
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Recurrent Neural Network Mortality prediction and Deep Reinforcement Learning in
Manufacturing Scheduling

Permalink
https://escholarship.org/uc/item/7hb2d7fb

Author
Jenkins, David Chadwick

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hb2d7fb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

RECURRENT NEURAL NETWORK MORTALITY PREDICTION
AND DEEP REINFORCEMENT LEARNING IN

MANUFACTURING SCHEDULING

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

PHYSICS

by

David C. Jenkins

December 2021

The Dissertation of David C. Jenkins
is approved:

Professor Joshua Deutsch, Chair

Professor Michael Dine

Professor Phil Kaminsky

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

David C. Jenkins

2021

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Dedication viii

Acknowledgments ix

1 Introduction 1

2 Background 5
2.1 Classes of Machine Learning Algorithms 6
2.2 Artificial Neural Networks . 7

2.2.1 Fully Connected Feed Forward Neural Networks 8
2.2.2 Recurrent Neural Networks . 12

2.3 Reinforcement Learning . 15
2.3.1 Foundations of Reinforcement Learning 15
2.3.2 Value functions and Q-functions 16
2.3.3 Categories of Reinforcement Learning Algorithms 18

3 Long Short Term Memory Recurrent Neural Network for Mortality
prediction in Intensive Care Units 25
3.1 Introduction . 26
3.2 Related Work . 28
3.3 Methods . 30
3.4 Results . 38
3.5 Conclusion . 39

iii

4 PDQN - A Deep Reinforcement Learning Method for Planning with
Long Delays:
Optimization of Manufacturing Dispatching 41
4.1 Introduction . 42
4.2 Related Work . 45

4.2.1 Deep reinforcement learning in Production Scheduling 45
4.2.2 Deep Q-Network . 47
4.2.3 Predictron . 48

4.3 Methods . 50
4.3.1 MDP Modelling . 50
4.3.2 Critical Ratio and First-In-First-Out dispatching policies 53
4.3.3 PDQN . 53

4.4 Experiments . 57
4.4.1 Setup . 58
4.4.2 Training and Model Selection . 59
4.4.3 Main test results . 60
4.4.4 Additional observations . 61

4.5 Conclusions . 63
4.6 Appendix . 64

4.6.1 Architecture and hyperparameter setup 64
4.6.2 Additional observations . 66
4.6.3 G20 Factory Settings . 68

5 Conclusion 72

Bibliography 75

iv

List of Figures

2.1 Machine Learning can be classified into three main categories. Super-
vised Learning uses learns from labeled data, Unsupervised Learning
learns from unlabeled data, and reinforcement learning learns policies
for sequential decision making tasks through trial and error. 6

2.2 Here a fully connected feed forward neural network with one hidden layer
is shown. 9

2.3 Here the sigmoid information function is shown. 10
2.4 Here the rectified linear unit activation function is shown. 11

3.1 Here, the AUROC for each of the 60 predicted mortality probabilities are
shown. 39

4.1 The fully connected version of the original predictron implemented with
16 depth layers with individual weights. Each fully connected layer has
128 neurons, except for the output layers which have 1. s is the input
state while s0:K are the abstract states. V 0:K are the estimated values for
each abstract state. r0:K−1 are the expected abstract rewards received for
transitioning from one abstract state to the next. γ0:K−1 is the expected
abstract discount factors to apply for each abstract step. λ0:K−1 is the
expected eligibility assigned to each abstract step. As the abstract steps
is arbitrarily long, γ and λ can vary as well. 57

4.2 Here, the results from the objective function used to train the RL based
policies are compared. The results are based on 50 test runs for each
setup of each tested environment. 60

4.3 Additional observations regarding mean lateness (Top) and the number
of completed parts (Bottom) are shown here. The data is shown with the
inner quartiles (colored boxes), the median (black lines), the mean (white
dots), and the min and max values (whiskers). Both the mean lateness
and the number of completed parts is reported for all parts completed
after the initial two full system runs, which are removed to align the
observation with the objective function. 62

v

List of Tables

3.1 This table shows the first half of the measurement types used for mortality
prediction in this study. Included are the numerical item IDs as well as
their corresponding labels which describe what this measurement type is
recording . 31

3.2 This table shows the second half of the measurement types used for mor-
tality prediction in this study. Included are the numerical item IDs as
well as their corresponding labels which describe what this measurement
type is recording . 32

4.1 Hyperparameter setup for DQN . 67
4.2 Hyperparameter setup for PDQN . 67
4.3 Test results for balanced 20 step factory, B20, on 100,000 simulation

minutes. The results are averaged over 50 different test runs and shown
with ± standard deviation of the sample mean over the different test runs. 69

4.4 Test results for generated 20 step factory, G20, on 500,000 simulation
minutes. The results are averaged over 50 different test runs and shown
with ± standard deviation of the sample mean over the different test
runs. 2 different failure rates and 2 different WIP levels are compared. . 71

vi

Abstract

Recurrent Neural Network Mortality prediction and Deep Reinforcement

Learning in Manufacturing Scheduling

by

David C. Jenkins

Neural networks are a powerful tool which have shown usefulness in a number

of challenging domains. We have developed novel methods which incorporate neural net-

works in two important domains. The first domain considered is in mortality prediction

in intensive care units. For this problem, a model involving long short term memory

recurrent neural networks was developed. This model was trained and tested using

the Medical Information Mart for Intensive Care (MIMIC iii) data set. Our method

generates a mortality trajectory after each input health measurement consisting of a

sequence of mortality predictions. Through testing we demonstrate that our model is

capable of providing effective mortality predictions in this data set. The next domain

considered is production scheduling in semiconductor manufacturing facilities. We de-

veloped two methods for training scheduling policies that utilize deep reinforcement

learning. The first involves a Deep Q-Network, and the second is a novel method we

developed known as the Predictron Deep Q-Network. A factory simulation model was

developed. Our methods were demonstrated to outperform common industry methods

on a set of simulated factory environments based on real world systems.

vii

To my parents,

Peter and Robin,

for being supportive of my education.

viii

Acknowledgments

The text of this dissertation includes a reprints of the following material which may

be published: The contents of chapter 4 ”PDQN - A Deep Reinforcement Learning

Method for Planning with Long Delays: Optimization of Manufacturing Dispatching”

have been submitted to the International Conference on Learning Representations 2022.

The co-author Ram Akella listed in this publication submission directed and supervised

the research which forms the basis for the dissertation.

I David Jenkins, the PhD candidate, was the primary contributor to this work.

I developed the simulation model, and majorly contributed to the development of the

Deep Reinforcement Learning models, their training and testing to gather results, as

well as the writing of the paper submission.

ix

Chapter 1

Introduction

1

Over recent years methods involving artificial neural networks have seen a

surge in popularity due to their effectiveness in a number of previously challenging

domains. Neural network based methods are now at the cutting edge of image, text,

and speech processing as well as a number of games such GO, chess and Shogi. Due to

their remarkable effectiveness there exists a great opportunity for the development and

refinement of these techniques to additional real world challenging problems. In this

dissertation we focus in particular on problems which involve sequential prediction and

decision making.

Two major domains are considered in this dissertation for the application

and development of novel neural network based methods. The first is in mortality

prediction in intensive care units. Health care related costs approach 18% of gross

domestic product in the United States [17]. Medical care also has significant impact

on the health and quality of life of individuals. Health care in intensive care units is

of particular importance due to the relatively high severity of illness among patients in

such units. To help address this issue and allow for more effective allocation of care,

we have developed a method for mortality prediction in intensive care units based upon

long short term memory (LSTM) recurrent neural networks.

Due to the sequential nature of health and vital measurements in intensive

care units, recurrent neural networks and in particular LSTM models may be especially

effective. This method generates a mortality trajectory consisting of a sequence of

mortality probability estimates covering a rolling window after each electronic health

record is input. Using the Medical Information Mart for Intensive Care (MIMIC iii)

2

data set, we were able to train our model to generate these predictions based upon

sequences of recorded numerical health measurements. Our method was validated on

a portion of the data that was allocated for testing and demonstrated to be effective

based on the recorded area under receiver operator curve (AUROC).

The other domain considered is production scheduling in semiconductor manu-

facturing facilities. Such facilities involve long sequences of complex operations in order

to produce semiconductor devices. These operations involve expensive machinery so ef-

ficient utilization of resources is of significant importance. Such production scheduling

tasks can be modelled dynamically as a sequence of dispatching decisions which deter-

mine at each time step the priority of distinct parts for processing on limited resources.

In recent years deep reinforcement learning techniques have shown cutting

edge performance on a number of sequential decision making tasks such as playing GO,

chess, and shogi. Due to this remarkable performance there exists a great opportu-

nity for application and development of these techniques for this domain. Due to the

complexity of this problem traditional operations research methods may be computa-

tionally intractable, therefore relatively simple dispatching policies are often used in the

industry.

By working directly with the semiconductor device manufacturer Western Dig-

ital Corporation, we developed a factory simulation model. We then developed two dis-

tinct methods for production scheduling policy generation involving deep reinforcement

learning. The first involves use of Google DeepMind’s Deep Q-Network [13]. The next

is a novel method we developed which expands upon the Deep Q-Network by combining

3

it with another method from DeepMind, the predictron [18].

We trained and tested these methods on a set of simulated factory systems

based on real world environments from Western Digital Corporation. Our methods

were trained to reduce the lateness of completion of parts with respect to their due

dates. Our results demonstrated that our methods outperform the commonly used

dispatching policies on this task in these simulated environments.

In chapter 2, background information is introduced for neural network meth-

ods and reinforcement learning. This includes description of LSTM recurrent neural

networks and deep reinforcement learning methods which are used in the subsequent

chapters. In chapter 3 the work on LSTM methods for mortality prediction in intensive

care units is described, along with the gathered results. In chapter 4 the work on deep

reinforcement learning for semiconductor manufacturing systems is covered.

4

Chapter 2

Background

5

2.1 Classes of Machine Learning Algorithms

Figure 2.1: Machine Learning can be classified into three main categories. Supervised
Learning uses learns from labeled data, Unsupervised Learning learns from unlabeled
data, and reinforcement learning learns policies for sequential decision making tasks
through trial and error.

Machine Learning can generally be classified into three main categories. These

categories are Supervised Learning, Unsupervised Learning, and reinforcement learn-

ing. Supervised Learning is generally applied in situations in which there exists data

sets of both the input data values as well as their corresponding correct output value

labels. By applying machine learning techniques one can generate a function approx-

imation between the inputs and output labels. Using this function approximation one

could then generate predictions of the outputs corresponding to new previously unseen

inputs. Supervised learning can also be subdivided into classification, where the output

corresponds a discrete set of categories, and regression, in which continuous variables

are estimated.

Unsupervised learning however, refers to problems in which the correct out-

6

put labels are not know. In such methods, outputs are generated without the use of

given output labels from the training data. Applications of unsupervised learning in-

clude clustering of samples into distinct classes data based upon relative values of their

features.

Reinforcement learning is generally considered to be a distinct category from

Supervised and Unsupervised Learning. In reinforcement learning the goal is generally

to generate a policy for choosing actions based upon experience. In reinforcement

learning one typically does not seek to mimic a correct policy given ahead of time but

rather must generate a new policy through repeated trial and error. Generally sequences

of actions are chosen by a reinforcement learning agent following some policy while acting

in an environment. Then based on the outcome of this sequence of actions, the policy

may be updated with the intent to increase the prevalence of desirable outcomes.

There also exists combinations of these three classes of Machine Learning al-

gorithms. One such common combination is semi-supervised learning, in which both

label and unlabelled data is used. In addition supervised learning can sometimes be

used as a component of a reinforcement learning algorithm.

2.2 Artificial Neural Networks

Artificial Neural Networks are a type of machine learning algorithm that have

grown in popularity in recent years due to their effectiveness in a number of previously

challenging domains. These methods are named due to their nodal structure which is

7

inspired by the neurons in the brain. There are a number of different classes of neural

networks that are employed. These include fully connected feed forward neural networks,

convolutional neural networks, and recurrent neural networks. In this dissertation fully

connected feed forward, and recurrent neural networks are used extensively so they will

be reviewed in this section.

2.2.1 Fully Connected Feed Forward Neural Networks

Fully connected feed forward neural networks are one of the more basic and

standard architectures. They are referred to as feed forward because inputs progress

through the network without recursive connections such as in recurrent neural networks,

and they are referred to as fully connected because every node in each layer connects

to every other node on the next layer.

Such networks may take in a vector of inputs. The networks generate the

output vector by repeatedly applying a linear transformation to the input and then

applying a non-linear activation function to each element of the resulting vector. Each

such transformation is referred to as a layer.

An example fully connected feed forward neural network is shown in figure 2.2.

Here each node represents a value of one element of the vector for that layer, and the

edges represent the multiplication of a weight value. The values corresponding to the

directed edges pointing into a node are summed along with the bias value to generate

the value of that node.

In this example there is a single hidden layer between the input and output

8

Figure 2.2: Here a fully connected feed forward neural network with one hidden layer
is shown.

vectors. Let x be the input vector, h be the hidden layer, and y be the output. The

mapping of the input to the output may be written as follows:

h = σ(W1x+ b1) (2.1)

y = σ(W2h+ b2) (2.2)

9

Here the matrices and vectors represented by W and b are the weights and

biases that parameterize the linear transformations. σ represents the elementwise ap-

plication a non-linear activation function. This structure can be extended to include

any number of hidden layers which each have some number of nodes.

Common activation functions include the sigmoid function shown in figure 2.3

and equation 2.3, as well as the rectified linear function shown in figure 2.4 and equation

2.4.

σ(x) =
1

1 + e−x
(2.3)

ReLU(x) = max(0, x) (2.4)

Figure 2.3: Here the sigmoid information function is shown.

Sigmoid was common originally but rectified linear activation functions have

10

Figure 2.4: Here the rectified linear unit activation function is shown.

become more popular do to increased performance in many applications [14].

Neural networks are generally trained in a supervised manner where weights

and biases are updated through stochastic gradient descent to minimize a chosen loss

function. A common loss function is the mean squared error between the outputs and

training labels.

l(x, y,W) = (y − f(x,W))2 (2.5)

By taking the gradient of the loss with respect to weight and bias parameters,

these may be updated to reduce the loss

wt+1 = wt − α
∂l

∂w
(2.6)

Here α is a learning rate parameter which is used to adjust the magnitude of

each weight update.

11

2.2.2 Recurrent Neural Networks

Recurrent neural networks are a class of artificial neural network that specialize

in handling sequences of input data x(1), ..., x(T). Recurrent neural networks maintain

an internal state in their hidden layers. At each time step and additional input x(t) is fed

into the network, combined with the internal state, and then processed to form a new

internal state. Recurrent neural networks allow for this by use of parameter sharing.

This parameter sharing allows the model to be applied to sequences of different lengths.

If there were different parameters at each time index, then the model could not generalize

to sequence lengths not seen during training [7].

One such basic form of a recurrent neural network is shown in equation 2.7

h(t) = f(h(t−1), x(t); θ) (2.7)

Here each hidden layer is a function of both the previous hidden layer as well

as the input x(t) for that time step. θ represents the parameters of the function which

may be used repeated at each each time step for any number of steps.

2.2.2.1 Long Short Term Memory Recurrent Neural Networks

While basic recurrent neural networks can be effective on some tasks for short

sequences of inputs, there are challenges when training on longer sequences. Weight

parameters in the networks are trained via stochastic gradient descent. In order to

calculate the gradient of a weight with respect to a loss function, the gradient must be

12

propagated back through each layer of the network between that use of the weight and

the output from which the loss is calculated. When this number of layers is very large it

makes training difficult as the gradient has a tendency to either blow up to large values

or shrink down to small values [7].

Some models of recurrent neural networks, expand upon the basic structure to

help address this issue. One such model is the long short term memory recurrent neural

network (LSTM). A core component of the LSTM is a central cell state that is updated

additively at each time step. Due to this additive nature, changes to the cell state at a

given time step will have a strong effect on the loss calculated many steps in the future.

The calculated gradient of such a cell state will no longer need to include repeated

applications of the chain rule as one passes through the numerous layers between the

weights and losses. This will reduce the problem of vanishing gradients that is prevalent

is basic recurrent neural networks and allow for increased performance on long input

sequences [7]. The equations representing the LSTM are shown in 3.1, 3.2, 3.3, 3.4, 3.5,

and 3.6.

ft = σ(W f ∗ [ht−1, xt] + bf) (2.8)

it = σ(W i ∗ [ht−1, xt] + bi) (2.9)

ot = σ(W o ∗ [ht−1, xt] + bo) (2.10)

13

C ′t = tanh(W c ∗ [ht−1, xt] + bc) (2.11)

Ct = ft � Ct−1 + it � C ′t (2.12)

ht = ot � tanh(Ct) (2.13)

As mentioned above a main component of the LSTM is the cell state. This

cell state is updated as shown in equation 3.5. Here the previous cell state Ct−1 is

updated by adding on the candidate cell update C ′t. Ct−1 and C ′t are also modified by

elementwise multiplication of the forget gate and input gate values which are calculated

from the input xt and the previous hidden state ht−1 as shown in equations 3.1, 3.2. The

elements of the forget gate and input gate are bounded between 0 and 1 and serve to

reduce the magnitude of components of the cell state and candidate cell update that may

not be necessary to retain. After the cell state is updated the hidden state is generated

as shown in equation 3.6 which includes an output gate that functions similarly to the

input and forget gates.

The LSTM architecture has proven to be very effective on a number of appli-

cations including handwriting recognition, speech recognition, handwriting generation,

machine translation, and image captioning [7].

14

2.3 Reinforcement Learning

2.3.1 Foundations of Reinforcement Learning

Reinforcement learning algorithms are typically employed when making se-

quences of decisions in an environment. These environments are generally modelled

as Markov Decision Processes. A Markov Decision Process consists of a set of states

which describe the current state of the environment, a set of actions which represent

the possible choices that can be made, and the reward signal which is a scalar value

that indicates how well the control agent is doing at it’s desired task at each time step.

For each time step, the control agent for the reinforcement learning algorithm

receives some observation variables related to the state of the environment. Based upon

these observed values, the agent then chooses an action. Conditional upon this action

the environment then progresses to the next time step and a reward signal is generated.

The goal of the control agent is to maximize the the sum of all future rewards. This

sum is referred to as the return.

There are a number of challenges that make this task difficult. For one, actions

may have effects on rewards many time steps into the future. This delay between actions

and rewards makes it challenging to determine which actions have caused the rewards at

each time. Additionally, there can be stochastic components in the environment which

cause the return to vary even when the same sequence of actions is taken.

15

2.3.2 Value functions and Q-functions

Many approaches to reinforcement learning involve considering the expected

return. When calculating the return, there is often a discount factor included. This

discount factor reduces each rewards contribution to the return based on how many

time steps into the future that reward is. Rewards are discounted by a factor of γk

where k is the number of time steps from the current time step. Let V π(s) be the

expected return for an environment in state s that follows policy π.

V π(s) = E[

∞∑
k=0

γkrt+k+1|st = s, π] (2.14)

Here rt+k+1 is the reward value received after the transition from state st+k to

state st+k+1. Here the optimal expected return could be written as:

V ∗(s) = maxπV
π(s) (2.15)

This represents the expected return when following the optimal policy, where

likewise, the optimal policy is that which maximizes the expected return. Often the

goal of reinforcement learning is to find an optimal policy.

In addition to the value function, the Q-function can also be considered. The

Q-function represents the expected return conditional upon being in a state s, taking

an action a in that state and then following the policy π from there on.

16

Qπ(s, a) = E[

∞∑
k=0

γkrt+k+1|st = s, at = a, π] (2.16)

Similarly to the value function, the optimal Q-function is that which maximizes

the expected return.

Q∗(s, a) = maxπQ
π(s, a) (2.17)

Properly estimating the Q-function can be of great use in reinforcement learn-

ing tasks. If one has access to the correct Q-function for an environment then the optimal

policy can be found simply by selecting the action for each state which maximizes the

value of the Q-function. Here the optimal policy could be represented as:

π∗(s) = argmaxaQ
∗(s, a) (2.18)

Many reinforcement learning algorithms function by first estimating the Value

or Q-functions and then using these estimates to determine the optimal policy. These

types of algorithms are referred to as Value-based methods.

The relationship between the Q-function and the value function can be repre-

sented by the Advantage function, which is the difference between the two.

A(s, a) = Q(s, a)− V (s) (2.19)

17

2.3.3 Categories of Reinforcement Learning Algorithms

There exists a variety of distinct types of reinforcement learning algorithms.

Each type has it’s own advantages and disadvantages. Which type of algorithm is most

appropriate for a given task depends upon the nature of the problem being addressed.

Some of the main types of algorithms are summarized in this subsection.

2.3.3.1 Policy based vs Value based

One way to categorize reinforcement learning algorithms is by Value-based and

Policy-based methods. Value-based methods operate by first learning to estimate the

expected return conditional upon states and actions. Once the expected return can be

estimated the optimal policy can be determined by selecting the action with the highest

expected return at each time step.

One popular Value-based method is Temporal Difference (TD) learning [22].

Temporal difference methods function by running the policy in the environment for

some number of steps to sample the rewards. Using these observed rewards an estimate

of the return can be made. This estimate of the return is then used to update the Value

function’s estimate of the expected return.

One method for doing this is simply to run the policy all the way until the

end of the episode. This allows one to directly sample the actual return for that sample

path. This is referred to as Monte Carlo sampling. Let Gt be this observed return which

is the sum of all rewards observed along that sample path. Using Gt the value function

can then be updated as:

18

V π(st)← V π(st) + α(Gt − V π(st)) (2.20)

Here α is a learning rate parameter which controls the magnitude of each

update. One disadvantage of this kind of Monte Carlo update is that Gt will have

a high variance. Especially in cases where there are a large number of time steps per

episode, Gt will vary significantly. This may prevent the Value function from converging.

In addition, it may be computationally slow to run the episode to its conclusion for each

update, and in environments which may go on indefinitely, it is not possible to sample

Gt in this manner.

Conversely TD learning may also be employed by only sampling rewards for

one time step and then estimating the remainder of the return using the value function.

This may be referred to as 1-step TD learning or TD(0). In TD(0) the Gt component

of equation 2.20 is replaced by the sum of the one step return rt+1 and the discounted

estimated value for the next state γV π(st+1). In this method the update is heavily

biased by the current value function. Therefore it may provide poor updates early in

in training when the value function is not yet very accurate. This may lead to slow

training.

V π(st)← V π(st) + α(rt+1 + V π(st+1)− V π(st)) (2.21)

One may also employ n-step TD learning methods in which multiple step

returns are used without going all the way to the end of the episode.

19

G
(n)
t = rt+1 + γrt+2 + ...+ γn−1rt+n + γnV π(st+n) (2.22)

V π(st)← V π(st) + α(G
(n)
t − V π(st)) (2.23)

N-step TD learning allows for a balance between the high variance of Monte

Carlo and the high bias of 1-step TD learning.

Conversely to Value-based methods, Policy-based methods develop a control

policy without first estimating the value. These may function by denoting a policy

distribution π which represents the probability of taking an action a conditional upon

being in state s with policy parameters θ.

π(a|s, θ) = P (at = a|st = s, θt = θ) (2.24)

The policy distribution may be updating by modifying the policy parameters.

Policy-based methods may be preferable in cases where a stochastic policy is desirable

and in environments where estimating the Value is challenging.

2.3.3.2 Model-based vs Model-free methods

Reinforcement learning algorithms can also be categorized based on whether

they are Model-based or Model-free. In this context ”model” refers to a component of

the algorithm that allows for prediction of future states and/or rewards. This model

20

may take the form of a transition function which takes in as input the current state and

is able to output the next state or some distribution over possible next states [24].

Model-based reinforcement learning algorithms incorporate models into their

methods either as part of the learning or as part of action selection. Those which utilize

the model as part of action selection are employing online planning. If the model is

used only as part of the learning process, it is know as background planning.

Model-based methods are generally more sample efficient than model-free meth-

ods as they may use the states and rewards generated by the model to further refine

the policy without having to collect them directly from the environment. However, the

creation of the model itself can be challenging and in some environments it does not

provide additional benefit. Often only some parts of state are required for action se-

lection, so some Model-based methods will only model part of the state or create lower

dimensional embeddings of the state which focus on the most relevant aspects.

Model-free methods learn their policies from data collected through experience

without explicitly being able to predict future states or rewards. These methods are

often simpler as they do not include the additional steps of developing and utilizing

a model. However they often require more samples from the environment in order to

refine the policy. Due to their relative simplicity and effectiveness, Model-free methods

are commonly used.

21

2.3.3.3 On-policy vs Off-policy

Reinforcement learning algorithms can be either On-policy or Off-policy. On-

policy algorithms update the policy using data that was sampled from the environment

using the same policy that is being updated. One such On-policy method is SARSA.

SARSA operates by sampling the state, action, and reward at the current time step as

well as the state and action at the following time step. These values are then used to

update the Q-function.

Qπ(st, at)← Qπ(st, at) + α[rt+1 + γQπ(st+1, at+1)−Qπ(st, at)] (2.25)

This is an On-policy method because the policy π which is being updated is

the same as the policy which is being used to sample the states, actions, and rewards.

Conversely, Off-policy methods sample from the environment using policies

which do not always match the policy the samples are used to update. One such Off-

policy method is Q-learning. In this method the update is made using the maximum

Q-value for the next state over the set of actions.

Qπ(st, at)← Qπ(st, at) + α[rt+1 + γmaxaQ
π(st+1, a)−Qπ(st, at)] (2.26)

Here, the action corresponding to the maximum Q-value is not necessarily the

22

same as the action which would have been chosen by the policy π. Therefore this would

be an Off-policy method.

2.3.3.4 Deep Q-Network

An important advancement in reinforcement learning algorithms is the inclu-

sion of artificial neural network deep learning methods. One such popular method is

the Deep Q-Network [13]. The Deep Q-Network seeks to estimate the Q-function by

doing a form of Q-learning where a Neural Network function approximator is trained

to estimate the state-action value.

In this method, instead of individually updating the Q-value for each state-

action, all state-action values are generated by a neural network which is trained through

stochastic gradient descent. Generally, the input to this network will be the set of state

observations and the output will be the set of estimated expected returns for each action.

The loss function for the Deep Q-Network is shown in equation 2.27.

L(θi) = E[(rt+1 + γmaxa′Q(st+1, at+1; θ
−)−Q(st, at; θ))

2] (2.27)

Similarly to updates done in Q-Learning, the target for the updates is the sum

of the one step reward and the discounted estimate of the expected return from the

subsequent state. Using a neural network to estimate values allows for generalization

to previously unseen state-action pairs, and makes it feasible to apply to environments

with large numbers of distinct states and actions.

23

There are a number of important advancements which were introduced in the

original Deep Q-Network paper which have proven to be useful in deep reinforcement

learning. One such important advancement is the use of Experience Replay [32]. This

method functions by storing samples of state, actions, and rewards in a replay buffer.

Then these can be randomly sampled from to perform batch training on the neural net-

work. This aids in learning by allowing samples from different times to mixed together

in batches which breaks temporal correlations that could impede training.

Another contribution is the practice of temporarily freezing the weight param-

eters of the target network used to calculate the loss. As shown in equation 2.27 the

loss is dependant upon the estimated max Q-value for the state st+1. These estimates

are made using the target network weights θ− which are kept temporarily fixed during

training to make learning more stable. The target weight values are then updated after

some defined interval to more closely match the new weights θ.

24

Chapter 3

Long Short Term Memory Recurrent

Neural Network for Mortality prediction

in Intensive Care Units

25

3.1 Introduction

Analysis of data with time dependency is a topic that is challenging yet relevant

to many tasks. The basic machine learning techniques that are often applied to data

analysis do not account for the time dependency of the data. This dependency however

is frequently an important and informative aspect of the data. Therefore it is important

for techniques to be developed that can account for, and make use of this dependency

when generating predictions.

One area in which time series techniques may be useful is health care data

analysis in intensive care units. In this domain not only are the values of the measure-

ments taken relevant, but also the time at which they were taken. Some techniques

that have been developed in recent years to tackle such dynamic or temporal prediction

problems are based on recurrent neural networks, and Bayesian Kalman filters.

In recent years neural networks have shown remarkable effectiveness in a range

of machine learning tasks. Recurrent neural networks are a type of neural network

architecture specifically designed to be appropriate for time series data analysis. The

structure of recurrent neural networks allows them to deal with time series data of

variable lengths and keep track of time dependencies. In particular long short term

memory (LSTM) recurrent neural network architectures are more effective at modeling

long term dependencies and provide state of the art results on many time series tasks.

For these reasons we consider recurrent neural networks to be a promising

pathway for enhanced capability in time series analysis. One task of importance which

26

neural networks may be useful for is the analysis of electronic medical records in in-

tensive care units (ICU). Doctors and Nurses have at their disposal a large number of

measurements with time dependencies which can be used to help influence estimations

of the patients health state and make treatment decisions. However with so many dif-

ferent measurements available it may be difficult for a medical worker to quickly and

effectively consolidate this information into semantic meaning that can influence treat-

ment. By application of neural networks it may be possible to process these types of

data in order to help inform health care workers of the onset of potentially important

and adverse healthcare events, with a view to intervention.

We have developed a novel technique using recurrent neural networks to per-

form mortality prediction for patient data in the Medical Information Mart for Intensive

Care (MIMIC) III datset. The MIMIC III dataset is an open source data set containing

intensive care unit data. This data set includes a variety of vitals, lab measurements,

doctors’ and nurses’ notes as well as information on when patients were admitted, the

times measurements were taken and, if the patients deceased, the time of death.

Our method generates a mortality trajectory after each recorded health mea-

surement. This trajectory consists of a sequence of mortality predictions over a rolling

window. We feel this rolling window prediction may be particularly useful in intensive

care units as it provides predictions for the near term mortality as opposed to total

in hospital mortality. This focus on the near term may be relevant when considering

imminent threats to patient health.

Additionally our approach helps to address the issue of missing values. Unfor-

27

tunately in health care applications of data analysis, often only a small subset of the

input features are measured at each time. Therefore often values must be imputed for

each of the feature types that are not measured. This is a serious obstacle that must

be addressed when applying these techniques. We have developed a new approach to

modelling the input values that avoids the need for imputing missing values.

3.2 Related Work

One risk assessment tool commonly considered in the literature is the new

Simplified Acute Physiology Score, (SAPS II) described in the paper ”A New Simplified

Acute Physiology Score (SAPS II) Based on a European/North American Multicenter

Study” [12]. The SAPS II was designed to measure the severity of disease for patients

admitted to the intensive care unit (ICU) aged 18 or older. The score is calculated

based on 12 physiological variables, and three disease related variables during the first

24 hours. It also includes information about previous health status such as chronic

diseases as well as the type of admission to the ICU. Since it is based upon data for

only the first 24 hours after admission, it may be lacking important data for mortality

prediction in longer ICU stays, and it may be inapplicable to stays shorter than 24

hours. They also provide a probability of in hospital mortality estimate based on the

SAPS II score and report an AUROC of 0.86 for their validation set.

In the paper “Recurrent Neural Networks For Multivariate Time Series With

Missing Values” [5] a recurrent neural network is applied to mortality prediction on

28

intensive care unit data from the MIMIC III data set. In this paper they use a gated

recurrent unit (GRU) which is a type of recurrent neural network. One distinctive

aspect of the approach used in this paper is the way the inputs are formatted for the

gated recurrent unit. In their approach input features are assembled into vectors for

each time step where each element in the vector is used to record a specific type of

feature (ie heart rate, blood pressure, etc). These input vectors are then fed into the

gated recurrent unit chronologically. In this paper they predict in hospital mortality

based on the first 48 hours of patient stays.

Using this approach they reported an AUC score of 0.8527 on in hospital

mortality prediction [5]. This approach however is only applicable to patient stays of at

least 48 hours and can does not predict near term mortality after each recorded health

measurement.

In the paper ”Dynamically Modeling Patients Health State from Electronic

Medical Records A Time Series Approach” a method is proposed based on Generalized

Linear Dynamic Models that models the probability of mortality as a latent state that

evolves over time. This paper uses the MIMIC II data set, which is the predecessor

to MIMIC III. In this method input features are again assembled into vectors for each

time period. As a result there are again missing values that must be filled. In this

paper the missing values are filled by means of a Regularized Expectation Maximiza-

tion method. By using this approach an AUROC of 0.7606 is reported for in hospital

mortality prediction from numerical features for the first 24 hours of stay [1].

29

3.3 Methods

Our method involves using an LSTM to predict patient mortality rates from

the MIMIC III data set. The goal of this method is to create an alert system for

healthcare workers that will indicate increases in chance of mortality of a patient after

each time a new measurement is input for that patient. Mortality predictions are made

using the values of numerical measurements taken on patients while in the ICU. For this

study we chose to utilize the top 50 most frequently occurring measurement types. The

measurement types used are shown in table 2.1 along with their labels which describe

what that measurement type is recording.

Each measurement is fed into the LSTM in the order in which they were

recorded. For each measurement input, a mortality trajectory is output by the LSTM

for the next 60 minutes following the time at which the measurement was recorded. This

mortality trajectory includes 60 values, where each value corresponds to a minute, and

represents the probability that the patient will have died by the time that minute has

elapsed. In this manner the model is able to generate mortality estimates in a rolling

window for the hour following each recorded measurement.

Each xt is a vector of length 51 which includes the data for a single measure-

ment for a single patient. Each xt consists of two things. The first is a vector of length

50 which indicates which of 50 feature types the xt is. I will refer to this as the indica-

tion vector. The second is a single value which is the value of that measurement after it

has been normalized to mean zero and standard deviation one across all values of that

30

ITEMID LABEL
581 Previous WeightF
618 Respiratory Rate
51 Arterial BP [Systolic]
52 Arterial BP Mean

113 CVP
184 Eye Opening
198 GCS Total
211 Heart Rate
454 Motor Response
455 NBP [Systolic]
456 NBP Mean
492 PAP [Systolic]
646 SpO2
677 Temperature C (calc)
678 Temperature F
723 Verbal Response
742 calprevflg

5813 ABP Alarm [Low]
5814 CVP Alarm [Low]
5815 HR Alarm [Low]
5817 NBP Alarm [Low]
5819 Resp Alarm [Low]
5820 SpO2 Alarm [Low]
8368 Arterial BP [Diastolic]
8441 NBP [Diastolic]

Table 3.1: This table shows the first half of the measurement types used for mortality
prediction in this study. Included are the numerical item IDs as well as their corre-
sponding labels which describe what this measurement type is recording

31

ITEMID LABEL
8448 PAP [Diastolic]
8547 ABP Alarm [High]
8548 CVP Alarm [High]
8549 HR Alarm [High]
8551 NBP Alarm [High]
8553 Resp Alarm [High]
8554 SpO2 Alarm [High]

224168 Parameters Checked
224054 Braden Sensory Perception
224641 Alarms On
220739 GCS - Eye Opening
220045 Heart Rate
220050 Arterial Blood Pressure systolic
220051 Arterial Blood Pressure diastolic
220052 Arterial Blood Pressure mean
220074 Central Venous Pressure
220179 Non Invasive Blood Pressure systolic
220180 Non Invasive Blood Pressure diastolic
220181 Non Invasive Blood Pressure mean
220210 Respiratory Rate
223900 GCS - Verbal Response
223901 GCS - Motor Response
220277 O2 saturation pulseoxymetry
223753 Riker-SAS Scale
223761 Temperature Fahrenheit

Table 3.2: This table shows the second half of the measurement types used for mor-
tality prediction in this study. Included are the numerical item IDs as well as their
corresponding labels which describe what this measurement type is recording

32

type for all patients in the dataset. These two are concatenated together to form each

xt of length 51.

The indication vector is constructed as follows. Each space in the vector rep-

resents a type of feature. To indicate a certain type of feature, a value of 1 is placed in

the space corresponding to that feature type, and a value of 0 is placed in each other

space. In this manner each feature type has a unique length 50 vector associated with

it that has a 1 in the space for that feature type and zeros in each other spot.

This type of feature representation is commonly referred to as One-Hot en-

coding in deep learning literature. Representing categorical variables in this manner is

often used when encoding for input to Neural Networks. The main advantages of this

method of data representation include the ease of implementation and the efficiency of

running time [9].

For the purpose of clarifying this idea assume that there were only three distinct

feature types included in the data used as opposed to the 50 distinct types. Assume

that these are heart rate, blood pressure and temperature and that they are encoded in

that order in the vector. Then for example if the first measurement for a patient was

a measurement of blood pressure and that measurement was 0.5 standard deviations

above the mean then x1 would be.

33

x1 =

0

1

0

0.5

These values are then fed sequentially into an LSTM which generates a new

mortality trajectory each time an input is entered. The LSTM is defined by the following

equations:

ft = σ(W f ∗ [ht−1, xt] + bf) (3.1)

it = σ(W i ∗ [ht−1, xt] + bi) (3.2)

ot = σ(W o ∗ [ht−1, xt] + bo) (3.3)

C ′t = tanh(W c ∗ [ht−1, xt] + bc) (3.4)

Ct = ft � Ct−1 + it � C ′t (3.5)

34

ht = ot � tanh(Ct) (3.6)

Here ht (the hidden state at time t) and Ct (the cell state at time t) are vectors

of 80 values each which are initialized to be all zeros at the start of each patient’s time

series (ie C0 and h0 are all zeros) and then are recursively updated according to the

equations above. [ht−1, xt] denotes a concatenation of the hidden state at the t-1 step

and the input vector at the t step (the resulting length is 131 = 80 + 51).

The weight matrices (W f , W i, W o, W c) and the bias vectors (bf , bi, bo, bc) are

parameters which are initialized randomly with mean zero at the beginning of training

and then updated using stochastic gradient descent during the training process. The

shapes of the weight matrices and bias vectors are (80, 131) and (80) respectively. Here

σ and tanh represent elementwise application of the sigmoid function and the tanh

function respectively. � represents elementwise multiplication of vectors.

The mortality prediction ŷt is then calculated at each time step as follows:

ŷt = σ(W y ∗ ht + by)

Where W y and by are again parameters updated by stochastic gradient descent

but this time with shapes of (60, 80) and (60) respectively in order to end up with the

60 mortality prediction values for each of the 60 minutes following the time at which

the estimate is made.

The loss function used was mean weighted cross entropy where the weight

ratio was set to the ratio of survival cases to death cases in order to adjust for class

35

imbalance. An initial bias of 1.0 was used for the biases in the forget gate (bf). The

weights of the LSTM are optimized using the Adam Optimizer for stochastic gradient

descent. Training was done by batching together data into groups of 60 patients each.

These were then segmented in time into time segments of 100 measurements each. The

weights were updated after each batch of 100 time steps and 60 patients based upon

the loss calculated on the final ŷt values and the corresponding mortality labels for each

patient who had measurement values in that time segment.

The labels were represented by vectors of length 60 which represented the

state of the mortality of the patient for each minute. These were generated such that

each value in the label was one if the patient died before the corresponding minute

represented by the index, and zero otherwise.

One aspect which sets this method apart from previous approaches is the way

the input features are formatted. In our approach, as described above each xt contains

information about a single measurement. These measurements can be of different feature

types at each time step, but only a single one is input at a time. By formatting the

inputs in this manner we are able to put in each feature value one at a time while

allowing for multiple types of features. This approach lends itself nicely to cases in

which one is measuring various types of features over time but only getting data on a

single feature or a small subset of those measured at each time.

Conversely in our approach only a single measurement value is input at each

time step. This means that we can input the value of one feature type at a specific

time with no obligation to put in values for the other feature types at that time. In this

36

approach there is no necessity to put in a value for every feature type at each step so

we are able to put in only the values which actually exist in the data. By structuring

the inputs in this manner we can help deal with the missing data problem by avoiding

the need to impute missing values.

Another aspect in which this method differs from other approaches is the way

in which mortality prediction trajectories are generated in a rolling window from each

measurement time. In methods such as SAPS II. The severity score is calculated based

upon measurements taken within the first 24 hours. Therefore it is unable to provide a

score before the first 24 hours have elapsed and it would not include data taken after

this initial period. By excluding data taken after the initial 24 hours it may not provide

a good estimate for longer ICU hospital stays.

Conversely, in our approach the predictions can be made for any length of

stay in the ICU. This allows for greater flexibility in terms of when it can be applied.

In addition this would allow it to include more data in predictions than the SAPS II

method when assessing hospital stays that are longer than 24 hours.

The approach presented here is also novel because it focuses on generating

mortality prediction for the near future. With this method, predictions are made for

each minute for the next 60 minutes following the most recently recorded data point.

Therefore it can serve as an alert system to identify patients who are at high risk within

the next hour. This can help allow medical workers to focus on patients who are in

imminent risk of death by alerting them that a patient has a higher risk of mortality in

the near future.

37

3.4 Results

The model was trained on 80% of the data, tested on the remaining 20%. We

tested the model by generating the final ŷt values and corresponding labels for each

patient in each batch for the entirety of the test dataset and then calculating the area

under receiver operator curve (AUC) for each of the 60 predictions in these sets. We

report the mean over these resulting 60 AUC values as well. Using our approach we

were able to achieve a mean AUC of 0.857. With further inclusion of more data types

and more advanced regularization we feel this value could get even higher.

The AUROC value for the paper ”Dynamically Modeling Patients Health State

from Electronic Medical Records A Time Series Approach” [1] was 0.7606 for in hospital

mortality predictions on the first 24 hours based on numerical measurements. The paper

“Recurrent Neural Networks For Multivariate Time Series With Missing Values” [5]

reported their AUROC value of 0.8527 for in hospital mortality. The AUROC reported

for the validation set in ”A New Simplified Acute Physiology Score (SAPS II) Based on

a European/North American Multicenter Study” was 0.86.

The mean AUROC for our method was either comparable or exceeded these

AUROC values reported in each of the papers listed here. Our method however, is novel

in that it can be applied more flexibly to incorporate data from different lengths of stay,

it provides near term mortality predictions to indicate imminent mortality risks, and

provides a mortality trajectory consisting of a set of predictions over a rolling window.

Figure 3.1 shows the measured AUROC values for each minute in the rolling window.

38

Figure 3.1: Here, the AUROC for each of the 60 predicted mortality probabilities are
shown.

3.5 Conclusion

Neural networks have risen in recent years as the cutting edge in many machine

learning tasks. Among neural networks, recurrent neural networks and in particular

LSTMs have proven to be effective at time series data analysis. The issue of predict-

ing mortality in intensive care units is important for properly allocating care and and

involves sequential data.

In this work we have developed a novel technique for generating mortality

predictions using LSTMs. Our method makes predictions by generating a mortality

prediction trajectory after each measurement consisting of a sequence of predictions

39

over a rolling window. This type of prediction may be useful for medical workers as

it can alert them to patients who are at high risk in the near future by combining a

variety of different health measurements to predict patient mortality rates.

The current work includes only numerical health records. However, included

in the data are also text based records. In future work these methods could potentially

be extended to include text based data which may allow for additional predictive ability.

Text based data could first be encoded in a manner which matches the dimensions of

the numerical values. This would allow this text data to input into the LSTM alongside

the numerical values.

Our method is novel for a number of reasons. This method avoids the issue

of imputing missing values by formatting the inputs in a way that does not necessitate

it, it can be applied flexibly to different lengths of hospital stays, it generates a series

of predictions to form a mortality prediction trajectory, and it focuses on near term

mortality to alert to imminent mortality risk.

Our method has been demonstrated to be effective by the reported AUROC

on our testing data. This work serves to progress the analysis of medical time series

data analysis for mortality prediction.

40

Chapter 4

PDQN - A Deep Reinforcement

Learning Method for Planning with

Long Delays:

Optimization of Manufacturing

Dispatching

41

4.1 Introduction

Scheduling is an important component in Semiconductor Manufacturing sys-

tems, where decisions must be made as to how to prioritize the use of finite machine

resources to complete operations on parts in a timely manner. Traditionally, Opera-

tions Research methods have been used for simple, less complex systems. However,

due to the complexity of this scheduling problem, simple dispatching rules such as

Critical Ratio, and First-In-First-Out, are often used in practice in the industry for

these more complex factories. This paper proposes a novel method based on deep rein-

forcement learning for developing dynamic scheduling policies through interaction with

simulated stochastic manufacturing systems. We experiment with simulated systems

based on a complex Western Digital semiconductor plant. Our method builds upon

DeepMind’s Deep Q-network, and predictron methods to create a novel algorithm, Pre-

dictron Deep Q-network, which utilizes a predictron model as a trained planning model

to create training targets for a Deep Q-Network based policy. In recent years, deep

reinforcement learning methods have shown state of the art performance on sequential

decision-making processes in complex games such as Go. Semiconductor manufacturing

systems, however, provide significant additional challenges due to complex dynamics,

stochastic transitions, and long time horizons with the associated delayed rewards. In

addition, dynamic decision policies need to account for uncertainties such as machine

downtimes. Experimental results demonstrate that, in our simulated environments,

the Predictron Deep Q-network outperforms the Deep Q-network, Critical Ratio, and

42

First-In-First-Out dispatching policies on the task of minimizing lateness of parts.

This paper proposes a method based on deep reinforcement learning for auto-

mated production scheduling in semiconductor manufacturing systems. In such systems,

scheduling decisions must be made for processing operations. These systems involve

machines that each perform operations to process a variety of different semiconductor

devices. Each type of device requires a specific set of operations to be performed which

varies depending on the type of device. These systems also include re-entrant connec-

tions, and the machines may be subject to machine failures, in which machines break

down during processing and need to be repaired before resuming operations. In the

industry, static dispatching policies such as Critical Ratio (CR) or First-In-First-Out

(FIFO) are often used, together with manual adjustments at failing machines. Obtain-

ing efficient scheduling and dispatch policies at every machine, especially in a system

with machine failures, is a challenging and complex task.

In each factory system modeled in this paper, there is a set of machines that

are used to process boxes of semiconductor devices on sheets of silicon wafers. These

boxes are referred to as parts. At each point in time that a machine becomes available,

a dynamic scheduling decision (dispatching decision) must be made as to what that

machine should do next. In this paper, this decision is modeled as a choice of which

part to process next from the queue at that machine group. Here, this process is

modeled as a Markov Decision Process (MDP). An MDP includes a state, action, and

reward where the state is the information describing the system, the action is a choice

of which decision to make, and the reward is a signal returned after an action is taken

43

which indicates the quality of that action. In the factory systems being modeled, the

semiconductor devices produced are hard drive head chips which are used to read from

and write to hard drives. There is a range of different head types produced in the

facility. In our experiments, we simulate the first 20 processing steps for each head type

to model the front of line in the facility.

In recent years deep reinforcement learning (RL) techniques have been demon-

strated to show remarkable performance in a number of previously challenging domains

such as complex games [13, 19, 20, 2, 25, 16]. In addition, some work has been done

in applying such techniques to manufacturing systems, e.g. [28]. One of the main diffi-

culties in this domain is delayed rewards with particularly long delays; other domains

with this feature include medical interventions in healthcare. Consequently, our focus

in this paper is to develop a planning method that can account for extra long delays in

rewards, together with highly stochastic dynamics.

So, this paper presents the Predictron Deep Q-Network (PDQN), a novel deep

RL technique that combines the Deep Q-Network (DQN) [13] and predictron [18] meth-

ods to learn a policy for dispatching of parts in a simulated system modeled after a

semiconductor manufacturing facility. The DQN is a model-free RL optimization algo-

rithm that trains through experience to estimate Q-values which can be used to form a

policy. The predictron is a model-based policy evaluation algorithm that can be rolled

forward multiple ”imagined” planning steps to predict future rewards and values. The

PDQN uses the predictron as a trained background planning model to generate value

estimates for use in fine-tuning a pre-trained DQN. By doing this, it is possible to incor-

44

porate background planning as part of the training process. This combination helps the

algorithm account for the highly delayed rewards encountered in these factory systems.

Inspiration for this setup comes in part from Dyna [23] in which a model is used to train

a policy, the main difference is that the PDQN uses an abstract model to perform its

planning. The PDQN is also closely related to methods such as Value Prediction Net-

work (VPN) [15] and MuZero [16], but is different from these papers and approaches by

using background planning instead of decision time planning and by using an arbitrary

number of steps in between each abstract state representation. Background planning

has recently been shown to be the largest contributor to policy improvement when us-

ing planning in model-based RL [8]. We compare the PDQN with both DQN and two

standard factory dispatching policies, CR and FIFO.

4.2 Related Work

4.2.1 Deep reinforcement learning in Production Scheduling

In recent years, work has been done in applying deep reinforcement learning

to production scheduling tasks [3]. Stricker et al (2018) [21] presents a Q-learning with

artificial neural network function approximation dispatching method. This method was

demonstrated to outperform a First-In-First-Out on the task of maximizing utilization

and minimizing lead time on a small simulated semiconductor manufacturing system.

In Zhang et al (2020) [31] a method is similarly proposed to automatically

generate priority dispatch rules using a deep reinforcement learning agent. Here, a

45

Graph Neural Network-based scheme is used to embed the states. This work, however,

only applies to job shop problems in which there are a fixed number of jobs to be com-

pleted. Therefore this approach would be inapplicable to the more realistic production

scheduling problem encountered in semi-conductor manufacturing where new jobs are

repeatedly being added into the system and production can continue indefinitely. In

addition, the work in [31] only considers deterministic systems which don’t account for

uncertainties such as machine failures.

In Katsikopoulos et al (2003) [11] an approach to addressing Markov decision

processes with delays and asynchronous cost collection is considered. However that

work assumes fixed or deterministic delays or stochastic delays which are independent

of the state. In the systems considered in this paper the delays are dependent upon the

policy so this approach may not be applicable.

In Derman et al (2021) [6] they consider MDPs in which there are action delays

such that actions are executed some number of steps after they are chosen. This is a

separate issue than the one we are addressing with PDQN. In our case actions are

executed immediately, the challenge in our case is that actions affect the return over

many time steps.

In Campbell et al (2016) [4] they consider the problem of applying Q-learning

with stochastic time delays in the reward signal. This is again different from the is-

sue we are addressing as in our problem, it is not that specific reward values are not

received immediately it is that the effects of each action impact the return over long

horizons which makes learning and credit assignment difficult. Delayed feedback is also

46

considered in Walsh et al (2008) [26]. However it is limited to fixed, constant delays,

which is not applicable for our case.

4.2.2 Deep Q-Network

DQN [13] is a Q-learning method, which works by estimating the expected

discounted future return for a given state and action pair. For DQNs this is accomplished

by using a Neural Network function approximator. DQN uses mini-batch stochastic

gradient descent to update the weights of the neural network based on the gradient of a

loss function to minimize the expected value of the loss. For DQNs the Mean Squared

Error (MSE) loss is used as seen in Equation 4.1.

L(θ) = E[(r + γmax
a′

Q(s′, a′; θ̄)−Q(s, a; θ))2] (4.1)

where θ represents the weight parameters of the neural network. θ̄ represents an earlier

copy of θ, which is used to form a target network. The purpose of the target network

is to estimate the expected value of the next state. The training is stabilized by only

updating θ̄ after a number of training iterations, thereby giving the online network a

stable target. An alternative to this is to use a soft update technique where the target

is gradually updated towards the online network.

Q-learning is considered an off-policy method, as it can train on data collected

by a different policy. To get the best result, however, exploration and exploitation

should be tuned according to the problem. A common solution is to use the ε-greedy

47

policy on the Q-function, where ε is slowly decayed over time. Experienced data is

stored as a set of {state, action, reward, next state} in an experience replay buffer and

sampled according to some distribution, originally uniformly.

4.2.3 Predictron

The predictron [18] is an architecture for model-based value estimation and

policy evaluation. It consists of a fully abstract model which works by ”imagining”

a sequence of waypoints, each simultaneously describing an arbitrary number of steps

into the future and an estimation of the value from the abstract waypoint state. It is

strongly related to methods such as n-step TD-learning [29] and eligibility traces [24].

The predictron learns a representation function f which outputs the first abstract state.

Furthermore, it learns K sets of functions, where each set includes a value function vk, a

next abstract state function sk, a reward function for the transition to the next abstract

state rk, a discount value function γk and an eligibility trace function λk. Figure 4.1

shows how this architecture is implemented in this paper.

The predictron has two outputs describing the predicted returns (preturns),

g0:K and gλ. Here g0:K is the set of K preturns, with one k-preturn gk for each

abstract step k, as seen in Equation 4.2. The λ-preturn gλ, seen in Equation 4.3, is

the weighted average of the k-preturns, where the λ-weights are determined using the

learned eligibility trace parameters.

gk = r0 + γ0(r1 + γ1(. . .+ γk−2(rk−1 + γk−1vk) . . .)) (4.2)

48

gλ =

K∑
k=0

wkgk (4.3)

where

wk =

(1− λk)

∏k−1
j=0 λ

j if k < K

∏K−1
j=0 λj otherwise

(4.4)

The predictron is trained by minimizing the MSE loss for both g0:K and gλ,

as defined in Equations 4.5 and 4.6.

L0:K =
1

2K

K∑
k=0

∥∥∥Ep[g|s]− Em[gk|s]
∥∥∥2 (4.5)

Lλ =
1

2

∥∥∥Ep[g|s]− Em[gλ|s]
∥∥∥2 (4.6)

where Ep is the sampled sum of discounted rewards gained in the episode, and Em is

the predicted value from the model.

Thirdly, an optional loss is minimized, the consistency loss, improving the

consistency between the k-preturns and the λ-preturn, as seen in Equation 4.7.

L =
1

2

K∑
k=0

∥∥∥Em[gλ|s]− Em[gk|s]
∥∥∥2 (4.7)

The predictron is the inspiration for both the VPN [15] and MuZero [16], in

the sense that they all use abstract state-space representations. The main difference is

49

that VPN and MuZero also train a policy for control, whereas the predictron is purely

policy evaluation. VPN and MuZero both use tree searches to conduct their planning,

whereas the predictron uses an estimation of eligibility traces to different depths of its

abstract version of the expected future.

4.3 Methods

This chapter describes the general setup of the methods used in this paper.

Section 4.3.1 describes how the simulated factory is modeled as an MDP. Section 4.3.2

describes the CR and FIFO dispatching policies. Section 4.3.3 describes the proposed

new PDQN method while the Neural Network architecture and hyperparameter setup

for both the DQN and PDQN are described in the Appendix section 4.6.1.

4.3.1 MDP Modelling

4.3.1.1 State Space Representation

The state-space representation consists of the set of variables S = Shs ∪ Shd ∪

Shp ∪ Sm representing the number of parts of each type at each sequence step, the

number of parts due for each head type, the number of parts that are past due, and the

machine that the dispatch decision corresponds to.

First, information about the work in process (WIP) is included in the state

space. Let Nht,j be the number of parts in the factory of head type ht at step j of

production. Included in the state space are the values of Nht,j for all combinations of

50

head type ht ∈ H, where H is the set of all head types and sequence step j ∈ Jht, where

Jht is the set of sequence steps of head type ht, Jht = {1, 2, ...,Mht}, where Mht is the

number of sequence steps for head type ht. Let this set of state variables be Shs:

Shs = {Nht,j |(ht ∈ H) ∧ (j ∈ Jht)} (4.8)

Second, information about the number of parts that are due for each head type

is included in the state space. Let Dht be the number of parts due for head type ht.

Let the set of due part state variables be Shd:

Shd = {Dht|ht ∈ H} (4.9)

Third, information about the parts which are past due are included as well.

As such the values Pht representing the number of parts past due for each head type ht

are included as well. Let this set of state variables be Shp:

Shp = {Pht|ht ∈ H} (4.10)

Lastly, the state space includes the machine variables where Sm is a one-hot

vector indicating the machine that the dispatching decision for that time step corre-

sponded to.

51

4.3.1.2 Action Space

An action is made every time a machine is ready to process a new part and

a part is in its queue. The action determines which part to process next, and consists

of selecting a head type and a sequence step. Let Hm be the head types present in the

queue for the affected machine m.

A = (ht ∈ Hm, j ∈ Jht) (4.11)

4.3.1.3 Reward Signal

The reward signal is designed to penalize the agent for being late on parts with

respect to their due dates. To accomplish this the reward at each time step is made to

be negative and proportional to the amount of time that has elapsed during the time

step and the number of parts that are past due. This can be represented as an integral

over the time between two time steps. Let ti be the time at which time step i occurs in

the MDP representing the factory. Let Ri be the reward for time step i.

Ri = −
∫ ti

ti−1

Nd(t) dt (4.12)

where Nd(t) is the number of parts that are past due at time t. This way the agent will

be repeatedly penalized each time step at a rate which is proportional to the number

of parts that are past due. This serves as a heuristic that will encourage the agent to

complete parts before their due dates.

52

4.3.2 Critical Ratio and First-In-First-Out dispatching policies

CR dispatching is a part priority rule based on the ratio between remaining

time until due and the remaining time needed to complete processing of a part. The

CR dispatching policy proceeds by selecting the part from the queue with the smallest

critical ratio value. This will prioritize the parts which are most late and should therefore

reduce the lateness of parts.

FIFO dispatching is done by selecting the part to process which was added

to the queue first. When considering a single queue, FIFO may reduce max waiting

time at that queue by always processing the part that has been waiting for the longest.

However, this policy may not be optimal for the whole system as it does not take into

account the state of other queues.

4.3.3 PDQN

Presented here is the PDQN algorithm. PDQN addresses the need for learning

from highly delayed rewards and dynamic uncertainty due to machine downtimes by

including abstract planning for a large number of steps. PDQN consists of two parts,

an optimal decision policy determining component based on DQN, and an abstract

planning trajectory-based value estimation component based on the predictron; this

latter value estimate function of the predictron is fed to the DQN during training. In

a traditional DQN, the model trains by minimizing the difference between its Q value

estimate and a target value, as seen in Equation 4.1. This target is formed by sampling

the reward for one step and then estimating the discounted return from the subsequent

53

state using the same DQN architecture but with older weights, referred to as the target

model. In the PDQN, we instead train the predictron part to estimate the value of

states under the DQN policy, and use this value estimate as the target for the DQN,

effectively substituting maxa′ Q(s′, a′; θ̄) with Em[gλ|s′], as seen in Equation 4.13.

L(θ) = E[(r + γEm[gλ|s′]−Q(s, a; θ))2] (4.13)

where Em[gλ|s′] is the predictron estimate for the discounted return from the subsequent

state s′ and r is the reward given by the environment.

By using the predictron as target, the policy is trained using background plan-

ning. This is because the predictron part is trained to estimate the actual return from

running the policy. By incorporating background planning, the policy can be trained

towards better targets, which can take much more delayed rewards into account, and by

using learned eligibility trace weights, it can learn to better assign the right weight to

late rewards. As the policy converges towards a better policy, the predictron will have

to be updated to fit the policy again. Where, in traditional DQN, the target model is

updated by simply copying the weights of the online model, we here update the target

from the predictron by training it on new samples collected by the policy. This is done

by fixing the policy for a number of steps and collecting samples of states along with

the following h rewards and the value of the hth state as estimated by the policy. It

is important to note, that the predictron is trained in a supervised manner, where the

data is collected using the policy. With i as the time step, the target for the predictron

54

Ep[gi|si] is defined as

Ep[gi|si] =
h−1∑
n=0

(γn ∗Ri+n) + γh ∗max(Q(si+h,a; θi)) (4.14)

where R is the actual return from the following h steps and max(Q(si+h,a; θi)) is the

expected value of the hth state, estimated by the policy. Therefore the target for the

predictron is biased by the estimate of the policy. When using a long horizon the policy

will have a small effect on the total discounted return target, while the actual return

from within the horizon will increase the variance of the target. Shorter horizon lengths,

however, would be more biased by the policy and have lower variance. Consequently,

there is a trade-off between these that may lead to different horizon lengths being

optimal for different scenarios. The tested PDQN here uses a horizon higher than the

estimated number of steps needed to complete on average more than two batches of

parts at any given time of the environment.

The loss for the predictron is then calculated using Equations 4.15 and 4.16

and the consistency update loss from Equation 4.7.

L0:K =
1

2K

K∑
k=0

∥∥∥Ep[gi|si]− Em[gk|s]
∥∥∥2 (4.15)

Lλ =
1

2

∥∥∥Ep[gi|si]− Em[gλ|s]
∥∥∥2 (4.16)

As a policy evaluation method, the expectation is that the predictron model

55

can provide better estimates of long-term returns than the DQN based Q-value estimator

itself. Better return estimates will then create stronger targets for learning when used

to train the policy. We expect the target to be better as the predictron architecture can

create an abstract planning model, including abstract states which are rolled forward to

predict future returns weighed by a learned eligibility trace. The desirable features of the

algorithm derive from the predictron and Eligibility Traces properties in incorporating:

1. The true delayed rewards, rather than inaccurate surrogates and 2. The most effective

bias-variance trade-off, with the associated dimensional reduction. We hypothesize that

these characterizes would enable it to firstly perform very well. Secondly, it would likely

dominate stand-alone Q-learning approaches such as DQN and variants.

The choice of using the predictron for planning instead of using decision time

planning methods, such as tree search, was based on the nature of the environment. Due

to the large delays between when actions are taken and the completion of the parts those

actions relate to, actions generally have very little effect on the expected return over the

next few states. Therefore if a tree search should be used, it would need to be traversed

to a high depth before seeing the outcome of the immediate action taken. By using the

predictron with an external control policy, effectively using background planning, the

policy can get an estimate of the long-term state value directly on the state. It is then

used as the target for the policy that is trained using background training, and through

this, the policy is indirectly trained through background training as well. The PDQN

training algorithm is summarized in Algorithm 1 along with a detailed hyperparameter

setup in the appendix section 4.6.1. The predictron architecture used is shown in Figure

56

4.1. It is an alternation of the original architecture from [18]. The main change is that

all convolutional layers are replaced with fully connected layers. This alternation is

made as the state representation in our environment is not spatially related in the same

manner as the environments used in the original paper, making local convolutional filters

less meaningful.

FCs FC s
0

FC

FC

FC

FC FC

FC

FC

FC

FC

FC

FC

v0 r0 γ0 λ0

s
1

FC

FC

FC

FC FC

FC

FC

FC

FC

FC

FC

v1 r1 γ1 λ1

s
2
 … s

K

FC

FC

vK

128128128

128 128 128

128

128

128128128128

128128 128 128

128

111111111

…

Figure 4.1: The fully connected version of the original predictron implemented with
16 depth layers with individual weights. Each fully connected layer has 128 neurons,
except for the output layers which have 1. s is the input state while s0:K are the abstract
states. V 0:K are the estimated values for each abstract state. r0:K−1 are the expected
abstract rewards received for transitioning from one abstract state to the next. γ0:K−1

is the expected abstract discount factors to apply for each abstract step. λ0:K−1 is the
expected eligibility assigned to each abstract step. As the abstract steps is arbitrarily
long, γ and λ can vary as well.

4.4 Experiments

To evaluate the PDQN method, two different factory systems are used; a

balanced factory system, which was a balanced version of a real factory system, and a

randomly generated factory system, which was made publicly available. We compared

the mean lateness and the sum of lateness, which was the return received by the agent

during an episode. We compared the performance against the CR, FIFO, and DQN

57

policies1. For the evaluation, the DQN and PDQN policies were fixed, meaning that

they were not allowed to train on the data from the test set.

4.4.1 Setup

The balanced 20 sequence steps (B20) factory system was based on a subset

of a real semiconductor manufacturing facility owned by Western Digital Corporation.

In this system, the first 20 processing steps for each head type were simulated. The

machine groups, process routings, and processing times in the simulated system were set

to match the real system. Other factory parameters were set based on simulation results

under the CR dispatch policy. Some machines were added to the simulated system to

reduce bottle-necking at stations with high utilization. The system was tested with two

machine failure rates to experiment with the robustness to changes in this parameter.

The Mean Time To Failure (MTTF) was therefore set to either 100,000 minutes and

10,000 minutes, while the Mean Time To Repair (MTTR) was set to 120 minutes, and

the WIP level was set to 30 release batches where each batch contained one part of

each head type. The due date lead times and WIP levels were set to ensure a mix of

on-time and past due part completions. For each sample path in validation and testing,

the environment was executed for 100,000 simulation minutes.

The generated 20 sequence steps (G20) factory systems were based upon data

shared by Western Digital for a real factory system. These systems were designed to

1Initial experiments did not show an improved performance of the DQN by applying the extensions
proposed in Hessel et al (2018) [10]. Furthermore, MuZero was considered, as according to Hamrick et
al (2021) [8] this method incorporates planning. However, the results from the implementation did not
converge.

58

resemble real systems while being partially randomly generated to allow for sharing of

the factory settings without divulging proprietary data. The G20 systems have the same

(MTTF) and WIP levels as the B20 systems. The generation of the G20 system factory

files is described in the appendix. In all setups, the release of parts into the system was

controlled by a CONWIP based policy to maintain relatively constant levels of WIP in

the system by releasing each batch of parts when another completes. Due dates were

set using a set due date lead time for each head type, which specifies the time between

when a part was released and when it was due. Machine failure and repair times were

sampled from exponential distributions with specified mean times based on data from

Western Digital.

4.4.2 Training and Model Selection

Initial experiments showed that when comparing the performance of the trained

models of the same type, large variations were seen between the models, but a low vari-

ation was seen on the individual models. This was expected to come from the random

initialization of the policies, as well as from the randomness used for exploration. To

account for the variation seen between models, multiple models were trained for both

DQN and PDQN. For each factory system, 10 different DQNs were trained. Each of

these DQN models was then used to initialize a PDQN model training session. The

best models, in terms of lateness, were selected through validation simulations. Fur-

ther training details, architecture, and hyperparameter setup are explained in detail in

Section 4.6.1.

59

4.4.3 Main test results

The best performing DQN and PDQN model from each environment was tested

on 50 simulations with different sample paths. Each sample path was initialized with

a seed to ensure a reproducible behavior from the environment when used to compare

the performance of different policies. For comparison, the mean sum of lateness for the

completed parts2 is used.

B20
MTTF:10,000

B20
MTTF:100,000

0.0

0.5

1.0

1.5

2.0

2.5

 L
at

en
es

s

1e6

G20
MTTF:10,000

G20
MTTF:100,000

0

2

4

6
1e7

CR FIFO DQN PDQN

Figure 4.2: Here, the results from the objective function used to train the RL based
policies are compared. The results are based on 50 test runs for each setup of each
tested environment.

Figure 4.2 shows the results from the 50 test runs on all the tested environ-

ments. It is seen that for both factory systems, DQN and PDQN outperform CR and

FIFO in terms of the mean sum of the lateness, which is the objective function used.

Furthermore, PDQN outperform DQN on the same metric in all systems except the B20

system with MTTF of 10,000. The results seem to indicate that either DQN and PDQN

perform similarly well, with very small difference in performance in the one case that

2The initial 2× the WIP × the release batchsize number of parts are discarded from the results to
only consider the steady-state system after a burn in period.

60

DQN is superior, or the PDQN typically significantly outperforms DQN; we observe

this in B20 with MTTF of 100,000 and G20 with MTTF of 10,000.

Overall, the results indicate that PDQN succeeds in improving the performance

over the DQN policy, which again improves upon the standard factory dispatching poli-

cies, on the given lateness objective function in the tested environment. From a smart

factory perspective, choosing PDQN with the correct parameters from the validation

step appears to provide a robust close-to-optimal performance for the given objective

function.

This performance improvement validates our initial hypothesis that incorpo-

rating the long delay reward data from the planning simulation, and the bias-variance

features of the predictron, should together provide a powerful approach to addressing

very long delays in highly dynamic, stochastic, and large-dimensional systems.

4.4.4 Additional observations

An interesting observation is that for both DQN and PDQN, the sum of late-

ness often increases when the MTTF is increased for the two systems. By measuring

the mean lateness and the number of completed parts from the 50 test runs, as seen in

Figure 4.3, some additional insights to this increase, are made. The results can be seen

in Tables 4.3 and 4.4 in the appendix section 4.6.1.

PDQN outperforms the DQN in terms of mean lateness except in the B20

system with MTTF of 10,000. However, it is interesting to see how the number of

completed parts, in general, is lower for the RL methods compared to the CR and

61

FIFO policies. This result indicates that the used objective function of reducing the

lateness of parts might result in unwanted behavior in terms of throughput, which is not

part of the current objective function. Future work might need to consider an objective

combining lateness and throughput. However, we do note that in the G20 system with

an MTTF of 10,000, the PDQN throughput outperformed CR.

The G20 system has also been tested with WIP level of 15. The results from

this test is shown in Table 4.4 in the appendix. The PDQN and DQN performance

on those systems indicated that the learned policies favors higher WIP levels. This is

possibly because higher WIP levels allow the policy to have greater flexibility, as more

parts will line up at the machine queues, effectively increasing the number of allowed

actions.

100

150

200

M
ea

n
La

te
ne

ss

1000

1500

B20
MTTF:10,000

B20
MTTF:100,000

13500

14000

14500

15000

C
om

pl
et

ed
 p

ar
ts

G20
MTTF:10,000

G20
MTTF:100,000

27500

30000

32500

35000

CR FIFO DQN PDQN

Figure 4.3: Additional observations regarding mean lateness (Top) and the number of
completed parts (Bottom) are shown here. The data is shown with the inner quartiles
(colored boxes), the median (black lines), the mean (white dots), and the min and
max values (whiskers). Both the mean lateness and the number of completed parts is
reported for all parts completed after the initial two full system runs, which are removed
to align the observation with the objective function.

62

We observe that the validation step is fairly effective in the choice of hyperpa-

rameters including model parameters and iterations. Future research should experiment

with hyperparameter optimization of the PDQN method to avoid this excess amount of

training.

4.5 Conclusions

In this paper, we approach the problem of dispatching in simulated Semicon-

ductor Manufacturing systems by using deep RL techniques. We present the PDQN, a

novel deep RL approach combining DQN with value estimates from the predictron. We

evaluate the use of both DQN and PDQN on two factory systems. The deep RL meth-

ods are compared against CR and FIFO dispatching policies. The results show that

PDQN outperforms CR, FIFO, and DQN in terms of lateness of part in the systems

and that both deep RL methods outperform CR and FIFO on this task.

From these results, we see that our hypothesis holds true, in that using the pre-

dictron architecture to better predict target values with very large delays, and provide

powerful bias-variance trade-offs, can indeed increase the performance of a DQN based

policy. That is, by incorporating this trained abstract planning model, the policy seems

to better learn from delayed rewards in systems such as the dynamic manufacturing

systems described here. Currently, however, there is a large variance in the perfor-

mance of models after training, so carefully choosing a trained model by validating its

performance is recommended.

63

Scheduling in semiconductor manufacturing facilities is a complex task that

has a significant effect on the efficiency of production. Estimation of long-term values

in this domain is especially difficult due to the nature of the factory systems. By

including predictron methods, which have improved predictive ability, we were able

to train models that outperform the DQN, CR, and FIFO on our chosen objective of

reducing lateness of parts. The methods presented in this paper progress the application

of deep RL to scheduling algorithms in this domain.

4.6 Appendix

4.6.1 Architecture and hyperparameter setup

Here we present the environment-dependent DQN and PDQN hyperparameter

settings for the experiments. We used the same hyperparameter settings for all experi-

ments. The hyperparameters were tuned based on experiments on the B20 system.

The architecture of the DQN was implemented as a 4 layer fully connected

neural network, where the first three layers had 400, 250, and 125 neurons respectively,

and used the ReLU activation function. The last layer was the output layer, which had

Na number of neurons, where Na was the number of actions in the environment. The

DQN was trained using the MSE loss with the Adam optimizer. The DQN was trained

with a batch size of 32 and a learning rate of 0.005 using a discount factor γ of 0.99.

The target network was softly updated with τ = 0.125. Actions were chosen using the

ε-greedy policy on the Q-function with ε starting at 1.0 and decaying with 0.999 at each

64

step. A summary of the DQN hyperparameters is shown in Table 4.1.

The architecture of the predictron part, seen in Figure 4.1, is a fully connected

version of the original predictron architecture [18], i.e., all convolution layers have been

replaced with fully connected layers. All layers in the architecture, except for the

output layers, have 128 neurons and use ReLU activations. The number of neurons for

each abstract state-space representation serves as an encoding mechanism, where fewer

neurons will result in a more compressed representation. Initial results show that using

128 neurons had a small positive effect on the performance when comparing to using 8,

16, 32, 64, and 256 neurons.

The depth of the predictron was set to 16, where each depth layer used its own

weights. This configuration was chosen, as it was the best performing configuration in

[18]. L2 regularization was used to counter overfitting. The training was conducted

using the MSE loss with the Adam optimizer. The batch size of the predictron was

set to 128, and the number of training batches per iteration was 128. The PDQN had

the same discount rate as the DQN, γ = 0.99, and a horizon of 500, meaning that the

target for the predictron was the sum of the actual discounted return of the following

500 steps and the discounted DQN value estimate for state si+500. With this setting we

weighed the actual discounted return by 0.993, while weighing the remaining estimated

value by 0.007. ∫ h
0 γ

xdx∫ inf
0 γxdx

=

∫ 500
0 0.99xdx∫ inf
0 0.99xdx

= 0.993

The horizon of 500 was found as 2.5 times the number of steps required to complete one

65

batch on an empty system.

The policy part of the PDQN was initialized to be a copy of a pre-trained

DQN. It was trained in the same manner as the DQN, with the only difference being

that the target was estimated by the predictron part and that it was trained for 50,000

steps per iteration. A summary of the PDQN hyperparameters is shown in Table 4.2.

The environment is set to run for an initial burn-in period using the greedy policy on

the Q-function to skip the initial part of the environment before initiating the training.

First the predictron is trained for an initial number of steps, to allow it to

learn a good estimate for the value of the policy. Then the policy is updated with

the predictron value estimate as the target for an initial number of steps. Then the

number of steps for training the predictron and the policy is set to a fixed value, and

the alternation between training the two parts is continued for a number of iterations.

During training, the Q function is updated after every step using the Adam optimizer

on a small batch of data. The actions for the policy are sampled using epsilon greedy

with a fixed epsilon. When training the predictron, the actions are sampled using the

greedy policy on the Q function. The predictron is updated after all samples in that

sequence have been collected in a supervised learning manner.

4.6.2 Additional observations

Here, more results from running the dispatching methods on the two factory

systems introduced in section 4.4, are presented. The mean lateness and the number of

completed parts are reported for the entire length of the simulation, except for the initial

66

Table 4.1: Hyperparameter setup for DQN

Hyperparameter Value

Learning rate 0.005
Batch size 32
Discount factor γ 0.99
Exploration rate ε 1.0 −→ 0.02
ε decay rate 0.999
Soft update coefficient τ 0.125
Training steps 500, 000
Replay buffer size 10, 000

Table 4.2: Hyperparameter setup for PDQN

Predictron part Policy part

Learning rate 0.01 Learning rate 0.005
L2 weight 0.01 Batch size 32
Batch size 128 Discount factor γ 0.99
Batches per iteration 128 Exploration rate ε 0.1
Horizon h 500 Steps per iteration 50, 000
Depth k 16 Replay buffer size 10, 000

2× WIP × the release batchsize number of parts, from which the results are discarded.

The general trend is that the RL-based methods outperform CR and FIFO in terms

of mean lateness, where PDQN outperforms DQN in 4 of 6 setups. CR and FIFO

have the highest number of parts completed in the 15 and 30 WIP level experiments.

Note that the number of completed parts is low while the mean lateness is also low for

both the DQN and PDQN methods. The reason for this might be that the objective

function used penalizes the agent from completing parts later than their due time. As

the CONWIP release policy is used, the agents might learn to delay the completion

of batches as much as possible to delay the introduction of new parts for as long as

67

possible. This way, the mean lateness can be low if the majority of parts get completed

fast, and the number of completed parts will be low, due to the delayed completion of

the last part of the batch, which would match the results seen.

4.6.3 G20 Factory Settings

Each G20 system included 10 head types. The process routings for each head

type were sampled with replacement from a set of 24 stations. The processing times

were sampled from a gamma distribution which was set to match the distribution of

the balanced factory system. The number of machines in each station was selected to

match the level of demand at each station. The MTTF was again set to 100,000 minutes

and 10,000 minutes with an MTTR of 102 minutes. The level of WIP was set to 30

release batches, where each released batch contained one part of each head type. For

each sample path in validation and testing, the environment was executed for 500,000

simulation minutes. The longer execution times for these setups were set to account for

a lower throughput compared to the B20 system.

68

Table 4.3: Test results for balanced 20 step factory, B20, on 100,000 simulation minutes.
The results are averaged over 50 different test runs and shown with ± standard deviation
of the sample mean over the different test runs.

CR FIFO DQN PDQN

30 WIP BATCHES
MTTF 10,000
Sum of Lateness 2.83e6±3.92e3 2.67e6±3.68e3 1.14e6±8.00e3 1.25e6±4.61e3
Mean Lateness 191.3±0.30 180.7±0.28 80.9±0.62 91.3±0.39
Completed parts 14798.7±3.90 14774.2±3.18 14146.8±12.52 13680.6±10.78

MTTF 100,000
Sum of Lateness 2.76e6±1.97e3 2.67e6±1.74e3 1.41e6±2.68e3 1.05e6±7.92e3
Mean Lateness 184.1±0.13 178.4±0.12 104.7±0.28 73.1±0.39
Completed parts 14968.9±1.26 14943.7±1.12 13491.3±7.16 14437.5±12.97

69

Algorithm 1: PDQN training

Q = Load pretrained DQN;
Start and run environment for an initial burn-in period, using the greedy
policy on the Q function;
predictron train steps = predictron batch size ∗ batches per iteration;
TrainPolicy = False;
i = 0;
while training do

Update state: ŝ = ŝ′;
Update allowed actions: ĉ = ĉ′;
Use greedy policy on Q function to find action: â = argmax(Q(ŝ, ε)|ĉ);
Take step: ŝ′, r̂, ĉ′ = step(â);
Save to replay buffer: ReplayBuffer.add(ŝ, â, r̂, ŝ′, ĉ′);
Increase step counter: i+ = 1;
if TrainPolicy then

Sample batch: s, a, r, s′, c′ = samplebatch(ReplayBuffer);
Calculate loss from Equation 4.13;
Use Adam optimizer on batch loss;
if i >= policy steps per iteration then

TrainPolicy = False;
i = 0;

end

else
Si = ŝ;
Ri = r̂;
if step >= h then

Ep[g|Si−h] =
∑h

n=0(γ
n ∗Ri−h+n) + γh ∗max(Q(ŝ′)|ĉ′);

Append Si−h, Ep[g|Si−h] to train data;
if step >= predictron train steps then

while train data is not empty do
s, Ep[g|s] = getbatch(train datapredictron);
Calculate k loss from Equation 4.5;
Calculate λ loss from Equation 4.6;
Use Adam optimizer on k loss and λ loss;
To use consistency updates do:
Calculate cu loss from Equation 4.7;
Use Adam optimizer on cu loss;

end
TrainPolicy = True;
i = 0;

end

end

end

end 70

Table 4.4: Test results for generated 20 step factory, G20, on 500,000 simulation minutes.
The results are averaged over 50 different test runs and shown with ± standard deviation
of the sample mean over the different test runs. 2 different failure rates and 2 different
WIP levels are compared.

CR FIFO DQN PDQN

15 WIP BATCHES
MTTF 10,000
Sum of Lateness 19.3e6±27.1e3 18.4e6±16.5e3 13.2e6±24.8e3 14.9e6±24.2e3
Mean Lateness 561.4±0.74 533.4±0.47 489.9±1.29 464.6±0.96
Completed parts 34417.2±9.20 34540.5±7.01 26919.6±28.99 32060.0±38.26

MTTF 100,000
Sum of Lateness 18.6e6±16.7e3 17.9e6±10.5e3 13.4e6±22.5e3 13.0e6±20.4e3
Mean Lateness 532.7±0.45 512.4±0.30 428.5±0.68 449.3±0.82
Completed parts 34926.1±3.72 34902.6±2.07 31311.7±18.01 28828.8±24.01

30 WIP BATCHES
MTTF 10,000
Sum of Lateness 58.5e6±115.2e3 58.2e6±48.0e3 41.8e6±99.2e3 26.2e6±399.2e3
Mean Lateness 1730.8±2.55 1698.9±1.45 1501.6±3.68 774.6±12.65
Completed parts 33798.6±25.51 34265.2±5.32 27831.6±27.91 33895.5±44.15

MTTF 100,000
Sum of Lateness 58.9e6±102.5e3 57.0e6±35.8e3 43.5e6±87.7e3 42.2e6±94.4e3
Mean Lateness 1707.9±2.45 1647.9±1.05 1400.2±2.64 1390.7±2.95
Completed parts 34508.6±16.75 34587.8±2.22 31057.7±26.64 30336.1±25.41

71

Chapter 5

Conclusion

72

The central goal of this dissertation has been the development of neural net-

work based methods for application to problems with sequential prediction and decision

making tasks. In chapter 3, I describe a method we developed using LSTM recurrent

neural networks for mortality prediction. this method is novel in how it models the

inputs to the algorithm in order to address the issue of missing values. It is also novel

because it generates a mortality prediction trajectory consisting of a sequence of pre-

dictions over a rolling window. This rolling window may be more useful for allocating

care as it focuses on the pertinent near term as opposed to overall hospital mortality as

has been often done in other approaches.

In chapter 4, I present our methods of deep reinforcement learning for pro-

duction scheduling in semiconductor manufacturing facilities. We developed two deep

reinforcement learning methods. One based on the Deep Q-Network, as well as a novel

method known as Predictron Deep Q-Network (PDQN) which incorporates the predic-

tron architecture into the algorithm to allow for better target training of the policy

network. We also developed a simulation model for training and testing of our methods

and we created a number of simulated factory systems based on real systems at West-

ern Digital Corporation using this simulation model. The presented deep reinforcement

learning methods outperformed common industry benchmarks on the task of reducing

mean lateness of parts in these simulated environments. Additionally our novel PDQN

algorithm outperformed the Deep Q-Network on this task in a majority of the factory

systems tested.

73

This dissertation work contributes to the progression of neural network based

methods for sequence based prediction and decision making tasks. The methods devel-

oped are applicable to the two important domains of mortality prediction and produc-

tion scheduling. Here in this dissertation I present these methods, as well as relevant

background information, and demonstrate their effectiveness through test results using

available data sets and our own developed simulation environments.

74

Bibliography

[1] Karla L. Caballero Barajas and Ram Akella. Dynamically Modeling Patient’s

Health State from Electronic Medical Records: A Time Series Approach. In Pro-

ceedings of the 21st International Conference on Knowledge Discovery and Data

Mining, pages 69–78. ACM, 2015.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw

Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christo-

pher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub W. Pachocki,

Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Sali-

mans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,

Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.

ArXiv, abs/1912.06680, 2019.

[3] Juan Pablo Usuga Cadavid, Samir Lamouri, Bernard Grabot, and Arnaud Fortin.

Machine learning in production planning and control: A review of empirical liter-

ature. IFAC-PapersOnLine, 52(13):385–390, January 2019.

[4] Jeffrey S Campbell, Sidney N Givigi, and Howard M Schwartz. Multiple model Q-

75

Learning for stochastic asynchronous rewards. J. Intell. Rob. Syst., 81(3):407–422,

March 2016.

[5] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David A. Sontag, and Yan

Liu. Recurrent neural networks for multivariate time series with missing values.

CoRR, abs/1606.01865, 2016.

[6] Esther Derman, Gal Dalal, and Shie Mannor. Acting in delayed environments with

non-stationary markov policies. In International Conference on Learning Repre-

sentations, 2021.

[7] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[8] Jessica B Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola,

Sims Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Veličković, and

Theophane Weber. On the role of planning in model-based deep reinforcement

learning. In International Conference on Learning Representations, 2021.

[9] John Hancock and Taghi Khoshgoftaar. Survey on categorical data for neural

networks. Journal of Big Data, 7, 04 2020.

[10] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski,

Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rain-

bow: Combining improvements in deep reinforcement learning. In Thirty-Second

AAAI Conference on Artificial Intelligence, April 2018.

76

[11] Konstantinos Katsikopoulos and S.E. Engelbrecht. Engelbrecht, s.e.: Markov de-

cision processes with delays and asynchronous cost collection. ieee trans. autom.

control 48(4), 568-574. Automatic Control, IEEE Transactions on, 48:568 – 574,

05 2003.

[12] Jean-Roger Le Gall, Stanley Lemeshow, and Fabienne Saulnier. A New Simplified

Acute Physiology Score (SAPS II) Based on a European/North American Multi-

center Study. JAMA, 270(24):2957–2963, 12 1993.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg

Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-

len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.

Human-level control through deep reinforcement learning. Nature, 518(7540):529–

533, February 2015.

[14] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall.

Activation functions: Comparison of trends in practice and research for deep learn-

ing. CoRR, abs/1811.03378, 2018.

[15] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages

6118–6128. Curran Associates, Inc., 2017.

77

[16] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Lau-

rent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore

Graepel, Timothy Lillicrap, and David Silver. Mastering atari, go, chess and shogi

by planning with a learned model. Nature, 588(7839):604–609, December 2020.

[17] William H. Shrank, Teresa L. Rogstad, and Natasha Parekh. Waste in the

US Health Care System: Estimated Costs and Potential for Savings. JAMA,

322(15):1501–1509, 10 2019.

[18] David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim

Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto,

and Thomas Degris. The predictron: End-to-end learning and planning. In Doina

Precup and Yee Whye Teh, editors, Proceedings of the 34th International Confer-

ence on Machine Learning, volume 70 of Proceedings of Machine Learning Research,

pages 3191–3199, International Convention Centre, Sydney, Australia, 06–11 Aug

2017. PMLR.

[19] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,

Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore

Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks

and tree search. Nature, 529(7587):484–489, January 2016.

[20] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

78

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,

Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner,

Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore

Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks

and tree search. Nature, 529(7587):484–489, January 2016.

[21] Nicole Stricker, Andreas Kuhnle, Roland Sturm, and Simon Friess. Reinforcement

learning for adaptive order dispatching in the semiconductor industry. CIRP An-

nals, 67(1):511–514, 2018.

[22] Richard S. Sutton. Learning to predict by the methods of temporal differences.

Machine Learning, 3(1):9–44, August 1988.

[23] Richard S. Sutton. Integrated architectures for learning, planning, and reacting

based on approximating dynamic programming. In In Proceedings of the Seventh

International Conference on Machine Learning, pages 216–224. Morgan Kaufmann,

1990.

[24] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, second edition, 2018.

[25] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew

Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko

Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,

Laurent Sifre, Trevor Cai, John P Agapiou, Max Jaderberg, Alexander S Vezh-

79

nevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury

Sulsky, James Molloy, Tom L Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff,

Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,

Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis,

Chris Apps, and David Silver. Grandmaster level in starcraft II using multi-agent

reinforcement learning. Nature, 575(7782):350–354, November 2019.

[26] Thomas Walsh, Lihong Li, and Michael Littman. Learning and planning in en-

vironments with delayed feedback. Autonomous Agents and Multi-Agent Systems,

18:83–105, 02 2008.

[27] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando

Freitas. Dueling network architectures for deep reinforcement learning. volume 48

of Proceedings of Machine Learning Research, pages 1995–2003, New York, New

York, USA, 20–22 Jun 2016. PMLR.

[28] Bernd Waschneck, André Reichstaller, Lenz Belzner, Thomas Altenmüller, Thomas

Bauernhansl, Alexander Knapp, and Andreas Kyek. Optimization of global produc-

tion scheduling with deep reinforcement learning. Procedia CIRP, 72:1264–1269,

2018. 51st CIRP Conference on Manufacturing Systems.

[29] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College,

Oxford, 1989.

80

[30] Lawrence M Wein and Philippe B Chevalier. A broader view of the job-shop

scheduling problem. Manage. Sci., 38(7):1018–1033, July 1992.

[31] Cong Zhang, Wen Song, Zhiguang Cao, J Zhang, Puay Siew Tan, and Chi Xu.

Learning to dispatch for job shop scheduling via deep reinforcement learning.

NeurIPS, 2020.

[32] Shangtong Zhang and Richard S. Sutton. A deeper look at experience replay.

CoRR, abs/1712.01275, 2017.

81

