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Fick's second law of diffusion in the one-dimensional case may be 

,written as 

, 'ac ' 'a (' ac 1 at ,= ax ~, (1) 

where c is the concentration as a function of di!3tance, x, and t,ime, t, , 

and D is the diffusivity. If D = D(C), the equation is inhomogeneous and " 

a closed-form solution may be obtained only in some special cases. One 

1-4 case which has been treated extensively in the literature, is that of 

a pair of semi-infinite solids forming one phase, so that c(x,t) is a 

continuous function with continuous derivatives for all t>O and _oo<~<oo. 

No one, however, has treated the case of a pair of semi-infinite solids 

of two different 'phases with a moving boundary between them, so that 

c(x,t) is discontinuous at the boundary. 

1 2 A modification of the Boltzmann-Matano solution' will be made, 

which will allow a solution for the two-phase case. The results will 

then be generalized to show how a solution m~y be obtained for one-

dimensional diffusion across any number of phases. 

only 

C -- c (x't-l / 2 ), If the physical process is diffusion-controlled, 

-1/2 and, with the substitution, n = xt , we have 
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ac ' :ac' 'an ' , , 'X ' 'de 
at . = . an at = - 2t3/2 dn, 

"££ ££"~ " '1 ' 'de = = tl/2 ax an ax dn 

a . 'a'a ' , . '1 " d 
ax = -an fi" = t1/2 dn 

so that 

The initial conditions 

transform to 

From Eq. (3) 

c = c for x<O, at t = 0 o 

c = 0 for x>O, att = 0 

c ,= c at n = ~ o 

c = 0 at n ;:: +en 
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. 
(2a) 

(2b) 

(2c) 

(4a) 

(4b) 

(4c) 

(4d) 
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Since c(x) is always determined for a given, fixed x, 

( 6) 

Now, if c(x) is continuous with continuous derivatives.over the entire 

range, -oo<x<oo, Eq. (6) may be integrated between the limits c = ° and 

c = c', where O<c'<c , tq giVe4 
.0 

c' -~J xdc = ~ [~] 
c = c' 

c = 0 
o 

But 

~~Ic (~L 
cf 

~Ic = 0, D( c') = 'I 

J xdc so -,'2t = 0 = c = C I 
0 

0 

c 

and J 0 xdc = 0, 

o 

where ...oo<X<iio. 

Equation (9) determines the Boltzmann-Matano interface, x = 0, for 

the evaluation of the integral in Eq. (8). It represents the conserva-

tion of the diffusing species in the system; half the species is to the 

left of it and .half is to the right. 

If, however, c(x) is not continuous with continuous derivatives 

over the entire range, -oo<x<oo, Eq. (6) cannot be integrated as it stands 

and Eqs. (8) and (9) may not justifiably be used. This situation is 

illustrated in Fig. 1. Equations (6-9) will now be modified, so that 

/ 

(8) 
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they may be integrated and a solution for D{c') obtained. 

Define a new fUnction, 

g(x) ~ c(x), - (c ' - c' ) H (x-X) 2e le C10) 

where H(x-X) is the Heaviside,unit step function5 and is defined so that 

where 

and 

1 for x>X 
H(x-X) - { 

- 0 for x<X 

, 'd 
, dX H(x-X) =:= 'o{x-X) 

{

undefined for x = X . 
~(x-X) , 

o for all x :I: X 

, J ~(x-X) dx = 1 

(ll) 

(12) 

(13) 

(14 ) 

NoW, g{x) is a continuous function with 'continuous derivatives of 

all orders, 5 since 'p{n) (x-X) is continuous for all n. g{x} is amenable 

to the mathematical operations of integration and differentiation and 



Integrating 

X-e: 
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.' . . 'fg{C 
over ~ll x gi~es 

= c ) o 

. g(c =0) 

. ' 

x dg = 

00 

(c2e - cle ) J xd{x-X) dx = 
_00 

X+e: 00 

12 = J x!S{x-X) dx + J x(l{x-X) 

X-e: 

dx + J x~ (x-X) dx 

X+e: _tlO 
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(16) 

(17) 

(18) 

where e>O and is vanishingly small. The first and.third integrals in 

Eq. (18) are identically zero, since o(x-X) = 0 for all x * X, so 

lim 1 
x+£ 

x6(x-x) dx = X 
X-e: 

(19) 
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The conservation of the diffusing species requires that Eq. (16) 

equals zero. This is now the condition which determines the x = 0 inter-

face, i.e. 

Of cleXd.c + f Co 
xdc ~ (c - Co) X = 0 2e Ie (20) 

o 

where X is measured from x = O. This avoids the necessity of integrating 

over the discontinuity at e = c (X). 

If c'<cle ' c(x) is continuous with continuous derivatives over the 

entire interval O<c<c', and Eqs. (6) and (8) for D(c') may be integrated 

straigh~forwardly. For the portion of the concentration profile where, 

c'>~2e' however, the substitution of Eq. (10) must be made, and ° 

D(c' ) xdc xdc - (c - c ) xJ 2e Ie 

for c'>c2e (21) 

Notice that if these equations ar~ applied to the one phase system, 

i.e., c2e = cle ' g(x) = c(x) and Eqs. (2C) and (21) reduce to their one­

phase counterparts, Eqs.(9) and (8) respectively. 

The solution may be quite easily generalized to apply to an n-phase 

system. g(x) is now defined as 
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. . . . . . . (22) 

and the derivation proceeds exactlY,"as before. 

It should be re-emphasized that these solutions are only valid if 

the principal physical process involved is diffusion, so "that c = c (xt-1 / 2) 

only. 

This work was done under the auspices of the United States Atomic 
I 

Energy Commission. That a step function might be appropriate for these" 

solutions was first suggested by Professor J. E. Dorn. I also wish to 

thank Professor J. A. Pask for fruitful discussions. 
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F:l.g. 1 A discontinuous d:f.ffusion prof:l.le in one dimension. 
lhe position of the phase boundary, x = X, mayor 
may not be changing with time. C

2e 
and CJe are the 

,respective equilibrium concentratlolls of the 
diffusine; species in the t,W phases in contact. 
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