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RESEARCH

Atomistic Simulations of the Elastic 
Compression of Platinum Nanoparticles
Ingrid M. Padilla Espinosa1   , Tevis D. B. Jacobs2    and Ashlie Martini1*    

Abstract 

The elastic behavior of nanoparticles depends strongly on particle shape, size, and crystallographic orientation. Many 
prior investigations have characterized the elastic modulus of nanoscale particles using experiments or simulations; 
however their reported values vary widely depending on the methods for measurement and calculation. To under-
stand these discrepancies, we used classical molecular dynamics simulation to model the compression of platinum 
nanoparticles with two different polyhedral shapes and a range of sizes from 4 to 20 nm, loaded in two different 
crystal orientations. Multiple standard methods were used to calculate the elastic modulus from stress-vs-strain data 
for each nanoparticle. The magnitudes and particle-size dependence of the resulting moduli varied with calculation 
method and, even for larger nanoparticles where bulk-like behavior may be expected, the effective elastic modulus 
depended strongly on shape and orientation. Analysis of per-atom stress distributions indicated that the shape- and 
orientation-dependence arise due to stress triaxiality and inhomogeneity across the particle. When the effective elas-
tic modulus was recalculated using a representative volume element in the center of a large nanoparticle, the elastic 
modulus had the expected value for each orientation and was shape independent. It is only for single-digit nanopar-
ticles that meaningful differences emerged, where even the very center of the particle had a lower modulus due to 
the effect of the surface. These findings provide better understanding of the elastic properties of nanoparticles and 
disentangle geometric contributions (such as stress triaxiality and spatial inhomogeneity) from true changes in elastic 
properties of the nanoscale material.
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Introduction
Face-centered cubic (FCC) nanoparticles are widely used 
in applications such as drug delivery [1, 2], catalysis [3], 
tribology [4], nanolithography [5], electrochemical sen-
sors [6], and as fillers in polymer composites [7]. Many 
of these applications apply mechanical loads resulting in 
compression of the particles, by design or inadvertently 
during use. However, the elastic response of nanoparti-
cles to compression loading can differ dramatically from 
the same material in the bulk [8]. At larger length scales, 
the near-surface  material is only a small fraction of the 

overall volume, so surface effects are negligible and the 
elastic modulus is an intensive property that depends 
only on the material. For nanoparticles, however, the 
surface effects are significant, and the size and shape of 
particles determine their elastic behavior [8–11]. These 
effects have been characterized using experiments, the-
ory, and simulations.

The elastic properties of nanoparticles have been meas-
ured experimentally using force-displacement curves 
from compression tests with atomic force microscopy 
(AFM) or AFM with in situ transmission electron micros-
copy (TEM) [12, 13], and by measuring lattice distance 
change with pressure using x-ray diffraction (XRD) in 
anvil cells [14–16]. From AFM and in situ TEM measure-
ments, the elastic modulus is typically calculated using 
Hertz theory for very small contact forces [17, 18]. This 
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calculation requires accurate measurement of the contact 
area or tip displacement and so is limited by the resolu-
tion of the instrument [17, 19]. XRD techniques require 
a very high spatial resolution to measure properties and 
may not be suitable to study nanoparticle properties at 
the smallest scales [14]. Experiments are also limited in 
their ability to explain the origins of nanoparticle proper-
ties because they cannot identify surface- and bulk-mate-
rial contributions to measured elasticity.

Theoretical models of the elastic properties of nano-
structures are based on the difference between surface 
and bulk properties [10, 20]. This difference has been 
shown to depend on the geometry of the nanostruc-
ture, its size, and a parameter that relates surface elastic 
constants to bulk elastic constants [20]. To character-
ize nanoparticle elasticity by continuum field theories, 
the particles are described as bodies composed of bulk 
material and a bounding surface. The bulk properties 
are inherent to the material, and the bounding surface 
properties are defined from the surface stress tensor [21, 
22]. The bounding surface mathematically represents the 
atomic surface and a few layers below the surface [20]. 
At and near the surface, the atoms are under-coordi-
nated and relax by shifting inward toward the bulk, but 
their positions are also constrained by interactions with 
neighboring surface atoms, resulting in tensile surface 
stress without external force [23]. Although theoreti-
cal approaches describe the differences between surface 
and bulk properties of nanoparticles, the calculation of 
surface elastic properties requires additional molecular 
models and analysis [20, 23, 24]. Furthermore, most theo-
retical models have been developed for curved surfaces 
like spheres and cylinders, which may not reflect the fac-
eted polyhedral shapes formed by small nanoparticles 
[23, 25].

Elastic properties of nanoparticles have been computed 
using meso-scale finite element methods (FEM) [12, 25] 
and atomic-scale molecular dynamics (MD) simulation 
[29–31]. FEM approaches can model stress distributions 
for different shapes that resemble nanoparticles while 
requiring fewer computational resources than atomic-
scale simulation methods [25]. However, FEM cannot 
provide atomic resolution and is based on continuum 
assumptions that may not hold true at the surface of 
nanoscale structures [26].

Alternatively, MD simulations provide atomistic mod-
els of the nanoparticles under compression by a virtual 
or explicit indenter and also enable modeling of nano-
particles with different sizes and shapes. A limitation of 
MD-based approaches for calculating elastic modulus is 
related to the definition of stress. Two main approaches 
have been used to calculate stress from MD models of 
compression [26]. The first approach defines stress as the 

force on the indenter divided by the contact area. How-
ever, area of contact is poorly defined at the nanoscale 
and a range of values can be obtained depending on how 
it is calculated [27]. Often contact area is calculated by 
enclosing the layer of atoms adjacent to the compress-
ing indenter by a convex hull [28–31]. An alternative is to 
use the area of the nanoparticle at its mid-height, which 
is well defined in a simulation and is commonly used in 
mechanical tests [29], but represents a lower, average 
value of stress and cannot capture the higher stresses 
that exist near the indenter contact. The second approach 
is based on the concept of virial stress. [31–33]. In this 
approach, the stress tensor for an atom is derived from an 
expression that includes both kinetic energy and poten-
tial energy due to intra- and inter-molecular interac-
tions [34]. The virial calculation gives a result in units of 
stress times volume, i.e., energy, and requires estimation 
of the relevant volume to obtain stress. Volume is often 
calculated using Voronoï tessellation or Delanauy trian-
gulation [34, 35]. In the virial stress approach, stress is 
effectively calculated as an average over the volume of the 
nanoparticle (or the region of analysis) and so might not 
differentiate the contributions of features such as facets, 
edges, and corners.

The size dependence of the elastic properties of nano-
particles has been widely studied using experiments, 
theory, and simulations. Most analytical and numerical 
models [18, 36] and experimental studies [37, 38] predict 
that the elastic modulus decreases with decreasing size. 
MD simulations and theoretical approaches have shown 
that this size effect can be associated with lower cohe-
sive energy for smaller particles [18, 39, 40]. Nanoparticle 
size effects can also be understood in the context of grain 
size in bulk materials. A previous study of the effect of 
grain size on the elastic modulus of platinum found a lin-
ear relationship between modulus and the reciprocal of 
grain size [41]. This was explained by the fact that atoms 
at the grain boundaries have a larger potential energy 
and can move more easily than atoms inside the grain, 
so these boundary atoms contribute less to the elastic 
resistance; then the modulus is low for smaller grains in 
which there is a larger proportion of boundary atoms. 
However, some theoretical studies [9, 42] have predicted 
an increase in elastic modulus with decreasing size. This 
trend was attributed to the increase in bond energy from 
the reduced bond length at the surface for smaller nano-
particles, which resulted in bond strengthening.

The effect of nanoparticle shape and orientation has 
also been characterized in previous investigations. The-
oretical studies proposed that shape is relevant to elas-
tic properties only for very small nanoparticles (below 
approximately 20 nm) [40]. For example, a MD study 
[29] of 15-nm Ni3Al nanoparticles with sharp and blunt 
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edges showed that the elastic modulus of cubic nano-
particles with sharp edges was less than 10% of the bulk 
value while, when the edges of the particle were rounded, 
the elastic modulus increased to about twice the bulk 
elastic modulus [29]. Similarly, a MD study of silicon 
nanoparticles with spherical, cubic, cubic-with-blunt 
edges, and Wulff-like shapes showed that only perfect 
cube structures had an elastic modulus equivalent to the 
bulk value, while different shapes had moduli up to three 
times the bulk value [31]. FEM calculations of polyhedral 
nanoparticles with different ratios of {111} and {100} fac-
ets have shown that the elastic modulus decreases with 
an increase of {100} facets [25]. Atomistic simulations 
on nanoscale films of various materials showed that the 
elastic properties varied with crystallographic orienta-
tion [43]. The effect of the loading direction relative to 
crystallographic orientation on the elastic properties of 
nanoparticles has also been observed in finite element 
analyses [25]. The calculated force-distance curves were 
fit with Hertzian models, and different constants were 
calculated and proposed to predict the elastic modulus of 
polyhedral nanoparticles based on the ratios of {111} and 
{100} facets and the loading orientation. Thus, for single-
crystal nanoparticles, the direction of the loading relative 
to the crystallographic orientation is expected to affect 
elasticity.

In summary, it is well established that the elastic 
response of nanoparticles depends not only on their 
material, but also on their size, shape, and orientation. 
However, it remains difficult to disentangle geometric 
contributions (such as stress triaxiality and spatial inho-
mogeneity) from true changes in the elastic properties of 
the nanoscale material. While MD simulations overcome 
this challenge by explicitly modeling atoms, they are lim-
ited by the fact that stress can be calculated in several 
different ways, some of which are based on assumptions 
that may not apply to nanoparticles. Also, previous MD-
based studies have reported different or even contradic-
tory findings; for example, the elastic modulus has been 
shown to either increase [18, 36] or decrease [9] with 
nanoparticle size, as mentioned above. In this context, 
the purpose of the present study is to, first, compare the 
most common methods used to calculate modulus to 
understand the origin of the differences among them and, 
second, to distinguish between geometric and nanoscale 
effects. We use MD simulations to model compression of 
two different platinum nanoparticle shapes with differ-
ent sizes and crystallographic orientations relative to the 
loading direction. First, multiple commonly used meth-
ods for calculating the elastic modulus of nanoparticles 
are compared. Then, atomic stress distributions are ana-
lyzed to explain deviations from expected trends. Lastly, 
the elastic behavior of nanoparticles is described based 

on the triaxial stress of a representative volume element 
at the center of the nanoparticle in order to understand 
the size, shape, and orientation dependence.

Methods
FCC nanoparticles can be synthesized in many different 
shapes including icosahedra [44], tetrahedra [45], cuboc-
tahedra or “quasi spherical” [46], cubes [47], and trun-
cated octahedra [48]. Most of these nanoparticle shapes 
are bound by lowest-energy facets {111} and {100} [49, 
50], although a few have facets bound by {110} planes and 
higher-energy surfaces. Here, MD models of the elastic 
compression of truncated octahedron and rhombicuboc-
tahedron platinum nanoparticles between 4 nm and 
20 nm in diameter were developed. These shapes were 
selected because they are likely to occur in platinum [51] 
and because their different facets (truncated octahedron 
bound by {100} and {111} facets, rhombicuboctahedron 
by {100}, {111}, and {110} facets) enable analysis of the 
effect of facet orientation on elastic behavior. The models 
are shown in the insets of Fig. 1.

The nanoparticles were created using LAMMPS 
(Large-scale Atomic/Molecular Massively Parallel Simu-
lator) [52] and OVITO software [53]. The nanoparticles 
were single crystals “carved” from a large FCC block of 
atoms with the lattice parameter of platinum. For each 
particle, the size was defined as the minimum diameter 
of a sphere that enclosed the entire nanoparticle shape. 
All simulations were performed with the LAMMPS pack-
age. The embedded atom method (EAM) [54] potential 
was used to describe the atomic interactions, based on 
our previous study that showed that this potential could 
accurately reproduce the mechanical and surface prop-
erties of bulk platinum, and accurately predict platinum 
nanoparticle stability [55]. The nanoparticles were ini-
tially geometrically optimized through an energy mini-
mization process, using the conjugate gradient method 
until the difference in relative energy between iterations 
divided by the average energy was less than 1x10-7. Next, 
the velocity was randomized following a Boltzmann 
distribution at a temperature equal to 300  K. Then, the 
nanoparticles were equilibrated at 300 K for 200 ps using 
a canonical ensemble with a Langevin thermostat and a 
damping parameter of 100 fs. A time step of 2 fs was used 
for all the dynamics.

Following the equilibration process, the particles were 
compressed using two parallel virtual walls that moved 
from the top and bottom of the simulation box toward 
the center of the nanoparticle, as shown in the insets of 
Fig.  1. The compression was applied in two directions, 
normal to a {111} facet or normal to a {100} facet, until a 
maximum strain of 3% was reached. To allow for uncon-
strained deformation, a gap three times larger than the 
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nanoparticle was introduced between the nanoparticle 
and the edges of the simulation box, ensuring that the 
nanoparticles could freely expand in the direction per-
pendicular to the load. The walls interacted with the nan-
oparticle atoms following a purely repulsive harmonic 
potential described by E = ǫ(r − rc)

2; r < rc , where E 
is the energy of wall-particle interaction, ǫ is the spring 
constant of the harmonic wall, r is the distance from the 
particle to the wall, and rc is the cutoff distance at which 
the particle no longer interacts with the wall. Different 
values of ǫ and cutoff were used and the results  (shown 
in Additional file 1:  Fig. A1) confirmed that the compres-
sion response of the particle was independent of these 
parameters. A spring constant of 8000  N/m and cut-
off of 0.2  nm were used for all subsequent simulations. 
Experimental strain rates are several orders of magnitude 
smaller than the strain rates used in MD [56]. Strain rate 
effects have been observed previously in MD simulations 
of compressed nanomaterials and the lowest strain rate 
accessible is usually recommended to model nanomate-
rial deformation that resembles experimental results [56]. 
Simulations were run at different strain rates for the 6 nm 
truncated octahedron nanoparticle and it was found that 

there was no statistically significant effect of strain rate 
on the load-vs-displacement curve (see Additional file 1: 
Fig. A2). Based on this analysis, subsequent compression 
simulations were run at a strain rate of 1× 107 s−1 . The 
force on the virtual walls and the displacement and virial 
stress per atom were recorded every 5 ps and averaged 
over every 2 ps.

Results and Discussion
The force-displacement curves for three nanoparticle 
sizes (4 nm, 12 nm, and 20 nm) compressed to 3% strain 
are shown in Fig. 1 for (a) the truncated octahedron with 
load perpendicular to a {111} facet, (b) the truncated 
octahedron with load perpendicular to a {100} facet, (c) 
the rhombicuboctahedron with load perpendicular to a 
{111} facet, and (d) the rhombicuboctahedron with load 
perpendicular to a {100} facet. The force-displacement 
curves for nanoparticles of different sizes do not have 
the same rate of increase since larger forces are needed 
to produce the same displacement in large nanoparti-
cles compared to small nanoparticles. In addition to size, 
Fig. 1 shows that the nanoparticle force response to com-
pression depends on shape and orientation.

Fig. 1  Nanoparticle models and force-vs-displacement compression response. Force vs displacement of nanoparticles with two different shapes, 
a, b truncated octahedron and c, d rhombicuboctahedron. The nanoparticles were tested in two crystallographic orientations with respect to the 
direction of the load, a, c corresponding to the {111} orientation and b, d to the {100} orientation. Insets are snapshots of the models with atom 
color corresponding to the {100}, {111}, and {110} facets
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Next, we evaluated the elastic modulus of the nano-
particles. Elastic modulus is an intensive property of 
bulk materials. However, at the nanoscale, materials are 
not homogeneous and properties may differ near free 
surfaces. Therefore, we subsequently refer to the calcu-
lated elastic modulus of nanoparticles as the “effective 
elastic modulus” Eeff.1 First, the Hertz theory has been 
used to obtain the effective elastic modulus of nanopar-
ticles at small strains from experimental indentation and 
molecular models [17, 26]. Based on the particle geom-
etry and the virtual wall used to mimic an indenter, the 
force-vs-displacement data was fit to the Hertz equa-
tion for a rigid cylinder with flat end and an elastic half-
space: P = 2aEeffd , where P is load, a is radius of contact, 
and d is indentation depth [57, 58]. Second, the virial  
stress×volume was recorded during the compression 
process and divided by the nanoparticle volume calcu-
lated using Delaunay triangulation at each strain. The 

calculation was based on the virial stress in the direction 
of the applied load ( σz ), following the uniaxial approach 
used in previous nanoparticle simulations [29, 41]. Third, 
the stress was calculated as the force on the virtual wall 
divided by the area of contact between the nanoparticle 
and virtual wall, as done in [31]. Fourth, stress was cal-
culated as force over area, but the area used for the cal-
culation is that of the cross-section at the center of the 
nanoparticle. The area of contact and the area of the 
cross-section at the middle of the nanoparticle were 
approximated using Delaunay triangulation, as done in 
[29]. In all analyses, the strain was calculated as the ratio 
of the change in nanoparticle height at a given strain and 
the pre-strained height of the particle. For the last three 
approaches, the effective elastic modulus was calculated 
as the slope of the stress-strain curve. Error bars reflect 
95% confidence intervals of the fit.

The effective elastic moduli of the nanoparticles loaded 
in the {111} and {100} orientations were compared to the 
directional elastic modulus Edir of bulk platinum in the 
{111} and {100} orientations computed as:

1  Note that this use of “effective modulus” is not the same as in the Hertz 
model where it combines the properties of the sphere and substrate, but 
rather refers to the measured modulus of nanoparticles.

Fig. 2  Size dependence of the effective elastic modulus calculated with different approaches. Effective elastic modulus calculated from the 
virial stress (stars), Hertz approximation of a rigid cylinder and a half space (triangles), force over contact area (diamond), and force over middle 
area (square) for two nanoparticle shapes, a ,b truncated octahedron and c, d rhombicuboctahedron, and two crystallographic orientations, a, c 
corresponding to {111} and b, d to {100} orientation. The bulk value calculated from simulations is shown as a dashed line
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where Sij are the elastic constants and l,  m,  n are the 
cosines of the angles between the direction of Edir and 
the crystal axes [59]. The elastic constants for platinum 
described by the potential used in this study were deter-
mined in previous work [55, 60]. The bulk elastic modu-
lus was calculated using Eq. 1 to be 211 GPa for the {111} 
orientation and 107 GPa for the {100} orientation.

Figure  2 shows the effective elastic modulus E eff of par-
ticles from 4 to 20 nm with different shape and orienta-
tion combinations, calculated using the four methods 
described above. The effective elastic modulus of the bulk 
material in a given orientation is shown as a dashed line 
in each plot. For the truncated octahedron, size depend-
ence of the effective elastic modulus is observed for the 
{111} orientation by all methods (Fig. 2a), but this trend 
is not observed for the {100} orientation (Fig.  2b). Size 
dependence is also observed for the rhombicuboctahe-
dron when the effective elastic modulus is calculated as 

(1)

1

Edir
= S11 − 2 (S11 − S12)−

1

2
S44 l2m2 +m2n2 + l2n2

force over contact area. However, while the effective elas-
tic modulus decreases with increasing size for the rhom-
bicuboctahedron in the {111} orientation (diamonds in 
Fig. 2c), the opposite trend is observed for the {100} ori-
entation (diamonds in Fig. 2d).

Beyond the differences between these calculation 
methods in predicted size dependence, the magnitudes of 
the effective elastic moduli differ in Fig. 2. Theoretically, 
when a nanoparticle is large enough, the surface effects 
are negligible and it can be considered as a homogene-
ous body and the elastic modulus should not be strongly 
shape dependant [10, 40]. So, an accurate calculation 
method should predict convergence of the effective elas-
tic modulus to the bulk value for larger particles and be 
independent of shape for a given crystallographic orien-
tation. The stress calculated as force over contact area 
overestimates the effective elastic modulus of both ori-
entations. The Hertz approximation provides an accurate 
prediction for the {111} orientations, but overestimates 
the effective elastic modulus for {100} orientations. The 
approximation of stress as force over middle area under-
estimates the stress and therefore the modulus. The virial 

Fig. 3  Virial stress distributions for 20 nm and 4 nm nanoparticles. Virial stress on cross-sections parallel to the loading direction for the two 
nanoparticle shapes, a, b truncated octahedron and c, d rhombicuboctahedron, and two crystallographic orientations, a, c correspond to {111} and 
b, d to {100} orientation. The color scale has units of GPa·nm3
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approximation underestimates the effective elastic mod-
ulus compared to the bulk value for all the nanoparticles 
and there is a significant difference between the values 
predicted for the two different shapes, even for larger 
particles, contrary to expectation.

To understand how nanoparticle size, shape, and ori-
entation affect elastic behavior, the distributions of the 
virial stress×volume in the direction of the applied load 
were calculated at 3% strain, averaged over 2 ps. Cross-
sections of the nanoparticles as viewed from a direction 
perpendicular to the loading direction (cross-sectional 
view defined in Additional file 1:  Fig. A3) with the atoms 
colored by stress magnitude are shown in Fig. 3 for 4-nm 
and 20-nm nanoparticles. Importantly, the stress is inho-
mogeneously distributed across the nanoparticles and 
the stress ranges from compressive to tensile depend-
ing on the location within the particle. Tensile stress is 
observed near the surface and the proportion of these 
tensile surface regions is much larger for the smaller par-
ticles. For all combinations of particle shape and orien-
tation, the compressive stress is largest near the top and 
bottom of the particles where the cross-sectional area is 

the smallest. The maximum compressive stress is con-
sistently observed near the corners of the contact areas. 
However, these figures also show that the stress distri-
butions are very different for the different shapes and 
orientations.

For the 20-nm nanoparticles loaded in the {111} ori-
entation in Fig. 3a and c, the compressive stress is nearly 
homogeneous in the region between the top and bottom 
contact areas, subsequently called the core. The load is 
mostly supported by the core so the compressive stress is 
largest in that region. Toward the surface of the particles 
in the directions transverse to loading, the stress is lower 
and inhomogeneously distributed. The size of the core is 
related to the size of the contact area, so the homogene-
ous core-stress region is larger for the truncated octa-
hedron than the rhombicuboctahedron. For the 20-nm 
particles, the core in the truncated octahedron accounts 
for nearly 42% of the atoms, while in the rhombicubocta-
hedron the core atoms are about 31%.

For the 20-nm nanoparticles compressed in the {100} 
orientation, Fig.  3b and d, the stress distribution is not 
homogeneous in the core region between the contact 

Fig. 4  Distributions of the virial stress per atom for 20 nm and 4 nm nanoparticles. Virial stress histograms for atoms in cross-sections of thickness 
7 nm parallel to the load direction for a 20-nm truncated octahedron, b 4-nm truncated octahedron, c 20-nm rhombicuboctahedron, and d 4-nm 
rhombicuboctahedron.
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areas. For this loading direction, the nanoparticle is 
geometrically symmetric for planes parallel to the load, 
therefore the stress is also symmetric. The stress is lowest 
across the center area of the nanoparticles, and toward 
the regions outside the core.

In the 4-nm particles, the surface atoms are in tension 
and the highest compressive stress is observed near the 
contact areas, like in the 20-nm particles. The smaller 
particles also exhibit some of the same stress distribu-
tion patterns as the 20-nm particles, i.e., symmetry in 
the load direction for the {111} orientation and in the 
axes parallel to the load in the {100} orientation, although 
these features are less distinct in the 4-nm particles. For 
the truncated octahedron in both directions, the zone of 
largest compressive stress extends beyond the edges of 
the areas of contact, toward the diagonal facets. For the 
4-nm rhombicuboctahedron in the {111} orientation, the 
compressive stress is largest adjacent to the contacts, but 
the high stress at the corners of the contacts is less pre-
dominant than in the 20-nm nanoparticle. For this same 
particle loaded in the {100} orientation, the stress is high 

and more homogeneous across the entire cross-section 
than for the 20-nm particle.

To quantify the distributions of stress in the nanopar-
ticles, histograms of the per-atom stress at 3%  strain, 
averaged over 2  ps, were calculated, as shown in Fig.  4. 
In all histograms, two peaks can be distinguished: a large 
peak corresponding to the negative, compressive stress 
and a small one for the positive, tensile stress. For the 
truncated octahedron, the compressive peak for {111} 
is to the left of the compressive peak for {100}, indicat-
ing that the atoms in the {111} orientation experience 
a higher compressive stress compared to the atoms of 
a nanoparticle compressed in the {100} orientation, as  
expected given the higher modulus of the {111} orienta-
tion. The key difference between the stress histograms for 
4-nm and 20-nm particles is that the tensile stress peaks 
are larger in integrated intensity for the 4-nm particles 
than for the 20-nm nanoparticles. This confirms that a 
greater proportion of the atoms in the smaller particles 
is under tensile stress. Also, the compressive peak for the 
4-nm particles is further left than the compressive peak 
for the 20-nm particles for both shapes and orientations, 

Fig. 5  Effective elastic modulus versus nanoparticle size calculated for an RVE. Size and shape convergence of the effective elastic 
modulus calculated from the triaxial stress of an RVE at the center of the nanoparticles. Two shapes, (a, b) truncated octahedron and (c, d) 
rhombicuboctahedron, were teted in two crystallographic orientations with respect to the direction of the load, (a, c) correspond to the {111} 
orientation and (b, d) to the {100} orientation. The bulk values are shown as dashed lines and the effective elastic moduli calculated for the entire 
nanoparticles from the triaxial state are shown as solid stars
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indicating a higher localized compressive stress in the 
4-nm nanoparticles compared to the 20-nm particles. 
But, the peaks are wider for the 4-nm particles than the 
20-nm particles, indicating that the stress is less homoge-
neously distributed in the 4-nm particles.

The inhomogeneous stress distributions in Fig.  3 and 
Fig. 4 give hints about the origins of the shape-, size-, and 
orientation-dependence of the effective elastic moduli 
calculated from all techniques in Fig. 2. The Hertz method 
assumes a specific stress distribution, which is not exhib-
ited by these particles. The area-based methods yield an 
average stress, which cannot capture the wide variation 
with shape and orientation that is observed. Even the 
virial stress is effectively an average over the entire parti-
cle and so cannot capture the inhomogeneous stress dis-
tributions. These differences are exacerbated in smaller 
nanoparticles, which have a higher percentage of atoms 
in tension at the surface and regions of high compressive 
stress make up more of the particle than in large nano-
particles, leading to the observed size-dependence. The 
dependence of the bulk elastic modulus on orientation is 
well known, and explained by the positions of atoms in 
adjacent layers in the direction of loading. Specifically, in 
the {111} orientation, the atoms in adjacent layers are not 
stacked vertically and the distance between layers is 

√
3/3 

times the lattice whereas, in the {100} orientation, atoms 
are stacked vertically and the interplanar distance is half 
the lattice parameter (see Additional file 1: Fig. A4). For 
nanoparticles, these differences in atomic structure also 
affect the stress distribution. In the {111} orientation, the 
offset positions of atoms in adjacent layers enable load to 
be supported mostly by the core. In contrast, the stacked 
position of the atoms in the nanoparticles oriented in the 
{100} orientation causes a distribution of the forces in the 
lateral directions. For the effect of shape, the stress distri-
butions suggest that the most significant factor is the size 
of the contact area which determines the size of the high-
compressive-stress region at the top and bottom of the 
particle. The effect of nanoparticle shape is stronger for 
the {111} orientation because the different contact areas 
differ more between shapes and because the particles are 
not geometrically symmetric for axes parallel to the load 
in this orientation.

In all nanoparticles shown in Fig. 3, the stress in the 
center region of the nanoparticle is relatively homo-
geneous with respect to position, especially for the 
20-nm particles. This is reasonable since the surface 
effects are smallest near the center of the nanoparti-
cle. Based on this observation, the stress and strain of 
atoms in a representative volume element (RVE) at the 
center of the nanoparticle shown in (Additional file 1: 
Fig. A5) were calculated. The length of each side of the 
cubic RVE was 1.4 nm, five times the nearest-neighbor 

distance of platinum. Further, analysis of the stresses 
in the direction of the load and perpendicular to the 
direction of the load (Additional file 1: Fig. A6) showed 
that stress terms other than that in the loading direc-
tion are significant for these nanoparticles, especially 
for smaller sizes. This indicated that the typical unidi-
rectional stress calculation may not fully capture nano-
particle elastic behavior.

Therefore, the effective elastic modulus of the RVE 
was calculated assuming the RVE in a triaxial state:

where σ are stresses along the cube axes, ε3 is strain in 
the direction of the load, and υ is the Poisson ratio for 
bulk platinum, equal to 0.385. The strain along the cube 
axes was calculated from the deformation of the cubic 
RVE, assuming that the element maintains planar oppo-
site walls. The stress was obtained from the virial for-
mulation normalized by the volume of the cube at each 
strain. The volume was calculated using a Delaunay trian-
gulation; other volume calculations based on various def-
initions of atom radius were tested and the results were 
consistent. For the nanoparticles with facets aligned with 
{100} orientation, the cube directions lie along the orien-
tation of the facets and the RVE was selected as a cube at 
the center of the nanoparticle. For the nanoparticles with 
{111} orientation, the nanoparticles were rotated in the 
plane normal to the direction of the load until one of the 
{111} facets aligned with the directions of the RVE cube. 
Because the angle between the {111} planes is 70◦ , rather 
than the 90◦ angle of cube faces, this will introduce some 
error into the modulus calculation. However, the error is 
tolerated in order to create an algebraic equation to com-
pute modulus.

Figure   5 shows the effective elastic modulus of the 
nanoparticles calculated using the RVE approach, com-
pared to the effective elastic modulus calculated from 
the triaxial state for the entire nanoparticle (stars in the 
figure). Error bars reflect 95% confidence intervals. For 
all shapes and orientations, the effective elastic modu-
lus is underestimated for the entire particle because 
the calculation includes the atoms near the surface that 
have lower compressive or even tensile stress (Fig.  3) 
such that the average stress is lower. This effect is mim-
imized by selecting an RVE near the center of the parti-
cle. To ensure that the RVE analysis does not depend on 
the interatomic potential, we repeated the compression 
simulations with a Tersoff potential [61] and compared 
the stress distributions in the particles to those shown in 
Fig. 3. Although the per-atom stress magnitudes differed 
between the two potentials, the stress distributions were 

(2)
1

Eeff
=

ε3

σ3−υ(σ1+σ2)
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similar. Most importantly, for both potentials, the stress 
was approximately homogeneous near the center of the 
particles. Using the RVE approach, the effective elastic 
modulus converges for larger particles to approximately 
the bulk value for a given orientation. For smaller parti-
cles, the effective elastic modulus of the RVE is smaller, 
consistent with previous analytical and numerical models 
[18, 36] and experimental studies [37, 38]. This is because 
the center of the nanoparticle will only exhibit bulk-like 
behavior if it is sufficiently far from the free surfaces; as 
the particle shrinks below a critical size, even the mate-
rial at the center is affected by the free surface with its 
undercoordinated atoms and tensile stresses. This analy-
sis demonstrates that, unlike conventional methods for 
extracting modulus from MD studies, the simple RVE 
approach can recover the bulk-like behavior and also 
differentiate the effects of nanoscale geometry from 
stress-distribution effects. Further, this analysis con-
firms that the effective elastic modulus is reduced with 
decreasing size, but that the critical size at which this 
reduction occurs depends on particle shape and loading 
orientation.

Conclusions
MD simulations were used to investigate the effect of size, 
shape, and orientation on the elastic response of plati-
num nanoparticles to compression. First, commonly used 
methods for characterizing elastic modulus were com-
pared and it was found that calculated values depended 
significantly on the methods used to calculate them. Also, 
for larger-size particles, none of the methods predicted 
convergence to the value calculated for bulk platinum 
in the same orientation. This limitation was explained 
by an analysis of the stress distributions in the nanopar-
ticles, which revealed that the stresses in the particles 
were inhomogeneous and varied for different geometries, 
sizes, and orientations. The maximum compressive stress 
occurred near the contact with the indenter where the 
cross-sectional area was smallest, while the undercoor-
dinated  atoms near the free surface experienced tensile 
stress.  For all particles, the stress became more homoge-
neous closer to the center of the nanoparticle where the 
surface effects were less significant. Therefore, we intro-
duced a simple triaxial stress analysis of a representative 
volume element in the center of the nanoparticle as an 
alternative approach for calculating the effective elastic 
parameter of the particles. For large nanoparticles, the 
effective elastic modulus using an RVE matched the bulk 
value and was independent of particle shape. For smaller 
nanoparticles, the effective elastic modulus was lower 
than the bulk value because the free surfaces are inher-
ently closer to the RVE, such that there is no longer any 
material in the particle that behaves in a truly bulk-like 

fashion. The RVE approximation presented here provides 
a consistent and physically meaningful measure of nano-
material elasticity and also highlights the limitations of 
standard methods caused by the inhomogeneous distri-
bution of stress in nanoparticles.
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