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ABSTRACT OF THE DISSERTATION

Multi-Target Tracking in Surveillance Cameras

by

Xiaojing Chen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2015

Dr. Bir Bhanu, Chairperson

As the number of surveillance cameras deployed in public areas increasing rapidly, automatic

multi-target tracking in both a single camera and multiple non-overlapping cameras have

been receiving great interest. The goal of multi-target tracking is to recover the trajectories

of all moving targets while maintain their identities consistent. Although this problem

has been studied for several years, there still remain many challenges, such as illumination

and appearance variation, occlusion, sudden change in motion, and unpredictable motion

across cameras. Driven by necessity for multi-target tracking in surveillance cameras, in

this dissertation, we proposed several tracking methods.

First, we designed a framework for multi-target tracking in a single camera. Unlike

previous methods that only rely on low-level information, and consider each target as an

independent agent, in this dissertation, an online learned social grouping behavior model

is used to provide more robust tracklets affinities. A disjoint grouping graph is used to

encode social grouping behavior of pairwise targets, where each node represents an elemen-

tary group of two targets, and two nodes are connected if they share a common target.

Probabilities of the uncertain target in two connected nodes being the same person are

inferred from each edge of the grouping graph. Second, a novel reference set based appear-

ance model is developed to improve multi-target tracking across cameras. A reference set is

constructed for a pair of cameras, containing subjects appearing in both camera views. For

track association, instead of directly comparing the appearance of two targets in different

camera views, they are compared indirectly via the reference set. Third, we extend the

single camera multi-target tracking framework with social grouping behavior to a network
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of non-overlapping cameras. The tracking problem is formulated using an online learned

Conditional Random Field (CRF) model that minimizes a global energy cost. During intra-

camera tracking, track associations that maintain single camera grouping consistencies are

preferred.

To validate the proposed methods in this dissertation, extensive experiments on

several datasets are conducted. Results show that each of the aforementioned method

achieves state-of-the-art performance in various multi-target tracking tasks.
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Chapter 1

Introduction

For multi-target tracking in a single camera, most existing data association-based

tracking approaches only use low-level information (e.g., time, appearance, and motion) to

build the affinity model, and consider each target as an independent agent. In Chapter 2,

we introduce a novel approach to learn possible elementary groups (groups that contain

only two targets) online for inferring high-level context that can be used to improve multi-

target tracking in a data-association based framework. Social grouping behavior of pairwise

targets is first learned from confident tracklets and encoded in a disjoint grouping graph.

Relationships between elementary groups are discovered by group tracking, and a non-linear

motion map is used for explaining non-linear motion pattern between elementary groups.

The proposed method is efficient, able to handle group split and merge, and can be easily

integrated into any basic affinity model. The approach is evaluated on four datasets, and

it shows significant improvements compared with state-of-the-art methods.

Tracking multiple targets across non-overlapping cameras aims at estimating the

trajectories of all targets, and maintaining their identity labels consistent while they move

from one camera to another. As the observations of the same targets are often separated

by time and space, there might be significant appearance change of a target across camera

views caused by variations in illumination conditions, poses, and camera imaging character-

istics. Consequently, the same target may appear very different in two cameras. Therefore,

associating tracks in different camera views directly based on their appearance similarity is

difficult and prone to error. In most previous methods the appearance similarity is com-

puted either using color histograms or based on pre-trained Brightness Transfer Function

(BTF) that maps color between cameras. In Chapter 3, a novel reference set based appear-
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ance model is proposed to improve multi-target tracking in a network of non-overlapping

cameras. Contrary to previous work, a reference set is constructed for a pair of cam-

eras, containing subjects appearing in both camera views. For track association, instead of

directly comparing the appearance of two targets in different camera views, they are com-

pared indirectly via the reference set. Besides global color histograms, texture and shape

features are extracted at different locations of a target, and AdaBoost is used to learn the

discriminative power of each feature. The effectiveness of the proposed method over the

state-of-the-art on two challenging real-world multi-camera video datasets is demonstrated

by thorough experiments.

Matching targets from different cameras can be very challenging, as there might be

significant appearance variation and the blind area between cameras makes target’s motion

less predictable. Unlike most existing methods that only focus on modeling appearance and

spatial-temporal cues for intra-camera tracking, Chapter 4 presents a novel online learn-

ing approach that further considers integrating high-level contextual information into the

tracking system. The tracking problem is formulated using an online learned Conditional

Random Field (CRF) model that minimizes a global energy cost. Besides low-level informa-

tion, social grouping behavior is explored in order to maintain target identities as they move

across cameras. In the proposed method, pair-wise grouping behavior is first learned within

each camera. During intra-camera tracking, track associations that maintain single cam-

era grouping consistencies are preferred. In addition, we introduce an iterative algorithm

to find good solution for the CRF model. Comparison experiments on several challenging

real-world multi-camera video sequences show that the proposed method is effective and

outperforms the state-of-the-art approaches.

Each chapter in this dissertation stands alone as a complete description of each

aforementioned method.
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Chapter 2

Multi-person Tracking by Online

Learned Grouping Model with

Non-linear Motion Context

2.1 Introduction

Automatic tracking of multiple targets simultaneously in real-world scenes has

been an active research topic in computer vision for many years, as it is crucial for many

industrial applications and high level analysis, such as visual surveillance, human-computer

interaction, and anomaly detection. The goal of multi-target tracking is to recover trajecto-

ries of all targets while maintaining consistent identity labels. There are many challenges for

this problem, such as illumination and appearance variation, occlusion, and sudden change

in motion [11, 121]. As great improvement has been achieved in object detection, data

association-based tracking (DAT) has become popular recently [53, 98, 127, 95, 94]. In the

DAT framework, often a pre-learned detector is applied on each frame to produce detection

responses of all targets, and short-term tracking results (i.e., tracklets) are generated by as-

sociating responses from consecutive frames that have high probability to contain the same

target. These tracklets are further linked to produce long-term tracking results. An affinity

model integrating multiple visual cues (appearance and motion information) is formulated

to find the linking probability between tracklets, and the global optimal solution is often

obtained by solving the maximum a posteriori (MAP) problem using various optimization
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algorithms.

Although much progress has been made in building more discriminative appear-

ance and motion models, problems such as identity switch and track fragmentation still

exist in current association based tracking approaches, especially under challenging condi-

tions where appearance or motion of the target changes abruptly and drastically, as shown

in Fig. 2.1. The goal of association optimization is to find the best set of associations with

the highest probability for all targets, which makes it not necessarily capable of linking each

of the difficult tracklet pairs. In this chapter, we explore high level contextual information,

i.e., social grouping behavior, for associating tracklets that are very challenging by using

only lower level features (time, appearance, and motion).

When there are only a few interactions and occlusions among targets, DAT achieves

robust performance. Discriminative descriptors of targets are usually generated using ap-

pearance and motion information from tracklets. Appearance model often uses global or

part-based color histograms to match tracklets, and a linear motion model that assumes

all targets maintain constant speed without motion direction change is often adopted to

constrain motion smoothness of two tracklets. However, these low level descriptors gener-

ally fail to associate tracklet pairs with long time gap. This is because the appearance of

a target might change drastically due to heavy occlusion, and the linear motion model is

unreliable for predicting location of a target after a large time interval.

Nevertheless, there is often other useful high level contextual information in the

scene which can be effectively used to mitigate the aforementioned shortcomings. For

instance, sociologists have found that up to 70% of pedestrians tend to walk in groups in

a crowd, and people in the same group are more likely to have similar motion pattern and

be spatially close to each other for better group interaction [88]. Moreover, pedestrians in

the crowd often either consciously or unconsciously follow other individuals with similar

destination to facilitate navigation [52]. It is also observed in many real world surveillance

videos that if two people are walking together at certain time then it is very likely that

these two people will still walk together after a short time period.

Based on the above observations, we propose an elementary grouping model with

non-linear motion context to compensate the errors caused by using basic appearance model

and linear motion model. A grouping graph is constructed based on input tracklets with
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Frame 1002 Frame 931 

Frame 798 Frame 912 

53 

Figure 2.1: Examples in which grouping information is helpful under the challenging condi-
tions for tracking in a video. The same color indicates the same target. Note that for both
targets with bounding boxes there are significant appearance and motion changes due to
occlusions and cluttered background. Images are from CAVIAR dataset [1]

high confidence, where each node represents a pair of tracklets that form an elementary

group (a group of two targets) and each edge indicates that the connected two nodes (two

elementary groups) have at least one target in common. The group trajectories of any two

linked nodes are used to estimate the probability of the other target in each group being

the same person. Neighboring tracklets that have time overlap and similar motion pattern

are possible candidates for elementary groups. Relationships between elementary groups

are further discovered with the help of group tracking, in which a non-linear motion map is
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Tracklets
Tracklet

Association
• Learning of Elementary Groups
• Group Tracking (non-linear)

Online Grouping Analysis
Grouping Modeling 
via Dynamic Graph

• Create Virtual Node
• Graph Inference

Figure 2.2: Overview of the elementary grouping model.

used to explain large time gap between two elementary groups. The elementary grouping

model is summarized in Fig. 2.2.

The size of a group may change dynamically as people join and leave the group,

but a group of any size can always be considered as a set of elementary groups. Therefore,

focusing on finding elementary groups instead of the complete group makes our approach

capable of modeling flexible group evolution [49] in the real world. Note that the social

group in this chapter refers to a number of individuals with correlated movements and does

not indicate a group of people who know each other.

The rest of the chapter is organized as follows: Section 2.2 discusses related work

and contributions of this paper; the proposed elementary grouping model is described in

Section 2.3; experiments are presented in Section 2.4; and Section 2.5 concludes this paper.

2.2 Related Work and Contributions

2.2.1 Related Work

Traditional filtering-based multi-target tracking methods process videos on a frame-

by-frame basis, which are more suitable for time-critical applications [19, 66]. However, such

greedy methods tend to get stuck at a local optimum, with the possible solution space grow-

ing exponentially in the presence of observation gaps. Recently, the focus of multi-target

tracking has shifted to robust DAT schemes, due to their global reasoning ability of the

solution space. With a deferred global inference, DAT is more robust against observation

gaps resulting from heavy interactions and occlusions [83].

Huang et al. [57] first propose to hierarchically associate detection responses for

multi-person tracking. Since then, most follow-up works focus on designing features for

more reliable association scores or developing effective optimization schemes. In the first
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regime, affinity scores are generally extracted from appearance information such as color

histograms and motion features such as motion smoothness. Global appearance constraints

are exploited to prevent identity switches in multi-target tracking [13]. Part-based appear-

ance models have been applied in multi-target tracking to mitigate occlusions [105]. For

optimization, bipartite matching via the Hungarian algorithm is among the most popular

and simplest algorithms [94, 57]. A lot of other optimization frameworks have been pro-

posed, such as K-shortest path [16], set-cover [118], Linear Programming [65], and Quadratic

Boolean Programming [75].

Most of the work only considers pairwise similarities, without referring to high level

contextual information. Thus, problems such as possible abrupt motion changes cannot

be properly accounted for. Yang et al. [82] use a Conditional Random Field (CRF) for

tracking while modeling motion dependencies among associated tracklet pairs. Butt et al.

[22] carry out a Lagrangian relaxation to make higher-order reasoning tractable in the min-

cost flow framework. These methods focus on higher-order constraints such as constant

velocity. However, both of them [82, 22] concentrate on individuals and may fail in real-

world scenarios, in which individuals may possess a lot of freedom.

In this chapter, we focus on utilizing social grouping information for more natural

high-level contextual constraints. Social factors have attracted a lot of attentions in

multi-target tracking recently, since they are complementary to unreliable visual features

and are motivated by sociology research. Pellegrini et al. [92] propose a more effective

dynamic model by leveraging nearby people’s positions. Brendel et al. [21] also consider

nearby tracks as contextual constraints. Alahi et al. [5] study large-scale crowd destination

forecasting with social context. Pellegrini et al. improve trajectory prediction accuracy by

inferring pedestrian groups [93]. In the DAT context, Qin et al. [97] seek the consistency of

trajectories in both tracklet association space and tracklet group assignment space based

on visual and grouping cues. They use gradient-based optimization and K-means clustering

with multiple random initializations. Bazzani et al. [12] consider joint individual-group

tracking, with a decentralized particle filter sampling in both individual and group spaces.

Yan et al. [124] explicitly consider group structures to improve tracking consistency across

time. Compared to these methods, our approach is deterministic with a closed-form solu-

tion. Furthermore, the previous work assumes a static group structure or a fixed number of

groups, while our grouping scheme is more flexible by using elementary groups and allows

for more local refinements.
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2.2.2 Contributions of This Chapter

The contributions of this chapter include:

• An approach estimating elementary groups online is proposed, which infers grouping

information to adjust the affinity model for data association-based tracking. This

approach is independent of detection methods, affinity models, and optimization al-

gorithms.

• A motion model that takes advantage of nearby non-linear motion patterns is inte-

grated into group tracking. It enables the proposed method to explain reasonable

non-linear motions of targets.

• The proposed approach based on elementary grouping is simple and computationally

efficient, while it is effective and robust.

• Four real-world surveillance datasets are used for evaluation and extensive experiments

are carried out to validate the effectiveness of the proposed method.

2.3 Technical Approach

In this section, we introduce how the elementary grouping model is integrated into

the basic tracking framework for tracklet association. An overview of the proposed method

is presented in Fig. 2.3.

2.3.1 Tracking Framework with Grouping

Given a video sequence, a human detector is first applied to each frame to obtain

detection responses. Finding the best set of detection associations with the maximum link-

ing probability is the aim of detection-based tracking. In an ideal association, each disjoint

string of detections should correspond to the trajectory of a specific target in the ground-

truth. However, object detector is prone to errors, such as false alarms and inaccurate

detections. Also, directly linking detections incur a high computational cost. In order to

generate a set of reliable tracklets (trajectory fragments), therefore, it is a common prac-

tice to pre-link detection responses that have high probability to contain the same person.

Next, a global optimization method is employed to associate tracklets according to multiple
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cues. Finally, missed detections are inserted by interpolation between the linked tracklets.

Detections that do not belong to any tracklet or tracklets that are too short are considered

as false alarms and removed from the final results.

A mathematical formulation of the tracking problem is given as follows. Suppose

a set of tracklets T = {T1, .., Tn} is generated from a video sequence. A tracklet Ti is a

consecutive sequence of detection responses or interpolated responses that contain the same

target. The goal is to associate tracklets that correspond to the same target, given certain

spatial-temporal constraints. Let association aij defines the hypothesis that tracklet Ti and

Tj contain the same target, assuming Ti occurrs before Tj . A valid association matrix A is

defined as follows:

A = {aij}, aij =

 1, if Ti is associated to Tj ,

0, otherwise,
(2.1)

s.t.
∑n

i=1
aij = 1 and

∑n

j=1
aij = 1.

The constraints for matrix A indicate that each tracklet should be associated to and asso-

ciated by only one other tracklet (the initial and the terminating tracklets of a track are

discussed in Section 2.4.1).

We define Sij as the basic cost for linking tracklet Ti and Tj based on low level

information (time, appearance, and motion). It is computed as the negative log-likelihood

of Ti and Tj being the same target (explained in detail in Section 2.4.1). Note that Sij =∞
if Ti and Tj have overlap in time.

Let Ω be the set of all possible association matrices, the multi-target tracking can

be formulated as the following optimization problem:

A∗ = arg min
A∈Ω

∑
ij

aijSij . (2.2)

This assignment problem can be solved optimally by the Hungarian algorithm in polynomial

time. In order to reduce computational cost, the video is segmented by a pre-defined time

sliding window, which is fixed to be 12 seconds long. Tracklet association is carried out in

each time sliding window. There has to be a 50% overlap between two neighboring time

windows. To handle association conflicts in the overlapping part of two windows, we use

a method similar to [82]. More specifically, the overlapped part is evenly divided into two
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parts. In the first half, tracking results produced by the previous time window is kept, while

in the second half, original input tracklets are used despite the association results from the

previous time window.

As low level information is not sufficient to distinguish targets under challenging

situations, we consider to integrate high-level information from social grouping behavior

into the cost matrix to regularize the solution. However, group configuration is often not

known a priori. Also, it is not fixed for the entire video, as people might change groups.

Therefore, we propose elementary groups that are learned and updated “online”, during

the tracking process to provide useful social grouping information while maintaining the

flexibility of the group structure. Two tracklets Ti and Tj are likely to correspond to the

same target if they satisfy the following constraints: 1) each of them forms an elementary

group with the same tracklet, namely, the same target; 2) the trajectory obtained by linking

Ti and Tj has a small distance to the group mean trajectory. The first constraint is based

on the observation that if two people are walking together for a certain time, then there

is high probability that they will still walk together after a short time period. The second

constraint prevents us from linking wrong pair of tracklets. Let Pij be the inferred high

level information for Ti and Tj , the tracklet association problem can be refined as:

A∗ = arg min
A∈Ω

∑
ij

aij(Sij − αPij), (2.3)

where α is a weighting parameter. It is selected by coarse binary search in only one time

window and kept fixed for all the others.

In the following, we introduce an online method for group analysis and obtain Pij

by making inferences from the grouping graph.

2.3.2 Learning of the Elementary Groups

In this part, we explain how the nodes (elementary groups) of the grouping graph

are created. A set of tracklets is generated after low level association, but only confident

tracklets are considered for grouping analysis, as there might be false alarms which may lead

to incorrect associations in the input tracklets. Based on the observation that inaccurate

tracklets are often the short ones, we define a tracklet as confident if it is long enough (e.g.,

it exists for at least 10 frames).
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Two tracklets Ti and Tj form an elementary group if they have the following

properties: 1) Ti and Tj have overlap in time for more than l frames (l is set to 5 in

our experiments); 2) they are spatially close to each other; 3) they have similar velocities.

Mathematically, we use Gij to denote the probability of Ti and Tj forming an elementary

group:

Gij = Pt(Ti, Tj) · Pd(Ti, Tj) · Pv(Ti, Tj), (2.4)

where Pt(·), Pd(·) and Pv(·) are the grouping probabilities based on overlap in time, distance

and velocity, respectively. Their definitions are given in Eq. (2.5), Eq. (2.6), Eq. (2.7).

Pt(Ti, Tj) =
Lij

Lij + l
, (2.5)

Pd(Ti, Tj) =
1

Lij

∑Lij

n=1
(1− 2

π
arctan(distn)), (2.6)

Pv(Ti, Tj) =
cosθ + 1

2
, (2.7)

where Lij is the length of overlapped frames for Ti and Tj , distn is the normalized center

distance for Ti and Tj on the nth overlapped frame, and θ is the angle between the average

velocities of the two tracklets during the overlapped frames. In our experiments, distn is

set as follows:

distn = ration · d/0.5(widthi + widthj), (2.8)

where ration is the size of the larger target over the size of the smaller target, d is the

Euclidean distance between the two object centers, and 0.5(widthi+widthj) is the smallest

distance in the image space for two people that walk side by side. The term ration prevents

tracklets as shown in Fig. 2.4 to be considered as a group, where the distance in the image

space is small while the distance in the 3D space is quite large.

We create a node for each pair of tracklets that have non-zero grouping probability

G. Thus, each node contains two tracklets/targets and is associated with a probability G,

its value indicates the similarity of motion patterns for these two tracklets during their

co-existence period.
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Figure 2.4: Examples of generating incorrect elementary groups if the distances are not
normalized.

Note that if two tracklets form an elementary group, their group mean trajectory

is obtained by computing the mean position using only their overlapping parts, as the

grouping is only meaningful for the overlapped time period. For example, if Ta and Tb

are in the same elementary group, this only indicates that Ta and Tb have similar motion

patterns for the period that they have time overlap. During the non-overlapping period, Ta

may form elementary groups with other tracklets/targets that are even in a different group

than the group of Tb. Such property makes the elementary group flexible to handle group

split and merge.

2.3.3 Group Tracking

The relationship between two elementary groups is identified by group tracking.

Inspired by association-based multi-target tracking, we define our group tracking as a prob-

lem of finding globally optimal associations between elementary groups based on the three

most commonly used features: time, appearance, and motion. More specifically, given a

set of elementary groups, we compute the linking cost for any two groups and obtain the

association results by finding the association set with the minimum total cost.

Let {T gi1 , T
gi
2 } denote the two tracklets in an elementary group gi. Given two

elementary groups gi and gj , assuming gi starts before gj , their linking cost is Cg(gi, gj) =

13



Cgt (gi, gj) + Cgappr(gi, gj) + Cgmt(gi, gj), where Cgt (·), Cgappr(·), and Cgmt(·) are linking costs

based on time, appearance, and motion, respectively. Similar to Eq. (2.2), let Φ be the set

of all possible group association matrices, then the group tracking can be formulated as the

following optimization problem:

Ag∗ = arg min
Ag∈Φ

∑
ij

aijC
g(gi, gj). (2.9)

Hungarian algorithm is used to solve this assignment problem.

Time Model for Group Tracking

For the linking cost based on time, we defined it as:

Cgt (gi, gj) =

 0, gi is not overlapped with gj ,

∞, otherwise,
(2.10)

where the non-overlapping constraint means any tracklet in gi has no time overlap with any

tracklet in gj .

If gi and gj contain the same two targets, there are only two matching possibilities:

1) T gi1 and T
gj
1 are the same target, T gi2 and T

gj
2 are the same target; 2) T gi1 and T

gj
2 are

the same target, T gi2 and T
gj
1 are the same target. We explain in detail for matching option

1), note that the computation for matching option 2) is similar. For each matching option,

we compute the linking cost based on appearance and motion, and use the one with the

smaller sum for Cgappr(gi, gj) + Cgmt(gi, gj). Also, the matching option is recorded for each

group association.

Appearance Model for Group Tracking

Let S(·) be the appearance similarity for two tracklets, the group linking cost

based on appearance is defined as:

Cgappr(gi, gj) = −ln(S(T gi1 , T
gj
1 ) + S(T gi2 , T

gj
2 )). (2.11)

As there might be appearance variations in a single tracklet due to occlusion and

lighting changes, it is hard to generate features that can robustly represent the appearance

of a target. In order to more reliably compute the similarity between two tracklets, we
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adopt the modified Hausdorff metric [41] which is able to compute the similarity of two sets

of images. Given a tracklet Ti that has length mi, let Ti = {di1, di2, ..., dimi
} where dix is the

xth estimation of Ti, then S(·) is defined as:

S(Ti, Tj) = min(
1

mi

∑
dix∈Ti

s(dix, Tj),
1

mj

∑
djy∈Tj

s(djy, Ti)), (2.12)

where s(d, T ) = maxd′∈T (scos(d, d
′)) is the Hausdorff similarity between an estimation and a

tracklet. A modified cosine similarity measure [78] scos(·) is used to compute the similarity

between two estimations, which is defined as

scos(u, v) =

∣∣uT · v∣∣
‖u‖ ‖v‖ (‖u− v‖p + ε)

, (2.13)

where u, v are the feature descriptors from two images, ‖·‖p is the lp norm (we set p = 2),

and ε is a small positive number to avoid dividing by zero. In our experiments, we use the

concatenation of HSV color histogram and HOG features as the feature descriptors.

Motion Model for Group Tracking

We measure the motion affinity of two elementary groups by the motion smooth-

ness between the group mean trajectories of the two corresponding elementary groups. The

motion cost for linking two group mean trajectories is defined as the negative logarithm of

the motion affinity:

Cgmt(gi, gj) =− ln(G(fpredict(gi,+∆t)− pgjhead,Σp) (2.14)

·G(fpredict(gj ,−∆t)− pgitail,Σp)),

where G(·) is a zero mean Gaussian distribution, ∆t is the time gap between gi and gj ,

fpredict(gi,±∆t) gives the location prediction for the group mean trajectory of gi after (+)

or before (−) ∆t, phead and ptail are the head and tail locations for a group mean trajectory.

In most previous tracking frameworks [121][97][14], targets are commonly as-

sumed to maintain linear motion pattern. Thus, fpredict(gi,+∆t) = pgitail + vgitail∆t and

fpredict(gj ,−∆t) = p
gj
head − v

gj
head∆t. However, in real world scenarios, it is common to ob-

serve several non-linear motion patterns in the scene. In order to produce more robust
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Figure 2.5: An example of estimating motion affinity using the non-linear motion map.

motion affinity for two elementary groups, we use the non-linear motion map [127] to ex-

plain large non-linear time gaps between group mean trajectories. Note that in [127] the

non-linear motion map is directly used to estimate the motion affinity of two tracklets,

whereas we use it for explaining non-linear gap between two elementary groups.

The non-linear motion map M is a set of all existing non-linear tracklets in current

time sliding window, and the tracklets are selected only from the confident ones. An example

of estimating motion affinity between ga and gb using a non-linear motion pattern Tx in the

motion map is illustrated in Fig. 2.5. The tracklet Tx ∈ M is a non-linear motion pattern

that has co-existed in time with both ga and gb and is a matched tracklet for the group

mean trajectories of ga and gb. Tx is a matched tracklet indicates that it is spatially close

to the elementary group and has similar motion direction as the elementary group. Then

a quadratic curve that best fits positions at the tail part of ga and the head part of gb is

estimated to fill the path between ga and gb. Therefore, each group association has a specific

quadratic function for its non-linear motion estimation. The estimated path is only valid if

Tx is a matched tracklet for it. The motion cost for linking ga and gb based on non-linear

prediction of locations can be computed according to Eq. (2.14).

For each pair of elementary groups, both linear and non-linear motion models
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are used, and the score with a lower cost is selected. Note that when only linear motion

model is used, any trajectory not following the pattern is penalized. With the non-linear

motion model, we are able to explain non-linear motion in the scene without producing

extra penalties for individuals who do not follow a linear motion pattern.

2.3.4 Creation of Virtual Nodes

Our goal is to encode grouping structure of the tracklets by the elementary group-

ing graph. With elementary groups as nodes of the graph, we define an edge between two

nodes indicating the existence of at least one common target in the corresponding two ele-

mentary groups. For simple cases where two nodes have one tracklet in common, we link

these two nodes directly, such as nodes g1 and g2, g4 and g5 shown in Fig. 2.3. For diffi-

cult cases where there are four different tracklets in two nodes, we use the results of group

tracking to find their relationship.

Suppose gi and gj are associated by group tracking, namely, these two elementary

groups contain the same two targets. We create two virtual nodes vp and vq, set their

grouping probability G to be the same as that of node gj , and build edges between gi and

the virtual nodes. Note that the virtual nodes can also be added in the other way (i.e.,

set G to be the same as gi and link the virtual nodes to gj), but these two options are

exclusive to each other. Each virtual node also contains two tracklets, one is a virtual

tracklet generated by linking a pair of matched tracklets in gi and gj , the other is the

tracklet left in gj . An example of virtual node creation is presented in Fig. 2.3. Based on

the association of g2 and g3, two virtual nodes v1 and v2 are created and connected to g2.

Two virtual nodes are used since there are two pairs of tracklets that need inference (edge

for g2 and v1 indicates inference for T2 and T8; edge for g2 and v2 indicates inference for T3

and T7). In the following, we show that by using the virtual node inference can be easily

done.

2.3.5 Inference from the Grouping Graph

In the grouping graph, each node is an elementary group and each edge indicates

that the two connected elementary groups have one target in common. According to the

observation that two people walk together at certain time are likely to walk together after

a short period, given two directly connected groups, we can infer the probability of the
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Figure 2.6: Inference for each edge in the grouping graph in Fig. 2.3: (a) edge between g1

and g2, (b) edge between g2 and v1, (c) edge between g2 and v2, (d) edge between g4 and
g5 (see Fig. 2.3 for group annotations). Black solid line represents interpolation between
the two tracklets that need inference, black dashed line is the group mean trajectory, and
colored dotted line indicates a virtual tracklet. Best viewed in color.

uncertain target in each group to be the same.

Suppose there is an edge between nodes gi and gj in the grouping graph, assuming

T i1 = T j1 = Tk, T
i
2 = Tl, and T j2 = Tm without loss of generality, the probability of T i2 and

T j2 contain the same target is defined as follows:

plm = 0.5(Gkl +Gkm)× TSimi(T{l,m}, G{k,l,m}), (2.15)

where TSimi(T{l,m}, G{k,l,m}) is the trajectory similarity between trajectory T{l,m} (created

by linking Tl and Tm) and the group mean trajectory G{k,l,m} (created by computing the

mean position of Tk and T{l,m}). We define the trajectory similarity as follows:
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Figure 2.7: An example of multiple inferences related to the same two tracklets. According
to the proposed elementary grouping model, a grouping graph (shown on the right) is created
based on the input tracklets (shown on the left). Thus, inferences based on the edge between
node g1 and g2 and the edge between node g3 and g4 are all related to tracklets T2 and T3.

TSimi(T,G) = 1− 2

π
arctan(Dist), (2.16)

where Dist is the average Euclidean distance of trajectory T and group mean trajectory G.

For edges connecting two normal nodes and edges connecting to one virtual node,

the same inference function can be used. The only difference is that the latter uses one

virtual tracklet and two normal tracklets as input. Examples of making inference for a

grouping graph are shown in Fig. 2.6. Note that there might be multiple inferences related

to the same two tracklets, as the same tracklet may be contained in multiple elementary

groups, as shown in Fig. 2.7. Therefore, Pij in Eq. (2.3) is the sum of all inferences that

relate to Ti and Tj :

Pij =
∑

pij . (2.17)

A summary of the proposed elementary grouping model is shown in Algorithm 1.

2.4 Experiments

We evaluate our approach on four datasets: the CAVIAR dataset [1], the Town-

Centre dataset [14], the PETS2009 dataset [45], and the UNIV dataset [44]. The popular
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Algorithm 1 Learning algorithm for elementary grouping model

Input: Tracklet set T = {T1, .., Tn}
Output: Inference matrix P , where Pij is the inference for Ti and Tj

1: P← empty set, Nodes← ∅, Edges← ∅
2: for i = 1, ..., n do

3: for j = i+ 1, ..., n do

4: if Ti and Tj are confident tracklets then

5: Gij = Pt(Ti, Tj)Pd(Ti, Tj)Pv(Ti, Tj)

6: if Gij > 0 then

7: Create node g = {Ti, Tj}
8: Nodes = Nodes ∪ {g}

9: for i = 1, ..., size(Nodes) do

10: for j = i+ 1, ..., size(Nodes) do

11: if ∃T ∈ gi, T = T
gj
1 or T = T

gj
2 then

12: Create an edge e{gi,gj} for gi and gj

13: Edges = Edges ∪ {e{gi,gj}}

14: Update Nodes and Edges according to group tracking

15: for all e ∈ Edges do

16: Compute pxy for the corresponding tracklet pair using Eq. (2.15)

17: Update P : Pxy = Pxy + pxy

evaluation metrics defined in [77] and the CLEAR MOT metrics defined in [17] are used for

performance comparison:

- GT the number of trajectories in the ground-truth.

- MT the ratio of mostly tracked trajectories, which are successfully tracked for

more than 80% of the time.

- ML the ratio of mostly lost trajectories, which are successfully tracked for less

than 20% of the time.

- Frag fragments, the number of times that a ground-truth trajectory is inter-

rupted.

- IDS ID switches, the number of times that a tracked trajectory changes its

matched id.
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- FP false positive, the number of tracker hypotheses for which no real object

exists.

- FN false negative, the number of times that targets have no matched hypothesis.

- MOTA multiple object tracking accuracy, a combined measure which takes into

account false positives, false negatives and identity switches.

- MOTP multiple object tracking precision, measures the alignment of tracking

results with respect to ground-truth.

The following tracking approaches are tested:

• Our Model (non-linear): the proposed elementary grouping model with non-linear

motion context for group tracking.

• Our Model (linear): the proposed elementary grouping model with only linear motion

model for group tracking.

• Baseline Model 1 : the basic affinity model.

• Baseline Model 2 : the proposed elementary grouping model without group tracking.

• SGB : the Social Grouping Behavior model [97].

For a fair comparison, the same input tracklet set, ground-truth, as well as basic

affinity model are used for all the methods. All the results for the SGB model are kindly

provided by the authors of [97]. Both quantitative comparisons with the state-of-the-art

methods and visual results of our approach are presented.

2.4.1 Implementation Details

Tracklets generation: Two different ways of generating tracklets are employed to

demonstrate that the proposed grouping model can be easily integrated into any DAT based

tracking system, regardless of the method used to extract the initial tracklets. In the first

method, targets on each frame are detected using the discriminatively trained deformable

part-based models [42]. We apply a nearest neighbor detection association method similar

to [94] to generate the initial tracklets. For each unassociated detection a Kalman filter

based tracker is initialized with position and velocity states. A detection A is associated to

a detection B in the next frame if B has the minimum distance to the predicted location

and overlaps at least 50% (measured as size(A ∩ B)/size(A ∪ B)) in size with detection
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A. Then the corresponding Kalman filter is updated with the newly associated detection.

The tracker terminates if no association is found for more than two consecutive frames, or

a detection is associated by multiple trackers.

In the second method, the popular HOG based human detector [34] is used. Track-

lets are generated by connecting detections in consecutive frames that have high similarity

in appearance and have large overlap in size. A simple two-threshold strategy [57] is used to

generate reliable tracklets. In our experiments, two detections are connected if and only if:

1) their affinity is higher than 90%; 2) their affinity is at least 20% larger than the affinities

of any other alternatives.

Basic affinity model: In order to produce reasonable basic affinity for a pair of

tracklets, three commonly used features are adopted: time, appearance and motion. The

basic affinity Pbasic for two tracklets Ti and Tj is defined as

Pbasic(Ti, Tj) = ft(Ti, Tj) · fappr(Ti, Tj) · fmt(Ti, Tj). (2.18)

The time affinity model ft assigns zero affinity to tracklet pairs whose time gap is greater

than a pre-defined threshold GAP , it is defined as

ft(Ti, Tj) =

 0, if Gapij > GAP ,

1, otherwise.
(2.19)

The appearance affinity model fappr is based on the Bhattacharyya coefficient of two average

HSV color histograms. For the motion affinity model fmt, the same method as shown in

Eq. (2.14) with linear motion for fpredict is used to measure the motion smoothness of two

tracklets in both forward and backward directions. Given Pbasic(Ti, Tj), the basic cost Sij

in Eq. (2.2) is computed as Sij = −ln(Pbasic(Ti, Tj)).

Cost matrix S: Due to the constraints in Eq. (2.1), the traditional pairwise as-

signment algorithm is not able to find the initial and the terminating tracklets. Therefore,

instead of using the cost matrix S (n×n) directly, we use the augmented matrix (2n× 2n)

proposed in [97] as the input for the Hungarian algorithm. This enables us to set a threshold

for association, a pair of tracklets can only be associated when their cost is lower than the

threshold. In our experiments, the threshold is set to −ln0.5 for all datasets.
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Table 2.1: Comparison of tracking results on CAVIAR dataset. The number of trajectories
in the ground-truth (GT) is 75.

Method MT ML Frag IDS FP FN MOTA MOTP Time

Baseline Model 1 74.7% 6.7% 11 12 1459 10827 79.2% 78.8% 1.5s

Baseline Model 2 78.7% 6.7% 10 8 1535 9134 82.0% 81.7% 4.2s

SGB Model [97] 89.3% 2.7% 7 5 1597 8497 83.0% 82.1% 50s

Our Model (linear) 90.7% 2.7% 6 5 1668 8081 83.5% 82.0% 4.6s

Our Model (non-linear) 90.7% 2.7% 6 5 1668 8081 83.5% 82.0% 6.1s

2.4.2 Results on CAVIAR Dataset

The videos in the CAVIAR dataset are acquired in a shopping center where fre-

quent interactions and occlusions occur and people are more likely to walk in groups. We

select the same set of test videos as in [97], which are the relatively challenging ones in the

dataset. We generate input tracklets using the first method described in Section 2.4.1. The

comparative results are shown in Table 2.1. Our proposed models (both linear and non-

linear) achieve the best overall tracking accuracy (MOTA) with the high tracking precision

(MOTP) as compared to the other alternatives. It is observed that the basic affinity model

(Baseline Model 1) can produce reasonable tracking results, and the performance is further

improved by integrating high-level grouping information (Baseline Model 2, Our Model (lin-

ear), and Our Model (non-linear)). Both linear and non-linear versions of our model have

comparable or better performances in most metrics as compared to the SGB model (e.g.,

better results in MT and Frag, the same results in ML and IDS), but with much less compu-

tational time. The comparisons between Baseline Model 2 and Our Model (both linear and

non-linear) demonstrate the importance of group tracking, as they reveal more grouping

information. Since most pedestrians in the videos are walking linearly along a corridor in

this dataset, there is barely any non-linear context in the scene. Therefore, the linear and

non-linear versions of our model have the same performance (except computational time)

on this dataset. Sample tracking results are shown in Fig. 2.8.
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Table 2.2: Comparison of tracking results on TownCentre dataset. The number of trajec-
tories in the ground-truth (GT) is 220.

Method MT ML Frag IDS FP FN MOTA MOTP Time

Baseline Model 1 76.8% 7.7% 37 60 2746 28493 56.1% 68.8% 350s

Baseline Model 2 78.6% 6.8% 34 46 3155 22236 64.3% 71.3% 457s

SGB Model [97] 83.2% 5.9% 28 39 4387 15871 81.8% 69.7% 4861s

Our Model (linear) 85.5% 5.9% 26 36 4105 14804 73.4% 69.2% 465s

Our Model (non-linear) 86.4% 5.9% 25 36 4938 13910 73.5% 69.2% 505s

2.4.3 Results on TownCentre Dataset

The TownCentre dataset has one high-resolution video which captures the scene of

a busy street. There are 220 people in total, with an average of 16 people visible per frame.

We test all models using the first 3 minutes of the video, and generate input tracklets using

the second method described in Section 2.4.1. The comparative results are shown in Ta-

ble 2.2. Similar to the observations from Table 2.1, Table 2.2 suggests that the performance

of our method is consistent on both datasets. As there are some non-linear motion in this

dataset, the tracking performance is slightly improved by the incorporation of non-linear

context. Sample tracking results are shown in Fig. 2.9.

2.4.4 Results on PETS2009 Dataset

We select sequence S2L2 in the PETS2009 dataset to evaluate the performance

of the proposed method. This sequence captures the outdoor scene of a campus from

an elevated viewpoint. Unlike the widely used sequence S2L1, sequence S2L2 is more

challenging as it has higher crowd density (up to 33 targets per frame) and includes many

non-linear motion patterns. A rectangular area is defined in the world coordinates and

used as the boundary of the tracking area (as shown in Fig. 2.10), trajectories outside the

area are excluded from our solution. The first method described in Section 2.4.1 is used to

generate input tracklets. The comparative results are shown in Table 2.3. We can see that

when many non-linear walking patterns present in the dataset, significant improvements

are achieved by integrating non-linear motion context into the tracking system. Our model
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Figure 2.8: Examples of tracking results of our approach on CAVIAR dataset. The same
color indicates the same target. Best viewed in color.

with non-linear context gives the best MOTA and has a higher MT (33.8%) and a lower ML

(35.1%) compared to the SGB method (MT: 23%, ML: 41.9%) and Our Model (linear) (MT:

28.4%, ML: 44.6%) that only consider linear motion during grouping. Also the number of

fragments and ID switches are greatly reduced when social grouping and non-linear context

are employed. Sample tracking results of the proposed method with non-linear motion

context are shown in Fig. 2.10. In the first row of Fig. 2.12 we present tracking examples of

our method with linear motion model on the same sample sequence as shown in Fig. 2.10.
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Figure 2.9: Examples of tracking results of our approach on TownCentre dataset. With
grouping information, targets (199 and 201) pointed by arrows are correctly tracked under
frequent occlusions. The same color indicates the same target. Best viewed in color.
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Figure 2.10: Examples of tracking results of our approach on PETS2009 dataset. Track
targets (47, 51, 69) with non-linear motion successfully. Best viewed in color.

Table 2.3: Comparison of tracking results on PETS2009 dataset. The number of trajectories
in the ground-truth (GT) is 74.

Method MT ML Frag IDS FP FN MOTA MOTP Time

Baseline Model 1 14.9% 64.9% 120 88 271 5414 32.4% 60.5% 297s

Baseline Model 2 21.6% 50% 104 102 436 4773 37.8% 59.7% 381s

SGB Model [97] 23% 41.9% 95 91 691 3828 46.0% 59.9% 4962s

Our Model (linear) 28.4% 44.6% 93 97 683 3987 44.1% 58.8% 477s

Our Model (non-linear) 33.8% 35.1% 79 89 729 3081 54.3% 60.1% 612s
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Table 2.4: Comparison of tracking results on UNIV dataset. The number of trajectories in
the ground-truth (GT) is 40.

Method MT ML Frag IDS FP FN MOTA MOTP Time

SGB Model [97] 75% 5% 38 7 213 443 96.7% 82.9% 47s

Our Model (linear) 87.5% 5% 26 5 224 287 97.4% 83.1% 3.9s

Our Model (non-linear) 87.5% 5% 26 5 224 287 97.4% 83.1% 4.2s

2.4.5 Results on UNIV Dataset

To further evaluate the effectiveness of the proposed method in handling dynamics

of social groups (e.g., group merge and split), four video sequences are collected from an

elevated viewpoint that allows the capture of rich group evolving scenarios. Each video is

about 30 seconds long with an average of 9 pedestrians visible in each frame, some sample

frames are shown in Fig. 2.11. The input tracklets for this dataset are produced using the

second method described in Section 2.4.1. Multi-target tracking is carried out using only

the grouping information, namely, the linking costs for tracklet pairs are based only on Pij

in Eq. (2.3). The comparative results are shown in Table 2.4. Our model with both linear

and non-linear motion have the same performance, as this dataset contains little non-linear

motion pattern. Compared to the SGB model which assumes a fixed number of groups in

the scene, our grouping model improves MT by 12.5%, reduces the fragments by 31.5%,

and also achieves higher MOTA and MOTP. The results imply that our grouping model

is better at handling group dynamics in the scence, as it focuses on analyzing elementary

groups instead of the complete groups. Sample tracking results of the proposed method are

shown in Fig. 2.11. In the second row of Fig. 2.12 we show tracking examples of SGB model

on the same sample sequence as shown in Fig. 2.11.

2.4.6 Computational Time

The computational time is greatly affected by the number of targets in a video and

the length of the video. All methods are implemented in Matlab without code optimization

or parallelization and tested on a PC with 3.0 GHz CPU and 8 GB memory. The average

computational times for all the datasets are shown in the last columns in Table 2.1-2.4. Note

that the computational times for object detection, tracklet generation, and appearance and
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Figure 2.11: Examples of tracking results of our approach on UNIV dataset. Using only
the grouping model, we correctly tracked targets (1, 2, 3, 4) in situations where the group
split and merge occur. The same color indicates the same target, best viewed in color.
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Figure 2.12: Examples of tracking results from referenced models. First row, Our Model
(linear) on PETS2009 dataset. Targets (48, 72) cannot be correctly tracked, as tracklet
associations generating non-linear motion pattern are penalized when only linear motion
model is used. Second row, SGB model on UNIV dataset. Trajectories of targets (1, 2)
cannot be fully recovered, because SGB model is not able to link tracklets that are not
assigned to the same group. Best viewed in color.
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motion feature extraction are not included in the above estimates of computational time. It

is clear that Our Models (both linear and non-linear) improve the computational efficiency

by an order of magnitude compared with the SGB model which also uses social grouping

information in tracking. For the relatively short videos (30 to 66 seconds) in CAVIAR and

UNIV dataset, our approach takes 292 fps for the linear version and 235 fps for the non-

linear version on average. For the video in TownCentre (3 minutes) the computational time

is 10 fps for the linear version and 9 fps for the non-linear version. When our approach is

applied on the high crowd density video in PETS2009, the computational time is 0.9 fps for

the linear version and 0.7 fps for the non-linear version. It is observed that integrating non-

linear context into the motion model increases the computational cost, but still our model

is significantly more efficient than the SGB model and produces better tracking results.

From a theoretical perspective, the optimization of SGB is a gradient-based iter-

ative method. To compute the gradient, an alternative approach involving the Hungarian

algorithm and K-means clustering is applied. K-means clustering needs multiple initial

starts to reach a reasonable local optimum, which leads to high computational cost. Our

solver, on the other hand, has a closed form solution based only on the deterministic Hun-

garian algorithm and thus can be computed much more efficiently.

2.5 Conclusions

In this work we have presented an online approach that integrates high level group-

ing information into the basic affinity model for multi-target tracking. The grouping behav-

ior is modeled by a novel elementary grouping graph, which not only encodes the grouping

structure of tracklets but is also flexible to cope with the evolution of group (i.e., group

split and merge). We have used non-linear motion context explicitly for discovering rela-

tionships between elementary groups. Experimental results on four challenging datasets

demonstrated the superior tracking performance by integrating elementary grouping infor-

mation. As compared to the state-of-the-art social grouping model, our approach provides

better performance in a more computationally efficient manner. However, if there is not

much grouping or all the targets follow a linear motion pattern in the input video, the in-

tegration of the elementary grouping model will have limited improvement on the tracking

performance. Possible future work would be extending the elementary grouping model to

multi-person tracking in multiple cameras.
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Chapter 3

Multi-Target Tracking in

Non-overlapping Cameras Using a

Reference Set

3.1 Introduction

As the demand for surveillance cameras at public areas (e.g., airports, parking

lots, and shopping malls) is rapidly growing, a major effort has been underway in the vision

community to develop effective and automated surveillance and monitoring systems [102,

56, 117, 106, 98]. In most cases, it is not feasible to use a single camera to cover a complete

area of interest, and using multiple cameras with overlapping field-of-views (FOVs) has

high cost in both economical and computational aspects. Therefore, camera networks with

non-overlapping FOVs are preferred and widely adopted in real world applications.

Multi-target tracking is an extensively exploited topic in the surveillance domain,

as it is the foundation for many higher level applications, such as anomaly detection, activity

detection and recognition [145], and human behavior understanding [24]. The goal of multi-

target tracking is to estimate the trajectories of all moving targets and keep their identities

consistent from frame to frame. In single camera tracking, successive observations of the

same target often have a large proximity in appearance, space and time [97, 28]. However,

it is not the case for tracking people across cameras with non-overlapping FOVs. The

appearance of the same target may have a large difference even in two adjacent cameras
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Figure 3.1: Sample frames from each camera view of the MultiCam dataset. Bounding
boxes with the same color indicate the same target. Note that illumination may change
drastically within camera and across cameras. As a result, the appearance of the same
target may vary significantly.

due to a sudden change in illumination (e.g., from outdoor to indoor). Other aspects,

such as variations in pose (e.g., frontal view to rear view) and camera imaging conditions

(e.g., low resolution and noise) further complicate the tracking task in multiple cameras.

In Fig. 3.1 some sample frames are shown in which the appearance of the same target in

different camera views differs significantly.

A possible way to tackle the appearance difference in multiple cameras is to learn

a Brightness Transfer Function (BTF) [50, 96, 63, 30, 40, 31] that is a mapping of color

models between a pair of cameras. However, BTF is not suitable for a camera network that
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has a large within camera illumination change. For example, suppose camera i and camera

j both have dark and bright regions in their camera views. A BTF that is able to map

colors in dark region of camera i (low brightness) to colors in bright region of camera j

(high brightness) will not work well for mapping colors in bright region of camera i (high

brightness) to dark region of camera j (low brightness).

To address this problem, we propose a novel reference set based appearance model

to estimate the similarity of multiple targets in different cameras. Given the intra-camera

tracking results of all involved cameras, the goal of multi-target tracking across cameras

is to associate tracks in different cameras that contain the same person. Our method is

inspired by the recent advances in face verification/recognition [103, 133, 8] and person

re-identification [9] in which an external reference set or a library is used to facilitate the

matching process of the same objects imaged under different conditions. The reference set

contains the appearance of individuals in different camera views under different imaging

conditions. Namely, there are multiple appearance instances for each individual in the

reference set. During tracking, instead of comparing the appearance of two targets directly,

targets from different cameras are compared to the individuals in the reference set. The

individuals in the reference set act like basis functions and for a given target, its similarity

to each of the individuals in the reference set are used as its new feature representation

instead of the original low level color or texture features.

In order to create a comprehensive representation for each target, besides color

features, we also extract shape and texture features from different locations on the body of

a target. The discriminative power for each feature is learned using the reference set, and

features with high discriminative power contribute more to the similarity score.

The rest of this chapter is organized as follows: an overview of the related work and

contributions of this chapter are provided in Section 3.2. Section 3.3 describes the proposed

reference set based appearance model for multi-target tracking across non-overlapping cam-

eras. Experimental results are shown in Section 3.4. Finally, Section 3.5 concludes this

chapter.
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3.2 Related Work and Contributions

3.2.1 Related Work

In general, methods for tracking multiple targets in multiple cameras can be cat-

egorized into two groups according to the structure of camera networks: methods for over-

lapping FOVs and methods for non-overlapping FOVs. Techniques used for tracking in

these two groups differ significantly. For instance, tracking in cameras with overlapping

FOVs normally require explicit camera calibration [60, 25, 38, 18] while it is not a necessity

for tracking with non-overlapping FOVs. As this chapter focuses on inter-camera tracking

with non-overlapping FOVs, related work for tracking in overlapping camera views is not

discussed.

To cope with the illumination change in different camera views, BTF has been

studied extensively [50, 96, 63, 30, 40, 31]. An incremental unsupervised learning method is

proposed in [50] to model color variations and posterior probability distributions of spatial-

temporal links between cameras in parallel. The model becomes more accurate over time

with accumulated evidence. In [96] a cumulative BTF is proposed to map color between

different cameras and significant improvement over other BTF-based methods is reported.

In [63] the inter-camera relationships is learned using multivariate probability density of

space-time variables. It is shown that BTFs from one camera to another camera lie in a low

dimensional subspace and this subspace is learned for appearance matching. In [30], BTFs

are obtained from the overlapped area during tracking to compensate for the color difference

between camera views. In addition, the perspective difference is compensated with tangent

transfer functions (TTFs) by computing the homography between two cameras. In [40]

different methods are compared to evaluate the color BTFs between non-overlapping cam-

eras and experimental results show BTFs have limitations in people association when a

new person enters in camera’s FOV. In [31], to track people across non-overlapping cam-

eras, a camera link model including BTF, transition time distribution, region mapping

matrix/weight, and feature fusion weight is estimated in an unsupervised manner.

In [54] a combined maximum a posteriori (MAP) formulation is proposed to jointly

model multi-camera reconstruction and global temporal data association, in which a flow

graph is constructed to track objects. In [67] information from a crowd simulation is inte-

grated into a multi-camera multi-target tracking framework to improve the tracking accu-

racy. In [84] a data association approach based on principal axis and a joint probabilistic
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model are applied for multi-object tracking in multi-cameras to overcome occlusion in cam-

era views. In [85] a metric based on three performance indexes is developed to evaluate the

performance of multi-camera tracking algorithm based on Rao-Blackwellized Monte Carlo

data association (RBMCDA). In [112] a track-before-detect particle filter (TBD-PF) is used

to increase track consistency against noisy data for multi-camera multi-target fusion and

tracking. In [86] a modified Social Force Model (SFM) with a goal-driven approach for

multi-camera tracking is proposed. This work takes into account key regions as potential

intersections where people can change the direction of motion. In [29] inter-camera trans-

fer models containing spatio-temporal cues and appearance cues are proposed, which are

learned by a topology recovering method and a color characteristic transfer (CCT) method

for tracking across non-overlapping cameras.

Recently, the reference-based idea has been used in different fields of computer vi-

sion, for example, face verification [103], face recognition [133], and person re-identification [9].

The reference-based framework is data-driven in which different entities to be matched are

first described using the samples in the reference set and then reference-based descriptors

are generated. Therefore, a direct comparison of objects (e.g., faces at different poses) is

avoided. In [103], pose, illumination, and expression invariant face verification is achieved

by using a library of faces in various appearances to describe a given face based on the in-

sight that it is most meaningful to compare faces with the same imaging conditions. In [133]

an “Associate-Predict” model is proposed which is built on a generic identity data set that

contains multiple images with large intra-person variation. Given a face, it is first associ-

ated to alike identities in the data set and then its appearance under settings of another

input face is predicted. In this way the intra-personal variation is handled. Recently, to

improve person re-identification in different camera views, a reference set is used to gener-

ate reference-based descriptors for probe and gallery subjects, bypassing the need to direct

compare the features from subjects with significant appearance change [9].

3.2.2 Contributions of This Chapter

The contributions and novelty of this chapter are:

• A reference set based appearance model is proposed to mitigate track association

ambiguities caused by cross camera illumination and pose variations.

• Each track is divided into several subtracks based on time constraint and appearance
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similarity to provide multiple appearance instances of a target.

• Various appearance features are extracted from different locations of a target, and

their discriminative powers are learned and used to build a robust appearance model.

• Two real-world surveillance datasets are used for evaluation and extensive experiments

are carried out to validate the effectiveness of the proposed method.

3.3 Technical Approach

3.3.1 Formulation of the Multi-Camera Tracking Problem

Suppose we have m cameras C1, C2, ..., Cm with non-overlapping FOVs. Given the

tracking results in each single camera, we can generate a set T = {T1, .., TN} that contains

all within-camera tracks. A track Ti is a consecutive sequence of detections that contain

the same target, in a time interval [tbegini , tendi ], and its corresponding camera is denoted as

C(Ti). The problem of tracking across cameras is to find out tracks that contain the same

target, given certain spatio-temporal constraints. Let association aij define the hypothesis

that track Ti and Tj contain the same target, with Ti occurring before Tj and C(Ti) 6= C(Tj)

(associating tracks that contain the same target in the same camera is not considered in

this chapter). A valid association matrix A is defined as follows:

A = {aij}, aij = {
1 if Ti is associated to Tj

0 otherwise
(3.1)

s.t.
∑
i

aij = 1 and
∑
j

aij = 1

The constraints for matrix A indicate that each track should be associated to and associated

by only one other track.

The cost Sij for linking track Ti and Tj is based on time, appearance, and camera

topology constraints, as defined below:

Sij = Time(Ti, Tj) + Topo(Ti, Tj) +Appr(Ti, Tj) (3.2)

where Time(·), Topo(·), and Appr(·) are the time, topology, and appearance models, re-

spectively. The time model is defined as:
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Time(Ti, Tj) = {
0 if 0 < Gapij < GAP

∞ otherwise
(3.3)

where Gapij is the time difference between Ti and Tj , and only when Gapij is smaller than

the pre-defined maximum allowed gap GAP the two tracks can be linked. The topology

model is similar to the time model, which gives the restriction that Ti can be associated

with Tj only when there is a path allowing people to walk between camera C(Ti) and C(Tj)

without entering the view of any other cameras.

Let Ω be the set of all possible association matrices, the task of multi-target track-

ing in non-overlapping camera views is formulated as the following optimization problem:

A∗ = arg min
A∈Ω

∑
ij

aijSij (3.4)

This assignment problem can be solved by Hungarian algorithm [89] in polynomial time. In

order to reduce the computational cost, a pre-defined time sliding window is used, and the

association is carried out independently in each time sliding window. Instead of using the

cost matrix S directly, we use the augmented matrix S′ (details for the augmented matrix

can be found in [97]) as the input for the Hungarian algorithm. This augmented matrix

enables us to set a threshold for association, a pair of tracks can only be associated when

their cost is lower than the threshold. In the following, we present the reference set based

appearance model in detail.

3.3.2 Reference Set Based Appearance Model for Across Camera Tracks

The basic idea of reference set based appearance model is illustrated in Fig. 3.2.

A reference set RefSetij is constructed for a pair of cameras Ci and Cj . It contains a set of

reference subjects R = {R1, R2, ..., Rn} that appear in both Ci and Cj . The tracks for all

the reference subjects that appear in Ci form RefSetiij , and the tracks for all the reference

subjects that appear in Cj form RefSetjij , as shown in Fig. 3.2. Given two tracks Tp and Tq

with Tp captured in the view of camera Ci and Tq captured in the view of camera Cj , the

appearance similarity between these two tracks is not computed by comparing Tp and Tq

directly. Instead, Tp is compared with all the tracks in RefSetiij and Tq is compared with

all the tracks in RefSetjij , and their similarities with the reference set are used to calculate
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Figure 3.2: Illustration of the reference set based appearance model. For a pair of cameras
Ci and Cj , a reference set RefSetij (the middle part) is constructed containing a number of
reference subjects appearing in both Ci and Cj . When comparing track T1 in Ci with tracks
T2 and T3 in Cj using their color histograms directly, T3 is more likely to be matched with
T1. Even though they contain totally different targets, the significant illumination change
in Ci makes T1 looks much darker than its actual appearance. Instead of comparing the
tracks directly, each input track is described by all the reference subjects. The description
is a vector of similarities ordered by the identities of reference subjects, and each similarity
is generated by comparing the input track with one reference subject. The right part of this
figure shows the similarity plots obtained by comparing T1, T2, T3 with R1, R2, and R3,
respectively. Note that both the input and the reference subjects have multiple appearance
instances (only three instances are shown for illustration purpose) that cover the appearance
changes of corresponding targets in a particular camera. This indirect match enables us
to handle within camera illumination and pose variation. After representing T1, T2 and T3

using the reference set (the right part), it is clear that T1 is more similar to T2 than to T3.

the similarity of Tp and Tq. In other words, track Tp and Tq are compared with other tracks

that undergo the same illumination conditions as Tp and Tq, and if they are the tracks of

the same target, they should have high similarities with the same set of reference subjects.

Otherwise, they are more likely to be the tracks that contain different targets.

In order to handle within camera illumination and pose variation, each track is

further divided into several short subtracks (details for track division are presented in Sec-

tion 3.3.3) such that detections in each subtrack are visually very similar. After track
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division, each subtrack is an appearance instance for the target under certain illumination

condition. Features extracted from each detection in the subtrack are fused into a single set

of features, which is used as one representation for the target contained in the subtrack. By

this means, we generate multiple representations for each target that covers the appearance

changes of that target in a certain camera.

To represent a track by its corresponding reference set, we need to formulate a way

of comparing tracks that are obtained in the same camera. When comparing the similarity

of two tracks Ta and Tb in the same camera, every subtrack in Ta is compared with every

subtrack in Tb. Let tka denotes the k-th subtrack in track Ta, sim(tx, ty) be the similarity of

two subtracks, and Na and Nb be the number of subtracks in Ta and Tb, respectively. The

similarity score for Ta and Tb is defined as follows:

Sim(Ta, Tb) =
1

Na

Na∑
i=1

max({sim(tia, t
j
b), j ∈ [1, Nb]}) (3.5)

Concretely, each tia is compared with all subtracks in Tb, and the maximum score is used as

the similarity between tia and Tb. Similarity between Ta and Tb is the average of all these

maximum scores. The appearance model used to compute sim(tia, t
j
b) is explained in detail

in Section 3.3.4.

In the reference set, each reference subject may have several tracks in the same

camera (e.g., walking towards and away from the camera). The similarity between a track Ti

and a reference subject Rl is the maximum of the similarities of Ti and all the tracks for Rl.

This lays the strength of our reference set based appearance model - tracks from different

cameras that contain the same target under various pose and illumination conditions have

a chance to get high similarity scores with similar reference subjects. In other words, each

reference subject is an indirect feature that describes some characteristics of the target’s

appearance, and having the tracks in two different cameras compared to the same set of

reference subjects enables us to better compare the similarity of these two tracks. Besides

variation in illumination conditions, difference in poses are also taken care of by the presence

of various appearance instances in each reference subject.

After comparing tracks Tp and Tq with each reference subject in its corresponding

reference set, we get two vectors of similarities ordered by the identities of reference subjects,

as shown in Fig. 3.2. Let Ref iij(Tp) and Ref jij(Tq) be the representations of Tp and Tq by the

reference set RefSetij , the similarity of Tp and Tq is computed using cosine similarity. As it
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Figure 3.3: An example of track division (only detections on key frames are shown). Detec-
tions in the same subtrack have higher appearance similarities as compared to the detections
in other subtracks.

is widely used in tracking, negative logarithm is applied to similarity/linking probability to

obtain the linking cost, which is then minimized [28, 129, 53]. In order to get the appearance

model, we use the negative logarithm function to calculate the cost, as defined in Eq. (3.6):

Appr(Tp, Tq) = − ln(cos(Ref iij(Tp), Ref
j
ij(Tq))) (3.6)

where cos(·, ·) is the cosine similarity between two vectors. We also tested other similar-

ity/distance measures (i.e., χ2 distance, l2 norm). Among them, cosine similarity and l2

norm provide comparable performance and are better than χ2 distance. As cosine similarity

is computationally more efficient, it is chosen as the similarity measure in our experiments.

3.3.3 Track Division

In a track, the appearance of a target may vary with time (see Fig. 3.3), but

the detection responses that are obtained in consecutive frames often possess high visual

similarity. For efficient computation and to create concise representation of a track, we

further divide each track into several subtracks and consider every subtrack as an appearance

instance of a target. An example of track division is shown in Fig. 3.3
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We assume that a target cannot have large pose variation in a very short period of

time ∆t (0.5s in our experiments). Track division starts from the beginning of a track and

subtracks are generated one by one. Let len be the number of frames included in ∆t (about

10 in our experiments). The first detection of a track is the appearance reference to form

the current subtrack. Specifically, with respect to the detection in the first frame as the

reference detection, the detections from the following frames within ∆t are compared to the

reference detection. As long as the detection similarities are above a pre-defined threshold

(0.9 in our experiments), the corresponding frames are kept in this subtrack. Thus, the

number of detections in a subtrack is smaller or equal to len. Once a detection’s similarity

to the reference detection is below the threshold or the number of detections in the current

subtrack exceeds len, this detection becomes a new reference detection and detections in

latter frames are compared to this reference detection to form a new subtrack. Here color

histogram is used to measure the detection similarity.

3.3.4 Appearance Model for Within Camera Subtracks

To build a comprehensive and strong appearance representation, different local

and global features are extracted to describe a tracked target. Three kinds of widely used

appearance features: HSV color histograms [116], Local Binary Pattern (LBP) [81], and

Histogram of Gradient (HOG) [82], are used to capture color, texture, and shape information

of a target. Given a detection response, each feature is extracted at different scales and

locations to increase the descriptive ability. Specifically, each detection is divided into an

upper and a lower part with equal height to provide coarse representations of the torso and

the legs of the contained target, as shown in Fig. 3.4. Therefore, nine feature descriptors

(BodyHSV, BodyLBP, BodyHOG, TorsoHSV, TorsoLBP, TorsoHOG, LegsHSV, LegsLBP,

and LegsHOG) are extracted from each detection response. As there are several detection

responses in one subtrack, features of the same type are averaged to construct a concise

representation for each subtrack.

Given two subtracks ta and tb, we can obtain a similarity score by comparing one

of the nine appearance feature descriptors. Let xi denotes a pair of subtracks (ta, tb), a

feature vector f(xi) is generated by concatenating the nine similarity scores. We consider

each element in this vector as input to a weak classifier. For color histograms and HOG
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Figure 3.4: Features (HSV color histogram, LBP, HOG) are extracted from different loca-
tions of the detection response: torso, legs and body. The torso part is the upper half of
the detection and the legs part is the lower half of the detection.

features, we use Bhattacharyya coefficient [33] to measure the similarity. For LBP features,

χ2 distance is used as measurement.

Our goal is to design a discriminative appearance model that gives high similarity

for a pair of subtracks that contain similar target while assigning low similarity for two

subtracks that contain dissimilar targets. Multiple feature learning algorithms are evaluated

(see Section 3.4.3). Due to its superior performance, AdaBoost is selected to learn the

appearance model for within camera subtracks, namely, sim(·) in Eq. 3.5. AdaBoost consists

of a number of weak classifiers and adaptively learns a strong classifier that is a linear

combination of all weak classifiers and minimizes the overall error. In our appearance

model, the similarity computed from each feature is used in a weak classifier, and AdaBoost

assigns a weighting parameter for each feature during the learning process. We formulate

the learned appearance model as follows:

sim(ta, tb) = H(ta, tb) =
T∑
t=1

αtht(ta, tb) (3.7)

where t indicates the iteration index, αt is the weighting parameter and ht(ta, tb) is a weak

classifier based on one of the features extracted from subtracks ta and tb.

For each camera, we train such a discriminative model using data in the reference

set collected from the corresponding camera. A pair of subtracks xi = (tx, ty) is a positive

sample if tx, ty ∈ Ti, and tx 6= ty, and it is a negative sample when tx ∈ Ti, ty ∈ Tj and

Ti 6= Tj . The feature of a training sample is an 9-dimensional vector as explained above.
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Algorithm 2 Learning Feature Discriminality

Input:

S+ = {(xi,+1)}: positive samples

S− = {(xi,−1)}: negative samples

F = {f(xi)}: feature pool

T : number of iterations

K: number of weak classifiers

1: Set wi = 1
2|S+| , if xi ∈ S+; wi = 1

2|S−| , if xi ∈ S−

2: Set t = 1, k = 1

3: for t ≤ T do

4: for k ≤ K do

5: r =
∑

iwiyihk(xi)

6: αk = 1
2 ln(1+r

1−r )

7: Choose k∗ = argmink
∑

iwiexp[−αkyihk(xi)]
8: Set αt = αk∗ and ht = hk∗

9: Update wi ← wiexp[−αtyiht(xi)]
10: Normalize wi

Output:

H(x) =
∑T

t=1 αtht(x)

We summarize the learning procedure in Algorithm 2.

3.4 Experiments

Compared to tracking in single camera, there are fewer publicly available datasets

designed for real-world multi-camera tracking. In this work, we use two datasets, MultiCam

dataset and VideoWeb dataset [37], to evaluate the performance of our proposed model.

3.4.1 Implementaion Details

Targets in each frame are detected via the discriminatively trained deformable

part models [43]. We use the multi-target tracking method in [57] to produce reliable intra-

camera tracks. It is a hierarchical association approach. First, tracklets are generated by
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connecting detections in consecutive frames that have high similarity in position, appearance

and size using a two-threshold strategy. Then, these tracklets are further associated based

on more complex affinity measures to recover the full trajectory of a target.

3.4.2 Baseline Models and Metrics

In this evaluation, our main focus is to associate tracks that contain the same

target in different camera views given certain spatio-temporal constraints. We apply our

reference set based appearance model with weighted features (RefSet2) on the test set. We

introduce three baseline models for comparison: (1) using Bhattacharyya distance of holistic

color histograms directly to measure the appearance similarity (Color); (2) generating ap-

pearance model based on the BTF model in [63] (BTF); (3) our proposed reference set based

appearance model with only holistic color histograms as appearance feature (RefSet1).

For each model, various thresholds (ranging from 0.2 to 0.6) are tested for the

augmented cost matrix, and the best result is chosen. Two metrics are used for evaluation:

ErrorRate =
Error

Nresult
, MatchRate =

Match

NGT
(3.8)

where Error and Match are the number of incorrectly and correctly associated track pairs

in the result. Nresult and NGT are the number of track associations in the result and the

ground-truth, respectively.

3.4.3 Evaluation of Feature Learning Algorithm

In order to find a suitable learning algorithm to build discriminative appearance

models for within camera subtracks, we compare the performance of multiple alternatives,

including: AdaBoost [47], GentleBoost [47], LogitBoost [47], RUSBoost [104], and Multiple

Kernel Learning (MKL) [115]. The reference set is used as the dataset to test each algo-

rithm. Root Mean Squared Error (RMSE =
√

1
n

∑n
t=1(ŷt − yt)2) is used for performance

evaluation, it measures the differences between the ground truth yt and the prediction re-

sults ŷt generated by the learned appearance model. The final result is the average of

five-fold cross-validation. Comparison of different algorithms on MultiCam and VideoWeb

datasets are shown in Table 3.1. As can be seen, AdaBoost gives the smallest error on

both datasets. With respect to model training time, on MultiCam dataset, the boosting

algorithms take less than 2 seconds, and the average training time for MKL is 181 seconds.
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Table 3.1: RMSE comparison of different feature learning algorithms on MultiCam and
VideoWeb datasets.

AdaBoost GentleBoost LogitBoost RUSBoost MKL

MultiCam 0.228 0.303 0.235 0.249 0.240

VideoWeb 0.387 0.456 0.422 0.468 0.394

Reference Set Test Set 
CAM1 CAM2 CAM3 CAM4 CAM5 CAM1 CAM2 CAM3 CAM4 CAM5 

P1 

P2 

Figure 3.5: Detection examples of participants that appear in both the reference set and
the test set for MultiCam dataset.

On the VideoWbe dataset, the training time for MKL is also about two orders of magnitude

more than that of the boosting algorithms. Taking both performance and computational

time into account, we select AdaBoost as the feature learning algorithm for the appearance

model.

3.4.4 Results on MultiCam dataset

We use five cameras (four indoor and one outdoor) to build a real-world non-

overlapping multi-camera network, the topology of this camera network is presented in

Fig. 3.6 and sample frames from each camera are shown in Fig. 3.1. All the videos (five

in total) are taken during the same time period and the length of each video is about 20

minutes. The resolution of each frame is 704×480 and the frame rate is 20fps. The number

of participants involved in each video ranges from 7 to 10. We refer this dataset as the
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Figure 3.6: Topology for cameras used in MultiCam dataset.

MultiCam dataset in this chapter.

The setting of this dataset is very challenging for multi-camera tracking due to

the following reasons:

1. The outdoor camera view contains drastic illumination changes, and there exists light-

ing variations for indoor camera views as well. This makes it unreliable to use a single

transformation to map colors in a pair of cameras, such as BTFs [63].

2. The number of cameras involved in this dataset is greater than most of the previous

work that normally use 2-3 cameras [96] [63].

In order to construct the reference set, another set of data is used. It is collected

using the same camera network and under similar illumination condition but with partici-

pants either not included in the test set or included in the test set but with very different

clothes. There are two participants that appear in both the reference set and the test set,

as shown in Fig. 3.5. As the appearances of the same participant have a great difference

even in the same camera, each of the trained appearance model classifies them as negative
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(i.e., two different people) with more than 90% confidence. The data collected for each

reference subject contains the appearance change of the target under different illumination

conditions and various poses. The number of participants involved in each reference set

ranges from 9 to 11. We manually labeled the ground-truth which consists of 220 track

associations (there are 368 single camera tracks in total).

A quantitative comparison between the proposed model and baseline models is

presented in Fig. 3.7. It can be observed that when using the reference set based appearance

model with weighted features, we achieve the highest match rate and the lowest error rate

compared to all the baseline models. Compared with BTF, the RefSet2 model increases

the match rate by 23% and reduces the error rate by 6%. Even with color histograms only,

the reference set based appearance model (RefSet1) provides better performance than BTF

in terms of both the error rate and the match rate. The comparison between RefSet1 and

RefSet2 demonstrates that by using features of various types and extracted at different

locations we can get more information than using global color hitograms only, as they

capture the appearance information that is overlooked by color hitograms. It is worth

noting that although the error rate is high even for RefSet1 and RefSet2 (more than 50%),

these results are obtained by using appearance information as the only visual cue.

In addition, to evaluate the contribution of camera topology knowledge to the over-

all tracking system, we further conducted experiments in which the topology information is

not used for computing the linking cost in Eq. 3.2. With such relaxation, more track pairs

are included in each time sliding window as potential association candidates. Therefore,

the error rates increase by at least 5% for all the methods, and the match rates decrease by

2.5% on average, as shown in Fig. 3.7. These results demonstrate the importance of camera

topology information as prior knowlege for a tracking system, as it is helpful for mitigating

unnecessary track association ambiguities ahead of time.

As another kind of clue, motion information plays an important role in multi-

target tracking. For example, in a time sliding window, a track in CAM4 can be associated

with tracks in both CAM3 and CAM5 based on the camera topology (Fig. 3.6). Given

the knowledge that the target is walking away from CAM4, we can easily eliminate tracks

in CAM5 from possible associations. When a motion model that measures the walking

direction of a target is integrated into the tracking system (RefSet2+Motion), the error

rate is greatly reduced to 31%. Also, with motion information our proposed method can
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Figure 3.7: Comparison of the proposed method and other baseline models on MultiCam
dataset. The minus sign (-) indicates no camera topology knowledge is used for linking cost
computation.

correctly associate almost 90% track pairs. Comparison between BTF and RefSet2 on some

challenging cases are shown in Fig. 3.11, which validates the robustness of our method.

3.4.5 Results on VideoWeb dataset

In order to further validate our method, we carried out experiments on a public

dataset, the VideoWeb dataset [37]. Three cameras CAM20, CAM21, and CAM36 with

disjoint views are selected to form the multi-camera network, the topology of which is shown

in Fig. 3.8. Three sets of videos are selected as the test set, each videos is about 6 minutes,

the resolution of a frame is 640× 480, and the frame rate is 30fps. Under the same setting,

videos from Day3 are used to generate the reference set and videos from Day2 are used

to build the test set. Participants involved in Day2 are either not included in Day3 or

they are included but with different clothes. There are four participants appearing in both

videos from Day3 (reference set) and videos from Day2 (test set), as shown in Fig. 3.9.

However, due to significant appearance differences, tracks in the reference set and tracks in

the test set, even from the same target and captured by the same camera, are considered to

contain two different people (with more than 85% confidence) according to the prediction

by the trained appearance model. There are 10 participants involved in the test set, and the
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Figure 3.8: Topology for cameras used in VideoWeb dataset.

number of reference subjects in each reference set ranges from 9 to 12. We manually labeled

the ground-truth which consists of 66 track associations (there are 222 single camera tracks

in total).

A quantitative comparison between the proposed model and baseline models is

presented in Fig. 3.10. Using the reference set based appearance model with weighted

features (RefSet2) we obtain a match rate of 64% and an error rate of 44%, which is

better than the performance of all the other baseline models. Comparison between RefSet1

and BTF (both of them use global color histograms only as appearance feature), further

demonstrate the superiority of the reference set based appearance model as it provides a

better method to handle track association ambiguities caused by illumination and pose

variations across cameras.
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Reference Set 
CAM20 CAM21 CAM36 

P1 

P2 

Test Set 
CAM20 CAM21 CAM36 

Reference Set 
CAM20 CAM21 CAM36 

P3 

P4 

Test Set 
CAM20 CAM21 CAM36 

None 

Figure 3.9: Detection examples of participants that appear in both the reference set and
the test set for VideoWeb dataset. The “None” box indicates the corresponding participant
(P4) generates no track in camera 20 for the reference set.

Figure 3.10: Comparison of the proposed methods and other baseline models on Vide-
oWeb dataset. The minus sign (-) indicates no topology knowledge is used for linking cost
computation.
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Figure 3.11: Example tracking results on MultiCam dataset. The first and the third columns
are the results obtained by using BTF in [63], the second and the fourth columns are the
results by the proposed method using reference set based appearance model with weighted
features (RefSet2). With the reference set, our method is able to match most of the targets
even with the presence of drastic within camera and across camera illumination variations.
The method in [63] fails to associate tracks that contain the same target in these challenging
situations. Best viewed in color.
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Figure 3.12: Example tracking results on VideoWeb dataset. The first and the third columns
are the results obtained by using BTF in [63], the second and the fourth columns are the
results by the proposed method using reference set based appearance model with weighted
features (RefSet2). Best viewed in color.

We also tested the tracking system without using camera topology information on

this dataset. Similar to the observations from Fig. 3.7, with no camera topology information

as prior knowledge to reduce unnecessary track associations, higher error rates and lower

match rates are observed, as illustrated in Fig. 3.10. However, the impact on the error

rate is not as significant as it is on the MultiCam dataset, the error rates increase by at

most 3% for all the methods on this dataset. This is probably due to the following two

reasons: 1) this dataset has less number of cameras compared to the MultiCam dataset; 2)

this dataset contains fewer scenarios in which participants exist in the FOVs of all the three

cameras simultaneously. Therefore, the numbers of potential track associations generated

by our tracking system with and without camera topology information would be close on

this dataset.

Results from Fig. 3.7 and Fig. 3.10 suggest that the performance of our method

is consistent on both datasets, which validate the robustness of the reference set based

appearance model with weighted features. Note that the ViedoWeb dataset is originally

designed for complex real-world activity recognition, participants in this dataset have more

non-linear motion and heavy interactions than that in the MutliCam dataset. Therefore,

51



Table 3.2: Tracking results with different reference set sizes. “N” is the number of reference
subjects in the original reference set. “Match” and “Error” stand for match rate and error
rate.

RefSet size → n = N n = 2/3*N n = 1/2*N

Results → Match Error Match Error Match Error

MultiCam 0.67 0.53 0.45 0.49 0.27 0.39

VideoWeb 0.64 0.44 0.43 0.41 0.21 0.32

the overall tracking performance on this dataset is not as good as that on the MultiCam

dataset. Also, non-linear motion and interactions among individuals make it difficult to

predict accurate motion direction of a target. Thus, after integrating motion model with

RefSet2, the improvement on both error rate and match rate is small. Comparison between

BTF and RefSet2 on some challenging cases of VideoWeb dataset are illustrated in Fig. 3.12.

3.4.6 Reference Set Analysis

In Table 3.2 we evaluate the performance of our reference set based appearance

model with reduced reference subjects. Each time, a subset of the original reference set is

randomly selected as a new reference set. The reported results are the average of 10 runs.

It is observed that as the size of the reference set reduces the match rate degrades. As

less number of track associations are produced in the result, the error rate also decreases.

Therefore, the results suggest that for small test sets (about 10 subjects) in order to get

good performance from the reference set based appearance model, it is better to make the

number of reference subjects comparable to the number of targets in the test set. However,

as the size of reference set increases, more redundancy together with more diversity are

introduced. Different methods can be used to select a subset from the entire reference

candidate pool in order to maintain discriminality while reducing redundancy for better

efficiency. For example, in [68] for face recognition, reference set selection is proposed from

a low-rank decomposition point of view. In [51] for biometric pattern retrieval, rule-based

methods are suggested for reference set selection, including max-variation, max-mean, and

min-correlation.

Moreover, the appearances of subjects in a reference set should be as diverse as

possible, so that each reference subject can be used to capture some unique characteristic
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Table 3.3: Tracking results with and without participants appearing in both reference and
test sets. The asterisk sign (*) indicates dataset without identity overlap in reference and
test sets.

GT ErrorRate MatchRate

MultiCam 220 0.31 0.89

MultiCam* 174 0.32 0.89

VideoWeb 66 0.41 0.67

VideoWeb* 43 0.43 0.65

of a target. If there are highly similar subjects in the reference set, there will be redun-

dant information in the reference set based appearance descriptor. When such redundancy

increases, the performance of the model will be adversely affected.

To evaluate the effect of having participants existing in both reference and test

set, we removed the overlap and carried out experiments on both MultiCam and Vide-

oWeb datasets, the results are shown in Table 3.3. As can be seen, the numbers of track

associations in the ground-truth decreased as we removed some participants from the test

sets, but there was no significant difference in both the error rate and the match rate for

datasets with and without overlapping identities. The results justify the rationality of our

experiments in Section 3.4.4 and 3.4.5, that is to say, having participants appearing in both

reference and test sets but with very different clothes did not impact the performance of

the proposed method greatly. This is because only the appearance of reference subjects

matters, not the real identities of those particular subject.

3.4.7 Feature Discriminality Analysis

In addition, we further carried out experiments to analyze the discriminative power

of all the nine features (HSV, LBP, and HOG extracted on body, torso and legs, respectively)

used in the appearance model for within camera subtracks. For each feature, the RMSE

obtained when that feature is “removed” from the appearance model is considered as its

discriminality measurement. A more discriminative feature would produce a higher RMSE

when it is discarded from the feature pool, therefore, it is more important for the learned

appearance model. The experimental results for MultiCam and VideoWeb datasets are

shown in Fig. 3.13 and Fig. 3.14, respectively. For both datasets, it is clear that HSV are
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)Figure 3.13: Feature discriminality analysis for MultiCam dataset. Each column represents
the RMSE (representing discriminality) when the corresponding feature is removed from
feature pool of the appearance model.

more discriminative than HOG and LBP, and torsoHSV is the most discriminative one.

Also, legs carry less information for the appearance model compared to body and torso,

probably because most of the participants are wearing jeans with similar color. Since HOG

features are not pose invariant, discarding HOG features does not increase the RMSE in the

VideoWeb dataset where participants interacted heavily, indicating that in this case HOG

features do not have high discriminality. On the other hand, in the MultiCam dataset,

we observe slightly higher RMSE for bodyHOG and torsoHOG, as participants in this

datasets are less active and their poses remained relatively stable during the data capturing

process. Moreover, the RMSE obtained by using all the nine features is 0.228 and 0.387 for

MultiCam and VideoWeb datasets, respectively. These RMSE values are equal or smaller

than the RMSE values obtained with one of the nine features removed from the feature

pool. It is observed that the removal of some features, such as legsHSV and legsHOG, have

no impact on the RMSE results. This is plausible since in practice often the upper body

dress of the subject being tracked is more distinctive (e.g., shirts with various color and

patterns) compared to the lower body dress (e.g., jeans) which is more uniform, as shown, for

example, in Fig. 3.1. Although not effective on the datasets used in our experiments, these

less discriminative features may contribute to the tracking accuracy when the appearance

captured by these features is more discriminative.
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Figure 3.14: Feature discriminality analysis for VideoWeb dataset. Each column represents
the RMSE (representing discriminality) when the corresponding feature is removed from
the appearance model.

3.5 Conclusions

In this paper, we propose a novel reference set based appearance model with

weighted features for multi-target tracking in a camera network with non-overlapping FOVs.

In order to deal with track association ambiguities caused by illumination and pose varia-

tions across cameras, we generate multiple appearance instances for each track and make

indirect comparison of two tracks obtained in different cameras by utilizing a reference set.

The experimental results demonstrate the superiority of the combination of reference set

based appearance model and weighted features over the baseline models on two challenging

real-world video datasets. A future work would be testing the proposed reference set based

tracking method on larger datasets with more analysis on reference subjects selection.
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Chapter 4

Integrating Social Grouping

Behavior for Multi-target Tracking

Across Cameras in a CRF Model

With more and more surveillance cameras deployed at public places (e.g., airports,

parking lots, and shopping malls) to monitor a large area, the demand for effective and

automated surveillance and monitoring systems is rapidly growing [102, 56, 117, 106]. Since

using multiple cameras with overlapping field-of-views (FOVs) is not cost-efficient in both

economical and computational aspects, cameras with non-overlapping FOVs are widely used

in real-world applications. Tracking multiple targets across non-overlapping cameras is of

great importance, as it is crucial for many industrial applications and high level analysis,

such as anomaly detection, crowd analysis, and activity detection and recognition. Although

there have been some improvement in this area, it remains a less explored topic compared

to single camera multi-target tracking.

The goal of multi-target tracking across non-overlapping cameras is to automati-

cally recovery the trajectories of all targets and keep their identities consistent while they

travel from one camera to another, as shown in Fig. 4.1. Compare to single camera track-

ing, where successive observations of the same target are likely to have a large similarity

in appearance, space and time [28], tracking across non-overlapping cameras is a more

challenging task due to the following factors.
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Figure 4.1: Tracking results of our proposed model on Dataset4. Bounding boxes with
the same color indicate the same person, and the dashed lines illustrate the trajectories
generated by targets walking across different cameras.

• Significant appearance variation. In multi-camera tracking, the observations of the

same target in different cameras often have significant difference, caused by illumina-

tion variation, pose change, and difference in sensor characteristics.

• Less predictable motion. The open blind area between the FOVs of non-overlapping

cameras makes the motion prediction for each target less reliable. When a target

leaves the FOV of one camera, he may enter the FOV of another camera, or exit the

region under monitoring in the blind area.

In most existing inter-camera multi-target tracking approaches, first intra-camera

tracking is carried out in each camera to produce tracks of different targets, then inter-

camera tracking is conducted in the form of track association so that consistent labeling

of each target across cameras can be achieved. To match tracks from different cameras,

prior work mainly rely on appearance and spatial-temporal cues. However, these low-

level information is often unreliable especially for tracking in non-overlapping cameras,

as discussed above. In this chapter, we further consider integrating high-level contextual

information, i.e., social grouping behavior, to mitigate ambiguities in inter-camera tracking.

57



Sociologists have found that up to 70% of people tend to walk in groups in a

crowd for better group interaction [88, 48]. In addition, the “leader-follower” phenomenon

generally exists in reality, which means pedestrians are likely to follow other individuals

with the same destination either consciously or unconsciously to facilitate navigation [52].

Therefore, when two people are observed walking together in one camera for some time, it is

very likely that these two people will appear together in a neighboring camera, an example

is shown in Fig. 4.1. Based on the above observations, we proposed an online learning

approach for inter-camera tracking which in favor of track associations that maintain group

consistency. Note that, we are not only focus on groups that are formed by people who

know each other, but also interested in groups of individuals who have correlated movement.

We assume that the intra-camera tracking results of all involved cameras are given,

and the topology graph of cameras is known. To associate tracks from different cameras that

contain the same person, an online learned CRF model is used, as shown in Fig. 4.2. Track

pairs that are linkable under certain spatial-temporal constraints form the nodes in the

CRF model. Each node has a binary label (1 or 0) indicating whether the corresponding

two tracks are linked or not in the final tracking result. A global appearance model is

used to estimate the energy cost for each node. We use elementary groups proposed in

[28] to analysis grouping status in each single camera. Two tracks form an elementary

group if they have similar motion pattern and are temporally close to each other. Single

camera grouping information is used to infer across camera grouping behavior. If two

nodes in the CRF model contain at least one elementary group, an edge is created between

them. Energy cost for each edge is estimated using the combination of both grouping and

appearance information. For each track, we online learn a target-specific appearance model

using AdaBoost. If two linked nodes not only have a high probability to maintain group

consistency across cameras, but also have high appearance affinities according to target-

specific appearance models, their corresponding edge will be assigned a small energy cost.

Then the tracking task is formulated as an energy minimization problem, i.e., to find label

assignment for the CRF graph that produces the smallest overall energy cost.

The rest of the chapter is organized as follows: Section 4.1 discusses related work

and presents contributions of this chapter; the proposed CRF model and its corresponding

approximation algorithm are described in Section 4.2; experiments are given in Section 4.3;

and Section 4.4 concludes this chapter and provides possible future work.
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4.1 Related Work and Contributions

4.1.1 Related Work

Multi-target tracking across cameras has been an active topic in computer vision

for many years, a recent comprehensive survey for this problem can be found in [117]. The

inter-camera tracking is essentially a data association task, in which same subject’s tracks

are to be matched. Due to the illumination and pose change across cameras, such data

association is inherently challenging.

Among various approaches for multi-target tracking, appearance cue is commonly

utilized. To tackle illumination change, Brightness Transfer Functions (BTFs) have been

exploited [50, 63, 96]. BTFs model color changes between a pair of cameras through mapping

functions. Variations of BTFs include multi-variate probability density function [63], joint

brightness and tangent functions [30], etc. Evaluations of different BTFs are performed

in [40] and the findings suggest that under certain conditions, such as the entering of a

new subject, BTFs are prone to error. Besides BTFs, color correction models can also be

used for tracking objects [110, 55]. In general, learning BTFs or color correction model

requires large amount of training data and these models may not be robust against drastic

illumination changes across different cameras.

In addition, spatial-temporal cue can be combined with appearance cue to improve

multi-target tracking performance. For example, Kuo et al [73] learned a discriminative

appearance model in a Multiple Instance Learning (MIL) framework, which can effectively

combine multiple descriptors and similarity measures. This appearance model is used in

conjunction with spatio-temporal information for improved tracking accuracy. The work

in [139] exploits spatio-temporal relationships between targets to identify group merge and

split events with time. It is designed to simultaneously track individuals and groups in

a camera network, which is important for the problem of tracking in a cluttered scene.

In addition, both spatio-temporal context and relative appearance context can be used

jointly for inter-camera multi-target tracking. For example, in [23], the spatio-temporal

cue supports sample collection for appearance model learning, and the relative appearance

context helps disambiguate people in proximity. An inter-camera transfer model, including

both spatio-temporal and appearance cues, is proposed in [29]. Particularly, the spatio-

temporal model is learned using an unsupervised topology recovering approach, and the

appearance model is learned by modeling color changes across cameras.
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Another recently popular research topic, person re-identification, is closely related

to inter-camera multi-target tracking. Both problems aim to match observations of the

same people across non-overlapping cameras. However, in most person re-identification

work, only a single or multiple snapshots of people are to be matched. Therefore, contex-

tual information is often not available for person re-identification problem. On the other

hand, in an inter-camera tracking problem, each person is presented by a track, which

is a string of detections extracted from consecutive frames. In order to handle the large

intra-class variation in person re-identification, robust appearance models have been stud-

ied [74, 131, 79, 141]. Another way is to learn specialized distance metrics or feature trans-

formations [143, 122, 7, 10, 113]. For training purpose, a training set with corresponding

detection pairs, which share similar imaging conditions as the testing samples, is required.

While most of the previous works (e.g., [26, 29]) only consider pairwise relation-

ships using global optimization techniques such as Hungarian algorithm, we employ CRF

to simultaneously model both pairwise and higher order relationships for track association.

Compared to person re-identification, in which only images of the subjects are matched,

our framework is a dynamic system, meaning that the track association is executed to cover

both spatial and temporal spans. Such system is more desirable for real-time tracking and

monitoring in practical applications.

4.1.2 Contributions of This Chapter

The contributions of this chapter include:

• A novel CRF framework that combines social grouping behavior with traditionally

used appearance and spatial-temporal cues for robust multi-target tracking across

non-overlapping cameras.

• An online learning approach for modeling unary and pairwise energy costs in the

CRF model. The proposed approach does not require a large training set with known

correspondence between samples, and can be easily updated to adapt environmental

changes.

• An effective approximation algorithm for the CRF model that produces good tracking

results with low energy cost.
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• Evaluation on four challenging real-world surveillance video sequences are used to

validate the effectiveness of the proposed method.

4.2 Technical Approach

4.2.1 CRF Model for Inter-camera Tracking

In this section, we introduce how to formulate inter-camera tracking as a inference

problem using the CRF framework. An outline of the proposed tracking system is illustrated

in Fig. 4.2.

Given a set of tracks T = {T1, T2, ..., TN}, which is the intra-camera tracking

results of M non-overlapping cameras Cam1, Cam2, ..., CamM . Each track Ti is a string

of detections that correspond to the same person and extracted from a set of continuous

frames. The time interval for Ti is denoted as [tbegini , tendi ], and its corresponding camera is

Cam(Ti). The task of inter-camera multi-target tracking is to associate tracks from different

cameras that contain the same person under certain spatial-temporal constraints. Since the

CRF framework is capable of encoding relationship between observations, it is especially

suitable for modeling contextual information in the scene.

We create a CRF graph G = {V,E}. Each vertice vi = (T 1
i , T

2
i ) in V represents

a linkable pair of tracks, assuming T 1
i starts before T 2

i , and each edge ej = (v1
j , v

2
j ) in

E indicates that the connected two vertices are correlated (detailed explanations for CRF

graph creation is presented Section 4.2.2). Let L = {l1, l2, ..., lm} be a set of binary labels

for all vertices, i.e., all possible track associations, with li = 1 indicating T 1
i is associated

with T 2
i in the final tracking result, and li = 0 represents the opposite. During tracking,

our goal is to find the label configuration L∗ that maximizes the overall linking probability

given T . Mathematically, the inter-camera track problem can be defined by the following

optimization equation:

L∗ = arg max
L

P (L|T ) = arg min
L

1

Z
exp(−Ψ(L|T )), (4.1)

where Z is a normalization factor that does not depend on L, and Ψ(·) is a potential/cost

function. We assume that the joint distributions of more than two associations have no

contributions to the conditional probability P (L|T ), then
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L∗ = arg min
L

Ψ(L|T )

= arg min
L

(
∑
i

U(li|T ) +
∑
i,j

B(li, lj |T )),
(4.2)

where U(li|T ) and B(li, lj |T ) are the unary and pairwise energy functions and correspond

to the node and edge costs in the CRF graph, respectively. Learning of the unary and

pairwise costs are described in Section 4.2.3 and Section 4.2.4.

For efficiency, track association is not applied on the entire videos. Instead, a

pre-defined time sliding window is used, and a CRF model is online learned for each sliding

window. Moreover, in order to prevent impractical associations, a valid label set L needs

to follow certain constraints. Let L1 be the set of all labels that are assigned to 1, namely,

L1 = {li = 1}∀li ∈ L. Similarly, L0 corresponds to the set of labels assigned with 0. For a

label lk, with its corresponding vertice denoted as vk = {T 1
k , T

2
k }, we use C(lk) to represent

the set of its conflicting labels. A label lx is conflicting to lk, if its corresponding vertice

vx = {T 1
x , T

2
x} falls into one of the following patterns: 1) T 1

x = T 1
k and T 2

x 6= T 2
k ; 2) T 2

x = T 2
k

and T 1
x 6= T 1

k . Then L is a valid label set, if

∀lk ∈ L1, C(lk) ⊂ L0 (4.3)

This constraint implies that each track can be associated to and associated by only

one other track.

4.2.2 CRF Graph Creation

In the CRF graph, each vertice represents a pair of linkable tracks. Track Ti can

be associated to Tj if they satisfy the following spatial-temporal constraints.

• Spatial constraints: First, Ti and Tj are captured in different cameras, namely,

Cam(Ti) 6= Cam(Tj). Second, according to the camera topology graph, linking Ti and

Tj forms a feasible path allowing people to walk from Cam(Ti) to Cam(Tj) without

entering the FOV of any other cameras.

• Temporal constraints: Ti starts before Tj . Let Gapij = tbeginj − tendi be the time gap

between these two tracks, then 0 < Gapij < GAP should hold, where GAP is a

threshold for maximum time gap between any two linkable tracks.
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The spatial constraints enable us to focus only on inter-camera tracking, as well as

eliminate those practically infeasible track associations. The temporal constraints prevent

us from linking track pairs with time overlap, as one individual cannot appear at two

different places at the same time. The threshold GAP avoids track pairs outside the time

sliding window to be considered.

Given a set of tracks, the linkability of any two tracks is evaluated according the

above spatial-temporal constraints. A set of vertices V is created, and each vertice in V

denotes a pair of linkable tracks as

V = {vi = (T 1
i , T

2
i )} (4.4)

s.t. T 1
i can be linked to T 2

i .

In order to build edges between the vertices in the CRF graph, we first find ele-

mentary groups in each single camera. Elementary group is a flexible structure for within-

camera grouping analysis [28]. An elementary group is a group including only two people

that move with similar motion pattern and are temporally close to each other. Because the

number of groups and the sizes of groups in the scene are unknown and may change over

time, learning the complete group structure directly is quite challenging. Elementary group

provides a simple but effective way for inferring useful group information, since a group

of any size can be presented by a set of elementary groups. Note that, elementary group

analysis is carried out in an online mode.

In a single camera, track Ti forms an elementary group with Tj if they have the

following properties: 1) Ti and Tj co-exist for at least t seconds (t is set to 2 in our experi-

ments); 2) the angle between the velocities of Ti and Tj is smaller than 45 degree. The first

constraint guarantees that the two tracks in an elementary group are temporally close to

each other. As we assume there is only a small variation in the walking speed of all pedestri-

ans, two targets are considered as dynamically correlated if they walk toward approximately

the same direction. Unlike [28], we relax the elementary group criterion by removing the

spatially close constraint. Because [28] focuses on intra-camera tracking where spatial dis-

tance plays an important role, while this chapter deals with inter-camera tracking, where

such information is less useful as tracks to be associated are inherently not close to each

other. In addition, with the relaxed criterion, elementary groups can be constructed from

more “leader-follower” instances, thus more contextual information can be obtained.
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Let EG = {gi = (T 1
gi , T

2
gi)} be the set of elementary groups found in all cameras.

An edge is created for two vertices vi = (T 1
i , T

2
i ) and vj = (T 1

j , T
2
j ), if at least one elementary

group can be formed by the four involved tracks. Mathematically, we define a set of edges

E for the CRF graph as:

E = {(vi, vj)} ∀vi, vj ∈ V (4.5)

s.t. (T 1
i , T

1
j ) ∈ EG or (T 2

i , T
2
j ) ∈ EG.

Moreover, edges are divided into conflicting ones and non-conflicting ones. A

conflicting edge means that the connected two vertices can not be assigned with label 1

at the same time, in order to guarantee a valid label set. Note that, edges are created

between vertices containing targets with the same motion direction, e.g., from Cam1 to

Cam2. During tracking, the set of track pairs that maintains the overall group consistency

are more likely to be associated. In the example shown in Fig. 4.2, two elementary groups

(T1, T2) and (T3, T4) are found based on all the input tracks. Therefore, if we know T1

and T3 have a high probability to be associated, then the probability for linking T2 and

T4 should be increased, as the same group of people are likely to re-appear together in a

neighboring camera. Besides overall group consistency, the associated tracks should also

keep appearance consistency based on online learned target-specific appearance models.

Both group and appearance consistency are estimated by online learned pairwise costs (see

Section 4.2.4).

4.2.3 Unary Energy Functions

Unary energy functions in Eq. 4.2 evaluate the energy cost for linking two tracks.

The cost is defined as the negative log-likelihood of two tracks being the same target ac-

cording to a global appearance model Papp1(·),

U(li = 1|T ) = −lnPapp1(T 1
i , T

2
i |T ). (4.6)

Track Division

In a track, detections from adjacent frames often have high appearance similarity.

In order to reduce redundancy and create concise and robust representation, for each track
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we combine visually similar detections into a subtrack and consider each subtrack as an

appearance instance of a target, as used in [26].

More specifically, given a track, its first detection is used as a reference detection

for its first subtrack. Following detections that have high appearance similarity (≥ 0.9)

compared to the reference detection are included into the first subtrack. When a detection’s

similarity to the reference detection is below 0.9, this detection is considered as the reference

detection for the next subtrack. The process continues until we reach the end of the track.

Additionally, we set the maximal length of a subtrack to 20 frames (about 1 second), to

ensure there is no large pose variation for detections contained in the same subtrack.

Color Transfer

In order to compute appearance similarity of tracks from different cameras, we first

need to handle appearance variance across cameras. In this chapter, we adopted the color

transfer method proposed in [101, 29] as a pre-pocessing step to normalize color between

different cameras. Given two images, the color transfer method achieves color normalization

by imposing the color characteristics of one image (target image) onto the other (source

image), as shown in Fig. 4.3. In our experiments, the first full image from one camera is

used as the target image, and images from other cameras are considered as source images.

As correlations exist among the three different color channels of the RGB color

space [101], to change the color of one pixel, the values of this pixel in all channels must

be modified. Such correlations are undesirable for color transfer. Therefore, images are

transferred from the original RGB color space to the lαβ color space, where there is lit-

tle correlation between different color channels. Then, the target image is transformed

according to the color characteristics exacted from the source image, as follows:

l∗ =
σlt
σls

(ls −ml
s) +ml

t, (4.7)

α∗ =
σαt
σαs

(αs −mα
s ) +mα

t ,

β∗ =
σβt

σβs
(βs −mβ

s ) +mβ
t ,

where l, α, and β represent the pixel value in a corresponding color channel, m and σ denote

the mean and standard deviation of one image. Target and source images are indexed by
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(a) Target Image (b) Source Image (c) Transformed Image

Figure 4.3: An example of applying the color transfer method on images obtained by two
different cameras (one outdoor, one indoor). The full images captured by each camera are
shown in the first row. The person appears in both cameras and its corresponding HSV
color histograms are presented in the second row. It is obvious that the person in the
transformed image is more alike to the person in the target image based on HSV color
histograms.

subscript t and s, respectively. [l∗, α∗, β∗] is the representation of the transformed image in

the lαβ color space. After color transformation, the transformed image is converted back

to the RGB color space from the lαβ color space.

Given two tracks Ti and Tj with Cam(Ti) 6= Cam(Tj), HSV color histograms

are extracted from each detection. The average of HSV color histograms from the same

subtrack is regarded as appearance descriptor for the target contained in the track. The

global appearance model for Ti and Tj is defined as

Papp1(Ti, Tj |T ) =
1

R

R∑
n=1

BC(din, d
j
n), (4.8)

where din is the nth subtrack in track Ti. BC(·) is the Bhattacharyya Coefficient [33], it is

used as a measure for the appearance similarity of two subtracks. R subtracks are randomly
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selected from each track, and their average similarity is used as the similarity for Ti and Tj .

4.2.4 Pairwise Energy Functions

The pairwise energy functions are formulated according to global grouping cues

and target-specific appearance cues, as defined in Eq. 4.9,

B(li, lj |T ) = −ln(Pgroup(li, lj |T )× Papp2(li, lj |T )), (4.9)

where Pgroup is the probability of maintaining group consistency for a specific assignment

of (li, lj), and Papp2 is the probability of keeping appearance consistency based on the value

of li and lj . Details for Pgroup and Papp2 are presented in the following parts.

Group Consistency

According to the observation that two people walking together for a certain time

in one camera are likely to re-appear together in a neighboring camera, given the labels

of two connected vertices in the graph, we can infer its probability of maintaining group

consistency.

Let vi = (T 1
i , T

2
i ) and vj = (T 1

j , T
2
j ) be two possible track associations, without

knowing the edge configuration of the graph, the probability of maintaining group consis-

tency for a specific label assignment of (li, lj) is 1
C , where C is the number of all possible

values for (li, lj). Assuming we know vi is connected to vj in the graph, which indicates that

Cam(T 1
i ) = Cam(T 1

j ), Cam(T 2
i ) = Cam(T 2

j ). If both (T 1
i , T

1
j ) and (T 2

i , T
2
j ) are elementary

group, then assigning (li, lj) to (1, 1) should produce Pgroup = 1 as it maintains the group

consistency. For instance, in the example shown in Fig. 4.2, as (T1, T2) and (T3, T4) are

both elementary groups in Cam1 and Cam2, then assigning (1, 1) to veritices (T1, T3) and

(T2, T4) keeps the group consistency compared to the other alternatives (i.e., (1, 0), (0, 1),

and (0, 0)).

Based on the above analysis, we define Pgroup as
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Pgroup(li, lj |T ) =


1 if li = lj = 1,

(T 1
i , T

1
j ) ∈ EG, (T 2

i , T
2
j ) ∈ EG,

1
C otherwise.

(4.10)

Note that if (vi, vj) is a non-conflicting edge, C = 4, as there are four possibilities,

i.e., (1, 1), (1, 0), (0, 1), (0, 0), for the label assignment of (li, lj). But if (vi, vj) is a conflicting

edge, indicating li and lj cannot have label 1 at the same time, thus C = 3 for such cases.

Local Appearance Consistency

It is obvious that from group consistency alone we cannot obtain sufficient infor-

mation to make confident track association decisions. Therefore, we integrate local appear-

ance consistency into the pairwise energy functions. An edge possesses local appearance

consistency if the label given to each related vertice in accordance with appearance similar-

ity/dissimilarity of the corresponding track pair.

Mathematically, given an edge (vi, vj), where vi contains track pair (T 1
i , T

2
i ) and

vj includes (T 1
j , T

2
j ). Let Appik be a discriminative appearance model learned for track T ki ,

which produces high similarity for track that contain similar target as T ki , and gives low

similarity otherwise. Then we define Papp2 as

Papp2(li = 1, lj = 1|T ) = P (li = 1)P (lj = 1), (4.11)

Papp2(li = 1, lj = 0|T ) = P (li = 1)(1− P (lj = 1)),

Papp2(li = 0, lj = 1|T ) = (1− P (li = 1))P (lj = 1),

Papp2(li = 0, lj = 0|T ) = (1− P (li = 1))(1− P (lj = 1)),

where P is the probability of two tracks contain the same person based on the discriminative

appearance model App, it is defined as P (li = 1) = 0.5× (Appi1(T 2
i ) +Appi2(T 1

i )).

The discriminative appearance model for each track is online learned using Ad-

aBoost. First, we capture the appearance information of each target using various fea-

tures: HSV color histograms [116], Local Binary Pattern (LBP) [81], Histogram of Gradient
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Figure 4.4: Local patches with various scales are defined at different locations of a detection.
Patches 1 to 6 have the same size and are served as basic patches, patches 7 to 14 are different
combinations of basic patches, and patch 15 captures the middle third region of a detection.

(HOG) [82], and Color Names [114]. Each feature descriptor is computed at different local

patches defined on a detection, as shown in Fig. 4.4. We resize each detection to 63 × 27,

and extract the containing target using background subtraction. Local patches are defined

at different locations with various scales to increase the descriptive ability, and features of

the same type in one subtrack are averaged to construct a concise representation for the

contained target. In general, one track may contain several subtracks, and there are in total

15× 4 = 60 features for each subtrack.

Given two subtracks ta and tb, comparing each of the 60 appearance feature de-

scriptors produces one appearance similarity. A concatenation of the 60 similarities scores

forms a feature vector f(ta, tb). In our experiments, different methods are used to measure

the similarity between different types of features. Bhattacharyya coefficient [33] is used

for color histograms and HOG features, χ2 distance is used for LBP features, and cosine

similarity is used for Color Names.

AdaBoost adaptively learns a strong classifier using a number of weak classifiers

that minimizes the overall classification error. The generated strong classifier is a linear

combination of weak classifiers, and the weight for each selected weak classifier indicates its

importance. In our target-specific appearance model, the similarity computed from each

feature is used in a weak classifier, and the learned appearance model is formulated as:
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H(f(ta, tb)) =
T∑
t=1

αtht(f(ta, tb)) (4.12)

where T is the number of total iterations, αt is the weighting parameter assigned during the

learning process, and ht(f(ta, tb)) is a weak classifier based on one of the features extracted

from subtracks ta and tb.

In order to online learn the discriminative appearance model for each target, we

collect training samples during track association. Given a track Tx, a pair of subtracks

can form a positive training sample if they are two different subtracks in Tx. A negative

sample can be generated by two subtracks if one of them is from Tx, and the other is

from another track that has time overlap with Tx. Therefore, a positive sample consists of

feature similarities of the same target, while in a negative sample the feature similarities

are calculated from two different targets.

Once the discriminative appearance model is learned for a target, we can compute

the appearance similarity between this target and other targets using the following equation:

Appi1(T 2
i ) =

R∑
r=1

Hi1(f(tri1, t
r
i2))) (4.13)

where Appi1 is the target-specific appearance model learned for track T 1
i , and it is used to

compute the similarity between T 1
i and T 2

i . We randomly select R subtrack pairs from both

tracks, and use the average their similarity for the similarity of the track pair.

4.2.5 Energy Minimization Algorithm

We formulated the across camera multi-target tracking task as a energy minimiza-

tion problem using CRF model, as shown in Eq. 4.2. Since the proposed CRF model does

not follow the submodularity principle (see APPENDIX), we cannot obtain exact inference

using global graph cut optimization techniques [70]. Moreover, traditional approximation

approaches for CRF, such as Loopy Belief Prorogation (LBP) and Alpha Expansion, can-

not be directly applied for our problem, as solutions produced by these methods may not

satisfy the constraint for a valid label set, see Eq. 4.3. Therefore, we developed an iterative

approximation algorithm to find a good labeling solution.

More precisely, we first obtain an initial labeling of all vertices using only Hun-

garian algorithm with unary costs, similar to [26]. As Hungarian algorithm allows only one
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assignment for each participant, this ensures the initial label set to be a valid one. Then

vertices assigned with label 1, i.e., the selected track associations, are sorted in ascending

order according to their unary costs. Next, for each label 1 vertice, we find all edges that

are connected to current vertice. For each of these edges, all other label configurations are

considered, and the one with the minimal graph energy cost is selected. Note that, for a

conflicting edge, there are only three labeling possibilities: (1, 0), (0, 1), and (0, 0). If the

chosen label configuration generates a energy cost smaller than the current one, we update

the label set with the change. In order to maintain the constraints for a valid label set, each

time when the label of a vertice changes from 0 to 1, we check if the constraint in Eq. 4.3

is violated. When violations exist, the new update is preferred.

A summary of the energy minimization algorithm is provided in Algorithm 3.

Algorithm 3 Algorithm for finding labels with low energy cost.

Input: Tracklet set T = {T1, .., Tn}; CRF graph G = {V,E}
Output: A label set L

1: Use Hungarian algorithm to find an initial label set L with the lowest unary energy

cost, and evaluate current graph energy cost Ψ in Eq. 4.2.

2: Sort label 1 vertices according to their unary costs as {v1, ..., vm}
3: for i = 1, ...,m do

4: Find a set Ei including all edges connecting to vi

5: Set updated graph energy cost Ψ
′

= +∞
6: for all e = (vi, vx) ∈ Ei do
7: Change labels of (vi, vx) to a untested possibility,

8: maintain constraints for a valid label set,

9: evaluate the new graph energy cost Ψnew

10: if Ψnew < Ψ
′
then

11: Ψ
′

= Ψnew

12: if Ψ
′
< Ψ then

13: Ψ = Ψ
′

14: Update L with the change

Our proposed energy minimization algorithm finds the label set in a greedy fashion,

thus may lead to a local optimal solution. However, a better solution, i.e., a label set with
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lower energy cost, is achieved after each iteration. Therefore, it ensures us to obtain a better

tracking results than using unary costs only.

4.3 Experiments

To validate the effectiveness of the proposed tracking approach, it is compared

with several baseline methods as well as the state-of-the-art. We carried out experiments

on four different sets of data sequences that are publicly available.

4.3.1 Datasets

Although multi-target tracking in surveillance cameras has been studied for several

years, there are fewer publicly available datasets designed for real-world multi-camera track-

ing as compared to single camera tracking. In this work, we use the NLPR MCT dataset [3]

to evaluate the performance of our proposed method. The NLPR MCT dataset has both

outdoor and indoor scenarios. In addition, there exist obvious illumination variation across

cameras, which makes it a very challenging dataset for multi-target tracking.

There are in total four different sub-datasets contained in the NLPR MCT dataset,

each corresponds to a non-overlapping multi-camera networks. Dataset1 and Dataset2 have

the same camera setting, including three cameras (two outdoor and one indoor), as shown

in Fig. 4.5. Dataset3 contains four videos that are capture by four indoor cameras, the

topology of these cameras are presented in Fig. 4.6. The corresponding camera network

of Dataset4 consists of five outdoor non-overlapping cameras, the topology of cameras is

shown in Fig. 4.7. More specifics for each sub-dataset are listed in Table 4.1.

It is obvious that the quality of input tracks, i.e., within camera tracking results,

will greatly affect the performance of multi-target tracking across cameras. In order to have

a fair comparison on the cross camera tracking ability, we use the the same input tracks for

all the tested methods in our experiments. The input tracks are the single camera tracking

ground truth provided in the NLPR MCT dataset.
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CAM2CAM1

CAM3

Lawn

Building

Pavement

Door Door

Door

Figure 4.5: Camera topology for Dataset1 and Dataset2. Cam1 and Cam2 are outdoor
cameras, and Cam3 is a indoor camera.

CAM1

CAM2

CAM3

CAM4

Passage

Room Room Room

Figure 4.6: Camera topology for Dataset3. Cam1 to Cam4 are all indoor cameras.
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Table 4.1: Specifics for each sub-dataset in the NLPR MCT dataset.

Dataset1 Dataset2 Dataset3 Dataset4

# of Cameras 3 3 4 5

Resolution 320× 240 320× 240 320× 240 320× 240

Duration 20min 20min 3.5min 24min

# of Targets 235 255 14 49

Frame Rate 20fps 20fps 25fps 25fps

CAM1CAM2CAM3

CAM4

CAM5

Building

Building

Building

Parking Area

Lawn

Door

Figure 4.7: Camera topology for Dataset4. Cam1 to Cam5 are all outdoor cameras.
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Table 4.2: The number of cross camera true positive in each sub-dataset.

Dataset1 Dataset2 Dataset3 Dataset4

True Positive 334 408 152 256

4.3.2 Evaluation Metrics

As has been noticed in multi-target tracking in a single camera that it is very

difficult to have a direct quantitative comparison of different tracking approaches due to

the lack of a standardized benchmark [87]. The same issue persists in multi-target tracking

across cameras. Inspired by the widely used CLEAR MOT metrics [17] for single camera

multi-object tracking, the NLPR MCT dataset provides a evaluation metric, Multi-Camera

Tracking Accuracy (MCTA), which is a single number metric that combines detection ac-

curacy, single camera tracking accuracy and cross camera tracking accuracy. The definition

of MCTA is given in Eq. 4.14 .

MCTA (4.14)

= Detection× TrackingSCT × TrackingICT

= (
2× precision× recall
precision+ recall

)(1−
∑

tmme
s
t∑

t tp
s
t

)(1−
∑

tmme
c
t∑

t tp
c
t

),

where precision and recall reflect the performance of the object detector, mmest is the

number of mismatches (i.e., ID-switches) for time t in a single camera, and mmect is the

number of mismatches for time t across different cameras, tpst and tpct are the number of

true positive for time t within camera and cross cameras, respectively. Note that, according

to the defined criteria, when a new target first enters the scene, it produces a new cross

camera true positive instead of a within camera true positive.

The MCTA metric ranges from 0 to 1, a higher value indicates a better tracking

performance. In order to focus on the ability of cross camera multi-target tracking, single

camera tracking ground truth is used as input tracks. Therefore, the first two terms in Eq.

4.14, i.e., Detection and TrackingSCT , will be 1. The cross camera tracking performance

is only affected by mmec, the number of mismatches across cameras.
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Table 4.3: Comparison of cross camera tracking results on the NLPR MCT dataset.

Method
Dataset1 Dataset2 Dataset3 Dataset4

mmec MCTA mmec MCTA mmec MCTA mmec MCTA

Baseline1 156 0.5329 197 0.5172 89 0.4145 150 0.4141

Baseline2 91 0.7275 102 0.7500 62 0.5921 118 0.5391

Ours 54 0.8383 81 0.8015 51 0.6645 70 0.7266

USC-Vision [23] 27 0.9152 34 0.9132 70 0.5163 72 0.7052

Hfutdspmct 86 0.7425 141 0.6544 40 0.7368 155 0.3945

CRIPAC-MCT 113 0.6617 167 0.5907 44 0.7105 110 0.5703

4.3.3 Experimental Results

In this evaluation, our goal is to link tracks in different camera views that contain

the same target under certain spatial temporal constraints. The number of cross camera

true positive in each sub-dataset is shown in Table 4.2. We introduce three baseline models

for comparison:

• Baseline1: use only Hungarian algorithm with global appearance model, no grouping

information.

• Baseline2: our proposed CRF model without the local appearance consistency in Eq.

4.9.

A quantitative comparison of our proposed model and the baseline models are

presented in Table 4.3. It is observed that our proposed model significantly improves

the tracking performance on all sub-datasets compared to Baseline1. For Dataset1 and

Dataset2, our model increases MCTA by almost 0.3. For Dataset3, the improvement with

respect to MCTA is 0.25. The largest improvement is achieved in Dataset4, where the

MCTA improves by 0.46 when our proposed model is used. Therefore, it is validated that

by integrating social grouping information we can achieve better tracking performance, as

high-level context provides us other useful information that are not included in low-level

features. A visual comparison of our model and Baseline1 on Dataset1 is shown in Fig.

4.8. In Baseline2, only group consistency is taken into account for edge cost calculation

in the CRF graph. The tracking performances of Baseline2 on all sub-datasets are better
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than that of Baseline1, which further validate the effectiveness of grouping information for

track association. Comparison between our proposed model and Baseline2 indicates that

local appearance consistency plays an important role in eliminating incorrect track associa-

tion, as it requires the linked track pair should not only have high appearance similarity in

the global appearance model but also be visually similar according to the local appearance

model. A visual comparison of our model and Baseline2 on Dataset2 in presented in Fig.

4.9. In Fig. 4.10, we provide some tracking results of our model on Dataset3. More tracking

results on Dataset4 using the proposed method are shown in Fig. 4.1 and Fig. 4.11.

In addition, the proposed CRF model is compared with other methods for tracking

in multiple non-overlapping cameras. These methods are reported in the Multi-Camera Ob-

ject Tracking (MCT) Challenge [2] in ECCV 2014 visual surveillance and re-identification

workshop. We select the top 3 methods for comparison, their corresponding tracking per-

formances on each sub-dataset are shown in Table 4.3, with USC-Vision [23] being rank 1,

Hfutdspmct being rank 2, and CRIPAC-MCT being rank 3. According to the results shown

in Table 4.3, our proposed model takes advantage of the adequate grouping information

contained in the videos in Dataset4 and achieves the highest MCTA on this sub-dataset.

For Dataset1 and Dataset2, where there are less grouping information, our proposed model

has the second highest MCTA compared to the state-of-the-art. Due to the narrow view

point for cameras in Dataset3 (see Fig. 4.10), each target enters and exits the scene in a

short time. It is difficult to detect elementary groups, as two targets can form an elementary

group if they co-exist for at least 2 seconds in our experiments. In Dataset3, the median

length of all tracks is 3.9 seconds, while in other sub-datasets the median length is at at

least 5.5 seconds. Therefore, the proposed method has the lowest MCTA on this dataset.

However, the tracking performance is still comparable to other methods.

4.4 Conclusions

In this chapter we present a novel CRF model based framework for multi-target

tracking across cameras. The proposed model is able to systematically integrate social

grouping behavior as high-level context information for reducing ambiguities in track asso-
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Figure 4.8: A visual comparison of our model (the first row) and Baseline1 (the second row)
on Dataset1. It is observed that Baseline1 mistakenly identifies a new target in Camera 3
(the one pointed by arrow) as target 3, while our model avoid this error by maintaining the
group consistency between target 3 and 4. Bounding box with the same color indicates the
same target. Best viewed in color.

ciation. Experiments on four challenging real-world data sequences validate the effectiveness

of our model. When there is rich grouping information in the scene, the tracking perfor-

mance is significantly improved with the learned high-level context information. Possible

future work would be learning more discriminative representations for the targets and eval-

uate our method on more datasets.
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Figure 4.9: A visual comparison of our model (the first row) and Baseline2 (the second
row) on Dataset2. In the result of our model, target 28 and 29 are correctly tracked in
all cameras. But their IDs are switched in Camera 3 in the result of Baseline2, due to the
lack of local appearance consistency. Bounding box with the same color indicates the same
target. Best viewed in color.
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Figure 4.10: Sample tracking results of our proposed method on Dataset3. In the first row,
by taking advantage of the grouping information, target 55 and 56 are successfully tracked
in all cameras, even under significant within and across camera illumination changes. In
the second row, target 162 in Camera 4 is not correctly link to the same target (target 175)
in Camera 3. This target is severely occluded by target 161 in Camera 3, even with group
information we are unable to link them, as such association does not maintain appearance
consistency. Bounding box with the same color indicates the same target. Best viewed in
color.
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Figure 4.11: Sample tracking results of our proposed method on Dataset4. Target 30 is
correctly tracked in all cameras. However, target 36 in Camera 3 is mistakenly linked
to another target in Camera 4 (pointed by green arrow). Since both of them form an
elementary group with target 30, and are visually very similar. Bounding box with the
same color indicates the same target. Best viewed in color.
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Chapter 5

Conclusions

In order to facilitate multi-target tracking in surveillance cameras in real-world

scenarios, we proposed several tracking methods in this dissertation that cover both within

camera and across cameras tracking tasks.

In Chapter 2, an online learned elementary grouping model with non-linear motion

context is introduced for improving multi-target tracking performance in a single camera.

In this method high-level contextual information, social grouping behavior, is integrated

via elementary groups into a basic association-based tracking framework to mitigate visual

ambiguities that are too challenging for low-level information. An elementary group is a

group that contains only two targets. Therefore, a group of any size can be represented by

a set of elementary groups. This property gives the proposed method flexibility to handle

group merge and split. During tracklet association, two targets are not only matched

according to their appearance and motion affinities, but also the probability of maintaining

elementary group consistency. In addition, we use a non-linear motion map to explain

non-linear motion pattern between elementary groups. Experimental comparisons between

the proposed methods and other alternatives are carried out on four real-world datasets.

Both quantitative and visual results validate the effectiveness and efficiency of the proposed

method, and further prove the importance of using contextual information in within camera

multi-target tracking.

In Chapter 3, we looked into the problem of multi-target tracking in non-overlapping

cameras, and proposed a reference set based appearance model for more robust appearance

match. Since observations of the same target in a camera network are often separated by

time and space, the appearance of the same target might be significantly different in two
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neighboring cameras due to changes in illumination conditions, poses, and camera imaging

characteristics. Instead of comparing tracks from two different cameras directly, a reference

set is constructed for each pair of cameras and appearance comparisons are carried out

indirectly via the corresponding reference set. A reference set contains subjects that appear

in both cameras, and each subject has several appearance instances that are generated by

track division. Given two tracks that are from two different cameras, each track is first

compared to the appearance instances of all subjects in the reference set that are from the

same camera. In other words, each reference subject is an indirect feature that describes

some characteristics of the target’s appearance. Having two tracks compared with the same

set of reference subjects enables us to generate two reference set based descriptors with

the same length. These descriptors are later used to compute the appearance similarity of

the two tracks. We performed in-depth experiments and analysis on two challenging real-

world datasets. Experimental results on both datasets demonstrate the superiority of the

proposed reference set based appearance model over baseline methods and state-of-the-art

Brightness Transfer Functions based method.

In Chapter 4, we explored social grouping information for inter-camera multi-

target tracking. The multi-target tracking problem is formulated using an online learned

Conditional Random Field (CRF) model that minimizes a global energy cost. Each node in

the CRF graph represents a pair of linkable tracks, and two nodes are connected by an edge

if the corresponding tracks can form at least one elementary group. The proposed CRF

model prefers track associations that not only have high affinities in appearance and motion

but also maintain within camera grouping consistencies. Extensive experiments on three

different camera networks showed that the proposed tracking method is effective on asso-

ciating difficult track pairs with additional high-level contextual information. When there

are rich grouping information in the scene, the tracking performance can be significantly

improved.
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