UC Irvine
UC Irvine Previously Published Works

Title

Screening cell-cell communication in spatial transcriptomics via collective optimal
transport

Permalink

https://escholarship.org/uc/item/7hh486b3

Journal
Nature Methods, 20(2)

ISSN
1548-7091

Authors

Cang, Zixuan
Zhao, Yanxiang
Almet, Axel A

Publication Date
2023-02-01

DOI
10.1038/s41592-022-01728-4

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/7hh486b3
https://escholarship.org/uc/item/7hh486b3#author
https://escholarship.org
http://www.cdlib.org/

nature methods

Article

https://doi.org/10.1038/s41592-022-01728-4

Screening cell-cell communicationin
spatial transcriptomics via collective

optimal transport

Received: 8 October 2021

Accepted: 21 November 2022

Published online: 23 January 2023

Zixuan Cang ®", Yanxiang Zhao?, Axel A. Almet®**, Adam Stabell*®,
Raul Ramos*®, Maksim V. Plikus ® *°, Scott X. Atwood*® & Qing Nie ® 34°

W Check for updates

Spatial transcriptomic technologies and spatially annotated single-cell
RNA sequencing datasets provide unprecedented opportunities to

dissect cell-cell communication (CCC). However, incorporation of the
spatial information and complex biochemical processes required in

the reconstruction of CCC remains a major challenge. Here, we present
COMMOT (COMMunication analysis by Optimal Transport) to infer CCC

in spatial transcriptomics, which accounts for the competition between
different ligand and receptor species as well as spatial distances between
cells. A collective optimal transport method is developed to handle complex
molecularinteractions and spatial constraints. Furthermore, we introduce
downstream analysis tools to infer spatial signaling directionality and genes
regulated by signaling using machine learning models. We apply COMMOT
to simulation data and eight spatial datasets acquired with five different
technologies to show its effectiveness and robustness in identifying spatial
CCCindatawith varying spatial resolutions and gene coverages. Finally,
COMMOT identifies new CCCs during skin morphogenesis in a case study of
human epidermal development.

The complexstructures and functions of multicellularity are achieved
through the coordinated activities of various cells. Cells make deci-
sions and accomplish their goals by interacting with an environ-
ment consisting of external stimuli and other cells. A major form
of cell-cell interaction is cell-cell communication (CCC), mainly
mediated by biochemical signaling through ligand-receptor bind-
ing thatinduces downstream responses that shape development,
structure and function.

Traditionally, CCC studies wererestricted to a few cell types and
a small number of selected genes at the resolution of cell groups.
Recently, the emergence of single-cell transcriptomics (that is,
single-cell RNA sequencing, scRNA-seq) has enabled the examina-
tion of tissues at single-cell resolution at unprecedented genomic

coverage'. Computational tools have been developed to estimate CCC
activities from scRNA-seq data®® using signaling databases* . Most
ofthese methods rely on the expression levels of ligand and receptor
pairs and explicitly defined functions. For example, the products of
ligand and receptor levels® or non-linear Hill function-based models®
are used. In addition, these methods emphasize different aspects of
CCC. For example, CellPhoneDB?, ICELLNET’ and CellChat® account
for the multi-subunit composition of protein complexes; SoptSC?,
NicheNet’ and CytoTalk' utilize downstreamintracellular gene-gene
interactions; and scTensor" examines higher-order CCC represented
as hypergraphs. These inference methods designed for scRNA-seq
data have provided biological insights based on non-spatial tran-
scriptomic data*'>">, However, these non-spatial studies often contain
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significant false positives given that CCC takes place only within
limited spatial distances that are not measured in scRNA-seq data-
sets. Improvements can be made by filtering the inferred CCC using
spatial annotations'.

Spatial transcriptomics”*’ providesinformation on the distance
between cells or spots containing multiple or fractions of cells. At vari-
ous cellular resolutions these technologies measure the spatial expres-
sionof hundreds to tens of thousands of genes in2-dimensional (2D) or
3-dimensional tissue (3D) samples®. Methods and software”>* devel-
oped for non-spatial data analysis have been applied to spatial data,
withasmall number of methods designed specifically for spatial data.
Giotto builds aspatial proximity graph toidentify interactions through
membrane-bound ligand-receptor pairs®; CellPhoneDB v3 restricts
interactions to cell clusters in the same microenvironment defined
based on spatial information®; stLearn relates the co-expression of
ligand and receptor genes to the spatial diversity of cell types®*; SVCA*
and MISTy” use probabilistic and machine learning models, respec-
tively, to identify the spatially constrained intercellular gene-gene
interactions; and NCEM fits a function to relate cell type and spatial
context to gene expression®®. However, current methods examine
CCClocallyand on cell pairsindependently, and focus oninformation
between cells or in the neighborhoods of individual cells. As aresult,
collective or globalinformationin CCC, such as competition between
cells, is neglected.

Optimaltransport has recently been used for transcriptomic data
analysis, including batch effect correction”, developmental trajec-
tory reconstruction®® and spatial annotation of scRNA-seq data®**,
Naturally, one can form an optimal transport problem by viewing
ligand and receptor expression as two distributions to be coupled
with a cost based on spatial distance®****, However, when using clas-
sical optimal transport, different molecule species with significantly
different expression levels are normalized to ensure the same total
mass, which renders the units of distributions unable to be compared.
Furthermore, multiple ligand species can bind to multiple receptor
species, resulting in competition. Of the 1,735 (secreted) ligand-recep-
tor pairs in the Fantom5 database®, 72% of ligands (372 of 516) and 60%
of receptors (309 of 512) bind to multiple species. Such competition
between multiple molecule species is ubiquitous and a critical bio-
physical process butitis ignored in existing methods. Althoughrecent
optimal transport variants such as unbalanced optimal transport and
partial optimal transport can deal with unnormalized distributions and
avoid certain coupling due to signaling spatial range and simultaneous
consideration of multiple species®?**", they introduce other issues.
Specifically, unbalanced optimal transport** inits common form uses
Kullback-Leibler divergence as asoft constraint on marginal distribu-
tion preservation. This approach may result in the total amount of
coupled signaling molecule species significantly exceeding the total
amount of either ligand or receptor initially available. By contrast,
partial optimal transport* requires anadditional parameter, the total
coupled mass, which is usually difficult to estimate in the context of
CCCinference.

To adapt optimal transport theory for the application of CCC
inference, we present a method called collective optimal transport,
which is capable of preserving the comparability between distribu-
tions, ensuring that the total signal does not exceed the individual
species amounts (ligand or receptor), enforcing spatial range limits
of signaling, and handling multiple competing species. The collec-
tive optimal transport method achieves this by optimizing the total
transported mass and the ligand-receptor coupling simultaneously,
unlike existing optimal transport methods. By introducing an entropy
regularization to enforce the inequalities for marginal distributions,
the collective optimal transport can be reformulated as aspecial case
of the general unbalanced optimal transport framework®. An efficient
algorithm is developed specifically for solving the collective optimal
transport problem.

15-20

Based on collective optimal transport, we develop COMMunica-
tion analysis by Optimal Transport (COMMOT), a package that infers
CCC by simultaneously considering numerous ligand-receptor pairs
foreither spatial transcriptomics data or spatially annotated scRNA-seq
data equipped with spatial distances between cells estimated from
paired spatial imaging data; summarizes and compares directions
of spatial signaling; identifies downstream effects of CCC on gene
expressions using ensemble of trees models; and provides visualization
utilities for the various analyses.

We show that COMMOT accurately reconstructs CCC on simu-
lated data generated by partial differential equation (PDE) models
and outperforms three related optimal transport methods. We then
apply COMMOT to analyze scRNA-seq data that have been spatially
annotated using paired spatial datasets and five types of spatial
transcriptomics data that differ with respect to spatial resolution
or gene coverage. Finally, we examine a specific system of human
epidermal development and elucidate connections between CCC
and skin development.

Results

Overview of COMMOT

Ligands and receptors ofteninteract with multiple species and within
limited spatial ranges (Fig. 1a). Considering this, we present collective
optimal transport (Fig. 1b) with threeimportant features: first, the use
of non-probability mass distributions to control the marginals of the
transport plan to maintain comparability between species; second,
enforcement of spatial distance constraints on CCC to avoid connecting
cellsthatare spatially far apart; and last, the transport of multi-species
distributions (ligands) to multi-species distributions (receptors) to
account for multi-species interactions (Fig. 1c).

Given a spatial transcriptomics dataset of n, cells or spots and
n;ligand species and n, receptor species, the collective optimal trans-
port determines an optimal multi-species coupling P* e R}t "'/ X s
where P;;,k,,scores thesignaling strength from sender cell ktoreceiver
cell [ through ligand i and receptor,. This is achieved by solving a
minimization problem, rpelp Z(mel aij (Pij... C(iJ)>F where

= {PE Ri{xn,xnsxns : Pi,j,-,- = 0for (i,j) ¢z,

Yt Pijit < Xigo Dige Pijit < X}

listheindexset for ligand and receptor species that can bind together,
and X «isthe expressionlevel of geneionspot k. The species-specific
costmatrix C;»is amodified distance matrix for between-spot distance
thatreplaces distances exceeding the spatial range of ligand i by infin-
ity. The competitions between molecule species and cells are consid-
ered by assuming that a given receptor species or cell has limited
capacity for interactions, such that astronger inferred interaction with
one ligand species or cell reduces the potential of interaction with
other ligand species or cells (see the Methods and Supplementary Note
for detailed formulations and algorithm derivations).

Directvalidation of CCCinference methods for spatial datais dif-
ficult due to a lack of spatial co-localization measurements of ligand
and receptor proteins. Here, we built PDE models to simulate CCC in
space (Extended Data Fig.1). Simulating various numbers of ligand and
receptor species and diverse competition patterns, COMMOT accu-
rately reconstructs the CCC connections from the resulting synthetic
data (Extended Data Fig. 1d and Supplementary Figs. 1-4). COMMOT
outperformed, and is significantly different from, two related optimal
transport variants: unbalanced optimal transport and partial optimal
transport (Supplementary Figs. 5-9). COMMOT’s characteristics of
enforcing spatial limits and not requiring probability distributions
are furtherillustrated with other real spatial transcriptomics datasets
(Supplementary Figs.10 and 11).
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Fig.1| Overview of COMMOT. a, COMMOT infers CCC in space while considering
the competition between different ligand and receptor species. b, Collective
optimal transport (COT) infers CCC in space by introducing multi-species
distributions and enforcing limited spatial ranges. ¢, An example of inferring CCC
for spatial distributions of ligand-receptor complexes from spatial distributions
oftheligands and receptor where two ligand species (L1, L2) compete for one
receptor species (R). d, Three applications of downstream analysis based on the
inferred CCC network between cells or spots. DEG, differentially expressed gene;
dir., direction; w.r.t., with respect to.

For each ligand-receptor pair and each pair of cells or spots, the
CCCinference quantifies the ligand contributed by one spot to the
ligand-receptor complex in another spot. We then perform several
downstream analyses: first, interpolation of the spatial signaling direc-
tion and identification of the differences between CCC regions; sec-
ond, summarization and grouping of CCC at the spatial cluster level;
and last, identification of the downstream genes affected by the CCC
(Fig. 1d). The spatial signaling direction is obtained by interpolating
the cell-by-cell CCC matrix to a vector field to identify the direction
fromwhich the signalis received or sent. For downstream analysis we
firstidentify genes that are differentially expressed with the received
signal, then quantify the CCC effect on these genes while considering
the effect of other genes by incorporating a machine learning model
that predicts a target gene level using both the received signal and
other correlated genes. See Methods for the algorithms that perform
the downstream tasks.

Theroles of CCCin human epidermal development

We applied COMMOT to examine the development of epidermis in
human skin. Our recent work profiled neonatal human epidermis using
scRNA-seq and identified four stem cell clusters (basal I, I, Il and IV)
foundindifferent regions of the innermost basal layer of the epidermis,
adifferentiating spinous cell cluster in the intermediate layer, and a
granular cell cluster in the outermost living layers®. Arefined in situ spa-
tial transcriptomic map was constructed using SpaOTsc’ by integrating

scRNA-seq data with spatial data digitized from immunofluorescence
stainingimages. The integrated dataset correctly identified previously
known locations of the epidermal cell types and agreed with a known
developmental path by epidermal cells from basal to suprabasal layers
(Fig.2a). Thisresult was further validated by leave-one-out validation
(Supplementary Fig.12).

The spatial signaling between epidermal cells was inferred in the
integrated dataset by considering ligand-receptor pairs annotated
inthe database CellChatDB. For example, our computational analysis
predicted that molecular interactions between the ligands GAS6 and
PROS1 with their receptor TYRO3 (GAS6-TYRO3 and PROS1-TYRO3)
are significant in granular cells and moderately present in basal cells
(Fig. 2b). This prediction was confirmed by both immunostaining for
proteins (Fig. 2d) and using RNAscope to stain for RNA (Fig. 2e).

Atthe signaling pathway level we examined four specific pathways
with known important roles in epidermal homeostasis, namely the
WNT, TGF-B (transforming growth factor-f), NOTCH and JAK/STAT
(Janus kinase/signal transducers and activators of transcription) path-
ways (Fig. 2f and Supplementary Figs. 13-16). For all four pathways
we observed mainly upward-directed signaling, with some downward
signaling to the basal layers at the bottom of the ridges (Fig. 2f). WNT
signaling is known to promote basal stem cell proliferation*’, whereas
TGF-Bsuppressesit**2, Thus, this observed directional signaling from
the suprabasal layers may be regulating the communications to basal
cells on proliferation.

Based on theinferred signaling activities, we further identified
differentially expressed genes corresponding to each signaling
pathway and modeled their expression level changes with increas-
ing received signal without further considering spatial information
(Fig. 2g). For the WNT pathway, increasing signal results in higher
expression of the known basal cell markers KRT15 and KRT35, as well as
lower expression of the known terminally differentiated granular cell
markers LOR and FLG, reinforcing the WNT pathway’s knownrolein
stem cell proliferation*°. The analysis also predicted that higher WNT
signaling would increase the expression of BCAM, POSTN and STMN1,
the expression localization of which we confirmed by immunostain-
ing on human epidermis (Fig. 2h). Interestingly, computational
results predicted that /GFBP6, PMAIP1 and FGF7 would correlate
positively with WNT signaling, but we observed their expression
mainly inthe spinous and granular layers, possibly due to predicted
WNT signaling in both directions in basal-1V (Fig. 2h). TGF-f signal-
ing had a similar profile to that of the WNT pathway, with NOTCH
and JAK/STAT signaling having a more complex response (Fig. 2g).
These results suggest how testable hypotheses can be derived from
inferred signaling activities.

Signaling analysis in spatial transcriptomics data with high
spatial resolution

We first studied CCC in spatial transcriptomics data with high spa-
tial resolution using the CellChatDB®. We analyzed MERFISH (mul-
tiplexed error-robust fluorescence in situ hybridization) data of the
mouse hypothalamic preoptic region with 161 genes and 73,655 cells
across 12 slices along the anterior—posterior axis* (Fig. 3a—c). Of the
signaling pathways available in the data, oxytocin (OXT) signaling, an
important pathway that modulates social behaviors, was found to be
most active. Self-modulation of excitatory neurons and modulation
of inhibitory neurons by excitatory neurons through OXT signaling
wereidentified across all of the slices (Fig. 3b, Extended Data Fig.2 and
Supplementary Fig.17), aresult consistent with the known major func-
tions of OXT signaling**. Further analysis identified the local regions of
high OXT signaling activity and the spatial direction of OXT signaling
(Fig. 3¢), which agreed with the results of protein staining of OXT and
its receptor®. A gradual change of predicted signaling direction and
high-activity regions was observed through adjacent slices (Fig. 3¢
and Extended Data Fig. 2).
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Fig.2|Role of CCC in human skin development. a, Predicted spatial origin of
the skin subtypes of cells inintact tissue and the pseudotime projected to space.
GRN, granular cell cluster; SPN, spinous cell cluster. b,¢, The inferred amount of
received signals of two example ligand-receptor pairs, GAS6-TYRO3 and PROS1-
TYRO3 at the cell level (b) and cluster level (c). d, Immunostaining of proteins
for GAS6, TYRO3 and PROSL. e, Fluorescent in situ hybridization against RNA
molecules for predicted ligand-receptor interactions in human epidermis (solid
white outline; regions of interest are marked by awhite dashed square). The top
row shows expression patterns of GAS6 (white) and TYRO3 (green); the bottom
row shows expression patterns for PROSI (white) and TYRO3 (green). In both
cases, the middle and right panels show ligand-receptor signals, some of which

PMAIP1

colocalize to the stratum granulosum (white arrowheads). In merged images,
the brightness of the GAS6 channel was increased to improve clarity against

the prominent TYRO3 (green) signal. Experiments were repeated four times
independently with consistent results. f, The signaling directions of four major
signaling pathways. g, Heatmaps of selected signaling differentially expressed
genes of the four signaling pathways, respectively. h, Immunofluorescence
staining images of the identified signaling differentially expressed genes
supporting the identified correlation between WNT signaling and the expression
of these genes. Scale bars: d,e h, 100 pm. The immunostaining experiments

ind and hwere repeated three times independently with consistent results.
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We then analyzed STARmap (spatially-resolved transcriptamplicon
readout mapping) data of mouse placenta with 903 genes and 7,203
cells* (Fig. 3d). Midkine and insulin-like growth factor (IGF) signaling

were foundtobe active in the same regions but with opposing directions
(Fig.3e), suggesting a potential feedback loop*. Inaddition, it was found
that IGF signaling is active in the labyrinth region and in endothelial
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Fig. 4| Downstream analysis of inferred CCCinsingle-cell resolution spatial
transcriptomics data. a-e, CCC analysis of seqFISH+ data of mouse secondary
somatosensory cortex. a, Clustering of cell type based on gene expression.
OPC, oligodendrocyte precursor cells. b, Enriched signaling in each cell type.

¢, Clustering based oninferred CCC. d, Enriched signaling in CCC-induced
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clusters. e, Differentially expressed genes in the CCC-induced clusters.

f-h, CCC analysis of Slide-seq (v2) data of mouse hippocampus. f, Clustering
of cell type based on gene expression. g, Clustering based on inferred CCC.
h, Enriched signaling in CCC-induced clusters.

cells, both of which were consistent with our predictions*®. Midkine
signaling wasinferred to be active in trophoblast cells, consistent with
previous findings on the role of SDC1and SDC4 in trophoblast cells***°
(Supplementary Fig. 18). We also found that the annexin and the angi-
opoietin signaling pathways were active in similar regions with similar
directions, suggesting that they may function cooperatively (Fig. 3e).

To demonstrate downstream analyses of CCC, we first studied
seqFISH+ (sequential fluorescencein situ hybridization) data of mouse

secondary somatosensory cortex with 10,000 genes measured in
523 individual cells™ (Fig. 4a—e). Using the inferred CCC, each cell
was assigned a CCC profile quantifying the amount of signal sent or
received through each ligand-receptor pair to assemble a (n, x 2n,,)
CCC profile matrix for the n, cellsand n, ligand-receptor pairs. Differ-
ential expression analysis of the cell types and CCC profile found neu-
ron cells to be most active through various ligand-receptor pairs, and
distinct CCC activities for relatively rare cell types (Fig. 4b). Predicted
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significant WNT signaling in neurons (Supplementary Fig. 19) cor-
related well with known critical roles of WNT signaling in neuronal
migration and activity in the somatosensory cortex’'.

After clustering with respect to CCC activities, cells in the same
group are expected to have similar signaling activities (Fig. 4c). Clus-
ters 2 and 4 showed hyperactive signaling while clusters 0 and 3 were
significant signal senders and receivers, respectively (Fig. 4d). We next
identified differentially expressed genes that matched the signaling
patterns of each CCC-induced cluster (Fig. 4e). This analysisidentified
bothknownsignaling componentsin the relevant pathways and regula-
tors of each pathway. For example, the positive differentially expressed
genes associated with cluster O (WNT signal senders) included the
known WNT ligands Wnt5b, Wnt10a and Wnt2b, while the differentially
expressed genes in cluster 3 (WNT signal receivers) included known
target genes of the WNT signaling pathway such as Gjal and Acsf2 and
the known corresponding intracellular signaling transductors LrpS
and Lrpé6 (Fig. 4e).

We further jointly analyzed CCC in mouse cortex datasets gener-
ated with three different technologies: Visium, seqFISH+ and STAR-
map. We found CCC patterns across the datasets that were consistent
with existing knowledge, demonstrating the robustness of COM-
MOT (Extended Data Figs. 3-5). Details of the findings are given in
the Supplementary Note. We also applied COMMOT to a large-scale
spatial transcriptomics dataset, that is, Slide-seqV2 data of mouse
hippocampus, containing expression of 23,264 genes in 53,173 beads
(spatial spots), which are similar in size to individual cells** (Fig. 4f-h).
Clustering based on CCC activities separated the spots into six clus-
ters, of which clusters 1and 2, consisting mostly of DentatePyramid,
CA1_CA2_CA3 Subiculum, and interneuron cells, are generally active
in CCC (Fig. 4f-h).

Signaling analysis in multi-cell resolution spatial
transcriptomics data

Finally, we applied COMMOT to signaling analysis with Visium' spatial
transcriptomics data, in which each spatial spot contains multiple cells.
By analyzing the breast cancer datawith 3,798 spots and 36,601 genes,
we found clear spatial signaling directionality of midkine signaling,
which was identified to be the most active (Fig. 5a), and the regions
receiving such signals (Fig. 5b). To identify the genes that may be regu-
lated by or regulate CCC, we used tradeSeq* to perform a differential
expression test, inwhich the amount of received midkine signaling was
used as the cofactor, analogous to a temporal differential expression
test in which pseudotime is used as the cofactor (Fig. 5c,d). COL1A1
was identified as a significant positive differentially expressed gene
with a distinct spatial pattern, whereas S100G was a significant nega-
tive differentially expressed gene with its own unique spatial pattern
(Fig.5c).Furthermore, as the received midkine signaling increases, the
level of COL1A1 expressionincreases while the SI00G expression level
decreases (Fig. 5d). Adapting temporal differentially expressed gene
analysis methods for scRNA-seq data to the signaling differentially
expressed gene analysis of spatial transcriptomics dataidentifies rela-
tionships between gene expression and signaling activity, forexample,
between COL1A1 expression and midkine signaling. In general, good
coverage of genes and a large number of cells or spots is preferred
for CCC-associated differentially expressed gene analysis of spatial
transcriptomics data.

Differential expression tests typically examine the pairwise corre-
lation between a potential target gene and a cofactor. The higher-order
interactions between multiple factors (multiple potential upstream
genes and the cofactor) are often neglected. To prioritize the genes
that are more likely to be regulated by CCC, we used a random forest
model***inwhich the potential target gene is the output and the CCC
cofactor and the top intracellular correlated genes are the input fea-
tures. The feature importance of the cofactorin the trained model then
served to quantify the unique information provided by the cofactor

aboutthe potential target gene, scoring the unique impact of individual
ligand-receptor pairs on each of the identified signaling differentially
expressed genes. This model showed that COL1A1and S100G are dis-
tinctly impacted by various midkine ligand-receptor pairs (Fig. 5e).
Suchanalysis may be carried out for any ligand-receptor pair expressed
in the data, for example, the PD1 signaling pathway related to T-cell
functions (Supplementary Fig. 20).

We also analyzed a Visium'® dataset of mouse brain tissue with
3,355 spots and 32,285 genes (Fig. 5f,g). We found significant prosa-
posinsignaling activity across the tissue (Fig. 5f), where broad protec-
tive roles of prosaposin in the nervous system were discovered*, and
fibroblast growth factor signaling was identified on the border of the
cerebellar cortex (Fig. 5g), consistent withits knownrolein cerebellum
patterning during development®’.

Robust identification of CCC direction and downstream target
To assess method robustness and efficiency we next studied the correla-
tion between inferred CCC and the expression of known downstream
genes, and compared COMMOT with three existing methods: CellChat®,
which was designed for scRNA-seq data, and Giotto?* and CellPhoneDB
v3%, which were designed for spatial transcriptomics data.

To test robustness, we used the stage 6 Drosophila embryo,
an extensively studied system®®*, An in situ spatial transcriptomic
map was generated by integrating an scRNA-seq dataset with spa-
tial single-cell resolution data®® using SpaOTsc*. From subsampled
data, COMMOT consistently identified CCC directions, cluster-level
CCC and the signaling differentially expressed genes (Extended Data
Fig. 6). See Methods for evaluation metrics and the Supplementary
Note for more details.

Utilizing scSeqComm®, a database of known target genes of
ligand-receptor pairs combining major resources including Reac-
tome, TTRUST and RegNetwork, we investigated the correlation
between the inferred signaling activities and the expression of the
corresponding target genes. We used three datasets analyzed in the
previous sections with transcriptome or near-transcriptome gene
coverage: Visium human breast cancer data, Visium mouse brain data
and seqFISH+mouse somatosensory cortex data. COMMOT was used
to quantify all available ligand-receptor pairsin the CellChatDB. At the
individual-spot scale, Spearman’s correlation coefficient was com-
puted for each ligand-receptor pair between the received signal and
the average expression of the known downstream genes. The median
correlationsonthe three datasets were 0.237,0.180 and 0.230, respec-
tively (Supplementary Fig. 21). At the cluster scale, we quantified the
level of received signal using the average of the spots in the cluster.

We compared COMMOT withthree methods thatinfer cluster-level
CCC: CellChat®, Giotto?* and CellPhoneDB v3%. The activity of the
downstream genes of a ligand-receptor pair was quantified as the
percentage of significant positive differentially expressed genes of
a cluster. By studying the correlation between the inferred CCC and
the activity of known downstream genes, we found COMMOT to have
astronger correlation than the three methods for most datasets, and
a comparable correlation to CellPhoneDB v3 in some cases (Supple-
mentary Figs.22-24). This evaluation can be furtherimproved if more
complete knowledge of gene regulation is available. With such a list,
one may also formulate the evaluation as a classification problem. The
differences between COMMOT and the three methods areillustrated in
Supplementary Figs. 25-30 and discussed in the Supplementary Note.
Furthermore, COMMOT canidentify localized signaling hotspots com-
pared with cluster-level approaches (Supplementary Figs. 31 and 32).
For aspecificligand-receptor pair, COMMOT prioritizes regions con-
tainingits high signaling activity with low competition fromother pairs
(Supplementary Figs. 33 and 34), showing its unique strength.

To study algorithm efficiency, we found that COMMOT running
time scales linearly with the number of non-zero elements in the CCC
(Supplementary Fig. 35). The number of non-zero elementsin the CCC
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matrices scales linearly with the number of locationsin spatial transcrip-
tomics datadueto the spatial range constraint, and the memory usage
alsoscaleslinearly with the number of locations given that only the finite
values of the cost matrix and the non-zero values of the CCC matrix
need to be stored. Thus, COMMOT can effectively handle the existing
spatial transcriptomics datasets given that both computing time and
memory usage both scalelinearly with the number of spatial locations.

Discussion

Todissect CCC from the emerging spatial transcriptomics datawe have
developed COMMOT to infer CCC for all ligand and receptor species,
simultaneously; visualize spatial CCC at various scales including a
vector field visualization of spatial signaling directions; and analyze
their downstream effects. This toolis based on collective optimal trans-
port that incorporates both competing marginal distributions and
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constrained transport plans, two important features that cannot be
dealt with using current variants of optimal transport.

We have studied a wide range of data types with different
spatial resolutions and gene coverage: in silico spatial transcriptom-
ics dataobtained by integrating scRNA-seq and spatial staining data,
Visium, Slide-seq, STARmap, MERFISH and seqFISH+ spatial tran-
scriptomics. COMMOT could consistently capture the CCC activities
known from the literature. In human skin, COMMOT showed that
higher WNT signaling increases the expression of several genes,
aresult confirmed by immunofluorescence staining. We acknowl-
edge that false positivesin our inferred CCC are inherently possible
because spatial transcriptomics data do not directly represent
protein abundancy and our method cannot capture protein-specific
modifications such as protein phosphorylation, glycosylation,
proteolytic cleavage into fragments, and dimerization, which cer-
tainly affect the signaling functions and, thus, the CCC mechanisms
that COMMOT aims to infer. The reliability of CCC predictions is
expected to significantly improve as emerging spatial proteomics
approaches mature.

Thespatial distance constraint used to capture the effect of ligand
diffusivity is usually determined by several factors, including protein
weight and tortuosity of extracellular space®. It is difficult to accu-
rately estimate this parameter for every pair in the database. In our
model the local short-range interactions are emphasized even when
the spatial distance rangeisincreased (Supplementary Fig.36). Thus,
when screening many ligand-receptor pairs a uniform and relatively
large spatial distance limit may be used to avoid missing important
interactions. Once the importantinteractions are identified, anaccu-
rate estimation of this parameter would further refine the prediction
to remove false-positive CCC links.

Most recently, several methods and packages have been intro-
duced to study CCC with spatial transcriptomics data. SpatialDM®
evaluates the co-expression of ligand and receptor genes; SpaTalk®*
and stMLnet® are focused on signaling target genes; HoloNet®® stud-
ies the joint impact from different combinations of CCC events; and
DeepLinc® constructs de novo cell-cell interaction landscapes without
the need forannotated ligand and receptor genes. Although COMMOT
has adifferent focus, these methods arguably complementeach other
when studying differentaspects of CCC.

With the foreseeable availability of temporal sequences of spatial
transcriptomics data®, CCC dynamics may be elucidated, for example
by extending collective optimal transport into a dynamic optimal
transport formulation. The PDE model of CCC can be generalized to
further incorporate the intracellular gene regulatory network. While
traditional optimal transport is powerful at integrating a pair of data-
sets and multimarginal optimal transport® integrates multiple data-
sets, the collective optimal transport is able to effectively control the
coupling and deal with competing species, whichis useful for abroad
range of problems beyond CCCinference.

Online content

Any methods, additional references, Nature Portfolio reporting
summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of
data and code availability are available at https://doi.org/10.1038/
$41592-022-01728-4.
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Methods
Full details of the theoretical background and implementation of
COMMOT can be found in the Supplementary Information.

COMMOT model
COMMOT constructs a collection of CCC networks through various
predefined ligand-receptor pairs (user-defined or from aggregated
ligand-receptor interaction databases) by solving aglobal optimiza-
tion problem that accounts for potential higher-order interactions
between the multiple ligand and receptor species. To this end, we
introduce collective optimal transport that determines a collection
of optimal transport plans for all pairs of species that can be coupled
simultaneously. As aresult, the coupling between a species pair will
affect other couplings and vice versa, which cannot be realized in
traditional optimal transport®. The collective optimal transport
results in a large-scale optimization problem for which new algo-
rithms are needed, and thus we present one based on the efficient
Sinkhorniteration™,

For a spatial transcriptomics dataset of n, spatial locations and
aset of n;ligand species and n, receptor species, a collective optimal
transport problem is formulated as follows:

min Z <P,',/,A,A,C(,'J)>F + ZFUII) + EF(VJ)’
Pel (ipel i J

[=1Pe RPN p = 0for (i) ¢, Z[:Pi,/',k,l Sxf'-,k’ %Pi,j,k,l SX]’S[ ,
Ji i

w1 (K) = Xiy — Z{Pu,k.b vi(l) =X - %Pu,k,z
Js 1,
@

where X,ﬁkis the expression level ofligand i onspot k, X’-f,is the expres-
sion level of receptorjon spot/and F penalizes the untransported
mass p;and v, The coupling matrix P;; ,scores the signaling strength
from spot kto spot [ through the pair consisting of the ligand i and
receptor for (i,j) € Iwhere /is the index set of ligand and receptor
species that can bind. The cost matrix C; is based on the thresh-
olded distance matrix such that its k/-th entry equals @(D, ) if
D, < T;and infinity otherwise, where D is the Euclidean distance
matrix for the distances between the spots, T, is the spatial limit
of signaling through the pair of ligand i and receptorj, and ¢ is a
scaling function, such as square or exponential. When the ligands
or receptors contain heteromeric units, the minimum of units is
used by defaultin the package to represent the amount of ligand or
receptor. For example, if receptor speciesjis composed of two
subunits, the minimum of them in spot | is used to represent the
level of this receptor species xj’f,.

Collective optimal transport algorithm
Tosolve the collective optimal transport problem described above, we
rewrite the original problem as:
P?Vigo@, O) + e,HP) + €,H (@) + €,H W) + p (Il + 191,
o 2
a AT
stPl'=a—p,P1m=b—+v

where Pis obtained by reshaping Psuch that Py_yxp 1k -tyxn,+1 = Pijks-
The cost matrix €is obtained similarly and we set C_iyxn, 14 G-1)xn.+1 = ©
forligandiandreceptorjthat cannot bind. The marginal distributions
are constructed such that @_yun, +x = Xix and by_yun +1 = X1 Entropy
regularizationisadded to speed up computationand smooththeresult
with H(x) = 3, x; (In (x;) - 1).

Whenthe entropy regularization terms have the same coefficient
values, e = ¢, = ¢, = ¢,, the problem can be efficiently solved with a
stabilized Sinkhorniteraction™

A 0 A
£ Celoga+ £ —elog(eT e e +e ep),
3)

20 o 40
g<’+1)<—elogb+g(’>—elog(e7 Qe e« +e E,,))

for[>0with arbitraryinitial £ and g(®. The resulting numerical solu-
tionto the optimization problem can be constructed by P = ef@s-Oc,
The formulation in Eq. (2) solved by the algorithmin Eq. (3) was used
to generate the results in this study. The derivation of the algorithm,
and that of algorithms for the general case in which the regularization
terms have different coefficients, is described in the Supplementary
Information.

Spatial signaling direction

Tovisualize the spatial signaling directions, we estimate a spatial vector
field v e R%*4 of signaling directions given a CCC matrix § e R}
obtained from collective optimal transport algorithm where §;;is the
strength ofthe signal sentby spotitospotj. Theithrow of Vrepresentsthe
spatial signaling direction. We construct two vector fields, V*and v

describing the direction to/from which the spots are sending/receiving
signals, respectively. Specifically, V; = (% Si) x N (ZjeN; SN (x; —x,-)),

where »(x) = x|x and A; is the index set of top k signal-sending
spots with the largest value on the ith row of S. Similarly,

Vi= (8 % N(Eje,v, SN (x; —xj)) , where N is the index set of top
k signal-receiving spots with the largest value on the ith column of S.

Cluster-level CCC

To elucidate CCC among cell states or local groups of spots, we aggre-
gate the spot-by-spot CCC matrix S to a cluster-by-cluster matrix Sc.
Tcr}e signaling strength from cluster i to clusterj is quantified as
Sij = Zikper S/ |, where % ={(k.0) : Ly = i, L; = jjand L is the cluster
label of spot k. The significance (P value) of the cluster-level CCC is
determined by performing nindependent permutations of the cluster
labels and computing the percentile of the original signaling strength
in the signaling strengths resulting from these label permutations.
Permuting cluster labels after computing the spot-level CCC matrices
may neglect communications between different clusters. To address
this limitation, we provide an option that randomly permutes the loca-
tions of all spots or the spots within each cluster and then computes
the spot-level CCC matrices.

Evaluation metrics

The spatial signaling direction is described by a vector field defined on
adiscretized tissue space consisting of ngrid points andis represented
byanarray V e R™ The cosine distance is used to compare the vector
field v, from subsampled data with the one from the full data V;,;and
is defined as

dcos (Vfulh Vsub) =
22 Ve @I L = Ve @) - Vsuo D/ IVt D1 IVsun DD/ 2 1Veun DI -

To compare two cluster-level CCC networks sand s¢, we first
binarizle them[such that the edges with P < 0.05 are kept in the edge
sets §; and $,. Then, the Jaccard distance is used for quantitative

. =cl ~cl =cl  —cl =cl  —cl
comparison, djccard (Sf SZ) =1- ‘Sf mSZ ‘/ Sf US; e

The Spearman’s correlation coefficient is used to quantify the
correlation between the inferred signaling activity and the activity of
the known target genes across the cell clusters, defined as

cov (R(X),R(x*))/ ("R(x“‘)gk(x‘g'))' where X;"is the average received

signal through a ligand-receptor pair in cell cluster i, and X' is the
activity of the known target genes of this ligand-receptor pair in cell
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clusteriquantified as the percentage of differentially expressed genes.
The function R converts the vectors into ranks and o is the standard
deviation of the rank variables.

Downstream gene analysis
After computing the CCC matrix Sof aligand-receptor pair or asignal-
ing pathway, genes that are potential downstream targets of the cor-
responding CCC can be identified. The amount of signal received by
each spot is quantified by r € R where 7; = ;S;,. Then the tradeSeq
package®®is used toidentify the genes that are differentially expressed
withrespect to r, which we call differentially expressed CCC genes.
Theidentified differentially expressed CCC genes may be regu-
lated by other genes in cells through gene regulation. To further
prioritize the downstream genes, the expressions of which are
affected by CCC, we train arandom forest regression model*** that
takes a potential downstream gene as the output, and rand a collec-
tion of highly correlated genes as input features. The unique impact
of CCConthis potential downstream gene is quantified by the feature
importance (Giniimportance computed as the mean of total impurity
decrease in each tree) of rin the trained random forest model. The
inclusion of highly correlated genesinacell asinput features empha-
sizes the amount of information of potential target genes explained
byinferred CCC, whichis unlikely to be explained only by intracellular
interactions. If such a dilution of importance is not preferred, the
users may choose a smaller number of highly correlated genes as
input features. The implementation in the scikit-learn package™
is used.

CellChat, Giotto and CellPhoneDB analysis

For the CellChat analysis the spatial data were treated as non-spatial
scRNA-seq data, and the count matrix was first normalized using the
normalizeDatafunction. The datawere thenfiltered using the functions
identifyOverExpressedGenes and identifyOverExpressedInteractions
with the default parameters. The cluster-level communication scores
in CellChat were computed using the computeCommunProb function
with default parameters, and the results were further filtered using the
filterCommunication function with min.cells set to 10. The ligand-
receptor pairs categorized under ‘Secreted Signaling’in the CellChatDB
were examined. For Giotto analysis, the count data were first normal-
ized using the normalizeGiotto function with default parameters. A
spatial network was then created using the createSpatialNetwork func-
tionwith the k-nearest neighbors method and kset to 100 and the maxi-
mum distance threshold of 1000 pm for Visium data and 500 pm for
seqFISH+data. The heteromericligand-receptor pairsin CellChatDB
were converted to pairs of individual subunits. The spatCellCellcom
function was then used to generate the cluster-level communication
scores with the adjust_method set to fdr. For CellPhoneDB v3 analysis,
the distance between clusters was quantified as the average distance
between cells from the pair of clusters. The command ‘cellphonedb
method statistical_analysis’ was used to generate CellPhoneDB results
with the threshold parameter set to 0.1.

Immunostaining and fluorescence in situ hybridization

Frozen tissue sections (10 pm) were fixed with 4% paraformaldehyde
in PBS for 15 min. Ten percent BSA in PBS was used for blocking. Fol-
lowing blocking, 5% BSA and 0.1% Triton X-100 in PBS was used for per-
meabilization. The following antibodies were used: mouse anti-KRT5
(1:100; Santa Cruz Biotechnology, sc-32721), mouse anti-KRT15 (1:100;
Santa CruzBiotechnology, sc-47697), mouse anti-BCAM (1:100; Santa
Cruz Biotechnology, sc-365191), mouse anti-FGF7 (1:100; Santa Cruz
Biotechnology, sc-365440), mouse anti-STMNI (1:100; Santa Cruz Bio-
technology, sc-48362); mouse anti-IGFBP6 (1:500; Abgent, AP6764b);
mouse anti-PMAIP1 (1:100; Santa Cruz Biotechnology, sc-56169),
mouse anti-POSTN (1:100; Santa Cruz Biotechnology, sc-398631);
mouse anti-FLG (1:100; Santa Cruz Biotechnology, sc-66192); rabbit

anti-LOR (1:1000; abcam, ab85679); mouse anti-TYRO3 (1:100; LSBio,
LS-C114523-100); rabbit anti-GAS6 (1:100; abcam, ab227174); and rab-
bitanti-PROS1(1:100; Proteintech, 16910-1-AP). Secondary antibodies
include AlexaFluor 488 (1:500; Jackson ImmunoResearch, 715-545-150,
711-545-152) and Cy3 AffiniPure (1:500; Jackson ImmunoResearch,
711-165-152,111-165-003). Slides were mounted with Prolong Diamond
Antifade Mountant containing DAPI (Molecular Probes). Confocal
imageswere acquired atroom temperature (22.2°C) onaZeiss LSM700
laser scanning microscope with a Plan-Apochromat x20 objective or
x40 and x63 oil immersion objectives.

Frozen neonatal human foreskin tissue sections were used for
RNA in situ hybridization using RNAscope kit v2 (323100, Advanced
Cell Diagnostics) as per the manufacturer’sinstructions. The following
Homo sapiens probes from Advanced Cell Diagnostics were used: Tyro3
probe (429611), Gas6 (427811-C2) and Pros1 (506991-C2). Confocal
images were acquired at room temperature on an Olympus FV3000
confocal microscope with a Plan-Apochromat x20 objective or x40
and x60 oilimmersion objectives.

Reporting summary
Furtherinformation onresearchdesignisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The original public data used in this work can be accessed through
the following links: Drosophila embryo spatial and scRNA-seq data:
Dream Single cell Transcriptomics Challenge through Synapse ID
(syn15665609)°°; human epidermal scRNA-seq data®: GEO accession
code GSE147482 (protocols involving human skin data were approved
by the Institutional Review Board of the University of California, Irvine);
mouse hypothalamic preoptic region MERFISH data*’: original data
available at Dryad” at the link https://doi.org/10.5061/dryad.8t8s248
(this work used the preprocessed data through the Squidpy pack-
age” with the utility squidpy.datasets.merfish); mouse placenta STAR-
map data*®: downloaded from Code Ocean (https://codeocean.com/
capsule/9820099/tree/vl) with the https://doi.org/10.24433/
C0.6072400.v1; mouse brain STARmap data’: processed data
were downloaded from the same repository as the mouse placenta
STARmap data; mouse somatosensory cortex seqFISH+ data'®:
downloaded through the Giotto package®’; mouse hippocampus
Slide-seqV2 data**: downloaded from the Broad Institute Single Cell
Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP815/
sensitive-spatial-genome-wide-expression-profiling-at-cellular-
resolution#study-summary); breast cancer Visium data: downloaded
from the 10X Genomics website (https://www.10xgenomics.com/
resources/datasets/human-breast-cancer-block-a-section-1-1-
standard-1-1-0); mouse brain (sagittal posterior) Visium data: down-
loaded from the 10X Genomics website (https:/www.10xgenomics.
com/resources/datasets/mouse-brain-serial-section-1-sagittal-
anterior-1-standard-1-1-0). The ligand-receptor pairs with secreted
ligands, as categorized in the CellChatDB®, were used and can be
accessed at http://www.cellchat.org/cellchatdb/. The downstream
target genes were taken from scSeqComm® and the target gene librar-
ies TF_TG_TRRUSTv2and TF_TG_TRRUSTv2_RegNetwork_High_mouse
were used for human and mouse, respectively.

Code availability

The open-source software is available at https://github.com/zcang/
COMMOT. The code for reproducing the presented analysis results is
available at https://doi.org/10.5281/zenodo.7272562 (ref. 7).
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Extended Data Fig. 1| See next page for caption.
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Extended Data Fig. 1| Validation using simulated data by partial differential ligand species that binds to the same receptor. The simulated result, inference
equations (PDE) model. The example PDE model where two ligand species by COMMOT, and inference by pairwise method are shown. d Ten different cases
canbind to the same receptor. The inference by COMMOT is compared to the of ligand-receptor binding and the performance of COMMOT and pairwise OT
simulation results in several 1-dimensional cases. b Comparison to simulated (with the same spatial limit as COMMOT but each LR pair examined separately)
results in a2-dimensional case with three ligand species and two receptor obtained by comparing to simulated results.

species. c Anexample of randomly generated 2-dimensional benchmark with two
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OXT signaling in MERFISH data of mouse hypothalamic preoptic region
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Extended Data Fig. 2| OXT CCC in MERFISH mouse hypothalamic preoptic region. The inferred signaling directions and cluster-level CCC of OXT signalingin each
ofthe slice of the MERFISH data.
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Extended Data Fig. 3| See next page for caption.
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Extended Data Fig. 3| AGT signaling pathway in mouse cortex. 1) Cell type
plots, 2) spatial directions of CCC, and 3) heatmaps of cluster-level CCC of the
AGT signaling pathway ina Visium, b STARmap, and ¢ seqFISH+ mouse cortex
data. Across these three datasets, AGT signaling was identified in neurons.
Spatially, neurons in the L2-3 region were identified as strong receivers of AGT

ligands across the three datasets. Interestingly, a striped signaling pattern was
observed, wherein strong signals within individual layers form stripes, while
weak signals form inter-stripe regions. Strong AGT signaling activity among
oligodendrocytes was also identified in both STARmap and seqFISH+ datasets.
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Extended Data Fig. 4 | WNT signaling pathway in mouse cortex. 1) Cell type
plots, 2) spatial directions of CCC, and 3) heatmaps of cluster-level CCC of the
WNT signaling pathway ina Visium and b seqFISH+ mouse cortex data. In both

Visium and seqFISH+ cortex datasets, we inferred WNT signaling to be active
across different cortical layers. In both datasets, we identified WNT signaling to
berelatively lowinlayer 5, compared to other layers.
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