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Abstract

Objective: Gadolinium-based contrast agents (GBCAs) have been widely used to better visualize 

disease in brain magnetic resonance imaging (MRI). However, gadolinium deposition within the 

brain and body has raised safety concerns about the use of GBCAs. Therefore, the development 
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of novel approaches that can decrease or even eliminate GBCA exposure while providing similar 

contrast information would be of significant use clinically.

Methods: In this work, we present a deep learning based approach for contrast-enhanced T1 

synthesis on brain tumor patients. A 3D high-resolution fully convolutional network (FCN), which 

maintains high resolution information through processing and aggregates multi-scale information 

in parallel, is designed to map pre-contrast MRI sequences to contrast-enhanced MRI sequences. 

Specifically, three pre-contrast MRI sequences, T1, T2 and apparent diffusion coefficient map 

(ADC), are utilized as inputs and the post-contrast T1 sequences are utilized as target output. To 

alleviate the data imbalance problem between normal tissues and the tumor regions, we introduce 

a local loss to improve the contribution of the tumor regions, which leads to better enhancement 

results on tumors.

Results: Extensive quantitative and visual assessments are performed, with our proposed model 

achieving a PSNR of 28.24dB in the brain and 21.2dB in tumor regions.

Conclusion and Significance: Our results suggest the potential of substituting GBCAs with 

synthetic contrast images generated via deep learning. Code is available at https://github.com/

chenchao666/Contrast-enhanced-MRI-Synthesis

Keywords

Medical Image Synthesis; GBCAs; Brain MRI; Contrast Enhancement; Fully Convolutional 
Networks

I. Introduction

Magnetic resonance imaging (MRI) is one of the most important techniques to distinguish 

different tissue properties and lesions in brain. To better visualize different kinds of disease, 

gadolinium-based contrast agents (GBCAs) have been widely used for brain MRI image 

enhancement [1]. Initially, the use of GBCAs was felt to carry minimal risk, with GBCAs 

administered in up to 35% of all MRI examinations [2]. However, some recent studies have 

demonstrated the deposition of gadolinium contrast agents in body tissues, including the 

brain [3], [4], which has raised broad safety concerns about the use of GBCAs in medical 

imaging. Previous studies have also suggested that GBCA dose should be as low as required, 

since advanced renal disease and the development of nephrogenic systemic fibrosis (NFS) 

are linked to high exposure to GBCAs [2], [5]. Even though deposition can be minimized by 

reducing the dose of gadolinium used, using low-dose contrast-enhanced MRI images may 

ignore some important information provided by contrast [6]. It is of importance to minimize 

or even eliminate the use of GBCAs, while preserving high-contrast information.

Recent development of deep learning methods have demonstrated success for medical 

image analysis [7], especially in the fields of segmentation [8]-[11], detection [12], [13], 

reconstruction, [14]-[16] and synthesis [6], [17]-[20]. In this study, we focus on developing 

a deep learning based approach to synthesize contrast-enhanced brain MRI sequences from 

non-contrast brain MRI sequences. Specifically, synthetic contrast-enhanced MRI images 

would especially useful for certain patients, such as: (1) pediatric patients, (2) patients with 

benign or low grade (slow growing) brain tumors who are undergoing routine clinical exams 
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over time to look at tumor growth, and (3) patients with impaired renal function or who can 

otherwise not get GBCAs.

Most recently, Gong et al. proposed to learn the reconstruction of full-dose T1 scans from 

pre-contrast T1 scans and 10% low-dose T1 scans [6]. In order to completely eliminate the 

dependence on GBCAs, Kleesiek et al. proposed to predict contrast enhancement sequences 

directly from non-contrast brain MRI sequences [21]. To introduce additional information 

from other modalities, they utilized 10 multi-parametric scans as inputs. There are several 

limitations of existing studies. First, datasets used for training and evaluation are small, 

containing no more than 100 subjects. Second, off-the-shelf network architectures and loss 

functions are used, which likely limits performance. Finally, existing work has insufficient 

performance on tumors and small vessels. For these reasons, in this work, we introduce 

a larger scale dataset containing more than 400 MRI sequences, and design a 3D high 

resolution fully convolutional network (FCN) to synthesize contrast-enhanced T1 (CE-T1) 

images. Fig. 1 illustrates the four MRI modalities used in this work. Specifically, T1, T2 

and ADC, are used as inputs to synthesize the post-contrast T1 with the proposed 3D FCN 

model. The main contributions of this paper are:

• A dataset of over 400 MRI sequences are analyzed, the largest explored thus far 

for the task of MRI virtual contrast enhancement.

• A 3D high-resolution FCN model is designed to generate the CE-T1 from 

the precontrast MRI scans. The presented model outperforms existing virtual 

contrast enhancement methods in two ways: (1) it maintains high-resolution 

information throughout processing, and (2) it repeats multi-scale fusion and 

aggregates multi-scale information in parallel.

• Since the voxels that compose tumor regions are limited relative to the entire 

MRI volume, deep learning methods with global loss functions struggle to 

accurately synthesize contrast in these regions. Therefore, a local loss is 

introduced to re-balance the contribution of the tumor regions, which leads to 

improved performance on tumors.

• Extensive experiments, visual assessments, and ablation studies are conducted. 

As a result, we achieved a peak-signal-to-noise ratio (PSNR) of 28.24dB in 

brain regions and 21.2dB in tumor regions. Numerical and visual assessments 

demonstrate that the presented method significantly outperforms existing work.

II. Related Work

In this section, we review the deep network architectures and loss functions that are widely 

used for image-to-image translation. We then discuss recent applications in medical image 

synthesis that are related to our study.

A. Image-to-Image Translation

Image-to-image (I2I) translation has been explored in recent years with the aim of 

translating an input image in a source domain to an image in a target domain. The basic 

idea of I2I methods is to learn a non-linear feature mapping given the input and output 
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image pairs as training data. A large number of network architectures has been proposed 

to act as the non-linear mapping. For example, Long et al. [22] proposed to utilize a 

FCN model for image-to-segmentation. In Ronneberger et al. [8], a U-Net architecture was 

proposed for biomedical image segmentation, which is currently widely used in medical 

image translation tasks. In Chen et al. [23], the authors introduced the dilated convolution to 

enlarge the receptive field of neural networks. In Zhao et al. [24], a pyramid pooling module 

was proposed to fuse features under four different pyramid scales, which enable the model to 

utilize local and global context information for pixel-wise prediction. In Newell et al. [25], 

the stacked hourglass module was proposed to capture and consolidate information across 

all scales of the image for human pose estimation. Different from the traditional high-to-low 

and low-to-high FCN architectures, Sun et al. [26] proposed a high-resolution net, which 

maintains high-resolution feature maps throughout processing.

A large number of training objectives have been introduced to measure the difference 

between the generated image and the ground truth image in I2I translation tasks. The typical 

choices are ℓ1 and ℓ2 loss. In [27], a differentiable variant of ℓ1 loss, named the Charbonnier 

penalty function, was proposed to handle outliers. Compared with ℓ1 or ℓ2 loss, which may 

lead to blurry images [28], adversarial loss [18], [20], [28], [29] has become a popular 

choice for I2I tasks. This process trains a discriminator to distinguish generated images from 

ground truth images. Additionally, perceptual loss, which measures the difference in feature 

space, has also been widely used in I2I translation [30], [31].

B. Medical Image Synthesis

Recently, an increasing number of machine learning and deep learning methods have shown 

potential in medical image synthesis, which estimates a desired imaging modality from 

other modalities or scans. For example, Li et al. applied the 3D-CNN model to predict 

missing PET patterns from MRI data [32]. To improve the quality of 3T MR images, 

Bahrami et al. collected a dataset with paired 3T and 7T images scanned from the same 

subjects, and proposed to reconstruct 7T-like images from 3T images [17], [33]. In Xiang 

et. al [34], the authors proposed to estimate standard-dose positron emission tomography 

(PET) images from low-dose PET and MRI images. In Huang et al. [35], the authors 

proposed a weakly-supervised convolutional sparse coding method to simultaneously solve 

the problems of super-resolution and cross-modality image synthesis. In Dar et al. [20], the 

authors proposed a new approach for multi-contrast MRI synthesis based on conditional 

generative adversarial networks, employing adversarial loss to preserve intermediate-to-high 

frequency details. In Han et al. [29], a GAN model is employed to synthesize rich and 

diverse brain MR images from existing MR images. In Nie et al. [18], [36], a 3D FCN model 

was trained to transform MRI to CT images using an adversarial strategy to train the FCN, 

which enforces the generated images to be more realistic. Finally, additional works have 

investigated methods for MRI to CT image synthesis [37]-[39], multimodal MRI synthesis 

[40], [41], and high-quality PET synthesis [42].

The studies that most relevant to ours can be seen in [6], [21], [43]. Specifically, in [6], 

the author utilized a U-Net-like model to synthesize full-dose CE-MRI from zero-dose 

pre-contrast MRI and the 10% low-dose postcontrast MRI. In [21], a 3D U-Net model was 
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developed to generate CE-MRI, which utilizes 10 multiparametric MRI sequences acquired 

prior to GBCA application as inputs. As a result, their model demonstrates a peak signal to 

noise ratio (PSNR) of 22.967dB and a structural similarity index (SSIM) of 0.872 dB for the 

whole brain region. In [43], the author utilized the residual attention U-Net architecture to 

estimate CE-MRI from non-contrast T2 MRI for cerebral blood volume (CBV) mapping in 

mice brain.

III. Materials and Methods

A. Data

Our dataset was acquired at UCLA on Siemens 3 Tesla MRI systems as part of standard-

of-care for brain tumor patients. The protocol used was consistent with the International 

Standard Brain Tumor Protocol [44] and includes 3D MPRAGE T1-weighted pre- and 

post-contrast imaging, axial 2D T2-weighted imaging, and axial 2D diffusion-weighted 

imaging used in the calculation of the ADC map. A total of 426 scans from 300 brain tumor 

patients were included in this study. The data includes two parts, A and B. Set A consisted 

of 411 scans. It was used for training purposes and therefore further subdivided in 369 

scans for training, and 42 scans randomly selected for validation. Set B contained 15 test 

samples with precise tumor masks and were used to evaluate the quantitative performance 

on tumor regions. Note that scans in Set B are patients from the UCLA brain tumor trial 

(IRB# 14-001261), and were selected randomly from the available data making sure both 

enhancing and non-enhancing tumor were part of the cohort. The experts with more than 10 

years of experience created the tumor ROIs as part of the clinical trial reads.

Pre-contrast T1, T2 and ADC map, were utilized as input images and the contrast-enhanced 

T1 is utilized as the target image. Note that apparent diffusion coefficient (ADC) maps was 

chosen to augment T1 and T2 because it is independent of these image contrasts and may 

provide additional information for CE-T1 image synthesis. ADC maps were derived from 

standard, isotropic diffusion weighted images (DWIs) with and without diffusion weighting 

according to the standardized brain tumor imaging protocol (BTIP) [45]. Simply, ADC was 

calculated from b=0, 500, and 1000 s/mm2 by fitting the equation ADC=−1/b*ln(S(b)/S0), 

where b = 500 and 1,000 s/mm2, ln is the natural log, S(b) is the signal intensity for an 

MR image at the given b-value, and S0 is the signal intensity of the MR image without any 

diffusion weighting (b=0).

All the sequences of the MRI data were co-registered to match the targeted 3D contrast-

enhanced T1. Bilinear interpolation was utilized to resize all the MRI data to the volume 

size of 192×256×192 voxels. To remove the skull, brain masks were created for the 3D 

contrast-enhanced T1 sequences utilizing FSL’s brain extraction tool [46]. Besides, in order 

to remove the side effects of the background slices, in the training and evaluation stage, we 

only selected the foreground slices and remove the top and bottom background slices which 

are less informative. Finally, all MRI scans were pre-processed by image equalization and 

the intensity values of the voxels within the brain region were normalized to [0,1].
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B. Model Architecture

Let X = [XT1; XT2; XADC] ∈ ℝℎ × w × d × 3 denote the MRI sequences with three MRI scans, and 

Y ∈ ℝℎ × w × d × 1 denote the contrast-enhanced T1 sequence. To synthesize the CE-T1 sequences 

from the non-enhanced MRI scans, a 3D FCN model is designed to work as a non-linear 

mapping function fθ such that fθ : X → Y, where θ is the model parameter to be learned. As 

shown in Fig. 2, the introduced 3D FCN generator is composed of stacked 3D convolutional 

layers, batch normalization layers, and non-linear activation layers. The first stage is a stem 

network [26] which is composed of three individual FCN branches that used to handle 

different input modalities. The resulting feature maps corresponding to different modalities 

are then fused by concatenation. Following the stem net are repeated multi-resolution 

subnetworks with generation multi-scale fusion stages. We start from a high-resolution 

subnetwork in the second stage and add high-to-low resolution subnetworks one-by-one 

gradually. Specifically, in the second stage, a 3 × 3 × 3 convolution with stride 2 is used to 

obtain the 2× downsampling feature maps. In the third stage, 4× downsampling feature maps 

are obtained from the higher resolution feature maps. As a result, we have three different 

resolution feature maps for different subnetworks, which corresponds to multiple-scale 

information. To fuse the multi-resolution information comprehensively, multi-scale fusion 

stages are introduced, which ensure multi-resolution information exchange across different 

parallel subnetworks. Specifically, in the 3rd and 4th stages, different subnetworks aggregate 

the feature maps from the other parallel subnetworks. During the multi-scale fusion stages, 

upsample and downsample operators are utilized to match the size of the feature maps in 

different subnetworks. In the last stage, feature maps from different branches are fused by 

concatenation, and a ResBlock is utilized to obtain the final CE-T1.

As illustrated in Fig. 2, Let Fmn denotes the feature maps generated by the m-th stage and 

the n-th subnetwork, then the feature maps can be calculated as: F11 = ϕ(T1) ⊕ ϕ(T2) ⊕ 
ϕ(ADC), F12 = D2(F11), F21 = ϕ(F11), F22 = ϕ(F12), F23 = D2(F22), F31 = ϕ(F21 ⊕ U2(F22)), 

F32 = ϕ(F22 ⊕ D2(F21)), F33 = ϕ(F23 ⊕ D4(F21)), F41 = ϕ(F31 ⊕ U2(F32) ⊕ U4F33)), 

F42 = ϕ(D2(F31) ⊕ F32 ⊕ U2(F33)), F43 = ϕ(D4(F31) ⊕ D2(F32) ⊕ F33) and F5 = F41 ⊕ 
U2(F42) ⊕ U4(F43). Here, ϕ(x) denotes the feature mapping function determined by the 

FCN module parameters, ⊕ denotes feature map concatenation along channel dimension, 

D2 denotes 2x downsampling, D4 denotes 4x downsampling, U2 denotes 2x upsampling 

and U4 denotes 4x upsampling. The FCN module consists of four ResBlocks and each 

ResBlock is composed of two ”Conv-BN-Relu” layers. The widths (number of feature maps) 

of the three parallel subnetworks are 64, 128, and 256. Detailed information regarding the 

model architecture can be seen in our source code, which is available at https://github.com/

chenchao666/Contrast-enhanced-MRI-Synthesis.

The advantages of the presented model are four fold. First, we utilize three MRI scans 

as inputs and employ three individual stem nets for different modalities, which is able to 

preserve the modality-specific information. Second, the presented model maintains a high 

resolution representation throughout the processing pipeline, and contains three parallel 

subnetworks that can generate and process multi-scale information in parallel. Third, the 

repeated multi-scale fusion stages ensure better feature fusion across different scale. Fourth, 

3D convolution was utilized to exploit additional information from neighboring slices.
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C. Loss Function

Let X denote the input non-enhanced MRI sequences and Y denote the contrast-enhanced 

T1. Our goal is to learn a mapping function f which can generate the CE-T1 sequences 

Y = fθ(X), such that the synthetic CE-T1 is close to the ground truth Y. The loss function 

utilized to train the model consists of three terms: pixel-wise MAE loss ℒMAE, Structural 

Similarity loss (SSIM) ℒSSIM and a local loss ℒlocal to focus performance on tumor regions.

• Pixel-wise Loss: The MAE loss and MSE loss are the most widely used pixel-wise 

losses for image synthesis. We found that using MSE loss resulted in blurrier images 

compared to MAE loss in this task. Therefore, the pixel-wise MAE loss was utilized in our 

model, which is given as

ℒMAE = ‖fθ(X) − Y‖1

• SSIM Loss: Using pixel-wise loss alone may ignore image structures. Therefore, we also 

utilize SSIM loss [47], which is perceptually motivated and leads to more realistic images. 

The SSIM loss is defined as

ℒSSIM = 1
n ∑

i = 1

n
‖1 − SSIM(fθ(X)i, Yi)‖1

where n denotes the number of slices of the output 3D MRI sequences, and Yi denotes the 

i-th slice of the ground truth CE-T1. SSIM(x, y) outputs a scalar between 0 and 1, which 

indicates the structural similarity between images x and y. The definition of the SSIM metric 

can be seen in IV-A.

• Local Loss: Tumor regions are of particular interest, but account for a very small 

proportion of voxels in the entire MRI seqeuences. This data imbalance problem leads to 

under-fitting and poor performance for the tumor regions. Therefore, we introduce a local 

loss to increase the contribution of the tumor regions. The local loss is defined as

ℒlocal = ‖(fθ(X) − Y) ⊙ M‖1

where M is a binary mask of the tumor regions, and ⊙ denotes voxel-wise multiplication. 

Since it is very expensive to assign voxel-level labels for each slice, we do not have 

precise tumor masks for the training samples. Fortunately, compared to the non-enhanced T1 

images, the tumors and vessels are significantly enhanced in the CE-T1 images due to the 

utilization of GBCAs. Therefore, we can calculate a rough tumor mask by thresholding the 

difference of the T1 and CE-T1 images as follows,

M =
1 Y − XT1 > δ
0 else
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where δ is the threshold to control the size of the mask, XT1 is the non-enhanced T1w 

image, and Y is the contrast-enhanced T1 image. Fig. 3 shows several examples of the 

generated binary masks. The generated masks are able to identify regions that are highly 

enhanced, such as tumors and vessels. These regions are used with our local loss to correct 

for data imbalance.

• Overall Loss: The overall loss function is defined as the weighted sum of all the three 

terms,

ℒlocal = λ1 ℒMAE + λ2 ℒSSIM + λ3 ℒlocal (1)

where λ1, λ2 and λ3 are trade-off parameters to balance the contribution of each loss term.

D. Implementation Details

The proposed network was implemented in Python with the Keras library and trained on 

an NVIDIA DGX system with eight NVIDIA V100 CPUs and 512G memory. The Adam 

optimizer was utilized for training. Since feeding the whole 3D MRI sequences into the 

model leads to out-of-memory (OOM) problem, we follow [18], [39] to adopt a patch-based 

strategy for training, and set the batch size to three. In each iteration step, three-slices of 

MRI sequence with size 3 × 256 × 192 are randomly sampled from each sequence volume. 

Therefore, we have three input channels with size 3 × 3 × 256 × 192 and one output with the 

size 3 × 256 × 192. Model training is divided into two stages. In the first stage, we set λ1 = 

1.0, λ2 = 1.0, and λ3 = 1.0, and train the model for the first 40 epochs with a learning rate 

lr = 0.0001. In the second stage, we alter the trade-off parameter of the local loss by setting 

λ1 = 0.1, λ2 = 0.1, λ3 = 10 and fine-tune the model for another 10 epochs with the learning 

rate lr = 0.00001. We empirically the threshold utilized to obtain the brain mask to δ = 0.1 

throughout the experiments.

IV. Experiments

In this section, we first introduce the baseline models and evaluation metrics that we utilized 

in the experiments. Then, the qualitative and quantitative performance of different models 

are presented. Finally, we provide ablation experiments that show the impact of different 

input MRI scans and the impact of the introduced local loss.

A. Baseline Model and Evaluation Metric

• Baseline Model: To evaluate the effectiveness of our proposed model, we implemented a 

2D U-Net, a 3D U-Net, as well as the 2D version of our proposed network. All the baseline 

models are evaluated on the same training and test sets. For the 2D U-Net, we expanded the 

model depth to 2x of the original U-Net network. For the 3D U-Net, we expanded the model 

depth to 1.5x of the original model depth.

• Evaluation Metric: The quantitative performance of our model and the baseline models 

was measured using mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and 

structural similarity index (SSIM). Given two images y ∈ Y and y ∈ Y, where y is the 

ground truth image and y is the predicted image. Then,
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MAE(Y, Y) = 1
ΩY

‖Y − Y‖1

MSE(Y, Y) = 1
ΩY

‖Y − Y‖2
2

PSNR(Y, Y) = 10 log10(
MAXI

2

MSE )

SSIM(Y, Y) = 1
ΦY

∑
y, y

(2μyμy + C1)(2σyy + C2)
(μy

2 + μy
2 + C1)(σy

2 + σy
2 + C2)

where ΩY is the number of voxels in Y, ΦY is the number of slices in Y, μy and σy are 

the mean and variance value of image y, and σyy is the covariance between the ground 

truth image y and the predicted image y. MAXI is the maximum value of the image y. 

Theoretically, lower MAE values and higher PSNR and SSIM values indicate better image 

generation quality. The statistical significance of experimental results was evaluated using 

paired t-tests.

B. Experimental Results

Qualitative and Visual Assessment—The results of representative test samples are 

shown in Fig. 4. The first two rows demonstrate a normal subject without any tumor and the 

remaining six rows demonstrate subjects with tumors. We compared the visual performance 

between our model (both 2D and 3D model) and the 2D/3D U-Net, which are widely used 

techniques for medical image synthesis tasks [6], [21]. As can be seen, the results reveal 

several interesting observations. First, both U-Net models and our proposed model generate 

promising visual performance for the normal patients. The vessels and high-frequency 

details in the generated images are very close to the ground truth images. Second, since 

the tumor voxels are limited relative to the entire MRI volume, models are more likely to 

over-fit to normal regions. As a result, the performance of the tumor regions is much worse 

than the performance on the normal regions. Third, compared with the U-Net model, which 

misses or under-estimates most of the tumors for the abnormal samples, our model often 

yields better visual performance for the tumor regions. Fourth, compared with the 2D model, 

the 3D model achieves better performance, especially for tumor regions. We believe this 

is because the 3D model takes advantage of the information from the neighboring slices. 

Fifth, while achieving promising visual performance for the whole brain MRI, our model 

sometimes misses or under-estimates some tumors, especially for those that are not distinct 

enough in the non-contrast images. Finally, Fig. 5 shows two representative MRI sequences 

in test set B. As observed, our model synthesized satisfactory contrast enhanced T1 images 

for different slices of the given 3D volume.
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Quantitative Evaluation—As shown in Table I, we show the quantitative performance 

of our proposal and comparison methods in test set A. All metrics are computed based 

on the brain region. Our model significantly outperforms the U-Net model in PSNR 

and SSIM metrics and the 3D FCN model outperforms its 2D counterpart, which is 

consistent with our visual assessment. Specifically, U-Net(3D) outperforms U-Net(2D) by 

0.35 points in PSRN (p-value=0.021), and Ours(3D) outperforms Our(2D) by 0.37 points 

(p-value=0.018), which demonstrates the effectiveness of utilizing 3D spatial information. 

Besides, the proposed Ours(3D) significantly outperforms the U-Net(3D) by more than 

one point (P-value=0.00037), we believe this is because our proposed model maintains a 

high resolution representation throughout the processing pipeline and contains three parallel 

subnetworks with multi-scale fusion stages. Compared with an existing method [21] that 

performs virtual contrast enhancement with deep learning, our proposal has more than five 

points improvement in PSNR, and has five points improvement in SSIM. Note that in [21], 

the author utilized 10-channel multiparametric MRI data as input while we only utilize 

three, which is a subset of their data. Our model outperforms [21] by a large margin even 

with less input data, which demonstrates the superiority of our proposed framework.

In order to evaluate the quantitative performance on the tumor region, we also collected 15 

test patients with precise tumor masks in set B. The test performance in set B is shown in 

Table II, with performance on both brain region and tumor region presented. The overall 

performance on the brain region is similar to the results on set A. Our proposed method 

significantly outperforms the U-Net and existing work [21]. For results on tumors, the 

proposed model outperforms the U-Net(3D) model by a large margin (p=0.0036), and the 

best performance on tumors is 21.2 in PSNR. Note that the quantitative performance on 

tumors is far from perfect and much worse than the performance on the whole brain region, 

this is because the tumor pixels are out-of-distribution and the model therefore tends to 

underestimate on tumor regions. It is worth noting that [21] utilizes a U-Net shape model to 

segment the tumor masks, which they utilize to evaluate the performance on tumors. These 

masks were not reviewed by a radiologist and therefore their quantitative performance on 

tumors may be inaccurate due to segmentation errors.

Comparison with State-of-the-Arts—In addition to the U-Net structure that are used 

for MRI virtual contrast enhancement [6], [21], we also compare our proposal with several 

state-of-the-art medical image synthesis methods, including Pix2Pix [28], DECNN [37], 

LA-GANs [42] and MedGAN [48]. Quantitative comparison between our proposal and other 

state-of-the-art methods is presented in Table IV. Pipx2Pix produces the worst result, while 

DECNN and LA-GANs achieve similar performance and both outperform Pix2Pix. The 

MedGAN outperforms the previous methods by a large margin, we believe this is because 

MedGAN utilizes a cascade U-Blocks as generator which is deeper and better designed than 

the generator in [28], [37]. Compared with the MedGAN, our proposal shows impressive 

improvement (p-value=0.0064) on brain region, and also significantly outperforms the 

MedGAN on tumor region by more than 1.3 points (p-value<1e-4), which demonstrate 

the superiority of the introduced framework. Note that the performance improvement on 

the tumor region is much significant than the improvement on the whole brain region, this 

is because the comparison methods does not take into the performance on tumor regions, 
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while we introduce a local loss to improve the performance on tumors. The significant 

improvement on tumors also demonstrate the effectiveness of the local loss.

C. Ablation Study

Impact of the Model Architecture—To demonstrate the effectiveness of the proposed 

framework, we compare the performance of the final model with four degraded model 

architectures, which are: (1) Model-A: utilize one FCN module to handle different input 

modalities, i.e., the three modalities (T1, T2 and ADC) are fused in the input layer; (2) 

Model-B: remove the 2x downsampling subnetwork and the 4x downsampling subnetwork, 

only utilizing the high-resolution branch as the FCN generator; (3) Model-C: remove the 

1x high resolution subnetwork; (4) Model-D: remove the repeated multi-scale fusion in 

stage 3 and stage 4. Table V shows the qualitative comparison between different model 

architectures. As can be seen, our proposed model yields notable improvement over 

the comparison degraded model architectures. In particular, the final model outperforms 

the Model-A by more than 0.5 points in PSNR, which demonstrates that employ three 

individual FCN modules for different input modalities is able to preserve the modality-

specific information and lead to better performance. The final model outperforms the 

Model-B by more than 1 point, this is because it is difficult for the model to capture 

the global information only using the high resolution branch. Besides, The final model 

also outperforms the Model-C by more than 0.8 points on average, which indicates the 

effectiveness of maintaining the high resolution representation. Furthermore, the final model 

also outperforms the degraded Model-D, which proves the effectiveness of using repeated 

multi-scale fusion stages.

Impact of Different Input Modalities—To investigate the influence of different input 

modalities, we train the model with different sequences. Specifically, in addition to using 

all three modalities (T1, T2 and ADC) as inputs, we also train the model: (1) using only 

T1 as input, and (2) using both T1 and T2 modalities as inputs. Experimental results are 

presented in Table III. We can conclude from the results that: (1) using T1 alone as input 

obtains a satisfactory performance; (2) the incorporated T2 and ADC modalities introduced 

additional information, which further improves performance; and (3) compared to ADC, T2 

is more informative and improves performance significantly. Besides, we also present the 

visual performance of training the model with different input modalities in Fig. 6.

D. Parameter Sensitivity Analysis

Sensitivity of the Local Loss—In order to investigate the influence of the introduced 

local loss, we used five groups of representative trade-off parameters to train the model. The 

parameters (λ1, λ3) were selected from {(1.0, 1.0), (1.0, 10), (1.0, 30), (0.1, 10), (0.01, 10)}. 

Note that we can not only increase the λ3 to improve the influence of the tumor regions as 

it will cause the gradient to be too large and the network will not converge. Therefore, we 

promote the influence of the local loss by increasing a ratio r = λ3
λ1

. λ2 is set to the same 

value as λ1 throughout the experiments. Results are presented in Fig. 7 and indicate that 

by increasing the ratio r = λ3
λ1

, the PSNR performance of the brain region decreased and the 

PSNR performance of the tumor region increased. We present two representative samples in 
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Fig. 8 to demonstrate the influence of local loss visually. By increasing the ratio λ3
λ1

, tumor 

enhancement becomes more salient while the overall image becomes more blurry, which 

is consistent with our quantitative results. The experimental results show that one suitable 

ratio can be set to r = λ3
λ1

= 100, which leads to better enhancement results for tumors and 

satisfactory performance for the whole brain.

Sensitivity of the threshold δ—To demonstrate the robustness of the thresholded mask, 

we also perform a parameter sensitivity analysis experiment on the thresholds δ. Fig. 9 

shows the variation of PSNR performance on brain and tumor regions when the threshold is 

changed from δ ∈ {0.001, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3}. As can be seen, the PSNR 

performance on the brain region increases as the threshold increases and gradually stabilize 

when δ > 0.1. Besides, the PSNR performance on the tumor region increases first and then 

decrease as δ increases, and shows a bell-shaped curve. We believe this is because when 

the threshold is set to δ < 0.03, the generated mask M will include more non-tumor areas, 

and when δ > 0.15, the generated mask M will underestimate the tumor regions. Therefore, 

based on the performance on brain and tumor region, the best threshold can be set to δ ∈ 
[0.03, 0.15].

E. Inference with Missing Modalities

The proposed model works well when all three input modalities are available. However, 

rather than having complete three modalities, it is common to have missing modalities in 

clinical scenarios. To understand how the model performs when only a subset of modalities 

are available, we visualize the inference performance when: (b) T1 is unavailable; (c) T2 is 

unavailable; (d) ADC is unavailable; (e) both T2 and ADC are unavailable in Fig. 10. Note 

that we utilize a zero matrix to represent the unavailable input modality during inference. 

The results shows that the model performance will be severely degraded when one or two 

modalities are not available. Besides, compared with the model performance when T2 or 

ADC is unavailable, the model performs much worse when T1 is unavailable. To ensure that 

the model is able to produce satisfactory results when only a subset of inputs are available, 

we also train a T1→T2 and a T1→ADC synthesis model utilizing a similar framework. 

In this way, when T2 or ADC is unavailable, we can first generate the T2 and ADC 

and then utilize the generated data to synthesize the contrast-enhanced T1 image. Fig. 11 

shows the visual performance of our trained T1→T2 and T1→ADC synthesis model, which 

demonstrates that our proposed framework also generates promising results for cross-modal 

image synthesis task. Fig. 10(f) illustrates the model prediction of using T1, synthetic T2 

and synthetic ADC as input, which shows that using the synthetic input data, our model can 

generate similar results as using full three inputs.

V. Discussion

Several studies have presented methods to generate synthetic contrast. Briefly, Gong et al. 

[6] proposed a 2D U-Net-like model to synthesize the full-dose postcontrast images from 

precontrast and low dose images. In Kleesiek at al. [21], a 3D Bayesian U-Net was utilized 

to predict contrast enhanced images from 10 multiparametric zero-dose MRI sequences, and 
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Sun et al. [43] proposed a 2D residual attention U-Net to produce contrast in mice brain MR 

images directly from noncontrast structural images. Compared to these previous studies, our 

model has the following advantages:

• In [6], [43] only one MRI sequence was used for generating full-dose MRI 

compared to 10 multiparametric MRI scans in [21]. We believe a single low-dose 

or noncontrast MRI may miss important information, while the utilization of 

10 MRI scans requires a long time to acquire. According to the International 

Standardized Brain Tumor Imaging Protocol (BTIP) [44], we utilized three 

informative noncontrast MRI scans (T1, T2 and ADC) for postcontrast MRI 

synthesis. Our ablation results suggest that using all three of these sequences 

maximizes performance.

• To investigate the feasibility of predicting contrast-enhanced MRI sequences 

from non-contrast or low-contrast MRI sequences, 60 patients are used in [6], 82 

patients are used in [43], and [43] test their idea in mice as a proof of concept. 

Our study utilized more than 400 patients, allowing us to train a deeper FCN 

model and obtain state-of-the-art performance.

• Different from previous methods [6], [21] that utilize the off-the-shelf model 

architectures (2D/3D Unet) and loss function, we present a 3D high-resolution 

FCN model that maintains high-resolution information throughout the fully 

convolution stage and aggregates the multi-scale information in parallel. As a 

result, our model outperforms the 2D/3D U-Net counterparts by more than 1 

point in PSNR, and also outperforms several state-of-the-art medical synthesis 

methods. In addition, we introduced a local loss to improve performance in 

tumor regions.

• Previous studies [6], [21] obtained imperfect enhancement results in vessels 

and tumors due to the difficulty of the problem. For example, in Gong et 

al. [6], enhancement results appear rough in vessels compared to our model. 

Furthermore, our method achieves a result of 28dB in PSNR on the whole brain 

region, which is similar to Gong et al. [6] despite the fact that our method 

requires no contrast agent compared to the the low-dose MRI sequences used as 

input in their work. In terms of PSNR, our model also outperformed Kleesiek et 

al [21]. by a large margin even with less input data.

While our model demonstrates promising results, there are several limitations. First, since 

the tumor regions account for a very small proportion of the entire MRI sequences, the 

performance on these regions remains sub-optimal. As we do not have precise tumor masks 

for training, the introduced local loss that we used to balance the contribution of the tumors 

can be improved. Providing precise tumor masks for the local loss during training will likely 

improve performance further and is in our future work. In addition, some advanced methods 

in data imbalance learning or long-tailed distribution learning, such as BBN [49], can be 

introduced to balance the performance of the whole brain region and tumor region. Second, 

while our cohort was larger than any previously published cohort for the task, performance 

can likely be further improved by including more training patients, especially a large number 
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of abnormal patients with high diversity. Beyond increasing and diversifying the dataset, 

future work will also investigate recent advancements in data augmentation.

VI. Conclusion

In conclusion, the objective of this investigation was to formulate and implement a deep 

learning model to generate contrast-enhanced MRI sequences from non-contrast MRI 

sequences, which was expected to eliminate the risk of gadolinium deposition during 

standard-of-care for brain tumor patients. For this purpose, the largest dataset for the task of 

MRI virtual contrast enhancement was explored, and a novel high resolution 3D FCN model 

was designed, which showed superior performance than the counterparts. Besides, we also 

introduced a local loss to re-balance the contribution of the tumor regions, which leaded to 

improved performance on tumors. We demonstrate promising visual and numerical results 

and obtain state-of-the-art performance. The results suggest great potential in substituting 

the GBCAs with deep learning to obtain the contrast information in brain MRI. Future work 

will focus on defective performance on abnormal regions.
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Fig. 1: 
Contrast and non-contrast MRI sequences used for brain tumor diagnosis and clinical 

monitoring. Three non-contrast scans, T1, T2, and the ADC were used to estimate the 

contrast-enhanced T1-weighted image (CE-T1) using a 3D FCN generator.
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Fig. 2: 
Overview of our proposed model. A high-resolution FCN model was trained as a generator 

to synthesize contrast-enhanced T1 images. Three non-contrast scans, including T1, T2, and 

ADC, were utilized as input images.
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Fig. 3: 
Illustration of six representative CE-T1 images and corresponding binary masks. The 

generated masks are able to identify the tumors, vessels and other high frequency details, 

which are enhanced by GBCAs.
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Fig. 4: 
Qualitative evaluation of our proposal and baseline models. From left to right, input T1, 

input T2, input ADC, ground truth image CE-T1, synthetic image of a 2D U-Net, synthetic 

image of a 3D U-Net, synthetic image of the proposed 2D FCN model, synthetic image of 

the proposed 3D FCN model, and the absolute difference between the results of our 3D FCN 

and the ground truth. The first two rows are from normal patients and the other rows are 

from patients with tumors. Different rows are from different subjects in the test set.
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Fig. 5: 
Visual assessment of our proposed method in two representative test samples in set B. From 

top to bottom, the ground truth slices of test patient A, the synthetic CE-T1 for test patient 

A, the ground truth slices of test patient B, the synthetic CE-T1 for test patient B. The 

synthetic CE-T1 images are generated by the proposed 3D FCN model. The images in the 

same row represent different slices of the same subjects.
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Fig. 6: 
Visual performance of training the model by different input modalities. (a) Ground truth 

images, (b) results by training the model with T1 as input, (c) results by training the model 

with T1 and T2 as inputs, and (d) results by training the model with T1, T2 and ADC as 

inputs.
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Fig. 7: 
Quantitative evaluation of the impact of local loss. The blue bar indicates the PSNR 

performance on the Brain region of Set A and the orange bar indicates the PSNR 

performance of the Tumor region of Set B. Note that λ2 is set to the same value as λ1 

throughout the experiments.
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Fig. 8: 
Visual performance of training the model by using different trade-off parameters (λ1, λ3). 

From left to right, the trade-off parameters are set to (λ1, λ3) = {(1.0, 1.0), (1.0, 10), (1.0, 

30), (0.1, 10), (0.01, 10)}.
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Fig. 9: 
PSNR performance on brain region tumor region when threshold is changed from δ ∈ 
{0.001, 0.01, 0.03, 0.05, 0.1, 0.15, 0.2, 0.3}.
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Fig. 10: 
Illustration of (a) Group Truth (GT) and model performance when: (b) T1 is unavailable; (c) 

T2 is unavailable; (d) ADC is unavailable; (e) T2 and ADC are unavailable; (f) utilize T1, 

synthetic T2 and synthetic ADC as input; (g) utilize full three inputs. Note that we utilize a 

zero matrix to represent the unavailable input modality during inference.
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Fig. 11: 
The visual performance of the T1→T2 and T1→ADC synthesis model. (a) T1; (b) T2; 

(c) ADC; (d) generated T2 by T1→T2 synthesis model; (e) generated ADC by T1→ADC 

synthesis model.
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TABLE I:

Quantitative comparison between our model and baseline models. The models are evaluated on test set A, and 

the performance on the whole brain region is presented.

Model MAE PSNR SSIM

Ref [21] N/A 22.97±1.16 0.872±0.031

U-Net (2D) 0.033±0.005 26.86±1.05 0.905±0.038

U-Net (3D) 0.032±0.004 27.21±1.18 0.908±0.038

Ours (2D) 0.030±0.005 27.87±1.30 0.915±0.039

Ours (3D) 0.029±0.005 28.24±1.26 0.923±0.041
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TABLE II:

Quantitative performance evaluated on test set B. The performance on the brain region and tumor region are 

presented.

Model
PSNR SSIM

Brain Tumor Brain

Ref [21] 22.97±1.16 20.15±4.70 0.872±0.031

UNet (2D) 26.44±1.40 18.45±2.22 0.896±0.022

UNet (3D) 26.79±1.26 18.89±2.38 0.899±0.022

Ours (2D) 27.22±1.21 19.64±2.59 0.903±0.023

Ours (3D) 27.62±1.34 21.2±2.36 0.909±0.023

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chen et al. Page 31

TABLE III:

Comparison experiments by using different modalities as inputs.

Input T1 T1+T2 T1+T2+ADC

A-Brain
PSNR 27.4±1.28 27.9±1.24 28.24±1.26

SSIM 0.914±0.040 0.920±0.040 0.923±0.041

B-Brain
PSNR 26.7±1.23 27.3±1.27 27.62±1.34

SSIM 0.898±0.022 0.905±0.023 0.909±0.023

B-Tumor PSNR 19.8±2.32 20.8±2.30 21.2±2.36
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TABLE IV:

Quantitative comparison between our proposal and state-of-the-art medical image synthesis methods on test 

set B

Model
PSNR SSIM

Brain Tumor Brain

Pix2Pix [28] 25.90±1.52 18.20±2.64 0.887±0.025

DECNN [37] 26.48±1.38 18.74±2.31 0.898±0.023

LA-GANs [42] 26.23±1.30 18.69±2.47 0.894±0.024

MedGAN [48] 27.04±1.26 19.88±2.42 0.901±0.023

Ours (3D) 27.62±1.34 21.2±2.36 0.909±0.023
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TABLE V:

Qualitative comparison between the final model and four degraded model architectures.

Model A-Brain B-Brain B-Tumor

Model-A 27.68±1.31 27.26±1.28 20.63±2.46

Model-B 26.42±1.12 26.32±1.20 19.54±2.38

Model-C 27.20±1.22 27.04±1.19 20.39±2.44

Model-D 27.36±1.20 27.08±1.18 20.68±2.32

Final-Model 28.24±1.26 27.62±1.34 21.20±2.36
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