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Abstract

One function of visual attention is as a filter that
selects one region of the visual field for enhanced
detection and recognition processing. A second
function of attention is to provide localization in-
formation, which can be used in guiding motor
activity. A visual system in which the eyes can
be moved requires such localization information
to guide eye movements. Furthermore, the con-
trol of arm and hand movements for object ma-
nipulation is simplified by attentional localization
of the hand with respect to a fixation frame cen-
tered on the object. This paper describes this
role of attention in the visual guidance of simple
motor behaviors associated with unskilled object
manipulation behaviors.

Introduction

It is often observed that the amount of data con-
tained in an image is too large to be processed
completely in the small fraction of a second al-
lowed by many tasks. The obvious solution to
this problem is to process only a part of the vi-
sual environment according to current task re-
quirements. The animate vision paradigm im-
plements this solution through the use of active
control of sensors and task-dependent visual pro-
cessing (Ballard:ijcai). Animate vision has been
proposed as both an approach to designing com-
puter vision systems, and as a model of human
visual behavior. While the computational load
is reduced when the entire image does not have
to be processed, the question of what region of
the image to process becomes paramount. Selec-
tive visual attention provides the mechanism for
answering this question.

The term (selective visual) attention will be
used to refer to a specific collection of visual sub-
processes which perform the covert selection of
retinal regions for further processing. This fur-
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ther processing may involve recognition process-
ing of the selected region, or may involve the
use of the corresponding location information for
guidance of movements. It is this second aspect
that will be the emphasis here, though the recog-
nition processor is involved in this localization
function, as will be discussed.

In the remainder of the paper, the mechanisms
comprising an attentional visual recognition sys-
tem are first discussed at a coarse level of detail.
This provides a sufficient basis for describing the
use of attentional localization in guiding eye and
arm movements for object manipulation tasks. In
particular, a touching task and a manual track-
ing task are used to elaborate the concepts, both
of which have been implemented in a real-time
robotics system to demonstrate the approach.

Attentional visual recognition

A number of computational models of attentional
mechanisms have been proposed, including those
of (Treisman 1988; Mozer 1988; Cave & Wolfe
1990; Sandon 1990; and Ahmad 1991). While
these models differ in a number of details, and
in the emphasis they place on various aspects of
attentional function, they also share a number of
common features which provide a sufficient ba-
sis for the current discussion. Thus, the follow-
ing coarse level description of attentional visual
recognition is presented for the benefit of the suc-
ceeding discussion.

The visual system consists of three compo-
nents, a feature processor, an attention proces-
sor and a recognition processor (see Figure 1).
The feature processor extracts a number of spa-
tially localized features from the image. These
features are extracted in parallel over the entire
image, and represented retinotopically in feature
maps. Though attempts have been made to iden-
tify the particular features that are extracted in
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Figure | - Schematic drawing of the attentional vision system

human vision, this aspect is not key to the current
discussion. Within each feature map, a lateral
inhibition network operates on the raw feature
activity, to produce contrast enhanced features.
The resulting activity in each map is gated to the
attention processor to a degree determined by ex-
pectancies provided by the recognition processor.
Regions of activity in feature maps are also gated
to the recognition processor, in this case by local-
ized activity in the attention processor.

The recognition processor has access to a
database of object models, which is indexed by
feature values. Recognition is performed by hav-
ing the feature processor pass image feature val-
ues to the recognition processor, which are then
used to index into the object database. An object
is recognized if the feature values are sufficiently
close to those defining an object to satisfy some
match criteria. Conversely, the recognition pro-
cessor can use the defining features of an object
to modify the gating of the features to the atten-
tion processor as mentioned above. We describe
this use of the model data for object localization
in more detail below.

The attention processor determines the region
of the image whose corresponding feature values
will be passed up to the recognition processor.
The feature map values are combined to provide
the input to a saliency map, which represents,
in registration with the image, the importance of
each image region to the current task. To choose a
single region for processing, a selection operator is
applied to the activity in the saliency map. This
selection operator chooses some region of the im-
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age, whose features are then gated to the recogni-
tion processor, and whose location can be passed
to motor processors.

Given these three component mechanisms,
what functions might they implement? In the
absence of any task-specific control of the feature
map input to the attention processor, the saliency
map will be sensitive to all the contrast enhanced
features. The resulting saliency activity can be
used to implement alerting and orienting behav-
iors, as well as precategorical image segmenta-
tion.

When the recognition processor activates its
control of the feature map inputs to the attention
processor, according to the features that charac-
terize an object of interest to the current task,
the saliency map becomes sensitive only to those
specified feature maps. The selection of an active
region of the saliency map in this case allows lo-
calization of the desired object in retinotopic co-
ordinates. This location information can be used
to represent spatial relations among objects, and
in particular, can be used to guide motor activity,
as we now discuss.

Fixation-based motor control

There has been a great deal of discussion in the
literature about the appropriate frame of refer-
ence for each different aspect of visuomotor pro-
cessing. While Marr, for example, emphasized
the need for object-centered coordinates in repre-
senting visual information for recognition (Marr
1982), others have noted that an egocentric co-
ordinate system would be useful when interact-
ing with objects (Feldman 1985). Ballard argues
against the egocentric representation, due to the
presumed difficulty of maintaining its currency.
Instead, he proposes the use of a coordinate sys-
tem centered on a particular ’calibration’ object
(Ballard 1987).

The domain of interest here is visually guided
manipulation of objects. Although it is true that
the eyes, head and body may all be moving during
the execution of such manipulation tasks, even a
retinocentric reference frame can be effective for
object localization if the spatial relations neces-
sary to the task can be updated in a timely man-
ner. In particular, for a binocular system, the pair
of x,y coordinates representing the horizontal and
vertical offsets of an object from the center of the
image in each eye can be used to compute a loca-
tion in a three dimensional retinocentric space.



As has been observed elsewhere (Ballard 1989),
, reference frame that has particularly desirable
sroperties is the fixation frame, which is centered
m the point in space where the two optical axes
f a binocular vision system intersect, and is ori-
mted to correspond to the retinal axes and the
lirection of gaze. The binocular retinocentric
tame is the proximal correlate of this distal fix-
ition frame. One version of the projection of the
our dimensional binocular retinal coordinates to
1 three dimensional space is achieved using the
r1orizontal (h) and vertical (v) coordinates of one
:ye (the dominant eye), and the disparity (d) be-
iween the horizontal coordinates in the two eyes.
This defines the 3-D retinocentric frame, R, in
which locations are expressed as triples of the
form (h,v,d). An object at the origin of this co-
ordinate frame is at the fixation point in physical
space.

The advantages in representing object location
in 3-D retinocentric coordinates are that object
locations can be computed quickly and main-
tained easily, and that the coordinate transforma-
tions required for eye movements and arm move-
ments can be easily expressed in terms of this ref-
erence frame. The process of localizing objects in
each retinal frame is mediated by the attentional
mechanisms previously described. For example,
to locate a particular object in one image, the
recognition processor projects the feature values
associated with the object to the feature proces-
sor, which differentially gates the corresponding
feature maps to the attention processor. The re-
sulting activity in the saliency map reflects the
degree of match between the features defining the
object and those in any particular region of the
image. Selecting the most salient region corre-
sponds to identifying the most likely location of
the object in the image.

Given the two retinal locations of an object,
equivalently the 3-D retinocentric coordinates,
the guidance of eye and hand movements toward
the object is relatively straightforward. For eye
movements, the motor frame is defined by the
gaze angles of the two cameras. Analogous to
the 3-D retinocentric frame, the appropriate gaze
angle frame, G, for a pair of horizontally offset,
fixating eyes, is a 3-D reference frame consisting
of the yaw angle () and pitch angle (¢) of the
dominant eye, and the yaw angle disparity (v)
between the two eyes.

Eye movements are defined relative to the cur-
rent gaze, and result in a relative displacement
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of the retinocentric locations of imaged objects.
The kinematic transformation from relative gaze
angle, Ag, to relative retinocentric location, Ar,
can be approximated by a constant-valued, diag-
onal Jacobian matrix, Jgg:

Ar = JGR x Ag
Cy 0 0
Jgr=]| 0 C, 0
0 0 Cy

where Cj, and C, express the number of pixels per
visual angle of the imaging surface in the horizon-
tal and vertical directions, respectively.

This approximation holds when the center of
rotation of gaze coincides with the optical center
of the lens, and the sensory surface is spherical
about this same point. To the extent that these
two assumptions are violated, the constant func-
tion kinematics will be less accurate, though for
small gaze angles and limited depth of field, the
accuracy will remain high.

The process of establishing a new fixation point
is as follows. If the desired action is to fixate a
particular object, the object is first localized in
each image as described previously. The loca-
tions in the two images are used to compute a
location, r, in the retinocentric frame, R. Since
the desired location is at the origin in R, the vec-
tor -r represents the relative movement in R. This
vector is passed to the eye movement control sys-
tem, which computes the transformation from R
to G as:

Ag :JE;IX —-r

The computed gaze angles are used to direct a
saccadic movement of the eyes to the new fixation
point.

In the absence of having a particular object
specified as the target of fixation, the process
remains the same, except that the feature maps
are gated to the attention processor according to
some default weighting of the individual maps,
corresponding to the relative importance of each
feature for alerting purposes.

This scheme can be extended to smooth pur-
suit eye movements by performing an additional
filtering step on a sequence of gaze angle values
that are obtained by successive executions of the
above procedure. To maintain accurate pursuit,
a predictive filter such as a proportional-integral-
derivative (PID) filter can be used to adjust gaze
velocities (Dorf 1986).



Touching and manual tracking

For arm movements, defined with respect to the
arm joint coordinate frame, A, analogous compu-
tations can be used. Conventionally, control of
arm movements i8 presumed to require a com-
plete model of the arm kinematics in environ-
mental coordinates (Brown & Rimey 1988). Vi-
sually guided movements then require that the
kinematics of the visual system in environmental
coordinates be determined. An alternative ap-
proach, that is applicable to the kinds of simple
movements considered here, is to express the arm
kinematics in the 3-D retinocentric frame. In par-
ticular, a representation of the kinematics that is
both easy to acquire and to compute with is a
local one, where the small change in retinocentric
coordinates due to a small change in arm joint
positions is used to represent a constant-valued
kinematics in that particular region of joint-gaze
space (Mel 1989). That is, for a particular joint-
gaze configuration, the change in retinocentric co-
ordinates, Ar, for a given change in arm joint
positions, Aa, is given by:

Af=jAn X Aa

where J 4R is the Jacobian evaluated at the par-
ticular joint-gaze configuration.

One way to represent the complete kinemat-
ics is as a collection of evaluated Jacobian matri-
ces indexed by joint-gaze coordinates in a lookup
table. These matrices can be acquired through
a calibration procedure prior to use, or through
an adaptive process during movement execution.
This has advantages for acquisition and for rep-
resentation of arbitrary relations. Alternately, a
representation of the Jacobian terms as low-order
functions of joint-gaze space is more efficient and
provides better generalization during acquisition
when the relations being represented are smooth.
The direct kinematic equation above is used for
acquisition of the kinematic parameters, while the
inverse Jacobian is used for control.

Touching

Perhaps the simplest object manipulation behav-
ior is touching, that is, using arm movements to
bring the hand into proximity with some object
of interest. Given the previously described atten-
tional mechanism for locating objects in R, and
kinematic models for transforming between R and
G, and between R and A, the touching task can
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be accomplished as follows:

TOUCH (object):
r = Attend(object)
Ag=Jgp X —r
r = Attend(hand)
Aa = j;}t X —r

;locate object in R
;8accade to the object
;locate hand in R
;move hand to object

Due to the use of local kinematics, a given move
will be inaccurate to the degree that the new joint
state is far from the initial one. This approach is
appropriate, therefore, when a lack of real-time
constraints allows for the use of one or more small
compensatory movements to be used to achieve
the desired accuracy.

Notice the minimal need for representation of
spatial relations in this process. Attention is first
used to locate the object of interest. This loca-
tion information is represented in the state of the
selection process, which is transmitted to the eye
movement control system. Once the eyes have
been moved, the location of the object is implicit
in the gaze angles of the eyes, and the attention
processor need not maintain that location (which
is now out of date in any case). Attention is now
used to locate the hand, and the selection process
represents the location for the sake of the arm
movement control system. There is no need to
maintain location information across movements
for this simple task, because it can be easily reac-
quired by repeating the sequence.

Tracking

A relatively simple extension of the touching be-
havior allows a moving object to be manually
tracked. We will use the term pursuit to refer to
eye movements that maintain fixation on a mov-
ing object, and manual tracking, or simply track-
ing, to refer to arm movements that maintain
proximity of the hand to a moving object. Al-
though the tracking behavior by itself is not one
that is commonly executed, it is a necessary com-
ponent of tasks that require moving objects to be
grasped, and a precursor to tasks that require
interception of moving objects, such as catching
and hitting. More importantly for the present
purposes, the tracking behavior demonstrates the
use of the attentional mechanism as a shared re-
source for the concurrent control of the eye and
arm motor systems.

The tracking task could be accomplished by
simply executing the touching behavior in an iter-



ated loop. However, this yields a sequence of dis-
crete movements for the eyes and the arm, rather
than the smooth movements that might be de-
sired. The required modification is straightfor-
ward. The attentional processor toggles back and
forth to locate first the object, then the hand, as
in the touch procedure. The locations that are
supplied to the motor control processes are then
transformed by a predictive filter. The output
of the filter is used to control the gaze and arm
joint velocities, such that the object being tracked
is maintained at the fixation point, and the hand
is maintained close to the object:

TRACK (object):
repeat

r = Attend(object)
Ag=Jgh x —r
Ag = PID(Ag)

r = Attend(hand)
Aa = j:’ll X —r
Aa = PID(Aa)

;locate object in R
;desired gaze change
;smooth gaze adjust
;locate hand in R
;desired arm change
;smooth arm adjust

An implementation of the saccade, pursuit,
touching and tracking behaviors just described
has been developed for a binocular camera and
robotic arm system. The vision system consists
of a pair of cameras mounted on a motorized
pan-tilt platform, and a Datacube Maxvideo im-
age processing system. The arm is a PUMA 761
six degree-of-freedom arm. A SUN4 workstation
runs the control program and mediates communi-
cation between the image processing, eye motor
control and arm motor control systems.

The features used for defining objects are based
on image intensity, edge orientation and edge ra-
tio magnitude. The object of interest is attached
to a slowly revolving platform placed within the
workspace of the arm. The pursuit behavior has
a .4s cycle time, and generates a smooth gaze
trajectory that lags the object by up to a de-
gree in each dimension. The tracking behavior
has a 1.25s cycle time, and generates discrete
arm movements, due to a lack of velocity con-
trol in the current arm controller interface. These
movements also lag the object movement, and ex-
hibit an appreciable rms error from the expected
trajectory, that is four times greater (48mm vs
12mm) in the direction parallel to the line of sight
than in the directions perpendicular to the line of
sight.

Further details are presented in (Sandon 1992).
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Concluding remarks

Although a great deal of consideration has been
given to the mechanisms of attention, much less
work has addressed the function of attention in
everyday visuomotor behavior. This paper de-
scribes, and the briefly presented implementa-
tion results demonstrate, a computationally sim-
ple approach to visual guidance of eyes and arms
based on attentional localization and local kine-
matics. The minimal representation used in the
approach has advantages in computational effi-
ciency, both for acquiring and for maintaining
a current model of the external world. In addi-
tion, minimal representations exhibit advantages
in adaptive systems, since the credit assignment
problem is reduced (Whitehead & Ballard 1990).

As stated, this approach to object manipula-
tion applies to servo-controlled movements, in
which visual feedback is used to repeatedly ad-
just an eye or arm movement. This is an ap-
propriate model for unskilled behavior, and cor-
responds to a situation in which the kinematic
and dynamic models of the motor systems are
not well characterized. While more complete and
accurate models are required for modelling skilled
movements and for tasks having significant real-
time constraints, it seems reasonable to assume
that such models are preceded by the approxi-
mate ones discussed here. More accurate mod-
els are then acquired using the errors that occur
while performing these simpler behaviors.

While it may seem intuitive that covert atten-
tion should be used to guide overt eye movements,
the precise relation between the two systems is
not yet clear. On the one hand, Remington found
that the enhanced processing associated with at-
tention preceded saccadic eye movements that
were initiated by a stimulus onset in the retinal
target position (Remington 1980). This provides
evidence that attention is being used to guide the
eye movement. In addition, there is evidence that
one component of saccadic latency is the time
needed for attention to disengage prior to localiz-
ing a target to be fixated (Fischer & Breitmeyer
1987). However, Remington also found that for
eye movements initiated by a central cue indicat-
ing the desired direction of movement, attention
followed the eye movement to the target position,
indicating that saccadic guidance was provided
by some other source. As for the guidance of arm
movements, there is evidence that eye movements
play a part (Ballard, et. al. 1991), but the role
of attention is not known.



How does this approach extend to more com-
plex tasks? The introduction of real-time con-
straints has already been mentioned. These re-
quire accurate ballistic movements, which in turn
require more accurate kinematic and dynamic
models. As previously discussed, these models
can be developed during the execution of the sim-
pler behaviors described here. When the task
involves the manipulation of additional objects,
attention must be shared among the objects to
maintain localization information. Furthermore,
an explicit short term representation of objects
will likely be necessary, in order to maintain con-
tinuity of object characteristics, and to predict
future object location for guiding the selection
process.

Finally, for more complex interactions with
objects, in particular, for grasping them, hand
movements must be controlled in addition to eye
and arm movements. Grasping behaviors require
not only localization of an object, but an estimate
of object pose. In many cases, scale and major
axis orientation information are sufficient for the
determination of an appropriate hand configura-
tion for grasping. For more complex objects, de-
tailed pose must be determined. While desirable
features for localizing an object are those that
do not depend on viewpoint, the features needed
to determine pose are those that are viewpoint
dependent. In addition, the likely role for atten-
tion in detailed pose estimation is in localizing
the components of objects to represent the spa-
tial interrelations among parts.
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