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Abstract

Expanding on previous research highlighting the learning
benefits of errors, this study explores the enduring effects of
error-induced learning. Using an adaptive fact-learning
system, 23 participants engaged in recognition, recall, and
error tasks, with repeated testing for memory assessment.
Initial findings echoed previous results: items learned through
errors initially took longer to retrieve. However, a significant
shift occurred over time; error items demonstrated faster
retrieval speeds compared to study items, and, most notably,
they exhibited greater resilience against forgetting. This study
reaffirms the positive role of errors in learning and uncovers
their contribution to enhanced long-term memory retention.
These insights challenge traditional learning paradigms,
advocating for an educational approach that recognizes and
leverages the value of errors in learning processes.

Keywords: errors; forgetting; memory; retrieval; mediation;
computational modeling

Introduction
Previous studies have conclusively shown that errors lead to
better memory. Error learning or improvements in recall on
subsequent fact presentations after an incorrect answer or
memory error. has been demonstrated across types of
memory (recall vs recognition: Greving & Richter, 2018)
and different types of facts (math: Kapur & Bielaczyc, 2012;
trivia: Kornell, 2014). The foundation of this increased
learning appears to stem from additional processing that
occurs between the onset of a question and the presentation
of the answer (i.e., a retrieval attempt) that leads to better
answer processing, regardless of whether the attempt was
successful (Kornell & Vaughn, 2016).

Two main theories of the mechanics underlying this extra
processing exist. The elaborative theory of error learning
states that generating an answer activates a semantic
network of items related to the prompt-answer pairing. After
receiving feedback, the initial (erroneous) response and the
correct one are merged to form a more substantial memory
trace that has more connections to the original probe and is
this more likely to be retrieved in the future after prompt
presentations (Huelser & Metcalfe, 2012; Karpicke, 2017).
For example, in a simple word association task where

participants must learn cue-target pairs, one may generate
the word “tail” as a free associate in response to the cue
word “whale” when the target word is actually “swims.”
Instead of simply encoding the pair “whale” and “swims,”
the individual may use the error to create a more robust
network between the two words, perhaps thinking of a
whale using its tail for swimming.

The mediator theory, on the other hand, argues for a more
episodic account of error learning. Errors are specifically
encoded and used as a secondary cue to the prompt in future
presentations. This helps learners recall facts since they can
use both the prompt and error to retrieve an answer (Huelser
& Metcalfe, 2012; Mera et al., 2021). Referring to the
previous example, at subsequent presentations of the word
“whale,” one may recall their previous error, “tail,” and
from it, attempt a second retrieval and recall the correct
target word, “swims.”

In a recent study, Leonard et al. (2023) provided strong
evidence in favor of the mediator theory. To investigate the
cognitive mechanisms behind the well-documented theories,
they developed models within a formal computational
framework, specifically Anderson and Schooler’s (1991)
model, which is now a part of the Adaptive Control of
Thought–Rational (ACT-R) cognitive architecture
(Anderson, 2007). In these models, memories in declarative
memory are represented as “chunks” in a semantic network.
Memory retrieval is a dynamic process in which memories
matching a retrieval request compete for selection based on
their activation, a combination of the recency and frequency
of that memory’s presentation as well as its relation to the
current context, or spreading activation.

The elaborative hypothesis was modeled in this
architecture by creating elaborative error chunks. When an
error is committed, and feedback is provided, chunks
linking the cue and target words merge with chunks
containing the cue and error words to form one elaborative
chunk. In the previous paired-associate example, whale-tail
would be merged with whale-swims to create a chunk:
whale-tail-whale-swims. This chunk could represent the
previously discussed meaningful links between cue and
target words (i.e., the whale swims with its tail) or simply
whale-swims, not whale-tail. Subsequent presentations of
the cue spread more activation to this elaborative chunk;
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multiple references of the cue word within the chunk
increase their strength of association. This leads to both
enhanced fact recall and faster response times than study
items (Figure 1A).

The mediator hypothesis was modeled by adding an extra
cognitive step in the model that specifically seeks out if a
past error has been made. If this retrieval request is
successful, it then uses the error to retrieve the correct
answer. For example, tail is retrieved when the cue whale is
presented, the learner remembers that tail is an error and
uses it to help retrieve the correct target swims. This
enhances the specificity and success of fact recall and
importantly, increases response times due to extra time spent
retrieving memories compared to study items (Figure 1B).

Leonard and colleagues used the models to
mathematically prove that, under reasonable assumptions,
the elaborative hypothesis would lead to shorter RTs for
error items, while the mediator hypothesis would lead to
longer RTs. To test their prediction, they also collected data
from 61 participants; by analyzing the data with a
random-slope mixed linear model, they were able to show
that no single participant adopted the elaborative strategy.
They also used maximum likelihood to fit the original
ACT-R models to individual participant data on a
trial-by-trial basis, showing again that all participants were
more likely to be fit by the mediator model.

Figure 1: Mechanisms of error learning. (A) Errors provide
increased learning by adding extra spreading activation
during retrieval due to the memory’s encoding in a deep
semantic network. (B) Errors provide increased learning by
acting as a secondary cue, adding an extra cognitive step
that enhances retrieval specificity.

Limits of Existing Theories
One important limitation of previous work is that it does not
explore the dynamics of trial learning, that is, they do not
consider the response times and accuracies of items beyond
the first trial after an error is made.

This leaves several possibilities open. It is possible that,
after an error is made, mediator retrievals are consistently
used ever after in the process of retrieving a memory.
Alternatively, the mediator hypothesis might better explain
the first few trials after a mistake was made, but, with

repeated experience, these additional retrievals might lead to
greater associations between the cue and the probe, thus
leading to a long-term result that is compatible with the
elaborative hypothesis. Or, it is possible that, while mediator
retrievals are dropped after the first few trials, their effects
persist over time in terms of reduced forgetting. This could
be due, for example, to the increased depth of processing
(Craik & Tulving, 1975) or to the greater motivational
engagement associated with generating an answer
(Shohamy & Adcok, 2010).

To distinguish between these alternative scenarios, it is
necessary to run a different type of experiment, in which
initial errors are followed for multiple trials and quantitative
measures of memorability of each fact are tracked over
multiple trials. Evidence for the mediator effect would
manifest as persistently longer response times to error items
after the first test.

Shorter response times after the first error, however, could
be explained by either the creation of additional associative
links, which would facilitate retrieval as posited by the
elaborative hypothesis, by the creation of longer-lasting
traces, which would lead to more resistant traces due to
additional processing or arousal. To distinguish between
these two explanations, it is necessary to estimate a
memory’s intrinsic tendency to be forgotten over time from
the ease with which it can be retrieved when probed.

To dissociate the two, we used an adaptive fact-learning
system (AFLS) testing paradigm. The AFLS presents testing
probes adaptively, at a rate that is person- and item-specific,
so that the presentation of each item is spaced to maintain a
near-constant accuracy rate. Specifically, we employed a
model-based AFLS, in which the spacing between different
items is computed based on the parameters of an underlying
computational model of memory, which is iteratively
refined to match the participant's response and works as
their “cognitive twin”. Importantly, this approach allows us
to analyze not only response times but also the latent model
parameters for each item.

Model-Based Memory Assessment
To evaluate memory, we adopt a unique approach that
integrates Anderson and Schooler's (1991) episodic memory
model into the Adaptive Control of Thought–Rational
(ACT-R) cognitive framework. Grounded in the Multiple
Trace Theory (Nadel et al., 2000), which posits the creation
of distinct memory traces with each encounter of new
information, our method aligns with the power law of
forgetting (Newell & Rosenbloom, 1982). This law suggests
that these traces gradually diminish over time.

The model calculates the probability of recalling a
memory m at a time t, based on its activation level A(m, t).
This activation level is the logarithmic sum of probabilities
of accessing each trace, as expressed in the formula:

A(m, t) = log ∑i (t - t(i))-d(i) (1)

In this equation, t(i) signifies when the i-th trace was
formed, and d(i) is its decay rate. The decay rate is
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determined by the memory's residual activation at the time
the trace was formed, linking it to the memory retention
spacing effect (Cepeda et al., 2008):

d(i) = eA(m, t = t(i)) + φ (2)

Equation (2) reveals the connection between the decay rate
of each trace and the memory's activation level at its
creation. Traces encountered closer in time have higher
decay rates due to greater activation at the time of formation
(Pavlik & Anderson, 2005; Sense et al., 2016).

At the core of this model is the Speed of Forgetting (SoF;
φ). SoF is crucial in understanding how a memory's past
influences its future recall potential. It underscores that a
memory's likelihood of being recalled is primarily governed
by how quickly it is forgotten, which is influenced by the
frequency and context of its recall.

Educationally, this model has demonstrated effectiveness
in enhancing student learning (Sense & Rijn, 2022; Sense,
Velde, & Rijn, 2021; van Rijn et al., 2009; Wilschut, van der
Velde, Sense, Fountas, & van Rijn, 2021). The software
tailors the timing and frequency of fact presentation based
on the SoF values derived from student responses,
maximizing retention efficiency. Van Rijn et al. (2009)
refined this approach by incorporating both error rates and
response times to more accurately determine SoF.

Supporting the robustness of this model, Sense et al.
(2016) demonstrated that SoF is a stable trait unique to
individuals. In the realm of clinical application, Hake et al.
(2023) have demonstrated the potential of the SoF
parameter to classify memory impairments with high
accuracy. Furthermore, neuroimaging studies by Zhou et al.
(2021) and Xu et al. (2021) have linked SoF to individual
differences in long-term memory function and revealed its
correlation with spontaneous brain activity during rest.

Materials and Methods
Participants
Undergraduate students attending the local university (N =
23; 16 female) were recruited on a rolling basis over two
quarters and provided with payment or course credit for
their participation. Participants were originally included in a
larger study that included other conditions and data
collection. None of the manipulations, however, affected the
data from this experiment in any way and can be ignored.

Memory Task
Four in-person assessments were completed using the online
adaptive fact learning system (AFLS) described in Sense et
al. (2016) and found online at
https://www.memorylab.nl/en/. This system continuously
estimates the individualized Speed of Forgetting values in
real-time as the participant works through the lesson. The
AFLS presents new study pairs (e.g., “France / Paris”) and
schedules repeated tests (e.g., “France / ?”) at strategic
points based on the online estimates of a user’s Speed of
Forgetting. The system also provides a lesson-level setting

to turn off study trials, enabling error learning. Figure 2
provides an example of the software interface.

Each participant performed the task in three different
modalities. Four lessons of each modality were administered
over four consecutive days. Fact lessons were specifically
designed with material that is likely unfamiliar to
undergraduate students like Caribbean flags and Swahili
words. Lessons were balanced by difficulty such that each
modality’s lessons contained many facts that could all be
learned around the task’s 8-minute end time.
Recognition mode. In the recognition mode, participants

were presented with study items and then tested on those
items. Participants selected the correct response by clicking
with a mouse on the button corresponding to the option they
thought was correct (Figure 2A).
Recall mode. In the recall mode, study items were

presented in the same way but responses were given
verbally, by saying out loud the name of the option
corresponding to the response or by simply typing in the
response. During the response phase, only the cue was
presented (Figure 2B).
Error generation mode. The error generation mode was

similar to the recall mode except participants typed in their
answers and no study item was presented to promote error
commission (Figure 2C). To follow a similar protocol as
Huelser and Metcalfe (2012) and Leonard et al (2023), 30
weakly associated word pairs were selected for each lesson
using Nelson, McEvoy, and Schreiber’s (1998) norms.

Figure 2: MemoryLab task modalities either with a study
opportunity (A and B) or without (C). (A) Recognition
mode: multiple choice learning of flag and country pairs.
(B) Recall mode: speak or type in response to Swahili word
and English translation pairs. (C) Error generation mode:
type-in response of word pairs with no study trial.
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Measures
The primary measure we are interested in is response time.
This will allow us to see if mediation continues to be the
mechanism underlying increased error performance.
Accuracy will mostly be analyzed in the scope of Speed of
Forgetting since the modalities contain different material
that could differ in fact difficulty. However, incorporating
Speed of Forgetting and accuracy will allow us to continue
to distinguish between error and study learning. Do the
benefits of errors remain over multiple trials (more accurate,
slower forgetting)? Or does the benefit of multi-trial testing
lead to a balance between error and study item
performance?

To answer the question of how mechanisms of error
learning change over multi-trial testing, we must look at the
characteristics of each fact over time, specifically response
time, accuracy, and Speed of Forgetting. This will allow us
to form a comprehensive story for facts learned in different
modalities and how their first learning instance can change
their retrievability in future trials.

Results

Response Times
To remove extreme values from our data, we used a
maximum cutoff point of 15,000ms and a minimum cutoff
point of 200ms. Only correct trials were included.

Supporting past findings of mediator retrievals of error
learning, on the first fact presentation, participants had
longer response times on error items (M = 2536.33 +/-
1519.55ms) than both recall items (M = 2070.07 +/-
1765.97ms) and recognition items (M = 1852.98 +/-
996.42ms), as seen in Figure 3. However, for each
subsequent presentation, response times got faster and faster
for error items (M = 1868.11 +/- 1455.49ms) such that they
were retrieved, on average, faster than both recall (M =
2625.02 +/- 2324.58ms) and recognition items (M =
2101.49 +/- 1403.52ms). Response times for recall and
recognition items did not differ significantly over time (see
Figure 3 predicted).

To analyze response times, mixed linear models were
used to account for variability and individual differences.
Specifically, we fitted a mixed model to all of the
experimental trials, including a fixed effect as the
interaction between trial condition (Recognition vs. Recall
vs. Error) and fact presentation (repetition) two random
effects: a participant-level intercept and a participant-level
slope to account for individual differences in response
latencies and slopes between fact presentations,
respectively. This complex interaction model fit the data
better than both a simple model with fixed effects of
condition and fact presentation and a participant-level
intercept. The interaction model also fit the data better than
the simple model with a random intercept and slope for each
participant in each condition. The model only captured the
mediator effect between error items and recognition items.
That is, at presentation 0, error items were estimated to have

a longer response time than recognition items (β = -193.62,
SE = 37.32, t = -5.19, p < 0.0001) but shorter response
times than recall items (β = 314.84, SE = 39.57, t = 7.96, p
< 0.0001), likely due to the large increase in response times
for recall items on presentation 1 (See Figure 3 observed vs
predicted). Additionally, the model uncovered a large
interaction effect between fact presentation and condition.
On average, error item response times decreased over the
number of presentations (β = -157.49, SE = 21.32, t = -7.39,
p < 0.0001) compared to the response times of recall items
(β = 156.71, SE = 14.25, t = 11.00, p < 0.0001) and
recognition items (β = 161.56, SE = 13.21, t = 12.23, p <
0.0001). The complete results of the model are shown in
Table 1.

Figure 3: Differences in response times for different task
modalities over the first ten fact presentations. Colored
lines, dots, and error bars represent means +/- SE for the
Error (blue), Recall (orange), and Recognition (green)
conditions. Left: Empirical data; Right: Fitted model.

Table 1: Results of the Mixed-Level Model for Response
Times

Predictor β estimate SE t p

(Intercept) 2381.636*** 96.156 24.769 0.000

Condition (Recall) 314.842*** 39.574 7.956 0.000

Condition (Recog) -193.621*** 37.316 -5.189 2e-07

Fact Presentation -157.486** 21.324 -7.385 0.000

Recall x Presentation 156.709 14.247 11.000 0.000

Recog x Presentation 161.560 13.205 12.235 0.000

*p < 0.05 **p < 0.01 *** p < 0.001

Speed of Forgetting
On average, participants had lower Speed of Forgetting
(SoF) on error items (M = 0.24 +/- 0.04) than both
recognition items (M = 0.30 +/- 0.0) and recall items (M =
0.30 +/- 0.07), as seen in Figure 4. To analyze SoF values,
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mixed linear models were used to account for variability and
individual differences. Specifically, we fit a mixed model to
all of the experimental trials, including the particular trial
condition (Recognition vs. Recall vs. Error) as a fixed effect
and a participant-level intercept as a random effect to
account for individual differences in speeds of forgetting.
We also included a participant-level slope as a random effect
to account for individual differences in slopes between
lesson modalities. This more complex model fit the data
better than both a simple model (fixed effect only) and a
fixed effect model with just a participant-level random
effect. The model uncovered a large main effect of condition
such that the error lessons had significantly lower SoFs
compared to both the recall (β = -0.06, SE = 0.01, t = 6.10, p
< 0.0001) and recognition lessons (β = -0.06, SE = 0.007, t =
8.53, p < 0.0001). The complete results of the model are
shown in Table 2. These results demonstrate the existence of
error learning with an alternate measure rather than
accuracy, one that is more reflective of the dynamics of
memory over time. Furthermore, these results show that
error trials are not only accessed more easily, but they do
seem to be intrinsically more resistant to forgetting than
other memories.

Figure 4: Differences in SoF in the three task modalities.
Gray dots and lines represent data for individual
participants; colored dots and error bars represent means +/-
SE for the Error (blue), Recall (orange), and Recognition
(green) conditions. Left: Empirical data. Right; Fitted linear
model.

Table 2: Results of the Mixed-Level Model for Speed of
Forgetting

Predictor β estimate SE t p

(Intercept) 0.25*** 0.006 40.04 0e+00

Condition (Recall) 0.06*** 0.010 6.0790 2.4e-06

Condition (Recog) 0.06*** 0.0070 8.5330 0e+00

*p < 0.05 **p < 0.01 *** p < 0.001

Errors or Levels of Processing?
The previous results have shown that mediator retrievals
play a significant role only in the very first trial after the
error is made and corrective feedback is given and that
subsequent trials show, on average, faster response times in
the error-generation condition than in the other modalities.
There is no difference between the trials except how many
times the fact has been presented beforehand and how long
it has been since the first error was committed.

This prompts the question of what causes items in the
error-generating condition to be more memorable and more
resistant to decay. To address this question, we looked at the
error-generating condition more closely. Although the
condition was designed to elicit errors in most trials, about
95% of our participants correctly guessed the answer on at
least one item. Thus, we directly compared correctly
answered vs incorrectly answered items in the
error-generating condition. If the superiority of error trials is
exists because they were incorrectly responded to (e.g.,
because of the additional encoding of error feedback), we
would expect to find that only items that were initially
generated incorrectly would exhibit better recall.

Surprisingly, correctly and incorrectly answered items in
the error-generating condition showed substantially similar
patterns in terms of both SoF and RTs. This was further
confirmed when fitting random-slope mixed linear models
to the data: no significant difference was found between
these two conditions in terms of RTs, while correctly
answered items showed an even smaller SoF than
incorrectly answered ones (β = -0.01, p < .001), as seen in
Figure 5 and Figure 6, respectively.

These findings show that it is not the generation of an
error per se that leads to better accuracy and recall. Rather,
it is the additional effort of generating a response when no
answer is readily available that leads to sustained
improvements—an account that is compatible with the idea
that error-generating trials are associated with, and benefit
from, greater depth of processing (Craik & Tulving, 1975).

Figure 5: Differences in response times between correct
guesses and error items in the error generation condition
only. Colored dots and error bars represent means +/- SE for
true errors (light blue) and correct errors (dark blue). Left:
Empirical data. Right; Fitted linear model.
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Figure 6: Differences in SoF between correct guesses and
error items in the error generation condition only. Gray dots
and lines represent data for individual participants; colored
dots and error bars represent means +/- SE for true errors
(light blue) and correct errors (dark blue). Left: Empirical
data. Right; Fitted linear model.

Discussion
In this paper, we investigated the nature of the error learning
time course with a multi-trial testing paradigm and built-in
fact learning optimization. This enhanced past findings in
two primary ways. First, despite findings of strong evidence
for mediator retrievals of errors during testing, a single test
trial paradigm restricts investigating if there’s prolonged use
of mediator retrievals past the first test trial or even a
continued enhanced performance on error items compared
to study items. Secondly, this single-trial learning
environment does not benefit all learner types equally.
Relying solely on accuracy as a measure of learning
effectiveness may inadvertently amplify disparities among
different learner types. For these reasons, we reimplemented
the error-learning task in an adaptive fact-learning system.
Not only does this paradigm offer many test opportunities
after learning, but it also uses the testing and spacing effect
to optimize learning for all individuals. This allowed us to
investigate the multi-trial effects of error learning and
ensure that all participants were at maximal performance.
The software also provided us with a highly stable and
individually specific measure on each trial, Speed of
Forgetting, which reflects how quickly the fact memory is
estimated to decay.

Overall, we found a significantly lower Speed of
Forgetting for error items compared to both recall and
recognition items. This further supports the existence of
error learning, going beyond the typical accuracy measure to
establish error benefits with a more stable measure and in a
more individualized task.

Importantly, we were able to answer our question about
the relationship between mediator retrieval and repeated fact
testing. On the first fact presentation, error items had longer
response times on average compared to both recall and
recognition items. This finding is consistent with past work
that found increased response times on error items due to

the additional cognitive processing occurring with mediator
retrievals of error memories (Kornell et al., 2009; Huelser &
Metcalfe, 2012; Leonard et al., 2023). However, for
subsequent fact presentations, error response times got
faster and faster, while recall and recognition response times
stayed relatively stable over time. This demonstrates that
after a single mediator retrieval, the association between cue
and error items becomes so strong that it is compatible with
an elaborative hypothesis where error response times are
faster than study items.

The most notable limitation of this study is the use of
different fact materials for lesson types. As mentioned, this
data results from a larger study that aimed to assess multiple
fact materials and presentations. Thus, our comparison
between conditions (Recognition vs. Recall vs. Error) is not
solely clear-cut and designed for error analysis. However,
with these promising results and the combined success and
availability of the task software, one could easily redesign
the lessons to make them equal in material and differ in
specific facts. Although previous studies have repeatedly
found no differences in SoF values between different types
of materials (Sense et al., 2016; Zhou et al., 2021; Hake et
al., 2023), these cannot be ruled out entirely in this
experiment. Furthermore, there are likely material-specific
differences in response times that we cannot fully
accommodate with the use of mixed linear models, so such a
design would likely ensure clearer comparisons. Additional
work could use this condition-based paradigm alongside the
MemoryLab software to test the error learning effect across
different materials like trivia, math, language learning, etc.
to further understand the interaction between material,
learning condition, and Speed of Forgetting. Our final
analysis involving levels of processing is also restricted by
the task design where correct guesses are limited to occur
~5% of the time. Controlling correct guesses and errors in a
modified paradigm would give more power to this
error-specific analysis to further investigate how feedback
influences response times and Speed of Forgetting after the
first retrieval.

Nevertheless, this work marks an important step in using
modeling approaches to capture learning phenomena.
Applying models that capture the dynamic of memory in
favor of simpler paradigms can help apply experimental
findings to real-world situations. In this case, we were able
to look at the history of different memory types and
establish how they differ in resistance to forgetting. We
were also able to gain insight into how mechanisms of error
memory retrieval change over time, that with repeated
presentations associations between mediator memories
increase such that they are retrieved faster and faster.
Further investigation of error learning with this paradigm
can lead to advancements in individual-based learning
methods, where each learner receives optimized tasks that
fit their specific learning style.
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