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Abstract

Despite the essential roles of sphingolipids as both structural components of membranes and 

critical signalling molecules, we have a limited understanding of how cells sense and regulate their 

levels. Here we reveal the function in sphingolipid metabolism of the ORM/ORMDL genes, a 

conserved gene family that includes ORMDL3, which has recently been identified as a potential 

risk factor for childhood asthma. Starting from an unbiased functional genomic approach, we 

identify Orm proteins as negative regulators of sphingolipid synthesis that form a conserved 

complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid 

production. We also define a regulatory pathway in which phosphorylation of Orm proteins 

relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene 

expression or mutations to their phosphorylation sites cause dysregulation of sphingolipid 

metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid 
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homeostasis and raises the possibility that sphingolipid misregulation contributes to the 

development of childhood asthma.

Introduction

As cells grow, divide and respond to their environment, they must synthesize lipids to meet 

metabolic demands while also ensuring the correct balance of a wide array of structurally 

and functionally diverse lipid species. At the same time, cells need to maintain the correct 

distribution of lipids within the membrane bilayers of different organelles and the plasma 

membrane. Regulatory mechanisms that ensure proper levels of some lipid species including 

sterols1–3 and various glycerolipids4–6 have been identified, with loss of such controls 

leading to a variety of disease states1, 7. While remarkable progress has been made in 

defining the protein machinery responsible for synthesizing8, 9 and transporting 

sphingolipids10–13, insights into how cells sense and maintain their levels are only now 

emerging14, 15. The need for precise regulation of sphingolipids may be particularly acute 

as, in addition to the structural roles of the terminal products, several biosynthetic 

intermediates—including sphingosine, ceramide, and their phosphorylated derivates—are 

signalling molecules that participate in key physiological and pathological processes16, 17.

Our investigations into how cells achieve sphingolipid homeostasis stem from analysis of 

the ORM/ORMDL genes, which have been implicated recently in asthma. Asthma has 

emerged as a major health problem, with rates of childhood disease increasing dramatically 

over the last three decades18. There is a strong heritable component that modulates asthma 

susceptibility, and many studies have been undertaken to identify genetic risk factors19. A 

breakthrough in these efforts came with the genome-wide association study of Moffatt et al.

20, which identified single nucleotide polymorphisms (SNPs) at chromosome 17q21 near 

the ORMDL3 gene that confer an increased risk of childhood asthma. Subsequent studies 

have reproduced this finding in multiple ethnic groups21–23 . Additionally, the disease-

associated polymorphisms have been shown to modulate expression of ORMDL3 and the 

adjacent gene GSDMB20, 24, suggesting that dysregulation of one or both of these genes 

may contribute to childhood asthma. Thus genetic variants near ORMDL3 are a widespread 

risk factor for developing childhood asthma that may raise the incidence of the disease by up 

to ~20%22, 25. However, translating these findings into an increased understanding of how 

ORMDL3 may contribute to asthma pathogenesis has been hampered by the lack of 

information on the function of ORM-family genes.

Members of the ORM gene family encode trans-membrane proteins localized in the 

Endoplasmic Reticulum (ER) and include two genes in the budding yeast S. cerevisiae 

(ORM1/2) and three genes in humans (ORMDL1/2/3)26. The Orm proteins have no known 

functional domains, and little is known about their cellular role; however, they are strongly 

conserved and have been proposed to share a common function26. Here we use a 

combination of global and targeted studies to identify Orm proteins as homeostatic 

regulators of the first and rate-limiting step in sphingolipid biosynthesis.
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Results

Orm1/2 negatively regulate sphingolipid synthesis

We began our investigation of S. cerevisiae ORM1 and ORM2 using a global approach to 

characterize gene function based on large-scale measurements of genetic interactions, 

termed epistatic mini-array profiles or E-MAPs27. In this strategy, the function of a given 

gene can be inferred without a priori hypotheses by comparing the spectrum of genetic 

interactions resulting from mutation of that gene with interaction patterns caused by 

mutations in other genes of defined function. When we compared the genetic interaction 

profile resulting from deletion of ORM2 to those obtained for a collection of >1400 yeast 

mutants focused on ER biology (manuscript in preparation and ref. 27), we observed a 

strong anti-correlation with the interaction patterns seen for hypomorphic alleles that reduce 

expression of LCB1 and LCB2 (lcb1-DAmP and lcb2-DAmP27), thus implying that ORM2 

and LCB1/2 have opposing cellular roles (Fig. 1a and Supplementary Data). We also 

examined the genetic interactions that result from over-expression of ORM1 or ORM2 using 

the strong promoters pTDH3 and pTEF2, as it was shown that the asthma-associated 

polymorphisms near ORMDL3 are associated with increased expression of this gene20, 24. 

Over-expression of ORM1 or ORM2 produced a pattern of genetic interactions that was 

highly correlated with those seen for the lcb1-DAmP and lcb2-DAmP strains, indicating that 

increased Orm expression phenocopies reduced Lcb1/2 activity (Fig. 1a).

LCB1 and LCB2 encode serine palmitoyltransferase, an essential hetero-dimeric enzyme that 

catalyzes the first and rate-limiting step in sphingolipid biosynthesis9, 28. The synthesis of 

sphingolipids begins in the ER, where two classes of lipid metabolites, long chain bases 

(LCBs) and very long chain fatty acids (VLCFAs), are formed (Fig. 1d). LCBs are produced 

by the condensation of serine with fatty acids by serine palmitoyltransferase (Lcb1/2 in yeast 

and Sptlc1/2/3 in mammals), followed by Tsc10-mediated reduction.8, 9, 29. LCBs can then 

be phosphorylated or N-acylated with VLCFAs to form long chain base phosphates or 

ceramides, respectively, with the latter undergoing further modification to generate complex 

sphingolipids (Fig. 1d).

Thus our E-MAP data showing a correlation between increased ORM expression and 

decreased LCB1/2 function implicate the Orm proteins as negative regulators of sphingolipid 

synthesis and highlight the reaction carried out by Lcb1/2 as the possible step in the pathway 

at which Orm1/2 may act (Fig. 1a,d). We therefore examined the effects of altering Orm 

levels on cellular lipid composition using a mass spectrometry-based global lipidomic 

technique30. In agreement with the genetic interaction data, over-expression of ORM1 or 

ORM2 resulted in changes to the lipidome, including reduced LCB and ceramide levels, that 

closely resembled those seen for the lcb2-DAmP mutant (Fig. 1b and Supplementary Data). 

Conversely, cells deleted for ORM1/2 had highly elevated levels of LCBs and ceramides. In 

principle, this accumulation of LCBs caused by deletion of ORM1/2 could result from a 

failure to consume these species by reaction with VLCFAs to form ceramides, as is seen 

when SUR4 is deleted (Fig. 1b and ref. 30). However, in contrast to the sur4Δ strain, the 

orm1Δ/orm2Δ strain’s elevated LCB levels are also accompanied by increased amounts of 

the terminal sphingolipid mannosyl-diinositolphosphorylceramide (MIP2C). Thus, ORM1/2 
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deletion causes increased flux throughout the sphingolipid pathway. This increased flux is 

also the primary cause of the growth defect seen in orm1Δ/orm2Δ cells, as artificially 

decreasing Lcb1/2 activity, either through the use of myriocin, a drug that specifically 

inhibits Lcb1/231, or through the lcb2-DAmP allele, significantly suppresses the growth 

defect caused by loss of ORM1/2 (Fig. 1c).

A complex with Orm1/2, Lcb1/2, and Sac1

We next explored how Orm proteins modulate sphingolipid production by identifying 

proteins bound by Orm1 and Orm2 in vivo. Isolation of functional 3×Flag-tagged forms of 

Orm1 and Orm2 expressed from their endogenous loci revealed a previously 

uncharacterized, roughly stoichiometric complex (Fig. 2a). Mass spectrometry showed that 

this complex comprises the serine palmitoyltransferase proteins Lcb1, Lcb2 and Tsc3, in 

addition to the phosphoinositide phosphatase Sac132 (Supplementary Table 1). To further 

characterize physical interactions among these proteins, we utilized a 3×Flag-tagged form of 

Lcb1 that is able to rescue the inviability seen upon loss of LCB1 (although this allele does 

exhibit mild sensitivity to myriocin). Purification of 3×Flag-Lcb1 yielded the same 

components seen in the Orm1/2 pull-downs (Fig. 2b), indicating that the Orm-associated 

proteins are likely to exist in a single complex. Orm proteins and potentially their binding 

partners may also form higher-order oligomers, as we detected Orm2 co-

immunoprecipitation with 3×Flag-Orm1 (and vice versa) and self-association of differently 

tagged copies of the same Orm protein (Fig. 2a and Fig. 4c).

The presence of Sac1 in association with Lcb1/2 suggests a new connection between this 

phosphoinositide phosphatase and sphingolipid biosynthesis. Deletion of SAC1 leads to 

elevated LCB levels (Supplementary Fig. 1a and ref. 33) and resistance to the Lcb1/2 

inhibitor myriocin (Fig. 4a). This resistance was also seen in cells expressing the sac1–834 

catalytically inactive mutant of SAC1 (Supplementary Fig. 1b). Additionally, we found that 

Sac1 and Orm1/2 bind independently to Lcb1/2 (Fig. 2b) and that SAC1 and ORM1/2 

deletions exhibit synthetic lethality (Supplementary Fig. 1c). These findings together 

suggest that Sac1 modulates serine palmitoyltransferase activity directly, but in a mode 

distinct from Orm1/2.

Finally, we showed that the functional complex between Orm proteins and serine 

palmitoyltransferase is conserved in human cells. Immunoprecipitations from HEK293T 

cells expressing 3×Flag-tagged Ormdl3 led to a prominent Sptlc1 band detected by Western 

blot (Fig. 3a). Additionally, we found that simultaneous knock-down by RNAi of 

ORMDL1/2/3 in Hela cells causes an approximately three-fold increase in ceramide levels 

(Fig. 3b, Supplementary Fig. 2 and Supplementary Data).

Together, these results establish that Orm proteins are components of a novel and conserved 

protein complex, which we term the SPOTS complex (Serine Palmitoyltransferase, Orm1/2, 

Tsc3, and Sac1). Additionally, our data suggest that Orm1/2 negatively regulate 

sphingolipid synthesis by acting directly on Lcb1/2 (for example by altering Lcb1/2 catalytic 

activity, accessibility of substrates to the enzyme, or its sub-cellular localization).
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Homeostatic regulation of Orm1/2 activity

Why would cells include negative regulators of serine palmitoyltransferase, Orm1/2, as core 

components of this essential enzyme complex? This seemingly paradoxical arrangement 

prompted us to investigate whether Orm-mediated inhibition of LCB production might be 

regulated in response to changes in the cellular need for sphingolipid synthesis. We 

therefore examined how ORM1/2 deletion affects sensitivity to the Lcb1/2 inhibitor 

myriocin. Growth in the presence of myriocin is strongly dependent on the cellular capacity 

for LCB production, as the lcb2-DAmP strain is highly sensitive to myriocin (Fig. 4a), and 

SAC1 deletion, which leads to increased LCB levels, confers myriocin resistance (Fig. 4a). 

Thus, naively we might expect deletion of ORM1/2 to also confer pronounced resistance to 

this drug. However, we observed that wild-type and orm1Δ/orm2Δ strains exhibit 

comparable growth in the presence of myriocin (Fig. 4a). Thus, loss of ORM1/2 strongly 

impacts cell growth under standard conditions but has little apparent effect when 

sphingolipid synthesis is disrupted, suggesting that Orm1/2 may be inactivated in response 

to myriocin treatment.

To further investigate this possibility, we compared the effects of myriocin on the LCB 

levels of wild-type and orm1Δ/orm2Δ strains. As described above, the ORM1/2 deletion 

strain exhibits highly elevated LCB levels in the absence of myriocin. However, with 

increasing doses of myriocin, LCB levels in the orm1Δ/orm2Δ strain decrease strongly and 

approximately converge with those of wild-type (Fig. 4b), supporting our growth data 

indicating that Orm1/2 may be inactivated in response to myriocin treatment (Fig. 4a). 

Interestingly, we also found that wild-type cells maintain roughly constant LCB levels even 

at intermediate myriocin concentrations (up to ~40 ng/ml). This robustness is not due to a 

failure of myriocin to affect Lcb1/2 at these concentrations, as LCB levels in the orm1Δ/

orm2Δ strain are reduced strongly by the same drug concentrations (Fig. 4b; for further 

evidence see Fig. 4d). Rather, these results suggest that progressive inactivation of Orm1/2 

may provide cells with a homeostatic mechanism to maintain nearly constant sphingolipid 

output in the face of increasing Lcb1/2 inhibition. Consistent with this hypothesis, LCB 

levels in the wild-type strain begin to decline only at myriocin concentrations where Orm-

mediated inhibition of LCB synthesis appears to be fully relieved, as evidenced by 

convergence of wild-type and orm1Δ/orm2Δ LCB levels (Fig. 4b).

Orm1/2 regulation by phosphorylation

We next investigated the mechanism by which Orm1/2 activity might be decreased in 

response to myriocin treatment. Growth in myriocin did not alter Orm1/2 expression levels 

(Fig. 4c and Supplementary Fig. 7) or abolish their ability to interact with Lcb1/2 and Sac1 

(Supplementary Fig. 3). However, we observed a notable reduction in localization of GFP-

Orm2 to the cortical but not peri-nuclear ER after myriocin treatment (Supplementary Fig. 

4), raising the possibility that changes in sub-cellular localization contribute to regulation of 

SPOTS complex activity. We also found a strong reduction in Orm protein co-

immunoprecipitation in cells treated with myriocin (Fig. 4c), both for Orm1–Orm2 

interaction and for self-association of Orm1 and of Orm2. A weak reduction in Orm-Lcb1 

binding was also observed in response to myriocin (Fig. 4c). These findings suggest a model 
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in which Orm-Lcb1/2 sub-complexes can self-associate into higher-order oligomers in a 

manner that is inhibited in response to disruptions to sphingolipid synthesis.

We also detected in our Orm1/2 co-immunoprecipations a slight shift in the electrophoretic 

mobility of Orm1 caused by myriocin treatment, indicating that Orm proteins may be post-

translationally modified (see Fig. 4c, Flag-Orm1 and HA-Orm1 inputs). Analysis of 3×Flag-

Orm1 and 3×Flag-Orm2 in SDS/PAGE gels that incorporate a phosphate-binding agent that 

aids in the separation of phosphorylated species35 resolved multiple phosphorylated forms 

for both Orm1 and Orm2 that collapsed to faster-migrating species upon phosphatase 

treatment (Fig 4d). Importantly, growth in myriocin induced a dose-dependent shift to more 

highly phosphorylated forms, and this response occurred over the same concentrations of 

myriocin that led to homeostatic inactivation of Orm1/2, as determined by LCB 

measurements (compare Fig. 4b and Fig. 4d). We also observed increased Orm1/2 

phosphorylation after shutting off expression of downstream sphingolipid synthetic enzymes 

such as Tsc10 or Lag1 (in a lac1Δ background; Supplementary Fig. 5), further indicating 

that phosphorylation of Orm proteins is a homeostatic response to disruption of sphingolipid 

production (see Fig. 5c). Finally, we did not observe substantial changes in Orm1/2 

phosphorylation upon shutting off expression of AUR1 or CSG2 (Supplementary Fig. 5), 

thus providing preliminary evidence that a metabolite upstream of these enzymes, such as 

ceramide, is the sphingolipid intermediate whose levels are sensed to regulate Orm1/2 

activity.

To test our phosphorylation-mediated feedback model directly, we identified residues of 

Orm1 and Orm2 that are phosphorylated. Through a combination of targeted mutagenesis 

and mass spectrometry, we found several sites of Orm1 and Orm2 phosphorylation in the N-

terminal regions of these proteins (Fig. 5a and Supplementary Fig. 6). Importantly, mutation 

of these sites to alanine blocks formation of the slower-migrating phosphorylated species 

seen in phosphate-affinity gels (Fig. 5a). This loss of phosphorylation is unlikely to be due 

to these mutations resulting in non-functional Orm proteins, as the phospho-mutants are 

expressed at levels comparable to wild-type and rescue the slow growth of the orm1Δ/

orm2Δ strain (Supplementary Fig. 7 and data not shown). Furthermore, 

immunoprecipitations of phospho-mutant Orm1/2 revealed that these proteins not only 

maintain the ability to interact with Lcb1 and each other, but that blocking phosphorylation 

prevents the change in higher-order assembly of the SPOTS complex normally seen in 

response to myriocin (Fig. 5b). Thus Orm1/2 phosphorylation appears to be the event that 

triggers dynamic regulation of SPOTS complex oligomerization.

We next investigated the in vivo role of Orm1/2 phosphorylation. Consistent with a basal 

level of Orm1/2 phosphorylation that is important for steady-state LCB production, we 

observed a substantial (two-fold) reduction in LCB levels in the ORM1/2 phospho-mutant 

strain under standard growth conditions (Fig. 5d). Furthermore, we found that this strain is 

highly sensitive to myriocin treatment (Fig. 5e). This result thus confirms a key prediction of 

our homeostatic model and indicates that although cells may possess additional mechanisms 

to regulate sphingolipid biosynthesis, such pathways cannot compensate for disruption of 

the critical feedback control provided by Orm1/2. Thus, Orm proteins are dynamic negative 
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regulators of serine palmitoyltransferase whose inhibitory activity is dependent on adequate 

levels of downstream sphingolipids (Fig. 5c).

Discussion

Our studies identify Orm proteins as homeostatic regulators of sphingolipid metabolism and 

demonstrate that alteration of these controls leads to misregulation of sphingolipid 

production (Fig. 5c). Specifically, loss of the Orm1/2-mediated brake on serine 

palmitoyltransferase activity results in toxic accumulation of sphingolipids, while mutations 

that prevent this brake from being removed render cells unable to survive disruptions to 

sphingolipid synthesis.

A phosphorylation-based feedback loop provides a mechanistic basis for homeostatic 

regulation of sphingolipid production and exhibits a number of features that make it well-

suited to precisely control sphingolipid levels. First, phosphorylation of a direct regulator of 

serine palmitoyltransferase may enable cells to respond rapidly to changing environments. 

Second, Orm1/2 exhibit partial phosphorylation under standard growth conditions, which 

may position the Orm1/2-based sphingolipid rheostat for maximal sensitivity to changes in 

lipid metabolism. Additionally, multi-site phosphorylation of Orm1 and Orm2 has the 

potential to generate several distinct and stable phospho-states, which may provide cells 

with a graded mechanism to finely adjust lipid production to match cellular needs. Finally, 

multiple phosphorylation sites may also render Orm1/2 responsive to multiple physiologic 

or metabolic cues.

Our identification of the SPOTS complex reveals a novel mechanism by which cells may be 

able to coordinate a variety of important secretory pathway processes. While a link between 

sphingolipids and phosphoinositides has been appreciated for some time29, 33, 36, we 

provide evidence that the phosphoinositide phosphatase Sac1 directly modulates 

sphingolipid metabolism, as it is associated physically with serine palmitoyltransferase. 

These results are of particular interest given the role of phosphoinositides, including the 

Sac1 substrate phosphatidylinositol-4-phosphate (PI4P), in the trafficking of both proteins 

and sphingolipids from the ER and Golgi apparatus10, 11, 32. Additionally, changes in Sac1 

localization from the ER to the Golgi have been shown in both yeast and mammals to 

regulate protein flux through the secretory pathway in response to nutrient levels37. We 

therefore suggest that the SPOTS complex may represent a dynamic coordinating center that 

couples changes in sphingolipid and nutrient levels to the activity and localization of key 

enzymes of lipid metabolism and trafficking. This model is consistent with our finding that 

Orm proteins self-associate in a regulated fashion and with evidence that mammalian serine 

palmitoyltransferase is part of a high-molecular-mass complex38.

Finally, our characterization of ORM gene function provides a framework for investigating 

whether alterations in ORMDL3 activity and sphingolipid metabolism play a role in asthma 

pathogenesis. A number of studies support a role for sphingolipids such as ceramide and 

sphingosine-1-phosphate in asthma-associated inflammatory processes, including mast cell 

degranulation, airway hyper-responsiveness, and immune cell trafficking39–43. Our 

findings now link this growing body of evidence to the identification of SNPs near 
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ORMDL3 that are associated with childhood asthma20. Specifically, our observation that 

altered Orm levels strongly impact sphingolipid metabolism raises the testable hypothesis 

that misregulation of sphingolipids may have a direct and causative role in the development 

of asthma. A broader potential role for sphingolipids in inflammatory disease is also 

suggested by reports that SNPs near ORMDL3 are associated with Crohn’s disease44, type I 

diabetes45 and primary biliary cirrhosis46. Finally, the existence of a rich set of 

pharmacologic tools targeting the sphingolipid pathway31 raises the possibility of 

therapeutic intervention to counteract the potential effects of changes in ORMDL3 activity.

Methods Summary

Phosphorylation analysis by phosphate-affinity SDS/PAGE

Lysates for phosphorylation analysis were prepared by pelleting and immediately 

resuspending logarithmically growing yeast in SDS lysis buffer (50mM Tris-Cl, pH 6.8, 2% 

SDS, 10% glycerol) with protease inhibitors (Complete EDTA-free protease inhibitor 

tablets; Roche) at 65°C. SDS/PAGE gels with phosphate affinity reagent35 (synthesized 

according to standard synthetic procedures and kindly provided by D. Fiedler) were 

prepared with a 7.5% acrylamide resolving gel with 50µM MnCl2 and 50µM phosphate 

affinity reagent (375mM Tris, pH 8.8, 0.1% SDS). Gels were run at 70V for 2.5 hr, rinsed 

twice for 5 min in transfer buffer with 1mM EDTA, and rinsed twice more for 5 min in 

transfer buffer without EDTA prior to transfer to nitrocellulose membranes. Western blots 

were performed as described below.

Western blots

Proteins were transferred from SDS/PAGE gels to nitrocellulose membranes and probed for 

proteins of interest using standard Western blot procedures. Antibodies used were as 

follows: rabbit anti-Flag (Sigma Aldrich), mouse anti-Flag (M2; Sigma Aldrich), mouse 

anti-HA antibodies 12CA5 (Roche) and HA.11 (Covance Inc.), mouse anti-yPgk1 

(Molecular Probes), rabbit anti-yLcb1 (raised against peptide antigen 

SYIKKSHHDDPYRTTC; Abgent, Inc), mouse anti-hSptlc1 (Becton Dickinson), and rabbit 

anti-hOrmdl1/2/3 (raised against peptide antigen KGTPFETPDQGKARLC; Abgent, Inc.). 

Western blots were scanned using an Odyssey fluorescent scanner (Li-Cor Biosciences).

Methods

Growth media, plasmids, and strain construction

All yeast experiments were conducted in strain BY4741 (S288c), a related strain suitable for 

E-MAP experiments27, and derivatives thereof. Strains were grown in YEPD media or 

media supplemented with myriocin (Sigma Aldrich; ≥12 hr growth in myriocin in all cases), 

with the exception of samples prepared for lipidome analysis, which were grown in 

synthetic defined media.

Deletion, DAmP, over-expression (pTEF2 and pTHD3), mCherry fusion, and tetracycline-

repressible promoter strains were constructed by standard PCR-based methods (see 

Supplementary Information). Strains expressing N-terminally epitope-tagged or GFP-tagged 
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forms of wild-type and mutant Orm1, Orm2, Lcb1, and Sac1 were made by integration of 

DNA fragments encoding these gene variants into strains in which these genes had been 

deleted with the URA3 counter-selectable marker. For the essential gene LCB1, a diploid 

strain was used for integration of the tagged allele containing the 3×Flag epitope inserted 

between codons 9 and 10, as previously reported47. ORM1 and ORM2 mutants, as well as 

the previously described sac1–8 mutation34, were created by standard PCR mutagenesis.

HEK293T cells (ATCC) and Hela-Kyoto cells (gift from A. Hyman) were grown in DMEM 

high-glucose media supplemented with penicillin, streptomycin, glutamine, and 10% heat-

inactivated fetal calf serum. ORMDL3 was cloned from HEK293T cDNA into expression 

plasmids containing N- or C-terminal 3×Flag epitopes (p3×FLAG-CMV-10 and p3×FLAG-

CMV-14; Sigma Aldrich).

E-MAP data collection and analysis

E-MAP data were collected and analyzed as described previously27 (manuscript in 

preparation). Genetic interaction patterns were compared for pairs of mutants by first 

identifying those genetic backgrounds for which E-MAP data was available for both mutants 

of interest. The similarity of the genetic interaction scores for the two mutants was then 

calculated by computing the cosine correlation between their interaction scores across these 

shared mutant backgrounds. For a given mutant of interest such as orm2Δ, these pair-wise 

comparisons were carried out with all other mutant strains having at least 200 shared genetic 

interaction data points. For the ORM1 and ORM2 over-expression mutants, an average of the 

pTDH3 and pTEF2 interaction profiles was used as the query profile for correlation 

calculations.

Lipidome analysis by mass spectrometry

Lipidome analyses were conducted as described previously30 with minor modifications 

based on the protocol of Lester and Dickson48 to improve analysis of LCBs. Samples were 

harvested from 20ml cultures of yeast cells growing logarithmically in synthetic defined 

media or from ~4–6 ×106 Hela cells grown as described above. Cells were washed in water 

or 155mM ammonium bicarbonate at 4°C, and cell pellets were then frozen immediately in 

liquid nitrogen. Yeast data are from two independent samples each analyzed twice; Hela cell 

data are from samples analyzed in triplicate.

Growth rate measurements

Logarithmic growth rates were measured by OD600 from n ≥ 3 replicate samples. Saturated 

cultures of the relevant strains were diluted into fresh media and grown for >7 hr prior to 

growth analysis. Myriocin-treated cultures were grown for 3 hr in the presence of drug prior 

to growth rate analysis.

Native affinity purifications of solubilized membrane proteins (large-scale, yeast)

ER-derived microsomes were prepared from yeast cells grown in YEPD (~4000 OD600 units 

harvested at OD600 ~1.4). Cells were harvested, washed in water at 4°C, resuspended in 

lysis buffer (50mM Hepes-KOH, pH 6.8, 150mM KOAc, 2mM MgOAc, 1mM CaCl2, 

200mM sorbitol) supplemented with protease inhibitors (Complete EDTA-free cocktail; 
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Roche) and frozen in a drop-by-drop fashion in liquid nitrogen. Frozen cells were then 

pulverized in a ball mill (6× 3 min at 30Hz; Retsch), thawed in lysis buffer at 4°C, and 

dounced 10 times to homogeneity. After clarification by two consecutive centrifugations at 

1000 × g, microsomes were pelleted at 44000 × g, resuspended in 0.5ml lysis buffer, and 

then diluted with 14ml IP buffer (50mM Hepes-KOH, pH 6.8, 150mM KOAc, 2mM 

MgOAc, 1mM CaCl2, 15% glycerol) with 2% digitonin (Calbiochem) supplemented with 

protease inhibitors. After nutating for 1.5 hr at 4°C, un-solubilized material was removed by 

centrifugation at 44000 × g, and the remaining supernatant was added to anti-Flag resin 

(150µl bed volume; Sigma Aldrich). Immunoprecipitations were nutated for 3 hr at 4°C and 

then washed 4×10ml with IP buffer with 0.1% digitonin. Bound proteins were eluted twice 

with 150µl IP buffer with 0.25% digitonin and 2mg/ml 3×Flag peptide (Sigma Aldrich). 

Eluates were combined, separated on SDS/PAGE gels, and stained with a colloidal blue 

staining kit (Invitrogen). Samples were prepared for phospho-site mapping using the same 

protocol, except that phosphatase inhibitors (Halt phosphatase inhibitor cocktail; Pierce) 

were included in the buffers used.

Native affinity purifications of solubilized membrane proteins (small-scale, yeast)

Lysates for small-scale immunoprecipitations were prepared from logarithmically growing 

yeast cells (~25 OD600 units) grown in YEPD. Cultures were harvested, washed in water at 

4°C, and resuspended in 500µl IP buffer (see above) with 0.1% digitonin and supplemented 

with protease and phosphatase inhibitors. Cell lysates were prepared by bead-beating at 4°C, 

followed by addition of 500µl IP buffer with 1.9% digitonin to raise the final digitonin 

concentration to 1%. Membrane proteins were solubilized by nutating lysates at 4°C for 40 

min. Unsolubilized material was next removed by centrifugation at 100,000 × g, and 

clarified lysates were incubated with anti-Flag resin (25µl bed volume) for 2.5 hr. The anti-

Flag resin was then washed four times with 1ml IP Buffer containing 0.1% digitonin, and 

bound proteins were eluted by addition of 30µl IP Buffer with 0.25% digitonin and 2mg/ml 

3×Flag peptide.

Native affinity purifications of solubilized membrane proteins (small-scale, human cells)

HEK293T cells grown in DMEM high-glucose media supplemented with penicillin, 

streptomycin, glutamine, and 10% heat-inactivated fetal calf serum were transfected using 

Fugene6 transfection reagent (Roche) according to the manufacturer’s instructions. After 

~48 hr growth, transfected cells were harvested by trypsinization and washed with PBS. Cell 

pellets were then resuspended at 4°C in 1ml IP buffer (see above) with 2% digitonin and 

protease inhibitors and nutated for 45 min to solubilize membrane proteins. Insoluble 

material was removed by centrifugation at 100,000 × g, and the clarified supernatant was 

incubated with anti-Flag resin (25µl bed volume) for 2.5 hr. The remainder of the 

immunoprecipitation was done in the same fashion as the yeast small-scale affinity 

purifications (see above).

Denaturing immunoprecipitations and phosphatase treatment

A 50ml yeast culture in logarithmic phase growth was harvested and resuspended in 10ml 

5% tricholoroacetic acid and incubated for 10 min at 4°C. Cell pellets were washed once in 
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1ml 5% TCA, washed twice in 1ml acetone, and then air-dried. 200µl acid-washed glass 

beads and 150µl SDS lysis buffer (50mM Tris-Cl, pH 7.8, 1mM EDTA, 1% SDS, 2M Urea) 

supplemented with protease inhibitors were added to the dried pellets, which were then 

lysed by bead-beating (3× 60s at 4°C). Lysates were diluted by addition of 1350µl Tween IP 

buffer (100mM Tris-Cl, pH 7.8, 200mM NaCl, 0.5% Tween-20, also supplemented with 

protease inhibitors) and clarified at 20000 × g. Supernatants were then added to anti-Flag 

agarose (25µl bed volume) and immunoprecipitated for 2.5 hr at 4°C. The anti-Flag resin 

was then washed 2× 1ml with Tween IP buffer, 1× 1ml with Tween/Urea wash buffer 

(100mM Tris-Cl, pH 7.8, 100mM NaCl, 0.5% Tween-20, 2M Urea), and 2× 1ml in 

phosphatase buffer (NEBuffer 3; New England Biolabs), with 0.1% Tween-20). The washed 

resin was then resuspended in 54µl phosphatase buffer + 6µl calf intestine phosphatase (New 

England Biolabs) and incubated for 1 hr at 37°C. After phosphatase treatment, the resin was 

sequentially washed with 1ml Tween IP buffer and 1ml in SDS/DOC wash buffer (50mM 

Tris-Cl, pH 7.8, 0.1% SDS, 0.1% Na-deoxycholate). Bound proteins were then eluted by 

addition of 60µl 2× SDS buffer (100mM Tris-Cl, pH 6.8, 4% SDS, 20% glycerol) and 

incubation for 10 min at 65°C.

RNAi and plasmid transfection of Hela cells

Hela cells grown in DMEM high-glucose media supplemented with penicillin, streptomycin, 

glutamine, and 10% heat-inactivated fetal calf serum were transfected using HiPerFect 

transfection reagent (Qiagen) according to the manufacturer’s instructions. After ~72 hr 

growth, transfected cells were harvested by trypsinization for lipidomic and gene expression 

analysis. For each targeted gene, a pool of four siRNAs was used (ON-TARGETplus 

SMARTpool; Dharmacon), with siRNA sequences as follows: ORMDL1 – 

UGGCAAGUUUCUAUACGAA, GGAGUUGGCUUGCUUCAUA, 

GCUUAUAAGUUAAAGGGCA, GGACCAGCUUAACUUAUAA; ORMDL2 – 

UGGUAGGAUUGCUGCAUAU, AGUUUAAUCAGGAUGGGUA, 

GUGUACUGCUGCCGAAGUU, AGUAUGAUGCUGCGCACUU; ORMDL3 – 

GAACAUGGACCACGCAGUU, CACUAAGUACGACCAGAU, 

CGGUACGGCUUCUGGAUUG, UGGGUAGGGAGCUGUCUAA.

RT-PCR analysis of gene expression in Hela cells

RNA was extracted from Hela cells using the RNeasy kit (Qiagen) after cell homogenization 

(QIAshredder; Qiagen). Extracted RNA was reverse-transcribed using AMV RT (Promega) 

and amplified with Taq polymerase (GoTaq; Promega). Real-time SYBR Green 

fluorescence was monitored using a DNA Engine Opticon System (MJ Research), and the 

following primers were used: RPL19 – ATGTATCACAGCCTGTACCTG, 

TTCTTGGTCTCTTCCTCCTTG; ORMDL1 – CTGACCAGGGTAAAGCAAGG, 

TCCAAAGATCCGAACACCAT; ORMDL2 – CATACGGTGAAAGGGACACC, 

CGGCAGCAGTACACTTAGCA; ORMDL3 –AACCCCTGCTCACTTGTTTG, 

CAAAGACCCATCCCACACTT.
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Live-cell yeast fluorescence microscopy

Yeast cells expressing Sec63-mCherry and GFP-Orm1 or GFP-Orm2 were grown in rich 

media with or without myriocin and spotted on a concanavalin A-coated 25 × 50 mm 

coverslip covered with a 22 × 22 mm coverslip. Cells were imaged through the 25 × 50 mm 

coverslip using a Zeiss Axiovert 200M microscope (Carl Zeiss Microimaging Inc.) equipped 

with a spinning disk confocal scanhead and laser system (Yokogawa CS10, Yokogawa 

Electronics; Solamere). Images were collected as Z-stacks with 0.5 µm spacing between 

frames using µManager software and an ImagEM C9100-13 EM-CCD camera (Hamamatsu 

Photonics).

Serial-dilution cell spotting assays

Logarithmically growing yeast were spotted onto agar plates in 10-fold serial dilutions from 

a starting OD600 density of 0.3 to a final OD600 density of 3E-4. Plates were imaged after 

growth for 24–48 hr. Plates with myriocin are standard YEPD supplemented with 0.1% 

tergitol and 2mM citric acid.

LCB extraction and analysis by HPLC

LCB extraction and analysis was carried out as described by Lester and Dickson48. 

Myriocin-treated samples were grown for 14–16 hr in the presence of drug prior to 

extractions. For extractions, 50ml of a logarithmically growing culture was harvested and re-

suspended in 10ml 5% TCA at 4°C. Following a 10 min incubation, cells were washed once 

in 5% TCA and three times in H2O at 4°C. Cell pellets were then re-suspended in 75µl H2O 

followed by addition of 425µl 70.6mM TEA/EtOH. Lipids were extracted by bath sonication 

(3× 99s, 30W) and incubation at 65°C for 30 min. 150µl of this extract was derivatized by 

reaction for 40 min at room temperature with 30µl of AccQ Fluor reagent (Waters Corp.). 

Ester-linked lipids were de-acylated by addition of 22.5µl of 1.5M KOH/MeOH. Following 

30 min incubation at 37°C, the reaction was neutralized by addition of 22.5µl 1.74M AcOH/

MeOH. Samples were analyzed on an Agilent Chemstation HPLC using a reverse-phase 

C18 column (ZORBAX Eclipse XDB-C18; Agilent).

Protein identification by mass spectrometry

Gel slices were trypsinized and mass spectra were acquired on a Bruker Reflex III MALDI-

TOF mass spectrometer. Proteins were identified by searching NCBInr database using MS-

Fit program on Protein Prospector (UCSF, http://prospector.ucsf.edu)49.

Identification of phosphorylation sites by mass spectrometry

Proteins eluted from native affinity purifications of 3×Flag-Orm1 or 3×Flag-Orm2 (see 

above) were precipitated using ice-cold acetone. After incubation overnight at −20°C, 

proteins were pelleted at 4°C by centrifugation. Protein pellets were then processed, and the 

resulting peptide mixtures were analyzed on a hybrid LTQ-Orbitrap mass spectrometer, as 

described previously50. Database searches were performed using the SGD non-redundant 

database, as described50.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Orm1/2 are negative regulators of sphingolipid synthesis
a, Genetic interaction (E-MAP) profiles were generated for strains harbouring ORM2 

deletion, ORM1 over-expression, and ORM2 over-expression alleles (orm2Δ, pTDH3-ORM1 

& pTEF2-ORM1, and pTDH3-ORM2 & pTEF2-ORM2, respectively). Correlations between 

the E-MAP profiles of these strains and those of >1400 other yeast mutants are shown in 

histograms (see Methods and Supplementary Data). b, Lipids were extracted from the 

indicated strains and analyzed using a global mass spectrometry approach30. Amounts of 

the indicated metabolites are shown relative to wild-type (WT; average ± s.d., n = 4; see 

Methods and Supplementary Data). c, Logarithmic-phase growth rates for the indicated 

strains were measured in standard media or media supplemented with myriocin at 150 

ng/ml. Growth rates (average ± s.d., n ≥ 3) are shown normalized to wild-type (WT); 

asterisks denote statistical significance (p < 0.05). d, Schematic of the sphingolipid 

biosynthesis pathway in S. cerevisiae, with selected metabolites and genes indicated. 

Abbreviations are as follows: FA-CoA (fatty acid co-enzyme A), VLCFA-CoA (very long 

chain fatty acid co-enzyme A), LCBs (long chain bases), LCB-Ps (long chain base 

phosphates), IPC (inositolphosphorylceramide), MIPC (mannosyl-

inositolphosphorylceramide), and MIP2C (mannosyl-diinositolphosphorylceramide).
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Figure 2. Orm/Ormdl proteins form a complex with serine palmitoyltransferase
a, Colloidal-stained gels are shown for proteins eluted after affinity purifications from 

strains expressing 3×Flag-Orm1 or 3×Flag-Orm2, or from an untagged control strain. 

Immunoprecipitated proteins were identified by mass spectrometry (see Supplementary 

Table 1; asterisk indicates the partially obscured protein Tsc3, whose presence was 

confirmed by mass spectrometry). b, Affinity purifications of 3×Flag-Lcb1 from wild-type 

(WT), sac1Δ, and orm1Δ/orm2Δ strains were performed as in a. Asterisks indicate bands 

that are lost in deletion backgrounds.
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Figure 3. ORM gene function is conserved in human cells
a, HEK293T cells were transfected with either an empty vector or a vector encoding Ormdl3 

fused to the 3×Flag epitope (N- or C-terminal fusion). Immunoprecipitations with anti-Flag 

agarose were analyzed by Western blot against human serine palmitoyltransferase (α-

hSptlc1) and against the Flag epitope (α-Flag). b, Hela cells were transfected with siRNAs 

directed against the indicated genes. After 72 hr, cells were harvested and their lipids were 

analyzed by mass spectrometry. Ceramide levels normalized to phosphatidylcholine (PC) 

are shown (relative to untreated cells; average ± s.d., n = 3).
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Figure 4. Orm1/2 are regulated in response to disruption of sphingolipid synthesis
a, Serial dilutions of the indicated strains were spotted on plates with 0, 200, or 400 ng/ml 

myriocin and imaged after growth for 24–48 hr. b, LCBs were extracted and analyzed from 

wild-type (WT) and ORM1/2 deletion strains grown in media supplemented with the 

indicated concentrations of myriocin. The sums of C18 dihydrosphingosine and 

phytosphingosine peak intensities from n ≥ 2 experiments are shown (relative to wild-type 

LCB levels in the absence of myriocin). c, Native immunoprecipitations of 3×Flag-tagged 

Orm1 and Orm2 were performed from strains grown in standard media or media 

supplemented with 150 ng/ml myriocin and analyzed by Western blot. The indicated strains 

also expressed 3×HA-Orm1/2 from their endogenous loci (diploid strains were used to 

examine self-association of Orm1 and Orm2). d, Lysates were prepared from yeast 

expressing 3×Flag-Orm1/2 after growth in media containing the indicated concentrations of 

myriocin. Western blots show phosphorylated forms of 3×Flag-Orm1 (P-Orm1) and 3×Flag-

Orm2 (P-Orm2) after separation on phosphate-affinity gels35. An immunoprecipitated (IP) 

sample treated with calf intestine phosphatase (CIP) shows the position of un-

phosphorylated Orm1/2.
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Figure 5. Mutation of phosphorylated Orm1/2 residues impairs sphingolipid homeostasis
a, Lysates were prepared from strains expressing wild-type (WT) or phospho-site mutant 

3×Flag-Orm1 or 3×Flag-Orm2 after growth in standard media or media supplemented with 

150 ng/ml myriocin. Western blots are shown after protein separation on phosphate-affinity 

gels. Residues mutated to alanine in the indicated phospho-mutants are highlighted in red 

below. b, Native immunoprecipitations of 3×Flag-tagged wild-type or phospho-mutant 

Orm1 and Orm2 were performed from strains expressing wild-type or phospho-mutant 

3×HA-Orm1/2 after growth in standard media or media supplemented with 100 ng/ml 
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myriocin. Western blots were analyzed as in Fig. 4c. c, Model for homeostatic regulation of 

Orm1/2, in which Orm proteins act as negative regulators of serine palmitoyltransferase 

(Lcb1/Lcb2/Tsc3), whose inhibitory activity is dependent on levels of downstream 

sphingolipids. P-Orm1/2 denotes phosphorylated Orm1/2; see Fig. 1d for abbreviations 

used. d, LCBs were extracted and analyzed from wild-type (WT) and 3×Flag-tagged 

ORM1/2 double phospho-mutant strains grown in standard media. Data were analyzed as in 

Fig. 4b (average ± s.d., n = 3). e, Serial dilutions of wild-type (WT), ORM1/2 deletion, and 

3×Flag-tagged ORM1/2 double-phospho-mutant strains were spotted on plates with 0 or 280 

ng/ml myriocin and imaged after growth for 24–36 hr.
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