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A R T I C L E I N F O
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A B S T R A C T

In most clinical trials, the main interest is to test whether there are differences in the mean outcomes among
the treatment groups. When the outcome is continuous, a common statistical test is a usual t-test for a
two-group comparison. For more than 2 groups, an ANOVA setup is used and the test for equality for all
groups is based on the F-distribution. A key assumption for these parametric tests is that data are normally,
independently distributed and the response variances are equal. The robustness of these tests to the first two
assumptions is quite well investigated, but the issues arising from heteroscedasticity are less studied. This
paper reviews different methods for ascertaining homogeneity of variance across groups and investigates the
consequences of heteroscedasticity on the tests. Simulations based on normal, heavy-tailed, and skewed normal
data demonstrate that some of the less known methods, such as the Jackknife or Cochran’s test, are quite
effective in detecting differences in the variances.
1. Introduction

Given a random variable 𝑌 , the variance of 𝑌 is 𝑉 𝑎𝑟(𝑌 ) = 𝐸[(𝑌 −
𝜇)2], where 𝜇 is its mean. The variance measures how spread out are
its values from the mean. Variance homogeneity is frequently a key
assumption for testing equality of means across groups. For example,
in clinical trials, the random variable 𝑌 is the continuous response from
a patient and we wish to test whether there is homogeneity in the re-
sponse variances across treated groups of patients. A common statistical
test for this purpose is the usual t-test for two treated groups or an
ANOVA F-test for three or more treated groups. When the variances of
responses from different groups are unequal, these tests may no longer
be valid and consequently, may not provide the correct statistical
inference. In particular, the required control on type 1 and 2 errors
become questionable. The extent of invalidity of the test depends on
the statistical test itself and how serious the violation of variance homo-
geneity is. When variances of responses from patients receiving various
treatments appear different, a common strategy is to transform the data
using a variance stabilizing transformation so that the transformed data
is homoscedastic, or nearly so. Sometimes, adjustments are made to the
test statistic to accommodate for the non-constant variances. When data
transformations are ineffective, alternative statistical tests that do not
require variance homogeneity are derived.

There is much research on the validity of the t-test and ANOVA
F-test when data are not normally distributed. For example, Knief
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recently used simulations and showed that the t-test is robust to non-
normality and type I error rates over a wide range of conditions [1].
They found that the most serious violation is that of independence
and the least serious is that of normality. There are various ways of
testing for independence and normality of the data. For instance, to
test for normality, statistics based on the kurtosis or skewness of the
data may be used [2]. Although no consensus has been made on the
extent of non-normality of the data before it becomes problematic [3],
parametric tests like t-test and ANOVA F-test should not be applied to
data that clearly violate normality assumption and the sample size is
small [4]. This is because applying parametric tests to non-normal data
can adversely affect the type I error rate [5].

There is quite a bit of work in the literature on the effects of
the tests when data are not independent, which is less extensive than
those for non-normality. However, some researchers did specify the
importance of not violating independence assumptions, especially when
using parametric tests. In health care, various analyses require data
to be independent, including popular methods in cluster randomized
trials tests, like the Chi-squared test and the t-test [6]. Violation of in-
dependence assumption not only causes inflation of Type I and Type II
errors, but also makes detection of significant differences among treat-
ment groups harder [7]. Further, large effects of violating normality
assumption were also found, when variables were non-independent [8].
Accordingly, various new methods of testing independence assumption
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have also been proposed recently. For example, instrumental variable
independence could be tested in the way described by Désiré and
Ismael [9]. Local dependence could also be detected as shown by
Marieke and Sarah’s work [10]. However, there seems to be little work
on investigating heteroscedastic responses in clinical trials and their
consequences on statistical tests.

The goal of this paper is to review common and recent tests for ho-
mogeneity in the context of a clinical trial and study the consequences
when this assumption is invalid. We conduct simulations to investigate
the robustness of the various tests to homogeneity and identify tests
that seem to be still generally valid under such a violation. Section 2
first reviews tests for homogeneity of variances when there are two
treatment groups, before tests for three or more groups are reviewed.
In each case, we review parametric tests before non-parametric tests.
Section 3 applies some of the tests to a real data set to detect whether
there is heteroscedasticity in the 3-treatment group trial and Section 4
conducts a simulation to study the effects of heteroscedasticity on
the various tests when data are skewed normal or heavy-tailed. In
Section 5, we provide a Shiny app to facilitate tests of homogeneity in a
clinical trial when there are 2 or more treatment groups. We conclude
in Section 6 with our recommended tests for variance homogeneity
based on simulation results and closing remarks.

In what is to follow, we adopt the following notation for the whole
paper. We assume that there are 𝑘 treatments of interest and patients
re randomly assigned to one of these treatment groups. The total
umber of subjects is predetermined and is 𝑁 . Each treatment group
has 𝑛𝑖 subjects, and 𝑁 =

∑𝑘
𝑖=1 𝑛𝑖. When balanced designs are used,

e denote the common sample size in each group by 𝑛, so 𝑛𝑖 = 𝑛 and
e have 𝑁 = 𝑘𝑛. Throughout, 𝑌𝑖𝑗 denote the 𝑗th observation from 𝑖th
roup, 𝑌𝑖 is the sample mean response from the 𝑖th group, and 𝑌 is
he sample mean of all observations. Let 𝑠2𝑖 be the sample variance of
th group, and let 𝑠2𝑝 be the pooled sample variance from all groups.
imilarly, let 𝜇𝑖 be the true mean response from the 𝑖th group, and let
2
𝑖 be the true variance of responses from the 𝑖th group.

Throughout the paper, the null hypothesis for all tests is that
here is variance homogeneity across the treatment groups versus the
lternative that variances from some groups are unequal. The only
xception is for Cochran’s test. The notation for the null hypothesis is
0 ∶ 𝜎21 = ⋯ = 𝜎2𝑘 and the alternative hypothesis is 𝐻1 ∶ 𝜎2𝑖 ≠ 𝜎2𝑗 for

ome 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘.

.1. Methods of comparing means

Frequently, the main interest in a clinical trial is to assess treatment
fficacy based on mean responses from groups assigned to various
reatments. Yet the main decision in selecting an appropriate test is
hether we expect group variances to differ.

The t-test and the ANOVA F-test are among the most popular
sed in practice. However, when data are not normally distributed or
eteroscedastic, these tests can become problematic and do not provide
he nominal error rates. An alternative is to use the Mann–Whitney U
est or a modified version of it [11]. When data have extreme values,
ne may use the Wilcoxon Signed Rank test to compare the medians
rom the various treated groups [11].

Recent researches provide more tools in dealing with the question of
iguring out if equality of means exists between groups of data. A non-
arametric progressive signed rank control chart has been proposed to
eal with heavy-tailed or skewed normal data [12].

New methods in testing multivariate means have become another
opular area under development. A combination of Hotelling and Simes
ests has been proposed as a new method for comparing multivariate
ean equality [13]. This new test has the potential to deal with
on-equal covariance matrices, and it is robust to violation of the
aussian assumption. It is worth mentioning that the results of tests of

ocation do depend on the results from tests of homogeneity of variance,
2

specially when the groups for comparison have small sample sizes. s
Table 1
Proportion of false rejection by t-test for comparison of means of two samples with
sample size = 15 generated from Normal(0,1) and Normal(0,5), out of 100 runs [14,15].
Specify Equal Variance: If specifying var.equal in t.test() function in R, with Yes =
TRUE, No = FALSE. Type one error: proportion of false rejection generated by t-test
results, out of 100 runs.

Specify Equal Variance Type One Error

Yes 0.12
No 0.08

Table 2
Summary table of all tests that will be discussed in details in the following sections. All
functions are avaliable in RR with corresponding packages at the citation part.[14–19].
Name: the names of each test. Type: indicating if a test is parametric or non-parametric.
Function: the specific function of each test in R. *:Levene’s test has its variances in
different forms. There are both parametric form and non-parametric form to Levene’s
tests.

Test Name Type Function

F-test Parametric var.test()
Ansari-Bradley test Non-Parametric ansari.test()
Moses Rank-liked test Non-Parametric moses.test()
Jackknife test Non-Parametric miller.jack()
Levene’s test Both* levene.test()
Bartlett’s test Parametric bartlett.test()
Hartley’s test Parametric hartley.test()
Cochran’s test Parametric C.test()
Brown-Forsythe test Non-Parametric oneway.test()
Fligner-Killeen test Non-Parametric fligner.test()

To illustrate this, a simple simulation was made. Two samples at size
of 15 were simulated from two normal distributions Normal(0,1) and
Normal(0,5). This process was repeated 100 times, and the proportions
of false rejection by t-test specifying equal or unequal variances were
recorded as approximation of type one error.

From the table below, at sample size of 15, the approximation of
type one error would increase 50%, from .08 to .12, if one falsely
specify equal variances of the two samples. Thus, it is important to both
conduct variance homogeneity tests and choose the correct variance
homogeneity test before using any location tests (see Table 1).

2. Methods of comparing variances

There are many different statistical methods to compare variances
for two or more groups and for normally distributed or non-normal
data. We first review parametric and nonparametric tests for two
groups before we describe corresponding tests for more than two
treatment groups (see Table 2).

2.1. Two-sample tests

2.1.1. Parametric tests
2.1.1.1. F-test. This is the most common test for variance homogeneity
for randomized studies with two groups of sizes 𝑁1 and 𝑁2 when the
ata are normally and independently distributed. The test statistic is
he ratio of the two sample variances 𝐹 = 𝑠21∕𝑠

2
2, and we compare the

alue of the 𝐹 statistic to an upper percentile of the 𝐹 -distribution with
egrees of freedom 𝑛1−1 and 𝑛2−1. Since the test statistic uses sample
ariances, this test can be sensitive to outliers and non-normality. For
n 𝛼-sized one-sided alternative, such as, 𝜎21 < 𝜎22 , we reject the null
ypothesis in favor of the alternative when 𝐹 < 𝐹𝛼,𝑁1−1,𝑁2−1. For
esting an 𝛼-sized two-sided alternative of 𝜎21 ≠ 𝜎22 , we reject the null
ypothesis in favor of the alternative when 𝐹 > 𝐹𝛼∕2, 𝑛1 − 1, 𝑛2 − 1 or
< 𝐹1−𝛼∕2,𝑛1−1,𝑛2−1.
The above F-test for the null hypothesis is easily computed using

ny statistical package or on an Excel spreadsheet. For instance in
, one may use the function 𝑣𝑎𝑟.𝑡𝑒𝑠𝑡 and specify the confidence level

2 2
ought and the hypothetical value of 𝜎1∕𝜎2 to test for. Usually, the
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interest is in testing whether the ratio is equal to unity versus not in the
alternative hypothesis, which may be one-sided or two-sided. In STATA
one may simply use a similar command 𝑠𝑑𝑡𝑒𝑠𝑡 with appropriate options
or controlling the type 1 error rate. For example, if data is arranged
n a long format, and we want to test whether variability in the length
f stay at hospitals by gender is equal, the command ‘‘sdtest length,
y(sex) level(80)’’ will compute the test at the 80% confidence level.

We note that tests that assume variance homogeneity in the data can
ose significant theoretical challenges when the assumption is violated.
or example, the well-known Behrens–Fisher problem tests the equality
f means of two normal populations with different variances using two
ndependent samples. One common approach is to apply a Welch t-test
ased on the argument that under the null hypothesis,

(𝑌1 − 𝑌2) − (𝜇1 − 𝜇2)
√

𝑠21
𝑛1

+
𝑠22
𝑛2

has approximately a t-distribution with degrees of freedom equal to

𝑑𝑓 =
[
𝑠21
𝑛1

+
𝑠22
𝑛2
]2

(
𝑠21
𝑛1 )

2

𝑛1−1
+

(
𝑠22
𝑛2

)2

𝑛2−1

.

The complicated expression for the degrees of freedom is obtained
y the method of moments described in Satterwaithe [20]. The Welch
-test is implemented in STATA by specifying ‘‘unequal’’ or ‘‘welch’’ as
n option in the 𝑡𝑡𝑒𝑠𝑡 command. In R, the user specifies 𝑣𝑎𝑟.𝑒𝑞𝑢𝑎𝑙 =

𝐹𝐴𝐿𝑆𝐸 as an option.
There is a research on the Behrens–Fisher problem and Dudewicz

et al. that provides a good review [21]. The authors also developed
an exact and optimal solution to the Behrens–Fisher problem, where
they used a two-stage approach and an additional parameter c to
control the power of the test [21]. Extensions to testing equality of
means from multivariate normal distributions under heteroscedasticity
are also available. For example, Eftekhar constructed a fiducial test by
inverting the fiducial confidence regions of differences between normal
mean vectors [22].

2.1.2. Non-parametric tests
Non-parametric methods, known as ‘‘distribution-free methods’’,

require fewer assumptions than parametric methods. It does not mean
that the methods require no assumption on the distributions of the
underlying data. We first review some non-parametric methods for
comparing variances between two treated groups.

2.1.2.1. Ansari–bradley test [23]. With equal medians, two indepen-
ent samples are assumed to come from densities of the form 𝑓 ((𝑡 −

𝑚)∕𝛾) and 𝑓 (𝑡−𝑚), where m is an unknown nuisance parameter and 𝛾,
the ratio of scales, is the parameter of interest. Setting 𝜃 as the ratio of
the variances from the two groups, the Ansari–Bradley test evaluates
the null hypothesis that 𝛾 = 1 and the alternative hypothesis can be
either 𝛾 > 1, 𝛾 < 1 or 𝛾 ≠ 1..

Like other non-parametric tests, this Ansari–Bradley test is rank
based with a unique ranking scheme. Suppose there are 𝑛𝑖 observations
from group 𝑖, 𝑖 = 1, 2 and, without loss of generality, assume that
𝑛1 < 𝑛2. First, rank all observations from both groups from smallest
to largest; then rank the smallest and the largest as ‘‘1’’, and second
smallest and second largest as ‘‘2’’, and so on. In this ranking scheme,
observations closer to the median will have larger ranks, and obser-
vations far away from median will have smaller ranks. Under the null
hypothesis of equal dispersion (with equal median assumed), any 𝑛1 out
of the 𝑛1 + 𝑛2 observations will have equal chance of being from group
1, thus we have a bell-shaped discrete distribution of sum of ranks
𝑊 for group 1 under the null hypothesis. The rejection region will
be either at one end or both ends of the bell-shaped curve, depending
on the alternative hypothesis. Large sample approximation can also be
performed using mean and variance of this distribution.
3

Table 3
Lower and upper significance levels of W(1). m and n are sample sizes of the two
group [23]. The numbers from .995 to .005 are significant levels. Only m = 2 are
presented here.

m n .995 .99 .975 .95 .05 .025 .01 .005

2 5 – – – 2 – – – –
2 6 – – – 2 8 – – –
2 7 – – – 2 9 – – –
2 8 – – 2 2 10 10 – –
2 9 – – 2 2 11 11 – –
2 10 – – 2 2 12 12 – –
2 11 – – 2 2 13 13 – –
2 12 – – 2 2 14 14 – –
2 13 – 2 2 2 14 15 – –
2 14 – 2 2 2 15 16 16 –
2 15 – 2 2 2 16 17 – –
2 16 – 2 2 2 17 17 18 –
2 17 – 2 2 2 18 19 – –
2 18 – 2 2 2 19 19 20 –

Table 4
Lower and upper significance levels of W(2). m and n are sample sizes of the two
group [23]. The numbers from .995 to .005 are significant levels. Only m = 5 are
presented here.

m n .995 .99 .975 .95 .05 .025 .01 .005

5 5 – 9 10 10 20 20 21 –
5 6 9 9 10 11 22 23 24 24
5 7 9 10 11 11 24 24 25 26
5 8 10 10 11 12 26 26 28 29
5 9 10 11 12 13 27 28 29 30
5 10 10 11 12 14 29 30 32 32
5 11 11 12 13 14 31 32 33 34
5 12 11 12 14 15 33 34 36 37
5 13 11 13 14 16 34 36 37 38
5 14 12 13 15 16 36 38 40 41
5 15 12 14 15 17 38 40 41 43

Table 5
The 𝑛(𝑛 + 1)∕2 Walsh means for a sample size of 𝑛 observations and 𝑛 = 5 [23].

– 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5

𝑌1 𝑌1
𝑌1+𝑌2

2
𝑌1+𝑌3

2
𝑌1+𝑌4

2
𝑌1+𝑌5

2

𝑌2 – 𝑌2
𝑌2+𝑌3

2
𝑌2+𝑌4

2
𝑌2+𝑌5

2

𝑌3 – – 𝑌3
𝑌3+𝑌4

2
𝑌3+𝑌5

2

𝑌4 – – – 𝑌4
𝑌4+𝑌5

2

𝑌5 – – – – 𝑌5

The table below is from the original published paper in 1960 that
displays critical values for the 𝑊 statistic for both upper and lower tails
in different scenarios (see Tables 3–5).

When the medians of the two groups are unequal, the Ansari–
Bradley test is not valid. To fix this problem one can manually make
the two medians equal by estimating the medians of both groups and
shifting all the data points accordingly. A common way to estimate the
median is to find the median of Walsh’s means. We recall that Walsh
means are the means of any 2 observations (with replacement). As an
example, if we have 5 observations, 𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5, the Walsh means
re shown in Table 5.

However, some statisticians argue that manipulating medians is
ot a distribution-free practice. With such concerns, one may consider
ther methods introduced below. Nevertheless, this test can be carried
ut in R using the function 𝑎𝑛𝑠𝑎𝑟𝑖.𝑡𝑒𝑠𝑡 by specifying the two samples,

alternative hypothesis, using large sample approximation or not, and
the confidence level.

2.1.2.2. Moses rank-like test [24]. Another test for evaluating equality
of variances from different groups is the Moses rank-like test developed
by Moses [24]. Assumptions for this test are similar to Ansari–Bradley
Test except that medians are now unequal and unknown. The test
proceeds as follows:
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1. Divide observations in the 2 groups into subsets of equal size k;
discard additional observations;

2. Calculate 𝐷𝑖 =
∑𝑛𝑖

𝑗=1(𝑋𝑖𝑗 − �̄�𝑖)2, the sum of squares for the 𝑖th
subset;

3. Perform a Wilcoxon’s Rank Sum Test on the two groups of D’s.
Test results may vary depending on the division of the observations.

A problem with this approach is that the group membership may
be manipulated to achieve certain results. This test was developed
at a time when computing power was limited, and it is now highly
recommended to do this test repeatedly, such as using bootstrap.

2.1.2.3. Jackknife test [25]. The assumptions for this test are that
observations from the two groups A and B are independent and they
come from continuous distributions with finite 4th moment (Kurtosis).
Assume group A has sample size 𝑛1 and group B has sample size 𝑛2. If
the goal is to estimate a parameter, it does so by systematically leaving
out each observation from the data set and calculating the estimate,
and then finding the average of these calculations. The procedure for
the test is as follows:

1. Find the leave-one-out sample variance for group 𝐴, marked as
𝐷(𝑖), 𝑖 = 1, 2,… , 𝑛1. Denote the sample variance for group A by 𝐷0

2. Let 𝑆(𝑖) = 𝑙𝑛(𝐷𝑖), let 𝑆(0) = 𝑙𝑛(𝐷(0)), and let 𝐴𝑖 = 𝑛1𝑆(0)−(𝑛1−1)𝑆(𝑖).
3. Let �̄� =

∑𝑛1
𝑖=1

𝐴𝑖
𝑛1

and let 𝑉𝐴 =
∑𝑛1

𝑖=1
(𝐴𝑖−�̄�)2

𝑛1(𝑛1−1)
4. Repeat the above procedure for Group 𝐵, and obtain �̄� and 𝑉𝐵
5. The test statistic for the null hypothesis is 𝑄 = �̄�−�̄�

√

𝑉𝐴+𝑉𝐵
and

under the null hypothesis, Q is approximately standard normal, or to
be more exact, is distributed as a 𝑡 distribution with 𝑛1 + 𝑛2 −2 degrees
of freedom. This test can also give us an estimate of the ratio of two
group’s variances, 𝛾2 = 𝑒�̄�−�̄�.

To perform this test in R, one may use the function 𝑚𝑖𝑙𝑙𝑒𝑟.𝑗𝑎𝑐𝑘 in the
package 𝑛𝑜𝑛𝑝𝑎𝑟. For non-parametric two sample location comparison,
unequal variances may reduce robustness of the Wilcoxon Rank Sum
Test and is thus not recommended. We suggest the Fligner–Policello
location test, which is a robust version of Mann–Whitney U test.

2.2. Multi-sample tests

There are clinical trials where patients are randomized to more
than two treatment arms. We now discuss tests to compare variances
of observations from multiple groups. Unless otherwise specified, the
null hypothesis is equal variances across all groups and the alternative
hypothesis is that variances are not all equal across the groups. All tests
are performed at 𝛼 level.

2.2.1. Parametric tests
2.2.1.1. Levene’s test [26]. This test was developed by Levene and the
test assumes that data 𝑌𝑖𝑗 ’s are independent and normally distributed.
The test does not depend on the sample variances and so it is not very
sensitive to outliers.

Using the notation in Section 1, let 𝑍𝑖𝑗 = |𝑌𝑖𝑗 − 𝑌𝑖|, let �̄�.. =
∑𝑘

𝑖=1
∑𝑛𝑖

𝑗=1 𝑍𝑖𝑗∕𝑁 and let 𝑍𝑖. =
∑𝑛𝑖

𝑗=1 𝑍𝑖𝑗∕𝑁𝑖 for group 𝑖. The test statistic
for variance homogeneity across groups is

𝑊 =
(𝑁 − 𝑘)
𝑘 − 1

∑𝑘
𝑖=𝑘 𝑛𝑖(𝑍𝑖. −𝑍..)2

∑𝑘
𝑖=𝑘

∑𝑛𝑖
𝑗=1(𝑍𝑖𝑗 −𝑍𝑖.)2

which under the null hypothesis, has a F-distribution with numerator
degree of freedom 𝑘−1 and denominator degree of freedom 𝑁−𝑘. At the
𝛼 level of significance, we reject the null hypothesis if 𝑊 > 𝐹𝛼,𝑘−1,𝑁−𝑘.

The test statistic has a very similar form to the F-test in ANOVA
setting if we re-write the test statistic as

𝑊 =

∑𝑘
𝑖=1 𝑛𝑖(𝑍𝑖.−𝑍..)2

𝑘−1
∑𝑘

𝑖=1
∑𝑛𝑖

𝑗=1(𝑍𝑖𝑗−𝑍𝑖.)2

𝑁−𝑘

,

where the numerator is the between group mean sum of squares of 𝑍
and the denominator is the within group mean sum of squares of 𝑍.
4

Fig. 1. Results in the STATA output from the one-way command contains the Bartlett’s
test result [28].

Similar to the ANOVA situation, the 𝑊 test statistic is also compared
to the 𝐹 distribution.

To perform the test in STATA, one may either use the command
𝑟𝑜𝑏𝑣𝑎𝑟, and the 𝑤0 statistic in the output gives results of Levene’s test.
In R, one may use the 𝑙𝑒𝑣𝑒𝑛𝑒.𝑡𝑒𝑠𝑡 function in the package 𝑙𝑎𝑤𝑠𝑡𝑎𝑡, and
specify location = ‘‘ mean’’ to perform a Levene’s test.

2.2.1.2. Bartlett’s test [27]. The test statistic of Bartlett’s test is [27]:

𝜒2 =
(𝑁 − 𝑘) ln (𝑆2

𝑝 ) −
∑𝑘

𝑖=𝑖(𝑛𝑖 − 1)𝑙𝑛(𝑆2
𝑖 )

1 + 1
3(𝑘−1) (

∑𝑘
𝑖=1(

1
𝑛1−1

) − 1
𝑁−𝑘 )

.

The rationale of this test can be seen as rewriting the denominator of
this test statistic as ∑𝑘

𝑖=1(𝑛𝑖−1)(𝑙𝑛(𝑆2
𝑝∕𝑠

2
𝑖 )), which is the sum of log ratio

of pooled sample variance and each group’s sample variance, weighted
by each group’s sample size minus 1.

In R, one may obtain the test result using the command 𝑏𝑎𝑟𝑡𝑙𝑒𝑡𝑡.𝑡𝑒𝑠𝑡.
In STATA, the result for Bartlett’s test for equal variance will be auto-
matically displayed in the output after the one-way ANOVA command
Here is an example, where ‘‘weight’’ is the continuous outcome and
‘‘treatment’’ designates group membership (see Fig. 1).

2.2.1.3. Hartley’s test [29]. Hartley [29] proposed a test to ascertain
equality of variances across groups in a randomized trial. It requires
that data are independent, normally distributed and the sample size in
each group is equal. The test statistic is the ratio of the largest group
variance to the smallest group variance.

𝐹𝑚𝑎𝑥 =
estimated largest group variance

estimated smallest group variance .

Under the null hypothesis, the value of the test statistic 𝐹𝑚𝑎𝑥 is
compared to a critical value in a special 𝐹𝑚𝑎𝑥 table, which depends
on the number of treatments and the degree of freedom, which is the
common sample size in each group minus 1. If 𝐹𝑚𝑎𝑥 is smaller than
the critical value, we conclude homogeneity; otherwise, we conclude
non-homogeneity.

The table below lists critical values of the Hartley’s test statistic 𝐹𝑚𝑎𝑥
for different sample sizes and type 1 error rates at 𝛼 = 0.05 and 𝛼 = 0.01
level. When the sample size for each group goes to infinity, meaning
that the sample variance for each group is the true variance, the critical
value will be 1. The R package 𝑆𝑢𝑝𝑝𝐷𝑖𝑠𝑡𝑠 has a distribution called
𝑚𝑎𝑥𝐹𝑟𝑎𝑡𝑖𝑜, and provides the critical values by specifying the number
of groups and the common sample size for each group.

Jesse (2010) provided an algorithm to find critical values of Hart-
ley’s test and demonstrated the possibility of applying Hartley’s test to
an unbalanced design [30] (see Table 6).

2.2.1.4. Cochran’s C test [31]. This test is among the earliest and
was proposed by Cochran to test whether variance from one group
is relatively large compared with other groups; so in some sense, it
is an outlier test. The assumptions for the tests are that data are
independent and normally distributed and all groups have equal size.
The idea of this test is to compare the variance of one group to all the
other groups [31]. Unlike other tests we have discussed above, this test
detects one exceptionally large variance value at a time and does not
test for overall homogeneity.
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Table 6
Critical values of 𝑓𝑚𝑎𝑥 for Hartley’s homogeneity of variance test [30]. The value 2 to
5 on the top are the number of treatments. The number 2 to 5 on the left are degrees
of freedom. The upper value for a specific treatment and a specific degrees of freedom
is for 𝛼 = .05, and the lower value is for 𝛼 = .01. For the unequal sample size, use the
smaller of the degrees of freedom for the two variances being compared.

2 3 4 5 ...

2 39.0 87.5 142 202 ...
199 448 729 1036 ...

3 15.4 27.8 39.2 50.7 ...
47.5 85.0 120 151 ...

4 9.6 15.5 20.6 25.2 ...
23.2 37.0 49.0 59 ...

5 7.2 10.0 13.7 16.3 ...
... 14.9 22.0 28.0 33 ...

The test statistic is the sample variance of one group divided by the
um of the sample variances from all groups, i.e.

𝑗 =
𝑠2𝑗

∑𝑘
𝑖=1 𝑠

2
𝑖

.

If 𝑁 is the total sample size and n is the common group size, the critical
alue for the above one-sided 𝛼-sized test is [32]

𝑈𝐿(𝛼, 𝑛,𝑁) = 1 + 𝑁 − 1
𝐹 ( 𝛼

𝑁 , (𝑛 − 1), (𝑁 − 1)(𝑛 − 1))
.

If the test statistic 𝐶𝑗 exceeds this upper bound, we conclude that the
ariance for group 𝑗 is significantly larger than other groups. The code
or Cochran’s C test is available in the R package 𝐺𝐴𝐷 and provides
he test result easily using the command 𝐶.𝑡𝑒𝑠𝑡.

When there may be unequal variances among multiple groups,
elch’s ANOVA test is usually used instead of the standard ANOVA test

or making inferences on the means of the groups. Following notation
n Section 1, let 𝑤𝑖 = 𝑛𝑖∕𝑠2𝑖 be the ‘‘weight’’ for the 𝑖th group, let

=
∑𝑘

𝑖=1 𝑤𝑖, and let 𝑌 ′ =
∑

𝑖=1 𝑤𝑖𝑌𝑖∕𝑤. Then the test statistic for
elch’s ANOVA is

=
1

𝑘−1
∑𝑘

𝑖=1 𝑤𝑖(𝑌𝑖. − 𝑌 ′)2

1 + 2(𝑘−2)
𝑘2−1

∑𝑘
𝑖=1(

1
𝑛𝑖−1

)(1 − 𝑤𝑖
𝑤 )2

.

Under the null hypothesis of equal means, [33] showed that this
statistic has a F(k-1, df) distribution where df is

𝑑𝑓 = 𝑘2 − 1
3
∑𝑘

𝑗=1(
1

𝑛𝑗−1
)(1 − 𝑤𝑗

𝑤 )2
.

To perform this test in STATA, one may use the function 𝑓𝑠𝑡𝑎𝑟
r 𝑤𝑡𝑒𝑠𝑡; in R, one may specify var.equal=FALSE as an option in the
ne-way ANOVA command 𝑜𝑛𝑒𝑤𝑎𝑦.𝑡𝑒𝑠𝑡.

.2.2. Non-parametric tests

.2.2.1. Brown-Forsythe test [34]. Brown-Forsythe test is essentially
evene’s test using medians instead of means from the various groups.
n this case 𝑍𝑖𝑗 = |𝑌𝑖𝑗 − 𝑌𝑖.|, where 𝑌 𝑖. is the median of 𝑖th group. In
TATA, the 𝑤50 statistic in the output of Levene’s test gives the result
f the Brown-Forsythe test; in R, one may use the 𝑙𝑒𝑣𝑒𝑛𝑒.𝑡𝑒𝑠𝑡 function

in the package 𝑙𝑎𝑤𝑠𝑡𝑎𝑡, and specify location=‘‘median’’ as an option.
To adjust for non-normal data, one can also use trimmed means

hen performing Levene’s test. In this case, we use 𝑍𝑖𝑗 = |𝑌𝑖𝑗 − 𝑌 ′
𝑖. |

instead, where 𝑌 ′
𝑖. is the trimmed mean of observations from the 𝑖th

group after excluding the upper and lower extreme values For example,
25% of the observations in the upper and lower tail ends of the data
may be excluded when the trimmed mean is computed.

2.2.2.2. Variations of Levene’s test [35]. Nordstokke and Zumbo devel-
oped a non-parametric Levene’s test, where ranks of all observations
are used instead of the original values [35]. They showed that their
test is generally more robust than other tests under the null hypothesis.
In R, one may generate a rank variable for all observations first before
5

Levene’s test on the ranks is performed.
Table 7
A sample of observations from the ‘‘coagulation’’ data set [37].

Patient Thromb.count ADP TRAP Group

7 1.0456323 0.97796 1.3744736 B
8 0.8512342 0.8992643 0.4320755 H
9 1.2339782 1.1099057 0.580081 H
10 1.2443439 1.2429597 0.7925148 B
11 0.8874788 0.9132075 0.5672504 B
12 0.8578994 0.8609023 0.8244653 S
19 0.7236927 0.7753389 0.4151449 S

2.2.2.3. Fligner–Killeen test [36]. Fligner–Killeen test is a test for equal-
ity of variance among multiple groups, and is believed to be robust
to the normality assumption. We first rank |𝑌𝑖,𝑗 − 𝑌𝑖| where 𝑌𝑖 is the

edian for 𝑖th group. Then we assign increasing scores to each rank 𝑚,
iven by

𝑁,𝑚 = 𝛷−1(
1 + 𝑚

𝑁+1
2

),

sing the inverse normal distribution 𝛷−1. We next define the mean
ncreasing score for group 𝑖 by

�̄�𝑖 =
1
𝑛𝑖

𝑛𝑖
∑

𝑖=1
𝑎𝑁,𝑚𝑖,𝑗

,

where 𝑎𝑁,𝑚𝑖𝑗
is the increasing rank score for 𝑗th observation in the 𝑖th

group. Let the overall mean increasing score be

�̄� = 1
𝑁

𝑁
∑

𝑚=1
𝑎𝑁,𝑚,

nd let

2 = 1
𝑁 − 1

𝑁
∑

𝑚=1
(𝑎𝑁,𝑚 − �̄�)2.

he test statistic is

2
0 =

∑𝑘
𝑖=1 𝑛𝑖(�̄�𝑖 − �̄�)2

𝑉 2

and under the null hypothesis of equal variances across all groups, 𝑥2𝑜
has a 𝜒2 distribution with k-1 degrees of freedom.

Since all data points are ranked by their closeness to the median
and the rank is mapped to a normal density, extreme values would not
affect the test statistics and therefore the test is robust against non-
normality. In R, results from this test can be obtained using the function
𝑓𝑙𝑖𝑔𝑛𝑒𝑟.𝑡𝑒𝑠𝑡.

For non-parametric multiple sample location comparison, one may
use Kruskal–Wallis test to compare mean ranks instead of medians.

3. Clinical applications

We use a clinical data set called ‘‘coagulation’’ from the R package
𝑆𝑖𝑚𝐶𝑜𝑚𝑝. The description of the data set reads ‘‘three sets of extra-
corporeal circulation in heart-lung machines: treatments H and B, and
standard S. Twelve (S and H each) and eleven (B) male adult patients
were enrolled in the trial. The analysis is based on a set of laboratory
parameters restricted to the blood coagulation system, characterized by
three primary endpoints (each as quotient from post- and pre-surgery
values). Higher values indicate a better treatment effect. For more
details on this study, see Kropf et al. (2000)’’ (see Table 7).

We want to compare the mean response for the three endpoints
(Thromb.count, ADP, TRAP) among the 3 treated groups. Preliminary
examinations show that the distributions of Thromb.count and ADP are
quite normal for each group. Given this information, we accordingly
choose our methods to test the equality of variances in the 3 groups
(see Table 8).

The variables Thromb.count and ADP seem to be normally dis-

tributed, thus we can also do Bartlett’s test for these two variables.
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Table 8
Test for equal variance for the 3 endpoints [14].

Variable Test applied p-value Conclusion

Thromb.count Levene’s test 0.2499 Cannot reject equal variance null hypothesis
ADP Levene’s test 0.0259 Variance not all equal
TRAP Brown-Forsythe test 0.9922 Cannot reject equal variance null hypothesis
Table 9
Bartlett’s test for equal variance [14].

Variable Test applied p-value Conclusion

Thromb.count Bartlett’s test 0.2264 Cannot reject equal variance null hypothesis
ADP Bartlett’s test 0.0058 Variance not all equal
The table below shows that results from Bartlett’s test give the same
conclusions as Levene’s test (see Table 9).

Now that we have verified the heterogeneity for the ADP variable,
we know that we should use Welch’s ANOVA to make inferences.
Without assuming equality of variance, Welch’s ANOVA on ADP versus
treatment groups gives a 𝑝-value of 0.0452; but when the equality of
variance is assumed, ANOVA on ADP versus treatment groups gives a
𝑝-value of 0.05312. In this particular case, a significant result could be
dismissed if the researchers applied the wrong test.

4. Simulations

Objective of the simulations

The goal of the simulations is to figure out the test that can best
detect the difference in variances when the two samples consist of the
same sample size, from the same population, and only differ in their
variances. We also aim to investigate which tests are more likely to
detect that difference in simulated data from different kinds of distri-
butions (normal, skewed normal, heavy-tailed), in different variance
differences between or among populations, or in different sample sizes.

Design of the simulations

The whole process is conducted using R Studio. Three types of
distributions of populations are involved in this process including nor-
mal distribution, t-distribution, and skewed normal distribution. The
following sections would elaborate in detail on how parameters are
chosen for each specific distribution.

For two-sample tests, one run includes generating two sets of ran-
dom numbers of a specific sample size from two specific distributions
respectively that only differ in variance. After 2000 runs, there would
be 2000 pairs of data. Then, different tests described in Section 2
would be applied to each pair of the data, and the number of times
that a test successfully detects a variance difference between a pair
would be recorded for each test. A higher number would indicate that
the specific test is more likely to detect a variance difference (at .05
critical region) under a specific sample size, distribution, and variance
difference. The variance difference is indicated by their ratios, with
1:1 indicating two distributions have the same variance. The procedure
of 2000 simulation runs and applying different tests to each of them
are repeated for variance ratios of 1:1.5, 1:2, 1:4, and 1:9 when data
are simulated from normal or skewed normal distributions. Note that
we could not directly simulate t-distribution with the same mean but
different variance ratios. Pairs of data simulated from t-distributed
populations have degrees of freedom of 3:12, 3:6, and 3:4; respectively,
they would have variance ratios of 5:2, 2:1, and 3:2. Since the function
used to simulate data from t distributions set the center location of 0 by
default, we generated pairs of data come from almost same heavy-tailed
populations with the same mean but different variances. Then, for each
unique distribution, with a specific variance ratio, the 2000 simulation
6

runs are done repeatedly for a sample size ranging from 11 to 100.
For multi-sample tests, the procedure is pretty similar to the two
sample ones with some small changes. Note that during each run this
time, only three sets of random numbers are generated to find out
a test’s ability to detect variance differences among multiple groups
because the whole simulation process would take too much time.
Since now we have three sets of data, the variance ratios of them
become 1:1:1.5, 1:1:2, 1:1:4, and 1:1:9 for normal and skewed normal
distributions. For heavy-tailed distributions, the ratios of degrees of
freedom are 3:12:12, 3:6:6, and 3:4:4, with variance ratios 5:2:2, 2:1:1,
and 3:2:2, respectively.

Despite variance ratios, for data generated from heavy-tailed distri-
butions, we further examine if different tests would detect the variance
difference when the heaviness of tails changes. The shape parameter in
the function we used to generate data from heavy-tailed distributions
would help us to change the heaviness of their tails. We consider shape
= 10 and shape = 50 to present separate results.

The results would be presented in plots with the 𝑥-axis indicating
the sample sizes data generated from a specific distribution and the
𝑦-axis indicating the proportion of correct rejection, as an approxima-
tion of power, out of 2000 runs. Section 4.1.1 would give a detailed
explanation of one plot, and the remaining sections in Section 4 would
present critical results from simulations.

Before final decision on which tests are suitable in each scenario,
plot of the proportion of false rejection would also be presented as
an approximation of type one errors of different tests. The design of
the simulations that generate these information are pretty similar to
the design described in the previous paragraphs, except that now both
mean and variance are equal for each pair of samples. Note that for t
distributions, all samples would be simulated from t distribution with
a degrees of freedom of three to control for variance. Based on both
power and error approximation, a summary table would be provided at
Section 4.4 to illustrate what tests should be used in different scenario.

To make a easy visualization, all plots would only report the test
with largest power or lowest error for the variation of a specific test.
For example, four variations of Levene’s tests are performed during the
simulation, Levene’s test using trimmed mean, mean, median, and non-
parametric method. In Fig. 2, only the result of Levene’s test using mean
would be reported, since it has relatively higher power compared with
other forms of Levene’s test.

4.1. Two-sample simulations

For the two-sample scenario, there are 11 tests, including multi-
sample methods and non-parametric methods: F test, Levene’s test
using the sample mean, Levene’s test using sample median, Levene’s
test using trimmed mean, non-parametric Levene’s test, Bartlett’s test,
Ansari–Bradley test without median adjustment, Ansari–Bradley test
with median adjustment, Jackknife using normal approximation, Jack-
knife using exact t-distribution, and Fligner–Killeen test. Levene’s test
using trimmed mean ignored the upper 25 percent and lower 25 percent
of data when calculating the mean. For a given sample size, test results
yielding the best rejection rates are tests that have the largest value
on the 𝑦-axis in the figures. Note that approximate Jackknife and exact

Jackknife are essentially the same tests using different rejection rules.
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Fig. 2. Proportion of correct rejection, or power, of different tests out of 2000 runs.
Two normal distributions have same means, but differ in variance ratio(1:1.5). Sample
size ranges from 11 to 100.

Fig. 3. Proportion of correct rejection, or power, of different tests out of 2000 runs.
Two 𝑇 distributions have degrees of freedom 3 and 4. Sample size ranges from 11 to
100.

4.1.1. Data with normal distribution
The 𝑥-axis in Fig. 6 is the sample size of two sets of data simulated

from two normal distributions with the same mean but different vari-
ances. The variance ratio of the two distributions here is 1:1.5. The
𝑦-axis indicates the proportion of correct rejection out of 2000 runs
as an estimation of power of each test. The higher this number, the
more powerful the test is in terms of detecting variance heterogeneity.
For example, with a sample size of 50, the estimated power of F-test
is .288 out of a total of 2000 runs. On the other hand, the power of
Fligner test is only .201. This means F-test is a more powerful test in
terms of detecting variance differences at this point.

The following paragraphs discuss simulation results for the cases
when there are large differences in the variances and the sample sizes
are larger than 50 approximately. They are based on observations from
Figures 2, 12, 13, 14 and also Figures numbered larger than 14 which
can be found in the supplemental materials.

For both large variance ratios (1:9) and large sample sizes (n larger
than 50), almost all tests reject the null hypothesis of equal variance
for all iterations. As either sample size or variance ratio decreases, F-
test, Bartlett’s test, and Jackknife test become more powerful than all
other tests. In an extreme situation of both small sample size (n smaller
than 20) and small variance ratio (1:1.5), Levene’s test using mean as
the parameter becomes comparably powerful compared with the other
three.

4.1.2. Data with heavy tailed(T) distribution
The variance for the 𝑡 distribution with 𝑣 degrees of freedom,

denoted by 𝑡(𝑣) is 𝑣 if 𝑣 > 2. This means that the variance for 𝑡(3) is
7

(𝑣−2)
Fig. 4. Proportion of correct rejection, or power, of different tests out of 2000 runs.
Two skewed normal distributions have same means, but differ in variance ratio (1:1.5).
Sample size ranges from 11 to 100. Shape = 10.

3, for 𝑡(12) it is 1.2, for 𝑡(6) it is 1.5, and for 𝑡(4) it is 2. By comparing
two data sets from two different t distributions, we can simulate the
scenario where tails are heavy and variances are unequal. Fig. 3, 15,
and 16 support findings in the following paragraphs.

For such distributions, the F-test and Bartlett’s test could not be
applied because the distribution of data is not normal. However, Lev-
ene’s tests are still valid since the assumption is approximate normality.
Results show that the Jackknife method has always been the best test to
identify differences in variances across groups and sample sizes. When
the sample size is small, the exact Jackknife method does better than
the approximate Jackknife.

4.1.3. Data with skewed normal distribution
In this simulation, the 𝑠𝑛 package in R was used to generate skewed

normal data. The skewed normal distribution is characterized by three
parameters: location (𝜉), scale (𝜔), and shape (𝛼). The variance of a
skewed normal distribution is 𝜔2(1 − 2𝛼2

(1+𝛼2)𝜋 ) [38]. Two data sets with
skewed normal distribution, with all the parameters being the same
except for 𝜔 were created. To compare performances of these tests
under different levels of skewness, two different values of 𝛼, 10, and
50 were separately simulated.

Please refer to Fig. 4, and figures from 17 to 23 for the following
paragraph.

Given the large variance ratio and sample size, Levene’s test using
trimmed mean has the highest rejection rates; when variance ratio and
sample size decrease, the Jackknife method becomes the most powerful
test. Levene’s test using the trimmed mean is constantly better than
Levene’s test using the median. Ansari–Bradley test is almost unusable
without adjusting the median for skewed normal data; despite the
controversy of manually adjusting the median for the Ansari–Bradley
test, this test performs well when the variance ratio is small. Note that
as skewness increases, the rejection rates for all tests decrease for all
variance ratios.

4.2. Three-sample simulations

4.2.1. Data with normal distribution
To test for equal variances among 3 groups of normally distributed

data, there are at least eight available tests to use: Levene’s test us-
ing the sample mean, Levene’s test using sample median, Levene’s
test using trimmed mean, non-parametric Levene’s test, Bartlett’s test,
Fligner–Killeen test, Hartley’s test, and Cochran’s test. The data are
generated in such a way that the variances for two of the three
groups are equally small while the third group has a larger variance.
Using their rejection rates, we can assess these tests’ ability to identify
unequal variances among the groups.
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Fig. 5. Proportion of correct rejection, or power, of different tests out of 2000 runs.
Three normal distributions have same means, but differ in variance ratio (1:1:1.5).
Sample size ranges from 11 to 100.

Fig. 6. Proportion of correct rejection, or power, of different tests out of 2000 runs.
Three 𝑇 distributions with degrees of freedom 3, 4, and 4. Sample size ranges from
11 to 100.

Please refer to Fig. 5, Fig. 24, Fig. 25, and Fig. 26 for the following
paragraph.

In most cases, the results show that Cochran’s test is the most power-
ful test to detect differences in the variances, followed by Bartlett’s test
and Hartley’s test. As the variance ratio and the sample size decrease,
Hartley’s test starts to lose its advantage, and Levene’s test using
sample means becomes preferable. Cochran’s test and Levene’s test
using sample means have the highest rejection rate when the sample
size is small.

4.2.2. Data with heavy-tailed distribution
In this simulation, the group with the largest variance has a t-

distribution of 3 degrees of freedom, and the other two groups are
t-distributed with degrees of freedom of 12, 6, or 4. Hartley’s test and
Cochran’s test cannot be used here due to the non-normality of the data.

Figures 6, 27, and 28 provide support for the findings describe in
the following paragraph.

Levene’s test using sample mean is always the best test to use. With
concerns of assumption violation or test validity, one can use Levene’s
test using trimmed mean to get rid of heavy tails. Simulation results also
show that the new non-parametric Levene’s test works well in detecting
small variance differences in heavy-tailed data.

4.2.3. Data with skewed normal distribution
In this simulation, I use the sn package in R to generate skewed

normal data and test different combinations of 𝜔 and 𝛼. Two groups
have the same skewed normal distribution, and the third group has the
8

Fig. 7. Proportion of correct rejection, or power, of different tests out of 2000
runs. Two skewed normal distributions have same means, but differ in variance ratio
(1:1:1.5). Sample size ranges from 11 to 100.

same parameters except for larger 𝜔. In this scenario only 4 tests are
available to use: Levene’s test using sample median, Levene’s test using
trimmed mean, nonparametric Levene’s test, and Fligner–Killeen test.

Fig. 7 and those from Figs 29 to 35 provide support that Levene’s
test using trimmed mean is always the most effective test to use.
Fligner–Killeen test, although not as effective as Levene’s test using
trimmed mean, performs fairly well in detecting small variance ratios.

4.3. Examining type one errors in variance homogeneity tests

This subsection briefly examines how type 1 error rates are affected
by variance heterogeneity when variance homogeneity tests were as-
sumed. From results in our simulation, we graph the percentage of false
rejection versus sample size in Fig. 8, and in Figs. 36 to 39, we obtain
the following conclusions.

For a two-sample comparison in normal distributions, all tests have
error rates below .05 when sample size is large. When the sample size
is small, the error rates Levene’s test and Jackknife test are enlarged
compared to other tests. For skewed distributions, most of the tests
have error rates around .06 at high sample sizes. Bartlett’s test have
error rates of almost .1 across most sample sizes, which are larger than
any other tests at any sample sizes. In 𝑇 distributions, available tests
all have similar error rates around .05 at most sample sizes, except
Jackknife test, whose error rates fluctuate around .08.

For a three-sample comparison in normal distributions, all tests have
error rates below .05 when sample size is large. When sample size is
small, the error rates of Levene’s tests are enlarged compared to other
tests. In skewed distributions, Levene’s test using median has smaller
error rates across other tests for any sample sizes. This conclusion is
similar for t distributions.

4.4. Summary of simulation results

In this subsection, we use our simulation results and offer some
guidance on what tests to use for testing variance homogeneity in
during situations in clinical trials. The figure below succinctly displays
a suggested roadmap to arrive at an appropriate test depending on the
number of treatment groups involved, the anticipated type of distribu-
tion of the data, the variance ratios and sample sizes. One should read
Fig. 9 from left to right across the various scenarios and arrive at a
recommended test.

Generally, the Jackknife test is one test that one should use in
two sample comparisons in terms of power. However, when consid-
ering error rates, Jackknife would not be a good choice for data
with low sample sizes and heavy tails. For multi-sample comparisons,
Levene’s test is a better choice for skewed normal data and heavy-tailed
data compared to others. When multiple groups of data are normally
distributed, the Bartlett test and Cochran test become great choices.
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Fig. 8. Proportion of false rejection, or error, of different tests out of 2000 runs. Two
normal distributions with variance ratio 1:1. Sample size ranges from 11 to 100.

Fig. 9. Our suggested roadmap when to use which tests for homogeneity of variance.

Fig. 10. Shiny app page of choosing appropriate tests for homogeneity of variance and
applying those tests to someone’s own data sets [39]. The number presented on the
bottom right is the 𝑝-value of a specific test result of homogeneity of variance.

5. Shiny app

In this section, we describe the Shiny app and the R code that
we have created to generate some of the simulation results. Readers
may modify and run the code to replicate some results in the paper or
generate new simulation results.

The figure below is a sample page from the app that helps readers
select and perform a test of homogeneity (see Fig. 10).

The left column on this shiny page shows which tests are great
to use in different sample sizes, different distributions, and different
numbers of samples to compare. On the right side, one can upload a
data set, and apply a specific test of homogeneity of variance from the
left column and observe whether the test returns a significant result.
Further details of the app are available at https://github.com/Jooooooe
eee/Test-of-Homogeneity-of-Variance. For direct use of this app, please
visit https://yuhangzhou533.shinyapps.io/Variance-Homogeneity/?_ga
=2.78666452.1311773059.1677443373-585585766.1677443373.
9

Fig. 11. First 15 rows of a small subset of the longitudinal data set from the Clements’
study [14]. Each patient has a unique medical record number with up to five visit dates
with visit 1 as the baseline visit. The skintot score is the main outcome of interest and
clearly patients have missed visits. The table shows four patients who were randomized
to the group with a high dose of D-pen (Group = 1).

We now illustrate how to analyze a subset of the real data from a
two-arm clinical trial where Scleroderma patients were randomized to
receive a high dose of D-Penicillamine (group = 1) or a low dose of D-
Penicillamine (group = 0). The protocol required that patients showed
up every 6 months for 2 years after the first baseline visit, resulting
in a total of 4 visits for the duration of the study after the baseline
visit. The main outcome is the skintot (skin thickness); the lower the
score the less the patient is disabled by the disease. The main research
question in the study was whether high dose of D-pen improves the
skintot scores more significantly than a low dose of D- Penicillamine at
12th month. Details of the trial are available in Clements, el at. [40].

Conventionally, to test for a treatment effect of a drug, a t-test may
be used to compare the average skin total scores between the two
groups at each visit, assuming responses from the two groups haves
equal variance. More frequently, the change scores between the two
groups are compared the end of the trial. For example, if the Jackknife
test was employed to test homogeneity of variance at each time point,
the app, after appropriate input, provides p-values of 0.27, 0.20, 0.28,
0.03, 0.28 respectively at each of the five time points. In this case,
when using the t-test in R, it should be specified with equal variance =
‘‘FALSE’’ for the 4th visit (see Fig. 11).

6. Summary

There is a huge literature on different ways to assess whether
there is heterogeneity in the data and this paper selectively focused
on some homogeneity tests the are relevant to clinical trials. There
are other useful distribution-free methods, including Lepage’s Rank
test to test for equal location and dispersion of two samples simul-
taneously and Kolmogorov–Smirnov’s test to compare distributions of
two groups. Lepage’s rank test combines Wilcoxon’s test and Ansari–
Bradley’s statistic, and this new test is well-known for its consistency
between exact and asymptotic estimates [41]. Kolmogorov–Smirnov’s
test for distributions was developed based on smoothed distribution
functions [42,43]. Recent research has improved this test based on
the Plachky–Steinebach theorem [43]. Researchers may consult related
literature should they need to perform these tests for their study.

We note that there are other papers that compare relative merits
of different methods for testing homogeneity of variance. For example,
Rousson conducted an analysis of different variance homogeneity tests,
its focus was on two-sample comparisons [44] and other papers tend to
emphasize on normal data. This review aims to provide general advice
on use of various methods to assess heterogeneity in clinical data using
simulation-based results.

In the 2-sample scenarios, the Jackknife test, as a non-parametric
method, works surprisingly well even when the data is normally dis-
tributed. When the sample size is large enough and the distribution is
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normal, we recommend the F-test or Bartlett’s test. When the distribu-
tion is skewed normal or heavily tailed, the sample size is too small
to ascertain the normality assumption, or the goal is to detect a small
difference in variances, the Jackknife test seems to be a good tool.

In multi-sample scenarios, Cochran’s C test is preferred for normally
distributed data. For heavy-tailed or skewed normal data, some ad-
justed variants of Levene’s test (using trimmed mean or median) are
preferable, which partially coincides with David and Brunos’ result
for stating a preference for median [45]. Fligner–Killeen test may be
preferable when one wishes to detect a small difference among the
group variances of skewed normal data.

In conclusion, we have reviewed tests of homogeneity of variances
of responses from patients across treated groups in clinical trials and
used a simulation to investigate the robustness of the various tests to
the homoscedasticity assumption. Based on our simulation results, we
found that among the tests compared in the paper, there are some
that seem preferable to others. For two-sample problems, the Jackknife
method tends to outperform others regardless of the variance ratio or
the sample size. For more than two groups, Barlett’s test and Cochran’s
test are better choices when data are nearly normally distributed;
otherwise, Levene’s test appears to be a better choice for non-normally
distributed data.

We also observe that when the sample size is small, all the tests
generally do not perform well. When data appear heteroscedastic, [21]
proposed an alternative method to the F-test for testing variance ho-
mogeneity, and [46] proposed a data analytical strategy to preserve
the type 1 error rate.

When data are heavily skewed, although there are better test op-
tions available based on the findings of this review, there appears to be
no single test that performs well overall. In particular, most rank-based
tests do not have good power and error rate performance, and further
studies should be conducted to find more powerful tests for data that
are heavily skewed [45].

When it is anticipated that heterogeneous responses vary system-
atically in a certain pattern, optimal design strategies can be used
to provide best estimates for the model parameters at minimal cost.
For example, Wong and Zhu [46] assumed variances of responses
from different treatment groups vary predictably and found an optimal
allocation scheme for subjects in the trial [46]. These designs depend
on the unknown variance from the different groups and they can
be implemented once nominal values for them are available, either
from previous studies or from similar trials. More recently, Mavrogo-
nato compared allocation strategies for optimizing clinical trial designs
under various heteroscedastic assumptions [30,47].

A limitation of the current paper is that it does not discuss use of
adaptive designs to check model assumptions periodically during the
trial and use accumulating data to amend the study design for more
effective inference. There is a huge literature on adaptive designs with
many and continuing enhancements in various ways to design and
analyze clinical trial data, including how to check for variance homo-
geneity as data come in. However, space precludes us from covering
this important topic adequately and fairly, and so we defer a fuller
discussion of adaptive strategies to the near future.
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