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Measured Quantum-State Stochastic Processes

Abstract

A century of concerted effort brought new levels of physical understanding and engineering capability

to quantum physics that promise major advances in fundamental theory and technology applications.

A case in point, quantum computation has the potential to become one of humanity’s most innovative

and disruptive technologies. Advances there are pushing physics to probe quantum phenomena

in systems that are increasingly complex, and in more detailed ways than ever before. It is now

clearer than ever that further progress will require constructively working with noise, error, and

environmental interactions. A key part of this is to understand the properties of time series of

quantum states emitted by a quantum system—the main subject of this work.

This dissertation sets out to study time-series of quantum states emitted by a quantum system.

The fundamental objects in this are Quantum-State Stochastic Processes (QSSPs)—sequences of

stochastically generated quantum states. In particular, the focus is on the interaction of a classical

observer—via quantum measurement—with these objects, and the informational and statistical

characterization of the classical stochastic processes that result from that interaction.

As a classical observer uses a measurement protocol to observe a Quantum-State Stochastic Process,

the outcomes form a time series. Individual time series are realizations of a stochastic process over

the measurements’ classical outcomes. This dissertation studies the dependence of that stochastic

process of measurement outcomes on both the QSSP and the measurement protocol. In particular,

it demonstrates that regardless of the measurement protocol—and for several specific protocols

explicitly discussed in this work—the output classical stochastic process is generically highly complex

in two specific senses: (i) it is generically unpredictable, to a degree that depends on the measurement

choice, and (ii) achieving optimal prediction for these stochastic processes will generically require

an infinite amount of memory.

Inspired by the study of classical stochastic processes, this dissertation uses and adapts the theory of

computational mechanics and hidden Markov models to understand and categorize these measured

stochastic processes. Specifically, we identify the mechanism underlying their complicatedness

as generator nonunifilarity—the degeneracy between sequences of generator states and sequences
v



of measurement outcomes. This makes it possible to quantitatively explore the influence that

measurement choice has on a quantum process’ degrees of randomness and structural complexity

using recently introduced methods from ergodic theory. This dissertation provides the explicit

metrics and associated algorithms for that quantification. It demonstrates that under certain

conditions, dependence of these metrics on the choice of measurements is smooth. In addition, these

metrics are used to design informationally-optimal measurements of time-series of quantum states.

Most approaches to quantum stochastic dynamics focus on the evolution of the quantum state of

a particular system—for example, quantum collision models. In contrast, the results here lay the

groundwork for the study of time series of quantum states emitted by a quantum system, which

have so far been largely unexplored. Additionally, they provide a first description of what classical

interaction with these time series yields.
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CHAPTER 1

Introduction

1.1. Motivation

Observation and control are at the basis of our interactions with the physical world. When observing

complex systems, time series of measurements have proven a useful tool to building models and

gaining insight into the behavior of such systems. For instance, one can use a time series to find

patterns and reconstruct the causal dynamical structure of the underlying process that generates

the time series [1,2].

Time series of controlled quantum states are essential to quantum physics, quantum information and

computing, and their implementations in novel technologies. Moreover, as quantum technologies

scale to larger qubit collections that evolve coherently over increasingly longer times, fault-tolerant

design and error correction of quantum-state time series become increasingly necessary.

Several fault-tolerant systems and diagnostic tools have been developed assuming quantum processes

with uncorrelated noise [3–7]. Unfortunately, progressing beyond those assumptions to more

physically realistic non-Markovian, correlated processes has been challenging. To date, error

correction for non-Markovian quantum processes can be deployed only in specific cases. Moreover,

contemporary theory offers a restricted toolset for quantum process identification and control [8–10].

The following explores one reason for these challenges and limited progress. In short, there is

substantially more complicated statistics and correlational structure embedded in non-Markovian

quantum processes and in the classical stochastic processes that result from measurement than

currently appreciated. We show how to identify the signatures of these complexities and how to

constructively address the challenges they pose.

To ameliorate historical inconsistencies, along the way we give unified definitions of Markov and non-

Markov processes. Said most simply, these address the role of memory in a structurally consistent

way—a way that also gives access to modern multivariate information theory. Clarity in this is
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essential to appreciating the structural varieties of complex quantum processes. Lasting progress in

complex quantum processes depends on this clarity.

Beyond their direct relevance in quantum information tasks, time series of quantum states are

output signatures of the dynamics of many physical processes. For instance, the conformational

dynamics of biological macromolecules can be probed using single-molecule fluorescence resonance

energy transfer (smFRET) [11,12]. While the specific techniques vary, the general procedure in

these experiments is that the macromolecules are exposed to a laser beam, are excited and emit

photons. The characteristics of these photons, when detected, provide some information about the

conformation of the molecule at the time of probing. As the experimental capabilities improve,

the techniques for analysis of these time series of photons are still developing. Classical hidden

Markov model (HMM) techniques have been used to study these systems [13,14]. We posit that

the techniques developed here will serve to more thoroughly explore these physical dynamics.

Explicating the structures embedded in quantum processes requires stepping back, to revisit a basic

question: How to characterize the stochastic process that results from measuring sequential quantum

states? The answer is found in a recently-introduced framework for correlated and state-dependent

quantum processes [15,16]. Notably, its toolkit relies only on classical dynamical systems. The

turn to the latter is perhaps unexpected from the perspective of quantum physics, but makes sense

given that the goal is to describe the classical data an experimentalist has in hand in the laboratory.

Specifically, the tools rely on fundamental results that both reach back more than half a century

to early ergodic and stochastic process theories, but also call on contemporary mathematics of

dynamical systems—specifically, iterated function systems and their stable asymptotic invariant

measures [17–19].

Thus, the objects of study here are time series of sequential quantum systems and the stochastic

processes that result from sequentially measuring the state of each one.

Generating a time series of sequential quantum states usually occurs under the control of an

experimental apparatus. If control over the apparatus is not perfect or if it undergoes dynamics

that are unstable or not fully understood, then the time series of emitted quantum states can be

profitably regarded as a stochastic process, with the stochasticity encapsulating the environmental or
2



dynamic effects that cannot be analytically captured. It may also be desired for a given application,

such as quantum cryptography, that a quantum state process be stochastic.

ρ-3 ρ-2 ρ-1 ρ0 ρ10 ρ11 ρ12

... ...x x x x x ... 1 2 3 4 5

ρ13

Figure 1.1. A general controlled quantum source (CQS) as a discrete-time quantum
dynamical system (black box) that stochastically generates a time series of quantum
states . . . ρt−2 ρt−1 ρt . . . (density matrices). Measuring each state in the sequence
realizes a classical stochastic process over random variables . . . X1X2X3X4X5 . . ..

Figure 1.1 illustrates this with a black box quantum system that emits a quantum state ρt (density

matrix) at each time t. We refer to this source as a controlled quantum source (CQS) and to its

output as a quantum-state stochastic process (QSSP). It is important to note here that a distinct

quantum state is emitted at each timestep and the object of study is the time series of these states.

To emphasize, we are not investigating the dynamical evolution of an individual quantum state or

individual quantum system.

Continuing from left to right in Figure 1.1, measurement of a quantum-state time series results in a

stochastic process of classical measurement outcomes. Of that classical process we then ask:

• Statistics: What are the properties of this observed classical process—its randomness,

correlation, memory?

• System identification: What properties of the underlying quantum stochastic generator

hidden in the black box can be reconstructed from the observed classical process?

• Measurement choice: How does measurement affect the observed statistics and controller

identification?

Computational mechanics [20–22] was originally introduced to constructively answer these questions

for purely classical hidden processes. To do this, it extracts the “effective theory” from a time series

of observations and provides measures of the time series’ randomness and structure. In particular,

a process’ statistical complexity Cµ quantifies how much structure or memory is required to do

optimal prediction. And, the entropy rate hµ quantifies a process’ intrinsic randomness—the rate of

information production.
3



This toolset, together with the fact that measuring a quantum time series results in a classical

time series, motivates our approach. We adapt these classical measures of intrinsic randomness and

structure to describe the classical time series observed when applying measurement operators to a

time series of quantum states. This provides a description of relevant properties of a stochastic process

of quantum states—properties that have proven usefully diagnostic and descriptive in the classical

setting. The following endeavors to show that they are also usefully diagnostic and descriptive for

quantum processes. Moreover, our approach allows analyzing the effects that measurement choice

has on the observed complexity of a quantum dynamical process.

This serves as a starting point to more fully appreciating the complicatedness of quantum dynamical

processes and the role that measurement plays. Over the longer term, building on this, the goal is to

characterize stochastic quantum processes beyond being Markovian or non-Markovian—memoryless

or memoryful—to arrive at understanding of their informational and statistical properties. These

metrics can then support more informed approaches to error correction and to potentially leveraging

noise for particular tasks, just as their classical analogs have for thermodynamic computing [23,24].

1.2. Dissertation Outline

To set this work in the context of other approaches to stochastic dynamics and open quantum

systems, Chapter 2 provides a brief overview of similar efforts in the field and makes a clear

distinction between those efforts and the developments presented here. Once the direction of this

work is put in context, Chapter 3 presents a summary of the classical physics background necessary

to analyze the stochastic processes that result from measuring a quantum time series.

With both the context and the background tools available, Chapter 4 contains a formal definition

for the main object of study, the Quantum-State Stochastic Processes. It then goes on define in

detail the characteristics of the QSSPs that are considered in this dissertation: stationary, ergodic

and separable QSSPs. This chapter also defines a particular model of QSSP controlled source—the

classically-controlled quantum source—and gives a nod to the quantum-infromation quantification

of QSSPs.

Chapter 5 then discusses and defines possible measurement protocols for QSSPs and focuses on a

particular example. It then develops a constructive way to generate measured stochastic process
4



presentations in the form of hidden Markov models and discusses their general properties. In

particular, it is argued and demonstrated that these models will generically lead to highly complex

processes, and the specific ways in which this is true are made explicit by introducing metrics of

information generation and storage in these stochastic processes. Using these tools we introduce three

example processes that serve to illustrate the three types of observable behavior when measuring a

QSSP generated by a classically-controlled quantum source.

Having introduced QSSPs, their measurement protocols, and metrics to quantify and classify

measured QSSPs, Chapter 6 focuses on understanding how these metrics depend on the choice

of measurement. By working through typical-case examples, it is shown that both the intrinsic

randomness and the memory structure of the measured stochastic processes vary smoothly with

respect to measurement parameters. The general characteristics and behaviors are discussed, and

notions of informationally-optimal measurements are introduced.

The conclusions for this work and future directions are presented in Chapter 7.
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CHAPTER 2

Alternative Approaches to Quantum Processes

To start, let’s locate our development in the context of similar but distinct approaches to the study

of open quantum systems, dynamics and processes.

The study of quantum stochastic processes dates back to the 1960s and 70s [25–29]. Despite the

long tradition, the field has been riddled with multiple foundational challenges that have stalled its

progress. That said, the last two decades have seen an increase in concerted efforts to advance our

understanding of the field, which still has a long way to go. Perhaps the most common setting for

quantum processes investigates a single quantum system evolving in time. In this, stochasticity in

the system’s state evolution arises from its interaction with an environment. Within this setting

stochasticity in temporal evolution can also arise from inherent nonlinear dynamics or repeated

measurement and other state mappings [30,31].

Historically, though, there is a longstanding effort to characterize stochasticity in quantum dynamics

as a means to manage quantum noise [32,33]. Much of the machinery developed to describe quantum

stochastic phenomena arose from open quantum systems, seeded around quantum master equations

and relying heavily on assuming process Markovity [34,35]. More recently, an effort emerged to

understand, detect, and quantify non-Markovity, and many examples of specific non-Markovian

quantum dynamics have been analyzed in detail [8,9,36–40].

From the perspective of Markov’s original concept of “complex chains” [41,42] and the modern

theory of (classical) Markov processes, though, these approaches rely on an unnecessarily-varied

set of Markovity definitions. One consequence is that, most basically, they do not always agree

on what process memory and correlation are. This also makes comparing results across distinct

investigations and approaches challenging. To address this, we introduce a unified definition of

memory that we apply to classical and measured quantum processes. Section 3.2 discusses this in

more detail.
6



Directly importing the concept of classical stochastic processes to the quantum domain has proved

challenging, as References [43,44] discuss in detail. While there are several causes, the primary

difficulty is that the Kolmogorov Extension Theorem—specifying event-sequence probabilities and

measures—breaks down when the random variables are quantal and are generated by sequential

quantum mechanisms.

Recently, process tensors were introduced to treat such quantum stochastic processes [43,45–48].

They deliver a gateway to probe quantum stochasticity beyond the binary distinction of Markov

versus non-Markov. Modeling correlations beyond merely Markovian will allow analyzing a broader

class of quantum processes. That said, the endeavor is new.

While there are parallels with process-tensor representations, the following focuses on a different

type of dynamical process—different also from individual quantum-system temporal evolution. It

considers a sequence of distinct entities, in which the quantum state of each is a random variable at

each time step. In this, there is a rough parallel to quantum spin chains. Notably, these variables

can be correlated by the physical mechanism that sequentially generates them. It distinguishes

itself from the previously mentioned settings, in which the sequential evolution of a single physical

entity is tracked, and the random variable at each timestep is the quantum state of a single physical

system.

Consider a physical system that emits qubits, each in a state that is noisy or stochastic; for instance,

photons emanating from a blinking quantum dot [49, 50], or any other single-photon source, a

technology that is actively being developed for technological applications [51–55]. The difference

between these processes and the more-familiar evolving single-system dynamics is that, at each time

step, the quantum state of the emitted qubit is its own random variable. That is, each successive

random variable lives in its own Hilbert space. The associated random variable takes on a specific

qubit state, and measuring these states does not interfere with the quantum process generator. In

short, as the quantum source emits quantum states the dimension of the product Hilbert space

grows. As a consequence, addressing time-asymptotic properties requires working with an infinite

product state space. These changes the kind of investigation we pursue. We investigate time

series of quantum states emitted by a physical system analyzing the multivariate statistical and
7



informational properties of the system’s dynamics, in a similar spirit to the classical development in

Reference [56].

Specifically, References [15] and [16]—which form the backbone of this dissertation—recently

introduced and developed a framework for such Quantum-State Stochastic Processes. There, the

problem of quantum processes is cast in a way that is amenable to directly applying the tools of

classical stochastic processes to characterize the informational and structural properties of Quantum-

State Stochastic Processes. It was shown that a qubit time series, when observed through projective

measurements, generically results in a highly complex classical stochastic process. Highly complex

here means that the observed process has positive entropy rate and requires an infinite number of

temporal features to optimally predict future outcomes. It was also demonstrated that measurement

choice—the manner in which an observer interacts with a qubit stream—can drive a quantum

process to appear more or less complex.

To accomplish this, we adapted the metrics of computational mechanics to describe randomness

and structure in the measured processes. The following Chapter introduces the concepts necessary

for this adaptation, which will then be used to study measured QSSPs in the following chapters.

8



CHAPTER 3

Classical Background

This chapter introduces the classical physics required to describe and characterize measured quantum

state stochastic processes.

3.1. Classical Stochastic Processes

A classical stochastic process ←→X is a bi-infinite series of indexed observables produced by a system

and is defined by the probability measure over the random variables corresponding to the observables:

Pr(. . . Xt−1, Xt, Xt+1 . . . = . . . xt−1, xt, xt+1 . . .). In this, the random variables corresponding to the

observables are denoted with capital letters . . . Xt−2, Xt−1, Xt, Xt+1, Xt+2 . . . and their realizations

are denoted by lowercase letters . . . xt−2, xt−1, xt, xt+1, xt+2 . . .. The xt values are drawn from a

discrete alphabet A. The label t in the indexing is chosen to evoke the traditional time-indexing

of stochastic processes in which the random variables are sequential measurements of a physical

system. Although more general stochastic processes exist, throughout this work we will limit our

study to discrete time stochastic processes—those in which the domain of the indexing variable is

discrete.

Considering families of finite distributions proves useful in the study of stochastic processes. That is,

distributions of the type Pr (Xt:t+l) over a contiguous block of outcomes of the form xt:t+l ∈ Al. Ex-

plicitly, we denote blocks of contiguous random variables of length l as Xt:t+l = Xt, Xt+1, . . . Xt+l−1,

and blocks of contiguous outcomes as xt:t+l = xt, xt+1, . . . xt+l−1. In both cases the left index is

inclusive, and the left index is exclusive.

We restrict our focus to studying stationary stochastic processes.
9



Definition 1. A stochastic process is said to be stationary if its probability measure is invariant

over time(or index)-shifts:

Pr(Xt:t+l = xt:t+l) = Pr(X0:l = x0:l) ,(3.1)

for all t and l. That is, the joint distribution for blocks of length l is time (or index)-translation

invariant.

Independent identically distributed (I.I.D.) processes provide the simplest example of stationary

stochastic processes. In these, the random variables Xt are drawn from the same probability

distribtion over outcomes xt ∈ A and are independent of each other—that is, the outcome of random

variable at time t is not affected by the outcomes of any other random variable. For this reason, we

say IID processes are memoryless.

Until the early twentieth century, most stochastic processes were considered IID processes [57]. In

1907 Andrei A. Markov introduced the concept of “complex chains” [41,42,58,59], and with it

opened the door to the study of memoryful, structured processes with temporal correlations. Markov

processes are the simplest class of stochastic process that have memory and temporal correlations.

And they provide a basis to study more complex memoryful stochastic processes.

3.2. Process Markovity

In the most common definition, a Markov process or Markov chain is a stochastic process in which

the outcome of a random variable depends exclusively in the outcome of the previous random

variable and is independent of all other past outcomes. Mathematically, that is:

Pr(Xt = xt|X−∞:t = x−∞:t) = Pr(Xt = xt|Xt−1 = xt−1)(3.2)

This can straightforwardly be extended to include any finite number of previous random variables:
10



Definition 2. A Markov process or Markov chain of order R is a stationary stochastic process X

in which the probability distribution satisfies the following:

Pr(Xt = xt|X−∞:t = x−∞:t)

= Pr(Xt = xt|Xt−R:t = xt−R:t)

= Pr(Xt = xt|Xt−1 = xt−1 . . . Xt−R = xt−R),(3.3)

for all t ∈ Z and R ∈ N.

That is, the probability distribution of a particular random variable conditioned on the past depends

only on the values of the previous R random variables. The number R is called the Markov order

of the process. Another way to phrase this is that, for Markov processes, R is the answer to the

question: how far in the past do I need to look in order to make an optimal prediction of what the

next outcome is going to be?

From this definition, we emphasize the following:

• Memoryless or independent identically distributed (I.I.D.) processes are stochastic processes

with R = 0. We also refer to them as Markov processes of order 0.

• Stochastic processes with 1 ≤ R <∞ are memoryful. We refer to them as Markov processes

of order R.

• Memoryful stochastic processes that do not satisfy the Markov condition in Equation (3.3)

for finite R, but require R to be infinite are infinite-order Markov processes. Perhaps a bit

surprisingly, but the latter are quite common [60]. These are the best candidates for the

descriptor “non-Markov processes”.

The nomenclature above is directly derived from the definition of Markov property, consistent with

A. A. Markov’s original motivations to study “complex chains”, his phrase for memoryful stochastic

processes. Memoryless is R = 0, Markov is 1 ≤ R < ∞, and infinite Markov or non-Markov is

R =∞.

A generalization of Markov Processes that allows for the study of non-Markov processes was

introduced later in the twentieth century as functions of Markov chains. These processes are now
11



known also by the names of Hidden Markov Processes (HMPs) or Hidden Markov Chains (HMCs).

A wide class of stationary stochastic processes can be modeled with HMPs [61–63].

3.3. Hidden Markov Processes

Hidden Markov Processes generalize Markov processes in the following way: they consist of an

internal Markov process that is observed by a funciton of its internal-state sequence. Directly dealing

with probability measures over bi-infinite sequences of random variables is cumbersome, more so

when dealing with stochastic processes with more structure than Markov processes. For this reason,

we instead use finite-state models that are capable of generating the same probability measure over

sequences of outcomes of any length as those of the stochastic process they are modeling.

Definition 3 (Hidden Markov Model). A hidden Markov model (HMM) is a tuple (S,A, {T x})

that consists of:

(1) a set S of hidden (or internal) states σ ∈ S.

(2) a discrete alphabet A: a set of symbols (or observables) that the HMP emits on state-to-state

transitions at each time step.

(3) {T (x)}, x ∈ A a set of symbol-labeled transition matrices such that T (x)
σσ′ = Pr(x, σ′|σ) with

σ, σ′ ∈ S.

An HMM directly defines the dynamic over hidden states, . . .St−1StSt+1 . . ., which is itself Markovian

(order R = 1). The transition matrix T =
∑
x∈A T

x gives the probability of transitioning from one

internal state to another at each time-step Tσσ′ = Pr(St = σ|St−1 = σ′). This internal dynamic

is not taken to be observable, but part of the internal structure that defines the dynamic on the

sequence of symbols . . . Xt−1XtXt+1 . . ., which constitute the stochastic process that the HMM

generates.

T also defines a stationary state distribution π over hidden states, such that π · T = π. That is, π is

a row vector such that πσ = Pr(σ) with σ ∈ S.

Figure 3.1 shows three examples of HMMs. The three HMMs have the same alphabet A = {0, 1}.

The HMM in Figure 3.1a has one hidden state, S = {A} and generates an IID process with bias p.

The HMMs in Figure 3.1b and Figure 3.1c have two hidden states, S = {A,B}. The outgoing edges
12



A0 : p 1 : 1− p

(a) Biased Coin

A B1 : 1
2

0 : 1
2

1 : 1

(b) Golden Mean

A B0 : 1
2

0 : 1
2

0 : 1
2

1 : 1
2

(c) Simple Nonunifilar Source

Figure 3.1. Examples of HMMs for three different stochastic processes.

of each hidden state represent the symbols that can be observed or emitted by the process when

the model is in that hidden state. An edge starting at state σ and ending at state σ′ is labeled as

x : Pr(x, σ′|σ) and corresponds with the labeled-transition matrix entry T (x)
σσ′ . Edges that correspond

to transitions with zero probability are omitted. At each timestep an edge is taken and a different

symbol is emitted. For instance, following the HMM on Figure 3.1b: if the model is in state A it

generates a 1 with probability 0.5 and remains in state A, or generates a 0 with probability 0.5 and

transition to state B.

An HMM then is a model for a stochastic process consisting of the set of emitted symbol sequences

and their associated probabilities. It is important to note here that, even if the dynamic over hidden

states is Markovian, HMMs generate a more general class of stochastic processes that includes

non-Markovian processes. While the hidden states give an explicit mechanism for producing a

stochastic process, the stochastic process itself is defined only over the set of symbols x ∈ A. On

occasion, we refer to HMMs as machines, in the sense of state machines.

HMMs are useful in that they specify a finite mechanistic procedure to produce the correct

probabilities for a stochastic process (specifically a HMP). For each HMP there is an infinite family

of distinct HMMs that can model it. The simplest way to see this is to consider duplicating each

hidden state with identical transitions, this would exactly preserve the statistics of the symbol
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sequences and, thus, the stochastic process. The HMMs that generate a stochastic process are a

process’ presentations.

In point of fact, the development here works with edge-labeled HMMs. There are also state-labeled

HMMs that emit symbols on entering a state. Both presentation classes generate the same class of

stochastic processes. They are equivalent in this sense and they can be directly interconverted. Edge-

labeled presentations, though, do offer computational advantages when calculating informational

properties and in interpreting the functionality of their operation.

That said, not all presentations of a process are created equal. Some, for example, have a deceptively

simple-looking structural property called unifilarity.

3.3.1. Presentation Unifilarity.

Definition 4 (Unifilarity). An HMM transition is unifilar if the current internal state σ and the

emitted symbol x uniquely determine the next internal state σ′: Pr(σ′|x, σ) = 1, for at most one x.

That is, there is at most one transition leaving a state for each symbol.

An HMM is unifilar if all its transitions are.

When an HMM is nonunifilar there is ambiguity in the next state for at least one transition. For

example, in Figure 3.1, the HMMs in Figure 3.1a and 3.1b are unifilar, since given a hidden state

and the observed symbol, there is no ambiguity in what the next hidden state is. On the other hand,

the HMM in Figure 3.1c is nonunifilar: if the model is in hidden state A, and the next observed

symbol is a 0, the next hidden state could be A or B with equal probability.

It is a notable fact—one motivating the distinction in the first place—that processes generated by

finite unifilar HMMs are less (typically much less) complex than those that can be generated only

by finite nonunifilar HMMs.

An intuitive way to see why this occurs is the following. Consider a realization of a given process.

If it was emitted by a unifilar HMM the realization has a one-to-one or at most one-to-finite

correspondence between observed symbols and sequences of hidden-state transitions. In contrast, a

realization generated by a nonunifilar HMMs has a one-to-infinite correspondence between observed

symbols and hidden state transitions. The result in this case is that the number of possible of

sequences of hidden states that emit a particular sequence of observed symbols grows exponentially
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with sequence length. In general, a significantly more complex hidden structure is required to

optimally predict processes generated by nonunifilar HMMs.

3.3.2. Predictors and Generators. A stochastic process’ unifilar presentation, up to redun-

dancies in states or transitions, is an optimal predictor. That is, given an HMM’s hidden state, the

probabilities of the next observed symbols are the optimal, most informed prediction of what that

next observed symbol will be.

Unifilar HMMs being process predictors contrasts with nonunifilar HMMs which are not predictors.

The latter are only generators of process realizations. Moreover, their states are typically poor

predictors.

One way to restate the distinction between process predictors (unifilar presentations) and process

generators (nonunifilar presentations) is the following. On the one hand, for a unifilar presentation,

there is a deterministic relation between the past x−∞:t and the current hidden state σt. That is,

σt = f(x−∞:t), where f(·) is a function; while many pasts x−∞:t may lead to σt. Moreover, for all

such pasts, σt must have the same conditional distribution Pr(Xt:∞|σt) = Pr(Xt:∞|x−∞:t) of future

sequences given the observed past. Since we can use Pr(Xt:t+1|σt) to predict future observations,

we say that the hidden states in a unifilar presentation are predictive.

In contrast, when employing a process’ nonunifilar presentation to predict its future Pr(Xt:t+1|·)

requires a mixture of distributions Pr(Xt:t+1|σt) over the presentation’s states {σt}. In this sense,

nonunifilar states are not predictive. Nonunifilar presentations still generate the process accurately,

since the states and transitions explicitly provide a probabilistic procedure for eventually emitting

all of a process’ realizations with the correct probabilities.

Starting with any unifilar HMM presentation for a stochastic process, one can eliminate redundancies

in information about the past by merging states σt with identical future probability distributions

Pr(Xt:∞|σt). Eliminating these redundancies gives a unique minimal optimal predictive HMM

for a stochastic process. This canonical presentation is called a process’ ϵ-machine [20,22]. The

ϵ-machine’s states are a process’ causal states. They are causal is the sense that they give the

minimal mechanism that allows one to exactly predict process realizations. The following section

introduces these concepts in more detail.
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3.4. ϵ-Machines

For ease of notation, we refer here to the past sequences of a process as ←−X = X−∞:t and the future

sequences as −→X = Xt:∞. For finite futures of length ℓ we use −→X ℓ = Xt:t+ℓ.

As addressed in the previous section, the hidden states in a unifilar presentation must satisfy the

condition that, given an observed past sequence ←−x , all the allowed hidden states induced by that

observation must have the same distribution of futures Pr(−→X |←−x ). If every observed past induces a

unique allowed state in a unifilar presentation, we call that a causal state.

Definition 5. Causal states are the equivalence classes of pasts determined by the equivalence

relation ∼ϵ. The latter defines two infinite past sequences ←−x and ←−x ′ as equivalent—←−x ∼ϵ ←−x ′—if

and only if they have the same conditional distribution of futures:

ϵ(←−x ) =
{←−x ′|

Pr(−→X ℓ = −→x ℓ|←−X =←−x ) = Pr(−→X ℓ = −→x ℓ|←−X =←−x ′)
}
,

where −→x ℓ ∈ −→X ℓ, ←−x ′ ∈
←−
X , and ℓ ∈ Z+. As before, we denote a causal state random variable by S, a

particular causal state of an HMM by σ, and the set of causal states by S.

As Reference [21] details, a given causal state and the next observed symbol of a process determine a

unique next causal state. A given causal state σ also provides a well-defined conditional probability

Pr(−→X |σ) for all possible future sequences −→X . These two facts together mean there exists a well-

defined set of labeled transition matrices {T (x)} that describe the probabilities of transition between

causal states given an observed symbol x.

Definition 6 (ϵ-machine). The causal state set S, together with its corresponding set of labeled

transition matrices {T (x) : x ∈ A} define a process’ ϵ-machine.

By definition, the ϵ-machine is unifilar, and therfore predictive. What is more, for any given

stochastic process, its ϵ-machine is unique. It is also the process presentation with maximally

accurate prediction of minimal statistical complexity. This makes the ϵ-machine a natural canonical

HMM for a process.

The HMM shown in Figure 3.1a is the ϵ-machine for an IID process with bias p, that is, a stochastic

process of 0s and 1s in which at each timestep a 0 is output with probability p or a 1 is output
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with probability 1− p. The HMM in Figure 3.1b is the ϵ-machine for the Golden Mean process, a

stochastic process of all possible sequences of 0s and 1 in which there are no consecutive 0s. The

HMM in Figure 3.1c is not an ϵ-machine, its nonunifilarity means that its states are not causal and

that it is not predictive.

Since the ϵ-machine is a cannonical presentation for a process, it is important to highlight the

following. Given a nonuifilar presentation of a stochastic process, one can use the mixed state

algorithm to construct a unifilar presentation of the same process. From a unifilar presentation of a

process one can merge states with redundant information about future symbols and thus obtain the

process’ ϵ-machine. This is discussed in more detail in the following section.

3.5. Mixed-State Presentations

The following introduces the Mixed State Algorithm (MSA) that converts a nonunifilar presentation

to a unifilar presentation of a process, the process’ Mixed State Presentation (MSP).

First, let’s assume that an observer has an HMM presentation M for a process P that emits symbols

x ∈ A. Before making any observations, the observer has probabilistic knowledge of the current state

η0 = Pr(S). We call this a state of knowledge or belief distribution. Typically, the best guess for an

observer prior to observing any output of the system is η0 = π, the stationary state distribution of

M .

Once M generates a word w = x0x1 . . . xℓ the observer’s state of knowledge of M ’s current state

can be updated to η(w). Assuming M has N hidden states, η(w) is a row vector with N entries,

each corresponding to the probability that M is in a particular hidden state, that is:

η(w)σ ≡ Pr(Sℓ = σ|X0:ℓ = w,S0 ∼ π) .(3.4)

The collection of possible states of knowledge η(w) forms M ’s set R of mixed states:

R = {η(w) : w ∈ A+,Pr(w) > 0} ,

where A+ is the set of all words with positive length.

When contructing a MSP from a presentation M with N hidden states, the mixed states η can

be represented in the N − 1-simplex, the set of row vectors such that η · 1 = 1, and ηi ≥ 0 , ∀i ∈
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{1, . . . , N}. Here 1 is a column vector of length N such that all entries are 1. So effectively, the

condition η · 1 = 1 means that all entries of η sum to 1.

We can also define the mixed-state measure µ(η)— the probability of being in a particular mixed

state:

Pr(η(w)) = Pr(Sℓ|X0:ℓ = w,S0 ∼ π) Pr(w) .

From this follows the probability of transitioning from η(w) to η(wx) on observing symbol x:

Pr(η(wx)|η(w)) = Pr(x|Sℓ ∼ η(w)) .

This defines the mixed-state dynamicW , in terms of the original process, not in terms of a particular

HMM presentation of it.

Now, with the bases of the mixed-state dynamic W , we concentrate on how to build the MSP given

any presentation M of a process.

The probability of generating symbol x when in mixed state η is:

Pr(x|η) = η · T (x) · 1 ,(3.5)

where again, 1 is a column vector of 1s and T (x) is the x-labeled transition matrix of M . Upon

seeing symbol x, the current mixed state ηt is updated:

ηt+1(x) = ηt · T (x)

Pr(x|η) .(3.6)

Thus, given an HMM presentation we calculate the mixed state of Equation (3.4) via:

η(w) = π · T (w)

π · T (w) · 1
.

And the mixed-state transition dynamic is then:

Pr(ηt+1, x|ηt) = Pr(x|ηt)

= ηt · T (x) · 1 ,
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since Equation (3.6) says that, by construction, the MSP is unifilar. That is, the next mixed state

is a function of the previous mixed state and the memitted (observed) symbol.

To build the set of mixed states R, one must make an initial mixed state assumption η0. As

mentioned above, this typically is the stationary state distribution π of M . Equation (3.6) then

states how to construct all other mixed states and what the symbol labeled transition dynamic is

between them.

Together the mixed states and their dynamic give the HMM’s mixed-state presentation (MSP)

U = {R,W}, a unifilar presentation for the process generated by presentation M .

When constructing a MSP from a finite HMM three things can happen: the mixed state set R can

be finite, countably infinite or uncountably infinite.

The first case, when R is a finite set, happens when starting from a unifilar HMM or, rarely, when

starting from a nonunifilar HMM presentation of a process. If R is finite, the HMM recovered is the

ϵ-machine of the process, since the states of the MSP are causal. The MSP might have additional

transient states, which can be useful to describe the transients of the process when synchronizing

to the ϵ-machine by observing the process, but they can be removed and the recurrent states will

constitute the ϵ-machine of the process.

The second case, in which R is an infinte but countable set, happens occasionally when starting from

a nonunifilar presentation of a process M . For instance, when M has a synchronizing symbol, such

as symbol 1 in the HMM given in Figure 3.1c, then R is infinite but countable. Here, observation

of a 1 synchronizes the observer to M in the sense that after observation, the machine can only be

in state A. In such cases the MSP will typically have a renewal process structure [64,65]. In this

case, after removing transient states, the MSP will be the ϵ-machine of the process.

The third case, in which R is uncountably infinte is significantly more complicated and, in fact,

typical when beginning from a nonunifilar presentation M of a process. In this case, the constructed

presentation is predictive, in the sense discussed in the previous section. While minimality is not

guaranteed, one can achieve it. This is accomplished by checking for and merging states that have

the same conditional probability over future outcomes, which makes them redundant. While this is

an interesting open problem, minimality or nonminimality of the MSPs constructed in this case

can generally be ignored for many uses. That is, in the sense that the MSP can be considered the
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ϵ-machine of the process for the purposes of quantifying informational properties of the process they

represent. In the following sections we define those information properties and their quantifiers and

how to compute them.

3.6. Information Properties of Stochastic Processes

To characterize and quantify stochastic processes we build on Shannon’s information theory [66,67].

The basis of which is the Shannon entropy, a measure of the information contained in a random

variable. The Shannon entropy, which we will also call just the entropy or information, of a random

variable X is defined as:

H[X] = −
∑
x∈A

Pr(X = x) log2 Pr(X = x) .(3.7)

The above is taken with the added imposition of 0 log2 0 = 0. On the one hand, H[X] is maximized

when Pr(X) is uniform, and each outcome x is equally likely. On the other hand, it is minimized

when there is certainty in the random variable X, or Pr(X = x∗) for some outocme x∗. Intuitively,

the entropy of a random variable quantifies how much information one can learn when observing a

random variable or, alternatively, how much uncertainty one has when prediciting such random

variable.

With this tool in hand, we set out to define the ways to define the intrisic randomness and the

memory structure of a stochastic process.

3.6.1. Intrisic Randomness and Shannon Entropy Rate. The entropy rate of a stochastic

process measures the intrinsic randomness of the process. It is defined as follows:

Definition 7. Given a stochastic process ←→X , its entropy rate is given by:

hµ = lim
ℓ→∞

H[X0:ℓ]
ℓ

,(3.8)

where H[X0:ℓ] is the Shannon block entropy [56]. That is, the Shannon entropy over consecutive-

symbol blocks of length ℓ of the process.
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From Equation (3.8), we see that hµ is the asymptotic average uncertainty per observed symbol of

the stochastic process. Or, said differently, it quantifies how much information an observer gains

asymptotically with each newly measured symbol.

Reference [17] explores in detail how to compute the entropy rate of a process generated by a given

HMM. Here, we summarize.

For unifilar HMMs, Shannon [67] showed the entropy rate of the stochastic process is exactly

computable in closed-form from the HMM’s transition matrices and stationary state distribution π,

as follows:

hµ = −
∑
σ∈S

πσ
∑
x∈A

∑
σ′∈S

T
(x)
σσ′ log T (x)

σσ′ .(3.9)

As was previously mentioned, in a unifilar presentation there is a one-to-one correspondence between

sequences of observer symbols . . . xt−1xtxt+1 . . . and sequences of hidden states . . . σt−1σtσt+1 . . ..

In turn, the state-averaged transition uncertainty, weighed by the stationary state distribution of

the presentation π, in Equation (3.9) above, corresponds to the observed symbol uncertainty of the

process.

For nonunifilar HMMs, there is a one-to-many correspondence between sequences of observed

symbols and sequences of hidden states. Thus, applying Equation (3.9) to a nonunifilar presentation

of a process can, and will usually, overestimate the true entropy rate of the process.

In Reference [68], Blackwell discusses the entropy rate of functions of Markov chains and proposes

that, in general, it can be written as an integral weighed by a measure over what we have introduced

above as mixed states. Elaborating on this idea, Reference [17] showed that, in the notation of

HMMs, the correct general expression for a process’ entropy rate is an integral of the transition

uncertainty over the mixed-state simplex R weighted by the invariant measure µ(η):

hBµ = −
∫

R
dµ(η)

∑
x∈A

Pr(x|η) log2 Pr(x|η) .(3.10)

The B superscript here is a nod to Blackwell’s contribution. We can see that Equation (3.10)

reduces to Equation (3.9) for the case in which the MSP of a process has a finite set of states.
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Moreover, Reference [17] goes on to describe how to numerically evaluate the integral given in

Equation (3.10) in a practical way. The general contractivity of the MSP dynamic W on the

simplex and the ergodicity of the stochastic processes allow for accurate evaluation of the integral

expression. This is implemented by taking an average over a time series of mixed states ηt, rather

than integrating over the Blackwell measure µ(η). This yields the process’ entropy rate:

ĥBµ = − lim
ℓ→∞

1
ℓ

∑
x∈A

ℓ∑
i=0

Pr(x|ηi) log2 Pr(x|ηi) ,(3.11)

where Pr(x|ηi) = η(x0:i)·T (x) ·1, and x0:i represents the first i symbols of an arbitrarily long sequence

x0:ℓ generated by the process’ MSP. By tracking the long time behavior of a single realization, one

can accurately estimate the entropy rate of the process given the MSP of the process.

3.6.2. Information Storage. To quantify the structure of a process’ presentation M , the

most straightforward measure is its number |S| of hidden states. Beyond that, a more insightful

metric is the amount of historical memory or information the presentation states contain. This is

given by the Shannon entropy of the state distribution:

H[S] = −
∑
σ∈S

πσ log2 πσ .(3.12)

It quantifies how much information the hidden states store about past observations. That is, it

measures how much memory a given HMM has. And, since unifilar presentations are predictors,

H[S] is an upper bound on the amount of information one must maintain on average to optimally

predict the process. So that these metrics describe actual properties of the stochastic process in

question and not those of a particular HMM presentation—that, say, could have an overly-large and

redundant set of states—we use a process’ ϵ-machine which, as stated above, is a process’ minimal

optimal predictive HMM presentation [20–22].

The ϵ-machine’s hidden states are a process’ causal states since they optimally capture the process’

causal structure. With them one can make the most accurate predictions of future symbols and

their associated probabilities. The memory in the causal states is then the minimal amount of

information from the past that must be stored in hidden states to optimally predict the future.
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Definition 8. A stochastic process’ statistical complexity Cµ is the Shannon entropy of its

ϵ-machine’s causal states S:

Cµ = H[S]

= −
∑
σ∈S

Pr(S = σ) log2 Pr(S = σ) .(3.13)

Operationally, Cµ is the minimal memory required to optimally predict the future of a stochastic

process.

For stochastic processes with ϵ-machines that have a finite number of causal states, or even a

countably infinite number of causal states, Cµ can be computed or numerically approximated,

respectively. In those cases the statistical complexity of the process converges to a finite number.

For stochastic processes with ϵ-machines that have an uncountable infinity of causal states, Cµ

diverges, this indicates that they require an infinite amount of memory to optimally predict. Beyond

that statement, one can still quantify the structure and memory of these processes by tracking how

the memory resources required to predict the process scale with increasing the precission of the

prediction [69].

To quantify the memory structure of these uncountably-infinite-state processes with divergent

statistical complexity, Reference [18] introduces the concept of statistical complexity dimension, dµ.

dµ quantifies the divergence rate of Cµ, it is the information dimension of the Blackwell measure

µ(η) on the set of mixed states R:

dµ = − lim
ϵ→0

Hϵ[R]
log2 ϵ

.(3.14)

This tracks the rate at which the memory requirements for optimal prediction grow with increasing

precision − ln ϵ. Specifically, Hϵ[Q] is the Shannon entropy of the continuous-valued random variable

Q coarse-grained at size ϵ. So, in particular dµ is the information dimension of the set of mixed

states coarsgrained at size ϵ. Even when Cµ diverges, dµ allows us to quantify the rate at which

it does and is therfore a measure of memory structure for stochastic proceses. In particular, for

processes for which Cµ is finite, dµ is zero.
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Evaluating the statistical complexity dimension dµ is not a simple matter, though. The procedure

is presented in detail in Refs. [18,19]. In particular, Reference [19] introduces the ambiguity rate

ha, which quantifies the rate at which optimal predictive models discard information by introducing

uncertainty over the infinite past. The difference between the entropy rate and the ambiguity rate in

a process is fundamental to determine its statistical complexity dimension, as well as the cardinality

of its set of mixed states R.

The details of the meaning and calculation of the ambiguity rate are highly nuanced and beyond the

scope of this work. Here we highlight only a few main points, which are required for the analysis of

Quantum State Stochastic Processes:

(1) When hµ−ha = 0, the ϵ-machine of the stochastic process discards information at the same

rate that it generates information. In this case Cµ converges to a finite value and dµ = 0.

This happens for processes with finite state ϵ-machine and, for our practical purposes, also

for processes with countably-infinite-state ϵ-machines.

(2) When hµ > ha ≥ 0, the stochastic process’ Cµ diverges and its ϵ-machine requires an

uncountable infinity of causal states. In that case, the statistical complexity dimension can

be computed from knowledge of the process’ hµ, ha and the Lyapunov spectrum of the

causal-state dynamic.

With that, we have presented all the classical tools that will be used to study measured quantum-state

stochastic processes. The following chapter sets out to develop a rigurous definition of quantum-state

stochastic processes and how we model them.
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CHAPTER 4

Quantum State Stochastic Processes

The following introduces the main objects of study—quantum-state stochastic processes—and the

information sources that generate them.

4.1. Quantum Processes

Consider a given quantum source that emits a sequence of individual quantum states. At each time

step, the quantum state it emits takes on a value from a finite set. We refer to these sources as

controlled quantum sources (CQSs) and, in their operation, they generate quantum-state stochastic

processes (QSSPs). In Figure 1.1, the black box represents the CQS, and the sequence of output

qubits are a realization of the QSSP. We will now define quantum-state stochastic processes.

Let Rt denote the random variable for the quantum state emitted at time t. The realization of

Rt as a particular quantum state is ρt ∈ AQ, where AQ is the set of quantum states in a Hilbert

space that the random variable can take. The random variable for a sequence of quantum states

emitted between times t and t+ ℓ is denoted by the block random variable Rt:t+ℓ (inclusive on the

left, exclusive on the right). Then ρt:t+ℓ denotes the realized sequence of quantum states.

Definition 9 (Homogeneous Quantum-State Stochastic Process). Let AQ ⊆ Hd be the set of

available quantum states in the d-dimensional Hilbert space Hd. Ω = AZ
Q is then the space of bi-

infinite sequences over AQ. Consider the probability space P = (Ω,F , P ), where F is the σ−algebra

on the cylinder sets of Ω and P a probability measure over the cylinder sets. R−∞:∞ denotes the

discrete-time random-variable sequence of quantum states described by the quantum-state stochastic

process P. It comprises the sequences of random variables that take on values according to a

measurable function Tt : Ω→ AtQ:

Rt = Tt(R−∞:∞) ,
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for t ∈ Z.

In simpler terms, a QSSP is defined by a probability measure over realizations of bi-infinite sequences

of random variables, R−∞:∞.

To emphasize again, we work with distinct physical objects at each time step. That is, each random

variable Rt takes a value on its own Hilbert space Hdt . In a homogeneous process the Hilbert spaces

are of the same type. This is in contrast to a situation in which one could track the discrete time

evolution of the quantum state of a physical system, as described in Chapter 2. Think, for example,

of a time series of photons, each photon emitted by the source at a certain time step, in this or that

quantum state, and each of those states are in H2.

We focus our attention in homogeneous QSSPs, but emphasize that there is room for future study

of nonhomogenenous QSSPs, in which the alphabet AtQ is time dependent and can live in a Hilbert

space of different dimension than some other At′Q.

We will further restrict our study to stationary and ergodic QSSPs, a fairly common restriction in

the study of stochastic pocesses.

Definition 10 (Stationarity). A stationary QSSP is one in which the probability of observing a

particular sequence of quantum states is independent of the time at which the observation is made.

That is, the probability of an observed quantum sequence is time-translation invariant:

Pr(Rt:t+ℓ = ρt:t+ℓ) = Pr(R0:ℓ = ρ0:ℓ) ,(4.1)

for all t ∈ Z, ℓ ∈ Z, and ρ0:ℓ.

Definition 11 (Ergodicity). A QSSP is ergodic if all long realizations of the strochastic process

obey the QSSP’s statistical properties. That is, given a long realization R0:n = ρ0:n, the probability

of observing a finite realization of R0:ℓ of length ℓ≪ n in ρ0:n is the same as observing that same

block in multiple realizations of length ℓ drawn from the QSSP.

The following considers only QSSPs satisfying these three definitions. Further, it considers QSSPs

which are separable.
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Definition 12 (Separable QSSP). A QSSP is separable if for all t, the output quantum state

realized by Rt is pure. That is, ρt ∈ AQ satisfies ρ2
t = ρt. Sequences of random variables in a QSSP

can then be written as:

Rt:t+ℓ = Rt ⊗Rt+1 ⊗ . . .⊗Rt+ℓ−1(4.2)

and a realization is both a pure state and the tensor product of the individual pure quantum states:

ρt:t+ℓ = ρt ⊗ ρt+1 ⊗ . . .⊗ ρt+ℓ−1 .

Effectively, this rules out of the present study QSSPs in which there is entanglement within

the sequences of output quantum states. While the present work focuses in time series without

entanglement, the time series of quantum states are still correlated and prove to be complicated.

This work serves as a starting point to approach time series with entanglement in the future. For

instance, considering time series in which the quantum state of the chain of quantum states can be

described as a Matrix Product states. These can be generated with Hidden Markov Models [70], as

the QSSPs described below, but also allow for a specific form of entanglement.

We note here, that since the QSSPs to be considered are made of pure qudit states at each time

step, the stochastic process can also be described in ket notation. In this case, the quantum state

of the qudit at time t is described by |Ψt⟩ and takes on value |ψt⟩. The state of a block can then

be described by |ψw(ℓ)⟩ = |ψt:t+ℓ⟩, where w(ℓ) is a realization of an allowed ‘word’ or sequence of

symbols of length ℓ of the QSSP. If a particular block of size ℓ has a probability Pr(w(ℓ)) of being

in state |ψw(ℓ)⟩, then a block of length ℓ of the QSSP can be described by the density matrix:

ρ0:ℓ =
∑
w(ℓ)

Pr(w(ℓ)) |ψw(ℓ)⟩ ⟨ψw(ℓ)|(4.3)

Where the sum goes over all allowed values of w(ℓ) for the QSSP. This notation, although it will not

be used commonly in the present work, connects it with the development presented in Reference [71]

and simplifies the definition of several relevant quantifiers of the quantum information content of

the QSSP.
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To summarize, together these definitions describe a setup in which a quantum system undergoing a

certain dynamic and emits individual qudits at each time step. The latter are in pure quantum

states. The quantum system that emits the qudits is the controlled qubit source (CQS). Occasionally,

this is abbreviated as the controller to make reference to an experimenter having some level of

control, perhaps through design, over qudit emission, which can be stochastic. We now propose a

way to model classical controlers.

4.2. Quantum Sources and Generator Presentations

ρ,,ρ,, ρ,ρ,, ρ,,,

...:1/2
A B

:1

:1/2 ρ,ρ,,

ρ,,,
...0 1 1 1 0 0...

ρ,, ρ, ρ,,, ρ, ρ,,,

Figure 4.1. Classically-Controlled Quantum Source (cCQS) and its Emitted Pro-
cess: (Left) As the internal hidden Markov controller operates, at each time t the
emitted symbols A (not shown) determine the qubit’s quantum state ρt ∈ AQ. As
shown, the latter are realized as density matrices ρ′, ρ′′, and ρ′′′. (For simplicity the
controller’s emitted symbols A are not explicitly shown, only the resulting quantum
states ρ ∈ AQ.) (Middle) The resulting output quantum process is a sequence of
distinct H2 Hilbert spaces, displayed as a series of Bloch spheres with realized state
vectors displayed inside. (Right) Measuring each qubit realizes a classical stochastic
process . . .

In short, quantum sources generate quantum processes. Here, we concentrate on a particular

implementation of CQSs—those that generate QSSPs via a classical controller with a finite memory

in the form of a hidden Markov model (HMM) [61, 62, 72]. Recall that classical HMMs were

described and summarized in Section 3.3. To illustrate, this means that the black box in Figure

1.1 is reified as in the white box shown in Figure 4.1: a HMM controlling what the box emits.

Correspondingly, we refer to this qubit source as a classically controlled qubit source (cCQS).

The choice of finite-state HMM controller to model a cCQS is natural, in that HMMs are a standard

representation of finite-memory stochastic processes, are widely used to model noisy classical sources

and communication channels, and can be fully analyzed [73,74]. Also, looking to the future and

extending the present framework, HMMs are easily extended to represent more general sources,

such as those driven by quantum controllers [75].
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Definition 13 (Classically-Controlled Quantum Source). A cCQS is a tuple (S,A,AQ, {Tρ})

where:

(1) S is the set of hidden states of the HMM controller.

(2) Alphabet A is a finite set of symbols in one-to-one correspondence with the set AQ of

available pure qudit quantum states. The latter are emitted by the cCQS when a symbol is

encountered on a transition. To simplify notation, both a symbol and its qudit state are

denoted by a density matrix ρ ∈ Hd.

(3) {Tρ : ρ ∈ AQ} is a set of quantum-state labeled transition matrices of size |S| × |S|. Tρσσ′

is the probability of transitioning from internal state σ to internal state σ′ (both in S) while

emitting symbol (or, effectively, quantum state) ρ.

The labeled transition matrices {Tρ} sum to the internal-state stochastic transition matrix over

hidden states: T =
∑
ρ∈AQ

Tρ. This, in turn, determines the HMM’s stationary internal-state

distribution π as the left eigenvector of T with eigenvalue 1: π = πT. π is then a vector of size |S| in

which the entry πσ represents the asymptotic probability of the HMM being in internal state σ ∈ S.

It is important here to make a comment about the use of the word state, which is arguably overloaded

with meaning in phyiscs. Here, the terms hidden or internal states, refer to the internal memory

states of a HMM or a cCQS. This is in contrast with quantum state or qudit state.

For an example, see the cCQS in Figure 4.2, where:

(1) S = {A,B}.

(2) AQ = {ρψ = |ψ⟩ ⟨ψ| , ρφ = |φ⟩ ⟨φ|}. Here, |ψ⟩ and |φ⟩ are pure quantum states.

(3) {Tρ} = {Tρφ ,Tρψ}, where:

Tρφ =

0 1/2

0 0



Tρψ =

1/2 0

1 0

 .
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(4) π =
(

2/3 1/3
)

, the left eigenvector of:

T = Tρφ + Tρψ

=

1/2 1/2

1 0

 .

A B|ψ⟩⟨ψ| : 1
2

|φ⟩⟨φ| : 1
2

|ψ⟩⟨ψ| : 1

Figure 4.2. cCQS Operation: If the HMM controller is in state A the cCQS has
equal probabilities of remaining there or transitioning to state B. If a transition to
state B then occurs, the system emits a qubit in the pure state |φ⟩ ⟨φ|. In the next
time step the cCQS must transition to state A and it then emits a qubit in state
|ψ⟩ ⟨ψ|. That is, the edge labels ρ : p indicate taking the state-to-state transition
with probability p and emitting quantum state ρ. As the cCQS operates, a qubit is
output at each time step, over time the result is a qubit time series.

The current work implements cCQSs with finite-memory HMM controllers: |S| <∞. It also specifies

that HMM controller transitions are unifilar, as defined in Section 3.3.1: the current internal hidden

state and emitted quantum state uniquely determine the next internal hidden state.

Section 3.3.1 gives a more general and detailed account of unifilarity. Sections 3.3.2 and 3.6 then

highlight several of its consequences. As will become clear, the distinction between unifilar and

nonunifilar HMMs plays a large role in driving the complexity of quantum processes on their own

and when measured.

These choices ensure that the cCQS’s randomness and complexity can be directly calculated. And

so, the effects of measurement on the quantum process are made most explicit. That said, the

analysis can be applied directly to nonunifilar controllers, with the caveat that the controller’s

structure and randomness are more complicated to quantify, as was made explicit in Section 3.6.
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4.3. Quantum Process Characterization

In the same way that we use classical information theory to describe classical stochastic processes,

as summarized in Chapter 3.6, we can use quantum information theory to describe the properties

of separable QSSPs. While the main focus of this work is the characterization of the classical

stochastic processes obtained after observation of a QSSP, to illustrate the quantum-information

characterization of QSSPs we highlight here a few select quantities that serve to characterize the

QSSPs directly. A detailed characterization of the quantum information properties of QSSPs is

developed in Reference [71].

While in the classical regime the basic metric for information is the Shannon entropy Equation

(3.7), in the quantum regime that role is played by the von Neumann entropy [76,77].

Definition 14. The von Neumann entropy S of a quantum mechanical system in a quantum state

described by a density matrix ρ is given by:

S(ρ) = −tr(ρ log2 ρ) = −
∑
i

λi log2 λi ,(4.4)

with λi the eigenvalues of the density matrix ρ.

S(ρ) = 0 only when ρ describes a pure state, so S(ρ) is a way to quantify the departure of a system

from a pure state. As can be seen form Equation (4.4), it can also be interpreted as the Shannon

entropy of the eiganvalues of the density matrix ρ describing the quantum state.

We can also consider the von Neumann entropy of blocks or sequences of length ℓ for the QSSP.

Definition 15. The quantum block entropy or von Neumann block entropy of a block of length ℓ of

a QSSP is given by:

S(ℓ) = −Tr(ρ0:ℓ log2 ρ0:ℓ) ,(4.5)

with ρ0:ℓ defined as in Equation (4.3).

S(ℓ) = 0 when ρ0:ℓ describes a pure quantum state. As stated in detail in Reference [71], S(ℓ) is a

concave, nondecreasing function of ℓ. It quantifies the amount of information in a block of lenght ℓ

random variables of a QSSP.
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4.3.1. von Neumann Entropy Rate.

We can then track the average amount of quantum information content per symbol in a QSSP.

Definition 16 (Quantum Entropy Rate). The von Neumann entropy rate or quantum entropy rate

of a QSSP is given by:

s = lim
ℓ→∞

S(ℓ)
ℓ

.(4.6)

The von Neumann entropy rate exists for all stationary quantum-state stochastic processes. Reference

[71] states and proves its relationship to the classical entropy rate of the classical stochastic processes

that can be obtained by measuring the QSSP. These will be the objects of our attention.

It is worth noting here that we have written a Python package, qssp, which is available and can

compute the quantities introduced above as well as manage HMMs, QSSPs and measured QSSPs as

described in more detail in Appendix A.

The following chapters will consider and describe the interaction of an observer with a QSSP via

measurement. To simplify the analysis, we focus on QSSPs in which the output time-series is made

of qubits, the simplest carriers of quantum information. In general, the analysis to follow can be

extended to qudits, but their consideration would significantly complicate the development. When

relevant, comments about QSSPs consisting of qudits with d > 2 will be made.
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CHAPTER 5

Measured Quantum-State Stochastic Processes

A central aspect of the process realized in the laboratory is how an observer interacts with the

QSSP. Naturally, interactions occur via quantum measurement, but there are multiple options for

both the measurement type and the measurement protocol to implement. We now set the stage for

measurement protocols and define the specific measurements and protocols to be studied in this

work.

5.1. Measurement Protocols

We view a measurement protocol as a communication channel between the quantum stochastic

process R−∞:∞ and its measured companion—a classical stochastic process X−∞:∞. Denote the

relationship between the QSSP random variables and those of the measured process by:

Xt = It(Rt) .(5.1)

Where It represents the action of a measurement on the quantum state ρt output by the QSSP at

time t. The set I = {It} for all t defines a measurement protocol. In a slight abuse of notation,

we use the variable It to represent both the measurement channel and the particular measurement

operator applied at time t. For short, we refer to the measurement protocol as just I and denote

the relationship between the QSSP and its corresponding measured stochastic process by:

X−∞:∞ = I(R−∞:∞) .(5.2)

To recapitulate the notation, at each time step the random variable Rt takes on the value of a

particular quantum state ρt. That, in turn, is measured with operator It. The resulting measurement

outcome is denoted by the random variable Xt, which takes on a particular value xt ∈ AM , with

AM the set of possible measurement outcomes.
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We now define the basic measurement protocol used.

Definition 17 (Single State Constant-Measurement Protocol). As a QSSP is output, each quantum

state passes through a measurement channel It = E, for all t. That is, the same measurement E is

applied to each output state individually: Xt = E(Rt).

Though the following employs only this protocol, we note that it is straightforward to work with

measurement protocols for which It depends on time. For example, a measurement scheme in which

the measurements alternate between a measurement along the z-axis and a measurement along the

x-axis. Or, a potentially more useful protocol is one in which measurements are adaptive, and the

Its are chosen given the outputs of a subset of past measurements. One approach to the adaptive

measurement protocols is described in Reference [71].

5.1.1. Projective Measurements. At each time-step, the observer performs a single mea-

surement E on the quantum state ρ emitted by the controller. This measurement consists of a finite

set of nonnegative operators {Ex}, in which the index x ∈ AM labels the measurement outcomes.

The measurement operators sum to the identity:
∑
x∈AM

Ex = I. The probability of measurement

outcome x after measuring quantum state ρ is given by Pr(x|ρ) = Tr(Exρ), where Tr(·) is the trace.

We call this a positive operator-valued measurement (POVM). A special subset of POVMs is those

in which the measurement operators are mutually orthogonal, projection-valued measurements, as

discussed below.

We concentrate our analysis on single-state projective measurements, in which the operators are

orthogonal. This simplifies the basic framework, for now. That said, Section 6.2.1 briefly considers

single-state protocols with more-general POVMs.

Definition 18 (Projective Measurement on a QSSP). A projective measurement E in a dimension d

Hilbert space Hd consists of a set of d mutually orthogonal projectors {Ex}, with x ∈ {0, 1, . . . d− 1},

such that ExEy = Exδxy and
∑
xEx = Id. When the measurement E acts on a quantum system in

state ρt, emitted by the QSSP, the outcome is xt with probability Pr(xt|ρt) = Tr(Extρt). Applying a

projective measurement to every state emitted by the QSSP yields a classical stochastic process over

the values of x. We call the set of possible values of x the measured process alphabet AM .
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Notice that in a projective measurement applied to a quantum state in a Hilbert space of dimension

d, there must be at most d measurement operators. In more general (non-orthogonal) POVMs,

there can be more than d measurement operators.

As an example of a projective measurement, consider a measurement of a qubit consisting of two

orthogonal measurement operators {E0, E1}. Without loss of generality these can be written as:

E0 = |ψ0⟩ ⟨ψ0|

E1 = |ψ1⟩ ⟨ψ1| .

Later, we refer to the set E = {Ei : i = 0, 1, 2, . . .} of such measurement operators as the observation

basis.

With specified |ψi⟩ ∈ H2 and ⟨ψ0|ψ1⟩ = 0. When working with qubit projective measurements, it is

convenient to parametrize them using Bloch angles as follows:

|ψ0⟩ = cos θ2 |0⟩+ eiϕ sin θ2 |1⟩(5.4a)

|ψ1⟩ = sin θ2 |0⟩ − e
iϕ cos θ2 |1⟩ .(5.4b)

The resulting measurements are labeled 0 or 1, respectively. Let Xt denote the random variable

for the outcome of measuring the state ρt at time t and xt the realized value. In the case of qubit

projective measurements xt ∈ {0, 1}. In this way, applying projective measurement protocol to a

QSSP produces a binary classical stochastic process. Knowledge of the cCQS’s controller and the

measurement protocol are the basic ingredients needed to analyze the mechanism that generates

these classical stochastic processes—the measured processes.

5.2. Measured Processes

By Equation (5.2) the classical stochastic process that is realized by measuring the QSSP is the joint

distribution Pr(X−∞:∞). The specific value xt taken on by the random variable Xt depends both

on the measurement protocol I = {It} with measurement operators {Ext} and the QSSP and its
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HMM controller. That is, if the random variable Rt takes on the particular value ρt at time t, then:

Pr(Xt = x|Rt = ρt, It) = Tr(Extρt) .(5.5)

Both the measurement protocol and the QSSP can introduce correlations within the classical

stochastic process. That is, even if applying a time-independent measurement protocol, such as

a constant single-state measurement protocol, the correlations in R−∞:∞ will yield correlations

in X−∞:∞. However, even if R−∞:∞ is an independent, identically distributed (IID) process, a

time-correlated measurement protocol I can yield a correlated classical stochastic process.

5.2.1. Measured Process Presentations. Importantly, in cases where the QSSP is generated

by a cCQS, the measured quantum process can be modeled with a unique HMM, as the following

demonstrates.

Proposition 1. Applying a projective measurement protocol E to a QSSP R−∞:∞ generated by a

finite-state cCQS M results in a measured process X−∞:∞ given by a finite-state HMM.

Proof. We establish this by directly constructing the HMM presentation. The HMM M =

{S,AM , {T x}, π} that generates the measured process has the following components:

(1) The same set S of internal states as the HMM that generated the QSSP.

(2) A finite alphabet A consisting of each possible measurement outcome.

(3) A set of labeled transition matrices {T x}with x ∈ AM such that:

T x =
∑
ρ∈AQ

Tρ Pr(x|ρ, E)(5.6)

with:

Pr(x|ρ, E) = Tr(Exρ) .(5.7)

(4) The same stationary distribution π as the HMM that generated the QSSP.

Definition 19. We refer to the resulting HMM as a measured cCQS.

In this way, fixing a cCQS and a measurement basis determines a unique measured cCQS. This

HMM accurately describes the classical stochastic process resulting in the lab.
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One would hope to directly analyze the statistical properties of the classical process using that

HMM. Or, more modestly, to better and more accurately analyze the classical process using the

HMM than by simulating repeated realizations over long times to obtain statistics for estimation.

The HMM, after all, exactly describes the process, being a presentation.

We demonstrate that this analysis is very far from a straightforward procedure. Moreover, the

difficulties are (i) inherent and (ii) generic to quantum measurement. Despite the challenges, though,

with care and the right tools in hand one can fully characterize the measured process’ properties.

We introduced two classes of HMMs in Section 3.3.1 —those that are unifilar and those that are

not. The following then explains why measurement induces complex statistics. Specifically, the

following establishes that (i) nonunifilarity arises in the measured process HMM, (ii) this is generic

for projective measurements, and (iii) complex statistics arise in the measured process due to an

exponential explosion of the predictive feature set. Along the way, we will use another concept

defined in Section 3.3.2: that of generative and predictive presentations—those that can be used to

produce process realizations and those that, in addition, can be used to optimally predict realizations.

5.3. Measured QSSP Complexity

As stated above, a given stochastic process can be generated by many different HMMs. Each is

called a presentation of the given process. The essential requirement is that a presentation describes

all and only a process’ realizations and their probabilities. HMM presentations are either unifilar or

nonunifilar. Unifilarity controls how useful a presentation is to quantitatively analyzing a process.

Looking ahead, we must distinguish between processes with finite predictive presentations and those

without. We now introduce a concept that will allow us to do just that.

Definition 20 (Irreducible Nonunifilarity). A stochastic process is irreducibly nonunifilar if there

exists no finite unifilar HMM presentation that predicts it. This does not rule out that there can

exist a finite nonunifilar HMM that generates the stochastic process.

5.3.1. Measurement-induced Nonunifilarity. The tools are now in place to address the

origins of measurement-induced complexity in observed quantum-state stochastic processes. First,

we identify the emergence of nonunifilarity. Second, we argue this happens frequently and, in fact,
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is generic in measured QSSPs. Third, we explore the consequence—explosive complexity. Finally,

we identify the underlying mechanism driving this in quantum state indistinguishability.

Proposition 2. Quantum measurement of a QSSP generated by a cCQS can lead to an classical

process represented by a nonunifilar measured cCQS.

Proof. Consider cCQS hidden state σ with outgoing transitions to two distinct hidden states

σI and σII . The first transition emits quantum state ρ′ and the second, ρ′′. Now, performing

a measurement {E0, E1} on the emitted quantum states, both measured transitions have nonzero

probability of emitting the same symbol. Recall from Equation (5.6):

T xσσ′ =
∑
ρ∈AQ

Tρσσ′ Pr(x|ρ) .

Note that above and in what follows we suppress explicit mention of the measurement protocol in

the conditional probabilities, simplifying Pr(x|ρ, E) to Pr(x|ρ) for ease of notation. Now, consider a

ρ that gives a nonzero probability of obtaining measurement outcome x. Note that this is the case

for σ′ = σI and σ′ = σII . Then, as long as Tρσσ′ is nonzero for this ρ, both T xσσI and T xσσII will

be nonzero. This makes the observed transition out of state σ nonunifilar and, thus, makes the

measured cCQS nonunifilar.

The implications become more apparent later, when discussing how HMM nonunifilarity almost

always implies that the process it generates is irreducibly nonunifilar. In this way, measurement

can—and as discussed later, almost always will—induce irreducible nonunifilarity of the measured

process.

5.3.2. Nonunifilarity is Generic. We say a property is measurement generic over a set

of measurements—for instance, qubit projective measurements—if it holds true for almost all

measurements but a measure zero subset. Similarly, a property is source generic if it holds true for

the QSSPs generated by almost all cCQSs.

Proposition 3. A measured cCQS HMM is generically nonunifilar. This is true both source

generically and measurement generically over the set of projective measurements.
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Proof. Consider the constraints that give rise to unifilar transitions. Recall the entries of the

labeled-transition matrices for a measured cCQS, as defined in Equation (5.6):

T xσσ′ =
∑
ρ∈AQ

Tρσσ′ Pr(x|ρ) .

Each entry is composed of a sum of terms. For the measured cCQS to maintain unifilarity there

should be at most one nonzero term per row of each labeled transition matrix. That is, for each

x ∈ A and σ ∈ S pair, the term T xσσ′ is nonzero for at most one value of σ′.

For unifilarity to hold, the following conditions on the underlying cCQS and measurement must be

satisfied:

(1) A hidden state with an outgoing transition to only one other hidden state maintains

unifilarity.

(2) All cCQS hidden states can have at most two outgoing transitions (to distinct states).

Denote the quantum states emitted on the outgoing edges ρa and ρb and the two destination

states σa and σb, respectively. Thus, for each cCQS hidden state σ there are at most

two nonzero transition elements: Tρaσσa and Tρbσσb, say. When determining the measured

cCQS’s labeled transitions T xσσ′, for each σ and x, there will be at most two contributions.

The following condition ensures that these two contributions do not result in two or more

nonzero values for each σ.

(3) If the state has two outgoing transitions then, to maintain unifilarity, it must satisfy:

• The two emitted quantum states ρa and ρb on the outgoing transitions must be orthog-

onal to each other.

• The measurement basis must be aligned with ρa and ρb. That is, each measurement

operator must project into the quantum states that the process emits—ρa and ρb.

For a given pair of x and σ, these ensure that the only potentially nonzero terms are T ρaσσa
and T ρbσσb. If the projective measurement with outcome x is aligned with either ρa or ρb,

however, then only one of the terms of the form Tρσσ′ Pr(x|ρ) can be nonzero for a given ρ.

And so, there will be at most one nonzero term in the σ row of transition matrix T x. This

guarantees that the measured cCQS remains unifilar.
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Conditions 1, 2, and 3 are highly restrictive in the space of cCQSs. That is, almost none of the

possible labeled transition matrices Tρ satisfy them. In turn, this means that measured cCQSs are

source-generically nonunifilar.

For a given cCQS, Condition 3 is highly restrictive in the set of projective measurements and is

only satisfied for one measurement choice out of a continuous set of possible measurement choices.

Therefore, the measured cCQS is measurement-generically nonunifilar.

It is also important here to note that Conditions 2 and 3 refer to the case in which the cCQS emits

qubits. For a cCQS that emits qudits, these conditions can be generalized to allow for d distinct

transitions to other states. The generalization is straightforward: To maintain unifilarity the output

quantum states associated with those d transitions must be mutually orthogonal and the measurement

chosen must be able to distinguish perfectly between those d states.

As Sec. 5.3.4 develops in more detail, Prop. 3 says that measured processes are typically highly

complex, in the sense that they generically have an uncountable infinity of predictive features (causal

states), divergent statistical complexity, and a positive entropy rate.

5.3.3. Variations. Several observations are in order on generic nonunifilarity for qubit processes

and how generic nonunifilarity trades-off against the Hilbert space dimension of the QSSP’s quantum

states.

Structurally, a binary alphabet highly restricts the possibilities for a particular HMM’s topology to

support unifilarity. This could lead to a rushed conclusion that restricting to projective measurements

plays a determinant role in nonunifilarity of measured quantum processes. In fact, however, allowing

for POVMs does not change this aspect. Suppose a particular cCQS hidden state has two outgoing

edges with nonorthogonal quantum states ρa and ρb. In any POVM with two or more measurement

operators at least one has a nonzero probability of being an outcome when applied to both ρa and

ρb. This means that in the measured cCQS there are at least two distinct outgoing transitions with

the same symbol. And, this again yields nonunifilar dynamics. Section 6.2.1 explores this for an

example POVM measurement protocol.

In general, when the quantum states emitted by the cCQS are restricted to qubits, the relatively

low dimensionality of the Hilbert space means that we generically recover nonunifilar machines.
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This is due to the fact that the only case in which a measurement with two or more operators

(not necessarily projectors) can perfectly distinguish between two quantum states is when they are

orthogonal. (Distinguishing quantum states here means that none of the operators have nonzero

probability to be the measured outcome on both of the quantum states.) And, even in this case,

distinguishability holds only for a particular measurement basis that aligns with the two orthogonal

states to measure.

The second observation concerns a potentially-useful generalization of how to reduce nonunifilarities

in higher dimension. The preceding establishes that irreducible nonunifilarity dominates in measured

QSSPs, and this is true generically. However, if the quantum states emitted by the cCQS are

qudits, there is more “room” to reduce the nonunifilar transitions in the measured cCQSs when the

Hilbert space dimension is larger than d = 2. For instance, when the number of outgoing transitions

from one hidden state to distinct hidden states is at most d, one can partition the set of quantum

states emitted in those transitions into mutually orthogonal subsets. In that case one can devise

a measurement that captures each orthogonal subset as a distinct measurement outcome. This,

in a sense, constrains the nonunifilarities to be only in the outgoing transitions that have output

quantum states with nonzero overlap. Effectively, the measured cCQS loses information about

which specific state was output within each orthogonal subset by turning those into nonunifilar

transitions, but maintains the information about which output states where mutually orthogonal.

This somewhat reduces the complexity of the measured cCQS.

As a simple example, consider a cCQS that outputs qutrits. A particular hidden state has three

outgoing edges to distinct states, each outputting qutrits in states |0⟩, |+⟩, and |2⟩. One can devise

a measurement that outputs 0 if the qutrit is in the subspace spanned by |0⟩ and |1⟩, and outputs 1

if the qutrit is orthogonal to that subspace. In this case the measured cCQS has nonunifilarity only

in the |0⟩ and |+⟩ transitions. This reduction of nonunfilarity is only viable as long as there is an

orthogonal subset within the set of possible output states AQ. So, it is still rare, but the larger the

Hilbert space of output states is, the more opportunities there are for reducing nonunifilarity.

Naturally, these measurements should also be physically motivated by the information the exper-

imenter is trying to extract from the underlying quantum dynamic. Thus, when working with

quantum information from a classical reality, there is a tradeoff between the complexity of the
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observed dynamics and how coarsely or finely one probes the quantum state through measurement.

Compared to general qudits, the space of qubits offers much less room for coarser measurements.

The practical upshot of these arguments is that analyzing a measured cCQS requires working with

nonunifilar presentations of the observed classical stochastic process.

5.3.4. Explosive Complexity. Consider a process that is generated by a finite nonunifilar

presentation. One can construct a unifilar presentation for it. The reasons for doing so are outlined

in Sections 3.5 and 3.6: essentially, a unifilar, or predictive presentation is required in order to

characterize the stochastic process. The states of this unifilar presentation are Blackwell’s mixed

states [68]. These are identified using the Mixed State Algorithm introduced in References [78,79],

explained in detail in Reference [17], and reviewed in Section 3.5. Said simply, by tracking the

“states of knowledge” about an HMM’s internal states as revealed indirectly by emitted symbols, one

builds a unifilar hidden Markov chain whose states are the mixed states and whose transitions are the

mixed-state to mixed-state transitions. The result is known as the process’ mixed state presentation

(MSP). The MSP then provides an insightful and calculationally efficient way to determine many, if

not all, of a process’ statistical and informational properties.

We restate here the general idea. Given a process’ N -state HMM presentation M , one constructs M ’s

set R of mixed states as the conditional probability distributions η(x−ℓ:0) = Pr(S0 = σ|X−ℓ:0 = x−ℓ:0)

over the HMM’s hidden states σ ∈ S given all possible sequences x−ℓ:0 ∈ Aℓ. Given M and an

observed symbol sequence x−ℓ:0, there is a unique mixed state η(x−ℓ:0) that represents the best

guess as to M ’s current internal state. Moreover, the set of the process’ allowed sequences of all

lengths ℓ ∈ N induces a invariant measure µ on the state distribution (N − 1)-dimensional simplex.

We simply denote this as the mixed state distribution µ(R). An HMM’s mixed state set R together

with the transition dynamic W between mixed states induced by observed sequences form the

HMM’s MSP: MSP(M) = {R,W}.

Most importantly, by construction an HMM’s MSP is a unifilar presentation of the stochastic process

generated by the HMM. Additionally, the set of mixed states R corresponds to the process’ set of

causal states. The consequence is that the MSP, up to minimizing state redundancies, is the unique

optimally predictive model of the stochastic process—its ϵ-machine [18].
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Conjecture. A stochastic process generated by a nonunifilar presentation generically is an irre-

ducibly nonunifilar stochastic process. That is, it requires an infinite number of predictive features

(causal states) for optimal prediction.

Blackwell indirectly introduced this conjecture in his seminal 1957 work on classical stochastic

processes [68]. As stated in Section 3.6, in that work he developed several of the first information-

theoretic results for what he called functions of Markov chains, what we call HMMs. Moreover, for

very specific cases Blackwell showed that the set of (predictive) features that a process stores from

observed sequences can be finite or countable. In all other instances, the predictive features set is

uncountably infinite. These predictive features are equivalent to the process’ MSP mixed states R.

The primary lesson is that the predictive complexity of irreducibly nonunifilar processes explodes,

despite them being generated by a finite mechanism—a finite-state HMM.

Long experience and extensive explorations of HMM space support Blackwell’s claims and this

conjecture, which has also been recorded elsewhere [15,17,18,63,69]. Reference [19] goes into great

detail about the mechanisms by which these stochastic processes generate and process information.

It reviews the arguments and evidence that the conjecture holds quite broadly. Finally, for measured

cCQSs we have not encountered a single violation. That said, establishing the conjecture for the

general or the quantum settings remain open problems.

5.3.5. Quantum State Indistinguishability. Section 5.3.2 detailed the structural reasons

that make measured cCQSs generically nonunifilar. Behind these lies a simple physical property that

is responsible for irreducible nonunifilarity and, thus, explosion in complexity of measured quantum

processes. When applying a measurement to a QSSP that emits qubits in two or more distinct

quantum states, a single measurement will generally have a nonzero probability of not being able to

distinguish which quantum state it measured. This indistinguishability between quantum states

therefore acts as a source of noise. And, this makes direct reading of the QSSP’s underlying structure

markedly more memory intensive. This, in turn, radically increases the predictive complexity of the

measured process with respect to the QSSP.

One can quantify how distinguishable or indistinguishable two quantum states are using the trace

distance [77] for instance. If a particular hidden state in a cCQS has outgoing transitions to two
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distinct hidden states that emit two different quantum states, a measurement makes the distinction

ambiguous (noisy) unless the trace distance between the two quantum states is unity. In that case,

the quantum states have orthogonal supports. Moreover, there is the further requirement for not

inducing nonunifilarity that the measurement distinguish between the two states. If these criteria

are met, then nonunifilarity in the measured process is not created and there is no explosion in

predictive complexity. However, these criteria are very restrictive and so explosive complexity is to

be expected in measured cCQSs.

5.4. Measured Process Characterization

Simply establishing explosive complexity is insufficient. One needs yardsticks for analysis and

comparison. This section makes explicit the use of metrics introduced in Section 3.6 for quantifying

randomness and structure in the classical stochastic processes resulting from measured QSSPs.

As stated above, the mathematics for these metrics depend critically on the stochastic process

presentation, whether it is unifilar or nonunifilar. The latter is particularly relevant, as the above

showed that the measured processes are overwhelmingly irreducible nonunifilar. We review how to

compute entropy rate and statistical complexity from unifilar HMMs. The bulk of the effort and

interest, though, arise in adapting these to nonunifilar presentations, which follows shortly.

5.4.1. Unifilar Generators. When an HMM is unifilar, there is a one-to-one or one-to-

finite correspondence between a sequence of observed symbols and the sequence of hidden states

that generated it. This allows direct, closed-form calculation of process intrinsic randomness and

predictive memory from the HMM’s internal Markov chain.

5.4.1.1. Information Creation. Process randomness—the rate at which the process generates

information—is quantified through the Shannon entropy rate hµ, introduced in Section 3.6.1. It is

defined directly for a process, but can be computed in a useful way from a process’ presentation.

If the measured cCQS is unifilar, the entropy rate is computed as in Equation (3.9).

5.4.1.2. Information Storage. The information storage, or memory structure of a process is

quantified by its statistical complexity Cµ or its statistical complexity dimensiondµ, as introduced in

Section 3.6.2. For a process with a finite unifilar presentation, Cµ converges to a finite value and
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is therefore the correct quantifier. It can be directly computed from a unifilar presentation of the

process as in Equation (3.13). Cµ is the minimal memory required to optimally predict the future,

or how much information is stored in the causal states of a process’ ϵ-machine.

5.4.2. Nonunifilar Generators. If the only description available for a measured QSSP is a

nonunifilar HMM presentation, quantifying the process’ stochasticity and structure becomes markedly

more complicated due to the explosive complexity demonstrated above, as described in more detail

in Sections 3.3.1, 3.3.2 and 3.6. In the case of intrinsic randomness, Equation (3.9) overestimates

the entropy rate. In the case of structure, the Shannon entropy of the nonunifilar HMM’s hidden

states only quantifies the memory used by that particular (likely nonunique) presentation. More to

the point, it does not provide information on how much memory is minimally required to optimally

predict the process.

There is yet another complication at this stage. While constructing the MSP from a process’

nonunifilar HMM produces a unifilar HMM, it is rarely finite-state. As we discussed, the typical case

is an infinite-state HHMM, generically with uncountably infinite states [17,63,69]. Generally then,

the ϵ-machine, the minimized MSP, has an uncountable set of causal states. As a consequence, the

statistical complexity of Equation (3.13) diverges and the expression for entropy rate in Equation

(3.9) becomes inadequate.

5.4.2.1. Information Creation. If the measured cCQS is nonunifilar, then its MSP must be

computed or approximated, and the entropy rate is then computed using Equation (3.11). The

latter procedure is significantly more complicated and computationally intensive, as a consequence

of the much higher complexity of the stochastic process.

That said, the entropy rate can always be computed and will generically be nonzero. As stated

above, the entropy rate quantifies the amount of information per observed symbol that the process

creates.

5.4.2.2. Information Storage. As discussed above, the statistical complexity Cµ of these infinite-

causal-state processes diverges. To track the rate at which this divergence of memory resources

required for prediction grows, we use the statistical complexity dimension dµ of the process. This
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tracks the rate at which memory requirements for optimal prediction grow with increasing precision

of the prediction.

Section 3.6.2 goes into more detail about how this quantity is defined and the complications for its

computation. So far, reliable techniques to compute dµ exist only for stochastic processes that have

a nonunifilar presentation with N = 2 hidden states. For N = 3 states the calculation can be done

for certain specific stochastic processes but not in general. These are solvable but algorithmically

complicated problems that are left for future work.

All of the quantities above—with the exception of dµ—can be computed using the qssp package

described in Appendix A. Specifically: the entropy rate, the statistical complexity and the mixed

state presentation of a process. For mixed state presentations, handling 106 mixed states takes only

about 10 minutes in a single CPU.

To give a firmer, even visual, grounding to the preceding results and metrics, the next section

explores three examples representative of distinct classes of measured cCQSs and how the above

metrics characterize them.

5.5. Classifying Measured Quantum Processes

The metrics for randomness and structure of a measured quantum process depend on the cardinality

of the mixed state set R generated by the measured cCQS. There are three distinct classes: processes

for which the number of mixed states is finite, countably infinite, and uncountably infinite. The

following examples illustrate processes in these classes.

A B|1⟩⟨1| : 1
2

|0⟩⟨0| : 1
2

|1⟩⟨1| : 1

Figure 5.1. Unifilar presentation for the Observation Basis Golden Mean (OB-
Golden Mean) process: A simple cCQS.

5.5.1. Finite-State. The first quantum process is generated by the unifilar cCQS shown in

Figure 5.1. It consists of all random sequences without consecutive |0⟩ ⟨0|s. Measuring in the
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observation basis E0 = |0⟩ ⟨0| and E1 = |1⟩ ⟨1| yields a unifilar HMM that generates the Golden

Mean Process consisting of all random sequences without consecutive 0s. Figure 5.2 shows its

minimal presentation—its ϵ-machine: a unifilar HMM with two states. Being unifilar one readily

calculates that it has an entropy rate of hµ = 2/3 bits/symbol from Equation (3.9) and a statistical

complexity of Cµ = 0.918 bits from Equation (3.13).

A B1 : 1
2

0 : 1
2

1 : 1

Figure 5.2. Measured cCQS of the stochastic process resulting from measuring the
quantum process generated in Figure 5.1 in the observation basis.

Although unnecessary in this case, computing the MSP of this presentation—or any other finite

unifilar HMM, for that matter—results in an HMM with a finite number of states. In the present

case both the measured process’ entropy rate and the statistical complexity are finite. They are

readily computed via Eqs. (3.9) and (3.13), respectively.

Section 5.3.2 showed that quantum processes in this class are relatively rare in the space of measured

cCQSs. They occur only under very constrained circumstances. This observation will become clearer

as we consider more complex classes.

5.5.2. Countably-Infinite-State. The next quantum process is generated by the cCQS in

Figure 5.3. This is a seemingly slight variation on the previous example. Now, the quantum

alphabet AQ consists of nonorthogonal states. Instead of emitting quantum states in the observation

basis, this cCQS emits qubits in state |0⟩ ⟨0| and others in state |+⟩ ⟨+|. In this, we define |+⟩

and |−⟩ in the conventional way: |±⟩ = (1/
√

2)(|0⟩ ± |1⟩). When the process generated by this

cCQS is measured in the basis E0 = |+⟩ ⟨+| and E1 = |−⟩ ⟨−|, the measured cCQS has the HMM

presentation shown in Figure 5.4.

Notice, though, that Figure 5.4’s measured cCQS is nonunifilar. Specifically, knowledge of being in

state A and emitting a 0 does not determine the next HMM state. The next state could be either A

or B. Thus, to compute the entropy rate for this process one must construct its MSP. The latter is
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A B|+⟩⟨+| : 1
2

|0⟩⟨0| : 1
2

|+⟩⟨+| : 1

Figure 5.3. Structurally, this cCQS is similar to that in Fig. 5.1. However, not all
emitted quantum states are orthogonal. This guarantees that the measured process
is more complex, as Fig. 5.4 shows.

shown in Figure 5.5. It has a countable infinity of causal states. Helpfully, as annotated there, the

state transition probabilities can be parametrized analytically.

A B0 : 1
2

0 : 1
4

1 : 1
4

0 : 1

Figure 5.4. Measured cCQS for the process generated by measuring the quantum
process generated by the cCQS in Fig. 5.3. This HMM is nonunifilar: if in state A
and emitting a 0, the next hidden state may be A or B.

Using Figure 5.4 one can follow the logic for constructing the MSP. Independent of any knowledge of

the HMM state, seeing symbol 1 the observer concludes with absolute certainty that the measured

cCQS is in state B. This is what we referred to previously as a state of knowledge (or a mixed

state) represented by hidden state I in Figure 5.5. In point of fact, the mixed state associated with

state I is η(1) = (0, 1). After that, observing symbol 0 or a sequence of 0s means that the measured

cCQS has a certain probability of being in each cCQS state A or B. Each additional observation of

a 0 then updates the present state of knowledge to one of the mixed states II = η(10), III = η(100),

IV = η(1000), . . . depending on how many 0s are observed before seeing a 1, when the MSP resets

to state I = η(100 . . . 01).

The measured process’ entropy rate can be computed from the HMM in Figure 5.4 using the methods

for nonunifilar HMMs described in Section 5.4.2. Note, though, that for processes whose MSP has a
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II

I

III IV · · ·
0 : 3

4

1 : 1
4

0 : 1

0 : 5
6

1 : 1
6

0 : 4
5

1 : 1
5

Figure 5.5. Mixed state presentation of the process generated by Fig. 5.4’s mea-
sured cCQS.

countable infinity of states, as here, a more rudimentary, though convergent and accurate, approach

is available.

When observing the stochastic process, the probability of observing consecutive 0s diminishes with

the length of the observed sequence. One then approximates the process’ HMM by truncating the

MSP at a finite number N of mixed states and then exploring the limiting behavior of both hµ and

Cµ from those unifilar machines as N →∞. For the example in question, this analysis is illustrated

in Figure 5.6. One finds that hµ = 0.599 bits/symbol and Cµ = 3.69 bits. Note that, although

infinite state, the process statistical complexity is finite. This is due to the fact that the asymptotic

state distribution π decays exponentially fast for mixed states reached via increasingly more 0s.

5.5.3. Uncountably-Infinite-State. The preceding two processes are relatively simple, in

that they all exhibit a finite or countable set of mixed states. In the typical case, as argued in

Sec. 5.3.1, the measured cCQS has an HMM presentation that is nonunifilar and an MSP with an

uncountable infinity of states. Section 5.3.2 established that this is the typical case for processes

generated by cCQSs of two or more states.

To illustrate, consider the cCQS of Figure 5.7, chosen to have three states principally to aid

visualizing the MSP’s complexity. The cCQS is then measured in the observation basis, which yields

the measured cCQS of Figure 5.8.

Note that, as in the example of the countably-infinite state process, the measured cCQS has only

a single source of nonunifilarity: the successor state is ambiguous when observing symbol 0 with

the HMM in state A. More generally, however, none of the symbols 0 or 1 allow the observer
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Figure 5.6. Entropy rate hµ (blue) and statistical complexity Cµ (orange) of N -
state HMM approximations of the MSP shown in Fig. 5.5. Notice that hµ converges
rapidly, while Cµ has a stronger dependence on the number of states, but stabilizes
around N = 25. The values obtained are hµ = 0.599 bits/symbol and Cµ = 3.69 bits.

A

B

C|+⟩⟨+| : 1
2

|0⟩⟨0| : 1
2 |0⟩⟨0| : 1

|0⟩⟨0| : 1
2

|+⟩⟨+| : 1
2

Figure 5.7. Nonorthogonal Nemo Quantum Process: Three-state cCQS that emits
qubits in states |0⟩ ⟨0| and |+⟩ ⟨+|.
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to “synchronize” to the process. That is, observation of a particular symbol does not give an

observer certainty in the measured cCQS’s state. As argued above mathematically and as is now

constructively clear in Figure 5.9, this effectively translates into the fact that the MSP of the

measured quantum process has an uncountable infinity of mixed states. The MSP—these states

together with their transition probabilities—are a markedly less tractable presentation than in the

previous two quantum processes.

A

B

C0 : 1
2

0 : 1
4

1 : 1
4

0 : 1
2

1 : 1
2

0 : 3
4

1 : 1
4

Figure 5.8. Measured cCQS presentation of the stochastic process produced when
measuring the quantum process generated by Fig. 5.7’s cCQS measured in the
observation basis.

The MSP with all of its states and state transitions cannot be explicitly displayed as with the

previous HMMs. Nonetheless, Figure 5.9 gives a sense of the MSP’s structure and complexity. It

presents a plot of 2× 106 MSP states in the mixed-state simplex R. In fact, it shows µ(η) and its

variation in probability density via a histogram with a coarse-graining of 1000× 1000 bins.

The measured process’ entropy rate is computed using Equation (3.11) and has a value of hµ = 0.8896

bits/symbol. The statistical complexity dimension dµ of Equation (3.14) is computed as described

in Refs. [18,19]: dµ = 1.38.

5.5.4. Remarks. As seen from the three examples above, the cardinality of the mixed state

set of the distinct measured stochastic processes can vary from a finite state set to a countable

infinity of states and on to an uncountable infinity of states. This cardinality affects the way in
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Figure 5.9. MSP’s asymptotic invariant measure µ(η) in the mixed-state simplex
µ(η). Each mixed state is a point of the form (pA, pB, pC) with pσ the probability of
being in state σ of the measured cCQS in Fig. 5.8.

which the metrics of randomness and structure for the process are computed, but also the values

they can take.

For processes with finite sets, the statistical complexity and the entropy rate will generally be finite

positive values. This implies that these processes have a certain degree of stochasticity, but that

they can be optimally predicted with finite memory resources.

Notably, excepting very special cases, this is also true for processes whose mixed state set has a

countably-infinite number of states, as in the second example. These processes have positive entropy

rate, signaling that they have an intrinsic degree of randomness. And, while they do require an

infinite number of causal states to optimally predict, these states are structured such that one can

simulate an optimal predictor of arbitrary precision with a finite amount of memory.
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The third case is significantly more complicated than the previous two. A mixed-state presentation

with an uncountable infinity of states implies that the statistical complexity of the process diverges.

This means that it takes infinite memory to optimally predict these processes. That said, there is

an asymptotic invariant measure over the mixed states in R. And, by being able to compute these

measures, one can then estimate the process’ entropy rate hµ and also the growth rate dµ of the

memory required for optimal prediction.

This third case, of processes with MSPs that have an uncountably infinite number of states, turns

out to be the norm for MSPs of measured cCQSs, as argued above and as we elaborate shortly below.

The implications of this are that, in general, the classical processes that we recover from measuring

QSSPs generated by cCQSs are highly complex and require infinite memory for optimal prediction.

That is, measuring a QSSP greatly obscures the underlying quantum stochastic process. Fortunately,

we have metrics to characterize these processes and to develop a quantitative understanding of how

measurement affects the measured quantum processes.

5.5.5. Genericity of Complexity. The tools are in place now to quantitatively analyze the

measured QSSPs that are represented by measured cCQSs. Here, we use the tools to draw broader

conclusions about what one should expect and how measurement choice changes the randomness

and complexity of measured quantum processes.

The main lesson from the preceding is that one expects explosive complexity and this is reflected in

the information-theoretic metrics of the measured process.

Proposition 4. A measured quantum process, with a measured cCQS presentation, generically is

highly complex in two specific ways: it has nonzero entropy rate and statistical complexity dimension.

That is, it requires uncountably infinite states to optimally predict.

Proof. This follows as a corollary of Sec. 5.3.1’s structural propositions—specifically Props. 2

and 3 and Sec. 5.3.4’s conjecture—though translated into the information metrics of Sec. 5.4.

As discussed above and extensively in Refs. [17–19, 69], nonunifilar HMMs lead to causal state

sets of uncountably infinite cardinality and divergent statistical complexity. As the preceding

demonstrated, measured quantum processes have presentations that fall into this class.
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CHAPTER 6

Measurement Dependence

Having laid out the progression from quantum sources to quantum state processes and their

presentations to measured processes and their metrics, we are now ready to illustrate uses and

benefits. The following does these via three applications: measurement choice, alternate measurement

protocols, and optimal measurements.

6.1. Measurement Variation and Choice

Equations (5.4) and (5.6) directly show that choice of measurement basis changes the observed

process. This, in turn, means that a process’ entropy rate and its MSP’s statistical complexity

dimension also depend on measurement choice. Fortunately, the changes are well behaved.

Conjecture. Measured process complexity depends piecewise smoothly on both the underlying

QSSP and choice of measurement.

A

B

C|a⟩⟨a| : 1
2

|0⟩⟨0| : 1
2 |0⟩⟨0| : 1

2

|a⟩⟨a| : 1
2

|a⟩⟨a| : 1

Figure 6.1. cCQS that generates a quantum process with qubits in quantum states
|0⟩ and |a⟩ = cosπ/5 |0⟩+ sin π/5 |1⟩.
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Remark. Given the extensive development up to this point, the following refrains from presenting

formal proofs. These will appear elsewhere. Nonetheless, it is worthwhile to illustrate how the results

can be used to outline a construction that supports observed behavior and is backed by formal proofs

in parallel problem settings.

Note that:

(1) The measured process’ entropy rate and statistical complexity dimension depend smoothly

on its MSP’s invariant measure, as can be seen from Eqs. (3.10) and (3.14).

(2) Equations (5.4) and (5.6) state that the parameters (transition probabilities) of the mea-

sured cCQS HMM depend smoothly on the underlying QSSP and measurement operator

parameters.

Therefore, if the MSP’s invariant measure depends smoothly on the parameters of the measured

cCQS HMM, then the entropy rate and statistical complexity dimension of the measured process

depend smoothly on the underlying QSSP and measurement parameters.

Smoothness dependence of the MSP’s invariant measure with respect to HMM parameters is not only

consistent with observation, which is illustrated shortly, but has been established for many classes of

iterated function system (IFS). For more detail, Reference [17] outlines how any HMM can be cast

as an IFS—a stochastic dynamical system with a unique attractor (equivalent to an HMM’s MSP)

that has an invariant measure. Both the attractor and the invariant measure vary smoothly as a

function of IFS parameters under contractivity conditions [80–82]. These conditions are generally

satisfied by HMMs, thus indicating that both the MSP and invariant measure of an HMM depend

smoothly on the HMM parameters. The caveat of piecewise smoothness as opposed to smoothness

stems from the fact that the MSP can have abrupt jumps in cardinality for a finite set of parameters,

potentially causing finite discontinuities in the statistical complexity dimension, as will be illustrated

in the examples of the following section.

Beyond smooth dependence, we ask more specifically, How do the mixed-state invariant measure

and the associated complexity measures change as a function of the measurement angles θ and ϕ?

To answer these questions, we explore two specific examples. For each we choose a quantum process

generated by a particular cCQS. We then obtain the measured cCQSs resulting from measuring the
55



Figure 6.2. Mixed-state presentation of the process resulting from measuring
the quantum process generated by the cCQS in Fig. 6.1 in the measurement
bases parametrized by (ϕ, θ), as indicated in each subfigure. For each value of the
parameters 25000 mixed states are plotted.

quantum process with bases in which one of the angles is held fixed and the other sweeps across its

range of possible values.
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The two example processes below were chosen since together they illustrate the general properties

of measurement dependence of QSSPs. The first example is the three-hidden-state cCQS depicted

in Figure 6.1, which is then measured in many different qubit bases, holding ϕ = 0 and varying θ.

The second example is the two-hidden-state quantum process generated by the cCQS in Figure 5.3,

which is then measured following the same procedure.
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Figure 6.3. Entropy rate of the measured cCQSs resulting from measuring the
quantum process generated by the cCQS of Fig. 6.1 as a function of measurement
angle θ, as in Eq. (5.4) at 300 θ values with the value ϕ = 0 fixed. Entropy rate hgµ
(black line) of the cCQS that generates the measured process.

6.1.1. Random Insertion Process. First, we track changes in the invariant measure on the

mixed-state simplex. Figure 6.2 shows these for the measured process generated by the cCQS of

Figure 6.1 in 10 different measurement bases (ϕ, θ), as noted there. The structure of the invariant sets

R varies substantially with measurement basis. For most (but one, discussed below) measurement
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bases the set has an uncountable infinity of states, yet these states have distinct structures that

vary smoothly with choice of measurement basis.

Figure 6.4. Mixed-state presentations of the processes resulting from measuring
the quantum process generated by the cCQS in Fig. 5.3 in the bases parametrized
by (ϕ = 0, θ). Each vertical line represents the 1D simplex R and the points in it are
the mixed states corresponding to the measured cCQS at that particular value of θ.

Second, we determine the entropy rate as a function of measurement basis in Figure 6.3. The

process is measured in 300 different bases, holding the value of ϕ = 0 and varying θ ∈ [0, π]. By

comparing to the entropy rate hgµ of the cCQS that generates the underlying QSSP, Figure 6.3

clearly demonstrates that measurement both increases and decreases the randomness (hµ).

While this example serves to graphically illustrate the high complexity of predicting the classical

stochastic processes measured from the QSSP, there are limitations to estimating the MSP’s

statistical complexity dimension. For reasons explained in detail in Reference [18], estimating the

statistical complexity dimension for measured cCQSs with MSPs in two and higher dimension

simplices is computationally intensive and there is as yet no efficient algorithm. To illustrate the

behavior of the statistical complexity dimension in these stochastic processes, though, we turn to an

example of a QSSP generated by a two-state cCQS with an MSP in the 1-simplex.

6.1.2. Golden Mean Process. This example analyzes the QSSP generated by the cCQS in

Figure 5.3. It is measured in different qubit bases holding ϕ = 0 fixed and varying θ uniformly from

0 to π. Each measurement yields a measured cCQS that is nonunifilar, the MSP is then computed.
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Figure 6.4 displays its invariant measures. Each vertical unit interval corresponds to a 1-simplex

that shows the MSP at that particular value of θ. From the figure we observe that the majority of

the MSPs have a complex fractal-like structure. However, what the figure makes evident is that this

structure varies smoothly with respect to the measurement parameter θ, consistent with Sec. 6.1’s

Conjecture.

Figure 6.5. Entropy rate of the measured cCQSs resulting from measuring the
quantum process generated by the cCQS of Fig. 5.3 as a function of measurement
angle θ, as in Eq. (5.4) with the value ϕ = 0 fixed, at 100 θ values. Entropy rate hgµ
(black line) of the cCQS that generates the underlying QSSP.

Figures 6.5 and 6.6 track how both entropy rate hµ and statistical complexity dimension dµ vary

with respect to measurement basis.

As with the previous example, we see that hµ of the measured process both increases and decreases

with respect to hgµ—that of the original QSSP—depending on measurement basis.

The statistical complexity diverges for most, in contrast with the finite statistical complexity of

the underlying QSSP. That said, the statistical complexity dimension dµ smoothly varies. To a
59



Figure 6.6. Statistical complexity dimension dµ of the measured cCQSs resulting
from measuring the quantum process generated by the cCQS of Fig. 5.3 as a function
of measurement angle θ, as in Eq. (5.4) with the value ϕ = 0 fixed, at 100 θ values.

certain extent this reflects what is see from the MSPs in Figure 6.4. Figure 6.6 also reveals four

values of θ for which dµ = 0. These are are θ ∈ {0, π/4, π/2, π}. When θ takes the values 0 or π

the measurement is in the observation basis and one of the measurement operators aligns with

the quantum state |0⟩. This simplifies the process and thus the measured cCQS has a countably

infinite number of mixed states. This also happens at the value of θ = π/2, in which one of the

measurement operators aligns with the quantum state |+⟩ that is output by the cCQS. Notice that

in these three cases, dµ = 0 is reached smoothly.

The exception to smoothness is the discontinuous jump to dµ = 0 when the process is measured at

θ = π/4. This special case is discussed more, shortly. In general terms, though, for that particular

basis the measurement does not distinguish between the two distinct emitted qubit states |0⟩ and

|+⟩. And so, all of the structural information about the underlying quantum process is lost, except
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for the probability of obtaining one measurement outcome or the other. The process becomes

memoryless and so has a single-state presentation.

6.1.3. General Features. With the previous two examples in hand, and after an exhaustive

exploration of example processes in this fashion, we review several common characteristics. Of

particular interest are the smooth behaviors of hµ and dµ with well defined maxima and minima.

It is also apparent that the MSP invariant sets exhibit marked structural variations. However, in

agreement with Sec. 6.1’s Conjecture, they appear to vary smoothly with respect to measurement

change.

A feature that immediately warrants attention in Figure 6.2 is the drop in structural complexity of

the MSP at θ = π/5. With that particular measurement basis, the statistical complexity dimension

vanishes, indicating that the measured cCQS is finite. On closer inspection, the HMM corresponding

to the measured cCQS is not only finite, but has a single causal state. This indicates that the

measured process consists of independent identically distributed (i.i.d.) random variables. At

each time step, the observed symbols are 0 with probability p0 = cos2 π/5 and 1 with probability

p1 = sin2 π/5. This seemingly special case is not a fluke.

Proposition 5 (Memoryless measurements). For any cCQS with quantum alphabet AQ consisting

of two distinct quantum states ρa and ρb, there exists a set of measurement bases for which the

resulting measured process is memoryless and Cµ = 0.

Proof. We establish this by construction. Without loss of generality and for ease of notation

we align both quantum states with the zx-plane, such that one of the quantum states ρa is at the

top of the Bloch sphere. We further denote the angle between the two states by α. We then write

ρa = |0⟩ ⟨0|, and ρb = |b⟩ ⟨b| such that |b⟩ = cosα/2 |0⟩+ sinα/2 |1⟩.

Consider the projective measurement bases for which one measurement operator projects onto a

state |ψ0⟩, such that | ⟨ψ0|0⟩ | = | ⟨ψ0|b⟩ |. That is, |ψ0⟩ lies in the Bloch sphere circumference that

bisects the angle between |0⟩ and |b⟩. Then, the set of measurements that project onto |ψ0⟩ and

|ψ⊥
0 ⟩ ≡ |ψ1⟩ are such that the probability distributions over measurement outcomes are the same

whether the measured qubit state was ρa or ρb. That is, for this particular set of measurements, we

have Pr(i|ρj) = pi for i ∈ {0, 1} and for all ρj with pi a constant and p0 + p1 = 1.
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Together with Equation (5.6), this observation says that the measured cCQS transition matrices are,

for i ∈ {0, 1}:

T i = TρaPr(i|ρa) + TρbPr(i|ρb)

= pi(Tρa + Tρb)

= piT .(6.1)

That is, both labeled transition matrices are proportional to each other and to T. Note also that

T = T 0 + T 1 = T, so for simplicity we refer to the internal Markov chain transition matrix as T .

Both labeled transition matrices being proportional to T implies that the MSP yields a biased coin

process with biases p0 and p1, respectively. There is a single recurrent mixed state, namely π. This

follows by definition, since π is an eigenvector of T . And so, evolving the mixed state ηt = π gives:

ηt+1 = π · T i

pi

= π · T

= π .

Physically, memoryless measurements project states onto a basis whose components are symmetric

with respect to the pure states in AQ. Consequently, the measurement cannot distinguish between

the pure states and so the act of measurement effectively leads to a complete loss of information

about the cCQS’s internal structure.

The fact that these memoryless measurements maximize the loss of information about the cCQS’s

internal structure, naturally leads to the question of whether there exists a set of measurements that

maximally preserves information about the cCQS’s internal structure. These would be measurements

that optimally distinguish between the quantum states. In the case of POVMs these measurements

are well studied for the case of distinguishing between 2 or 3 states. And, as explored in Sec. 6.2.1

they in fact yield special measured processes.

Shortly, we return to explore the issue of optimal and extremizing measurement bases.
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Another point to make is that in all of the examples above, only the θ parameter of the measurement

bases was varied, and the phase ϕ was fixed to zero. This choice was for simplicity and visualization

purposes only. The variation of ϕ does not change the analysis or the conclusions in any way. To

clearly illustrate this, Figure 6.7 shows the invariant measure of the MSPs obtained by measuring

the cCQS in Figure 6.1 while holding parameter θ = π/2 fixed, and varying the values of ϕ from 0

to π. The values of ϕ from π to 2π are skipped because they are redundant in this case. Essentially,

Figure 6.7 serves the same purpose as Figure 6.2, but it illustrates the smooth variation of the MSP

as we vary parameter ϕ as opposed to parameter θ. As expected, we observe some repeated patterns

as we vary ϕ, with a symmetry around ϕ = π/2. This is a consecuence of the geometric symmetry

of the measurement bases around this value with respect to the output qubits of the underlying

cCQS, |0⟩ and |a⟩, which lie along the ϕ = 0 meridian. Also as expected ϕ = π/2 and θ = π/2 is a

memoryless measurement for this process, since the measurement basis is agnostic to the output

quantum states in the sense that it has the same probability of measuring a 0 or a 1 regardless of

which output quantum state (|0⟩ or |a⟩) is being measured.

An additional notable point here is that when the measurement parameters both define a measurement

basis that is not close to being aligned with any of the output quantum states and is poor at

distinguishing between them, then that will in general result in processes that have hµ larger than

the underlying cCQS and, as is generally the case, divergent memory.

Appendix B graphically demonstrates this with two animations that sweep the angles θ and ϕ while

monitoring entropy rate and mixed states. One animation shows how the mixed state presentation

and hµ vary a function of parameter θ. The other animation shows hµ(θ) plots as in Figure 6.3

while sweeping ϕ from 0 to 2π.

In general, as seen from Figure 6.3, different choices of measurement increase or decrease the

randomness of the measured quantum process. Furthermore, even if the general case is that

quantum measurement dramatically increases the structural complexity of the measured stochastic

process with respect to the underlying quantum process, the existence of memoryless measurements

shows that particular choices of measurement, in fact, can mask the quantum process’ structural

complexity.
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Figure 6.7. Mixed-state presentation of the process resulting from measuring
the quantum process generated by the cCQS in Fig. 6.1 in the measurement
bases parametrized by (ϕ, θ), as indicated in each subfigure. For each value of the
parameters 25000 mixed states are plotted.

6.2. Alternate Measurement Protocols

While simplicity dictated that the preceding concentrate on protocols in which the same projective

measurement is applied at every time step, there are many alternative protocols to explore. As an
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example, the following considers processes that result from applying more general measurements to

each emitted qubit.

6.2.1. Positive Operator-Valued Measurements. The development to this point investi-

gated the consequences for the observed classical stochastic process of employing only projective

measurements. However, the natural generalization is to more flexible positive operator-valued

measurements.

Definition 21 (Positive Operator-Valued Measurement on a QSSP). A positive operator-valued

measurement (POVM) I, consists of a finite set of positive semi-definite operators {Ex}, on the

Hilbert space Hd of dimension d. The operators satisfy the condition
∑
xEx = Id. When measurement

I acts on a quantum system in state ρt, emitted by a QSSP, the outcome is xt, corresponding to

operator Ex, with probability:

Pr(xt|ρt) = Tr(ρExt) .

Applying a POVM to every quantum state emitted by the QSSP yields a classical stochastic process

over the values of x ∈ AM—the alphabet of the measured process.

When the measurement I consists of a POVM, the number of operators {Ej} and possible outcomes

can be any positive integer. This increase in possible measurement outcomes results in a larger

alphabet for the classical measured quantum process. At first glance, this suggests finding a wider

range of unifilar measured HMMs, but it is not. This is a direct result of indistinguishability.

Generally, when performing a POVM on any two qubit states (even distinguishable ones), at least

one of the measurement outcomes has a nonzero probability of being observed on both of the

quantum states. This is due to the fact that POVMs generally have nonorthogonal measurement

operators.

When measuring with a POVM, consider a cCQS hidden state with two outgoing transitions on

distinct quantum states. Applying the POVM on those transitions means that at least one of the

symbols in the classical alphabet AM is present in two outgoing transitions for the same hidden

state in the measured cCQS. This makes the dynamic of the measured cCQS nonunifilar. Thus, in
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general when using POVMs, measured processes are also highly complex, akin to those obtained

when applying projective measurements.

That said, the measured processes produced using POVMs reveal a new collection of notable special

cases, which remain to be broadly explored. To illustrate just one, the following develops a simple but

illuminating example using the unambiguous state discrimination POVM. The resulting flexibility

then leads, in the following section, into the challenge of optimizing measurement protocols to

achieve various ends.

6.2.2. Unambiguous State Discrimination. Recall that when measuring qubits either in

state |ψ⟩ or |ϕ⟩, the POVM yielding the highest probability of unambiguously distinguishing between

them is given by [83–85]:

Eψ = 1
1 + | ⟨ϕ|ψ⟩ | |ϕ

⊥⟩ ⟨ϕ⊥|(6.2a)

Eϕ = 1
1 + | ⟨ϕ|ψ⟩ | |ψ

⊥⟩ ⟨ψ⊥|(6.2b)

E? = I− Eψ − Eϕ .(6.2c)

Applying this measurement scheme to the quantum process generated by the cCQS in Figure 4.2

produces the classical process emitted by the HMM of Figure 6.8. There {Eψ, Eϕ, E?} are relabeled

{E0, E1, E2}, pψ = Tr(E0 |ψ⟩ ⟨ψ|), and pϕ = Tr(E1 |ϕ⟩ ⟨ϕ|).

A B
0 :

pψ
2

2 :
1−pψ

2

1 :
pϕ
2

2 :
1−pϕ

2

0 : pψ
2 : 1−pψ

Figure 6.8. HMM presentation of the process resulting from measuring the QSSP
depicted in Fig. 4.2 with the POVM in Eq. (6.2).
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Note that symbol 2, corresponding to an inconclusive measurement, is present in all transitions. Yet

observing 0 or 1 is synchronizing since they each determine the next HMM state. This property is

preserved from the cCQS that is being measured and need not occur generally. That said, if the cCQS

under study outputs only two distinct quantum states, then measuring it with the unambiguous state

discrimination POVM in Equation (6.2) results in an HMM presentation that preserves the internal

topology. However, each HMM transition is corrupted with a nonzero probability of observing

symbol 2, rendering an inconclusive measurement.

For this example, constructing the MSP for the process generated the cCQS in Figure 6.8 produces

the presentation depicted in Figure 6.9, where transition probabilities are not shown to reduce

clutter.

I

A

II

B

III · · ·

0

2

1

0

1
2

2

0

1

2

0

2

0 1

Figure 6.9. State transition diagram of the MSP constructed from the HMM in Fig.
6.8. Transition probabilities omitted for clarity. Observing 1s (blue transitions) leads
to state B; observing 0s (red transitions) to state A. Both cases are synchronizing.

There is a subset of MSP states with topology similar to the original cCQS, but augmented with

the mixed states that capture the observation of 2s. This generally holds when the generator is

a unifilar cCQS that emits two distinct nonorthogonal quantum states if the process is measured

via the POVM in Eqs. (6.2). In the measured cCQS, there will be a subset of MSP states that

mimic the cCQS’s internal dynamics, but the latter is augmented by inconclusive measurement

outcomes. And, there are chains of mixed states that drive the process away from the original

dynamic whenever a sequence of “inconclusive results” or a nonsynchronizing symbol is observed.
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To explore this process further set:

|ϕ⟩ = |0⟩

|ψ⟩ = cos (α/2) |0⟩+ sin (α/2) |1⟩ ,

with α ∈ (0, π). Then, pψ = pϕ = 1 − cos (α/2). When constructing the MSP of Figure 6.9, all

transitions that emit a 2 (black) have an associated probability of cos (α/2), while the probabilities

of the blue and red transitions depend on the specific transition. As the number of 2s observed

approaches infinity, the mixed states visited approach the stationary state distribution π = (2/3, 1/3)

of the nonunifilar measured cCQS.

This MSP, while requiring a countable infinity of states, is so well behaved that it allows for direct

calculation of the mixed states and the numerical computation of both its entropy rate and statistical

complexity by approximating the MSP with a finite but sufficiently large set of mixed states. Figure

6.10 plots both the entropy rate and statistical complexity when the processes are approximated by

a MSP with 500 hidden states.

Figure 6.10 reveals edge cases that match expectations. At one extreme, when α = 0, the process

reduces to a sequence of qubits in state |0⟩. Thus, both process randomness and structure vanish. At

the other extreme, when α = π, the alphabet emitted by the cCQS is orthogonal {|0⟩ , |1⟩}. Hence,

the unambiguous state discrimination POVM reduces to the projective measurement aligned with

the observation basis. This means that the measured process is true to the original quantum source

and both its entropy rate and statistical complexity coincide with hgµ and Cgµ, respectively. The plots

also highlight that both entropy rate and statistical complexity coincide with the generator values

with different nonorthogonal alphabets and that their maximum values are attained for different

alphabets as well. While both randomness and structure of the measured process depend on the

cCQS’s quantum alphabet, they both have distinct meanings and, thus, the dependencies are not

equivalent.

When varying the quantum alphabets and exploring α’s whole range, it becomes apparent that

the values of both entropy rate and statistical complexity can be lower or higher than those of the

original cCQS. This means that for a given cCQS and a given measurement both the randomness

and structure of the measured process with respect to the QSSP can be reduced or increased. This
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Figure 6.10. (Top) Randomness hµ and (bottom) statistical complexity Cµ as a
function of the angle α between the two states emitted by the cCQS in Fig. 4.2, with
|ϕ⟩ = |0⟩ and |ψ⟩ = cos(α/2) |0⟩+ sin(α/2) |1⟩. The horizontal black lines show the
values of hgµ and Cgµ of the cCQS that generates the original quantum state process.
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Figure 6.11. Complexity-entropy diagram capturing the purely informational
character of the measured quantum-state process: Parametric plot of hµ(α) and
Cµ(α) over α ∈ [0, π] illustrating how the intrinsic informational properties depend
on each other without reference to model parameter α. Cf. complexity-entropy plots
in Ref. [86].

makes plain the possibly ambiguous effects of measurement and what the latter can add to or

remove from the underlying quantum process.

Figure 6.11’s complexity-entropy diagram [86] offers a more concise display of the QSSP’s achievable

information generation and storage—its intrinsic computation—when measured in this particular

POVM across the range of alphabets. Notice that for small hµ the system’s structure or memory

requirements Cµ are low. Then memory increases with increased randomness until a peak is reached

at about hµ = 0.4 bits/symbol. Above this, increased randomness requires fewer memory resources

and a given randomness can be achieved at more than one memory value Cµ.
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Overall, this example illustrates a situation in which a particular choice of measurement protocol

leads to a very tractable measured process. While the statistical complexity diverges for most

measured processes, this example shows that tailoring measurement schemes still leads to complex,

but more tractable dynamics. That is, the observed dynamics can be leveraged to better understand

the dynamic that produces the underlying QSSP.

6.3. Optimal Measurements

The previous sections established the two main characters of measured quantum processes—their

unpredictability and temporal correlation. And, they demonstrated how measurement can increase

or decrease observed randomness and structure. These metrics naturally broach the challenge of

defining and demonstrating the existence of informationally-optimal measurements. The possibility

of these optimizations is greatly facilitated by the piecewise smooth dependence of the informational

metrics on the QSSP and on measurement operators.

Eschewing details, the following lays out several avenues for future exploration, illustrating various

kinds of optimality using the tools now in hand. We consider, in turn, measurements that lead to

minimal structural complexity and to various forms of maximal informativeness. The following cases

only address projective measurements, though extension to POVMs is in some cases straightforward

and of interest in general.

Developing algorithms and calculational methods to find and implement these optimal measurements

is left to the future.

Let’s briefly recall relevant notation. A given projective measurement protocol is denoted E .

Given a QSSP R−∞:∞ and a measurement protocol E , the corresponding measured process is

X−∞:∞ = E(R−∞:∞). To simplify the notation the following introduces E(M)—the MSP of the

measured cCQS of X−∞:∞ for a given cCQS M .

The following treats the alternative informational metrics as operators themselves. So that for

HMM M , hµ(M) is that HMM’s entropy rate, Cµ(M) is its statistical complexity, and dµ(M) its

statistical complexity dimension.
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6.3.1. Minimal Structural Complexity. There are settings where it is useful to identify

and use measurements that lead to the least complex, smallest-memory observed process. Such

measurement schemes are specified as follows.

Definition 22 (Minimal Structural Complexity Measurement). Given a cCQS M , the projective

measurement ECµ that leads to the measured process with the minimal structural complexity is, when

E(M) is finite state:

ECµ = arg min
{E}

Cµ(E(M))

and when E(M) uncountably infinite state:

ECµ = arg min
{E}

dµ(E(M)) .

While this kind of measurement is the least informative about the underlying quantum dynamics, it

has also proven in multiple examples to be the measurement that yields a classical process requiring

the least memory resources to simulate and predict. This remains to be proven but is consistent with

the fact that the measurement effectively is the most efficient at discarding information about the

structure of the underlying process, which need not be stored to represent the resulting measured

process.

6.3.2. Maximally Informative Measurements. Perhaps most naturally, one can employ

a measurement scheme that maximizes the amount of information per symbol in the measured

process. Such measurement schemes are specified as follows.

Definition 23 (Maximally Informative Measurement). Given a cCQS M , the projective measure-

ment Ehµ that leads to the measured process with maximally informative measurement outcomes

is:

Ehµ = arg max
{E}

hµ(E(M)) .
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Recalling basic dynamical systems, this is a natural choice of optimal measurement in that it mimics

the essence of what a generating partition is, as defined by Kolmogorov and proven by Sinai [87]. In

this case, each observation of a measurement outcome Xt results in the maximum possible amount

of new information.

6.3.3. Maximally Mutually-Informative Measurements. One is often interested in moni-

toring how measurement outcomes reveal (or not) the internal generating mechanism. This suggests

the following measurement.

Definition 24 (Maximally Mutually-Informative Measurement). Given a QSSP R−∞:∞, the

measurement protocol ER:X is the maximally mutually informative measurement when:

ER:X = arg max
{E}

I(R−∞:∞ : X−∞:∞) ,

where I(R−∞:∞ : X−∞:∞) is the mutual information [88] between the QSSP and the measured

process.

This measurement maximizes the information shared between the quantum-state stochastic process

and the measured quantum process. That is, observation of the classical process maximally reduces

uncertainty of the quantum process. In contrast to the maximally informative measurement, the

maximally mutually-informative measurement does not yield the maximal amount of information

learned per observation of the measured process. Rather, it provides the maximal amount of

information learned about the QSSP given observation of the measured process.

6.3.4. Dynamically Informative Measurements. Finally, one may be interested in finding

the measurement that yields a stochastic process most similar to the underlying QSSP. This requires

adhering to a particular definition of distance or similarity between stochastic processes. One option

when working with a particular cCQS and its corresponding measured cCQS is to use a measure of

distance between HMMs. The measurement that minimizes the distance between two HMMs is the

most informative about the internal structure of the QSSP generated by the cCQS. Said simply, it is

the measurement yielding a classical stochastic process that is most informative about the QSSP’s

dynamical structure.
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Selecting an appropriate measure of distance between HMMs is not a straightforward problem.

Many have been proposed [89–91], each with their own nuances. Determining which distance

measure better suits the problem at hand is left for future work.

This and the above notions of optimality are distinct and so are of interest in different operational

settings. It is important to emphasize that what differentiates these optimality criteria from other

notions of measurement optimality is that they depend on the QSSP’s time correlations and not

only on the particular quantum state of a single quantum system or its evolution.
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CHAPTER 7

Conclusions

To investigate temporal complexity—unpredictability and structure—in quantum dynamics we

developed an intentionally simplified setting—one that excluded sequential qubit entanglement.

This allowed deploying classical multivariate information theory as a quantitative analysis tool.

Importantly, this led directly to isolating the problem of how measurement affects the appearance

of quantum processes—processes to which one must apply a quantum measurement to observe.

The simple lesson is that measurement can both increase or decrease randomness and structure.

In point of fact, and somewhat unanticipated, observing a quantum process through projective

measurements results in an observed classical process of explosively high structural complexity. The

detailed analysis enriched this by identifying the mechanisms through which this complexity arises.

In general, quantum-state stochastic processes observed through projective measurements result in

observed classical processes that require storing an infinite number of predictive features to allow

for optimal prediction. The sets of predictive features for most processes are rich in structure and,

making use of that, we implemented newly developed tools to quantify their structural complexity

and the intrinsic randomness of the measured process. In addition, the development shed light on

the influence that the chosen measurement basis has on the complexity of the observed process.

Irreducible nonunifilarity was identified as the driving mechanism of these features. The low

dimensionality of the quantum state Hilbert space is the physical cause. Nonalignment between the

measurement basis and emitted quantum states of the cCQS is the root physical mechanism that

leads to induced indistinguishability of quantum states.

Even allowing for the framework’s simplifications, the typical complexity of the measured process

complicates not only its study, but also makes the task of learning about the underlying quantum

process a difficult one. We made progress in understanding why that is and how to characterize

the measured processes. That progress came from adapting new methods from ergodic theory
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and random dynamical systems to this setting. The result is a powerful toolset for quantitatively

analyzing measured quantum processes.

We showed that the underlying cCQSs have distinct signatures of structure and randomness as

a function of the measurement parameters and that dependence is systematic and smooth. One

remaining task is to characterize the possible underlying quantum sources that generate a given

measured cCQS or, at the very least, their statistical properties.

In this way, the results lay a path to fully characterizing quantum state stochastic processes. However,

many steps remain unexplored. We conjecture that success in these will have broad impacts. One of

those steps is to find the spectral decompositions of the processes by use of meromorphic functional

calculus [92, 93]. While these tools are not engaged here, they will be necessary when studying

CQSs generated by purely quantum controllers. Another essential step is to model the internal

controller in such a way that it generates entangled QSSPs. There are helpful starting points for

this in both finite-memory classical controllers [70] and quantum protocols [94,95] for sequential

generation of matrix product states. The latter are of particular interest in the study of many-body

entangled states.

We only briefly explored a measurement protocol that used single qubit POVM measurements. This

showed that exploring different measurement protocols has the potential to bring novel results and to

move closer to more physically realistic settings. For example, Reference [71] looks at measurements

that allow synchronization to the underlying QSSP in a setting similar to that explored here. As in

the study of classical dynamical systems, though, understanding the informational and statistical

effects of choosing a particular measurement instrument or protocol can aid in optimizing particular

tasks. The study of optimal quantum measurements for QSSPs remains as a challenging open

problem.

A major challenge is to extend the current setting to quantally-controlled qubit sources (qCQS),

as just noted. And, then, from there to develop a quantum communication channel setting in

which qubits are input, quantally processed, and then output. Advances in this will more directly

impact information processing and computing performed by quantum dynamical systems. Beyond

that, qubit source timing issues should be addressed, moving away from the admittedly simple

use of discrete time here to continuous-time processes. Fortunately, the cCQS model can easily
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be extended to discrete-event continuous-time hidden semi-Markov models using the methods of

Reference [96]. This will immediately give metrics of quantum randomness and structure, paralleling

the development here.

Extending the present results along these lines will naturally complement existing quantum de-

scriptions of classical stochastic processes [97–99]. They also flag a starting point from which

to understand the statistical and structural properties of quantum-state time series. That step

will provide tools necessary not only for furthering our understanding of fundamental quantum

dynamics, but also grasping the operational meaning of their informational properties in the context

of quantum computation.
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APPENDIX A

QSSP Python Package

Written in collaboration with David Gier.

A.1. Summary

QSSP stands for Quantum-State Stochastic Processes. The Python package qssp has been created

with the purpose of generating, manipulating, and characterizing Quantum-State stochastic processes

as in References [15,16,71]. It is open source and available at https://github.com/ari-VL/qssp.

qssp uses basic Python libraries such as numPy, sciPy and matplotlib. It is otherwise self

contained. The details of the objects and what they do will be provided shortly, here we summarize.

The basic functionality of the package allows the user to construct edge-emitting Hidden Markov

Models (HMMs), generate realizations of stochastic processes with them, and quanitfy basic

information properties of these processes from the HMMs. It is also capable of handling basic

quantum states (qudit states) as desity matrices or kets, as well as Positive Operator Valued

Measurements (POVMs) to measure these states. The main object of the package is the QSHMM,

which models the classical controllers for Quantum-State Stochastic Processes described in the

references above.

A.2. The Building Blocks

Figure A.1 describes the main objects of qssp.

The HMM class is defined by inputing a numpy array of labeled transition matrices, and an optional

‘initial distribution’ which would describe an internal state distribution. The alphabet, or set of

output symbols and the set of hidden state labels of the HMM are initialized by default by reading

the number of labeled transition matrices and their size, respectively. The methods then allow the

user to ask whether the HMM is unifilar or not. The user can also generate: the set of all allowed
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HMM

Ts
alphabet
init_dist : NoneType
state_labels

all_words(L)
block_entropies(L)
entropy_rate_approx(L)
evolve(N, init_dist, transients, word)
excess_entropy_approx(L)
is_unifilar()
many_paths(N, runs, init_dist, transients)
sample_transition(state)
sample_words(n, L)
state_entropy(dist)
stationary_distribution()

measurement

labels : range, NoneType
mOps
n_ops : int
tol_positivity : float

is_complete()
is_positive()

qsHMM

HMM
alph : list
alph_size : int
noise_level : int
noise_type : str

get_measured_machine(measurement)
is_synched(mixed_state)
observer_state_uncertainty(measurement, L, ever_synched)
q_block(L, join)
q_block_entropies(L)
q_entropy_rate(L)
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Figure A.1. Class diagrams for the QSSP package

words (sequences of output symbols) of length L, a sample of a state transition from a given hidden

state, n samples of length L of the stochastic process modeled by the HMM, and the stationary hidden

state distribution of the HMM. For HMM characterization the user can compute: the state entropy in a

given hidden state distribution (by default the stationary state distribution), the block entropies up

to length L of the stochastic process, the entropy rate approximation at length L and the excess

entropy approximation at length L.

The qstate class represents quantum states described in the computational basis (qudits). It is

constructed by inputting the amplitudes as a numpy array of amplitudes, either as a density matrix
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or as a ket (row vector). The methods allow the user to check whether the state is: normalized—and

if not, normalize it—, hermitian, positive, a valid quantum state and a pure quantum state. The user

can also compute the von Neumann entropy of the state. Together with use of the memasurement class,

the user can measure the staten and obtain a distribution over outcomes or sample the measurement

and obtain a number of outcomes from the correct distribution.

The measurement class is initialized by providing an array of measuement operators, and an optional

set labels for the outcomes, which are otherwise taken to be the first nonnegative integers. The

initialization also checks the the measurement satisfies the requirements to be a valid POVM.

Last, the qshmm class makes use of the previous objects to implement a classical HMM controller

as a source of a Quantum-State Stochastic Process(QSSP). The qshmm is initialized by inputing a

controler HMM and a list of qstates which make up the alphabet of output quantum states of the

QSSP. The user can then generate one or many realizations of length L of the QSSP, as well as

compute the density matrix that describes all possible sequences of realizations of length L together

with their probabilities. The user can also compute: the quantum block entropy of length L of the

QSSP, the quantum entropy rate of the QSSP and the quantum excess entropy of the QSSP. When

using an instance of a measurement object, the user can also obtain a HMM that models the classical

measured stochastic process that results from measuring the QSSP generated by the qshmm. Said

process can then be characterized by using the methods of the HMM object. Finally, the user can

compute the average hidden state uncertainty of measuring up to L single qudit states with a fixed

basis. Figure A.2 makes clear the interactions that qshmm has with other classes in the package.

The matrix necessary to represent a QSSP is dL by dL, where d is the dimension of an individual

quantum state and L is the length of the sequence. Calculating information properties generically

requires diagonalizing these matrices, thus these algorithms have execution time which scales

exponentially with L. For instance, for the QSSPs in Reference [71], estimates these quantities

with L = 8 (for d = 3), L = 10 and L = 12, all of which are possible with exact diagonalization

on a single CPU. One direction for future development is speeding up these calculations using

more sophisticated algorithms for matrix manipulation or converting the numerically-intensive

calculations to a language with faster execution such as C or C++.
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qstates

qsHMM

qsHMM.init

(a) Classical Process to Quantum Process

qsHMM measurement

HMM

qsHMM.get_measured_machine

(b) Quantum Process to Classical Process

Figure A.2. Transforming between Classical and Quantum Processes

The package is tested and documented and has a built-in utils file with some of the most used 2-

and 3-hidden state HMMs as well as some basic qubit states and measurements. It also has basic

plotting capabilities to generate the Mixed State Presentation (MSP) of a 3-State nonunifilar HMM.

A Jupyter notebook with simple examples of the central features of the package can be found at

https://github.com/ari-VL/qssp/blob/main/qssp_example.ipynb.
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APPENDIX B

Measurement Dependence Animations

Two animations illustrate the measurement angle dependence of the MSP; see:

https://csc.ucdavis.edu/~cmg/compmech/pubs/qdic.htm.

The first animation shows shows how the mixed state presentation and hµ vary as a function of

measurement parameter θ for the QSSP output by the cCQS in Figure 5.7.

The second animation shows plots like that in Fig. 6.3, while sweeping ϕ from 0 to 2π. In this case,

for the process generated by the cCQS in Figure 6.1. In particular, Figure 6.3 coincides with the

first frame of the animation.
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