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Abstract
Thiotrophic	symbioses	between	sulphur-oxidizing	bacteria	and	various	unicellular	and	
metazoan	eukaryotes	are	widespread	in	reducing	marine	environments.	The	giant	co-
lonial ciliate Zoothamnium niveum, however, is the only host of thioautotrophic sym-
bionts that has been cultivated along with its symbiont, the vertically transmitted 
ectosymbiont Candidatus	 Thiobius	 zoothamnicola	 (short	 Thiobius).	 Because	 theo-
retical predictions posit a smaller genome in vertically transmitted endosymbionts 
compared to free-living relatives, we investigated whether this is true also for an ec-
tosymbiont. We used metagenomics to recover the high-quality draft genome of this 
bacterial symbiont. For comparison we have also sequenced a closely related free-
living	cultured	but	not	formally	described	strain	Milos	ODIII6	(short	ODIII6).	We	then	
performed comparative genomics to assess the functional capabilities at gene, meta-
bolic	pathway	and	trait	level.	16S	rRNA	gene	trees	and	average	amino	acid	identity	
confirmed	the	close	phylogenetic	relationship	of	both	bacteria.	Indeed,	Thiobius	has	
about	a	third	smaller	genome	than	its	free-living	relative	ODIII6,	with	reduced	meta-
bolic capabilities and fewer functional traits. The functional capabilities of Thiobius 
were	a	subset	of	those	of	the	more	versatile	ODIII6,	which	possessed	additional	genes	
for	oxygen,	sulphur	and	hydrogen	utilization	and	for	 the	acquisition	of	phosphorus	
illustrating features that may be adaptive for the unstable environmental conditions 
at	hydrothermal	vents.	 In	contrast,	Thiobius	possesses	genes	potentially	enabling	it	
to	utilize	lactate	and	acetate	heterotrophically,	compounds	that	may	be	provided	as	
byproducts by the host. The present study illustrates the effect of strict host-depend-
ence of a bacterial ectosymbiont on genome evolution and host adaptation.

K E Y W O R D S
ectosymbiosis,	low-complexity	metagenome,	sulphur-oxidizing	bacteria,	thiotrophy,	
Zoothamnium niveum
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1  |  INTRODUC TION

The	beneficial	associations	between	sulphur-oxidizing	bacteria	(SOBs)	
and diverse protist and invertebrate hosts (Cavanaugh et al., 2006; 
Dubilier et al., 2008;	 Ott	 et	 al.,	 2004; Sogin et al., 2021; Stewart 
et al., 2005) span the entire range of ectosymbiotic mutualism, from 
the highly diverse microbiomes of alvinocarid shrimps and the low-di-
versity microbiomes of alvinellid polychaetes at deep-sea hydrother-
mal vents (Cambon-Bonavita et al., 2021;	Grzymski	et	al.,	2008) to 
strictly single symbiont species such as those on stilbonematine 
nematodes	 from	marine	 shallow-water	 sediments	 (Ott	et	 al.,	1991; 
Paredes	 et	 al.,	 2021;	 Petersen	 et	 al.,	 2010;	 Polz	 et	 al.,	 1994), or 
on an amphipod in freshwater caves (Dattagupta et al., 2009). 
Among	 ciliates,	 monolayered	 coats	 of	 single	 ectosymbiotic	 SOB	
species are known from the karyorelictid Kentrophoros (Faure-
Fremiet, 1951;	Fauré-Fremiet,	1950; Fenchel & Finlay, 1989; Finlay 
& Fenchel, 1989; Raikov, 1971, 1974; Seah et al., 2019) and the per-
itrichs Pseudovorticella	(Grimonprez	et	al.,	2018; Laurent et al., 2009; 
Maurin et al., 2010) and Zoothamnium (Bauer-Nebelsick et al., 1996a, 
1996b; Hemprich & Ehrenberg, 1829, 1831; Rinke et al., 2006, 2009; 
Schuster & Bright, 2016).	Some	symbiotic	SOBs	 form	phylogenetic	
clusters with free-living relatives (Figure 1; Dubilier et al., 2008). 
Here,	we	provide	genomic	information	on	two	closely	related	SOBs	
with different lifestyles, that is, an obligate vertically transmitted ec-
tosymbiont and a free-living chemolithoautotrophic bacterium.

Candidatus	 Thiobius	 zoothamnicola	 of	 the	 Chromatiaceae	
(Chromatiales,	 Gammaproteobacteria)	 (Oren,	 2017, short 
Thiobius) – originally introduced as Candidatus	Thiobios	zootham-
nicoli (Rinke et al., 2006) – covers the surface of the giant colonial 
ciliate Zoothamnium niveum (short Zoothamnium) that can typically 
be found in shallow-water environments from tropical to tem-
perate waters with decaying organic material (Bauer-Nebelsick 
et al., 1996a, 1996b, Rinke et al., 2006, 2009, reviewed in Bright 
et al., 2014). Thiobius is transmitted vertically (Bauer-Nebelsick 
et al., 1996a, 1996b; Rinke et al., 2006) and has not been found 
free-living	 despite	 extensive	 searches	 using	 general	 bacterial	
primers as well as a symbiont-specific primer and direct Sanger 
sequencing (Monika Bright personal observation, 2022). To our 
best knowledge, the giant ciliate mutualism is the only thiotrophic 
symbiosis that has been cultivated in the laboratory over several 
host generations (Rinke et al., 2007).	 In	contrast,	 the	 facultative	
endosymbiont Thiosocius teredinicola of the shipworm Kuphus poli-
thalamius is the only thiotrophic symbiont that has been cultivated 
without its host (Distel et al., 2017).

The host Zoothamnium niveum	grows	fast	and	reproduces	asex-
ually	 developing	 specialized	macrozooids	 that	 leave	 the	 colony	 as	
ectosymbionts-covered propagules called swarmers to found new 
colonies upon settlement (Bauer-Nebelsick et al., 1996a, 1996b). 
Thiobius	thriving	on	the	host	surface	fixes	inorganic	carbon	using	sul-
phide and provides organic carbon to the host (Volland et al., 2018). 
In	return,	benefits	to	the	symbiont	come	through	the	host's	peculiar	
contraction	and	expansion	behaviour	that	ensures	the	supply	of	ox-
ygen and sulphide (Rinke et al., 2007). The ciliate colonies can show 

unspecific overgrowth on the stalk, which connects them to the sub-
strate surface (Bauer-Nebelsick et al., 1996a).

Strain	Milos	ODIII6	(short	ODIII6)	is	a	cultured,	but	not	yet	formally	
described bacterium, that has been isolated from the shallow-water hy-
drothermal	vents	in	Paliochori	Bay	(Milos,	Greece;	Kuever	et	al.,	2002; 
Sievert, 1999).	ODIII6	is	mesophilic	(optimal	growth	at	34°C)	and	oxi-
dizes	reduced	sulphur	compounds	under	aerobic	conditions.

Evolutionary theory predicts that the genome of obligate microbial 
symbionts,	 transmitted	vertically	 from	one	to	 the	next	host	genera-
tion,	will	be	reduced	in	size	compared	to	free-living	relatives	and	will	
contain a lower proportion of mobile elements than facultative symbi-
onts (Newton & Bordenstein, 2011; Sachs et al., 2011). Being obligately 
host-associated,	these	bacteria	experience	bottlenecks	in	population	
size	 during	 each	 transmission	 event	 leading	 to	 genome	 reduction	
(Bobay	&	Ochman,	2017; McCutcheon & Moran, 2012; Moran, 1996; 
Moran et al., 2009; Toft et al., 2009;	 Toft	 &	 Andersson,	 2010; 
Wernegreen, 2015). Trait function compensation by the host or other 
symbionts	 can	 lead	 to	 further	 gene	 loss	 and	 reduced	 genome	 size	
(Ellers et al., 2012). Since obligate symbiotic bacteria are often isolated 
in	 the	 host	 as	 endosymbionts,	 they	 experience	 limited	 possibilities	
for	horizontal	gene	 transfer	and	access	 to	 foreign	DNA.	Some	even	
lack	the	machinery	for	uptake	and	 incorporation	of	DNA	(Medina	&	
Sachs, 2010).	In	contrast,	obligate	ectosymbionts	have	access	to	novel	
gene pools (Newton & Bordenstein, 2011). Nevertheless, some ther-
mophilic ectosymbiotic archaea undergo genome reduction. This so-
called	 thermophilic	 streamlining	was	explained	by	having	 fewer	and	
shorter genes in hot environments compared to archaea from other 
environments (Nicks & Rahn-Lee, 2017). Much less studied are ver-
tically transmitted bacterial ectosymbionts located on the surface of 
eukaryotic hosts. Mostly, these ectosymbiotic microbiomes are com-
posed	of	complex	microbial	communities.	Only	a	few	cases	with	a	sin-
gle microbial partner are known and even fewer genomic studies are 
available (Fokin & Serra, 2022; Husnik et al., 2021).

Here, we show that the ectosymbiont Thiobius has a smaller ge-
nome, fewer genes, reduced GC content, and a smaller mobilome 
than	 the	 free-living	 bacterium	 ODIII6,	 matching	 theoretical	 pre-
dictions. The analyses of metabolic capabilities revealed that the 
functional traits of Thiobius are largely a subset of the repertoire 
of	 ODIII6,	 which	 has	 a	 higher	 functional	 versatility	 to	 cope	 with	
broader environmental conditions as a free-living bacterium from a 
highly	unstable,	fluctuating	hydrothermal	vent	environment.	In	con-
trast, Thiobius shows a potential genetic capability to grow hetero-
trophically as an adaptation to its host.

2  |  MATERIAL S AND METHODS

2.1  |  Specimen collection and cultivation

Three Zoothamnium niveum colonies were collected from attached 
submerged	 mangrove	 roots	 and	 wood	 at	 1 m	 depth	 in	 2015	 at	
Twin	Cays	 (Belize,	 6°50′3″	 N,	 88°6′14″ W; strains G42, G43 and 
G44),	and	one	colony	from	a	sunken	wood	at	70 cm	depth	in	2014	
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at	Guadeloupe	(16°16′38″	N,	61°33′27″	W;	strain	G4).	The	ODIII6	
isolate was originally obtained from the 10−6 dilution of a sediment 
sample	collected	at	a	 sediment	depth	of	8–13 mm	and	at	2 m	dis-
tance from the centre of a gaseous hydrothermal vent at a water 
depth	of	8 m	in	Paliochori	Bay	(Milos	Island,	Greece,	36°40′23″ N, 
24°31′13″ E) (Kuever et al., 2002; Sievert, 1999; Sievert et al., 1999). 
A	culture	frozen	at	−80°C	in	dimethylsulphoxide	was	reactivated	in	
2015	and	used	to	obtain	DNA	for	genome	sequencing.

2.2  |  DNA preparation and sequencing

The lower parts of Zoothamnium niveum colonies are usually over-
grown with diverse microbes (Bauer-Nebelsick et al., 1996a; Rinke 
et al., 2006),	and	were	 therefore	cut	off	 to	minimize	contamination	
using Schreiber micro scissors (Fridingen, Germany, European Union). 
The upper parts, covered by a monolayer of Thiobius, were homog-
enized	with	Tris-EDTA	buffer	by	vortexing	and	DNA	was	extracted	
according to Zhou et al. (1996).	The	DNA	extraction	yielded	up	to	7 ng	
DNA	per	μL in ~30 μL	of	final	volume	for	G43.	Nextera	XT	(Illumina)	

DNA	library	preparation	was	used	for	multiplexing	the	Zoothamnium 
samples, and they were sequenced in a paired-end mode with 125 
nucleotides	of	read	length	using	the	Illumina	HiSeqV4	platform	at	the	
Vienna Biocenter Core Facility (https:// www. vienn abioc enter. org/ 
vbcf/ ).	The	low	amount	of	DNA	yielded	by	a	single	Zoothamnium cili-
ate colony precluded the use of long-read sequencing technologies. 
The	ODIII6	isolate	was	regrown	from	a	frozen	stock	culture	in	2015	
and	DNA	was	extracted	with	an	UltraClean®	microbial	DNA	 isola-
tion	kit	(MoBio	laboratories).	The	DNA	was	sequenced	with	a	MiSeq	
(Illumina)	sequencer	by	a	commercial	provider,	MR	DNA	(Shallowater,	
TX,	https:// www. mrdna lab. com/ ),	 using	 the	 600 Cycles	 v3	 Reagent	
Kit	(Illumina).	At	MR	DNA,	the	library	of	the	sample	was	prepared	with	
a	Nextera	DNA	Sample	Preparation	Kit	(Illumina).

2.3  |  Quality refinement, de novo assembly  
and binning

The sequenced reads of the four Zoothamnium samples were qual-
ity filtered with the bbduk command of the suite bbmap v35.92 

F I G U R E  1 Maximum	likelihood	(ML)	tree	based	on	the	16S	rRNA	gene.	Bootstrap	support	of	the	internal	nodes	is	indicated	with	the	
colour	of	the	outgoing	branches.	Topology	conflicts	with	two	other	techniques	Maximum	parsimony	(MP,	☻)	and	Bayesian	inference	(BI,	
★) indicated with symbols in the affected internal nodes. The two microbes analysed in this study are highlighted in bold. The tree was 
generated	with	306	sequences	(Table S1), but only 40 organisms that have publicly released genomes are shown.

https://www.viennabiocenter.org/vbcf/
https://www.viennabiocenter.org/vbcf/
https://www.mrdnalab.com/


4 of 18  |     ESPADA-HINOJOSA et al.

(BBMap–Bushnell B.–sourc eforge. net/ proje cts/ bbmap /) under a 
more	 stringent	 quality	 threshold	 of	 25	 (Phred	 units).	 The	 filtered	
paired-end reads were assembled with SPAdes v3.7.1 in the metagen-
omic mode (Nurk et al., 2016). MetaBAT	v0.26.3	(Kang	et	al.,	2015) was 
then	used	for	binning	with	default	parameters.	A	nucleotide	sequence	
homology BLAST	search	(Altschul	et	al.,	1990)	of	the	published	16S	
rRNA	gene	sequence	of	Thiobius	(Rinke	et	al.,	2006) identified the tar-
geted	bin.	The	genome	of	ODIII6	was	de	novo	assembled	by	MR	DNA	
using NGEN	(DNAstar,	https:// www. dnast ar. com). Completeness, het-
erogeneity	and	contamination	of	the	ODIII6	and	Thiobius	assemblies	
were assessed with CheckM	v1.0.5	 (Parks	et	al.,	2015).	Presence	of	
rRNAs	and	tRNAs	for	each	amino	acid	was	checked	with	tRNAscan-SE 
(Lowe & Eddy, 1997).	Average	amino	acid	identity	(AAI;	Konstantinidis	
& Tiedje, 2005) was calculated with CompareM (https:// github. com/ 
dpark s1134/  CompareM).	 The	 assembly	 of	ODIII6	with	 SPAdes was 
performed	to	exclude	contamination,	using	the	same	set	of	reads	as	
the	MR	DNA	assembly.	The	alignment	between	both	assemblies	was	
generated	 and	 visualized	 with	Mauve (Darling et al., 2010, version 
snapshot_2015-02-25), establishing the correspondence between 
the contigs. The fastg file containing paired-end linkage information 
of the de Bruijn graph was visually inspected with Bandage v0.8.0 
(Wick et al., 2015), allowing the assessment of physical connectivity 
between contigs of the bacterial chromosome.

2.4  |  Synteny analysis and localized gap filling

The four Thiobius draft genome assemblies were aligned with Mauve 
(Darling et al., 2010) and the ordering of the contigs was partly rec-
onciled.	A	 less	 stringent	quality	 threshold	of	20	 (Phred	units)	was	
applied for the quality filtering and trimming of the G43 reads with 
bbduk	resulting	in	the	recovery	of	the	full	16S	rRNA	gene.

2.5  |  Phylogenetic analyses

A	 total	 of	 306	 16S	 rRNA	 gene	 sequences	were	 chosen	 following	
the	taxa	selection	of	Petersen	et	al.	(2016) and Distel et al. (2017). 
16S	 rRNA	 gene	 sequences	were	 directly	 obtained	 from	GenBank	
and	 RefSeq	 when	 available	 or	 extracted	 from	 publicly	 available	
genomes using Metaxa	 v2.2	 (Bengtsson-Palme	 et	 al.,	 2015). The 
alignment was done with MAFFT v7 (Katoh & Standley, 2013) and 
TrimAl	v1.2	(Capella-Gutierrez	et	al.,	2009) was employed for trim-
ming and filtering the alignments with default parameters. The 
obtained sequences were allocated to 292 putative species ac-
cording	to	a	98.65%	identity	threshold	(Kim	et	al.,	2014; Table S1). 
Four	 species	 were	 excluded	 due	 to	 multiple	 divergent	 16S	 rRNA	
gene copies (Hydrogenovibrio halophilus, Lamprocystis purpurea, 
Thiofilum flexile and Thiothrix lacustris).	Phylogenetic	analyses	were	
performed using three methodological frameworks in order to as-
sess	 the	 robustness	 of	 the	 tree	 inference:	 maximum	 parsimony	
(MP;	Farris,	1970),	maximum	likelihood	(ML;	Felsenstein,	1981) and 
Bayesian	inference	(BI;	Hastings,	1970).	Packages	ape	v5.2	(Paradis	

et al., 2004) and phangorn v2.4.0 (Schliep, 2011)	were	used	for	MP	
and	ML,	and	BI	was	computed	with	MrBayes v3.2.7a (Huelsenbeck & 
Ronquist, 2001). The substitution model choice followed a Bayesian 
information	criterion	 (Schwarz,	1978) as implemented in phangorn. 
Bootstrap support (Felsenstein, 1985)	in	ML	and	MP	trees	was	cal-
culated	with	100	trees	in	each,	and	in	BI	posterior	probability	was	
used	as	metric	of	support.	To	facilitate	visualization,	16S	rRNA	gene	
trees	were	 reduced	 by	 pruning	most	 of	 the	 branches	 (Rodriguez-
Puente	&	Lazo-Cortes,	2013) retaining only the 40 organisms with 
genomes available. By comparing the tree topologies, shared inter-
nal nodes and conflicting topologies were manually identified. We 
used ML tree as the base of the representation to show the support 
of the three approaches.

2.6  |  Functional inference of predicted genes and 
metabolic pathways

To predict and annotate genes the web version of RASTtk (https:// 
rast. nmpdr. org, Brettin et al., 2015) was employed with default set-
tings. Functional categories were assigned to the predicted genes 
by the use of eggNOG mapper version 2 (Huerta-Cepas et al., 2017, 
2019). Metabolic pathways were obtained using the predicted and 
annotated genes as an input by two independent methods, fol-
lowed by a manual curation: (a) the online KEGG tool (www. kegg. 
jp, Kanehisa & Goto, 2000, Moriya et al., 2007) interrogating path-
way complete modules; and (b) the PathoLogic module from Pathway 
Tools (v23.5, Karp et al., 2002, 2010) of MetaCyc (Caspi et al., 2008). 
To these two levels of granularity (the fine grain of the genes and 
the coarser grain of the metabolic pathways; Vogt, 2010) we added 
the	overarching	 level	of	functional	 traits	 (De	Oliveira	et	al.,	2022), 
defined as microbial characteristics that can be observed and are 
linked to fitness (Green et al., 2008).	Additionally,	secretion,	motil-
ity and defence potential capabilities encoded in the genomes were 
assessed with MacSyFinder	 (Abby	et	al.,	2016). The potential pres-
ence of traits was determined by putting together constituent genes 
following MetaCyc and KEGG when available, or MacSyFinder for 
motility	and	interaction	traits	(Abby	et	al.,	2016). Some traits were 
not detected by MetaCyc and KEGG, and therefore, were manually 
inferred based on scientific literature (Table S2).	 In	the	manual	cu-
ration	logical	operators	(AND,	OR)	were	employed	to	combine	the	
gene	presence/absence	evidence	 into	 traits,	 as	outlined	 in	Karaoz	
and Brodie (2022) (Table S2).

2.7  |  Orthology analysis

A	total	of	30	bacterial	genomes,	closest	to	Thiobius	and	ODIII6	based	
on	the	16S	rRNA	gene	tree	phylogeny	(Table S3),	were	selected	ex-
cluding the genome of Bathymodiolus	 sp.	 SMAR	 symbiont	 due	 to	
poor quality of the assembly (52 scaffolds comprising 339 contigs 
with N50	as	low	as	10,280 nt).	Protein	sequences	were	clustered	into	
orthologous groups using OrthoFinder v2.5.4 (Emms & Kelly, 2019).

http://sourceforge.net/projects/bbmap
https://www.dnastar.com
https://github.com/dparks1134/CompareM
https://github.com/dparks1134/CompareM
https://rast.nmpdr.org
https://rast.nmpdr.org
http://www.kegg.jp
http://www.kegg.jp
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3  |  RESULTS AND DISCUSSION

3.1  |  Close phylogenetic relationship of Thiobius 
and ODIII6

In	order	to	confirm	the	previously	reported	close	phylogenetic	place-
ment	 of	 Thiobius	 and	 ODIII6	 (Distel	 et	 al.,	 2017; Lenk et al., 2011; 
Nunoura et al., 2014; Rinke et al., 2006, 2009; Schuster & Bright, 2016), 
16S	rRNA	gene	ML,	MP	and	BI	phylogenies	were	constructed.	A	pruned	
visualization	of	 the	 resulting	ML	 tree	with	 indication	of	 the	 conflicts	
between the three approaches is shown in Figure 1 (full ML tree in 
Figure S1). While some of the shallower internal nodes (closer to the 
tips)	 showed	 good	 support	 (e.g.	 bootstrap	 values	 greater	 than	 70%)	
and agreement between the three phylogenetic approaches, many of 
the deeper internal nodes were poorly supported and showed topol-
ogy	 conflicts.	While	ODIII6	 falls	 in	 a	 clade	 containing	 the	 endosym-
bionts of the hydrothermal vent snails Chrysomallon squamiferum and 
Alviniconcha sp. Lau Basin, and free-living bacteria, Thiobius can be as-
signed	as	sister	taxon	of	this	clade.	The	internal	node	connecting	these	
clades	obtained	bootstrap	supports	of	70%	(ML)	and	63%	(MP),	while	
the	posterior	probability	support	of	BI	was	73%.	The	16S	rRNA	gene	se-
quences	of	Thiobius	and	ODIII6	were	95%	identical	(over	1396	aligned	
nucleotide	positions).	A	relatively	low	average	amino	acid	identity	(AAI)	
of	67%	was	obtained	for	the	whole	genomes	of	Thiobius	and	ODIII6.	
Both	16S	rRNA	gene	and	AAI	comparisons	show	that	these	two	bacte-
ria	are	related	but	ODIII6	is	more	closely	related	to	both	gastropod	sym-
bionts than to Thiobius (Distel et al., 2017, Lenk et al., 2011, Nunoura 
et al., 2014, Rinke et al., 2006, 2009, Schuster & Bright, 2016).

3.2  |  High-quality draft genomes of 
Thiobius and ODIII6

The	best	Thiobius	metagenome	assembled	genome	(MAG)	in	terms	
of assembly completeness and contiguity was obtained from a single 

ciliate	colony	collected	 in	Belize	 (labelled	G43,	Figure S2; Tables 1 
and S4).	A	 total	of	8.8	million	of	 the	 initial	13.5	million	 read	pairs	
passed a more stringent quality threshold filtering (phred 25). 
SPAdes assembled these reads into 44,538 contigs. MetaBAT binning 
grouped these contigs into four bins, one of them containing two 
partial	matches	at	contig	ends	to	the	published	16S	rRNA	gene	of	
Thiobius	according	to	a	BLAST	search	(Rinke	et	al.,	2006; Figure S3). 
A	less	stringent	quality	 threshold	filtering	 (phred	20)	 led	to	a	very	
similar SPAdes	assembly	that	recovered	the	full	16S	rRNA	gene.	The	
corresponding	 long	 contig	 containing	 the	 full	 16S	 rRNA	gene	was	
used to replace three contigs from the stringent filtering assembly 
that covered the same span (Figure S4, Table S5).	Overall,	Thiobius	
G43	assembly	resulted	in	46	contigs	with	a	total	length	of	2.38 Mb,	
a N50	value	of	98,217,	a	coverage	of	216×	and	a	GC	content	of	49.4%	
(Figure 2). CheckM	estimated	its	completeness	as	96.0%	and	its	con-
tamination	as	0.1%,	and	found	no	heterogeneity	(Table 1), meeting 
the	MIMAG	standard	for	high-quality	MAGs	 (Bowers	et	al.,	2017). 
Synteny analysis with Mauve	between	the	four	Thiobius	MAGs	led	to	
the	identification	of	26	clusters	of	contiguity	that	were	utilized	in	the	
final ordering of the contigs (Figures 2 and S2, Table S5).

ODIII6's	genome	MR	DNA	assembly	consisted	of	26	contigs,	and	
had no paired-end linkage associated information available (fastg 
file). Because RASTtk annotation revealed one contig with only 
phage related genes, we re-assembled the genome using SPAdes and 
found through the paired-end linkage information that the corre-
sponding	contig	was	circular	and	was	thereby	excluded	(Figure S5). 
Accordingly,	the	final	ODIII6	assembly	resulted	in	25	contigs,	with	a	
total	of	3.53 Mb,	a	N50 value of 245,984, a coverage of 103×, and a 
GC	content	of	61.9%.	CheckM	estimated	its	completeness	as	99.6%	
and	 its	contamination	as	0.8%,	and	 found	no	heterogeneity	either	
(Table 1).

A	comparison	between	the	high-quality	draft	genomes	of	Thiobius	
and	ODIII6	(both	appropriate	for	general	assessment	of	gene	content,	
Chain et al., 2009),	revealed	a	complete	set	of	tRNAs	for	translation	
of	all	20	amino	acids	 in	both	bacteria.	 In	agreement	with	theoretical	

TA B L E  1 Statistics	of	the	genomes	assembled	in	this	study.

Thiobius str. 
BelizeG43

Thiobius str. 
BelizeG42

Thiobius str. 
BelizeG44

Thiobius str. 
GuadeloupeG4 ODIII6

Sequencing coverage 216× 296× 176× 131× 103×

Assembly	size	(bp) 2,381,364 2,379,254 2,311,386 2,369,374 3,528,654

GC content 49.4% 49.4% 49.6% 49.6% 61.9%

Number of contigs 46 47 57 46 25

N50 (bp) 98,217 98,217 66,776 73,149 245,984

Completeness 96.0% 96.0% 94.4% 96.0% 99.6%

Contamination 0.1% 0.1% 0.1% 0.4% 0.8%

Heterogeneity 0.0% 0.0% 0.0% 0.0% 0.0%

16S	recovered Yes Partially Partially Yes Yes

Number	of	extracted	tRNAs 36 34 34 37 41

Amino	acids	with	tRNA 20 19 19 20 20

Missing	tRNA	amino	acid – Ile Ile – –
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predictions (Sachs et al., 2011), the genome of the vertically transmitted 
ectosymbiont	Thiobius	was	33%	smaller	than	the	one	of	the	free-living	
bacterium	ODIII6,	and	showed	a	reduced	relative	GC	content,	consis-
tent with the significant positive correlation between GC content and 
genome	size	in	bacterial	genomes	(Almpanis	et	al.,	2018). Whether the 
reduced	genome	size	of	the	vertically	transmitted	ectosymbiont	is	due	
to any of the mechanisms that are known to affect vertically trans-
mitted endosymbionts, such as those of thiotrophic vesicomyid clams 
(Kuwahara et al., 2007; Newton et al., 2007) and of marine flatworms 
Paracatenula	(Jäckle	et	al.,	2019), remains to be studied.

3.3  |  Thiobius encodes fewer genes, pathways and 
functional traits compared to ODIII6

To	characterize	the	potential	functional	capabilities	of	Thiobius	and	
ODIII6,	their	gene	complements	were	predicted	with	RASTtk (Brettin 

et al., 2015).	The	annotation	of	Thiobius	yielded	2486	predicted	pro-
tein-coding	sequences,	of	which	1494	(60%)	received	a	meaningful	
automatic	functional	prediction.	In	the	manual	curation	process	21	
hypothetical genes (18 non-redundant) obtained a putative annota-
tion.	ODIII6	had	3452	predicted	protein-coding	sequences	including	
2063	(60%)	with	meaningful	functional	predictions,	and	in	the	man-
ual curation 21 hypothetical genes (19 non-redundant) were func-
tionally	annotated.	Thiobius	contains	about	28%	less	protein-coding	
sequences	than	ODIII6.	Accordingly,	the	 lower	number	of	protein-
coding	sequences	in	Thiobius	compared	to	ODIII6	is	consistent	with	
their	genome	sizes.

We	manually	 selected	46	 relevant	 functional	 traits	 involved	 in	
key metabolism and additional functions like storage or interactions, 
of	these	two	SOBs.	These	traits	can	range	from	a	single	gene	to	the	
combination of several metabolic pathways (Tables 2 and S2). Less 
than	half	 of	 the	 traits	 (19)	 showed	 a	 compact	 localization	of	 their	
constitutive genes within contigs (Figure 2). PathwayTools inferred 

F I G U R E  2 Representation	of	the	draft	genomes	of	Thiobius	strain	G43	(left)	and	ODIII6	(right).	The	most	outer	grey	solid	arcs	represent	the	
contigs.	ODIII6	contigs	are	ordered	by	decreasing	length.	In	Thiobius,	information	of	three	additional	MAGs	was	employed	to	retrieve	putative	
clusters of contiguity that are presented in decreasing length order. The bridging contigs are shown as solid arcs in colours, the rest of their 
contigs	are	omitted.	GC	skew	typically	reflects	the	attribution	of	the	contig	to	the	leading	or	to	the	lagging	DNA	strand.	The	correct	ordering	of	
the contigs has not been fully resolved, and this is reflected in the inconsistent GC skew pattern between neighbouring contigs. GC content and 
coverage are shown in the most inside rings. The location of relevant traits that show contiguity of their constitutive genes is also shown.



    |  7 of 18ESPADA-HINOJOSA et al.

203 MetaCyc metabolic pathways for Thiobius, while 39 complete 
KEGG	modules	were	 identified.	The	annotation	of	ODIII6	 resulted	
in 233 MetaCyc pathways and 53 complete KEGG modules. Thiobius 
obtained	31	 traits	 and	ODIII6	 yielded	39,	of	which	24	 traits	were	
shared (Table S6).	Accordingly,	Thiobius	showed	less	pathways	and	
relevant	traits	compared	to	ODIII6,	particularly	in	those	related	with	
oxygen,	phosphorus	and	sulphur.

In	order	to	assess	the	functional	commonalities	between	Thiobius	
and	ODIII6	we	performed	an	orthology	analysis	over	a	background	
set of 28 additional genomes of species included in the phylogenetic 
analysis (Table S3).	Thiobius	and	ODIII6	 shared	1409	orthogroups	
(Figure 3).	A	higher	proportion	of	functional	pathways	were	shared	
between the two organisms (Figure 3). Most of the genes of both or-
ganisms	presented	an	orthologous	one-to-one	relationship	(84%	of	
genes	in	Thiobius	and	90%	of	genes	in	ODIII6;	Table S7).	Overall,	the	
relatively high percentage of shared orthogroups, pathways, mod-
ules and traits in Thiobius indicates that its functional capabilities 
are	mainly	a	subset	of	those	present	in	ODIII6	(Figure S6).

To further investigate the distribution of functional categories, 
eggNOG	was	applied	to	determine	the	attribution	of	COG	categories	
(Tatusov et al., 2000).	 In	general,	the	gene	counts	of	the	COG	cat-
egories	followed	the	genome	sizes	(Table S8), but there were some 
exceptions.	ODIII6	and	Thiobius	COG	categories	yielded	high	count	
similarities in the categories ‘lipid metabolism’ and ‘secondary struc-
ture’. Nevertheless, this did not imply a fully identical sets of genes, 
for	 example,	of	 the	orthogroups	 involved	 in	 the	 ‘lipid	metabolism’	
category	only	a	52%	were	shared,	indicating	that	different	‘non-or-
thologous’ gene sets were recruited to perform same biological 
tasks in the two different bacteria. The least similar categories were 
‘cell motility’ and ‘signal transduction’, for which the respective pro-
portions	were	much	lower	in	Thiobius	in	relation	to	its	genome	size	
(Table S8).	 Therefore,	 the	COG	 functional	 categories	 composition	
reflects	 the	 free-living	 lifestyle	 of	ODIII6,	 with	 increased	motility	
representation	and	a	more	complex	gene	regulation	that	match	the	
requirements of a free-living lifestyle.

3.4  |  Potential for a mixotrophic lifestyle as an 
adaptation to the ciliate host

Both	Thiobius	 and	ODIII6	 show	 the	genomic	potential	 to	 fix	 inor-
ganic carbon through the Calvin-Benson-Bassham cycle (Cbb) with 
the	capability	to	form	carboxysomes	to	concentrate	ribulose-1,5-bi-
sphosphate	carboxylase	oxygenase	(RuBisCO;	Badger	&	Bek,	2008), 
the	 key	 enzyme	 of	 the	Calvin–Benson	 cycle	 responsible	 for	 CO2-
assimilation.	According	to	the	neighbouring	genes	the	RuBisCO	type	
in	both	Thiobius	and	ODIII6	is	form	IAc	with	a	potential	functional	
niche	 of	 low	 CO2	 and	 low	 to	 high	 oxygen	 concentration	 (Badger	
& Bek, 2008). This is in line with previous studies in Thiobius, in 
which	RuBisCO	was	histochemically	detected,	carboxysomes	were	
identified by TEM (Bauer-Nebelsick et al., 1996b)	 and	 a	 type	 IA	
RuBisCO	large	subunit	sequence	was	retrieved	(Rinke	et	al.,	2009). 
In	addition,	carbon	fixation	in	Thiobius	was	confirmed	through	tissue	

autoradiography	and	NanoSIMS	(Volland	et	al.,	2018). Further, the 
contraction	and	expansion	behaviour	of	the	host	creates	a	continu-
ously	changing	abiotic	environment	for	Thiobius	ranging	from	oxy-
gen	rich	to	sulphidic,	anoxic	conditions	(Bright	et	al.,	2014).	ODIII6	
shows two putative bicarbonate transporter-encoding genes down-
stream	of	the	carboxysome	structural	genes	operon,	consistent	with	
previous	reports	on	other	chemoautotrophs	(Axen	et	al.,	2014; Scott 
et al., 2020).	ODIII6	further	possesses	a	gene	for	a	beta	class	car-
bonic	anhydrase	not	integrated	in	the	carboxysome	operon	but	else-
where	in	the	genome,	which	converts	bicarbonate	to	CO2 for carbon 
fixation	(Supuran	&	Capasso,	2017).

Organic	 carbon	 is	 stored	 differently	 in	 Thiobius	 compared	 to	
ODIII6.	While	Thiobius	has	the	genetic	potential	 for	using	polyhy-
droxyalkanoates	 (Pha),	 genes	 for	 glycogen	 (Glg)	 and	 cyanophycin	
synthesis	(Cph;	storing	carbon	and	nitrogen)	were	found	in	ODIII6.	
In	both	organisms,	the	organic	carbon	is	oxidized	through	the	TCA	
cycle (TcaC), although. Thiobius encodes additionally genes for the 
glyoxylate	cycle	pathway	(GlC;	Cozzone	&	El-Mansi,	2005).	Putative	
genes	 encoding	 for	 transporters	 to	 import	 acetate	 (ActP)	 and	 lac-
tate	 (LakP)	along	with	genes	encoding	for	all	 three	components	of	
L-lactate	dehydrogenase	for	lactate	utilization	(Lut)	were	also	pres-
ent.	Both	acetate	and	lactate	could	potentially	be	metabolized	by	the	
glyoxylate	cycle	 (El-Mansi	et	al.,	1986; Serafini et al., 2019). While 
in many organisms (including Bacillus subtilis) lutABC belongs to the 
same operon with a lactate permease (Chai et al., 2009), Thiobius 
possesses	a	different	DctP–TRAP-like	transporter	(LakP),	similar	to	
the one described for Thermus thermophilus (Fischer et al., 2010). 
The presence of these transporters indicates a potential for hetero-
trophic	metabolism	in	Thiobius.	As	the	ciliate	host	may	potentially	
be able to switch to an anaerobic metabolism under sulphidic condi-
tions and produce lactate and acetate, similarly to the rumen ciliate 
Entodinium caudatum	 (Park	et	al.,	2021), it is tempting to speculate 
that these fermentation products may then be released from the 
host and taken up by the symbiont, but these anaerobic processes 
have yet to be studied in this mutualism. No equivalent capabilities 
were	found	in	the	genome	of	ODIII6	in	line	with	its	obligate	autotro-
phic metabolism.

3.5  |  Oxygen is the only electron acceptor in both 
bacteria, but ODIII6 is more versatile than Thiobius

According	to	the	genomic	potential	of	their	draft	genomes,	oxygen	
is	 the	only	electron	acceptor	 that	Thiobius	and	ODIII6	can	utilize.	
Genes for nitrate respiration, known in many free-living and sym-
biotic	 thiotrophic	 bacteria	 living	 at	 oxic–anoxic	 interfaces	 (De	
Oliveira	et	al.,	2022; Flood et al., 2015; König et al., 2016; Nunoura 
et al., 2014;	 Paredes	 et	 al.,	2021), were not found. This indicates 
that	both	bacteria	strongly	rely	on	oxygen	both	for	respiration	and	
for	 the	 oxidation	 of	 reduced	 sulphur	 species	 to	 generate	 energy.	
Indeed,	both	genomes	encode	for	a	cytochrome	bc1 electron trans-
port	complex	(Pet),	and	two	cytochrome	terminal	oxidases,	that	is,	
cbb3	(CytCBB3),	which	was	shown	to	have	a	high	affinity	for	oxygen	
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in Bradyrhizobium japonicum	 (Pitcher	&	Watmough,	2004), and aa3 
(CytAA3),	which	belongs	to	the	Class	A	of	oxidases	with	lower	ap-
parent	oxygen	affinities	(Han	et	al.,	2011). This indicates the ability 
to	 utilize	 oxygen	 at	 various	 concentrations.	 Interestingly,	 the	 ge-
nome	of	ODIII6	 contains	 two	 copies	 of	 the	 genes	 encoding	 cbb3, 
which	is	unusual	and	could	be	an	additional	adaptation	to	optimize	
oxygen	utilization	under	varying	concentrations,	as	was	shown	for	
Pseudomonas aeruginosa (Comolli & Donohue, 2004).	Further,	ODIII6	
possesses	two	more	high-affinity	terminal	oxidases,	cytochrome	bd	
(CytBD)- and ba3	(CytBA3)-encoding	genes,	which	points	to	a	higher	
versatility	under	a	broader	range	of	oxygen	regimes	than	Thiobius.	
In	 contrast,	Thiobius	 lives	on	a	 ciliate	host	 that	 can	position	 itself	

in	 microhabitats	 with	 optimal	 oxygen	 concentrations,	 which	 po-
tentially	 renders	 the	 ability	 to	 express	 multiple	 terminal	 oxidases	
unnecessary.

3.6  |  Both organisms use the oxidation of reduced 
sulphur compounds to generate energy

The	energy	 fuelling	processes	 for	carbon	fixation	 in	Thiobius	and	
ODIII6	comes	from	the	oxidation	of	reduced	sulphur	species	using	
oxygen	 as	 terminal	 electron	 acceptor.	 Sulphide	 oxidation	 to	 el-
emental sulphur occurs in both bacteria through two possible path-
ways, sulphide dehydrogenase (Fcsd; flavocytochrome C, Sorokin 
et al., 1998),	and	sulphide:quinone	oxidoreductase	(Sqr).	ODIII6	has	
a	type	VI	Sqr	and	Thiobius	has	type	I	and	type	VI	Sqr	(Dahl,	2017). 
The	elemental	sulphur	formed	by	sulphide	oxidation	is	stored	in	sul-
phur globules that are enveloped by proteins (Dahl, 2017) identified 
in	both	genomes	(Sgp).	Indeed,	transmission	electron	micrographs	
(Bauer-Nebelsick et al., 1996b) and Raman microspectrometry pre-
viously revealed membrane bound elemental sulphur vesicles in 
Thiobius (Maurin et al., 2010) used to store sulphur under sulphidic 
conditions	 and	 oxidize	 it	 further	 during	 oxic	 conditions	 (Volland	
et al., 2018).	 In	ODIII6	cultures,	the	formation	of	sulphur	globules	
attached to the cell could also be observed if thiosulphate was pro-
vided (Stefan Sievert personal observation, 2022).

Thiosulphate	 is	 potentially	 oxidized	 in	 both	 organisms	 to	 sul-
phate	 and	 elemental	 sulphur	 through	 the	 truncated	 Sox	 pathway	
(tSox,	Welte	et	al.,	2009, Dahl, 2020), with the possible involvement 
of SoxL (Weissgerber et al., 2011). For both organisms, elemental 
sulphur	is	oxidized	to	sulphite	in	the	cytoplasm	by	the	reverse	dis-
similatory sulphate reductase pathway (rDsr; Dahl, 2015, Gregersen 
et al., 2011, Hensen et al., 2006),	and	sulphite	is	oxidized	to	sulphate	
either by the adenylylsulphate reductase and the sulphate adeny-
lyltransferase	 (AprSat),	 or	 by	 the	 sulphite-oxidizing	 enzyme	 (Soe;	

F I G U R E  3 Euler	diagrams	of	different	levels	of	granularity	
showing shared and unique genetic potential capabilities of 
Thiobius	and	ODIII6.	The	finer	granularity	level	is	the	genes	
from the orthogroups (a). Two metabolic pathway databases 
were employed: MetaCyc (b), and KEGG modules (c). The coarser 
granularity level are the traits (d).

F I G U R E  4 Major	metabolic	capabilities	found	in	the	draft	genomes	of	(a)	Candidatus	Thiobius	zoothamnicola	strain	BelizeG43,	and	(b)	
strain	Milos	ODIII6.	Chosen	relevant	potential	functional	capabilities	are	shown	(for	simplicity	not	all	transporters	are	depicted	in	the	figure).	
Predicted	and	functionally	annotated	genes	are	grouped	in	metabolic	pathways.	Functional	traits	are	features	such	as	single	metabolic	
pathways or composites of them that affect the organism fitness. Structural features such as transporters or secretion systems, and 
storage	capabilities	are	also	considered	as	traits.	Trait	labels	are	generally	in	white	fonts	and	in	vertical	orientation,	except	for	the	motility	
and	interactions	on	the	left.	Compound	labels	are	horizontally	oriented.	Storage	compartments	are	indicated	with	ellipses.	ActP,	acetate	
transporter;	AmtB,	ammonium	transporter;	AprSat,	sulphate	adenylyltransferase	and	adenylylsulphate	reductase	sulphite	oxidation;	AsN,	
assimilatory	nitrate	reduction;	Cbb,	Calvin-Benson-Basham	cycle;	Cph,	cyanophycin	biosynthesis;	CysZ,	sulphate	transporter;	CytAA3,	
cytochrome aa3	based	oxygen	respiration;	CytBA3,	cytochrome	ba3	based	oxygen	respiration;	CytBD,	cytochrome	bd	based	oxygen	
respiration; CytCBB3, cytochrome cbb3	based	oxygen	respiration;	Fcsd,	flavocytochrome	c	sulphide	dehydrogenase	sulphide	oxidation;	
GlC,	glyoxylate	cycle;	Glg,	glycogen	biosynthesis;	Hnp,	high-affinity	sodium-phosphate	symporter;	Hup,	putative	hydrogen	oxidation;	Hyd,	
sulphydrogenase	elemental	sulphur	oxidation;	iUcy,	incomplete	urea	cycle	lacking	last	step	arginase	gene;	LakP,	lactate	transporter;	Lut,	
lactate	utilization;	Nrt,	nitrate	transporter;	Pet,	cytochrome	bc1	complex	mediated	electron	transport	chain;	Pha;	polyhydroxyalkanoate	
synthesis;	PHK,	polyphosphate	kinase;	PHX,	exopolyphosphatase;	Pit,	low-affinity	phosphate	transporter;	Psr,	polysulphide	reductase;	
Pst,	high-affinity	phosphate	transporter;	rDsr,	reverse	dissimilatory	sulphate	reductase	mediated	sulphur	oxidation;	Sgp,	sulphur	globule	
proteins;	Soe,	sulphite-oxidation	enzyme	sulphite	oxidation;	Sor,	Sulphur	oxygenase	reductase	mediated	sulphur	oxidation;	Sqr,	sulphide:	
quinone	oxydoreductase	sulphide	oxidation;	SulP,	sulphate	permease;	T1SS,	type	I	secretion	system;	T2SS,	type	II	secretion	system;	
T5SS,	type	V	secretion	system;	T6SS,	type	VI	secretion	system;	T4P,	type	IV	pilus;	TcaC,	TCA	cycle;	tSox,	truncated	Sox	mediated	sulphur	
oxidation;	Tst,	thiosulphate	disproportionation;	Ure,	Urease	mediated	urea	degradation;	Urt,	urea	transporter;	YeeE,	thiosulphate	
transporter.	The	hexagon	represents	a	carboxysome.
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Dahl, 2017). Gene sequences for the alpha and beta subunits of the 
reverse-type dissimilatory sulphite reductase (dsrAB) and for the 
alpha subunit of the adenylylsulphate reductase (aprA) were previ-
ously reported in Thiobius (Rinke et al., 2009). Finally, the putative 
sulphate	 transporter	 CysZ	 exports	 the	 sulphate	 to	 the	 periplasm	
(Figure 4a;	Hryniewicz	et	al.,	1990).

In	 contrast	 to	 Thiobius,	 ODIII6	 has	 additional	 sulphur-metab-
olizing	 capabilities:	 the	 periplasmic	 disproportionation	 of	 thio-
sulphate by a rhodanese-like sulphurtransferase to sulphide and 
sulphite (Tst; Deckert et al., 1998); elemental sulphur reduction to 
sulphide	in	the	periplasm	by	a	putative	polysulphide	reductase	(Psr;	
De	Oliveira	et	al.,	2022),	that	might	also	be	involved	in	oxidation	as	

suggested for Allochromatium vinosum (Weissgerber et al., 2013); 
cytoplasmic disproportionation of elemental sulphur to thiosul-
phate,	 sulphite	 and	 sulphide	 by	 the	 sulphur	 oxygenase	 reductase	
(Sor; Janosch et al., 2015), as suggested for Thioalkalivibrio paradoxus 
(Rühl et al., 2017); reduction of elemental sulphur to sulphide cou-
pled	to	the	oxidation	of	hydrogen	by	the	sulphydrogenase	(Hyd;	Ng	
et al., 2000);	and	sulphate	exportation	to	the	periplasm	by	the	sul-
phate	permease	SulP	(Figure 4b;	Aguilar-Barajas	et	al.,	2011).	A	thio-
sulphate transporter gene (YeeE; Tanaka et al., 2020) is also found in 
the	genome	of	ODIII6.

Although	many	sulphur	oxidation	traits	are	shared,	we	observe	a	
higher	versatility	in	ODIII6	than	in	Thiobius.	In	addition,	the	presence	
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of [NiFe] hygrogenase Hup genes (Vignais et al., 2001)	in	ODIII6	may	
indicate	the	potential	of	hydrogen	oxidation.	However,	it	was	recently	
found in Candidatus Endoriftia persephone that hup genes present in 
its	genome	were	not	involved	in	hydrogen	oxidation	but	may	instead	
facilitate	 intracellular	 redox	homeostasis	 (Mitchell	 et	 al.,	2019). The 
two	subunits	L	and	S	in	ODIII6	show	75%	and	71%	amino	acid	identity	
with their Candidatus Endoriftia persephone orthologues.

3.7  |  Similarities in nitrogen and phosphorous  
metabolism

Both organisms show similar potential capabilities in nitrogen me-
tabolism. Nitrate is imported into the cytoplasm through the nitrate 
transporter Nrt (Maeda et al., 2019), and is reduced to ammonium in 
the first step of assimilatory nitrate reduction, and from there assim-
ilated	as	organic	nitrogen	in	form	of	biomolecules	(AsN;	Takai,	2019). 
In	addition,	the	ammonium	can	be	imported	into	the	cytoplasm	by	
the	ammonium	transporter	AmtB	(Wang	et	al.,	2012) further fuel-
ling assimilation. Urea is acquired by the urea transporter Urt and 
oxidized	 to	ammonium	by	 the	urease	 (Ure;	Bossé	et	al.,	2001).	An	
incomplete urea cycle lacking arginase is also present (iUcy; De 
Oliveira	et	al.,	2022).	Overall,	urea	as	well	as	ammonium	are	well-
known nitrogen waste products of ciliates (Caron & Goldman, 1990), 
and may serve as byproducts the host provides to the symbiont. 
Urea was shown to be a source of incorporated nitrogen for bacteria 
in intertidal sediments (Veuger & Middelburg, 2007). Whether urea 
is	utilized	by	ODIII6	in	its	natural	environment	remains	to	be	studied.

Phosphorus	is	a	limiting	nutrient	in	many	marine	environments,	
present in its inorganic dissolved fraction generally as orthophos-
phate	 (Paytan	 &	 McLaughlin,	 2007). Both organisms encode the 
genes	for	a	high-affinity	phosphate	transporter	(Pst),	and	addition-
ally	ODIII6	possesses	genes	for	two	other	transporters:	a	high-affin-
ity Na+/Pi symporter (Hnp) and a low-affinity phosphate transporter 
(Pit).	Once	phosphate	is	incorporated	into	the	cells,	both	organisms	
also	show	the	potential	for	polymerizing	it	into	polyphosphate	and	
hydrolysing	back	to	inorganic	phosphates	(PHKandPHX),	using	it	as	
energy	storage	(Achbergerová	&	Nahálka,	2011).

3.8  |  Interaction and motility in both organisms

Both	Thiobius	and	ODIII6	have	a	repertoire	of	genes	to	interact	with	
other organisms and with the environment. They share genes for 
the	type	II	(T2SS)	and	type	V	(T5SS)	secretion	systems.	Thiobius	ad-
ditionally	has	genes	for	the	type	VI	secretion	system	(T6SS;	Kapitein	
& Mogk, 2013) known to function in host interaction (Hachani 
et al., 2016)	and	CRISPR-Cas	proteins	(Cas),	while	ODIII6	has	genes	
for	the	type	I	secretion	system	(T1SS).	It	remains	to	be	studied	how	
both bacteria use these traits in their natural environment and 
whether they may help Thiobius to interact with its host.

Both	organisms	 further	possess	genes	 for	 type	 IV	pilus	poten-
tially	 involved	 in	 twitching	 motility	 (T4P;	 Ayers	 et	 al.,	 2010), and 

additionally	ODIII6	genome	contains	several	loci	for	the	biosynthetic	
genes	encoding	 for	a	 flagellum	 (Fla).	 Indeed,	ODIII6	was	observed	
to be motile in cultures, however, loses its motility after a longer 
period of cultivation (Sievert pers. obs.). This suggests that the fla-
gellum	may	no	longer	be	expressed	in	ODIII6	if	constant‚	favourable	
conditions	 render	motility	unnecessary.	ODIII6	 additionally	 shows	
genes	for	photolyase	DNA	protection	against	UV	radiation,	and	re-
pair (Sancar et al., 1987).

3.9  |  Mobile genetic elements are less abundant in 
Thiobius than in ODIII6

Bacteria	 can	 experience	 horizontal	 gene	 transfer	 through	 mobile	
genetic elements such as phages, plasmids, transposons and inser-
tion sequences, also referred to as the mobilome (Frost et al., 2005). 
Free-living	 bacteria	 like	 ODIII6	 are	 more	 likely	 to	 be	 exposed	 to	
novel gene pools than symbionts (Newton & Bordenstein, 2011). 
In	 addition,	 vertically	 transmitted	 symbionts,	 such	as	Thiobius	 ex-
perience population bottlenecks as each swarmer is covered with 
relatively few symbionts that grow to cover the new colony (Bauer-
Nebelsick et al., 1996a, 1996b).	 Accordingly,	 we	 hypothesized	 a	
smaller mobilome in the obligate symbiont Thiobius than in the free-
living	ODIII6.	Indeed,	RASTtk annotation of Thiobius revealed three 
genes attributed to phages and 18 genes attributed to other mobile 
genetic	elements,	while	ODIII6	has	two	genes	attributed	to	phages	
and 58 genes attributed to other mobile genetic elements (Table S9). 
Roughly	60%	of	these	mobile	elements	were	located	at	the	extremes	
of the contigs, consistent with their disruptive effect on the assem-
bly processes. These results point to a smaller mobilome in the host-
associated	Thiobius	than	in	the	free-living	ODIII6.

4  |  CONCLUSIONS

The phylogenetic relationship of the ectosymbiont Thiobius and the 
strain	Milos	ODIII6	 is	 confirmed	 through	16S	 rRNA	phylogeny	 and	
average amino acid identity and serves as baseline to compare the 
genomes	of	these	two	bacteria	with	very	different	lifestyles.	In	agree-
ment with theoretical predictions, but hardly studied in ectosymbiotic 
bacteria,	Thiobius'	genome	is	smaller	than	that	of	its	free-living	relative	
ODIII6.	The	characterization	at	the	 levels	of	genes,	metabolic	path-
ways	and	traits	reveals	that	Thiobius	and	ODIII6	share	a	large	propor-
tion of their genetic repertoire and metabolic capabilities. The lower 
number of lineage-specific metabolic pathways and relevant traits in 
Thiobius	compared	to	ODIII6	may	point	to	a	more	stable	environment	
provided by the host, requiring less versatility. This may have led to 
a	loss	of	genetic	potential	in	Thiobius	and/or	gain	in	ODIII6.	In	com-
parison	with	Thiobius,	ODIII6	shows	a	larger	functional	repertoire,	in	
particular	 for	 its	energy	metabolism	regarding	the	utilization	of	sul-
phur,	oxygen	and	hydrogen,	consistent	with	 the	 requirements	 for	a	
free-living bacterium to live under the fluctuating conditions of the 
hydrothermal vent environment. Thiobius, however, shows potential 
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for heterotrophic metabolism, which may be fuelled by byproducts 
from the host and thus might represent a remarkable adaptation to 
the	 life	 style	of	 its	protist	host.	 In	 contrast	 to	 reduced	genomes	of	
vertically transmitted, thiotrophic endosymbionts like those of vesi-
comyid	clams	or	catenulid	plathylhelmints	that	experience	no	micro-
bial	competition	and	little	potential	for	horizontal	gene	transfer	inside	
host organs and cells, Thiobius, as an ectosymbiont, faces potential 
competitive interactions and viral attacks similar to free-living bacte-
ria	such	as	ODIII6,	which	is	reflected	in	its	capacity	to	interact	with	the	
environment.	In	the	future,	transcriptome	evidence	and	other	omics	
analyses	in	conjunction	with	physiological	experiments	can	elaborate	
on the intricacy of these functional capabilities.
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wrote the initial draft of the manuscript and C.K., S.M.S. and M.B 
contributed	considerably	to	the	writing.	All	authors	commented	and	
approved the final version of the manuscript.
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