence of parameter correlation among, D,Ks and Ks. This is all 
interesting, yet, most important is the nearly perfect match of the con-
fidence regions of the bootstrap method and the DREAM algorithm. This 
is not a surprise, nevertheless, an important demonstration to those 
unfamiliar with the bootstrap method and its applicability to uncer-
tainty quantification. It needs no further demonstration that the confi-
dence intervals of both methods are a perfect match. 

We are now ready to pair the bootstrap method with the KG efficiency. 
But before doing so, we first would like to provide some general remarks 
about the limitations of the bootstrap method. The bootstrap method 
provides a powerful alternative to arguably more beautiful and CPU- 
friendly analytic procedures, thus, is a wonderful addition to the hydrol-
ogists’ arsenal of statistical inference methods. Yet, the apparent simplicity 
of bootstrapping may fool users into thinking that no important assump-
tions are being made in its application. These assumptions relate to the 
independence of the samples and the sample size. Certainly, bootstrapping 
is not recommended for small training records comprised of only a few 
observations. Then the resampled records may not be representative of the 
underlying data generating process and this will corrupt the standard er-
rors and/or confidence intervals of the variables of interest. Furthermore, 
our experience suggests that it is not particularly easy to preserve higher- 
order moments (skew and/or kurtosis) of the training data record and/or 
characterize well the periodicity and persistence of dynamic systems. 
These are known problems with resampling in general and different 
implementations of the bootstrap method may be found in the literature to 
minimize bias and estimation errors. Furthermore, the large computational 
requirements of the bootstrap method complicate its application to highly- 
parameterized and/or CPU-intensive models. 

3.3. Diagnostic regression 

The bootstrap method serves as principal foundation of our method-
ology for constructing confidence regions and/or intervals of informal 
goodness-of-fit metrics in regression analysis. This includes metrics such as 
the NSE and KG efficiency and hydrologic signatures within the context of 
model diagnostics. We coin this field diagnostic regression, not to be 
confused with regression diagnostics which equal procedures and tech-
niques designed to verify statistical assumptions and model validity in 
linear regression (Everitt and Skrondal, 2010). Such diagnostic checks are 
also used in Bayesian inference to ascertain that the residuals satisfy as-
sumptions made by the likelihood function (Schoups and Vrugt, 2010). 
Thus, in diagnostic regression we model the relationship between depen-
dent and independent variables through application of informal goodness- 
of-fit metrics and present empirical estimates of the confidence and/or 
prediction limits of variables of interest. This adds a new member to the 
large family of commonly used regression techniques such as lasso, logistic, 
ordinal, polynomial, ridge, support vector, stepwise and quantile regres-
sion and offers a common creative license and receptacle for the growing 
collection of heuristic and/or applied model-data synthesis methods. 

Before we move on to the application of diagnostic regression we 
provide one general remark. We use the wording empirical confidence 
intervals to emphasize the heuristic nature of the confidence intervals 
obtained from diagnostic regression with metrics such as the KG effi-
ciency. In principle, one could use the label empirical to characterize 
any sampling-based estimates of the confidence regions and/or in-
tervals. But the so-obtained estimates of the confidence and prediction 
intervals from the DREAM algorithm are an approximation of the true 
uncertainty as defined by the residual assumptions. 

3.3.1. Application: linear function 
We revisit our first case study of Section (3.1) and use the KG effi-

ciency to determine the optimal values of the slope, a, and intercept, b, 
and their empirical confidence regions and intervals. Bootstrapping in-
volves repeated maximization of the KG efficiency of Eq. (14) for many 
different realizations of the training data record. Fig. 4 presents the 
confidence regions derived from (a) the analytic expression of Eq. (27) 
and (b) the bootstrap method using the KG efficiency. The left graph is a 
copy of Fig. 1a and is used for benchmark purposes. 

We observe a close match in the optimum value, θ*, of the slope and 
intercept derived from diagnostic regression with the KG efficiency (red 
cross) and the least squares solution, θ̂, of Eq. (19). Furthermore, the 
bivariate confidence regions of the KG efficiency show a strong resem-
blance with their exact least squares counterparts of Eq. (27). The 

Fig. 4. Visualization of the bivariate confi-
dence region of the slope, a, and intercept, b, 
of the linear regression function, f(θ, t) = at +
b, for (a) the GLS objective function using Eq. 
(27) and (b) the KG efficiency with the boot-
strap method. The confidence regions are 
coded with a gray color scheme using γ =

0.50, γ = 0.90, γ = 0.95 and γ = 0.99, respec-
tively. The dashed blue lines depict the uni-
variate 95% confidence intervals of the slope 
and intercept derived from (a) Eq. (29) and (b) 
the percentiles of the bootstrap samples. The 
red cross corresponds to (a) the minimum of 
the GLS objective function and (b) the 
maximum of the KG efficiency.   
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confidence regions of the KG efficiency center on the optimum (a, b)
values, θ*, and appear well described by ellipses. The major and minor 
axes of the ellipses of the KG efficiency match quite closely those derived 
from the information matrix, I (θ̂), of the GLS confidence regions, but 
exhibit an enlarged angle from the horizontal (slope) axis. Furthermore, 
the ellipses that make up the 95 and 99 confidence regions of a and b 
appear discontinuous in the area immediately above and below the 
optimum KG solution (red cross). Indeed, at these critical levels the 
bootstrap samples provide only a somewhat spotty characterization of 
the bivariate parameter uncertainty. It is not particularly clear what 
causes this apparent deficiency. Certainly, we used a large enough 
sample size. 

We do not apply the KG efficiency to our hydrologic toy model of the 
second case study but rather focus our attention on a more complex 
watershed model using measured streamflow data instead. 

3.3.2. Application: a conceptual watershed model 
Our third and last study illustrates the application of diagnostic 

regression with the KG efficiency to the hmodel, a parsimonious con-
ceptual watershed model originally developed by Schoups et al. (2010). 
We estimate the hmodel parameters and their respective confidence 
intervals using 14-year long records (Oct. 1, 1994 - Sept. 30, 2008) of 
daily discharge data from the (a) Leaf River near Collins, MS (USGS 

02472000) and (b) Kinchafoonee Creek near Dawson, GA (USGS 
02350900). These two medium-sized watersheds exhibit a strong and 
weak winter regime, respectively, according to the functional classifi-
cation of Brunner et al. (2020). The hmodel transforms rainfall into 
runoff at the watershed outlet using an interception, unsaturated zone, 
fast and slow flow reservoir, respectively, which simulate interception, 
throughfall, evaporation, surface runoff, percolation, fast streamflow 
and baseflow (see Fig. 5). 

The hmodel structure, processes, control input and numerical solu-
tion have been discussed by Schoups et al. (2010), and interested readers 
are referred to this publication for further details. Table 1 lists the seven 
hmodel parameters and their corresponding symbols, units and upper 
and lower bounds. We discard the first five years of the discharge re-
cords in our computation of the KG efficiency to reduce sensitivity to 
state variable initialization. 

The empirical description of the uncertainty of the KG efficiency with 
the bootstrap method requires many different replicates of the measured 
discharge records of the Leaf River and Kinchafoonee Creek. These 
replicates should characterize streamflow measurement uncertainty and 
preserve the statistical properties (e.g. streamflow moments and tem-
poral structure/persistence) and hydrologic characteristics (e.g. catch-
ment summary metrics) of the measured discharge record. The model- 
free duplication method of Oliveira and Vrugt (2022) satisfies these 
requirements and, thus, serves our purpose. A brief description of this 
method is given below, interested readers are referred to Oliveira and 
Vrugt (2022) for further details. 

Per Eq. (16), the entries of the discharge measurement vector may be 
written as follows 

ỹ = H (t) + ε, (32)  

where H (t) is the data generating process of the true streamflow at time 

t ∈ N+ and the measurement errors, ε = [ε1 ε2 … εn ]
⊤
∼
D

N n(0,Σε), are 
variates drawn from a n-variate normal distribution with zero mean and 
n × n measurement error covariance matrix, Σε 

Fig. 5. Schematic illustration of the hmodel after Schoups et al. (2010). Grey boxes, labeled in red, correspond to fictitious control volumes of the watershed which 
govern the rainfall-runoff transformation. Arrows portray the fluxes into and out of the compartments, including precipitation, Pt , interception evaporation, Ei, 
surface runoff, Qrunoff and percolation, Qperc. The four state variables are simulated using a mass-conservative second-order integration method with adaptive 
time step. 

Table 1 
Description of the hmodel parameters, including their symbols, units, lower and 
upper bounds.  

Parameter Symbol Units Min. Max. 

Maximum interception Imax mm 0 10 
Soil water storage capacity Smax mm 10 1000 
Maximum percolation rate Qmax mm/d 0 100 
Evaporation parameter αe – 0 100 
Runoff parameter αf – − 10 10 
Time constant, fast reservoir Kf d 0 10 
Time constant, slow reservoir Ks d 0 500  

Σε = E[εε⊤] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ2
ε1

rỹ(1)σε1 σε2 ⋯ rỹ(n − 1)σε1 σεn

rỹ(1)σε2 σε1 σ2
ε2

⋯ rỹ(n − 2)σε2 σεn

⋮ ⋮ ⋱ ⋮
rỹ(n − 1)σεn σε1 rỹ(n − 2)σεn σε2 ⋯ σ2

εn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

1 rỹ(1) ⋯ rỹ(n − 1)
rỹ(1) 1 ⋯ rỹ(n − 2)

⋮ ⋮ ⋱ ⋮
rỹ(n − 1) rỹ(n − 2) ⋯ 1

⎤

⎥
⎥
⎥
⎦
⊙

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

σε1

σε2

⋮
σεn

⎤

⎥
⎥
⎥
⎦
[ σε1 σε2 ⋯ σεn ]

⎞

⎟
⎟
⎟
⎠

= Rỹ ⊙
(
σεσ⊤

ε
)

(33)   
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where Rỹ denotes the n × n correlation matrix of the measurement er-
rors, rỹ(τ), is the correlation function of the measurement errors, σε =

[σε1 σε2 … σεn ]
⊤, signifies the n-vector of measurement error standard 

deviations, ⊙, is the Hadamard or Schur product and τ ∈ (1,2,…,n). The 
correlation matrix, Rỹ, can be derived from the sample autocorrelation 

function (ACF) of the measured discharge data, ỹ = [ ỹ1 ỹ2 … ỹn ]
⊤. The 

sample autocorrelation, ̂rỹ(τ), for two streamflow observations, ̃yi and ̃yj, 
a distance (time), τ = ∣i − j∣, apart may be computed using 

r̂ ỹ(τ) =
Cov

[
ỹi, ỹj

]

Var[̃yi]
=

∑n

i=τ+1

(
ỹi − mỹ

)(
ỹi− τ − mỹ

)

∑n

i=τ+1

(
ỹi − mỹ

)2
, (34)  

where mỹ = 1
n
∑n

t=1ỹt (mm/d) denotes the mean of the n-record of 
streamflow observations. The entries of the n × 1 vector of measurement 
error variances, σ2

ε , are computed from hourly discharge observations 
using the procedure described in Oliveira and Vrugt (2022). Specifically, 
the tth-entry, s2

εt
, of s2

ε , is computed as follows (Oliveira and Vrugt, 2022) 

s2
εt
=

1
m

1
m − 1

∑m

i=1

(

ỹih −
1
m
∑m

j=1
ỹjh

)2

+
1
m

1
m
∑m

i=1
(ahỹih + bh)

2
, (35)  

where the ỹih’s (mm/d) are the m = 24 hourly discharge observations, 
i = (1,2,…,m), of the tth day of the daily streamflow record, ỹ, and the 
coefficients, ah (-) and bh (mm/d) signify the slope and intercept of the 
hourly discharge measurement error function, respectively. This linear 
function turns the hourly discharge measurements into estimates of the 
measurement error standard deviation and is derived from nonpara-
metric differencing using the estimator of Vrugt et al. (2005). Eq. (35) 
can be rewritten as follows 

s2
εt
=

1
m

s2
ỹh
+

1
m2

∑m

i=1
s2

εh
(36)  

where the first term, s2
ỹh 

(mm2/d2), measures the spread of the hourly 

discharge observations (= measurement uncertainty) and the second 
term, 1

ms2
εh 

(mm2/d2), accounts for their respective measurement error 
variances. 

Replicate discharge records, ỹr = ỹ+ ε, are now created by per-
turbing the measured streamflow time series, ỹ, with measurement er-

rors, ε, drawn from the n-variate normal distribution, ε ∼
D

N n(0,Σε), 
with zero mean and covariance matrix, Σε, of Eq. (33). To do so effi-
ciently we write instead, ỹr = ỹ+ Lν, where ν ∈ ℝn is a n × 1 vector of 
independent standard normal variates and the n × n lower triangular 
matrix L is derived from Cholesky decomposition of the symmetric 
positive-definite matrix Σε = LL⊤. Prior to computation of the corre-
lation matrix, Rỹ, the discharge measurements are replaced by their 
respective variates of a standard normal distribution. This trans-
formation promotes hydrologic characterization by suppressing sudden 
bumps and discharge fluctuations during long recession periods. Note 
that if Σε is written as product of a constant, σ2

ε , and a n × n matrix, V, 
then, L =

̅̅̅̅̅
σ2

ε
√

chol(V). The use of the discharge sample ACF in the 
measurement error covariance matrix, Σε, introduces serial correlation 
among the εt’s. This is a necessary means to preserving the smoothness, 
statistical and hydrologic properties of the measured discharge record 
(Oliveira and Vrugt, 2022). The autocorrelation avoids overly bumpy 
replicate records that result from the use of the measured discharge time 
series rather than the underlying data generating process in Eq. (32). 

Fig. 6 presents histograms of a representative group of five hmodel 
parameters (a) Smax, (b) Qmax, (c) αf , (d) Kf and (e) Ks derived from the 
bootstrap method using the N = 1,000 replicates of the measured daily 
discharge records of the Leaf River (top panel) and Kinchafoonee Creek 
(bottom panel). For each replicate record, we optimized the seven 
hmodel parameters by maximization of the KG efficiency using the 
shuffled complex evolution (SCE-UA) algorithm of Duan et al. (1992). 

The marginal distributions summarize the effect of the discharge 
measurement errors on the inferred hmodel parameter values. The 
modes of the histograms coincide quite well with their optimized values, 
θ*, of the measured discharge records (red crosses). The frequency dis-
tributions of the hmodel parameters appear well defined by calibration 
against the KG efficiency. The parameters exhibit a relatively small 
dispersion, appear symmetric around their mean and are well described 
by a Gaussian distribution. Exceptions to this are the histograms of pa-
rameters Imax (Fig. 3a1) which is truncated by its upper bound and Ks 

(Fig. 3e2) which has a positive skew, and, thus, tail to the right. As a 
result, the marginal distributions of these two parameters do not center 
on their values derived from the measured discharge record but are 
found at the upper and lower end of their distribution. This deviation 

Fig. 6. Histograms of the optimized hmodel parameters for the thousand replicates of the Leaf River (top panel) and Kinchafoonee Creek (bottom panel) watersheds 
including (a) Smax (mm), (b) Qmax (mm), (c) αf (-), (d) Kf and (e) Ks. The relative frequencies on the y-axis are normalized to yield a common empirical density 
between 0 and 1 for all parameters. The red crosses correspond to the optimized hmodel parameter values, θ*, of the measured discharge records. 
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Fig. 7. Histogram of the KG efficiency derived from repeated optimization of the hmodel parameters using the replicates of the discharge record of the (a) Leaf River 
and (b) Kinchafoonee Creek. The maximized KG efficiencies of the measured discharge data are separately indicated with a red cross. 

Fig. 8. Bivariate scatter plots of selected parameter pairs including (a) (Imax, Smax), (b) (αf , Smax), (c) (Kf , Smax) and (d) (Ks, Smax) for the Leaf River (top panel) and 
Kinchafoonee Creek (bottom panel) watersheds. The confidence regions are coded with a gray color scheme using γ = 0.50 (light), γ = 0.90 (light-medium), γ = 0.95 
(medium) and γ = 0.99 (dark), respectively. The red crosses signify the hmodel parameter values that maximize the KG efficiency of the measured discharge records. 

Fig. 9. Observed (red dots) and 99% hmodel simulated (gray region) daily discharge time series for a seven month period between Nov. 1, 2004 and June 30, 2005 of 
the discharge record of the Leaf River basin. The light-red region corresponds to the 99% intervals of the discharge measurement errors. 
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from normality may become more common for catchments from other 
hydrologic regimes, for example with snow melt or extended dry 
periods. 

Next, Fig. 7, presents the marginal distribution of the KG efficiency 
obtained from evaluating the optimized hmodel parameters of the 
thousand replicate records for the measured discharge data of the (a) 
Leaf River (top panel) and (b) Kinchafoonee Creek. The optimized KG 
values of the measured discharge data records are separately indicated 
with a blue cross. 

As the KG efficiency is a metric that has to be maximized, its fre-
quency distribution is truncated at the upper bound by its maximized 
value for the measured discharge record and the probability mass of the 
bootstrap samples is dispersed in a tail to the left. Quite remarkably, the 
50,90,95 and 99% percentiles of the distributions of the KG efficiency 
have a similar distance to the maximum KG efficiency. This amounts to 
0.0032, 0.0018, 0.0013, and 0.005, respectively, listed in order of the 
critical values. This finding may support a more formal probabilistic 
description of the KG efficiency in a fashion similar to the tolerable in-
crements for the GLS estimator discussed in Appendix C. Indeed, for the 
GLS estimator, the tolerable increment follows an inverse chi-square 
cumulative distribution function with p degrees of freedom, hence, 
ΔGLS(γ) = F− 1

χ2 (pγ∣p), where pγ = γ. Thus, the tolerable increment of the 
GLS only depends on parameter dimensionality, not on data length and 
the nature of the measurement errors (residuals). We have investigated 
this thread for the KG efficiency with the linear regression function of 
Section 3.1 using different lengths of the training data record and ho-
moscedastic, heteroscedastic and/or correlated measurement errors. 
Our preliminary results (not shown) have demonstrated that the toler-
able reduction of the KG efficiency, ΔKG, depends on the magnitude and 
nature of the measurement errors. In other words, the KG efficiency does 
not admit a simple probabilistic description of its confidence regions 
and/or intervals. This leaves as our only option the bootstrap method 
using replicates of the discharge record. 

To provide insights into the bootstrap samples, please consider Fig. 8 
which presents bivariate scatter plots of (a) (Imax,Smax), (b) (αf ,Smax), (c) 
(Kf , Smax) and (d) (Ks, Smax) using the replicates of the discharge record of 
the Leaf River (top panel) and Kinchafoonee Creek (bottom panel) wa-
tersheds. The red crosses portray the optimal values of the hmodel pa-
rameters, θ*, using diagnostic regression for the measured discharge 
records. The bootstrap samples are coded in different gray tints based on 
their confidence levels, γ = 0.5 (light gray), γ = 0.90 (light-medium 
gray), γ = 0.95 (medium gray) and γ = 0.99 (dark gray). 

The bootstrap samples populate only a small part of the prior 
parameter space. The dotty plots are well described by concentric circles 
and/or elongated ellipses which center on the midpoint of the dotty 
plots and envelope the optimum solution (red cross) of the hmodel pa-
rameters. The exception to this is the (a1) (Imax, Smax) parameter pair 
whose bivariate distribution cloud is truncated by the upper bound of 
Imax. The density of the points decreases away from the midpoint of the 

point cloud. We do not witness any mutual relationships between the 
pairs of plotted parameters, with exception of the (b2) (αf , Smax) and (c1) 
(Kf , Smax) parameter pairs, which exhibit a positive linear correlation. 
The bivariate confidence regions of the hmodel parameters are sharply 
delineated for the Leaf River data record and organized in long elon-
gated ellipses around the midpoint of the bootstrap samples. For the 
Kinchafoonee Creek, on the contrary, the boundaries of the joint 
parameter confidence regions of the hmodel parameters are poorly 
defined. The confidence regions mix and overlap, an effect that is 
particularly visible towards the outer perimeter of the point clouds of 
the hmodel parameters pairs. This mixing of the confidence regions is a 
result of the projection of the p = 7-dimensional parameter space onto 
only two axes. This geometric simplification destroys the underlying 
multivariate surface of the KG efficiency and this distorted organization 
may, therefore, lead to a mixing of the confidence regions. The reason so 
as to why the Leaf River watershed does not suffer this protrusion 
conveys important information about the geometry of the KG confidence 
regions in the full parameter space. In short, the confidence regions can 
only increase (or decrease) monotonically with each marginalized 
(unplotted) parameter axes for the spatial organization of the confidence 
regions to be preserved in the two-dimensional projections in the top 
panel. The p-variate confidence regions for the Kinchafoonee Creek 
violate the monotonicity requirement for at least one of the marginal-
ized parameter axes, and as a result, the projection introduces mixing so 
evidently present in the two-dimensional snapshots in the bottom panel. 
Of course, this mixing will not affect the confidence intervals of the 
hmodel parameters. 

Finally, we must verify the accuracy and/or precision of the KG 
calibrated hmodel by comparison against the measured discharge re-
cord. Fig. 9 presents a time series plot of measured (red dots) and 
hmodel simulated discharge for the Leaf River watershed using a 
representative 8-month portion of the historical record. As the Kincha-
foonee Creek presents similar findings, we do not visualize these results. 
The light red area displays the 99% discharge measurement uncertainty, 
whereas the gray region corresponds to 99% hmodel simulation uncer-
tainty associated with the KG efficiency. We do not display the 
streamflow simulation of the optimal hmodel parameters, θ*, of the 
measured discharge record of the Leaf River. This simulation is con-
tained within the 99% confidence limits of the simulated discharge, 
mostly at the center of the gray interval. 

The hmodel tracks the measured discharge data reasonably well, 
although a positive bias is observed in the first 50-days of the 7-month 
period between the middle-end of November and middle of December, 
2004. This initial overshoot of the measured discharge data is rectified 
during subsequent storm events demonstrating an increasingly better 
match between the simulated and measured hydrographs. Certainly, the 
baseflow is rather poorly described by the hmodel in the 242-day win-
dow. This deficiency is particularly visible in the long recession period at 
the end of the 7-month record. The large model-data mismatch so visible 
in the early part of the record may point at an exaggerated state of the 

Fig. 10. Diagnostic analysis of the streamflow residuals of the calibrated hmodel using the KG efficiency: (a) residuals as a function of simulated discharge, (b) 
histogram of residuals, (c) ACF with 95% significance levels (dotted red lines). 
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hmodel’s four control volumes in the period leading up to the storm 
event in November 2004. Measurement errors of the antecedant basin 
average rainfall may have corrupted the state variables of the hmodel. 
One has to be careful, however, in attributing this early mismatch to 
precipitation errors as performance metrics other than the KG efficiency 
may improve the overall compliance between the hmodel and the 
measured discharge data. This then would have an immediate effect on 
the simulated state of the Leaf River basin preceding the storm event in 
Nov. 2004. If so desired, data assimilation may be used to refine the 
simulated state variables and remove excess water from the control 
volumes if the measured discharge data dictate doing so improves 
model-data compliance. 

The 99% confidence intervals of the simulated hydrograph (gray 
region) are smallest, on average, at the end of a long recession period 
and reach a maximum width at peak discharge. This dependence of the 
width of the hmodel discharge confidence intervals on simulated flow 
level is a result of the heteroscedastic nature of the discharge mea-
surement errors as evidenced by the measured streamflow record using 
nonparametric differencing (Vrugt et al., 2005; Oliveira and Vrugt, 
2022). The 99% confidence intervals of the hmodel simulated stream-
flows exceed the discharge measurement uncertainty (red region) but 
appear rather small compared to the residuals of the optimal hmodel 
parameters, θ*. Indeed, the gray region makes up only a small part of the 
distance between the measured and simulated discharge records. This 
small width is commensurate with a poor coverage of the discharge 
confidence intervals of the KG efficiency. Only a handful of streamflow 
observations contained within the gray region. This is why it is common 
practice in the context of generalized least squares to use the sample 
variance of the residuals (see Eq. (24)) in the computation of the 100γ% 
confidence intervals of the GLS parameters, θ̂, and simulated output, ŷ, 
in Eqs. (29) and (30). We can follow a similar approach in diagnostic 
regression and use the residuals of the optimal hmodel parameters, θ*, in 
our computation of the empirical confidence intervals of the KG effi-
ciency. This requires only a minor change to the implementation of the 
bootstrap method. We must replace our probabilistic description of the 
measurement errors of the training data record with an analogous 
description of the model residuals of the maximized KG efficiency of the 
measured training data record. Inevitably, this will substantially 
enhance hmodel parameter and simulation uncertainty. The formulation 
of the n-variate residual distribution is relatively simple for well- 
behaved residuals with known marginal distribution, constant vari-
ance and/or structure that satisfies a simple autoregressive scheme. But 
skewed and/or lepto- or platykurtic residuals with a nonconstant vari-
ance, bias and/or an unusual structure (persistence and/or state 
dependence) do not necessarily admit a convenient probabilistic 
description. This limits our ability to draw accurate replicates of the 
training data record and complicates uncertainty quantification of 
model parameter and simulation uncertainty with the bootstrap method 
in diagnostic regression with the KG efficiency. The generalized plus and 
universal likelihood functions of Vrugt et al. (2022) will help in distilling 
a convenient probabilistic description of time series of ideal and non- 
ideal residuals. But this does not guarantee a perfect characterization. 

The time series plot in Fig. 9 certainly makes clear that the discharge 
residuals exhibit a changing bias and correlation structure with flow 
level. But as the KG efficiency is an informal goodness-of-fit metric, we 
cannot unify the actual residual characteristics with prior assumptions 
made about their probabilistic properties. Nevertheless, Fig. 10 analyzes 
the (a) magnitude, (b) distribution and (c) ACF of the streamflow re-
siduals of the calibrated hmodel with maximum KG efficiency. 

The residuals increase with magnitude of the simulated discharge in 
a manner that is expected from the knowledge of the measurement er-
rors. The empirical distribution of the discharge residuals appears 
symmetric, is centered about zero and is much peakier than the normal 
distribution. Lastly, the residuals exhibit considerable serial correlation 
at the first few lags. This is expected given the systematic over and/or 

underprediction so evidently present at high and low flows, respectively, 
in the time series plot. These findings warrant treatment of residual 
serial correlation and heteroscedasticity, for example, through the use of 
generalized least squares. Alternatively, we can resort to Bayesian 
analysis, specify a generalized likelihood function (Schoups and Vrugt, 
2010) and infer the matrix V along with σ2

ε simultaneously with the 
hmodel parameters using MCMC simulation with the DREAM algorithm. 
This approach lets the data speak for itself and provides samples from 
the posterior distribution which can be presented as confidence regions. 

4. Conclusions 

Informal quality-of-fit measures such as the KG efficiency are not 
borne out of testable hypotheses with respect to the probabilistic 
properties of the residuals. This has profound consequences. We cannot 
verify a posteriori whether assumptions of the KG estimator have been 
satisfied. And, more importantly from the perspective of this paper, the 
uncertainty of the KG efficiency is not defined. This begs the question, 
how we should compute confidence and prediction limits on current 
and/or future model responses if we do not know which marginal dis-
tribution to expect of the residuals of the KG efficiency?. 

To move beyond the status quo, this paper has presented a simple 
framework for determining empirical confidence intervals of the KG 
efficiency. Our method relates the distribution of the KG efficiency to the 
measurement errors of the calibration data. Parameter and simulation 
uncertainty may then be quantified with the bootstrap method using 
replicates of the data record. 

The first two case studies served as demonstration of the bootstrap 
method for statistical inference of parameter uncertainty to those un-
familiar with this methodology. We showed that the bootstrap method 
yields the exact same parameter confidence regions and intervals as 
generalized least squares within the context of linear regression and 
Bayesian analysis coupled with MCMC simulation within the context of 
nonlinear regression. 

After this proof of concept, we turned our attention to the KG effi-
ciency and used this informal goodness-of-fit metric within the context 
of diagnostic regression to determine optimal parameter values and 
their associated uncertainty of a simple linear regression function with 
slope and intercept and the 7-parameter hmodel of Schoups et al. (2010) 
using measured discharge data of two contrasting watersheds. 

The empirical confidence regions and intervals of the slope and 
intercept derived from diagnostic regression using the KG efficiency 
were in close agreement with their exact counterparts obtained from 
generalized least squares. The ellipses of the KG efficiency exhibited an 
enlarged angle from the horizontal axis. 

The application of diagnostic regression with the KG efficiency to the 
hmodel showed that its parameters were well described by a normal 
distribution with relatively small dispersion and/or skew, and, possibly, 
truncated by the prior distribution. The modes of the marginal param-
eter distributions coincided quite well with their optimized values 
derived from the measured discharge records of the Leaf River and 
Kinchafoonee Creek. The distribution of the KG efficiency is a complex 
function of data length and the magnitude, distribution and structure of 
the discharge measurement errors. This prohibits a simple closed-form 
description of the empirical confidence regions and/or intervals of the 
KG efficiency defined herein. This leaves as only option the bootstrap 
method to quantify model parameter and predictive uncertainty of the 
KG efficiency within the context of diagnostic regression. 

Data and Software Availability 

The data, models and other software are available upon request from 
the corresponding author, jasper@uci.edu, and can be downloaded 
from https://github.com/jaspervrugt/KGefficiency. 

J.A. Vrugt and D.Y. de Oliveira                                                                                                                                                                                                             

https://github.com/jaspervrugt/KGefficiency


CRediT authorship contribution statement 

Jasper A. Vrugt: Conceptualization, Methodology, Software, Vali-
dation, Formal analysis, Investigation, Writing - original draft, Writing - 
review & editing, Visualization, Supervision, Project administration. 
Debora Y. de Oliveira: Software, Validation, Formal analysis, Data 
curation, Visualization. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgment 

We greatly appreciate the constructive comments of the AE and two 
reviewers that have led to an improved manuscript. The first author 
acknowledges interactions with Dr. Yan Liu on the mathematical un-
derpinning of the KG estimator. The second author gratefully ac-
knowledges the financial support received from the Brazilian Federal 
Agency for Support and Evaluation of Graduate Education (CAPES), 
Grant No. 88881.174456/2018–01. The CAMELS data set is described in 
Newman (2015) and can be downloaded from https://dx.doi.org/10.5 
065/D6MW2F4D. The hourly streamflow data of Gauch et al. (2020) 
are available at https://doi.org/10.5281/zenodo.4072700.  

Appendix A. Decomposition of the mean squared residual 

The original derivation of the mean squared residual (MSR) by Gupta et al. (2009) assumes knowledge of the population variances of the n × 1 
records of measured, ỹ = [ ỹ1 ỹ2 … ỹn ]

⊤, and simulated, y = [y1 y2 … yn ]
⊤, data. 

The MSR is equal to 

MSR =
1
n

∑n

t=1
(ỹt − yt(θ) )2 (A1)  

and may be decomposed in different terms as follows 

MSR =
1
n
∑n

t=1
(̃yt − yt(θ) )(̃yt − yt(θ) ) =

1
n
∑n

t=1
ỹ2

t +
1
n
∑n

t=1
yt(θ)2 −

2
n
∑n

t=1
ỹtyt(θ), (A2)  

We can now make use of the following well-known identities to rewrite the above expression 
∑n

i=1
x2

i = (n − 1)s2
x + nm2

x (A3a)  

∑n

i=1
xiyi = (n − 1)rxysxsy + nmxmy, (A3b)  

where mx is the mean of the n-record of x values 

mx =
1
n

∑n

i=1
xi, (A4)  

the variable s2
x denotes its associated variance 

s2
x =

1
n − 1

∑n

i=1
(xi − mx)

2
. (A5)  

and rxy signifies the sample correlation coefficient of the (xi, yi) data pairs, i = (1,2,…,n)

r =

1
n− 1

∑n

i=1

(
ỹi − mỹ

)(
yi − my

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n− 1

∑n

i=1

(
ỹi − mỹ

)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n− 1

∑n

i=1

(
yi − my

)2
√ . (A6)  

If we substitute the identities of Eqs. (A3a) and (A3b) into Eq. (A2) we yield 

MSR =
1
n

(
(n − 1)s2

ỹ
+ nm2

ỹ

)
+

1
n

(
(n − 1)s2

y + nm2
y

)
−

2
n
(
(n − 1)rỹysỹsy + nmỹmy

)
=

(
n − 1

n

)

s2
ỹ
+m2

ỹ
+

(
n − 1
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Now, as, a2 + b2 = (a − b)2
+ 2ab, we can rewrite the first term to read 

MSR =
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n
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mỹ − my

)2
+

(
2n − 2

n

)
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rỹysỹsy

=

(
n − 1

n

)
(
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(A8)  

We can now reorganize the above expression and rearrange the terms in similar order as Eq. (7) to yield 

MSR =

(
2n − 2

n

)

sỹsy
(
1 − rỹy

)
+

(
n − 1

n

)
(
sỹ − sy

)2
+
(
mỹ − my

)2 (A9)  

This concludes our derivation. 

Appendix B. Decomposition of the coefficient of determination 

According to Eq. (6) the coefficient of determination, R2, satisfies the following equality 

R2 = 1 −
nMSR

(n − 1)s2
ỹ

= NSE, (B1)  

where NSE is the infamous Nash–Sutcliffe efficiency. We can reformulate the above expression by substituting for the mean squared residual (MSR) 
Eq. (A9) to yield 
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ỹ
− (n − 1)s2

y + 2(n − 1)s2
ỹ
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This leaves us with the following expression for the R2 and, thus, NSE 

R2 = 2
(

sy

sỹ

)

r −
(

sy

sỹ

)2

−
( n

n − 1

)(mỹ − my

sỹ

)2

(B3)  

This concludes the derivation. 

Appendix C. Description of multivariate parameter uncertainty 

The confidence regions described by the expression in Eq. (27) can also be inferred by other means. In this Appendix we consider two other 
approaches besides the bootstrap method described in the main text. The first of these alternative methods uses contouring of the GLS objective 
function. 

Consider the GLS objective function in Eq. (17) 

FGLS(θ) = e(θ)⊤Σ− 1
ε e(θ), (C1)  

which may also be written as follows 

FGLS(θ) = (We(θ) )⊤(We(θ) ) = ε(θ)⊤ε(θ), (C2)  

where W = Σ− 1
2

ε signifies the n × n weight matrix and, ε(θ) = [ε1(θ) ε2(θ) … εn(θ) ]⊤, denotes the n × 1 vector of homogenized and/or decorrelated 
residuals. Now, we expect, that if θ = θ̂, then the n squared entries of ε(θ), should, on average, have a value of unity. As a result, FGLS(θ̂) should follow 

a chi-square distribution with n − p degrees of freedom, hence, FGLS(θ̂) ∼
D χ2

n− p, with expected value, E(ε(θ̂)⊤ε(θ̂) ) = n − p. Any deviation of the pa-

rameters from θ̂, will increase the value of FGLS(θ̂) from its expected minimum of n − p. The larger this increment, the lesser the support for the 
parameter values, θ, by the training data, ỹ. The tolerable increment, ΔFGLS, from n − p, for a desired confidence level, γ, equals (Press et al., 1992) 
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ΔFGLS(γ) = F− 1
χ2

(
pγ ∣p

)
(C3) 

where F− 1
χ2

(
pγ ∣p

)
signifies the inverse of the chi-square cumulative distribution function (cdf) with p degrees of freedom at the critical value, pγ = γ. 

Now, we discretize the parameter space in uniform intervals and evaluate the objective function, FGLS(θ), at each grid point. All points, θ, with 
FGLS(θ) ⩽ FGLS(θ̂) + ΔFGLS(γ) will make up the 100γ% confidence region of the parameters (see Fig. 11c). 

As second approach we consider Monte Carlo simulation. This approach necessitates the use of a prior distribution and a likelihood function. To be 
commensurate with the GLS objective function, we must specify a uninformative prior distribution for the slope and intercept, a and b, and use the 
following formulation of the log-likelihood function, L

(
θ, σ̂2

ε ∣ỹ,V
)

L
(
θ, σ̂2

ε ∣ỹ,V
)
= −

n
2

log(2π) − 1
2

log
(
∣σ̂2

εV∣
)
−

1
2

e(θ)⊤
(

σ̂2
εV
)− 1

e(θ)⊤ (C4)  

where ∣⋅∣ signifies the determinant operator and, ̂σ2
ε , is the estimate of the population variance of the measurement errors, ε. To be comparable with our 

GLS implementation, we must infer its value jointly with those of the coefficients, a and b, of the linear regression function. We use Markov chain 
Monte Carlo simulation with the DREAM algorithm (Vrugt et al., 2009) to determine the trivariate posterior distribution of θ = [a b ]⊤ and σ̂2

ε . Fig. 11d 
presents the bivariate distribution of the slope and intercept. As expected (not shown), the marginal distribution of σ̂2

ε , follows a scaled chi-square 
distribution with n − p degrees of freedom (see Eq. (25)). 

Fig. 11. Confidence regions (gray tints) and 95% confidence intervals (dashed blue lines) for a linear regression function, f(θ, t) = at + b, with homoscedastic 
measurement errors and 0.97⩽a⩽1.025 and 1.30⩽b⩽2.60: (a) generalized least squares using the analytic expressions of Eqs. (27) and (29), (b) resampling of the 
training data record with the bootstrap method, (c) contouring of the GLS objective function using the tolerable increment of Eq. (C3) and (d) Bayesian inference with 
the DREAM algorithm using a uniform prior for the slope, a, and intercept, b, and likelihood function of Eq. (C4). The bivariate 100γ% confidence regions of the slope, 
a, and intercept, b, are displayed with a gray color scheme using γ = 0.50 (light gray), γ = 0.90 (light-medium gray), γ = 0.95 (medium gray) and γ = 0.99 (dark 
gray), respectively. The top-left graph includes contour lines of the GLS objective function in Eq. (C1). The red cross highlights the minimum of the GLS objec-
tive function. 
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