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Convergence of rotational hardening with bounds in clay plasticity

Y. F. DAFALIAS*{{, M. TAIEBAT§, F. ROLLO∥ and A. AMOROSI∥

Convergence of the rotational hardening variable α used in the anisotropic models of clay plasticity,
with a constitutively defined attractor/bound αb(η), function of the stress ratio η, under fixed η loading,
is analytically investigated. It is analytically shown that depending on various parameters of the rate
equation of the evolution of α, such convergence may or may not occur despite the apparent necessity
of convergence stemming from the form of the evolution equation of α.
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NOTATION
c rotational hardening (RH) parameter for equation (4)
e void ratio

f ¼ 0 yield surface (YS)
g ¼ 0 plastic potential

K0 coefficient of earth pressure at rest
L plastic multiplier
M critical-state stress ratio in the p� q plane
n RH parameter for equation (5)
p mean effective stress

pat atmospheric pressure
p0 size of YS along the p-axis
q deviatoric stress
x RH parameter for the saturation limit of anisotropy
α RH variable in the p� q space
αb bound of α in the p� q space
α1 another bound of α in the p� q space
ε strain
η stress ratio
κ slope of the rebound line in the e– ln p plane
λ slope of the compression line in the e– ln p plane
ν Poisson’s ratio

INTRODUCTION
Rotational hardening (RH) is a term indicating the rotation
of the yield surface (YS) f ¼ 0, and plastic potential surface
(PPS) g ¼ 0, in stress space as a result of non-hydrostatic load-
ing, reflecting the developing fabric anisotropy. Sekiguchi
and Ohta (1977) introduced RH for clay plasticity con-
stitutive modelling, followed by a plethora of various other
propositions which are beyond the scope of this paper. RH
is expressed by an evolving deviatoric stress-ratio-type tensor
α, which becomes a scalar-valued dimensionless stress-ratio

quantity α in the triaxial p− q space, exclusively dealt with in
this work.

The scope of this study is to address the issue of
convergence of the evolving α with a constitutively defined
bound αbðηÞ, function of the stress ratio η ¼ q=p, under fixed
stress ratio η loading. This type of loading is encountered in
some practical applications, such as K0 loading in the field,
but the motivation of this analysis in addressing fixed η
loading is not a practical application per se, but the fact
that its laboratory realisation provides useful data for
constitutive modelling calibration. It is shown analytically
that depending on various parameters of the rate equation of
the evolution of α, such convergence may or may not occur,
and in the latter case, convergence with a different bound is
obtained. The subject matter is presented using a specific
form of the YS but the conclusions can be readily extended
to various other forms of YS employing RH.

THE RH CONSTITUTIVE MODEL AND ITS APPLICATION
TO FIXED η LOADING
In Dafalias (1986) and Dafalias and Taiebat (2013, 2014),
where further references to RH can be found, the YS and
PPS for associative plasticity are given analytically by

g ¼ f ¼ ðq� pαÞ2 � M2 � α2
� �

p p0 � pð Þ ¼ 0 ð1Þ
and plotted in the p− q space of Fig. 1.M is the critical-state
stress ratio, α is the stress ratio-type RH variable that
must always be less than M for equation (1) to have real
solution for p and q, and p0 is the value of p at η ¼ α; clearly,
p0 � p � 0. The plastic volumetric and deviatoric strain
increments are given by

dεpv ¼ Lh i @g
@p

¼ Lh ip M2 � η2
� � ð2aÞ

dεpq ¼ Lh i @g
@q

¼ Lh i2p η� αð Þ ð2bÞ

respectively, where the loading index (or plastic multiplier) L
depends on the increments dp, dq and its exact form is
obtained from the consistency condition df ¼ 0. A non-
associative flow rule can be adopted if one uses N instead of
M in equation (1) for the YS f ¼ 0 (Jiang et al., 2012).

The increment of p0 follows from the usual e–ln p normal
consolidation line with slope λ and the rebound (elastic)
line with slope κ for clays, as dep ¼ �ðλ� κÞðdp=p0Þwith dep
the plastic increment of the void ratio related to the plastic
volumetric strain increment by dep ¼ �ð1þ einÞ dεpv with ein,
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the initial value of e. A combination of the above in
conjunction with equation (2a) yields

dp0 ¼ 1þ ein
λ� κ

p0dεpv ¼ Lh i 1þ ein
λ� κ

p0p M2 � η2
� � ð3Þ

The increment of α is given byDafalias and Taiebat (2013)

dα ¼ Lh icpat p
p0

αb ηð Þ � αð Þ ð4Þ

where c . 0 is a dimensionless model constant controlling
the pace of evolution, pat is the atmospheric pressure for
non-dimensionalising c and αbðηÞ is the bound, function
only of η such that αbðηÞ , η. Dafalias and Taiebat (2013,
2014) proposed various forms of αbðηÞ, the simplest one
being the original suggestion by Dafalias (1986) with
αbðηÞ ¼ η=x and x � 1, a model constant. In this work,
the exact form of αbðηÞ is irrelevant.
According to equation (4), α evolves towards αbðηÞ because

its increment dα is along αbðηÞ � α. The name ‘bound’ for
αbðηÞ is used for historical reasons as one can have α . αbðηÞ,
which suggests that αbðηÞ acts for α as an attractor rather than
a bound. This can be visualised in Fig. 1 for the case α ,
αbðηÞ, where a line of a fixed slope η is necessarily associated
with a line of fixed slope αbðηÞ (irrespective of the definition of
the latter), towards which the line of slope α evolves. Under
extensive fixed η loading, α is expected to merge asymptoti-
cally with αbðηÞ as per equation (4).

But will it merge? The answer to the above question was
first investigated numerically by carrying out fixed η load-
ings and using the simple definition of αbðηÞ ¼ η=x. Two
such cases are shown in Figs 2(a) and 2(b), where the
numerical implementation of equation (4) used the par-
ameters and the initial values presented in Table 1, with the
initial value of α set at αin ¼ 0�10, while η maintained
its initial value of 0·6 throughout the loading; the only
difference between the two cases was the value of c.

It was found that for a large value of c, the merging
of α with αbðηÞ seems to have taken place, the latter being
αb(0·6) = 0·6/1·71 = 0·351, while for a small value of c, no
such merging is seen to occur. One may then argue that
the small value of c naturally delays convergence with αbðηÞ,
but this is not really the case shown in Fig. 2(b) because the α
seems to converge asymptotically with another bound
lower than αbðηÞ and denoted by α1, as p goes to infinity.
It appears therefore that equation (4) yields the asymptotic
convergence of α with αbðηÞ only for certain values of c
despite the fact that this does not follow at first glance from
the form of equation (4) that suggests α evolves towards
αbðηÞ irrespective of the value of positive c.

ANALYTICAL INVESTIGATION OF RH CONVERGENCE
UNDER FIXED η LOADING
The numerical results may suggest but cannot provide
a rigorous interpretation of obtained graphs, notwith-
standing the reasons of observed differences. To reveal the
reasons behind the foregoing unexpected numerical obser-
vations, equation (4) must be integrated in closed analytical
form. However, it will be expedient to slightly generalise
equation (4) to include any power of p0 with the corres-
ponding adjustment of the power of pat for the non-
dimensionalisation of c, such that equation (4) reads

dα ¼ Lh icpnat
p
pn0

αb ηð Þ � αð Þ ð5Þ

Clearly, for n ¼ 1, equation (4) is retrieved from
equation (5). Solving equation (3) for L and substituting
into equation (5) one obtains

dα
αbðηÞ � α

¼ CðηÞ dp0
pnþ1
0

ð6aÞ

CðηÞ ¼ λ� κ

1þ ein

1
M2 � η2

cpnat ð6bÞ

If based on the definition of αbðηÞ, it happens that αbðηÞ �
α ¼ 0, equation (5) yields dα ¼ 0 and equations (6a) and
(6b) are irrelevant. The taskof integrating equations (6a) and

p

q

α

αb(η)

η
M

0

(p, q)

f = g = 0

p0p

Fig. 1. Schematic diagram of the anisotropic yield and PPS in
the p−q space and the lines with slopes RH variable α, loading
stress ratio η and bound αbðηÞ (using the simplest form of η=x
here)

0·7

0·6

0·5

η,
 α 0·4

0·3

0·2

0·1

0·7

0·6

0·5

η,
 α 0·4

0·3

0·2

0·1
50 60 70 80

p: kPa

90 100 50 100 150 200

p: kPa

250 300

η η

αb αb
α∞
αα

(a) (b)

Fig. 2. Illustration of the effect of parameter c on the evolution of the RH variable α: (a) c=200; (b) c=5
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(6b) is to address the convergence of α with αbðηÞ under
drained fixed η loading starting from α ¼ αin = αbðηÞ with
the sub ‘in’meaning ‘initial’. Notice that for fixed η loading,
the quantity CðηÞ is constant. With the foregoing under-
standing integration of equations (6a) and (6b) from αin to α
and from p0;in to p0 yields two distinct families of solutions

α

αb ηð Þ ¼ 1� 1� αin
αb ηð Þ

� �
p0;in
p0

� �C ηð Þ
for n ¼ 0 ð7Þ

α

αb ηð Þ ¼1� 1� αin
αb ηð Þ

� �

� exp �C ηð Þ
n

1
pn0;in�

1
pn0

 !" #
for n = 0

ð8Þ

During the integration of equations (6a) and (6b), the
quantity ln ½jðαbðηÞ � αÞj=jðαbðηÞ � αinÞj� appears. However,
ðαbðηÞ � αÞ=ðαbðaÞ � αinÞ . 0 because α and αin are both
either greater or smaller than αbðηÞ, hence, the absolute
values of the foregoing ln function can be deleted. The
obtained equations (7) and (8) satisfy the imposed initial
condition α ¼ αin at p0 ¼ p0;in. However, an investigation of
the limit of α is necessary, denoted as α1, for the various
cases of continued fixed η loading as p0 ! 1 for consolida-
tion, or p0 ! 0 for dilation (even if p0 ! 0 still the limit of α
is denoted as α1). The objective will be to find out if the limit
of the left-hand side α=αbðηÞ of equations (7) and (8) – that
is, α1=αbðηÞ, is 1 or not; in the former case α converges with
its bound αbðηÞ, while in the latter it does not.

Loading at fixed η>M
This is the most common case and implies that CðηÞ . 0
from equations (6a) and (6b) and that p0 ! 1 due to
consolidation with the increasing size of the YS. The fol-
lowing cases then may occur according to the sign of n.
Case n ¼ 0: it follows from equation (7) that as p0 ! 1

one obtains (recall CðηÞ . 0)

1

pCðηÞ
0

! 0 ) α
αb ηð Þ !

α1
αb ηð Þ ¼ 1 ð9Þ

Case n . 0: it follows from equation (8) that as p0 ! 1
one obtains

1
pn0

! 0 ) α

αb ηð Þ !
α1

αb ηð Þ ¼ 1

� 1� αin
αb ηð Þ

� �
exp �C ηð Þ

n
1
pn0;in

" # ð10Þ

Case n , 0: it follows from equation (8) that as p0 ! 1
one obtains (recall CðηÞ . 0)

1
pn0

! 1 ) α

αb ηð Þ !
α1

αb ηð Þ ¼ 1 ð11Þ

Loading at fixed η>M
This is the less common case and implies that CðηÞ , 0 from
equations (6a) and (6b) and that p0 ! 0 due to dilation on
decreasing the size of the YS. The following cases then may
occur according to the sign of n.

Case n ¼ 0: it follows from equation (7) that as p0 ! 0 one
obtains (recall CðηÞ , 0)

1

pCðηÞ
0

! 0 ) α

αbðηÞ !
α1

αbðηÞ ¼ 1 ð12Þ

Case n . 0: it follows from equation (8) that as p0 ! 0
one obtains (recall CðηÞ , 0)

1
pn0

! 1 ) α

αb ηð Þ !
α1

αb ηð Þ ¼ 1 ð13Þ

Case n , 0: it follows from equation (8) that as p0 ! 0
one obtains

1
pn0

! 0 ) α

αb ηð Þ !
α1

αb ηð Þ ¼ 1

� 1� αin
αb ηð Þ

� �
exp �C ηð Þ

n
1

pn0;in

" # ð14Þ

From equations (9)–(14) it follows that α=αbðηÞ !
α1=αbðηÞ ¼ 1 in all cases except for equations (10) and
(14). For these two cases if the absolute value CðηÞ � 1,
which can be achieved by the choice of a large value of c in
equations (6a) and (6b), one has approximately α=αbðηÞ !
α1=αbðηÞ � 1 as the exponential term that includes CðηÞ
tends towards zero for large CðηÞj j. A more careful
inspection of the signs of CðηÞ and n in equations (10)
and (14) reveals that the exponential term is always smaller
than 1, thus, α1=αbðηÞ 	 1 or � 1 depending on whether
αin=αbðηÞ 	 1 or � 1, respectively. αbðηÞ is defined in such
a way that always αbðηÞ , M (Dafalias & Taiebat, 2013),
thus, α , M and any such α serves as αin , M. Therefore,
accounting for the aforementioned effect of αin=αbðηÞ on
α1=αbðηÞ, it follows that always α1 , M as both αbðηÞ , M
and αin , M. Hence, convergence of α with α1 = αbðηÞ
does not cause any concern that one may end up with α � M
which is not allowed according to equation (1), while the
limit α1=αbðηÞ is well defined for calibration purposes.
Nevertheless, there is an issue with equations (10) and (14)
that renders the α1=αbðηÞ function of the initial values αin
and p0;in of α and p0, respectively. This is counterintuitive to
the expectation that extended fixed η loading as p0 ! 1
or 0 should provide the same α1=αbðηÞ = 1 irrespective of
these initial values but this happens only for the cases where
α1=αbðηÞ ¼ 1.

INTERPRETATION AND ILLUSTRATION OF THE
ANALYTICAL SOLUTIONS
As for n ¼ 1 equation (5) becomes equation (4), the ana-
lytical solution of the latter for fixed η loading is given by
equation (8) for n ¼ 1. Consequently, the limit of α in this
case is given by equation (10) for n ¼ 1 and reads

α

αb ηð Þ !
α1

αb ηð Þ ¼ 1� 1� αin
αb ηð Þ

� �
exp �C ηð Þ 1

p0;in

� �
ð15Þ

Equation (15) solves the puzzle of the numerical simu-
lations of Fig. 2. While equation (4) suggests at first glance
that α must converge asymptotically with αbðηÞ as there is
always an increment dα along αbðηÞ � α, it hides the fact that
another bound α1 exists with which α converges asympto-
tically, and which acts as a blockage preventing convergence

Table 1. Parameters and initial values of the model

Symbol M λ κ ν x pin : kPa ηin ein p0;in : kPa αin

Value 1·1 0·44 0·04 0·20 1·71 50 0·6 1·5 60·42 0·1

Dafalias, Taiebat, Rollo and Amorosi18
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with αbðηÞ. This α1 = αbðηÞ is given by equation (15) for
continued fixed η , M loading. In concrete numerical
terms and referring to the values of various quantities pres-
ented in Table 1, η ¼ ηin ¼ 0�6 and x ¼ 1�71 yields αbð0�6Þ
=0·6/1·71 = 0·351, hence, it follows from equations (6b)
with n ¼ 1 and (15) that (a) for c ¼ 200, the α1=αbð0�6Þ ¼ 1
(approximately) ) α1 ¼ 0�351, as shown in Fig. 2(a), and
(b) for c ¼ 5, the α1=αbð0�6Þ ¼ 0�8496 ) α1 ¼ 0�2982, as
shown in Fig. 2(b). The seemingly correct optical obser-
vation about the convergence of α with αbðηÞ for the large
value of c in Fig. 2(a) stems only from the infinitesimally
small numerical deviation of α1=αbðηÞ from 1 in this case.
A graphical illustration of the analytical results reached in

relation to equations (9)–(15) is provided in the plots of Fig. 3.
Figure 3(a) refers to equation (15) and illustrates the effect of
various values of c and the stress ratio η , M on the ratio
α1=αbðηÞ. The values of Table 1 are used, including αin ¼ 0�1
and the value x ¼ 1�71 that defines αbðηÞ ¼ η=x. In all cases,
one has α1 = αbðηÞ as per equation (15) but observe that
for c . 15, α1 � αbðηÞ. For smaller values of c, the ratio
α1=αbðηÞ differs considerably from 1 and based on the dis-
cussion following equation (15), one can observe that depend-
ing on the values of η, which defines the corresponding
αbðηÞ ¼ η=x, α1=αbðηÞ is smaller or greater than 1 depending
on whether αin=αbðηÞ is also smaller or greater than one,
respectively. Figure 3(b) refers to both equations (10) and (11)
and illustrates the effect of various values of the exponent n
and the stress ratio η on the ratio α1=αbðηÞ for a relatively
small value of c ¼ 5. For n 	 0, one obtains α1=αbðηÞ ¼ 1 for
any value of η , M but large deviations of α1=αbðηÞ from 1
are seen for n . 0.

CONCLUSION
For a large class of simple anisotropic clay models, the
key incremental (or rate) evolution equation for the evolving
RH stress ratio internal variable α is of the form of
equation (5) that includes an exponent n for p0, suggesting
that under continued fixed η drained loading, α is expected
to converge with the RH bound αbðηÞ that acts as an
attractor on α. This work showed that if η , M such
convergence occurs during consolidation as p0 ! 1 when
n 	 0, while for n . 0, α converges with a known value α1 =
αbðηÞ, although close to it for sufficiently large values of the
RH parameter c. Similarly, for η . M the convergence of α
with αbðηÞ as p0 ! 0 during the corresponding dilation
occurs when n . 0, but again convergence with α1 = αbðηÞ
takes place when n , 0. The foregoing conclusions are
independent of the specific form of αbðηÞ. These conclusions
show that the statement α1 ¼ αbðηÞ as a consequence of
dα ¼ 0 made in Dafalias & Taiebat (2013, 2014) is not

always accurate. However, this does not imply any error in
the development presented in the foregoing references
because they addressed directly the role of the choice of
specific αbðηÞ and not the convergence of α with it.

It must be mentioned that these results were obtained in
conjunction with the well-known and widely used specific
form of a YS and plastic potential given by equation (1), as
well as the specific form of RH of the bounding/attractor-
type given by equation (5), thus, cannot be assumed to have
universal validity. However, they act as precaution and
provide guidelines not to assume a priori such convergence
of α with an explicitly stated (as done here) or an implied
αbðηÞ, in several other cases with different YSs.
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