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RESEARCH

Gene alterations as predictors 
of radiation-induced toxicity in head and neck 
squamous cell carcinoma
Whitney Sumner1, Xenia Ray1, Leisa Sutton2, Daniel Rebibo2, Francesco Marincola3, Parag Sanghvi1, 
Vitali Moiseenko1 and Ida Deichaite1,2*  

Abstract 

Background: Optimizing the therapeutic ratio for radiation therapy (RT) in head and neck squamous cell carcinoma 
(HNSCC) is uniquely challenging owing to high rates of early and late toxicity involving nearby organs at risk. These 
toxicities have a profound impact on treatment compliance and quality of life. Emerging evidence suggests that 
RT dose alone cannot fully account for the variable severity of RT-related adverse events (rtAEs) observed in HNSCC 
patients. Next-generation sequencing has become an increasingly valuable tool with widespread use in the oncology 
field and is being robustly explored for predicting rtAEs beyond dosimetric data.

Methods: Patients who had Foundation Medicine sequencing data and received RT for primary or locally recurrent 
HNSCC were selected for this study. Early and late toxicity data were collected and reported based on Common Termi-
nology Criteria for Adverse Events version 5.0. Dosimetric parameters were collected for pertinent structures.

Results: A total of HNSCC 37 patients were analyzed in this study. Genetic alterations in BRCA2, ERBB3, NOTCH1 
and CCND1 were all associated with higher mean grade of toxicity with BRCA2 alteration implicated in all toxicity 
parameters evaluated including mucositis, early dysphagia, xerostomia and to a lesser extent, late dysphagia. Inter-
estingly, patients who exhibited alterations in both BRCA2 and ERBB3 experienced a twofold or greater increase in 
early dysphagia, early xerostomia and late dysphagia compared to ERBB3 alteration alone. Furthermore, several gene 
alterations were associated with improved toxicity outcomes. Within an RT supersensitive patient subset, alterations 
were found in TNFAIP3, HNF1A, SPTA1 and CASP8. All of these alterations were not found in the RT insensitive patient 
subset. We found 17 gene alterations in the RT insensitive patient subset that were not found in the RT supersensitive 
patient subset.

Conclusion: Despite consistent RT dosimetric parameters, patients with HNSCC experience heterogeneous pat-
terns of rtAEs. Identifying factors associated with toxicity outcomes offers a new avenue for personalized precision RT 
therapy and prophylactic management. Here, next-generation sequencing in a population of HNSCC patients corre-
lates several genetic alterations with severity of rtAEs. Further analysis is urgently needed to identify genetic patterns 
associated with rtAEs in order to reduce harmful outcomes in this challenging population.

Keywords: Predictive biomarkers of radiation toxicity, Head and neck squamous cell carcinoma, Radiogenomics, 
BRCA2, ERBB3, RT dosimetric data, TNFAIP3, HNF1A, SPTA1, CASP8
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Background
Head and neck squamous cell carcinoma (HNSCC) is 
the 6th most prevalent cancer, resulting in 13,000 deaths 
annually in the United States alone [1]. Approximately 
75% of HNSCC patients receive radiation therapy (RT) as 
standard of care for disease ranging from early to locally 
advanced [2]. Significant technological advancements 
including intensity modulated RT (IMRT) have allowed 
for meaningful reductions in dose to uninvolved organs 
at risk (OAR) [3–5]. Despite these innovations, RT tox-
icity continues to have a significant impact on patient 
recovery and quality of life, often resulting in delays or 
premature termination of treatment, which have both 
been associated with higher rates of local recurrence [6–
8]. Specifically, missing two or more treatments has been 
associated with increased recurrence risk and inferior 
overall survival, with decrement to overall survival esti-
mated at 1% per one missed day [9]. This is particularly 
consequential for human papillomavirus (HPV) negative 
patients with literature demonstrating higher likelihood 
of missed treatments compared to their HPV positive 
counterparts, which compounds with baseline inferior 
disease-related outcomes [10].

Dose limitations are uniquely challenging in HNSCC 
due to the proximity of critical OARs with early and 
late toxicity resulting in mucositis, dysphagia, xeros-
tomia, tooth decay, vocal dysfunction and loss of taste 
[11]. While no studies have demonstrated a direct 
link between treatment-related toxicity and suicide in 
HNSCC, several reports including a surveillance, epide-
miology, and end results (SEER) analysis of more than 
300,000 head and neck cancer (HNC) patients have 
shown excessive rates of suicide in survivors of HNSCC; 
second only to survivors of pancreatic cancer [12, 13].

Current RT clinical recommendations are population-
based with an underlying assumption that the patient 
population exhibits uniform RT sensitivity in normal tis-
sue structures [14–21]. It is well established that there are 
interpatient discrepancies in toxicity outcomes that can-
not be explained by dose alone. With the increasing use 
and affordability of gene sequencing, there is now abun-
dant literature to suggest that gene alterations may play 
a significant role in a patient’s radiation response and 
subsequent RT outcome [19, 22]. This emerging evidence 
implicates gene modifications in critical biological path-
ways including DNA repair [21], cell cycle [23], stem cell 
regeneration [21], apoptosis [24] and immune responses 
[25–29], as well as molecular pathways involved in scav-
enging of reactive oxygen species (ROS) [30]. In a study 
of more than 400 breast cancer patients, Ambrosone 
et al. demonstrated that reduced activity of a glutathione 
S-transferase genotype resulted in a two-fold increase in 
acute skin toxicity when accounting for radiation dose 

[19]. Similar associations of specific germline variants 
and toxicity outcomes have been described in prostate 
and non-small cell lung cancer (NSCLC) [31].

Acknowledging the critical consequences associated 
with toxicity in HNSCC, there is compelling rationale 
to enhance our understanding of specific genetic fac-
tors associated with radiation therapy adverse events 
(rtAEs) in this population in order to develop personal-
ized treatment regimens that serve to augment treat-
ment adherence and quality of life. Here, we report an 
exploratory pilot study evaluating biomarkers in patients 
with HNSCC and report candidate genes as predictive of 
rtAEs.

Methods
Data source and patient selection
Thirty-seven HNSCC patients who underwent Foun-
dationOne® CDx testing and received RT with available 
dosimetric data were selected for this study. Foundation-
One® CDx is a FDA-approved tissue-based broad com-
panion diagnostic (CDx) that is clinically and analytically 
validated for all solid tumors [32]. All selected patients 
in our study cohort (n = 37) were treated at the Moores 
Cancer Center at the University of California San Diego 
between 2014 and 2019.

Patient Demographics and treatment variables
All patients received external beam radiation to a mini-
mum dose of 28.5  Gray (Gy) (range 28.5–72, median 
66 Gy, standard deviation (SD) 9.5 Gy). A total of three 
patients received less than 50  Gy. Potentially relevant 
patient and treatment characteristics were collected 
including age at diagnosis, gender, smoking history, HPV 
status and systemic therapy. Staging information was col-
lected according to American Joint Committee on Can-
cer (AJCC) classification, 8th edition [33].

Collection of toxicity data
Patient charts were utilized to report early and late rtAE 
endpoints for mucositis, dysphagia and xerostomia. Tox-
icities were recorded using Common Terminology Cri-
teria for Adverse Events (CTCAE) grades of 1–5, which 
scored and reported by the treating physician on the day 
of service during therapy and in follow up. Early toxicity 
endpoints were recorded as the highest CTCAE grade 
experienced during therapy or within 6  weeks of com-
pleting therapy. Late toxicity endpoints were recorded as 
the highest CTCAE grade experienced from six months 
post-RT to the time of most recent follow up.

Collection of dosimetric data
All patients underwent a computed-tomography (CT) 
simulation for RT treatment planning. Patients were 
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fitted with an aquaplast mask for immobilization and 
CT was obtained with a 2.5 mm slice thickness. The fol-
lowing structures were delineated on all CT simulation 
scans: oral cavity, cricopharyngeus, parotid and subman-
dibular glands (SMG) and posterior pharyngeal constric-
tors (PCM). The PCM was further divided into superior 
PCM, middle PCM and inferior PCM based on estab-
lished contouring guidelines [34–36]. These structures 
were selected based on published literature supporting 
associations of these structures with the aforementioned 
rtAEs [37–39]. The mean dose to each of the delineated 
structures was then extracted based on each patient’s 
completed treatment course.

Determination of patients who are supersensitive 
and insensitive to RT
Dose metrics were divided into quartiles and compared 
to toxicity outcomes. For a particular metric, patients 
were identified as ‘supersensitive’ if they received low 
dose, defined as a mean dose less than the 1st quartile 
dose value for the entire cohort, yet had poor outcomes 
(grade 2–5). Patients were identified as ‘insensitive’ if 
they received high dose, defined as a mean dose greater 
than the 3rd quartile dose value for the entire cohort, 
yet had good outcomes (grade 0–1). Patients who were 
supersensitive or insensitive for more than two structures 
were selected as overall supersensitive or insensitive for 
further genetic analysis.

Statistical analysis
The gene alteration histogram was generated in R. Pear-
son Chi square tests were performed using SPSS V26.0 
(SPSS. Inc.; Chicago, IL) to assess associations between 
genetic alterations and Grade 3 or higher toxicity.

Results
Patient characteristics
In our selected cohort of 37 patients, the median age 
was 65 (range 46–92) (Table 1). The majority of patients 
(67.5%) had stage III-IV HNSCC. Chemotherapy was 
given concurrently with RT in 86.4% of patients with regi-
mens including cisplatin, cetuximab and pembrolizumab. 
Oral cavity was the most common primary site (43.2%) 
followed by oropharynx (21.6%) and larynx (16.2%) with 
67.6% overall presenting with HPV negative disease. All 
patients received RT as part of their treatment course. 
The median radiation dose to the pharyngeal constric-
tor muscles and contralateral submandibular gland were 
5172 cGy and 6643 cGy, respectively.

Sequencing and toxicity analysis
A histogram of the top 71 altered genes and associated 
alterations are shown (Fig. 1). The mean number of gene 

alterations in the cohort was 23. The most common alter-
ation was TP53 (n = 24). Our study cohort compared well 
with published literature for HPV prevalence, as well as, 
known associations between gene variants and HPV sta-
tus, including TP53, in head and neck cancer patients 
[40–46].

All patients experienced at least 1 rtAE reported as 
Grade 1 or higher based on CTCAE criteria. Approxi-
mately 62% of patients experienced a severe rtAE graded 
as 3 or higher based on CTCAE criteria. Early mucosi-
tis occurred in 89.2% of patients with approximately 35% 
experiencing severe mucositis. Late xerostomia and late 
dysphagia were similarly prevalent at 89.2% and 91.9%, 
respectively. While severe late dysphagia had similar 
rates to early mucositis (35%), severe late xerostomia was 

Table 1 Patient characteristics

Toxicities are graded by CTCAE criteria

Characteristic Value N = 37 (%)

Age  < 65 19 (51.4)

 ≥ 65 18 (48.6)

Gender Male 21 (56.8)

Female 16 (43.2)

Smoking  < 10 pack years 21 (56.8)

 > 10 pack years 16 (43.2)

T Stage 1 7 (18.9)

2 11 (29.7)

3 6 (16.2)

4 11 (29.7)

Recurrent 2 (5.4)

N Stage 0 7 (18.9)

1 8 (21.6)

2 16 (43.2)

3 4 (10.8)

Recurrent 2 (5.4)

M Stage 0 36 (97.3)

1 1 (2.7)

Overall Stage I 6 (16.2)

II 4 (10.8)

II 7 (18.9)

IV 18 (48.6)

Recurrent 2 (5.4)

P 16 Status Positive 12 (32.4)

Negative 25 (67.6)

Primary Site Oral Cavity 16 (43.2)

Oropharynx 8 (21.6)

Larynx 6 (16.2)

Hypopharynx 4 (10.8)

Nasopharynx 1 (2.7)

Cutaneous 2 (5.4)
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Fig. 1 Top 71 commonly altered genes across 37 deidentified HNSCC samples. Samples are sorted by their HPV status. Alterations are color coded 
based on variant classification. Histogram on the x-axis indicates the number of gene alterations per sample. Histogram on the y-axis indicates the 
number of samples with the gene alteration
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found in only 8.1% of patients. Early dysphagia occurred 
in 73% of patients with 18.9% experiencing severe symp-
toms. Importantly, in the five patients who received 
cetuximab, there was no association with severe mucosi-
tis (r = 0.165, p = 0.37) (Table 2).

We assessed the correlations between the most preva-
lent gene alterations in our cohort and their related RT 
toxicities. In this evaluation, BRCA2, ERBB3, NOTCH1 
and CCND1 genetic alterations correlated with increased 
mean grade of rtAEs at 27%, 38%, 5.72% and 8% respec-
tively. Conversely, alterations in ATR, PIK3CA, CASP8, 
ESR1, and FAT1 appeared to show a protective overall 
effect on combined toxicity outcomes (Table 3). However, 
only BRCA2 alterations correlated with increased mean 
severity in all four clinical toxicity categories compared to 
patients with wild-type BRCA2: mucositis (31.82%) early 
dysphagia (45%), xerostomia (37%), and to a lesser extent 
late dysphagia (4.57%). Importantly, we found that some 
gene variants had a protective effect on rtAEs. PIK3CA 
alterations, for example, demonstrated improved toxic-
ity outcomes in early dysphagia (p = 0.05). Notably, most 
gene variants showed variable outcomes on rtAEs. Mean 
toxicity, percent change and bivariate analysis of grade 3 
or higher toxicity are shown in Table 3.

Given that BRCA2 variants were associated with uni-
form increase in rtAEs, the patients exhibiting BRCA2 
alterations were paired with other prevalent gene altera-
tions to assess their combined impact on rtAEs (Table 4). 
Interestingly, we find that BRCA2 and ERBB3 combina-
tion appeared to exhibit an additive effect on total rtAEs 
with a twofold increase or more in early dysphagia, early 
xerostomia and late dysphagia, compared to ERBB3 alter-
ation alone.

Similarly, although to a lesser extent, alterations includ-
ing TP53, NOTCH1 and CDKN2A exhibited higher tox-
icity in the presence of BRCA2 variants.

RT supersensitive and insensitive patients
To isolate contributing genetic factors from normal 
radiation dose response, the patient cohort was divided 
into three groups (normal, supersensitive, and insensi-
tive response to radiation induced toxicities) based on 

the relationship between their normal tissue outcomes 
and the dose they received. Specifically, for a particular 
metric, patients were identified as supersensitive if they 
received low dose (defined as a mean dose less than the 
1st quartile dose value for the entire cohort) yet had poor 
outcomes (grade 2–5). Patients were identified as insensi-
tive if they received high dose (defined as a mean dose 
greater than the 3rd quartile dose value for the entire 
cohort) yet had good outcomes (grade 0–1). Patients 
who were supersensitive or insensitive for more than 
two structures were selected as overall supersensitive or 
insensitive for further genetic analysis. Note one patient 
was excluded from this analysis because their radiation 
was delivered in the form of a quadshot (higher dose 
per treatment, fewer treatments) and thus is expected 
to have a different biological effect than standard dose 
fractionation.

Based on the dose metrics, six patients were deter-
mined to be supersensitive and seven were determined 
to be insensitive to RT for late dysphagia (Fig.  2). All 
patients within both subsets had locally advanced dis-
ease. Upon evaluation of gene alterations, there were 
four gene alterations found in the supersensitive subset 
that were not present in the insensitive subset: TNFAIP3, 
HNF1A, SPTA1 and CASP8. All supersensitive patients 
were found to have an alteration in at least one of these 
aforementioned genes. None of the supersensitive 
patients were found to have BRCA2 gene alterations. 
Conversely, a total of 17 genetic alterations were found in 
the insensitive subset that were not found in any patients 
in the supersensitive subset (Table  5). Additionally, this 
same analysis was repeated for two other outcomes: 
early dysphagia and late xerostomia. However, for those 
outcomes, a strong dose dependence was observed and 
thus a reasonably sized subset of sensitive and insensi-
tive patients could not be identified, figures seen in Addi-
tional file 1. A larger cohort may be needed to investigate 
these outcomes separately.

Table 2 Toxicity outcomes

CTCAE grade Early mucositis Early dysphagia Late xerostomia Late dysphagia
n (%) n (%) n (%) n (%)

0 4 (10.8) 10 (27.0) 4 (10.8) 3 (8.1)

1 3 (8.1) 14 (40.5) 28 (75.7) 12 (32.4)

2 17 (45.9) 3 (8.1) 2 (5.4) 8 (21.6)

3 12 (32.4) 6 (16.2) 2 (5.4) 13 (35.1)

4 1 (2.7) 1 (2.7) 1 (2.7) 0 (0.0)
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Table 3 Mean toxicities recorded for HNSCC patients (n = 37) grouped by presence of an alteration in a certain gene

For each gene, the % change is calculated in relation to the altered (−) group. Toxicities are graded by CTCAE criteria

Group Early mucositis (mean) Early dysphagia 
(mean)

Late xerostomia 
(mean)

Late dysphagia (mean) Combined 
toxicity 
(mean)

BRCA2 Var (+) N = 8 2.5 1.75 1.38 1.88 7.5

BRCA2 Var (−) N = 29 1.9 1.21 1 1.79 5.9

% Change 31.82 45 37.5 4.57 27.19

Bivariate p = 0.04 p = 0.07 p = 0.18 p = 0.74 p = 0.10

ATR Var (+) N = 6 2.5 1.17 0.83 1.5 6

ATR Var (−) N = 31 1.94 1.35 1.13 1.87 6.29

% Change 29.17 − 13.89 − 26.17 − 19.83 − 4.62

Bivariate p = 0.05 p = 0.64 p = 0.30 p = 0.38 p = 0.81

ERBB3 Var (+) N = 5 2.6 2.4 1.4 1.8 8.2

ERBB3 Var (−) N = 32 1.94 1.16 1.03 1.81 5.94

% Change 34.19 107.57 35.76 − 0.69 38.11

Bivariate p = 0.17 p = 0.05 p = 0.07 p = 0.71 p = 0.92

TP53 Var (+) N = 24 2.13 1.38 1.04 1.71 6.25

TP53 Var (−) N = 13 1.85 1.23 1.15 2 6.23

% Change 15.1 11.72 − 9.72 − 14.58 0.31

Bivariate p = 0.87 p = 0.9 p = 0.46 p = 0.58 p = 0.04

NOTCH1 Var (+) N = 10 2.5 1.4 1.2 1.4 6.5

NOTCH1 Var (−) N = 27 1.85 1.3 1.04 1.96 6.15

% Change 35 8 15.71 − 28.68 5.72

Bivariate p = 0.03 p = 0.72 p = 0.08 p = 0.34 p = 0.56

PIK3CA Var (+) N = 9 2.67 0.67 1.22 1.22 5.78

PIK3CA Var (−) N = 28 1.82 1.54 1.04 2 6.39

% Change 46.41 − 56.59 18.01 38.89 -9.62

Bivariate p = 0.01 p = 0.05 p = 0.39 p = 0.02 p = 0.76

CDKN2A Var (+) N = 21 2 1.38 1 1.86 6.24

CDKN2A Var (−) N = 16 2.06 1.25 1.19 1.75 6.25

% Change − 3.03 10.48 − 15.79 6.12 − 0.19

Bivariate p = 0.90 p = 0.94 p = 0.88 p = 0.13 p = 0.97

CASP8 Var (+) N = 6 1.67 1 1 1.5 5.17

CASP8 Var (−) N = 31 2.1 1.36 1.1 1.87 6.45

% Change − 20.51 − 26.67 − 8.82 − 19.83 − 19.92

Bivariate p = 0.96 p = 0.64 p = 0.81 p = 0.96 p = 0.52

NFE2L2 Var (+) N = 4 2.5 1.6 1 1.5 6.25

NFE2L2 Var (−) N = 33 1.9 1.48 1.09 1.85 6.24

% Change 31.82 − 66.3 − 8.33 − 18.85 0.12

Bivariate p = 0.04 p = 0.97 p = 0.49 p = 0.75 p = 0.10

CCND1 Var (+) N = 10 2.5 1 1 2.1 6.6

CCND1 Var (−) N = 27 1.9 1.57 1.07 1.7 6.11

% Change 31.82 − 36.36 2.41 23.26 8

Bivariate p = 0.04 p = 0.64 p = 0.71 p = 0.56 p = 0.10

ESR1 Var (+) N = 6 2.5 1.33 0.83 0.83 4

ESR1 Var (−) N = 31 1.9 0.92 1.13 2 6.68

% Change 31.82 44.44 − 26.19 − 58.33 − 40.1

Bivariate p = 0.04 p = 0.14 p = 0.30 p = 0.07 p = 0.01

FAT1 Var (+) N = 16 2.5 1.33 1 1.81 5.69

FAT1 Var (−) N = 21 1.9 0.92 1.14 1.81 6.67

% Change 31.82 44.44 − 12.5 0.16 − 14.69

Bivariate p = 0.04 p = 0.06 p = 0.92 p = 0.71 p = 0.06
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Discussion
The utilization of next-generation sequencing in can-
cer patients offers tremendous potential to predict gene 
alterations associated with treatment-related toxicities 
that cannot be fully accounted for by treatment param-
eters alone. Despite this readily available resource, the lit-
erature on predictive biomarkers of RT toxicity remains 
limited with the majority of genomic studies focusing on 
treatment response and targeted therapies rather than 
toxicity [47, 48]. Our findings join the ranks of studies 
correlating distinct genetic alterations with rtAEs in can-
cer patients [23, 26, 42]. Here, we report the first analysis 
to date that associates genetic alterations in HNSCC with 
rtAEs. These novel findings provide a vital springboard 
for the development of predictive tools that can be rap-
idly translated into clinical practice.

As a benchmark for assessment, patients were initially 
evaluated based on combined toxicity profiles. While we 
believe these findings are helpful in establishing correla-
tion with gene alterations, it was also critically important 
to separate toxicities that likely have different underlying 
cellular mechanisms. Broadly speaking, early rtAEs are 

generally associated with cellular injury leading to cellu-
lar depletion and local inflammation [49]. Infiltration of 
innate immune cells and subsequent release of cytokines 
including tumor necrosis factor (TNF), interleukin (IL)-1 
and IL-6 have all been implicated in this process [50]. 
Conversely, late rtAEs have largely been attributed to 
fibrosis and atrophy with associations with transform-
ing growth factors (TGF), IL-6, and TNF alpha (TNFα) 
[51, 52]. It is, therefore, unsurprising that consequential 
gene alterations will vary significantly by the type of rtAE 
being assessed.

In our population, for example, BRCA2 alteration was 
observed to result in a 32% and 45% increase in the mean 
toxicity grade for early mucositis and early dysphagia, 
respectively, with only a 5% difference seen in late dys-
phagia (Table  3). Further separating BRCA2 variants 
from late dysphagia was our finding that patients who 
were deemed supersensitive to RT experienced severe 
late dysphagia at a rate of 50% with a mean toxicity grade 
of 2.5; notably with no BRCA2 alterations seen in this 
population. This is in contrast to a mean toxicity grade of 
1.88 for late dysphagia observed in the population with 

Table 4 Mean toxicities recorded for HNSCC patients (n = 37) grouped by presence and absence of an alteration in certain genes

For each gene, the % change is calculated in respect to the BRCA2 (−) cohort. Toxicities are graded by CTCAE criteria

Group Early mucositis 
(mean)

Early dysphagia 
(mean)

Late xerostomia 
(mean)

Late dysphagia 
(mean)

Combined 
toxicity 
(mean)

ATR (BRCA2 Var (+)) N = 4 2.5 1.25 0.75 1.5 6

ATR (BRCA2 Var (−)) N = 2 2.5 1 1 1.5 6

% Change 0 25 − 25 0 0

ERBB3 (BRCA2 Var (+)) N = 2 3 3.5 2 3 11.5

ERBB3 (BRCA2 Var (−)) N = 3 2.33 1.67 1 1 6

% Change 28.57 110 100 200 91.67

TP53 (BRCA2 Var (+)) N = 4 2.5 2 1.25 2 7.75

TP53 (BRCA2 Var (−)) N = 20 2.05 1.25 1 1.65 5.95

% Change 21.95 60 25 21.21 30.25

NOTCH1 (BRCA2 Var (+)) N = 4 2.5 1.5 1.5 2 7.5

NOTCH1 (BRCA2 Var (−)) N = 6 2.5 1.33 1 1 5.83

% Change 0 12.5 50 100 28.57

PIK3CA (BRCA2 Var (+)) N = 3 3 0.67 1.33 1 6

PIK3CA (BRCA2 Var (−)) N = 6 2.5 0.67 1.17 1.33 5.67

% Change 20 0 14.29 − 25 5.88

CDKN2A (BRCA2 Var (+)) N = 5 2.8 1.8 1.2 2 7.8

CDKN2A (BRCA2 Var (−)) N = 16 1.75 1.25 0.94 1.81 5.75

% Change 60 44 28 10.34 35.65

CCND1 (BRCA2 Var (+)) N = 2 2 2 1 2.5 7.5

CCND1 (BRCA2 Var (−)) N = 8 1.75 1.5 1.13 2 6.38

% Change 14.29 33.33 − 11.11 25 17.65

FAT1 (BRCA2 Var (+)) N = 3 2.33 1.33 0.67 1.67 6

FAT1 (BRCA2 Var (−)) N = 13 1.77 0.92 1.08 1.85 5.62

% Change 31.89 44.44 − 38.1 − 9.72 6.85
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BRCA alterations. This aligns with previous literature 
of BRCA2 variant carriers receiving RT for breast can-
cer in which no increase in late toxicity was observed, 
though the comparison is imperfect given anatomical dif-
ferences and RT dose rarely exceed 50  Gy in breast RT 
[53, 54]. While these findings are preliminary, they serve 
to emphasize that there are unique underlying cellular 
mechanisms for toxicity parameters that likely associate 
with individual genomic signatures.

The distinct underlying mechanisms associated with 
toxicity parameters also creates the possibility that gene 
alterations may be both protective and harmful depend-
ing on the outcome being evaluated. In our cohort, the 
mean grade of early dysphagia was 44% higher in patients 
with ESR1 alteration, but mean grade of late dysphagia 
was 58% lower in this population. Similar discordant 
findings between early and late toxicities were observed 
for PIK3CA, NOTCH1 and CCND1 (Table 3).

In our analysis combining BRCA2 alterations with 
other frequently altered genes, we observed synergis-
tic augmentation in rtAEs, particularly with ERBB3 
(Table  4). This serves to highlight the value of generat-
ing genetic risk profiles that incorporate comprehen-
sive genomic data in order to further stratify a patient’s 
individual risk. A previous prospective analysis of the 

association of gene alterations and rtAEs in breast and 
prostate cancer patients failed to validate previously 
published findings of individual associated genes, but 
emphasized the importance of generating more robust 
radiogenomic databases to elucidate the value of genetic 
risk profiles [17].

Remarkably, we find that somatic tumor gene altera-
tions influence surrounding normal tissue. How this 
influences damage to healthy tissues in response to RT is 
currently unknown. We can hypothesize that this effect is 
mediated by release of cytokines, as well as, the immune 
environment of the cancer. For example, ERBB3 activa-
tion could be related to signal transduction pathways 
that influence inflammatory mediators, among them, 
cytokines and chemokines.

Especially compelling results in our analysis were the 
differential gene alterations found between patients 
deemed supersensitive and insensitive to RT, with sev-
eral genes notably involved in inflammatory and apop-
totic pathways (Table  5). TNFAIP3, for example, was 
altered in 33% of supersensitive patients but 0% of insen-
sitive patients. This gene encodes proteins involved in 
cytokine-mediated immune and inflammatory responses 
including modulation of NF-kB and TNF-mediated 
apoptosis [55–58]. In the insensitive subset, nearly 43% 

Fig. 2 Mean doses to structures associated with late dysphagia versus late dysphagia outcomes for 36 patients are plotted. For a particular metric, 
patients were identified as supersensitive if they received low dose (defined as a mean dose less than the 1st quartile dose value for the entire 
cohort) yet had poor outcomes (grade 2–5). Patients were identified as insensitive if they received high dose (defined as a mean dose greater than 
the 3rd quartile dose value for the entire cohort) yet had good outcomes (grade 0–1). Patients who were supersensitive or insensitive for more than 
two structures were selected as overall supersensitive or insensitive for further genetic analysis
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of patients harbored an alteration in MAP3K13, which 
is involved in proliferation and apoptosis via the JNK 
signaling pathway. This alteration was not found in any 
patients in the supersensitive subset.

Providing physicians with a tool that identifies these 
supersensitive and insensitive patients could guide their 
decisions regarding treatment. In particular, supersensi-
tive patients could be recommended for frequent adap-
tive radiotherapy in order to minimize the absolute dose 
received to their normal tissue structures. This strategy 
would ensure that adaptive radiotherapy, which requires 
extra clinical resources, is directed at the patients likely 
to receive the greatest benefit and in turn potentially 
improve outcomes for these patients. For insensitive 
patients, physicians could feel more confident in pri-
oritizing tumor dose coverage over sparing of adjacent 
normal tissues. This is a trade-off that is considered for 
almost all head-and-neck radiotherapy treatment plans 
and thus the biomarkers demonstrated here could be 
immensely beneficial for clinical decision-making.

Conclusions
In summary, our findings present an analysis of the rela-
tionship of gene alterations with rtAEs in HNSCC uti-
lizing next-generation sequencing. We find that somatic 
tumor gene alterations influence damage to healthy tis-
sues in response to RT. In addition, our data suggests that 
rtAEs cannot be consistently predicted by a single gene 
alteration, which is consistent with current thinking in 
the field [21]. Despite prior studies associating distinct 
genes with rtAEs, there is very limited literature incorpo-
rating multiplex panels to generate genetic risk profiles. 
Therefore, we believe these findings highlight the urgent 
need to expand genomic analyses in this patient popula-
tion with a goal of establishing genetic risk profiles and 
ultimately guide therapeutic regimens that optimize the 
therapeutic ratio.
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doses to structures associated with earlydysphagia versus earlydysphagia 
outcomes for 36 patients are plotted. For a particular metric, patients 
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they received high dose (defined as a mean dose greater than the 3rd 
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0–1). Patients who were supersensitive or insensitive for more than two 
structures were selected as overall supersensitive or insensitive for further 
genetic analysis. Only 1 patient was identified as overall supersensitive 
and 8 patients were identified as overall insensitive. Thus a larger overall 
cohort is needed to investigate genetic differences between supersensi-
tive and insensitive patients for this outcome. Figure S2. Late Xerostomia 
by RT Sensitivity. Mean doses to structures associated with late xerostomia 

Table 5 Differentially altered genes found between patients 
supersensitive and insensitive to RT

Gene % of Gene variant in group 
A (supersensitive, n = 6)

% of Gene variant in 
group C (insensitive, 
n = 7)

CDKN2A 83.33 42.86

FAT1 66.67 28.57

TNFAIP3 33.33 0

HNF1A 33.33 0

SPTA1 33.33 0

CASP8 33.33 0

NOTCH2 33.33 14.29

MAP3K1 33.33 14.29

KLHL6 0 42.86

MAP3K13 0 42.86

SOX2 0 42.86

BCL6 0 28.57

BRCA2 0 28.57

BRD4 0 28.57

ESR1 0 28.57

GPR124 0 28.57

GSK3B 0 28.57

MLL3 0 28.57

PIK3CB 0 28.57

PRKCI 0 28.57

SNCAIP 0 28.57

SUFU 0 28.57

TERC 0 28.57

TIPARP 0 28.57

ZNF703 0 28.57
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versus late xerostomia outcomes for 36 patients are plotted. For a particu-
lar metric, patients were identified as sensitive if they received low dose 
(defined as a mean dose less than the 1st quartile dose value for the entire 
cohort) yet had poor outcomes (grade 2–5). Patients were identified as 
insensitive if they received high dose (defined as a mean dose greater 
than the 3rd quartile dose value for the entire cohort) yet had good 
outcomes (grade 0–1). Patients who were supersensitive or insensitive for 
more than two structures were selected as overall supersensitive or insen-
sitive for further genetic analysis. Only 1 patient was identified as overall 
supersensitive while 2 patients were identified as overall insensitive. Thus a 
larger overall cohort is needed to investigate genetic differences between 
supersensitive and insensitive patients for this outcome. Table S1. Dif-
ferentially altered genes. Table S2. Supersensitive group gene variants. 
Table S3. Gene variants.
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