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Abstract 

Statistical Analysis of Small-Scale Membrane Signaling Reactions:  

the Role of Membrane Recruitment and Catalysis 

by 

Yuan-Chi Huang 

Doctor of Philosophy in Chemistry 

University of California, Berkeley 

Professor Jay T. Groves, Chair 

 

Molecular kinetics in living systems fundamentally shape the response function of signal 
transduction.  Signaling cascades in cells are often initiated and amplified at the plasma 
membranes, where decisions are made under constant presence of molecular noise.  
Conceivably, the signaling geometry of membrane reactions are intimately related to the 
system’s ability to robustly detect signals, down to single-molecule level.  However, the 
physical mechanisms of signal transduction embedded in membrane signaling reactions 
are poorly understood.  One of the limitations stems from a lack of well-controlled 
experimental assay to conceptualize the role of stochastic processes in membrane 
signaling.  In this dissertation, I attempt to lessen this gap by developing single-molecule 
assays accompanied with statistical kinetics theory to analyze the molecular processes 
of reconstituted biochemical systems, derived from T-cell receptor triggering, on 
supported membranes.  Broadly speaking, cytosolic proteins in membrane signaling 
reactions commonly follow a membrane recruitment-activation protocol.  Therefore, the 
content of this dissertation will begin by discussing the role of membrane recruitment in 
signaling accuracy, with specific emphasis on kinetic proofreading.  The later section 
focuses on the activities after successful activation, from determination of simple catalysis 
to elaboration of a bistable network response.  These discourse hopefully provide a basis 
to discuss the design principles underlying signaling reactions. 
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1. Introduction 
 
  
 
Signaling reactions are the fundamental building blocks of living systems.  Through a cascade of 
chemical reactions, cells can detect target, make logical decision, and respond appropriately.  All 
of which happen in a noisy, stochastic environment.  The capability to perform robust signaling, 
down to single-molecule level, is of great interests, both physically and biologically.  A common 
feature shared by many signaling reactions is that they operate and often initiate on membrane 
surfaces (2), e.g. T-cell receptor at the plasma membranes can detect a single agonist that triggers 
a series of phosphorylation events leading to recruitment of cytosolic proteins (3-6).  Therefore, 
the response function at this interface must be able to proofread genuine signals from spontaneous 
molecular noise, for both extracellular recognition and intercellular trafficking.  Although the 
molecular mechanism is poorly understood, it can be hypothesized that membranes facilitate the 
accuracy and efficiency of signal transduction. However, the only way to examine this unifying 
principle is to first understand how these reactions function at the molecular level. 
 
This dissertation, with the title “Statistical Analysis of Small-Scale Membrane Signaling Reactions: 
the Role of Membrane Recruitment and Catalysis”, focuses on discussing how signaling reactions 
in the cytoplasmic side of the plasma membranes achieve high precision in a stochastic 
environment, mechanistically.  “Statistical analysis” is not at all emphasizing the mathematical 
framework of stochastic process, in fact all the calculations used are rudimentary.  Rather, in many 
instances conceptualization of the signaling process is best demonstrated concretely by the 
statistical approach.  “Small-scale membrane signaling reactions” is our focus.  The emphasis of 
“small-scale” describes the length scale of interest (~1-100 protein copy number), which happens 
to be functional in living systems as well.  “Membrane” will be the unifying theme that connects 
all the chapters: the observed dynamics uniquely happen on membranes, and absence in solution.  
While there are many facets of signal transduction on membranes to study, I focus on “the role of 
membrane recruitment and catalysis”.  The recurring pattern of membrane recruitment followed 
by activation and catalysis, a process I like to call membrane recruitment-activation protocol, 
describes many signaling reactions.  This commonality inspires the hypothesis that membrane 
recruitment facilitate robust signaling in a noisy environment.  While the bulk part of this 
dissertation focuses on studying how membrane signaling reactions exhibits high precision, 
hopefully it also provides evidences to discuss why – the underlying design principle of signal 
transduction. 
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To have a concrete system to discuss, I focus on reactions derived from T-cell receptor (TCR) 
signaling pathway (Fig. 1-1).  TCR activation involves a well-documented spatiotemporal 
coordination of a multitude of membrane proteins, which orchestrate its capability to recognize 
agonist, store and amplify signals, and subsequent gene expression and T-cell regulation (3, 5, 7-
9).  TCR activation generally initiates with engagement of peptide major histocompatibility 
complex (pMHC) with TCR, leading to the recruitment of cytosolic kinase zeta-chain-associated 
protein kinase 70 (Zap70) and phosphorylation of membrane adaptor protein, linker of activation 
of T cell (LAT).  This triggers phosphotyrosine-mediated molecular assemblies on membranes 
that recruits components from the cytosol, including growth factor receptor-bound protein 2 (Grb2) 
and Sons of Sevenless (SOS).  SOS is a guanine nucleotide exchange factor (GEF) that catalyze 
nucleotide exchange in Ras.  This cascade further leads to recruitment of rapidly accelerated 
fibrosarcoma kinase (Raf) and downstream extracellular signal–regulated kinases (Erk) 
phosphorylation, and gene expression.  The commonality of membrane recruitment-activation 
protocol is evident from the signaling map. 
 
Instead of following the conventional signaling pathway, this dissertation is sectioned according 
to the stochastic process itself (Fig. 1-1): membrane recruitments and catalysis on membranes.    
The first section focuses on membrane recruitment. Recruitment is not only stable localization of 
proteins on membranes, the process embed the ability to proofread genuine signal from molecular 
noise.  The proofreading is achieved through the competitive kinetics of the molecular process, 
classically termed as kinetic proofreading by Hopfield in 1974.  I will begin with the theoretical 
foundation of kinetic proofreading recast from the perspective of statistical kinetics, which will 
clarify the role of membrane dwell time in this mechanism (Ch. 2).  Subsequently, experimental 
evidence of kinetic proofreading during membrane recruitment will be elaborated (Ch. 3).  A 
physical mechanism of controlling kinetic proofreading – via molecular assembly - is next 
discussed (Ch. 4), along with characterization of the identity of the assembly structure.  In the 
second section, I discuss catalysis on membranes, typically after successful recruitment and 
activation.  Measurement of enzymatic reactions on membrane is often ad hoc, hence a general 

assay to quantify membrane enzymology is first discussed (Ch. 5).  Next, the effect of molecular 

Fig. 1-1. Membrane signaling reactions in T-cell receptor activation pathway.  Cytosolic enzymes 
typically follow a general activation protocol: membrane recruitment, followed by catalysis on membranes. 
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configurations on catalysis is briefly explored (Ch. 6).  Finally, I end with an exotic property of 
competitive enzymatic reactions on membranes that can achieve geometry sensing (Ch. 7) – the 
product of the reactions depends on the system’s size.  This realization, driven by a complex mix 
of membrane recruitment and catalysis, give rise to bistability in system level response.  Other 
than following the stochastic processes themselves, the dissertation progresses with increasing 
complexity of our observations, from single-molecule dynamics to small assembly structures to 
small signaling networks to outlook on cellular experiments.  The future prospect to develop a 
framework connecting molecular processes and system level response inspired by these discourse 
will be hinted in the final chapter (Ch. 8).   
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Part I. Membrane recruitment  
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2.  Kinetic proofreading in membrane recruitment: 
a statistical kinetics perspective 

 
 
 
The molecular timing of how a signaling molecule activate fundamentally shaped the response 

function of a signaling cascade of a living system.  In many salient examples, such as T-cell 
receptor (TCR) triggering, decision making of signal transduction are executed at the plasma 
membranes, where cytosolic proteins are recruited typically in response to modification of 
membrane receptors including phosphorylation (10).  Many of these cytosolic enzymes, for 
instance Sons of Sevenless (SOS), have multidomain regulations that autoinhibit its activity in 
solution, and only activate on membranes after release of autoinhibition (11, 12).  The requirement 
to release autoinhibtion in the activation pathway posits that activation on membranes is a 
multistep process involving a few kinetic intermediates rather than a single step process (12, 13).  
In other words, a finite time is required for the molecule to overcome the kinetic barriers and 
structurally reconfigure itself to activate.  Therefore, the amount of time the molecule spent on 
membranes, i.e. membrane dwell times, is consequential to the probability of activation itself (13).  
And this discerning mechanism, classically known as kinetic proofreading (14), based on 
competing kinetics between activation and dissociation can filter molecular noise of different 
kinetics from genuine signals.  However, these analysis are built upon understanding the 
distributions and statistics (15-19) of the activation profile of cytosolic enzymes on membranes, 
which are yet to be inspected experimentally. 

From the single-molecule point of view1 (16, 17), SOS (or any other cytosolic enzyme) can be 
defined to reach activation on the membrane at time t if: i) it is still bound to the membrane at time 
t and, ii) it advances through all kinetic intermediates at time t (Fig. 2-1A).  Considering 
dissociation as a Poisson process parameterized by a rate constant ݇ିଵ, the probability density of 
activation on the membrane, ݌ሺݐሻ, can be expressed as: 
 

ሻݐሺ݌ ൌ ݁ି௞షభ௧ ∙  ሻ     [2.1]ݐேሺ݌
 

                                                            
1 Contents beginning from this paragraph to the end of chapter 2 are published in Huang et al. PNAS, 2016, 113:8218. 
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where ݌ேሺݐሻ	is the distribution of activation time for N kinetic intermediates.  Progression through 
a series of N kinetic intermediates can be described as a series of Poisson processes, with kinetic 
rates ሼ݇ଵ, ݇ଶ, … , ݇ேሽ, for the N intermediates, and ݇஺ for the final activation step (Fig. 2-1A), such 
that ݌ேሺݐሻ is the successive convolution of the lifetime probability distribution at each step: 
 

ሻݐேሺ݌ ൌ ݇ଵ݁ି௞భ௧⨂݇ଶ݁ି௞మ௧⨂…⨂݇ே݁ି௞ಿ௧⨂݇஺݁ି௞ಲ௧  [2.2] 
 
Although the rate constants in this model are independent and can differ from each other, the 
qualitative features of ݌ேሺݐሻ (e.g. shape of the distribution) are readily revealed in the simplifying 
case where individual kinetic transitions have equal rate constants, in which case ݌ேሺݐሻ is a gamma 

distribution,  ݌ேሺݐሻ ൌ ൫ሺܰ ൅ 1ሻ݇ே൯
ேାଵ

-ே݁ିሺேାଵሻ௞ಿ௧/ܰ! (Fig. 2-1B).  Note that we consider a 1ݐ
parameter class of activation time distributions with constrained rate constants, i.e. transition rate 
constant ൌ ሺܰ ൅ 1ሻ݇ே, such that the mean activation time remains identical regardless of N.  This 
allows examination of the dependence of activation rate solely on the activation mechanism instead 
of the activation time.  Integrating ݌ሺݐሻ	yields the probability to activate for a single recruitment 
event, ௔ܲ௖௧.  To calibrate the strength of a kinetic proofreading effects, we calculate the rate of 
activation, ݆௔௖௧, for a single molecule under stationary conditions: 
 

݆௔௖௧ ൌ
௉ೌ ೎೟

〈ఛ〉
ൌ ሺܰ ൅ 1ሻ݇஺

ଵି௥

ଵି௥ಿశభ
 ே     [2.3]ݎ

 
where ݎ ൌ ሺܰ ൅ 1ሻ݇ே/ሺሺܰ ൅ 1ሻ݇ே ൅ ݇ିଵሻ .  This analysis is general and can describe the 
activation of other cytosolic enzymes on membranes. 
 
The rate of SOS activation, ݆௔௖௧, is plotted in Fig. 2-1C as a function of the ratio of mean dwell 
time over mean transition time (݇ே/݇ିଵ).  For ܰ ൌ 0, the rate of activation is identical regardless 
of the dwell time.  In other words, when there are no kinetic intermediates en route to activation, 
the rate of SOS activation is proportional to the amount of membrane recruited SOS at any given 
time and does not depend on the dwell times for individual proteins.  In this situation, kinetic 
proofreading is not possible. For ܰ ൐ 0, the activation rate decreases as dwell time decreases.  This 
inequality in activation rate stems from the change in the distribution (not in the average) of the 
activation times, ݌ேሺݐሻ, when kinetic intermediates are involved (Fig. 2-1C).  Physically, a short 
dwell time does not provide sufficient time for the enzyme to restructure and reach activation.  
Hence to achieve kinetic proofreading for the activation of cytosolic enzymes, two requirements 
must be met: i) elongation of dwell time and, ii) a multistep activation. 
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Fig. 2-1 Mechanistic requirements for kinetic proofreading of SOS activation on membranes.  (A) 
Kinetic model for SOS activation.  Following membrane recruitment of SOS, conformational transitions 
are required to release auto-inhibition.  The subscript for SOS denotes the kinetic intermediates, where N 
is the total number of kinetic intermediates preceding activation.  k1, k2…kN are the rate constants for the 
corresponding transitions of kinetic intermediates, and kA is the activation rate constant.  (B) The activation 
time distribution with different numbers of kinetic intermediates.  The time dependence of activation for N 
> 0 result in the inequality of activation rates in (C).  (C) The rate of SOS activation as a function of the 
ratio between the mean dwell time and mean transition time.  kA = 1 s-1 in this numerical example.  Short 
dwelling species has a lower activation rate than long dwelling species when N > 0, indicating that kinetic 
proofreading is in play. 
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3.  Kinetic proofreading in membrane recruitment: 
single-molecule evidences 

 
 
 
Activation of full length SOS (SOSFL, interchangeable with SOS), a guanine nucleotide exchange 

factor (GEF), via Grb2-dependent recruitment is a prototypical example of a multidomain 
cytosolic protein that follows membrane recruitment-activation protocol2 (20).  SOS contains the 
general features of a multilayer regulations securing its autoinhibition in the cytosol, but can 
release its autoinhibition on membranes (12).  The REM and CDC25 domains in SOS, enclosing 
both the allosteric and catalytic pocket for its substrate Ras, are flanked by C-terminus proline-rich 
(PR) domain and N-terminus Histone Fold (HF), Dbl-homology (DH) and Pleckstrin-homology 
(PH) domains gating SOS activity (Fig. 1a).  The PR domain binds with the SH3 domains of Grb2 
with a high affinity (Kd = 1 nM) (21), while the SH2 domain of Grb2 interacts with 
phosphotyrosine (pY) of membrane receptors such as LAT or EGFR (22).  Upon membrane 
recruitment, interactions of N-terminus domains with anionic lipids such as PIP2 and engagement 
of Ras at the allosteric pocket then release the autoinhibition (12), allowing processive catalysis of 
hundreds turnovers from a single recruitment event (23).  While structural studies have led to 
insights about possible modes of activation, real-time dynamic studies of activation are missing 
for it requires an assay resolving the temporal process of recruitment and subsequent activation at 
the molecular level.  Furthermore, the multilayer regulations of SOS necessitate full membrane 
reconstitution of SOS activation from phosphorylation of membrane receptors to downstream 
triggering (e.g. Raf recruitment) (5, 11, 12, 20) (Fig. 3-1A).  

We developed a single-molecule activation assay to resolve the activation profile of SOS from 
membrane recruitment to initiation of Ras turnover (Fig. 3-1A).  Lipids consisted of DOPC with 
2% PIP2, 2% MCC-DOPE and 4% Ni2+-NTA-DOGS were deposited on a glass substrate.  
Cytoplasmic domains of Src kinase Hck and adaptor protein LAT with His6 tag were tethered to 
Nickel-chelating lipids (24), while H-Ras were covalently attached to membranes via maleimide 
chemistry (25).  Membrane proteins reconstituted on supported membranes were laterally fluid 

                                                            
2 Contents in this chapter are in manuscript preparation (W.Y.C. Huang, S. Alveraz, Y.K. Lee, Y. Kondo, J.K. 
Chung, H.Y.M. Lam, J. Kuriyan, J.T. Groves). 
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with typical densities of <100, ~800, and ~500 μm-2 for Hck, LAT and Ras, respectively.  
Phosphorylation of LAT by Hck can be monitored with recruitment of fluorescent Grb2 (13).  
SOSFL are prepared by indene ligation of N-terminus and C-terminus domains.   By inclusion of 
20 nM Grb2 and ~1 nM SOS in solution, single-molecule membrane recruitment of SOS via Grb2 
can be clearly resolved on a total internal reflection (TIRF) microscopy.  After a short period of 
time (tens of seconds), Ras preloaded with GDP were exchanged with GTP in solution, which 
enables dynamical binding of Ras-binding domain (RBD) derived from Raf-1 (40 nM in solution) 
onto membrane surfaces. 

The reconstitution experiments can be performed on supported membranes corralled with 1 by 1 
or 2 by 2 μm of chemically inert prefabricated chromium barriers (26).  Lipids and membrane-
anchored proteins were laterally fluid within a corral but restricted across different grids.  Both 
LAT and Ras had little variations (< 15%) across different arrays.  This microarray strategy allows 

Fig. 3-1 Single-molecule activation assay of full length SOS on supported membrane. a, Schematic of 
the experimental setup. LAT phosphorylated by membrane-bound kinase Hck and Ras preloaded with GDP 
were decorated on the supported membranes corralled by 1 by 1 or 2 by 2 μm chromium grids. Injection of 
Grb2, SOS-Alexa Flour 555, RBD-Alexa Fluor 647 and GTP into the solution triggers SOS recruitment, 
release of autoinhibition and activation.  SOS crystal structure rendered with PDB 3KSY.  Images are 
snapshots of SOS (green) and RBD (red) recruitment during one experiment. b, Definition of activation 
time. c, Definition of rejection time. 
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precise assignment of Ras turnovers to a single recruitment event of SOS (23), while retaining 
sufficient statistics to sample the activation profile. 

Simultaneous imaging of SOS-Alexa Fluor 555 and RBD-Alexa Fluor 647 channels at the 
framerate of 0.5 Hz recorded the time sequence 
of when and where SOS recruitments and 
activations occured, from seconds to minutes 
(Fig. 3-1A).  Specifically, we parse out corrals 
with SOS recruitment prior to RBD recruitment, 
and analyze their time sequence.  The trajectories 
can be largely classified into two types: i) 
recruitment of SOS followed by activation 
indicated by RBD recruitments (Fig. 3-1B), and 
ii) recruitment and dissociation of SOS without 
activation (Fig. 3-1C).  The first provides the 
activation time interval between membrane 
engagement and activation – which we defined 
as the activation time; the later indicates the 
membrane dwell times under the condition of no 
activation – which we defined as the rejection 
time.  A single recruitment event must result in 
activation or rejection, yet the likelihood of 
either fate can be estimated probabilistically.  

Fig. 3-2 Activation time distribution and kinetic 
proofreading in membrane recruitment. a, b, 
Histogram of activation time and rejection time of 
SOS activation via Grb2 recruitment from the single-
molecule activation assay. c, The proofreading 
strength, denoted by the ratio between rejection and 
activation count, as a function of time. Solid line is 
fitting to the analytical model in d, the fitted values 
are kN = 0.02 s-1 and k-1 = 0.016 s-1. Dash lines are 
prediction by the model without fitting.  d, 
Activation of SOS on membranes is a competition 
between activation kinetics and dissociation from 
the membranes. kN denotes the transition rate 
constants for the kinetic intermediates and k-1 is the 
dissociation rate constants from membranes. e, 
Without an kinetic intermediate (N = 0), activation 
time distribution resembles an exponential-like 
distribution peaked at t = 0. Having at least one 
intermediate gives a characteristic rise-and-decay 
gamma-like distribution for activation time 
distribution. 
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The underlying mechanism of SOS activation can be inferred by measuring the distributions and 
statistics of the activation profiles.  By collecting hundreds of these trajectories, we compiled the 
histograms of the activation and rejection distribution (Fig. 3-2AB).  The activation time 
distribution shows a rise-and-decay Gamma-like distribution with a mean of 55 ± 44 sec (± denotes 
standard deviation) (Fig. 3-2A).  The resolution of detectable activation time in this assay is on the 
order of a few seconds, inferred from: i) the fast binding kinetics (~100 ms) of RBD and, ii) non-
receptor triggering (discussed in details later) shows trajectories of simultaneous SOS recruitment 
and RBD binding without detectable interval from 0.5 Hz framerate.  The rejection time 
distribution exhibits an exponential-like distribution with a mean of 30 ± 29 sec (Fig. 3-2B).  The 
distributions are further analyzed by considering an analytical model of SOS activation.  

The main features of membrane-dependent activation of SOS, or any other autoinhibited cytosolic 
enzyme, can be described by the competing kinetics between activation pathway and dissociation 
from membrane surfaces (Fig. 3-2D) (Chapter 2) (13, 16, 17).  Given N number of kinetic 
intermediate(s), the activation time distribution is  

ሻݐ௔௖௧ሺ݌ ൌ ሻݐேሺ݌ ∙ ݁ି௞షభ௧      [3.1] 

where ݌ேሺݐሻ is the activation time for a multistep process from convolution of N single Poisson 
steps, and ݇ିଵ  is the dissociation rate constant.  To gain an intuition about the shape of the 
distribution, we consider the limiting case where the transition rate constants (݇ே) of each step is 
identical, leading to analytically extractable ݌ேሺݐሻ ൌ ݇ே

ேାଵݐே݁ି௞ಿ௧/ܰ!,	a Gamma distribution of 
rise-and-decay feature (Fig. 3-2D).  However, in the opposing case without any kinetic 
intermediates (ܰ ൌ 0), the activation time distribution is strictly exponential (Fig. 3-2D).  The 
observed data is consistent with the first case, indicating that activation of SOS on membranes 
involves progressing through kinetic intermediate with a slow transition rate (݇ே) of about 0.02 s-

1.  In practice, the kinetic observation will be dominated by the slowest kinetic progression step.  
Thus, we use ܰ ൌ 1 to analyze the distributions, i.e. ݌௔௖௧ሺݐሻ ൌ ݇ே

ଶ  ሺ௞ಿା௞షభሻ௧.  To validate theି݁ݐ
model, we use it to predict the rejection distribution prior to the knowledge of the data.  The 
rejection time distribution can be shown to be 

ሻݐ௥௘௝ሺ݌ ൌ
୻ሺே,௧ሻ

ே!
∙ ݇ିଵ݁ି௞షభ௧      [3.2] 

where Γሺܰ, ሻݐ ൌ ׬ ᇱே݁ି௧ݐ
ᇲ
ᇱݐ݀

ஶ
௞ಿ௧

, the upper incomplete Gamma function.  In the case of ܰ ൌ 1, 

ሻݐ௥௘௝ሺ݌ ൌ ݇ିଵሺ݇ேݐ ൅ 1ሻ݁ିሺ௞ಿା௞షభሻ௧.  Strikingly, the general features of the rejection distribution 
is well described by the prediction (Fig. 3-2B), suggesting that activation and dissociation kinetics 
are the main competing processes in SOS activation.  It is worth reminding ourselves that this 
model does not exhaust all possible routes or details of activation but only delineate the main 
pathway. 

Next, we evaluate the signaling consequence of the observed activation profile, specifically by 
verifying the inclusion of kinetic intermediates can result in kinetic proofreading.  Modeling shows 
that the ratio of ݌௥௘௝ሺݐሻ/݌௔௖௧ሺݐሻ, which we termed as the proofreading strength, is a monotonically 
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decaying function of time (for ܰ ൌ ሻݐ௔௖௧ሺ݌/ሻݐ௥௘௝ሺ݌	:1 ൌ ݇ିଵሺ݇ேݐ ൅ 1ሻ/ሺ݇ே
ଶ  ሻ), indicating theݐ

capability of exhibiting kinetic proofreading, i.e. events dwelling longer has a higher probability 
to activate.  This trend is also embedded in the experimental observation (Fig. 3-2E).  Together, 
the data and model provide a self-consistent statement of how a multistep process can exhibits 
kinetic proofreading.  The general kinetic topology is similar to the classical kinetic proofreading 
proposed by Hopfield (14) but differs slightly in the implementation of conditions: there is no 
ATP-consumption in the actual proofreading steps (yet preparation of one-way trafficking of SOS 
(20) may require energy for an actual living system).  

  

Fig. 3-3 Activation process is mediated by the autoinhibition state of SOS.  The activation distribution 
(a, d, f), rejection distribution (b, e, g), and proofreading strength (c, f, h) for SOS activation without PIP2 
(a-c), without Grb2 (d-f) and SOScatPR (f- h).  Grb2-mediated activation for d is scaled by consideration 
of the concentration effect from non-receptor activation.
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The activation pattern can be modulated by different modes of recruitment, regulated by the 
autoinhibition state of SOS.  The initial engagement state (SOS0) is mediated primarily by Grb2, 
while the slowest kinetic bottleneck (SOS1) involves release of autoinhibition by PIP2-mediated 
structural rearrangement (Fig. 3-4A), inferred from the following observations: i) Grb2 
independent activation is a single step activation process (its activation time distribution is 
exponential) bypassing SOS0 (Fig. 3-3, 3-4), ii) SOScatPR, lacking full autoinhibition, leads to 
increased activation of first-order kinetics by bypassing the necessity to release autoinhibition 
(SOS1) (Fig. 3-3, 3-4) and, iii) absence of PIP2 significantly decreases the activation rate yet 
retaining the kinetic bottleneck (Fig. 3-3, 3-4).  In each cases, the proofreading strength also 
follows the qualitative prediction of the model: case (i), (ii) and (iii) corresponds to decrease, 
decrease and increase in proofreading strength, respectively.  Assignment of molecular states to 
SOS regulation provides a useful framework (Fig. 3-4) for future evaluation of how SOS mutants 
or drugs modulate the functionality of SOS. 

Assays of this type show that membrane recruitment of autoinhibited proteins requires some finite 
time to activate, which naturally implement kinetic proofreading in the recruitment process.  One 
important consequence is that membrane dwell times, or more broadly recruitments, are 
disproportionate to activation itself.   

Kinetic proofreading in recruitment process 
raises the question of how cellular network can 
actively distinguish between genuine receptor 
signals and molecular noise.  Recent single-
molecule dwell time studies have shown that 
molecular assembly, driven by multivalent 
phosphotyrosine LAT interactions, drastically 
enhances the dwell times of Grb2 and SOS by 
orders of magnitude (13).  This kinetic 
enhancement is estimated to increase the rate 
of SOS activation by 10-50 fold under the 
gatekeeping of kinetic proofreading.  This type 
of regulation provides means to detect robust 
activation in a noisy environment based on 
dynamical discrimination.   

The concepts and methods developed in this 
work should be applicable to a wide range of 
cytosolic enzyme in signal transduction, for 
example N-WASP (27) in actin regulation or 
ITK (28) in Ca2+ flux triggering.  More 
broadly, first-passage analysis of this kind 
resolving the temporal discrimination process 
can be applied to evaluate the role of 
enzymology in signal transduction.   Figure 4 | Modulation of activation pathway
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4.  Molecular assembly:  
a mechanism to tune kinetic proofreading 

 
 
  
Assembly of receptors with adaptor proteins and effectors has been well documented in multiple 
signal transduction systems.  Some examples include the growth factor receptors (2, 29), 
components pertaining to actin cytoskeleton reorganization (30), Ephrin receptors (10, 31-35), and 
membrane receptors in T cells (3, 36, 37).  In each of these systems, the signaling molecules 
contain repetitive multivalent protein-protein interaction domains that drive the extended assembly 
of molecular complexes during signal transduction.  Tyrosine phosphorylation is a prototypical 
mediator of such assembly.  

In the case of T-cell receptor (TCR) signaling, linker for the activation of T cells (LAT) has several 
tyrosines (Y) that are phosphorylated upon TCR triggering.  Three of these (Y171, Y191 and Y226) 
are known to recruit the cytosolic adaptor protein, growth factor receptor-bound protein 2 (Grb2), 
by its SH2 domain (22).  Grb2 additionally has two SH3 domains, which bind to the proline-rich 
regions in the C-terminal domain of the nucleotide exchange factor, Son of Sevenless (SOS) (38).  
A single SOS molecule can associate with at least two Grb2 molecules (1), enabling the 
LAT:Grb2:SOS interactions to form an extended network assembly on membranes upon LAT 
phosphorylation (1, 39-41) (Fig. 4-1).  Similar assemblies have been reconstituted in vitro for the 
nephrin:Nck:N-WASP system on two dimensional membrane surfaces (30, 42).  In live cells, 
introduction of mutations that reduce the multivalency in the LAT:Grb2:SOS assembly alter the 
spatial pattern of the receptors (1, 43) and disrupt the downstream signaling (44, 45).  Although 
the existence of these signaling assemblies is documented, the physical mechanisms by which they 
modulate signal transduction remain unclear.  

4.1 Kinetic bifurcation from molecular assembly3 
 
Since assembly intrinsically involves increasing the local concentration of molecules, it is often 
thought that this will lead to enhanced reaction kinetics and therefore facilitate signal propagation.  
However, this conclusion is based on the assumption that dynamical parameters of the system, 
such as molecular binding kinetics and diffusive mobility, are unchanged in the condensed 

                                                            
3 Contents in this section are published in Huang et al. PNAS, 2016, 113:8218. 
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structure.  In fact, we would expect such dynamical parameters to be strongly modulated by 
assembly—thus offering various possibilities for the ways assembly may enhance, inhibit, or 
conceivably redirect signaling.  Actual quantitative measurements of such kinetic properties are 
sparse (6, 43, 46).  Here we reconstitute phosphotyrosine-mediated LAT:Grb2:SOS assembly on 
supported membranes with the purpose of performing a quantitative analysis of how the extended 
network assembly influences the molecular kinetics of Grb2 and SOS recruitment. 

Measurements of single-molecule binding dwell time distributions reveal two, well-differentiated, 
kinetic species for both Grb2 and SOS on LAT assemblies.  The majority fraction of membrane-
recruited Grb2 and SOS both exhibit fast single exponential kinetics, with average dwell times of 
hundreds of milliseconds.  These kinetics are nearly identical with those observed in the 
unassembled state, and thus correspond to monovalent binding interactions.  A subpopulation of 
the molecules, however, exhibits much slower binding kinetics, with dwell times extending to tens 
of seconds.  These long-lived Grb2 and SOS binding events arise from multivalent interactions 
within the LAT:Grb2:SOS assembly.  

Activation of the Ras GEF activity of full 
length SOS involves a multistep process (12).  
Following membrane recruitment by Grb2, 
structural rearrangements within SOS expose 
lipid binding domains that stabilize the 
protein on the membrane, expose the 
allosteric Ras binding site, and release 
autoinhibition of SOS guanine nucleotide 
exchange activity.  Once fully activated, SOS 
remains on the membrane and processively 
catalyzes nucleotide exchange on many Ras 
molecules (23).  Since SOS activation 
requires a sequence of events, its activation is 
subject to a type of kinetic proofreading (14, 
47), by which molecules that dwell on the 
membrane for longer periods of time are 
disproportionately more likely to become 
activated.  A corollary of this fact is that for 
the same total amount of membrane recruited 
SOS, more SOS molecules will become 
activated if a slow kinetic species exists—or 
in the extreme case, only the slow kinetic 
species activate. The slow kinetic species of 
membrane recruited SOS, which is here 
uniquely observed in phosphotyrosine-
mediated LAT assemblies, could thus 
correspond to the activating condition for this 
molecule.  This would have the effect of 
limiting SOS activation to regions of genuine 
receptor triggering and the resultant LAT 
assembly, while reducing the probability of 

Fig. 4-1 Quantification of the input-response 
function of LAT:Grb2:SOS assembly in TCR 
signaling.  Schematic of TCR signaling pathway 
(top) and the in vitro reconstituted system (bottom).  
Engagement of TCR with pMHC results in 
phosphorylation of LAT, which triggers assembly 
reaction on the cytoplasmic side of the plasma 
membrane.  LAT assembly promotes SOS 
membrane recruitment and activation, which 
propagates downstream signals.  To quantitatively 
assess the input-response function at the LAT 
signaling node, the signaling geometry of LAT is 
reconstituted on supported membranes.   
Phosphorylation of LAT is triggered by membrane-
bound tyrosine kinase Hck, which results in Grb2 
recruitment.  The assembly reaction is initiated by 
the addition of SOS proline-rich domain and can be 
reversed by tyrosine phosphatase, YopH. 



17 
 

spontaneous SOS activation elsewhere on the cell membrane.  The generality of this type of kinetic 
proof reading suggests that such a mechanism may be at play in multiple receptor proximal 
signaling processes. 

Phosphotyrosine-mediated LAT:Grb2:SOS assembly on supported membranes 

In the following experiments, the cytoplasmic domain (residues 30 to 233) of LAT is purified with 
an N-terminal 6-His tag and chemically modified with a maleimide fluorophore (Alexa Fluor 555) 
at Cysteine 146 (with a labeling efficiency of 60%).  This His6-LAT, here referred to as LAT, can 
be stably linked to supported membranes containing Ni-NTA lipids (4 mol %) (24).  The 
membrane associated LAT is laterally diffusive, as characterized by fluorescence recovery after 
photobleaching (FRAP) experiments and single-molecule tracking (SMT). A single diffusive 
population with diffusion coefficients of ~1.8 μm2/s is typically observed, indicating that LAT 
behaves as a monomeric molecule on supported membranes (25).  Surface densities of LAT can 
be controlled from 100-5000 molecule/μm2 and were calibrated by fluorescence correlation 
spectroscopy (FCS).  In these experiments, 
LAT is phosphorylated by membrane-
tethered Src family kinase Hck.  The 
phosphorylation reaction is monitored by the 
membrane recruitment of full length Grb2 
coupled to a fluorophore (Alexa Flour 647) 
using maleimide-thiol chemistry at Cysteine 
32 (with a labeling efficiency of 95%).  On a 
total internal reflection fluorescence (TIRF) 
microscope, Grb2 recruitment reports the 
phosphorylation of LAT in real time; 
LAT:Grb2 exhibits relatively fast binding 
kinetics (k-1 = 1.5 s-1) compared to the 
phosphorylation reaction (~ 1-2 min).  Other 
kinases, including Zap70 (48), can also be 
used to phosphorylate LAT without 
appreciable differences detectable by Grb2 
binding. 

A macroscopic network assembly of 
phosphorylated LAT (pLAT) forms on the 
membranes when the proline-rich domain 
(residues 1051 to 1333) of SOS (abbreviated 
as SOS) and Grb2 are both present in the 
solution (Fig. 4-1, 4-2A).  Assembly depends 
on the solution concentrations of Grb2, SOS 
and the membrane surface density of pLAT.  
Using 5.8 μM Grb2 and 1.45 μM SOS (the 
ratio of the concentrations for Grb2 and SOS 
is fixed to 4 for all experiments) over a pLAT 
density of about 2400 molecule/μm2, small 
mobile puncta of highly dense LAT emerged 

Fig. 4-2 LAT:Grb2:SOS is sufficient to drive an 
assembly network on membrane surfaces.  (A) 
Epifluorescence images of LAT undergoing an 
assembly reaction.  After injection of 5.8 µM Grb2 
and 1.45 µM SOS, small puncta of densely 
assembled proteins (red arrow) appears within a 
few minutes.  The emergence of a macroscopic 
protein-dense phase was observed after 30 minutes.  
(B) Reversibility of the assembly.  The phase 
boundary disintegrated abruptly into a homogenous 
phase after incubation of 10 µM phosphatase 
YopH.  (C) Different geometries and sizes of LAT 
assemblies by manipulating the surface densities of 
LAT ranging from 600-4000 molecule/μm2 in the 
presence of 5.8 µM Grb2 and 1.45 µM SOS.
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across the membrane within 3 minutes of mixing (red arrow in Fig. 4-2A).  These subsequently 
evolve into a macroscopic protein-dense phase (with an estimated density of ~4000 molecule/μm2) 
that is interspersed with regions void of LAT (Fig. 4-2A).  The assembly is dynamic; FRAP 
measurements on LAT reveal recovery of intensity in photobleached spots (diameter 21 μm, τD = 
704 s, Deffective = 0.20 μm2/s).  The assembly is governed by multiple tyrosine phosphorylation of 
LAT, as confirmed by the following observations: i) Kinase dependent LAT phosphorylation is 
required for assembly formation, ii) LAT mutants containing only a single Grb2 accessible 
phosphotyrosine site fail to form the assembly under the same experimental conditions, iii) 
Introduction of a tyrosine phosphatase (10 μM YopH) in the solution rapidly reverses this entire 
process, within a minute (Fig. 4-2B), eliminating Grb2 recruitment to LAT and driving the system 
back to a uniform and fluid distribution of LAT on the membrane.  FRAP experiments on LAT 
prior to assembly and after dephosphorylation reveal similar free mobilities, with τD values of 113 
s (D = 1.26 μm2/s) and of 115 s (D = 1.24 μm2/s), respectively.  

This type of phosphotyrosine-mediated condensation and assembly resembles a gelation phase 
transition (30, 42).  Theoretical studies of the LAT:Grb2:SOS system specifically predict the 
existence of a gelation phase transition (39).  Leaving the details of whether or not the condensed 
phase experimentally observed here meets the technical definition of a gel phase (49) to a later 
discussion, the transition itself is empirically discrete.  We experimentally map its effective phase 
diagram as a function of LAT, Grb2, and SOS concentrations.  The assemblies can form with a 
LAT density as low as ~600 molecule/μm2.  Macroscopic features of the condensed phase, such 
as the domain size, geometric distribution, and fractional area coverage can be controlled by the 
average LAT density (Fig. 4-2C).  However, intensive properties such as molecular binding 
kinetics should be independent of the size of LAT assembly.  With single-molecule dwell time 
measurements on different sizes of LAT assemblies, we affirm that the binding kinetics of these 
assemblies are not influenced by their macroscopic geometry.  The LAT assembly exhibits 
essentially the same molecular level behavior regardless of its large-scale shape and appearance.  
We therefore take advantage of the extended assembled structures (a few microns in size) for better 
spatial resolution for single-molecule measurements, described below. 

Kinetic bifurcation of Grb2 and SOS membrane dwell time from single-molecule analysis 

TIRF imaging of fluorescently labeled (Alexa Fluor 647) Grb2 or SOS enables observation of 
membrane recruitment, movement on the membrane surface, and desorption, at the single 
molecule level (Fig. 4-3B).  Single-step photobleaching, determined unambiguously with a 
Bayesian algorithm (50), verified that the tracked objects were single molecules (Fig. 4-3B).  In 
the case of simple bimolecular kinetics of pLAT:Grb2, a single population of short, exponentially 
distributed, dwell time is observed.  The mean dwell time, 0.65 s (acquired at a framerate of 21 
Hz), corresponds to an ensemble kinetic off rate (k-1,pLAT:Grb2) of 1.5 s-1, after correction for the 
measured photobleaching rate (Fig. 4-3C).  

For analyses of Grb2 and SOS kinetics on the LAT:Grb2:SOS assembly, we acquire Grb2 or SOS 
single-molecule images during the quasi-stationary state, in which the assembly exhibits a stable 
geometry with only local phase boundary fluctuations (Fig. 4-4).  The assembly produces a notable 
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affect on the recruitment rate of Grb2. At a 
fixed Grb2 solution concentration of 5.8 μM 
and a pLAT membrane density of ~2400 
molecule/μm2, the presence of SOS (1.45 μM 
in solution) leads to a 5-fold faster rate of 
Grb2 recruitment.  We also observe an 
enhancement in the membrane-bound 
Grb2:SOS ratio, which is >10:1 in the 
assembly compared with the bulk 
concentration ratio of 4:1.  These observations 
were made using two-color imaging of Alexa 
Fluor 647 labeled Grb2 and Atto 488 labeled 
SOS, The enhanced recruitment could be 
attributed to the increased affinity of SOS-
bound Grb2 to pLAT (51), the presence of 
membrane-bound SOS (providing more 
binding sites), or physical alterations in the 
structure and accessibility of pLAT in the 
assembly.  

The dwell time distributions for both Grb2 
and SOS are altered on the LAT assemblies.  
Specifically, a second kinetic species with 
dwell times two orders of magnitude longer 
for both proteins emerges (Fig. 4-4A).  At a 
framerate of 2 Hz, the slow kinetic species is 
resolved clearly.  Apparent dwell times of 
the long-lived Grb2 ranged from 10-100 s. 
Mapping trajectories of molecules with 
dwell times greater than 10 s reveals highly 
constrained motion within the network 
assembly (Fig. 4-4C).  Furthermore, the dwell time distribution deviates from a single exponential 
(Fig. 4-4A), which implies that the long dwelling species is a convolution of multiple binding 
states.  For both Grb2 and SOS, the long-lived species represents only a minor fraction (population 
fraction < 0.1) of the total amount of membrane recruited protein; the majority fraction still 
exhibits fast kinetics.  At a framerate of 21 Hz, the fast kinetic species is clearly resolved and 
proves to be identical to that of the monovalent binding kinetics of pLAT:Grb2 described above 
(Fig. 4-4A). 

The long-lived SOS species exhibits longer dwell times than those observed for Grb2 
(〈߬ௌைௌ〉~29.3	s, 〈߬ீ௥௕ଶ〉~10.8	s, estimated from trajectories with an apparent dwell time greater 
than 3 s) (Fig. 4-4A).  This mismatch in dwell time indicates that Grb2 and SOS are not in a stable 
complex on the membrane over the timescale of seconds.  Instead, the molecules must undergo 
dissociation and rebinding processes in the assembly such that the long dwelling SOS species 
interacts with multiple membrane-bound Grb2.  Incidentally, the timescale of the long-lived SOS 
is comparable to the slow transition rate between different active SOS conformations observed in 
single-molecule studies of SOS activation of Ras (23, 52).  The majority fraction of recruited SOS 

Fig. 4-3 Input-response function parameterized 
by single-molecule dwell time analysis.  (A) 
Single-molecule images showing the gradual 
increase in Grb2 recruitment following LAT 
phosphorylation.  (B) Diffusion and dissociation 
kinetics for membrane recruited Grb2 measured 
from single-particle tracking.  Single-step 
photobleaching confirmed that the tracked Grb2 is 
a single molecule.  The existence of a change point 
was detected using a Bayesian algorithm.  (C) 
Dwell time histogram of Grb2 (purple histogram).  
After correction of photobleaching (black dots), the 
dwell time of LAT:Grb2 is 0.65 ± 0.10 s, setting the 
baseline of the input-response function prior to any 
assembly structure.  Dash line is fitting to a single 
kinetic population.
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also exhibits fast kinetics (Fig. 4A), although comparison to the monovalent binding kinetics of 
Grb2:SOS is unlike the simple case of pLAT:Grb2.  Nonetheless, by assuming that the fast kinetic 
species corresponds to the monovalent interaction, we estimate k-1,Grb2:SOS = 0.47 s-1 from kapp,SOS 
= k-1,Grb2:LAT + k-1,Grb2:SOS + kbl,SOS, where kapp,SOS is the apparent dissociation rate and kbl,SOS is the 
photobleaching rate. 

 

 

Discussion 

Single-molecule dwell time analysis reveals two, well differentiated, kinetic species of Grb2 and 
SOS in the LAT:Grb2:SOS assembly.  The fast kinetic species corresponds to the monovalent 

Fig. 4-4 Protein assembly creates kinetic bifurcation in the recruitment dynamics of Grb2 and SOS.  
(A) The kinetic species of interest are evaluated at the two different frame rates of 2Hz and 21Hz. The top 
lane shows the time-lapse imaging of Grb2 and SOS at the framerate of 2 Hz.  The assembly structure is 
marked by labeled LAT (red).  Membrane-bound Grb2 (yellow) exhibits two kinetic populations: (1) short 
dwell times (white arrow), and (2) long dwell times (white tracks).  The statistics are summarized in the 
dwell time histograms: (1) Grb2 prior to assembly structure (black) and, (2) Grb2 in protein assembly 
(purple) and, (3) SOS in protein assembly (blue).  The bottom row shows dwell time histogram of Grb2 
and SOS in protein assembly acquired at the framerate of 21 Hz.  The fast kinetic species of Grb2 in protein 
assembly (purple) exhibits identical rate as the binding kinetics of pLAT:Grb2 prior to assembly (black).  
The fast kinetic species of SOS (blue) is also well described by a single kinetic population, with a fitted 
kapp,SOS of 3.4 s-1.  (B) Grb2 and SOS are recruited to the LAT assembly.  Strong correlations are observed 
between epifluorescence images of LAT (left) and the reconstructed images of Grb2 (right top) and SOS 
(right middle), obtained by compiling all single-molecule recruitment events within 400 s.  (C) By mapping 
trajectories with apparent dwell time greater than 10 s onto the LAT patterns (bottom), it is evident that the 
long dwelling species localize to the assembly structure.
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interaction while the long dwelling species stems from multivalent engagement within the 
networked assembly.  Motivated by these observations, we then ask if the elongation of dwell 
times can have a qualitatively different functional consequence, specifically in terms of the 
activation probability of the recruited effectors.  More broadly, can kinetic stabilization from 
protein assembly be utilized by biochemical networks to distinguish genuine receptor-triggered 
signals from molecular stochastic noise?  If so, what are the mechanistic requirements? We 
evaluate these questions analytically in the following by considering the activation process of SOS 
on the membrane surfaces. 

Control of SOS activity on membranes is multilayered (11, 12).  After Grb2-dependent membrane 
recruitment, SOS activation requires the release of autoinhibition, which involves conformational 
changes to expose lipid binding domains and the engagement of Ras at the allosteric binding 
pocket of SOS.  This multistep process all but guarantees the existence of one or more kinetics 
intermediates.  It is thus natural to presume that a finite amount of time is required for SOS to be 
fully activated following initial membrane recruitment.  Following analysis in Chapter 2, single-
molecule and structural studies of SOS provide an estimation of the physical parameters in the 
model.  Considering the case where the activation pathway of SOS involves two kinetic 
intermediates (release of autoinibition by the N-terminal domains and engagement of Ras in the 
allosteric binding site) (25, 35) with slow transition rates (ܰ ൌ 2, ݇ே ൌ 0.1 s-1) (26, 34), we 
estimate a 60-480 enhancement factor in the activation rate when the dwell time is elongated from 
0.1 s to 1-100 s for the same total amount of 
membrane recruited SOS.  Although the exact 
value of the parameters in cells are not known, 
this model allows us to estimate the potential 
strength of kinetic proofreading from a range 
of plausible parameter values.  From the 
analysis, elongation of membrane dwell times 
of SOS in association with LAT assembly 
therefore implicates LAT assembly as a 
possible gatekeeping mechanism that limits 
Ras activation through kinetic proofreading in 
the activation of SOS (Fig. 4-5).  The need for 
such restriction in SOS activation is 
underscored by recent single molecule 
SOS:Ras activation studies, which 
demonstrate that a single SOS molecule is 
capable of processively activate thousands of 
Ras in a single membrane recruitment event 
(23). 

This statistical concept of kinetic proofreading 
here resembles to that first proposed by 
Hopfield (14).  A classic example of its basic 
implementation is found in the triggering 
requirement for voltage-gated ion channels 
(53).  In the context of TCR signaling, kinetic 
proofreading based on multiple 

Fig. 4-5 Assembly-dependent membrane 
recruitments can achieve kinetic proofreading.   
Assembly-dependent modulation of membrane 
dwell times can control the activation rate of 
cytosolic enzyme such as SOS.  Kinetic 
proofreading of SOS ensures that receptor-
dependent triggering events are distinguishable 
from spontaneous membrane localizations.  This 
accuracy is especially important in TCR triggering, 
where detection of low agonist densities is crucial 
(the top right image shows that low density of 
TCR:pMHC complex can lead to activation).  
Regulation of the recruitment dynamics of 
biochemical networks through protein assembly 
thus provides a mechanism for controlling the 
amplification and noise filtration in signal 
transduction.
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phosphorylation events on the TCR ITAMs in response to ligand engagement has been proposed 
to play a role in antigen discrimination based on peptide MHC:TCR binding kinetics (19).  
Although the kinetic topology of SOS activation model is similar to Hopfield’s, it differs slightly 
in two aspects: i) no energy consumption is necessary, yet a directionality of enzyme trafficking 
is required (a non-equilibrium process), ii) proofreading is achieved by competition between the 
overall activation kinetics and dissociation (Eq. 1), instead of the kinetics of each intermediate 
complex.   

Signal propagation in the TCR system exhibits an analog-to-digital conversion (8).  Positive 
feedback from allosteric activation of SOS has been identified as a key element of this digitization 
(54).  Here we show that, prior to the GEF activity of SOS, LAT assembly leads to kinetic 
bifurcation in the recruitment dynamics of SOS, in which the activation kinetics inherently exhibit 
qualities necessary to enable kinetic proofreading.  In addition, extension of dwell times also 
suggest that bifurcation in the dynamics may be a fundamental mechanism that can promote the 
digitization of signal transduction.  Taking a broader perspective, these basic characteristics of 
signaling assembly and multistep activation are not unique to the TCR system.  They can be found 
in many other systems as well including, for example EGFR:Grb2:SOS (29) and nephrin:Nck:N-
WASP (30). 
 
After establishing the kinetic consequence of molecular assembly, we now revisit the identity of 
these assembly structure. 
 
4.2 Molecular assembly has a dynamical structure of an entangled polymer4 
 
Extensive networks of weak and rapidly reversible (e.g. ~500 ms for SH2:pY) interactions have 
manifested in both 2- and 3-dimensional apparent phase transitions in reconstituted systems (13, 
30, 42, 55).  The static connectivity of molecular assembly is analogous to a polymer, and assembly 
formation has been hypothesized to be a gelation phase transition (39) (a transition in connectivity 
in which a polymer can proliferate into an infinite network (49, 56)). Alternatively, the rapid 
turnover of individual molecules within the assembly, along with the visible macroscopic physical 
property of surface or line tension, has led to their description as viscous fluids (42, 57).  These 
different possibilities have distinct dynamical properties with correspondingly different potential 
effects on chemical kinetics of signaling reactions.  Detailed examination of the dynamic scaling 
of molecular mobility offers one approach to determine the molecular-scale structural identity of 
the assembly.  In particular, the dynamical scaling law, defined as ݇  in 〈ݎଶ〉 ∝ ௞ݐ  where ݎ  is 
distance traveled by an individual molecule (49), is an experimentally measurable property relating 
to both molecular structure as well as the diffusion process within the biochemical reaction itself.   

In this section, the translational motion of individual LAT proteins engaged in the LAT:Grb2:SOS 
networked molecular assembly on supported membranes is comprehensively studied by single 
molecule tracking (SMT).  LAT is a scaffold protein in the T cell receptor signaling system with 
nine tyrosine residues, three of which are known to recruit Grb2 after phosphorylation.  Activation 
of T cell receptors by ligand leads to activation of the Zap70 kinase, which phosphorylates LAT.  
This occurs against a background of LAT dephosphorylation by phosphatase activity with the 

                                                            
4 Contents in this section are in manuscript preparation (W.Y.C. Huang, H.-K. Chiang, N. Shah, J. Kuriyan, J.T. 
Groves 
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overall degree of LAT phosphorylation thus 
dynamically regulated by this kinase-
phosphatase balance.  This balance ultimately 
tunes the threshold for propagating a signal 
from the T cell receptor to downstream 
components of the signaling pathway.  Grb2 
contains SH2 and SH3 domains, enabling it to 
simultaneously bind pY residues on LAT and 
proline rich regions on SOS. SOS can bind to 
at least two Grb2 molecules, enabling 
extended network assembly as long as the 
LAT proteins are sufficiently phosphorylated 
(Fig. 4-6).  

Phosphorylated LAT proteins reconstituted on 
supported membranes are laterally fluid and 
coalesce into assembled structures upon 
addition of Grb2 and SOS.  This phase 
transition is reversible by addition of 
phosphatase and the structure is dynamically 
controlled by the degree of LAT 
phosphorylation (13, 55).  We measure the 
dynamical scaling law of LAT movement on 
membranes and observe subdiffusive motion 
( 〈ଶݎ〉 ∝ ௞ݐ  where ݇ ൏ 1 ) of LAT in the 
assembly only below a characteristic 
timescale.  Multiple subdiffusive timescales 
can be resolved with faster image acquisition 
rates.  Comparing these results with Monte 
Carlo simulations and classical polymer 
theory reveals that the LAT:Grb2:SOS 
networked assembly has the dynamical 
structure of a loosely entangled polymer. 

We reconstitute the LAT:Grb2:SOS assembly on supported membranes using the cytoplasmic 
domain (residues 30 to 233) of LAT with an N-terminus 6-His tag, which was chelated onto DOPC 
bilayers containing 4% Ni-NTA lipids (Fig. 4-6) (13, 24). Typical LAT densities on the membrane 
surface for these experiments, measured by fluorescence correlation spectroscopy (FCS) (58), 
were ~2,400 molecule/μm2. LAT was phosphorylated by inclusion of dilute Src family kinase, 
Hck, on membranes (typically with densities of < 100 molecule/μm2).  No phosphatase was 
included in these experiments, thus we expect LAT to be fully phosphorylated.  Under these 
experimental circumstances, Hck kinase activity is indistinguishable from Zap70, and corresponds 
to the physiological situation of strong receptor activation (13).  Single-molecule trajectories from 
individual LAT molecules were tracked by labeling a trace fraction (~0.1%) with Alexa Fluor 555 
fluorescent dye and imaging on a total internal reflection fluorescence (TIRF) microscopy setup.  

Fig. 4-6 Molecular assembly of LAT:Grb2:SOS 
by bond percolation.  These bonds are transient 
and reversible modular protein-protein interactions 
(inset).  Membrane-anchored LAT are crosslinked 
by membrane-recruited cytosolic proteins, Grb2 
and SOS.  The probability of crosslinking adjacent 
LAT is determined by the binding kinetics between 
each molecular species.  The dissociation constants 
of SH2:pY and SH3:PR (proline-rich domain) are 
about 300 and 400 nM, respectively(1).  In the 
reconstitution experiments, addition of Grb2 and 
SOS in solution drives assemblies with pLAT on 
supported membranes.  The images of fluorescently 
labeled LAT (Alexa Fluor 555) are shown before 
(bottom, left) and after (bottom, right) assembly. 
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In the absence of assembly, single-molecule trajectories of LAT on the supported membrane reveal 
simple diffusive motion, with a linear scaling of mean-squared displacement (MSD) with time 
(Fig. 4-7A).  MSD analysis is performed on each time trajectory of positions, ሼݔሺݐሻ,  by the	ሻሽ,ݐሺݕ

time-averaging protocol: ሺ݊ݐߜሻ ൌ ଵ

ேି௡ିଵ
∑ ሼሾݔሺ݆ݐߜ ൅ ሻݐߜ݊ െ ሻሿଶݐߜሺ݆ݔ ൅ ሾݕሺ݆ݐߜ ൅ ሻݐߜ݊ െேି௡ିଵ
௝ୀଵ

 is the time between frames, ܰ is the total number of frames in a single ݐߜ ሻሿଶሽ , whereݐߜሺ݆ݕ
trajectory, and ݊ and ݆ are positive integers (59).  MSD traces from single trajectories greater than 
100 frames were analyzed in terms of a power law, ܦܵܯሺݐሻ ൌ  ௞.  For unassembled LAT on theݐܣ
supported membrane, fitted values of k were around unity over all timescales, indicating simple 
Brownian motion.  In this case, the diffusion coefficient (D) is well defined and A = 4D for two-
dimensional motion.  Fit values of D were around 1 - 1.5 μm2/s (Fig. 4-7B), which are typical for 
a monomeric protein on supported membranes (25, 60). 

To trigger networked assembly of LAT, Grb2 and the proline-rich domain of SOS where added in 
the solution at 5.8 and 1.45 µM, respectively.  Under these conditions, an extended LAT:Grb2:SOS 
network assembles over the course of about 30 min, after which the system reaches a semi-
stationary state (Fig. 4-7A).  Single molecule LAT trajectories were analyzed from this semi-
stationary state. 

Fig. 4-7 Dynamic scaling of LAT:Grb2:SOS assembly.  (a) Single-molecule tracking of LAT before and 
after assembly.  The time axis is color coded in the trajectory. (c) Time-averaging MSD analysis for the 
trajectory in (a), fitted to a power law in log-log plot.  The fitted ܣ for ݇ ൌ 1.14, 1.04, 0.35 are 4.5, 0.0017, 
and 0.0054, respectively.  Shaded area are the standard deviation of statistics from a single trajectory.  The 
characteristic timescale (triangle) is estimated with a Bayesian change-point algorithm (right). 
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Single-molecule imaging of LAT in the assembled state, acquired at a relatively slow framerate of 
2 Hz, reveals highly constrained and localized motion (Fig. 4-7A).  This slow acquisition strategy 
allows individual molecules to be tracked for hundreds of seconds prior to photobleaching.  MSD 
analysis shows that below a characteristic timescale of a few seconds, LAT is subdiffusive 
(݇~0.1 െ 0.4).  Over longer time intervals, linear scaling of MSD with time (k → 1) is restored, 
albeit with slow diffusion coefficients of < 0.01 μm2/s (Fig. 4-7B).  The characteristic timescale is 
determined using a Bayesian change-point algorithm and a threshold Bayes factor of 3 for 
substantial evidence of a transition occurring within the trajectory(50) (Fig. 4-7B).  Observations 
over many trajectories confirm that the 
transition between subdiffusive and normally 
diffusive motion exists in the time domain 
only, all tracked molecules reside within the 
LAT gel and mobility is spatially 
homogeneous.  Membrane-bound Grb2 and 
SOS also exhibit similar transitions from 
subdiffusive to diffusive dynamics on short 
time scales.  Errors from tracking due to 
instrument stability and the tracking algorithm 
are assessed using LAT molecules 
immobilized directly on glass surfaces.  
Immobile molecules result in weak power 
dependence ( ݇ ≪ 0.1 ) and absence of a 
characteristic transition timescale within 
hundreds of seconds.  Therefore, we conclude 
that the measured trajectories are dominated 
by genuine molecular motion. 

Next, we discuss the physical origin of the 
subdiffusive motion with Monte Carlo 
simulations of random walks on a two-
dimensional lattice geometry.  Specifically, 
we verify how each mechanism manifest 
themselves in time-averaging MSD curves 
identical to the SMT analysis.  Firstly, we 
consider three classes of subdiffusion 
mechanisms: i) polymer constraints, ii) 
confinement from compartmentalization and, 
iii) crowding effects.  A purely random walk 
on a lattice yields a scaling of ݇ → 1 (Fig. 4-
8A).  Simple polymer constraints  (49, 61, 62) 
recreates subdiffusive motion over short 
timescales while diffusive motion is observed 
on longer timescales (Fig. 4-8A).  
Confinement by an impassable square box 
results in a plateau in the MSD curve (Fig. 4-
8B).  Crowding effects are considered by 
trapping of molecules with a heavy-tail 

Fig. 4-8 Time-averaging MSD from Monte 
Carlo simulations of 2D random walk.  
Molecular motions are constrained by (a) polymer 
bonding, (b) confinement, (c) crowding effects, (d) 
bonding to immobile sites and, (e) bonding to 
polymer.  Orange and blue curves correspond to 10 
simulated trajectories by Brownian and labeled 
mechanism, respectively.  Black curves are the 
averaged values.  Grey curves are guideline for 
linear scaling of MSD with time.  Dash lines are 
reference to polymer constraints.  Red lines denote 
the lifetime of bonding to a polymer.  In (c) and (d), 
the MSD for the associated mechanisms are 
multiply by a factor of 10 for clarity. 
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waiting time.  In this case, the ensemble MSD follows subdiffusion while MSD from individual 
trajectories does not exhibit subdiffusion (Fig. 4-8C) (63, 64).  While there are multiple 
mechanisms that may lead to crowding effects on dynamics, these typically generate time-
independent diffusive or subdiffusive MSD curves, without distinct transitions (65).  Therefore, 
the observed dynamical scaling law of LAT mobility within the condensed assembly is most 
consistent with the viscoelastic motion of a polymer.   

The LAT:Grb2:SOS assembly does not form a conventional polymer.  It differs by the fact that 
individual bonds are rapidly forming and breaking and some of the system dynamics result from 
these bond rearrangements.  The bond dynamics themselves will increase the overall molecular 
turnover within the system as individual molecules may join and exit the assembly or move within 
it via a bind-unbind-rebind mechanism.  However, bond dynamics alone, without polymer motion, 
does not reproduce subdiffusion (Fig. 4-8D).  Bonding to and escaping from a dynamic polymer 
network recreate the time-dependent subdiffusion with increased mobility, yet the bond lifetimes 
may truncate the transition timescales from polymer constraints if they are sufficiently short (Fig. 
4-8E).  Nevertheless, the net effective bond lifetime of a LAT bonding to an assembly network 
depends on simultaneous breakage of all three linkages (Fig. 4-6), which is estimated to be much 
greater than 10 s (13).  Given that the transition timescales of LAT assemblies are all within 10 s, 
these observed timescales are mostly attribute to polymer dynamics, while bond rearrangements 
may facilitate their mobility.  This is further supported by the observation that Grb2 and SOS 
trajectories (which are terminated when the molecule escapes the assembly) both show similar 
characteristic timescales.  Collectively, the measured dynamics of the overall system follow the 
behavior of a polymer.  Additional features of the LAT assembly structure can be resolved by 
imaging at faster frame rates.  

Fig. 4-9 Multiple subdiffusive timescale.  (a) MSD analysis of LAT mobility acquired at a framerate of 
21 Hz.  Each timescale is fitted by a power law, with the characteristic timescales denoted by triangles.  
The orange and green curve of the right plot corresponds to the transition probability calculated from the 
full timescale and the partial timescale prior to the slower (black triangle) characteristic timescale, 
respectively.  (b) Comparison of the relaxation timescales between SMT and the reptation model.  ߬଴ is the 
relaxation time of a monomer.  ± denotes the standard deviations.
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In experimental trajectories imaged at a 21 Hz frame rate, multiple relaxation timescales can be 
resolved for LAT motion within the assembly (݇ଵ~0.1, ݇ଶ~0.4) (Fig. 4-9).  This provides evidence 
for effective entanglement.  The viscoelastic motion of a polymer arises from its relaxation modes, 
first analytically calculated by Rouse (49, 66) and expanded to entangled polymers by De Gennes 
(49, 67).  The reptation model for entangled polymers predicts multiple timescales of subdiffusion 
due to neighboring bond and topological constraints.  In order of increasing timescale, these can 
be broken down as the Rouse time of an entangled strand (߬௘), the Rouse time (߬ோ), and the 
reptation time (߬௥௘௣ ).  Comparison between the reptation model(49) and LAT assembly is 
summarized in Fig. 4-9B.  Assignment of the observed timescales to the model is established by 
first recognizing that only the reptation time exhibits a temporal transition from subdiffusive to 
diffusive motion, while the Rouse time defines a transition between subdiffusive motions with 
different characteristic scaling.  The observed scaling also follows the prediction of the reptation 
model (݇௧வఛೝ೐೛ ൐ ݇ఛೝ೐೛வ௧வఛೃ ൐ ݇ఛೃவ௧வఛ೐ሻ. 

For an ideal polymer, the timescale of relaxation is determined by the longest relaxation mode, 
which reflects the total size and entanglement of the polymer strand.  Within the 38 by 38 μm  field 
of view, the distribution of observed relaxation timescales for individual trajectories within the 
LAT assembly is broad (߬௥௘௣ ൌ 5.1 േ 3.2, ߬ோ ൌ 1.2 േ 1.2 s) (Fig. 4-9B).  In some trajectories, 
subdiffusion persists without a characteristic transition timescale, indicating the existence of larger 
local assemblies.  LAT assemblies of different sizes evidently coexist.  Averaging the statistics 
provides estimations about the mean extent of connectivity within the assembly.  The relative size 
of entanglement, ܰ/ ௘ܰ	where ௘ܰ is number of monomers in an entangled strand and ܰ is the total 
number of monomers in the polymer, is about 4-5 for LAT assembly, suggesting a rather loose 
entanglement.  The unobserved ߬௘  is estimated to be 10-100 ms, which is at the limits of the 
instrument resolution.   

Given a minimum multivalency of three, LAT can form macroscopic assembly network if the 
bonding probability (݌) between adjacent LAT (e.g. through the LAT:Grb2:SOS:Grb2:LAT motif) 

exceeds the critical threshold ( ௖݌ ൌ
ଵ

௙ିଵ
 where ݂  is the multivalency).  Based on these 

considerations, a bond percolation model for the LAT:Grb2:SOS assembly is generated in Fig. 4-
10.  Qualitatively, entanglement of large polymers is prominent near or above the gel point; this 
condition is achieved in the reconstituted experiments.   

In summary, SMT of LAT within the phosphotyrosine-mediated assembly reveals a dynamic 
scaling law similar to that of an entangled polymer.  Thus although the assembly is distinct from 
a classical polymer in that all of its individual bonds are rapidly breaking and reforming, the mean 
connectivity within the structure still manifests in a characteristic dynamical scaling law.  
Furthermore, these dynamical features are different from a viscous fluid.  In living cells, 
subdiffusive motion is commonly observed and often attributed to confinement and crowding 
effects (43, 68).  Here, we demonstrate that organization of proteins into networked assemblies 
leads to timescale-dependent subdiffusion.  Moreover, this type of analysis could be performed in 
live cells (6, 43), providing a way of characterizing the molecular-scale organization of visible 
signaling structures based on dynamics.  
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Fig. 4-10 A bond percolation model for LAT assembly. LAT has a multivalency of three, which is 
represented by honeycomb lattices.  Each intersection represents a LAT molecule, while each edge 
represents a possible bond of LAT:Grb2:SOS:Grb2:LAT with a bonding probability (݌).  Black and grey 
bonds denote bonding and non-bonding interactions, respectively.  The color gradient represents network 
sizes that are greater than 10 bonds. 



29 
 

 
 
 
 
 
Part II. Catalysis on membranes  
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5.  Enzymatic catalysis on membrane surfaces 
 
 
 
Enzymatic reactions and subsequent protein binding to enzymatically-modified proteins 

constitute the primary mechanism of signal transduction in living systems 5 .  The physical 
mechanism and rates of catalysis can not only enhance or attenuate the response time of a signaling 
system, but can alter the qualitative shape of the input-output function of a signaling cascade (69).  
Many substrates in different signaling pathways, such as the T-cell receptor (TCR), epidermal 
growth factor receptor (EGFR), linker for activation of T cells (LAT), nephrin, and programmed 
cell death protein 1 (PD-1), contain repetitive, modifiable motifs (7, 10, 69).  Furthermore, the 
degree of multivalency, phosphorylation dynamics, and how proteins interact with the modified 
substrate are intimately relevant to how signals are relayed in a signaling cascade; especially in 
light of recent evidence that many of these receptors form molecular assemblies after 
phosphorylation (13, 30, 55). 

Another common feature of these signaling receptors is that they reside on the plasma membranes 
during phosphorylation.  Membranes alter many facets of reaction kinetics, including reduced 
dimensionality, constrained orientation and accessibility to the substrates (2, 11, 25).  Hence, the 
native membrane signaling geometry is inherently coupled to the phosphorylation kinetics and 
how their binding partners interact with these receptors (70, 71).  Therefore, to properly understand 
signal transduction on membranes, quantitative measurement of enzymatic reaction kinetics and 
assessment of protein-protein interactions on membranes is necessary, especially from a modeling 
perspective (9).  Unfortunately, direct enzymatic reaction and protein-protein binding 
measurements on membranes are often hindered by the intrinsic challenges of performing 
quantitative experiments on membranes.  In addition, reaction rates measured in solution cannot 
be easily translated to that on membranes because conversion of dimensionality does not account 
for translational and rotational constraints, conformational changes, and accessibility constraints 
on membranes (2).  Most catalytic measurements on membranes are ad hoc, and only can report 
catalytic rates instead of the rate constants.  In this chapter, we report a substantial difference 

                                                            
5 Contents in this chapter are in manuscript preparation (W.Y.C. Huang*, J. Ditlev*, H.-K. Chiang, M.K. Rosen, J.T. 
Groves, * denotes equal contributions) 
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between solution-based and membrane-based Grb2 binding to phosphotyrosine residues on LAT 
as well as phosphorylation kinetics of LAT by ZAP-70 using a 2D enzymatic assay on supported 
membranes.  Our results demonstrate the necessity to properly analyze membrane-associated 
reactions using two-dimensional assays that can assess binding and enzymatic reactions in the 
proper experimental geometry.  

In vitro reconstitution of LAT phosphorylation by ZAP-70  

In our 2D enzymatic assay on supported membranes, ZAP-70 is recruited to a pre-phosphorylated 
cytoplasmic domain of CD3 ζ chain (pCD3) where it can phosphorylate its substrate LAT (Fig. 5-
1A).  Both pCD3 and LAT are chelated onto DOPC bilayers containing 4% NiNTA-modified 
lipids (24).  The densities of laterally fluid LAT can be controlled from 50 to 3000 molecule/μm2 

(covering physiological densities of 100-1000 molecule/μm2) and were measured by fluorescence 
correlation spectroscopy (FCS).  The phosphorylation of LAT by ZAP-70 was probed via Grb2 
recruitment in real time.  Grb2 contains one SH2 domain that binds to phospho-LAT (pLAT) with 
fast binding kinetics (~500 ms) (13), making it 
an ideal candidate to measure LAT 
phosphorylation.  To enhance the resolution of 
phosphorylation detection and to avoid futile 
phosphorylation events, LAT was specifically 
engineered to preserve only the four distal 
tyrosines (Y) (LAT4Y).  These four tyrosines 
have been identified to play the most critical 
role during T-cell activation.  Three of the 
most distal tyrosines (Y171, Y191, Y226) are 
known to have high affinity with Grb2, while 
Y132 recruits phospholipase PLCγ (22).  

The assay was then optimized for the 
following kinetic considerations to resolve 
phosphorylation: i) Grb2 rapidly reports 
phosphorylation (< 1 s), ii) ZAP-70 is 
recruited to membranes by pCD3 at a 
moderate rate (~60 s) and, iii) phosphorylation 
occurs at a slow rate (~10 min) (Fig. 5-1B).  (i) 
and (ii) has lower limits defined by the binding 
kinetics of the ligand-receptor pair.  In our 
experiments, injection of 500 pM ZAP-70 and 
50 nM Grb2 onto a bilayers containing pCD3 
of ~500 molecule/μm2 and LAT of 50-2000 
molecule/μm2 satisfies these conditions.  At 
this Grb2 concentration, it acts as a 
phosphorylation sensor by stochastically 
sampling the pY of membrane surfaces rapidly 

Fig. 5-1 Reconstitution of LAT phosphorylation 
by ZAP-70  (A) Biochemical reconstitution of 
LAT phosphorylation by ZAP-70 on supported 
membranes.  LAT and pCD3 are tethered onto 
fluid bilayers.  ZAP-70, Grb2, and ATP are 
injected into the solution to monitor 
phosphorylation.  (B) Simultaneous imaging of 
ZAP-70-Alexa Fluor 488 and Grb2-Alexa Fluor 
647 during phosphorylation.  The initial increase 
and final equilibrium phase of Grb2 reflects the 
ZAP-70:LAT phosphorylation and LAT:Grb2 
affinity, respectively.
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(< 1 s) without saturating all the pY, i.e. each LAT4Y has less than one Grb2 bound on average.  
Fluorescent labeling of ZAP-70 and Grb2 with Alexa Fluor 488 and Alexa Fluor 647, respectively, 
allows simultaneous imaging of the membrane-bound components using total internal reflection 
(TIRF) microscopy.  A typical kinetic trace showing ZAP-70 and Grb2 recruitment to the 
membrane is reported in Fig. 5-1B.  The Grb2 intensity trajectory consists of two phases: i) ZAP-
70 recruitment leading to LAT phosphorylation and, ii) equilibrium of Grb2 with fully 
phosphorylated LAT.  The increase and plateau of Grb2 intensity reflects LAT phosphorylation 
and LAT:Grb2 affinity, respectively.  Phosphorylation by solution ZAP-70 is extremely slow in 
this experimental condition (>> 30 min), confirmed by the negligible phosphorylation rate of LAT 
by ZAP-70 without pCD3 (Fig. 5-1B).  To properly extract the phosphorylation rate on membranes, 
we first require an understanding of how Grb2 binds to the multivalent pY of LAT. 

Multivalent cooperativity in the LAT:Grb2 binding kinetics 

The affinity of each LAT tyrosine to Grb2 was first deconstructed by measuring the binding 
kinetics with monovalent LAT mutants.  Solution isothermal titration calorimetry (iTC) of 
different pairs of monovalent LAT:Grb2 shows similar affinity trend (ܭ஺

௦௢௟	: LATFFYF:Grb2 > 
LATFYFF:Grb2 ≈ LATFFFY:Grb2) with previous studies (22), albeit with overall lower KA 
(Table 5-1), presumably due to reduced accessibility for full length LAT.  LATYFFF:Grb2 has a 
low affinity that is below the instrument resolution, consistent with previous study (22).  (For our 
notations, the tyrosine mutations of LAT are implicitly Y132-Y171-Y191-Y226, e.g. LATFFYF 
is LAT-Y132F-Y171F-Y226F).  

Next, the affinity of each LAT:Grb2 pair were measured on supported membranes (Fig. 5-2A).   
On membrane surfaces, two unpredicted results are observed.  First, the affinity trend is reversed 
compared to solution iTC (ܭ஺

௠௘௠	: LATFFYF:Grb2 < LATFYFF:Grb2 < LATFFFY:Grb2) (Fig. 
5-2B).  Single-molecule dwell time analysis shows that the off rates are similar for all monovalent 
LAT:Grb2 pairs (Fig. 5-3), suggesting that the on rates, hence geometric accessibility, regulate 
their affinity.  Second, the affinity of LAT4Y:Grb2 cannot be linearly reconstructed by monovalent 
LAT mutants (Fig. 5-2B), i.e. having the four tyrosines on the same LAT molecule has about 4-5 
fold increase in affinity.  Furthermore, we compared the affinity between LAT4Y:Grb2 and 
trivalent LAT:Grb2 (Fig. 5-2C).  In these experiments, deletion of Y132 (which does not recruit 
Grb2 by itself, Fig. 2B) reduces the affinity of other tyrosines to Grb2 (Fig. 5-2C).  The 
cooperativity in LAT:Grb2 affinity is summarized in Fig. 5-2D.  Because each LAT:Grb2 pair 
have similar off rates, affinity cooperativity from multisite regulation is attributed to the on rates 
(Fig. 5-3), suggesting that the degree of phosphorylation may mediate a structural orientation of 
full length LAT on membrane surfaces, even though the protein has no known structure.  Dwell 
time analysis also eliminates Grb2 hopping between pY residues on LAT as a rebinding 
LAT1Y Variant KD (nM) ΔH (kcal/mol) ΔS (kcal/molK) 
LAT FFFY 458.9 (320, 668) -13.8 (-15.22, -12.67) -18.1 
LAT FFYF 195.0 (134, 281) -15.0 (-16.36, -13.91) -20.5 
LAT FYFF 462.9 (331, 669) -15.0 (-16.31, -13.77) -22.0 
LAT YFFF N.A. N.A. N.A. 

Table 5-1 Solution-based isothermal titration calorimetry of monovalent LAT:Grb2 
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mechanism in the reconstitution experiment.  We further confirm that the imaging experiments are 
not related to difference in photophysics of the dye for different LAT constructs, as evident from 
the brightness analysis from FCS and fluorescent lifetime analysis.  Conceivably, this cooperative 
affinity enhances the sensitivity of Grb2 recruitment during cellular signaling.  

Determining catalytic rate constants from enzymatic trajectories 

To obtain the catalytic rate constants of LAT phosphorylation, phosphorylation rates were 
measured as a function of LAT density (Fig. 5-4A).  To account for protein copy number of 
recruited ZAP-70, the data were analyzed according to the following equation: 

ሻݐሺݒ ൌ ଵ

ாሺ௧ሻ

ௗ௉ሺ௧ሻ

ௗ௧
      [5.1] 

Fig. 5-3 Grb2 exhibits similar off rate for 
different LAT constructs.  Dwell time 
distributions from single-molecule tracking.  
Bleaching curve (grey) is the dwell times for 
immobilized LAT on a glass substrate. 

Fig. 5-2 Multisite cooperativity in pY:Grb2 
affinity  (A) Grb2 equilibrium point from LAT 
density titration.  (B) Comparison of the slope in 
(A) provides relative affinity between monovalent 
LAT constructs to Grb2.  (C) Relative affinity for 
trivalent LAT.  (D)  Summary of (B) and (C).  
Power law fit is an empirical fit. 
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where ݒ is the initial rate of phosphorylation, ܧ is the ZAP-70 density on membranes, and P is the 

pLAT density inferred from Grb2 recruitment.  For simple Michaelis–Menten kinetics, ݒ ൌ ௞೎ೌ೟ሾௌሿ

௄ಾାሾௌሿ
 

where ݇௖௔௧ is the catalytic rate and ܭெ is the the Michaelis constant.  The raw linear initial rates 
for phosphorylation of LAT4Y and monovalent LAT are summarized in Fig. 5-4B.  Finally, the 
rate constants are obtained by calibrating the affinity for each LAT:Grb2 pair (Fig. 5-2 and 5-4C).  
For monovalent LAT phosphorylation, the rate constants are about 5×10-5 μm2s-1 (Table 5-2).  Note 
that the assay naturally produces proper 2D units for the rate constants.  The initial rates in these 
cases are approximately linear, suggesting that catalysis are near a diffusion-limited region.  

The case for LAT4Y phosphorylation requires consideration of phosphorylation mechanism due 
to multivalency.  Processive catalysis is a modification mechanism in which multiple 
phosphorylation can take place per encounter between the enzyme and the substrate (72).  It has 
been speculated that kinases or phosphatases in the TCR activation pathway exhibit processivity 
due to the prevalence of multivalent substrates.  Experimental verification of this mechanism is 
compounded by the fact that processivity is intimately related to the diffusion of the molecules 
(73).  In our reconstituted experiments, the type of phosphorylation mechanism will affect 
reconstruction of the phosphorylation rate constants since the conversion of Grb2 readout to 
tyrosine densities will scale nonlinearly due to cooperative affinity.  However, the following self-
consistency analysis, with the monovalent LAT as a benchmark, can be informative: 

reconstructed LAT4Y phos. rate (f) = f × monovalent LAT avg. phos. rate   [5.2] 

where f is the degree of processivity, ranging from 1-4 in the case of LAT4Y.  Only moderate 
processive mechanism (f = 2.4) satisfies this self-consistency, both purely distributive (f = 1) and 
strong processive (f = 4) mechanism are not self-consistent (Fig. 5-4C).  

Discussion 

Membranes modulate biochemical reactions by requiring dimensional constraints, alteration of 
accessibility, and reduction of diffusion.  The first two factors play an unexpected effect on 
modulating LAT:Grb2 binding kinetics, providing cooperativity by means of on rates.  Diffusion 
defines the asymptotic rate for an efficient enzymatic reaction.  The linear initial rates of LAT4Y 
phosphorylation in the titrated densities suggest that catalysis on membranes is seldom saturated 
by substrates and operates near a diffusion-limited regime (a high KM density).  The net effect of 
membranes can be estimated by comparison with phosphorylation rate of LAT peptide by ZAP-
70 in solution: simple dimensional conversion of solution catalytic rate constants to 2D is about 
5×10-3 μm2s-1, close to two order of magnitude faster than the membrane measurement.      

In conclusion, we established a kinetic assay that resolves enzymatic rates on a 2D geometry.  The 
necessity of membrane reconstitution approach is reinforced by several observations that physical 
properties of membranes alter the binding kinetics and enzymology of biochemical reactions.  
While the assay is performed with receptor-recruited cytosolic kinase, activity of membrane-bound 
kinases or phosphatases, such as Lck or CD45, could be measured in a straightforward manner.  
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This assay quantitatively addresses enzymology on membrane surfaces, and evaluates their 
contributions to biochemical networks.  
  

LAT constructs Effective catalytic rate 
constant (×10-5·μm2s-1) 

LAT4Y (f = 2.1) 10.9 
LATFFFY 7.1 
LATFFYF 5.5 
LATFYFF 3.2 
LATYFFF N.A. 

Fig. 5-4 2D enzymatic analysis  (A) The apparent 
initial rates are obtained from linear fitting of Grb2 
intensity from LAT density titrations.  (B) The 
apparent initial rates from (A).  (C) The effective 
catalytic rate in proper 2D units, after correction of 
affinity (Fig. 2D).  The rate constants are 
summarized in Table 2.  Shaded area are possible 
rate constants region with dark gradient indicating 
higher processivity.  The red dash lines correspond 
to purely distributive or strong processive 
mechanism.  The red solid line denotes self-
consistent solution to Eq. (2).  Distributive 
mechanism leads to higher apparent rate than 
processive mechanism because the increase of 
Grb2 signals corresponds to more phosphorylation 
events by considering the cooperative affinity. 

Table 5-2 Rate constants of LAT 
phosphorylation by ZAP-70 
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6.  Molecular configurations and catalysis 
 
 
 
Oligomerizations of cytosolic enzymes on membranes through protein-protein or lipid-protein 
interactions is a recurring theme in signal transduction6 (74).  Some examples include dimers such 
as Raf-1 (75) or larger assembly such as LAT:Grb2:SOS (13, 55) described earlier.  While the 
elongation of dwell times through extended complex affects the overall turnover, it remains to be 
examined whether the fundamental bimolecular catalytic rate depends on the oligomerization itself.  
Conceivably, molecular structure on membranes can modulate catalytic rate by changing the 
probability of encounter between the enzyme and the substrate.  Thereby, molecular configurations 
can be intimately linked to the potency, or even specificity, of signal reactions. 
  
In the following example, we briefly illustrate the simplest multivalent membrane receptor with a 
multivalency of two, programmed cell death-1 (PD-1), binding with the cytosolic phosphatase 
SHP-2.  PD-1 has two phosphotyrosines that bind to the tandem SH2 domains of SHP-2.  It is 
often assumed that both of the SH2 domains binds to the same PD-1, thereby enhancing the dwell 
times nonlinearly via this tandem binding state.  However, it is plausibly that a multivalency of 
two may result in a crossing linking conformation that bridges different PD-1 molecule together, 
forming dimers or even higher oligomers.  Opposing these states is the condition where saturating 
amount of SH-2 is presence such that only one of the SH2 domain is binding to PD-1, which we 
termed as the monomeric binding.  The interplay between these conformations affects the 
dynamical parameters of the recruited SHP-2, such as diffusivity and dwell times.  Preliminary 
single-molecule tracking of SHP-2 at different regions of the phase space defined by the SHP-2 
concentrations and PD-1 densities shows that both the diffusion and dwell times of SHP-2 are 
dependent on the parameters of the phase space (data not shown).  Therefore, we first establish a 
simple equilibrium model to predict the interplay between these molecular configurations. 
 
The model is depicted in Fig. 6-1.  We consider the regime of low to intermediate concentrations 
such that large molecular assemblies are not substantial.  The equilibrium fraction of each states 
are described by the following relations: 

                                                            
6 Contents in this chapter are in manuscript preparation (W.Y.C. Huang*, E. Hui*, H.-K. Chiang, R.D. Vale, J.T. 
Groves, * denotes equal contributions) 
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்ݔ ൌ ݔ ൅ ଵݔ ൅ ଶݔ ൅ ଷݔ ൅ ସݔ ൅ 	ହݔ

ݔ ൌ 	ܥܭ/ଵݔ

ଶݔ ൌ 	ଵݔᇱܭ

ଷݔ ൌ ଵݔᇱᇱܭ
ଶ/ܥܭ	

ସݔ ൌ 	ଵݔܥܭ

ହݔ ൌ ଵݔᇱᇱܭ
ଶ	

where ݔ௜ describes the density of i state defined in Fig. 6-1 on membranes, x is the free PD-1, ்ݔ 
is the total density of all PD-1 and ܭ is the equilibrium constants, and ܥ is the SHP-2 concentration.  

Solving the conservation of molecules gives: 
ଵݔ ൌ ሺ√ܾଶ ൅ 4ܿ െ ܾሻ/2 , where ܾ ൌ
ଵା௄஼ା௄ᇲ௄஼ାሺ௄஼ሻమ

௄ᇱᇱሺଵା௄஼ሻ
 and ܿ ൌ

௄஼௫೅
௄ᇱᇱሺଵା௄஼ሻ

.  This model is 

convenient to relate to membrane titration 
experiments (i.e. all molecular species are express as 
a function of ்ݔ  and ܥ. ሻ   The dominant molecular 
species of each titration point of the phase diagram is 
plotted in Fig. 6-2.  Note that the transition in the 
diagram is in reality continuous.	 	 This	 mapping	
allows	 further	 experimental	 assay	 to	 probe	
whether	catalytic	rate	is	identical	within	the	phase	
diagram.	 	While	this	 is	an	ongoing	study,	we	will	
illustrate	 one	 example	 of	 the	 profound	 effect	 of	
molecular	 configurations	 and	 membrane	
recruitments	 in	 determining	 the	 outcome	 of	 a	
signal	cascade. 	 		

 
  

Fig. 6-1 Molecular configurations of PD-1:SHP-2. 

Fig. 6-2 Phase diagram of PD-1:SHP-2 
configurations. 
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7.  Geometry sensing from bistable competitive reactions 
 
 

 
One important class of membrane constituents that act as master regulators of signal transduction 

is the large family of phosphatidylinositol (PI) lipids, which selectively recruit cytosolic proteins 
to intracellular membranes and locally control their activity.  PI lipid reactions are regulated by 
kinase-phosphatase competition that chemically modifies lipid head groups to switch molecules 
among the various PI phosphate (PIPx) species.  Bistability within these otherwise futile reactions 
can lead to emergent properties, such as spatial patterning of PI lipids during phagocytosis (76, 
77), polarized cell migration (78, 79), pheromone sensing (80, 81), and cytokinesis (82).  Spatial 
self-organization in the distribution of biomolecules is an emergent property of many reaction 
diffusion systems in biology (83-85). 
 
Here we investigated how spatial order in PtdIns based kinase-phosphatase competition reaction 
is established, maintained, and influenced by the geometry of the reaction environment.  We 
examine the effects of geometric confinement on the competitive balance between a kinase and 
opposing phosphatases acting on membrane PIPx lipids.  Controlled geometric confinement of the 
membrane reaction is achieved using micropatterned supported lipid membranes (26, 86) and 
membrane coated glass microspheres (87).  In both cases the membrane area and shape is precisely 
controlled, without interfering with membrane lipid mobility, while the adjacent three-dimensional 
solution (containing the enzymes) remains continuously connected and homogeneous.  This 
system exhibits bistability, with PI(4)P and PI(4,5)P2 dominated states both accessible from the 
initial conditions.  However, we observe that the final outcome depends on the geometric size of 
the reaction environment, which is not predicted by a macroscopic interpretation of kinetic 
bistability.  In smaller membrane corrals, the PI(4,5)P2 state is favored while in larger regions 
PI(4)P dominates.  Using stochastic kinetic modeling, we demonstrate that the geometric size 
sensing exhibited by this reaction system stems from an asymmetric response to stochastic 
composition fluctuations.  Strong positive feedback in the kinase reaction, which is not mirrored 
in the phosphatase, captures positive fluctuations in PI(4,5)P2 composition and takes the system to 
the PI(4,5)P2 dominated state.  This effect is more prominent in smaller reaction systems where 
intrinsic stochastic composition fluctuations are relatively larger. 
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Reconstitution of self-organized phosphatidylinositol based competitive reactions with 
positive feedbacks  
In the eukaryotic cells, synthesis of PI(4,5)P2 at the plasma membrane is predominantly controlled 
by type I phosphatidylinositol-4-phosphate 5-kinases (PI4P5K), which phosphorylates the 5’-
hydroxyl of PI(4)P lipids (88).  Opposing PI4P5K activity are 5’-phosphatases, which catalyze the 
dephosphorylation of PI(4,5)P2 into PI(4)P (89).  To explore that dynamics and emergent 
properties of a PI lipid based reaction diffusion systems, we biochemically reconstituted a kinase-
phosphatase competition reaction built around the synthesis of PI(4)P and PI(4,5)P2 lipids.  Using 
soluble fluorescently labeled lipid binding domains, DrrA/SidM (90-92) and a PH domain derived 
from PLC (93), we specifically and reversibly monitored PI(4)P and PI(4,5)P2 densities on 
membrane surfaces, respectively.  Single molecule binding-desorption measurements confirm 
both of these lipid sensors exhibit first-order 
kinetics with membrane dwell times () of 
25 ms (Alexa488- PLC) and 289 ms 
(Alexa647-DrrA).  With probe 
concentrations adjusted such that only a 
minor fraction (< 0.1%) of membrane PI 
lipid was bound to the probe, we can monitor 
changes in lipid composition by total internal 
reflection fluorescence (TIRF) microscopy.  
This system provides real-time and real-
space readout of membrane PIPx 
composition with sub-second time resolution 
and sub-micron spatial resolution.  
 
The tendency of a soluble enzyme acting on 
a membrane substrate to interact with its 
product leads to positive feedback.  In terms 
of a Michaelis-Menten analogy, additional 
product binding (independent of the catalytic 
site) will recruit more enzyme to the 
membrane as product concentration 

Fig. 7-1 Self-organization of a phosphatidylinositol based reaction diffusion system (A) Signaling 
network architecture of phosphatidylinositol based kinase-phosphatase competition reaction. Lipid 
modifying enzymes associate with membranes containing a mixture of PtdIns lipids, catalyze reactions, 
and then dissociate. (B) PI4P5K exhibits intrinsic positive feedback during PI(4,5)P2 synthesis. Synthesis 
of PI(4,5)P2 was monitor in the presence of 20nM Alexa488-PLC (C) Single molecule dwell time 
distribution of Alexa647-PI4P5K (1-100pM) measured in the presence of different PI(4,5)P2 lipid 
densities. (D) Bistable kinase-phosphatase competition reaction drives spatial patterning of PI(4)P and 
PI(4,5)P2 lipids, but not Rhod PE, on SLBs. Self-organization 10 nM PI4P5K, 17.5 nM DrrA-INPP5E, 20 
nM Alexa488-PLC, and20 nM Alexa647-DrrA. Membrane composition: 96% DOPC, 2% PI(4)P, 2% 
PI(4,5)P2, and 0.001% Rhod PE. (E) PtdIns lipids diffuse across PI(4)P or PI(4,5)P2 lipid domain 
boundaries unimpeded based on FRAP of TopFluor PI(4)P.  



40 
 

increases (94).  This effectively lowers the Michaelis constant, KM, and increases reaction velocity.  
Through biochemical characterization of PI4P5K dependent PI(4,5)P2 lipid synthesis we 
discovered a positive feedback mechanism intrinsic to PI4P5K (Fig. 7-1B).  Single molecule 
tracking of membrane associated Alexa647-PI4P5K revealed nonlinear changes in koff that were 
strongly dependent on the density of PI(4,5)P2 (Fig. 7-1C).  In contrast, we found that the 5’-
phosphatase domains derived from OCRL and INPP5E catalyzed PI(4)P synthesis with simple 
bimolecular reaction kinetics.  To expand the dynamic range of 5’-phosphatase activities, we 
engineered positive feedback loops into these simple phosphatase domains. Using these enzymes, 
we biochemically reconstituted a two-component phosphatidylinositol based kinase-phosphatase 
reaction diffusion system on a model membrane. 
 
Under conditions that roughly balance the activities of PI4P5K and 5’-phosphatases (simple or 
engineered chimeras), bistability is observed as the reaction environment splits into regions that 
are enriched in either PI(4)P or PI(4,5)P2 (Fig. 7-1D).  PI lipid patterns emerge on membranes 
lacking any pre-existing patterns or positional information.  Fluorescently labeled kinase and 
phosphatase localize to domains enriched in PI(4,5)P2 and PI(4)P, respectively.  The establishment 
and maintenance of PtdIns lipid domains requires energy in the form of ATP.  Varying the total 
enzyme concentration and kinase-phosphatase ratio modulates the kinetics and surface area of the 
PI lipid domains.  In contrast to the classic Turing system, this bistable PtdIns based reaction 
diffusion system does not form propagating waves with a discrete periodicity at the approximate 
steady-state condition.  The establishment and maintenance of large-scale PtdIns lipid patterns 
cannot be described by a phase diagram, is non-conservative, and does not emerge from dynamic 
instability.  Visualizing the bulk localization of rhodamine labeled phosphatidylethanolamine 
(Rhod PE) lipids demonstrated that only the distribution of the PI lipid phosphorylation state is 
spatially modulated by the kinase-phosphatase competition reaction; the membrane is otherwise 
homogeneous and fluid (Fig. 7-1DE). 
 
Bistability of kinase-phosphatase competition reaction 
The emergence of spatial heterogeneity in PI lipid composition is definitely linked to the bistable 
network topology (Fig. 7-1A).  However, the appearance of self-organized PI lipid domains did 
not immediately inform us of their mechanistic origin. For instance, what initially triggers domain 
formation?  We hypothesized that local stochastic fluctuations in PI lipid densities resulting from 
stochastic membrane binding of enzymes spatially dictates the final outcome of the competition 
reaction.  To eliminate the spatial component and characterize the reaction outcome 
probabilistically, we reconstituted the bistable kinase-phosphatase competition reaction on two-
dimensional membranes partitioned by chromium barriers (Fig. 7-2A).  Reconstitution of the 
competition reaction on 5 µm x 5 µm photolithographically defined membranes resulted in a 
bifurcation of reaction trajectories, with each corral fluctuating toward one of two stable steady 
states – predominantly PI(4)P or PI(4,5)P2 (Fig. 7-2BC).  Once an individual corral reached a 
stable steady state, interconversion of the dominant lipid species was not observed.  No long-range 
communication between neighboring corrals was observed demonstrating that the reactions are 
restricted to the membrane surface.   
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The bistable reaction can be described by considering the stochastic chemical kinetics of the 
competing kinase-phosphatase reactions.  In a molecular framework (see Appendix), the 
phosphorylation (J+) and dephosphorylation (J-) reactions can be expressed as: 
 

ାܬ											 ൌ ݇௖௔௧
ା ሺݔ଴

ା ൅ ଵݔ
ା ൅ ଶݔ

ାሻሺ1 െ ିܬ					,ሻݔ ൌ ݇௖௔௧ି ሺݔ଴
ି ൅ ଵݔ

ି ൅ ଶݔ
ିሻ[7.1]          ݔ 

 

where ݔ ൌ 	
௫ು಺ሺర,ఱሻುమ

௫ು಺ሺర,ఱሻುమା௫ು಺ሺర,ఱሻುమ
 denotes the normalized extent of the reaction defined by the density 

of PI(4,5)P2 on membranes, ݇௖௔௧ is the effective catalytic parameter, and ݔ଴, ,ଵݔ  ଶ corresponds toݔ
the densities of each molecular species from bimolecular, simple feedback and complex feedback 
kinetics, respectively (the subscript i in xi denotes the order of reaction on x).  For systems that 
contain at least one nonlinear term, the dx/dt function becomes cubic as a function of x, which has 
three possible dx/dt = 0 states when reactions are closed to balancing: an unstable state (e.g. x~ 
0.5) and two stable steady states (x ~ 0 and x ~ 1) (Fig. 7-2D).  Fluctuations near the unstable 
crossover composition drive the system toward either of the two stable states.  

Fig. 7-2 Reconstitution of a bistable 
kinase-phosphatase competition reaction 
on micropatterned SLBs (A) Localization 
of the 20 nM Alexa647-DrrA and 20 nM 
Alexa488-PLC on chromium patterned 
glass surfaces. (B) Bifurcation of kinase-
phosphatase competition reaction on 
chromium patterned SLBs (5µm x 5µm) in 
the presence of 50 nM PI4P5K, 30 nM 
DrrA-OCRL, 20 nM Alexa488-PLC, and 
20 nM Alexa647-DrrA. Images are 
separated by 30 s. (C) Reaction trajectories 
fluctuate toward stable steady states – 
predominantly PI(4)P (blue) or PI(4,5)P2 
(yellow). (D) Molecular-based rate 
equation formalism for the kinase-
phosphatase competition reaction. 
Assuming ݇଴

ା ൌ ݇଴
ି, ݇ଵ

ାݔ ൌ ݇ଵ
,ݔି ݇ଶ

ାݔଶ ൌ
݇ଶ
,ଶݔି  dx/dt is smooth and symmetrical 

reaction landscape with two stable steady 
states (i.e. dx/dt = 0). Each term is 
dependent on ‘x’, the normalized extent of 
the reaction or fraction PI(4,5)P2. (E) Corral 
to corral lipid content variation does not 
predict kinase-phosphatase competition 
reaction outcome (N=220 kinase win 
corrals, N=230 PPtase win corrals). (F) 
Outcome of kinase-phosphatase 
competition reaction depends on the initial 
molar ratio of PI(4)P and PI(4,5)P2. 
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The reaction landscape modeled by the molecular rate equation predicts that the competition 
reaction outcome is intimately linked to the membrane density of PI lipids.  Our data suggests that 
stochastic membrane binding of the kinase and phosphatase within individual corrals drives 
compositional fluctuations in PI lipids, which determines the reaction outcome.  However, the 
reaction outcome could be predetermined based on corral to corral lipid content variation.  When 
we mapped the reaction outcome to the initial membrane composition, however, we found no 
correlation (Fig. 7-2E).  We conclude that the corral to corral lipid content variation is negligible 
and below our detection limit.  However, when the competition reaction was reconstituted on 
membranes with a defined stoichiometric imbalance in PI(4)P and PI(4,5)P2 lipids, the frequency 
of individual corrals reaching either steady state changed in a predictable manner (Fig. 7-2F).  For 
example, reactions initiated on membranes with PI(4)P:PI(4,5)P2 > 1, favored the phosphatase 
reaction, while PI(4)P:PI(4,5)P2 < 1 favored the kinase reaction (Fig. 7-2F).  
 
Geometry sensing based on stochastic compositional fluctuations 
Classical bistable systems typically generate a partial fraction of each state. However, we observed 
complete switching of end product as the membrane reaction size was reduced – a phenomenon 
we term geometry sensing. Simultaneously reconstituting the competition reaction on free SLBs, 
4µm2 corrals, and 25µm2 corrals side-by-side in the same chamber, demonstrated that the kinase 
mediated PI(4,5)P2 synthesis reaction was more favorable in corrals (Fig. 7-3AB). In some cases, 
a three-sided chromium barrier was sufficient for the kinase to outcompete the phosphatase and 
drive the membrane composition to a predominantly PI(4,5)P2 steady state (Fig. 7-2F).  
 
The molecular rate equation (Fig. 7-2D) predicts that an imbalance in the positive feedback 
strength between the competing reactions can generate an asymmetric response to stochastic PI 
lipid composition fluctuations.  Compositional fluctuations can arise from differences in enzyme 
copy number, which create variation in reaction trajectory.  Experimentally, the kinase-
phosphatase competition reaction contains the features necessary to generate an asymmetric 
response that results in geometry sensing.  First, there is an imbalance in the strength of kinase and 
phosphatase positive feedback loops (Fig. 7-4A).  Second, the kinase-phosphatase competition 
reaction increases the PI lipid fluctuation spectrum (Fig. 7-4B).  Third, the reaction trajectory 

Fig. 7-3 Kinase-phosphatase competition reaction outcome changes as a function of membrane 
environment (A) PI4P5K displays a competitive advantage when kinase-phosphatase competition 
reaction is reconstituted in the presence of diffusive barriers. Images are separated by 2 min. (B) 
Competition reaction simultaneously reconstituted on 2µm x 2µm and 5µm x 5µm corrals side-by-side in 
the same chamber. For all reactions, the following protein concentrations were used: 50 nM PI4P5K, 30 
nM DrrA-OCRL, 20 nM Alexa488-PLC, and 20 nM Alexa647-DrrA.  
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variation in the corral experiments is broader for the kinase compared to the phosphatase.  We 
hypothesize that these features together enable the nonlinear reaction (i.e. kinase) to push the 
system to a stable steady state more frequently as the size of the reaction environment becomes 
smaller.  
 
To investigate the connection between composition fluctuations and geometry sensing, we 
implemented a stochastic simulation with enzyme copy number as the stochastic component.  We 
modeled the nonlinear feedback of kinase based on multivalent interactions with PI(4,5)P2 lipids, 
while the phosphatase was model to interact with a single lipid species (Fig. 7-4C).  In all 
simulations, the final reaction outcome was intimately related to the enzyme copy number and the 
lipid composition.  The resulting stochastic simulations nicely recapitulated our experimentally 
measured reaction trajectories (Fig. 7-4DE).  Similar to our experimental system, we simulated the 
kinase-phosphatase competition reaction on membranes containing the same initial lipid 

Fig. 7-4 Geometry sensing based on stochastic compositional fluctuations (A) Lipid modifying 
enzymes catalyze PtdIns lipid synthesis reactions with either zero, first, or second order kinetics. The 
normalized extent of the reaction (x) is plotted against the derivative of reaction trajectory (dx/dt) 
measured in the presence of 1nM PI4P5K, 10pM DrrA-OCRL, or 10nM OCRL. (B) Lipid sensor 
fluctuation spectrum measured in the presence of 20 nM Alexa488-PLC before and after the addition of 
kinase-phosphatase competition reaction – 10 nM PI4P5K and 5 nM DrrA-OCRL (N=256 corrals). 
Fluctuation measurements were limited to times before bifurcation of reaction trajectories. (C) Model for 
depicting kinase and phosphatase membrane binding. (D) Average corral reaction trajectory measured in 
the presence of 2.5 nM PI4P5K (yellow) or 10 pM DrrA-OCRL (blue) alone (n = 256 corrals, highlighted 
bars represent SD). (E) Average kinase and phosphatase reaction trajectory from simulation. (F) Stochastic 
simulation of kinase-phosphatase competition reaction recapitulates geometry sensing.  
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composition, but different size.  Like our experiments, we observed complete switching of product 
as the reaction environment changed size (Fig. 7-4F).   
 
What are the minimal requirements for the emergent property of geometry sensing?  Intuitively, 
fluctuations vary in magnitude relative to the size of the reaction environment.  As a result, the 
final outcome of the competition reaction can be modulated by the membrane size.  Both chemical 
kinetic analysis and stochastic simulations indicate that a competition reaction of this nature must 
fulfill at least two requirements in order to exhibit geometry sensing: (1) the presence of nonlinear 
kinetics that are at least second order and (2) the competing reactions must have catalytic rates of 
similar magnitude at the unstable steady-state.  The later one is experimentally realized by 
balancing the competitive reactions, while the nonlinear kinetics of the kinase stem from the 
multivalent interaction with PI(4,5)P2 lipids.  Broadly speaking, these requirements are fulfilled 
by many cellular signaling reactions, including other kinase-phosphatase systems.  These include 
competition between GTPase activating proteins (GAPs) and guanine nucleotide exchange factors 
(GEFs) that control the activation of GTPases such as Ras (23, 94, 95).  Considering the emergent 
property of geometry sensing, the extent of protein phosphorylation or nucleotide state in many 
futile biochemical reactions is predicted to be strongly influenced by stochastic compositional 
fluctuations that are coupled to geometric changes in the reaction environment. 
 
 
Appendix:  Details on enzyme kinetics modeling 
For reactions with only the presence of kinase or phosphatase, the evolution of membrane 
composition can be described by either: (1) bimolecular reaction, (2) simple feedback kinetics or, 
(3) higher order feedback kinetics.  The routine to determine the type of kinetics begins with 
evaluating whether the first derivative of the composition trace has a local maximum.  Existence 
of local maximum suggests that it is a feedback reaction, otherwise it is a bimolecular reaction.  
For feedback reactions, it is regarded as a simple type if the kinetic traces can be fit with Eq. 7.2.  
Otherwise, it is regarded as a higher order feedback reaction, in which for example complex 
oligomerization may take place.  In the following we describe the bimolecular and simple feedback 
reaction with the example of phosphorylation of PIP1 lipids.  
Bimolecular reaction  Low concentration of kinase in solution phosphorylating PIP1 lipids 
(i.e. PI(4)P) on membrane surfaces follows this type of reaction: 

௞௜௡௔௦௘ݔ		 ൅ ௉ூ௉భݔ
		௞మ		
ሱۛሮ ௞௜௡௔௦௘ݔ	 ൅  ௉ூ௉మݔ

where ݔ௜ denotes the concentration or density of the i component, and ݇௜ denotes the rate constants. 

For ݔ௉ூ௉మሺݐ ൌ 0ሻ ൌ ே

ଶ
ሻݐ௉ூ௉మሺݔ , ൌ ܰሺ1 െ ଵ

ଶ
݁ି௞௧ሻ, where	ܰ	is the total density of PIP lipids, and 

݇ ൌ ݇ଶ	ሾܣሿ. 
Simple feedback reaction  Phosphorylation of PIP1 lipids from PIP2-recruited kinase from 
solution can be described by a simple feedback reaction: 

௞௜௡௔௦௘ݔ ൅ 		௉ூ௉మݔ
	ೖషభ	
ርۛ ሲۛ

			ೖభ			
ሱۛ ۛሮ		ݔ௉ூ௉మ:௞௜௡௔௦௘ ൅ ௉ூ௉భݔ

		௞మ		
ሱۛሮ ௉ூ௉మ:௞௜௡௔௦௘ݔ	 ൅  ௉ூ௉మݔ
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By assuming that the recruitment kinetics to be much faster than the catalysis step, the rate law for 
the simple feedback mechanism is: 

௉ூ௉మݔ݀
ݐ݀

ൌ ݇ଶݔ௉ூ௉మ:௞௜௡௔௦௘ݔ௉ூ௉భ	

													ൌ ௉ூ௉భݔ௉ூ௉మݔܽ ൌ ௉ூ௉మሺܰݔܽ െ  ௉ூ௉మሻݔ

where ܽ ൌ ݇ଶ
௞భ
௞షభ

ሾ݇݅݊ܽ݁ݏሿ. This differential equation is known as Bernoulli equation, and can be 

solved with the initial condition	ݔ௉ூ௉మሺ0ሻ ൌ
ே

ଶ
: 

ሻݐ௉ூ௉మሺݔ ൌ
ே

ଵା௘షೌಿ೟
     [7.2] 

 
Molecular rate equation  
To express the kinase-phosphatase competition reaction in a single formalism that accounts for 
different types of enzymatic reactions, the reconstructed kinetics can be represented using the 
following expression: 

ௗ௫

ௗ௧
ൌ ାܬ െ  [7.3]      ିܬ

ାܬ											 ൌ ݇௖௔௧
ା ሺݔ଴

ା ൅ ଵݔ
ା ൅ ଶݔ

ା ൅ ⋯ሻሺ1 െ ିܬ					,ሻݔ ൌ ݇௖௔௧ି ሺݔ଴
ି ൅ ଵݔ

ି ൅ ଶݔ
ି ൅ ⋯ሻ[7.4] ݔ 

where ݔ ൌ 	
௫ು಺ುమ

௫ು಺ುభା௫ು಺ುమ
 denotes the normalized extent of the reaction defined by the density of PIP1 

and PIP2 on membranes, ܬାand	ିܬdescribes the forward and reverse chemical flux, ݇௖௔௧ denotes 
the effective catalytic parameter and	ሼݔ଴, ,ଵݔ  ଶሽ corresponds to the densities of each molecularݔ
species exhibiting bimolecular, simple feedback and complex feedback, respectively.  Note that 
the subscript i in xi denotes the order of dependence on x.  This expression provides a general 
formalism for any chemical reaction(s) that do not follow simple Michaelian kinetics.  Since all 
enzymatic kinetics described above can be effective represented by this expression, this formalism 
was used for the stochastic simulations.  The bimolecular and simple feedback reaction can be 

mapped to the zero and the first order term in the molecular rate equation, respectively: 
ௗ௫

ௗ௧
ൌ

݇ଶሺ1 െ ሻ, ௗ௫ݔ
ௗ௧
ൌ ܽܰሺ1 െ  where k2, a and N are the same as defined previously.  Higher order ݔሻݔ

feedback kinetics can be represented by higher order terms.  In practice, a second order term was 
shown to be sufficient in representing the higher order feedback kinetics in the reconstitution 
experiments. 

Stochastic Simulations  
To simulate bistable reactions in small corrals, the membrane composition within a corral was 
approximated as homogeneous. Since the stochastic fluctuation arise from enzyme recruitment, 
enzyme copy number were simulated stochastically using the Gillespie algorithm (96). Catalysis 
(which are highly processive on membranes) were treated as deterministic, calculated by the 

chemical flux described by the molecular rate equation: 
ௗ௫

ௗ௧
ൌ ାܬ ൅  We used rate parameters  .ିܬ
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relevant to the reconstitution experiments.  For simulation capable of performing geometry sensing, 

the rate parameters are: ݇ଵ ൌ ݇ହ ൌ 0.002, ݇ଶ ൌ
଴.଴଴଴ସ

௟మ
, ݇ଷ ൌ 10, ݇ସ ൌ ݇଺ ൌ 1, ݇௖௔௧

ା ൌ ݇௖௔௧ି ൌ
଴.଴଴଴଴ଵ

௟మ
 where l is the side of a squared membrane patch.  Each molecular species are expressed as 

the number of molecule such that both unimolecular and bimolecular kinetics are expressed as the 
probability of the reaction when multiplied by time.  For the case where both the kinase and 
phosphatase has simple feedback, the rate parameters are: ݇ଵ ൌ ݇ହ ൌ 0.002, ݇ଷ ൌ 0.95, ݇଺ ൌ

1, ݇௖௔௧
ା ൌ ݇௖௔௧ି ൌ ଴.଴଴଴଴ଵ

௟మ
 with all other ݇௜ ൌ 0 .  All simulations begin with ݔ ൌ 0.5	 and all 

enzymes in solution. 
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8.  Final Remarks 
 
 
 
So far, we have broken down activation of cytosolic proteins in membrane signaling reactions 
into recruitment and catalysis.  We described how membrane recruitment are embedded with 
kinetic proofreading, how cells can modulate this mechanism via multivalent molecular assembly, 
how catalysis after successful recruitment takes place on membranes, and how a competitive 
network based on recruited enzymes forming different molecular configurations give rise to 
geometry sensing.  The gradual connection to cellular complexity is the emerging direction of 
which worth pursuing.  Rather than building complexity of the in vitro reconstitution, the main 
purpose of these experiments is to provide conceptualization in a well-controlled model system, 
therefore motivating specific cellular experiments to examine the physiological relevance.  For 
example, a framework reconciling the single-molecule SOS activation timescale with cellular 
timescale is a topic worth delving into – the discrepancy between the long (~ 50 sec) activation 
time of SOS and cellular activation time (< 3 min), a problem I termed activation timescale paradox, 
requires further development of a framework evaluating the role of protein copy number on 
response time.  Discussion as such hints at the design principle behind how cells function.  The 
current biochemical-reconstitution and cellular techniques, single-molecule imaging technology, 
theoretical and analytical foundation are mature to scrutinize the physical principles of signal 
transduction.  Frameworks that connect molecular processes to cellular network response is 
particularly paramount at this stage, and should be the main focus of recent endeavor.  
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