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ARTICLE OPEN

Passive detection of COVID-19 with wearable sensors and
explainable machine learning algorithms
Matteo Gadaleta 1, Jennifer M. Radin 1, Katie Baca-Motes1, Edward Ramos1,2, Vik Kheterpal 2, Eric J. Topol1,
Steven R. Steinhubl 1 and Giorgio Quer 1✉

Individual smartwatch or fitness band sensor data in the setting of COVID-19 has shown promise to identify symptomatic and pre-
symptomatic infection or the need for hospitalization, correlations between peripheral temperature and self-reported fever, and an
association between changes in heart-rate-variability and infection. In our study, a total of 38,911 individuals (61% female, 15% over
65) have been enrolled between March 25, 2020 and April 3, 2021, with 1118 reported testing positive and 7032 negative for
COVID-19 by nasopharyngeal PCR swab test. We propose an explainable gradient boosting prediction model based on decision
trees for the detection of COVID-19 infection that can adapt to the absence of self-reported symptoms and to the available sensor
data, and that can explain the importance of each feature and the post-test-behavior for the individuals. We tested it in a cohort of
symptomatic individuals who exhibited an AUC of 0.83 [0.81–0.85], or AUC= 0.78 [0.75–0.80] when considering only data before
the test date, outperforming state-of-the-art algorithm in these conditions. The analysis of all individuals (including asymptomatic
and pre-symptomatic) when self-reported symptoms were excluded provided an AUC of 0.78 [0.76–0.79], or AUC of 0.70 [0.69–0.72]
when considering only data before the test date. Extending the use of predictive algorithms for detection of COVID-19 infection
based only on passively monitored data from any device, we showed that it is possible to scale up this platform and apply the
algorithm in other settings where self-reported symptoms can not be collected.

npj Digital Medicine           (2021) 4:166 ; https://doi.org/10.1038/s41746-021-00533-1

INTRODUCTION
Frequent monitoring to quickly identify, trace, and isolate cases of
SARS-CoV-2 is needed to help control the spread of the infection
as well as improve individual patient care through the earlier
initiation of effective therapies1. Frequent diagnostic testing is one
important option but suffers from implementation challenges and
a lack of accessibility for individuals affected most by COVID-192.
Self-reporting of symptoms has been found to be predictive of a
positive test3, and could be used to encourage individuals to get
tested earlier. However, such an approach not only requires active
engagement of the individual, but also misses the approximately
one-third of asymptomatic infected individuals completely, and
delays diagnosis in those who are infected but pre-symptomatic4.
On the other hand, passive monitoring is possible with
commercial sensor devices measuring biometrics such as resting
heart rate5, sleep6 or activity, which have been shown to be
effective in the detection of COVID-19 versus non-COVID-19 when
incorporated in combination with self-reported symptoms7.
Individual sensor data in the setting of COVID-19 has also

shown promise in identifying pre-symptomatic infection8, the
need for hospitalization9, correlations between peripheral tem-
perature and self-reported fever10, differences in the changes in
wearable data between individuals with COVID-19 versus
influenza-like-illnesses11, and an association between changes in
heart-rate-variability and infection12. These studies focused on a
specific device brand, or on a predefined set of signals. However,
for a broader use of personal health technologies it is important to
design algorithms that are device agnostic and can adapt
to the specific data collected by any sensor, including the less
costly devices.

Our prospective app-based research platform DETECT (Digital
Engagement and Tracking for Early Control and Treatment) allows
participants to enter self-reported symptoms or COVID-19 test
results, and to share data from any wearable device that is
connected to Google Fit or Apple Health Kit platform. In a previous
study, we developed a deterministic algorithm to discriminate
between symptomatic individuals testing positive or negative for
COVID-19, analyzing changes in daily values of resting heart rate,
length of sleep and amount of activity, together with self-reported
symptoms7.
In order to provide the most accurate early warnings for COVID-

19 to all participants for a wide variety of wearable devices, we
proposed and validated a machine learning algorithm that ingests
all available sensor data for the detection of COVID-19 infection.
The algorithm can outperform our previously proposed algorithm
in similar conditions (AUC= 0.83, IQR= [0.81, 0.85]), and more
importantly, it can automatically adapt to the specific sensor used,
exploiting all the information collected from the more advanced
sensors or focusing on a smaller set of signals from more basic
sensors, and explaining the feature importance and the post-test
behavioral changes for the individual. The algorithm uses self-
reported symptoms when they are available, or otherwise makes
its inference based on sensor data only, thus adapting to different
engagement levels of the individuals in the study.

RESULTS
Machine learning model for COVID-19 detection
In this study, we investigated the accuracy of a machine learning
model in the detection of COVID-19 infection based on the
available data acquired from wearable devices and self-reported
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surveys. We analyzed the accuracy of the detection algorithm for
individuals who self-reported at least one symptom prior to the
COVID-19 test (named the “symptomatic cohort” in what follows)
and not-reporting any symptom prior to the COVID-19 test
(the “no-symptom-reported cohort”). We also separately investi-
gated the accuracy obtained using only data collected before a
COVID-19 test versus including pre- and post-test data, in order to
explore the effect of behavioral changes just the act of testing for
COVID-19 might have on individuals.

Participant characteristics
A total of 38,911 individuals (61% female, 15% over 65) have been
enrolled between March 25, 2020 and April 3, 2021. Among these
participants, 1118 (66% female, 8% over 65) reported at least one
positive and 7032 (63% female, 14% over 65) at least one-negative
COVID-19 nasal swab test. The total number of COVID-19 swab
tests reported during the same period was 18,175, with 1360
(7.5%) positives, 16,398 negatives and 417 with non-reported
results. Among the positive tests, 539 (48% of the considered
cases) reported at least one symptom in the 15 days preceding the
test date, 592 (52%) did not report any symptom, and 229 have
been excluded from the analysis for lack of sufficient data or for
being too close to a prior test.

Data set description
The participants of the study shared their personal device data
(including historical data collected prior to enrollment), self-
reported symptoms and diagnostic test results during the data
collection period. We divided the measures into four categories:
symptom features, including all self-reported symptoms; sensor
features, including all measures related to activity, heart rate or
sleep; anthropometrics; and demographics (Table 1).

Detection of COVID-19
The normalized deviations from the baseline for a subset of
representative features are reported (Table 2), highlighting the
difference between positive and negative COVID-19 individuals,
both excluding and including data in the 5 days after the test date,
based on gender and age. As expected, we observed larger
variation from the baseline, in terms of heart rate, sleep and
activity related features, for individuals who tested positive for
COVID-19 with respect to individuals who tested negative. This
observation held for all the demographic groups, both excluding
or including post-test data (Fig. 1). Based on these features, a
prediction model was trained and tested in different conditions.
The model provides an output between 0 and 1, indicating the risk
of infection. In general, a higher output value denotes a higher risk
of infection. For the symptomatic cohort, we observed a
significant difference in the model’s output between participants
who tested positive or negative, showing that the two groups can
be effectively separated (Fig. 1b), even if we consider only the
days preceding the test date (Fig. 1a), thus excluding any
behavioral bias potentially caused by taking the test and awaiting
results or knowledge of the test outcome. We showed also the
predictions for the no-symptom-reported cohort, considering
the data before the test date or all the available data, respectively
(Fig. 1c, d). As expected, while a significant difference between the
individuals testing positive or negative could still be observed, it is
harder to clearly separate the two groups.
Symptomatic cases exhibited an area under the receiver

operating characteristic (ROC) curve (AUC) of 0.83 [0.81–0.85],
while when considering only data before the test date the
performance slightly decreased, with AUC= 0.78 [0.75–0.80]. For
the no-symptom-reported cohort, we observed an AUC of 0.74
[0.72–0.76], or AUC= 0.66 [0.64–0.68] when considering only data
before the test date (Fig. 2).

Importance of each feature
For the symptomatic cohort, self-reported symptoms were of
crucial importance for the most accurate diagnosis of the
disease. Considering only data before the test, self-reported
symptoms accounted for 60% of the relative contribution to the
predictive model (Fig. 3a), while considering all peri-test data,
the importance of the self-reported symptoms decreased to a
relative contribution of 46% (Fig. 3b).
For both the symptomatic and no-symptom-reported cohorts,

we observed a consistent change in the importance of the activity
sensor features, if we consider only data before the test. For the
no-symptom-reported cohort (Fig. 3c, d), the importance of the
activity sensor features increased from 46 to 54% when all peri-
test data were considered—potentially as a consequence of
precautionary measures imposed after testing and awaiting results
or receiving a positive test outcome. Sleep sensor features
importance did not change significantly when post-test data
were included for either the cohort reporting symptoms, or those
not reporting symptoms, potentially because sleep was less
affected by the knowledge of a test result. Sensor features in the
heart rate category had a small relative contribution (6%) for the
symptomatic cohort (Fig. 3a), while their contribution increased
(18%) in the no-symptom-reported cohort (Fig. 3c), acquiring
more importance in the absence of information about symptoms
and when only pre-test data was considered. Anthropometrics,
such as height or weight, provided only a small relative
contribution, while the contribution of demographic features,
such as age or gender, was negligible.
Finally, we provided more details about specific symptoms, and

how each of them, on average, affects the model’s prediction
(Fig. 4). We identified highly discriminative symptoms (cough and
decrease in taste and smell, with ≥10% relative contribution),
medium discriminative symptoms (congestion or runny nose,
fever, chills or sweating and congestion or runny nose with <10%
and ≥5% relative contribution) and low discriminative features
(e.g., body aches, headache, fatigue, with < 5% relative
contribution).

DISCUSSION
Our machine learning model based on decision trees can
discriminate between individuals who tested positive or negative
for COVID-19 based on multiple data types collected by wearable
devices, demographic information and self-reported symptoms
when available. The adaptability of the algorithm to the available
data allows us to also study the performance of the algorithm for
individuals in the absence of self-reported symptoms, who may
account for almost half of COVID-19 positive individuals4. In order
to estimate the effects of the behavioral changes due to the act of
testing and/or receiving a positive COVID-19 test, we performed a
temporal analysis dividing the data collected before and after the
date of COVID-19 testing. The model has been shown to perform
well for the identification of COVID-19 infection when incorporat-
ing data from symptomatic individuals that includes the five days
following the date of testing, with an AUC of 0.83 (IQR: 0.81–0.85).
By considering only data preceding the test date, we achieved an
AUC of 0.78 (IQR: 0.75–0.80) for people who reported symptoms.
When available, self-reported symptoms remain the predominant
feature category considered by the model in all our test scenarios,
demonstrating the importance of an engaging system that allows
participants to easily report this information at any time. Among
participants with symptoms, we identified cough and decrease in
taste and smell as the most highly discriminative symptoms for a
COVID-19 infection, followed in order of importance by fever,
chills or sweating, and congestion or runny nose.
Using the same model, we also investigated individuals who did

not report any symptoms. Despite the lack of self-reported
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information about the sickness, the model achieved an AUC of
0.74 (IQR: 0.72–0.76) when considering the period following the
test, and an AUC of 0.66 (IQR: 0.64–0.68) excluding post-test data.
Looking at the importance of the features used by the algorithm,
we noticed that the importance of sensor-based Activity
substantially increases when considering also post-test data, likely
reflecting a potential behavioral change for the participants due to
imposed precautionary measures13. On the other hand, the
importance of the heart rate features, which are less likely to be
affected by short term behavioral changes, is higher when the
model consider only data before the COVID-19 test. Moreover,

since heart rate elevation might serve as an indicator of
inflammatory conditions14, its relative importance increases
significantly in the absence of self-reported symptoms.
These results build on our prior retrospective work on resting

heart rate5 and sleep6, which when aggregated at the population
level, have been shown to significantly improve real-time
predictions for influenza-like illness15. In an early study, using
the initial data from DETECT, we demonstrated the potential of
using self-reported symptoms and wearable data for the
discrimination of positive and negative cases of COVID-197, which
has been validated by several subsequent independent studies

Table 1. Description and categorization of the feature set.

Feature category Feature description Total COVID-19
individual tests

Number of
individuals

Fitbit
users [%]

Available days
median [IQR]

Symptoms features Fatigue 1149 1091 — —

Headache 1104 1061 — —

Difficulty breathing 208 206 — —

Diarrhea or vomiting 378 368 — —

Decrease in taste smell 247 247 — —

Cough 892 859 — —

Fever chills or sweating 660 645 — —

Congestion Or runny nose 1152 1097 — —

Neck pain 409 396 — —

Body aches 823 795 — —

Sore throat 973 922 — —

Stomach ache 312 302 — —

Sensor features (activity) Total number of daily steps 9348 6983 82% 673 [507–707]

Total daily distance traveled
on foot

9281 6938 82% 676 [554–708]

Calories burned from periods
above sedentary level

7629 5679 100% 676 [554–708]

Calories burned inclusive of BMR 8279 6142 100% 676 [554–708]

Minutes spent fairly active 7291 5450 100% 676 [554–708]

Minutes spent sedentary 8196 6082 100% 676 [554–708]

Minutes spent very active 7171 5370 100% 676 [554–708]

Minutes spent lightly active 7628 5678 100% 676 [554–708]

Sensor features (Heart) Daily resting heart rate 9105 6810 81% 492 [341–653]

Maximum daily heart rate
variability

1812 1407 0% 363 [185–499]

Minimum daily heart rate
variability

1812 1407 0% 363 [185–499]

Average daily heart rate variability 1812 1407 0% 363 [185–499]

Sensor features (Sleep) Total daily sleep time 7473 5603 94% 445 [240–629]

Total daily time spent in bed 7473 5603 94% 445 [240–629]

Sleep efficiency of the main sleep 7473 5603 94% 445 [240–629]

Sleep time of the main sleep 7473 5603 94% 445 [240–629]

Anthropometrics Body mass index 8478 6303 — —

Self-reported height 1673 1277 — —

Body weight 9240 6896 — —

Body fat percentage 4594 3431 — —

Basal metabolic rate (BMR) only
calories

8279 6142 — —

Demographic features Self-reported gender 10,494 7853 — —

Age at the time of test 10,479 7841 — —

The set of features for each category is reported in the table. The same individual may report multiple tests. The total number of individual COVID-19 tests is
the number of tests with the corresponding feature value available for the analysis, after exclusion criteria. The number of corresponding unique individuals is
also reported. The available days for Sensor Features represent the median number of days available for all the participants (IQR reported in brackets).
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evaluating detection of COVID-19 from wearable devices16. The
availability of high-frequency intra-day data has shown promise to
identify pre-symptomatic infection8, even if additional studies
with a larger number of individuals are needed to prove this point.
Several studies focused on the specific data provided by a single
sensor brand, showing that an increase in respiratory rate17 and
heart rate9, or a decrease in heart rate variability12, are significant
during an illness, and that the changes in these physiological
signals are more severe for COVID-19-positive cases relative to
those affected by other influenza-like-illnesses11.
We believe a strength of this research program is that anyone,

with any wearable sensor, can participate. As wearable sensors
continue to evolve and increase in number, predictive algorithms
not dependent on a specific device or data type are needed to
optimize the value of continuous, individual data. The algorithm
proposed in this work is designed to ingest all available data,
exploiting the information provided by the most advanced
sensors, while detecting the presence of a COVID-19 infection
for everybody owning any type of wearable sensor. The algorithm

recognized the importance of self-reported symptoms in the
prediction accuracy, but it is also designed to work in the absence
of them, thus extending its applicability to the asymptomatic, pre-
symptomatic or just a less engaged population who may not want
to bother with reporting symptoms.
The analysis of individuals without self-reported symptoms

extends the use of the algorithms for a fully passive monitoring of
the pandemic and provides the possibility of applying the
algorithm in other settings that collect wearable sensor data but
are not equipped to collect and analyze self-reported symptoms.
(Supplementary Information) Among them, the largest is Corona-
Dataspende, a project developed by the Robert Koch Institute to
collect sensor data from more than 500,000 individuals, monitor-
ing the course of the pandemic in Germany18.
The negligible importance given by our algorithm to the

demographic features may be explained by observing that the
physiological features we consider are changes with respect to an
individual baseline. While an individual’s baseline differs based on
their demographic features, the changes with respect to the

Fig. 1 Output of the prediction models. The model’s output statistic is reported for symptomatic cases, excluding (a) and including the data
after the test date (b), and for no-symptom-reported cases, excluding (c) and including the data after the test date (d). The boxes represent the
IQR, and the horizontal lines are the median values. The number of cases considered for the analysis are reported in the legend.

M. Gadaleta et al.

5

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2021)   166 



baseline that we use in our algorithm are not much affected by
the demographic characteristics of the individual.
While the use of machine learning in the detection and

prognostication for COVID-19 based on chest radiographs and CT
scans have been questioned in a systematic review that discussed
how none of the current studies are of potential clinical use due to
biases or methodological flaws19, the use of machine learning to
enable a continuous and passive COVID-19 early detection is both
very promising—for the potential to be scaled up effectively to a
large fraction of the population—and repeatable—since we used
a strictly separated test set for each of the cross-validation folds.
Furthermore, the prediction algorithms developed as part of the
DETECT system could be adapted to study the long term health
problems due to COVID-1920–25, or the effects of COVID-19 vaccine
on vital signs and individual behavior26–28. For future infectious
pathogen epidemics and pandemics, the new machine learning
algorithms developed from the DETECT data can be adapted and
re-used for early detection of various types of infections, towards

the development of a new system to monitor the spread of future
viral illness and prevent future outbreaks or pandemics.
In DETECT, all data is participant reported with no validation of

the accuracy of self-reported symptoms, test dates or results.
While we were able to collect continuous data, the amount of
sensor data collected, or the accuracy of self-reported symptoms,
depends entirely on the willingness of the participants to wear the
sensor and accurately report how they feel. Despite the fact that
the information collected may not be as accurate as in a
controlled laboratory setting, previous work has demonstrated
the value of participant-reported outcomes29–31. In the data
analysis, among the people who reported the COVID-19 test
outcome (active participants), we separated participants who
reported at least one symptom from those who did not report any
symptoms. The app indeed did not have an explicit way to report
the absence of symptoms, so potentially some symptomatic
individual may have not reported their symptoms.

Fig. 2 Evaluation results for the discrimination between COVID-19 positive and COVID-19 negative. Receiver operating characteristic
curves (ROCs) for the discrimination between COVID-19 positive and COVID-19 negative. Performance for symptomatic cases, excluding
(a) and including the data after the test date (b), and for no-symptom-reported cases, excluding (c) and including the data after the test date
(d), are reported. The model is a gradient boosting prediction model based on decision trees. Median values and 95% confidence intervals
(CIs) for sensitivity (SE), specificity (SP), positive predictive value (PPV) and negative predictive value (NPV) are reported, considering the point
on the ROC with the highest average value of sensitivity and specificity. Error bars represent 95% CIs. p-values of the one-sided Mann-Whitney
U test are reported.
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Furthermore, this study is based on the aggregation of
continuously monitored data into a finite number of daily features.
A recent study has provided new insights about the analysis of
intra-day changes for monitoring physiological variations32, that
may be used in future studies. Changes in more advanced metrics,
like respiratory rate17, peripheral temperature10 or HRV12, may also
prove to add to the prediction of a COVID-19 infection, even if
they have been marginally considered in our work since only a
small fraction of participants were providing this type of data.
While previous studies have shown the importance of remote

monitoring of individuals, extending health research beyond the
limits of brick and mortar health systems33,34, additional disparities
are introduced when the study relies on wearable sensors, due to
reduced accuracy for certain skin tones35 and unequal access to
this digital technology36. The decreasing cost of wearable sensors
(some now less than $35) and the inner adaptability of our
detection algorithm to any sensor and any given level of
engagement of the participant with the in-app system will

hopefully help in decreasing the barriers for underserved and
underrepresented populations.

METHODS
Study population
Individuals living in the United States and at least 18 years old are eligible
to participate in the DETECT study. After downloading the iOS or Android
research app, MyDataHelps, and consenting into the study, participants are
asked to share their personal device data (including historical data
collected prior to enrollment) from any wearable device connected
through direct API (for Fitbit devices), or via Apple HealthKit or GoogleFit
data aggregators. A participant is invited to report symptoms, diagnostic
test results, vaccine status, and connect their electronic health records, but
they can opt to share as much or as little data as they would like. The
recruitment of participants happens via the study website (www.
detectstudy.org), several media reports, or outreach from our partners at
Walgreens, CVS/Aetna, Fitbit and others.

Fig. 3 Overall feature importance. Overall feature importance based on the average prediction changes when the feature value is perturbed.
Values are normalized as percentages. Features have been aggregated into macro categories. Results for symptomatic cases, excluding (a) and
including data after test date (b), and for no-symptom-reported cases, excluding (c) and including data after test date (d), are reported.

Fig. 4 Feature importance associated with specific symptoms. Only symptoms reported before the test date have been considered. Values
are normalized as percentages. The results refer to symptomatic cases only.
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Ethical considerations
All individuals participating in the study provided informed consent
electronically. The protocol for this study was reviewed and approved by
the Scripps Office for the Protection of Research Subjects (IRB 20–7531).

Data collection, aggregation, and group definition
All the participants with at least one self-reported result for a COVID-19
swab test during the entire data collection period have been considered in
this study. Based on the reported data, an individual is considered
Negative if the test resulted negative and no other positive tests have been
reported in the period from 60 days before to 60 days after the test date. A
minimum distance of 60 days is guaranteed between tests from the same
individual considered in the analysis. This ensures that, if multiple tests are
reported in the same period, only the first one is considered in our analysis,
and the ones reported in the following 60 days will be ignored.
For each participant, we collect the data preceding and following the

test date from all the connected devices, including, among others, detailed
sleep intervals, number of steps and daily resting heart rate values. All the
considered metrics are reported and detailed (Table 1). If multiple values
per day are available for the same data type, a specific pre-processing has
been applied to obtain a single representative daily value. Data has been
collected from all the devices synchronized with the Fitbit or HealthKit
application available on the smartphone. If data of the same type is
available from multiple devices, only the most used device in the
monitored period is considered.
Along with device data, we also analyze the reported surveys looking for

self-reported symptoms. We considered all the symptoms reported from
15 days before to the day of test, further dividing the participants into two
groups: symptomatic cohort, if we observe at least one reported symptom
before the day of test, and no-symptom-reported cohort, if no symptom
has been reported during this period. The frequency of each reported
symptom for positive and negative cases are also reported (Fig. 5).

Baseline evaluation
Behavioral and physiological data acquired from wearable devices are
highly idiosyncratic. The intrinsic inter-individual variability of physiological
metrics, the different habits of the users, and the multiple purposes of the
wearable devices requires a careful definition of the baseline value for each
of the considered metrics. Also, the different hardware and software used
by each manufacturer is an additional source of discrepancies. In this
study, we limited both the inter-subject and inter-device variability
considering the deviation from a dynamic daily baseline, which makes
the feature values independent from the actual measures recorded

by the device, and only dependent on the difference with respect to
historical records.
Thus, the daily baseline is calculated using an exponentially weighted

moving average:

Baseline d½ � ¼
X60

n¼0

Weight n½ � ´DailyValue d � n½ � (1)

where d is the current day and n represent the number of days before d,
with a maximum of 60 days before the current date, while DailyValue can
be any of the daily data measures among the ones considered.
The oscillation of the measures during the baseline period also changes

over time. To measure the daily baseline variability, we evaluate the
weighted standard deviation using the same weights of the baseline
as in Eq. (2).

Baselinevariability d½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X60

n¼0

Weight n½ � ´ DailyValue d � n½ � � Baseline d½ �ð Þ2
vuut (2)

The weights (Fig. 6) decrease exponentially as e−αn with α= 0.05. We
exclude the first 7 days (n < 7) from the computation to avoid recent
changes to affect the baseline value.
Many behavioral habits present strong weekly patterns, such as an

increased sleep duration during the weekend, or weekly physical activities.
To take into account these behaviors in the baseline evaluation, and to
reduce the chances of false positives, we consider weekly patterns by
increasing three times all the weights corresponding to the same day of
the week.
During the course of a temporary disease, physiological measures may

be different. In order not to affect the baseline value, which should
only depend on the normal behavior, we exclude the 10 days following
any reported symptoms from the baseline evaluation.
Finally, the weights are normalized to sum to 1 using Eq. (4).

w n½ � ¼

0 if n < 7 or n > 60

eαn if n > 7

3eαn if n ¼ 7m; m ¼ 1; 2; ¼ ; 8

0 if n 2 s; sþ 10½ �; s ¼ symtpom date

8
>>><

>>>:
(3)

Weight n½ � ¼ w n½ �P
i w i½ � (4)

Fig. 5 Percentage of reported symptoms. Percentage of reported symptoms for participants who reported at least one symptom from
15 days before to 5 days after the test date. The frequencies of the indicated symptoms are shown for positive and negative cases. The error
bars represent 95% percent confidence intervals. The p-values of a two-sided Fisher’s exact test applied to COVID-19 positive (539 individuals)
and negative participants (1,520 individuals) are reported. Symptoms with a significant difference (p-value < 0.05) are marked with an asterisk.
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The deviation from the baseline values is then evaluated as:

DailyValueDev n½ � ¼ DailyValue n½ � � Baseline n½ �
BaselineVariability n½ � (5)

This value represents how far the specific metric is from the expected
normal value, day by day. Values are considered to be valid only if at least
50% of corresponding data are available during the baseline period.

Feature extraction
We propose two analyses, one considering all available data (5 days before
and 5 days after the test date), and one considering only the period before
the test date (5 days before test), in order to further analyze the impact of
the test outcome on the individual behavior and the natural course of the
disease. The choice of a 5 day period is related to the dynamic nature of
the baseline. Considering an extended period, potentially altered measures
may be included in the baseline evaluation, and a short abnormal status
may not be detected if averaged over a long time period.
We consider four different macro categories of feature (Table 1).

Sensor features: all the features acquired or derived from the device
measurements belong to this group. In this study, we consider the
minimum, average, and maximum deviation values from the baseline in
the days considered. This category is further divided into three sub-
categories, including activity, heart and sleep related features.
Symptom features: a separate binary feature is considered for each of
the reported symptoms. If the corresponding symptom has been
reported in the considered period its value is set to 1, otherwise 0.
Anthropometrics: if available from the monitored devices, several
anthropometric features are also considered like body weight, height,
body mass index, fat percentage, and basal metabolic rate.
Demographic features: this category includes age and gender self-
reported by the participants.

Using the aforementioned features, we developed a gradient boosting
prediction model based on decision trees37. The sparse nature of the data
set, resulting from the availability of only a subset of features for most of
the participants, and the absence of many daily values due to a low
wearing time, makes decision tree-based algorithm a natural choice for
this study.
The model has been trained and tested in four different conditions,

using data from the symptomatic or no-symptom-reported cohort, and
preceding the reported test date or considering all available data around
the test date. Normalized deviation (Z-score) from an idiosyncratic and
dynamic baseline value was evaluated daily for each metric and each
individual. A weighted average based on past data was defined as the
baseline estimation, whose weights are reported (Fig. 6).

The entire data set has been randomly divided into 5 separate non-
overlapping test sets. For each test set, a model is trained using all the
remaining data, ensuring an equal percentage of positive cases between
train and test sets. For each model, we also ensure that the test set remains
strictly separate from the training, so training data are not involved in
the test.
To analyze the intrinsic variability of the model due to data availability,

we estimate 95% confidence intervals for the presented results. Bootstrap
method has been utilized for this purpose, with 10,000 independent
random iterations from the test outcomes.
To have a better understanding of the effect of COVID-19 on

physiological and behavioral aspects, we consider symptomatic and no-
symptom-reported cases separately. Additionally, different models have
been analyzed considering sensor features evaluated including and
excluding sensor data after the reported test date. Comparative results
are presented in terms of AUC of the ROCs. Sensitivity (SE), specificity (SP),
positive predictive value (PPV) and negative predictive value (NPV),
associated with an optimal operating point, are also reported. The optimal
operating point is defined as the point with the highest average value
between SE and SP.
The interpretable nature of the decision tree model allows for the

evaluation of feature importance estimates38,39. To this end, we evaluate,
for each feature, the average prediction changes when a variation is
applied to the feature value. The bigger the value of the importance, the
bigger is the change to the prediction value if this feature is changed. To
have a more comprehensive overview of the feature importance, we
further aggregated the importance associated with features in the same
category. Feature importance values are normalized so that they can be
expressed as percentages.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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