Title
Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.

Permalink
https://escholarship.org/uc/item/7hn9w9pw

Journal
Nature immunology, 14(10)

ISSN
1529-2908

Authors
Schjerven, Hilde
McLaughlin, Jami
 Arenzana, Teresita L
et al.

Publication Date
2013-10-01

DOI
10.1038/ni.2707

Peer reviewed
Differential regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros

Hilde Schjerven1,2,8, Jami McLaughlin1, Teresita L. Arenzana1,2, Seth Frietze7,8, Donghui Cheng1,3, Sarah Wadsworth1,2, Gregory W. Lawson5,6, Steven J. Bensinger2,6, Peggy J. Farnham7, Owen N. Witte1,2,3,4, and Stephen T. Smale1,2,4

1Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
2Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
3Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095, USA
4Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
5Division of Laboratory Animal Medicine, University of California, Los Angeles, CA 90095, USA
6Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
7Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA

Abstract

C2H2 zinc fingers are found in several transcriptional regulators in the immune system. However, these proteins usually contain more fingers than are needed for stable DNA binding, suggesting that different fingers regulate different genes and functions. Mice lacking finger 1 or finger 4 of Ikaros exhibited distinct subsets of the phenotypes of Ikaros-null mice. Most notably, the two fingers controlled different stages of lymphopoiesis and finger 4 was selectively required for tumor suppression. The distinct phenotypes suggest that only a small number of Ikaros target genes are critical for each of its biological functions. Subdivision of phenotypes and targets by mutagenesis of individual fingers will facilitate efforts to understand how members of this prevalent family regulate development, immunity and disease.

In the post-genomics era, a critical goal is to define the target genes and mechanisms of action of transcription factors that contribute to development, disease and the response to environmental cues. Although progress has been rapid, a major hurdle is that many factors are involved in several biological pathways and can contribute to multiple steps in a single pathway, making it difficult to study key regulatory events in isolation.

Correspondence should be addressed to S.T.S. (smale@mednet.ucla.edu).

Present addresses: Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA (H.S.) and School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA (S.F.)

Accession codes. GEO: RNA-Seq and ChIP-Seq data, GSE3693.

Note: Supplementary information is available on the Nature Immunology website.

Author Contributions: H.S., J.M., T.L.A., S.F., D.C., S.W., and G.W.L. designed and performed experiments, and analyzed data; S.J.B. provided intellectual input and experimental advice; P.J.F., O.N.W. and S.T.S. supervised research and analyzed data. H.S. and S.T.S wrote the manuscript.

Competing Financial Interests: The authors declare no competing financial interests.
Ikaros is one transcription factor that regulates numerous biological events. Ikaros-null (Ikzf1-null) mice lack B lineage cells, natural killer (NK) cells, peripheral lymph nodes and fetal T cells, and they exhibit a number of other abnormalities1-3. Adult B cells are absent due to an inability of lymphoid-primed multipotent progenitors (LMPPs) to develop into common lymphoid progenitors (CLPs)4, but Ikaros also regulates later stages of B cell development5-9. Moreover, mice containing mutations in the Ikaros-encoding Ikzf1 gene develop thymic lymphoma with high penetrance10,11. In humans, mutations at the IKZF1 locus have been observed in a high percentage of BCR-ABL+ B-ALL and high-risk B cell-progenitor ALL samples12,13. IKZF1 was the only gene for which mutations were found to predict a poor response to therapy13, yet the mechanisms responsible for tumor suppression by Ikaros remain poorly understood. Ikaros is thought to contribute to both the activation and repression of transcription, with the Mi-2/NuRD complex as a predominant interacting partner14-16. Importantly, the target genes responsible for most of the key phenotypes of Ikzf1 mutant mice remain unknown7,17-19. The widespread deregulation of gene expression in Ikzf1 mutant cells and the finding that Ikaros binds several thousand genomic sites have increased the challenge of uncovering the mechanisms by which Ikaros regulates development and leukemogenesis16,20.

Members of the Ikaros family contain a conserved DNA-binding domain near the N-terminus, usually with four C2H2 zinc fingers21. Ikaros family members also contain two C-terminal C2H2 zinc fingers dedicated to dimerization and multimerization22-24. C2H2 zinc fingers are found in many ubiquitous transcription factors and in numerous proteins involved in tissue-specific and developmental stage-specific transcription25-27, including the PLZF, Bcl-6, Gfi1, Blimp1, and ThPOK proteins in the immune system. Stable DNA binding \textit{in vitro} by a C2H2 zinc finger protein usually requires two or three tandem fingers27,28. In Ikaros, fingers 2 and 3 are sufficient for stable binding and recognize the core consensus sequence, GGGAA. In contrast, fingers 1 and 4 appear to modulate binding to specific sites29-31. In addition to full-length Ikaros (Ik-1), most or all hematopoietic cells abundantly express a smaller isoform that lacks finger 1 (Ik-2). Ikaros isoforms lacking other fingers due to alternative pre-mRNA splicing have been observed, but these isoforms are generally much less abundant except in transformed cell lines29,32,33. Given that two or three fingers are generally sufficient for stable DNA binding28, it is striking that most zinc finger DNA-binding proteins contain more than three tandem fingers. The reasons for this phenomenon have been of interest since the early studies of the nine-finger TFIIIA protein27,34,35. All of the tandem fingers may be required for stable binding to key targets \textit{in vivo}, with the multiple fingers recognizing extended DNA regions with high specificity. Alternatively, defined subsets of fingers may recognize distinct target genes. Initial support for the latter hypothesis emerged from \textit{in vitro} protein-DNA interaction studies showing that different combinations of fingers from TFIIIA, Ikaros, CTCF and other proteins can bind different DNA sequences29,30,35-39. In addition, ChIP-Seq studies of ectopically expressed CTCF mutant proteins have revealed that CTCF binding sites can be separated into distinct classes, due to binding by different finger subsets and possibly leading to different functional outcomes40.

To determine in a physiological setting whether multi-finger DNA-binding proteins use different fingers to regulate different genes and biological functions, or whether all functions require the full complement of fingers, we generated two new Ikzf1 mutant mouse strains containing germline deletions of the exons encoding fingers 1 and 4. Phenotypic analyses suggest that the two fingers regulate distinct biological events. Transcriptome profiling confirmed that the two fingers regulate distinct sets of genes, and DNA-binding analyses

\textit{Nat Immunol. Author manuscript; available in PMC 2014 April 01.}
confirmed that fingers 1 and 4 can modulate binding to different genomic sites. Finally, in vitro and in vivo models of BCR-ABL+ B-ALL established parallels between tumor suppression in thymocytes and in B-ALL. Together, these results suggest that multi-finger DNA-binding domains exist, at least in part, to allow different fingers to regulate different genes. Moreover, the strikingly different phenotypes of the mutant strains suggest that each developmental step and biological function regulated by Ikaros is dependent on the proper regulation of only a small number of Ikaros target genes.

Results

Generation of mutant mouse strains

Mice lacking Ikaros zinc finger 1 (F1, strain Ikzf1ΔF1/ΔF1) or finger 4 (F4, strain Ikzf1ΔF4/ΔF4) were generated by germline deletion of exon 4 or exon 6, respectively (Supplementary Fig. 1a). Each deletion generated a mutant protein that lacks a zinc finger and a small number of adjacent residues. Exon 4 encodes 87 residues, including the 23 residues of finger 1, 63 residues preceding the finger, and one residue following the finger. Exon 6 encodes only 41 residues. The 24-residue finger 4 is preceded by four residues that comprise the linker between fingers 3 and 4; these residues closely resemble the linker consensus sequence found in most zinc finger proteins. After the finger, exon 6 encodes 13 additional residues; two prolines near the end of this region may separate the DNA-binding domain from an exon 7-encoded domain.

Correct targeting of the Ikzf1 exons was confirmed by Southern blot, PCR (data not shown) and immunoblot (Fig. 1a). Ikzf1ΔF1/ΔF1 thymocytes lacked the full-length Ikaros isoform, Ik-1, but expressed Ik-2, which in wild-type mice is generated by alternative pre-mRNA splicing. In the Ikzf1ΔF4/ΔF4 strain, deletion of exon 6 reduced the sizes of both Ik-1 and Ik-2 (Fig. 1a). RNA-Seq analysis of thymocyte mRNA further confirmed correct targeting, as reads from exons 4 and 6 were absent in the Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 samples, respectively (Fig. 1b).

Initial analysis of mutant strains

Examination of the Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 phenotypes was initiated soon after the mice were generated, but all phenotypes have been confirmed after backcrossing onto a C57BL/6 background through nine or more generations. Efforts to backcross Ikzf1null mice have been unsuccessful (K. Georgopoulos and S. Winandy, personal communication), presumably because the null mutation results in embryonic lethality in a C57BL/6 background. The successful backcrossing of the Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 strains provided initial evidence that neither finger 1 nor finger 4 is required for all functions of Ikaros.

Initial studies revealed that the development of CD11b+ myeloid cells is unperturbed in both strains, similar to the phenotype of Ikzf1null mice (Fig. 1c and Supplementary Fig. 1b). Conventional B cells were also observed in the bone marrow and spleen of both mutant mice, albeit at reduced levels (Fig. 1d and Supplementary Fig. 1c,d). The presence of B cells contrasts with the absence of all B lineage cells in Ikzf1null mice. These results suggest that DNA-binding fingers 2 and 3 are sufficient for a fraction of hematopoietic progenitors to successfully progress through B cell development.

B-cell development phenotypes

A detailed examination of B cell development (Supplementary Fig. 2) revealed striking differences between Ikzf1ΔF1/ΔF1, Ikzf1ΔF4/ΔF4 and Ikzf1null mice. First, in contrast to the absence of pre-pro-B cells in Ikzf1null mice due to a block in LMPP maturation,
Additional finger-specific functions in hematopoiesis

Developmental abnormalities observed during T cell development were far more severe in \(Ikrzf1^{\text{F1/F1}} \) mice than \(Ikrzf1^{\text{F4/F4}} \) mice. Both strains exhibited slightly reduced thymic cellularity, with a greater reduction in \(Ikrzf1^{\text{F4/F4}} \) mice (Fig. 3a). During the double-negative (DN) stages of thymopoiesis, reduced cell numbers were readily apparent in \(Ikrzf1^{\text{F4/F4}} \) mice, but not in \(Ikrzf1^{\text{F1/F1}} \) mice. The DN1 population (CD44\(^+\)CD25\(^-\)) appeared to be reduced in the \(Ikrzf1^{\text{F1/F1}} \) strain (Fig. 3b and Supplementary Fig. 3a).

However, this reduction was due to greatly reduced numbers of other cell types that contaminate the DN1 population, including thymic B cells (see below). Consistent with this interpretation, normal percentages of early thymic progenitor (ETP) cells were found in \(Ikrzf1^{\text{F1/F1}} \) mice, but were reduced in \(Ikrzf1^{\text{F4/F4}} \) mice (Fig. 3c). DN2 (CD44\(^+\)CD25\(^+\)) and DN3 (CD44\(^-\)CD25\(^+\)) cells were also greatly reduced in \(Ikrzf1^{\text{F4/F4}} \) mice, but were normal in \(Ikrzf1^{\text{F1/F1}} \) mice (Fig. 3b and Supplementary Fig. 3b,c). Proliferative DN4 cells (CD44\(^-\)CD25\(^+\)) recovered in the \(Ikrzf1^{\text{F4/F4}} \) strain to percentages and numbers comparable to those observed in wild-type mice (Fig. 3b and Supplementary Fig. 3d). The ratio of double-positive (DP) thymocytes to CD4\(^+\) or CD8\(^+\) single-positive (SP) thymocytes was comparable to wild-type in \(Ikrzf1^{\text{F1/F1}} \) mice but was significantly reduced in \(Ikrzf1^{\text{F4/F4}} \) mice (Fig. 3d and Supplementary Fig. 3e). The reduced numbers of DP thymocytes in \(Ikrzf1^{\text{F4/F4}} \) mice correlated with a clear reduction in the size of the thymic cortex (Fig. 3e).

Neither strain exhibited the extreme skewing toward the CD4\(^+\) lineage that characterizes \(Ikrzf1^{\text{null}} \) mice (Fig. 3d and Supplementary Fig. 3f).
the B1a population in both mutant strains and a reduced number of B1b cells only in the
Ikzf1^{ΔF1/ΔF1} strain (Supplementary Fig. 3g,h). Further analysis of these phenotypes may
provide insight into the developmental origin, homing mechanism, and/or function of thymic
B cells and peritoneal B1 cells.

Although adult mutant mice contained substantial numbers of mature B and T cells, the
Ikzf1^{ΔF4/ΔF4} strain lacked both B and T lineage cells in the fetus (Fig. 3h-j and
Supplementary Fig. 4a-c). In contrast, fetal T cell numbers were normal and fetal B cells
were only moderately reduced in the Ikzf1^{ΔF1/ΔF1} strain. Lymphoid tissue inducer cells (LTi
cells, CD45^+CD3^−CD4^+IL-7R^α^+) were also selectively absent from the fetal intestinal
mesentery of Ikzf1^{ΔF4/ΔF4} mice (Fig. 3k). This phenotype correlated with the selective
absence of lymph nodes (inguinal and lumbar) and Peyer's Patches in adult Ikzf1^{ΔF4/ΔF4} mice, consistent with the important role of fetal LTi cells in the development of these
lymphoid structures. Nasal-associated lymphoid tissue (NALT), which develops post-natally, was intact (Supplementary Fig. 4d). These
phenotypes are reminiscent of those described for Ikzf1^{null} mice, suggesting that zinc finger
4 is required for the proper regulation of genes involved in early stages of fetal
lymphopoiesis. Importantly, finger 1 and all other residues encoded by exon 4 appear to be
dispensable for these developmental events.

Finger-specific DNA binding in vivo

Generation of the Ikzf1^{ΔF1/ΔF1} and Ikzf1^{ΔF4/ΔF4} strains was inspired by evidence that fingers
1 and 4 support the binding to different DNA sequences in vitro. To determine whether
the two fingers also participate in binding to different DNA sequences in vivo, we
performed ChIP-Seq with total thymocytes from 4-week-old wild-type, Ikzf1^{ΔF1/ΔF1} and
Ikzf1^{ΔF4/ΔF4} mice.

The most prominent ChIP-Seq peaks were observed at simple repetitive elements that
contain multiple sequences with the core Ikaros consensus, GGGAA (Fig. 4a-d). Some of
these simple repeats are located in close proximity to protein-coding genes, but the repeats
are not conserved through evolution and therefore may not carry out important functions.
Nevertheless, the ChIP-Seq profiles confirm that fingers 1 and 4 contribute to differential
DNA binding in vivo. For example, a repeat region within the Snx29 gene exhibited a
prominent ChIP-Seq peak in wild-type thymocytes and in thymocytes from both mutant
strains (Fig. 4a), suggesting that fingers 2 and 3 are sufficient for binding to this region. In
contrast, a prominent ChIP-Seq peak within the Nr3c2 gene was observed in wild-type and
Ikzf1^{ΔF4/ΔF4} thymocytes, but not in Ikzf1^{ΔF1/ΔF1} thymocytes (Fig. 4b). At a repeat region
adjacent to the Snx25 gene (Fig. 4d), and at a repeat in chromosome 19 that is not linked to
an annotated gene (Fig. 4c), strong ChIP-Seq peaks were observed in wild-type and
Ikzf1^{ΔF1/ΔF1} thymocytes, but not in Ikzf1^{ΔF4/ΔF4} thymocytes.

Inspection of the repeats revealed sequences containing the Ikaros consensus, GGGAA, but
with different flanking nucleotides. Motif analyses of the Snx29 and Nr3c2 regions revealed
two repetitive sequences that may support Ikaros binding, while one repetitive sequence
like to support Ikaros binding was found at the Snx25 and chromosome 19 regions (Fig. 4).
In vitro binding site selection experiments previously suggested that finger 1 recognizes
a pyrimidine-rich sequence downstream of the Ikaros core (S.W. and S.T.S., unpublished
data). On the basis of those studies, finger 1 would be predicted to bind the TCC sequence
within one of the Nr3c2 repeats (Fig. 4b, bottom right). The other Nr3c2 consensus (Fig. 4b,
bottom left) and the two Snx29 consensus sequences (Fig. 4a) may also contact finger 1, but
perhaps more weakly because the nucleotides that would be contacted by finger 1 include a
purine. In contrast, the Snx25 and chromosome 19 repeats (Fig. 4c,d) are predicted to
possess little capacity to interact with finger 1 because the GGGAA core is followed by purines.

The binding site selection data and our recent findings (S.W. and S.T.S., unpublished) failed to reveal a strong DNA sequence preference for finger 4. Instead, finger 4 appears to stabilize binding in a DNA sequence-independent manner, with its DNA contacts particularly important at sites that are not stably bound by fingers 2 and 3 alone (S.W. and S.T.S., unpublished). We hypothesize that finger 4 may be important at the Snx25 and chromosome 19 repeats because the DNA-binding energy of fingers 2 and 3 is likely to be weakened by the presence of a purine just downstream of the GGGAA core; our recent studies have shown that a pyrimidine at this position is important for stable protein-DNA interactions by fingers 2 and 3 (S.W. and S.T.S., unpublished).

To determine whether the differential binding observed by ChIP-Seq is due to intrinsic DNA-binding preferences, electrophoretic mobility shift assays (EMSAs) were performed with recombinant proteins containing different combinations of zinc fingers. Consistent with the ChIP-Seq results, substantial binding to one of the Snx29 sequences was observed with a protein containing all four fingers, as well as with proteins containing only fingers 1-3 or 2-4 (Fig. 4e). The second Snx29 repeat (with a GaGAA core instead of the GGGAA core) was unable to bind any of the proteins (Supplementary Fig. 5a). Substantial binding to one of the Nr3c2 sequences was observed with proteins containing fingers 1-4 or 1-3, but not fingers 2-4, demonstrating finger 1-dependent binding (Fig. 4e). Finally, substantial binding to the Snx25 repetitive sequence was observed with proteins containing fingers 1-4 or fingers 2-4, but not fingers 1-3 (Fig. 4e). Thus, intrinsic in vitro binding capacity mirrors the in vivo ChIP-Seq results.

In addition to the prominent interactions shown in Figure 4, the ChIP-Seq results revealed thousands of other Ikaros binding sites throughout the genome. More than 60% of the ChIP-Seq peaks coincided with an Ikaros core sequence, GGGAA (Fig. 4f and Supplementary Fig. 5b). In several experiments performed with wild-type or mutant thymocytes, the number of called peaks varied from about 1,000 to 17,000. These numbers are in the same range as the 7,000 Ikaros peaks in thymocytes reported by Zhang et al., with extensive overlap observed between the peaks in our experiments and those reported previously. Zfp64, Zfp260, Cd4, Notch1, Hdac7, and Bcl11b are examples of genes exhibiting the same Ikaros peaks in our experiments and in published reports (Supplementary Fig. 5c). Motif enrichment analysis revealed that the core Ikaros recognition sequence, GGGAA, is highly prevalent at peaks that overlap in the wild-type data set and in the data sets from both mutant strains (Supplementary Fig. 5d). More importantly, the sequence GGGAAAGGGAA is prevalent at peaks that are selectively absent in the Ikzf1/F4/F4 sample (Supplementary Fig. 5d). This sequence is very similar to the sequences in Fig. 4c,d that exhibited finger 4-dependence, suggesting that finger 4 is broadly important for binding to such sequences throughout the genome. Thus, the ChIP-Seq data support a model in which the different functions of fingers 1 and 4 are due, at least in part, to their ability to facilitate binding to distinct genomic sites (see Discussion).

Selective misregulation of gene expression

Although thousands of Ikaros binding sites were identified by ChIP-Seq, the highly selective phenotypes of the Ikzf1/F1/F1 and Ikzf1/F4/F4 strains suggested that DNA-binding fingers 1 and 4 contribute to the regulation of distinct sets of genes. To examine the roles of fingers 1 and 4 in transcriptional control, we performed RNA-Seq with mRNA from sorted CD4+CD8+ thymocytes from 4-week-old wild-type, Ikzf1/F1/F1, and Ikzf1/F4/F4 mice. The results revealed misregulation of small number of genes in each of the mutant strains. In Ikzf1/F4/F4 thymocytes, only 110 genes and 12 genes (with RPKM values ≥4) were
upregulated and downregulated, respectively, by more than 3-fold, with only 24 and 21 genes upregulated and downregulated, respectively, by this magnitude in Ikzf1ΔF1/ΔF1 thymocytes (Fig. 5a and Supplementary Fig. 6). Importantly, only 15 genes were upregulated in both mutant strains and one gene was downregulated in both strains. Three genes that were upregulated in Ikzf1ΔF4/ΔF4 thymocytes were downregulated in Ikzf1ΔF1/ΔF1 thymocytes. Notably, much smaller numbers of genes were upregulated or downregulated by 10-fold or more (Fig. 5b and Supplementary Fig. 6).

Although it is difficult to accurately compare RNA-Seq data sets to microarray data sets, many of the genes found by RNA-Seq to be misregulated in Ikzf1ΔF1/ΔF1 or Ikzf1ΔF4/ΔF4 thymocytes were recently found by microarray to be misregulated in Ikzf1null thymocytes.16 Thus, misregulated genes in Ikzf1null thymocytes appear to represent a composite of the genes misregulated in the Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 thymocytes.

Gene ontology analysis of genes upregulated 3-fold or more in Ikzf1ΔF4/ΔF4 thymocytes revealed enrichment for genes involved in cell adhesion, cell communication and signal transduction (Fig. 5c). Consistent with the invasive properties of the thymic lymphomas that arise in older Ikzf1ΔF4/ΔF4 mice (see below), several genes implicated in tumor invasion and metastasis were among the most potently upregulated genes, including the matrix metalloprotease gene, Mmp14, the catenin gene, Ctnnd1, and the guanine nucleotide exchange factor gene, Dock1 (Supplementary Fig. 6e,g).45-48

Interestingly, genes that were upregulated in either Ikzf1ΔF1/ΔF1 or Ikzf1ΔF4/ΔF4 thymocytes were generally expressed at very low levels in wild-type thymocytes (Fig. 5d). We depict the distribution by expression level (RPKM) in thymocytes of all annotated genes (Fig. 5d, left), and RPKM distribution in wild-type cells of genes that were upregulated by at least 3-fold in Ikzf1ΔF1/ΔF1 or Ikzf1ΔF4/ΔF4 thymocytes (P<0.001) (Fig. 5d, middle and right). Since the vast majority of upregulated genes were upregulated from a very low expression level, the results are consistent with evidence that Ikaros often functions as a transcriptional repressor.

Zinc finger requirements for tumor suppression

Previously described Ikzf1 mutant strains develop thymic lymphoma10,11. Importantly, we have never observed lymphoma in Ikzf1ΔF1/ΔF1 mice, but Ikzf1ΔF4/ΔF4 mice developed thymic lymphoma with a penetrance similar to that observed in other Ikaros mutant strains (Fig. 6a). Also similar to other Ikzf1 mutant strains, the lymphomas in Ikzf1ΔF4/ΔF4 mice were aggressive (highly invasive and metastatic) (Fig. 6b,c) and they displayed variable CD4 and CD8 expression (Fig. 6d), clonal TCR β rearrangement, and aberrant expression of the Notch intracellular domain (ICD) (data not shown).

Ikzf1 mutations in a mouse model of BCR-ABL+ B-ALL

Although Ikzf1 mutations invariably give rise to T cell malignancies in mice, human malignancies of T cell origin rarely contain IKZF1 mutations.49 Instead, human IKZF1 mutations are frequently associated with BCR-ABL+ B-ALL and other progenitor-B cell malignancies.12,13 To examine this species difference, and with the additional goal of developing models to study progenitor-B cell malignancies associated with IKZF1 mutations, we first made use of a well-established in vitro culture assay for BCR-ABL+ B-ALL.50 Bone marrow cells from wild-type, Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 mice were transduced with a BCR-ABL-expressing retrovirus and cell numbers in the progenitor B cell cultures were monitored over the course of approximately three weeks. Ikzf1ΔF4/ΔF4 cells transduced with the BCR-ABL retrovirus proliferated much more rapidly than transduced wild-type cells (Fig. 7a). Interestingly, transduced Ikzf1ΔF1/ΔF1 cells proliferated more
slowly than the wild-type cells and eventually stopped growing (Fig. 7a and data not shown).

We next employed an in vivo model of BCR-ABL+ B-ALL in which BCR-ABL-transduced bone marrow cells were transplanted into irradiated wild-type C57BL/6 recipients. In this assay, BCR-ABL-transduced cells from Ikzf1 ΔF4/Δ4 mice yielded much more aggressive malignancies than transduced cells from wild-type or Ikzf1 ΔF1/Δ1 mice (Fig. 7b). These results demonstrate that an Ikzf1 mutation can contribute to B cell malignancy in mice when combined with BCR-ABL expression. Furthermore, the results establish an important parallel between the tumor suppressor function of Ikaros in thymocytes and progenitor-B cells; in both cell types, finger 4 is essential for tumor suppression, whereas finger 1 is dispensable.

To approach an understanding of the tumor suppressor function of Ikaros, RNA-Seq was performed with mRNA from BCR-ABL-transduced cells cultured for 21 or 28 days. We also performed RNA-Seq with sorted pro-B and pre-B1+large pre-BII cells, which are thought to most closely represent the developmental stages that expand following BCR-ABL transformation. Cluster analysis revealed extensive differences in gene expression between the normal and transformed cells (Fig. 7c). However, most of the gene expression changes were unaffected by the Ikzf1 mutations. Clusters 1-3, for example, show differences between all of the data sets from untransformed cells in comparison to all of the data sets from transformed cells. Gene ontology analysis of the two largest clusters, Clusters 1 and 2, revealed, as expected, that cell cycle and cell growth control genes were often upregulated upon BCR-ABL transformation, whereas genes involved in leukocyte differentiation and activation were downregulated (Supplementary Fig. 7).

The remaining three clusters (Fig. 7c, Clusters 4-6) contain genes that were more abundantly expressed in BCR-ABL-transformed cells from Ikzf1 ΔF1/Δ1 mice, in comparison to wild-type and Ikzf1 ΔF4/Δ4 mice. These same genes were expressed more abundantly in untransformed pre-B1+large pre-BII cells from Ikzf1 ΔF1/Δ1 mice, suggesting that the Ikzf1 ΔF1/Δ1 cells that proliferate in culture following BCR-ABL transformation are maintained at the pre-BI to large pre-BII developmental stage, a stage at which many genes are misregulated in Ikzf1 ΔF1/Δ1 mice. Importantly, most genes in all six clusters in Figure 7c were similarly expressed in the wild-type and Ikzf1 ΔF4/Δ4 samples, despite the greatly enhanced proliferation of BCR-ABL transformed Ikzf1 ΔF4/Δ4 cells.

To identify genes that were selectively misregulated in BCR-ABL-transformed Ikzf1 ΔF4/Δ4 cells, an additional cluster analysis was performed with the six data sets obtained with transformed cells; the expression levels from untransformed cells were then aligned after the clusters were defined (Fig. 7d). This analysis revealed 155 genes that were selectively upregulated, and 133 genes that were selectively downregulated, in both the day-21 and day-28 Ikzf1 ΔF4/Δ4 cultures in comparison to the wild-type and Ikzf1 ΔF1/Δ1 cultures. Among the genes that were expressed more abundantly in the Ikzf1 ΔF4/Δ4 cells was Kit (Fig. 7d,f), which is known to be silenced during B cell maturation. Among the genes that were expressed less abundantly were Il2ra (CD25) and Enpep (BP-1), which are activated during B cell maturation (Fig. 7d,f). Flow cytometry confirmed the misregulation of the c-Kit and CD25 (IL-2Rα) proteins (Fig. 7e). These findings suggest that the Ikzf1 ΔF4/Δ4 mutation may influence the developmental stage of cells transformed by BCR-ABL. However, most of the other genes that were selectively misregulated in the BCR-ABL transformed Ikzf1 ΔF4/Δ4 cells are not developmentally regulated, and several, such as Dock1 and Ctnnd1, correspond to genes that were misregulated also in Ikzf1 ΔF4/Δ4 thymocytes. The identification of a limited set of genes that are selectively misregulated in transformed cells in the context of the Ikzf1 ΔF4/Δ4 mutation provides an important step...
toward dissection of the elusive mechanisms responsible for the tumor suppressor function of Ikaros.

Discussion

We have created two new mouse strains in which exons encoding individual zinc fingers of Ikaros were deleted. The results demonstrate that different zinc fingers within a single DNA-binding domain can participate in the regulation of distinct sets of genes and contribute to distinct biological functions. The disruption of individual fingers may be a generally valuable strategy for dissecting the complex biological functions and mechanisms of action of zinc finger transcription factors.

When designing the mutant strains, we considered three different strategies: deletion of the exons encoding fingers 1 and 4, deletion of fingers 1 and 4 while retaining the other residues encoded by their respective exons, or mutagenesis of key residues involved in DNA-binding. Each strategy had notable advantages and limitations. An advantage of the second and third strategies is that it would be possible to exclude the involvement of non-finger residues in the resulting phenotypes. However, a major limitation of these strategies is that the mutant proteins do not normally exist in murine cells, raising the possibility of dominant negative or gain-of-function activities. Consistent with this possibility, a point mutation in Ikaros zinc finger 3 was previously found to have much stronger dominant negative properties in mice than a deletion mutant that completely removed the exons encoding fingers 1, 2 and 3 (ref. 51). Furthermore, preliminary data suggest that exon 4-encoded residues immediately upstream of finger 1 autoregulate finger 1’s DNA-binding activity (S.W. and S.T.S., unpublished results); retention of these residues while deleting finger 1 would have an uncertain outcome.

Because of the above limitations, we deleted exons 4 and 6, including fingers 1 and 4, respectively, and the small number of additional residues encoded by these exons. With this strategy, it remains possible that some of the phenotypes are due to the loss of activities other than the DNA-binding activity of the deleted finger. However, we can conclude with confidence that finger 1 and finger 4 are fully and differentially dispensable for several biological functions of Ikaros, and the data strongly suggest that at least a subset of the phenotypes of each strain are due to loss of finger-dependent DNA interactions. Furthermore, the Ikzf1ΔF1/ΔF1 strain reveals the specific functions of full-length Ik-1, as this strain lacks the Ik-1 isoform while retaining the naturally occurring Ik-2 isoform. Most importantly, since the long-term goal is to dissect the highly selective phenotypes of the mutant strains for the purpose of understanding how Ikaros regulates lymphopoiesis and leukemogenesis, we can proceed with relatively little concern about the possibility of aberrant gain-of-function activities.

We were surprised to find that the two fingers regulate different biological functions and even different steps within the same developmental pathway. We originally anticipated that Ikaros would regulate numerous genes involved in each developmental step in which it participates, such that each mutant strain would exhibit similar phenotypes as Ikzf1null mice. This expectation was based on evidence that gene expression is substantially altered in Ikzf1null cells16,20 and that Ikaros binds several thousand genomic sites in ChIP-Seq experiments16. Instead, we found that finger 1 is largely or fully dispensable for many biological functions of Ikaros, with finger 4 dispensable for several other functions.

This striking selectivity provides strong support for a hypothesis in which only one or a small number of target genes is essential for each biological event in which Ikaros participates. It is difficult to envision that Ikaros would be a critical regulator of hundreds of
genes required for each biological event, with finger 1 dispensable for the regulation of all
target genes involved in some events and finger 4 dispensable for the regulation of all genes
involved in other events. Instead, it seems much more likely that each event requires the
proper regulation of only one or a few Ikaros target genes, with either finger 1 or finger 4
critical for the regulation of those genes. Although we favor a model in which Ikaros is an
essential regulator of only a few key genes involved in each biological event, an alternative
possibility is that fingers 2 and 3 are sufficient for the regulation of almost all critical target
genes involved in each of its biological functions, with fingers 1 or 4 essential for the
regulation of only a few key genes.

A long-standing challenge in the transcription field has been to identify direct targets of
transcription factors that can explain their biological functions. Efforts to identify
transcription factor targets have benefited greatly from the development of gene expression
profiling methods and methods for examining DNA-binding in vivo at a genome-wide scale
(e.g. ChIP-Seq). By merging ChIP-Seq data with gene expression profiles from wild-type
and knockout cells, insights into the direct targets of a transcription factor can be obtained.
However, a major limitation of this approach is that many transcription factors may bind
genomic sites at which they do not function. Moreover, because some transcription factors
may preferentially bind sequences associated with the relatively open chromatin found at
active promoters and enhancers, it can be difficult to conclude with confidence that the
merger of gene expression and ChIP data sets have successfully identified the direct
functional targets.

In our RNA-Seq studies, we found that most misregulated genes in Ikzf1ΔF1/ΔF1 and
Ikzf1ΔF4/ΔF4 thymocytes were expressed at low levels in wild-type cells, whereas Ikaros
binding sites defined by ChIP-Seq were distributed among genes at all expression levels
(data not shown). Furthermore, the number of ChIP-Seq peaks greatly exceeded the number
of misregulated genes. One possible and perhaps likely interpretation of these results is that
most Ikaros binding sites identified by ChIP-Seq are not functionally relevant. However,
many other possibilities must be considered. For example, Ikaros may contribute to the
proper regulation of a much larger number of genes, but its absence may alter the expression
level of most target genes by a magnitude that fails to reach the 3-fold cutoff used for our
analyses. Another possibility is that Ikaros acts redundantly with other Ikaros family
members at many of its target genes.

We originally were hopeful that ChIP-Seq experiments with our mutant strains would reveal
a clear loss of Ikaros binding to a well-defined subset of sites, leading to an improved
correlation between binding and transcriptional misregulation of nearby genes. However,
although we observed reduced numbers of ChIP-Seq peaks with Ikzf1ΔF1/ΔF1 and
Ikzf1ΔF4/ΔF4 thymocytes (data not shown), we have been unable to perform a meaningful
analysis of the binding events that require or are enhanced by these fingers. A primary
reason for this difficulty is that the ChIP-Seq peaks are not clearly polarized, in that we do
not observe a clear subset of peaks that are entirely dependent on finger 4 and another subset
of peaks that are entirely dependent on finger 1. Instead, a continuum of effects was
observed, with differential yet highly variable degrees of dependence on finger 1 or finger 4.

The potential value of targeting individual zinc fingers can be summarized as follows. First,
the Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 mutant mice exhibited select subsets of the phenotypes
observed in Ikzf1null mice. Second, when a phenotype was observed, it was found to be as
robust or nearly as robust as that observed in the Ikzf1null mice, thereby making the
phenotype amenable to further analysis. Third, despite the robust phenotypes, gene
expression changes were quite limited, thereby narrowing the list of potential direct and
indirect target genes responsible for the phenotype. These findings pave the way for detailed analyses of each phenotype observed in the mutant strains.

Our results raise the question of why Ikaros and perhaps other zinc finger transcription factors acquired the capacity to bind DNA through different subsets of their fingers. One possibility is that this strategy allows Ikaros to recognize a larger number of DNA sequences, such that each target gene does not need to possess a sequence that matches a single, rigid consensus. Although this simple scenario is possible, we favor a model in which recognition of DNA through different combinations of fingers supports different functions. One possibility is that binding to DNA through different combinations of zinc fingers leads to conformational differences in the bound protein that may influence co-regulatory interactions. The zinc finger DNA-binding protein, CTCF, has similarly been suggested to carry out different functions when bound to DNA through different subsets of its fingers, yet this hypothesis has not yet been tested through the disruption of individual CTCF fingers.

Finally, it can be argued that the most important function of Ikaros to understand is its tumor suppressor function. The correlation between \textit{IKZF1} mutations and the therapeutic response of high-risk progenitor-B-ALL suggests that an understanding of the tumor suppressor function may be critical for the development of new therapies\cite{12,13}. The establishment of a mouse model for BCR-ABL\(^+\) B-ALL using the \textit{Izf1}\(^{\Delta F4/\Delta F4}\) strain confirms a recent report that B cell malignancies can be observed in an \textit{Izf1} mutant strain when coupled to BCR-ABL expression\cite{53}. The finding that finger 4 is selectively required for tumor suppression both in thymocytes and in the BCR-ABL\(^+\) B-ALL model suggests that tumor suppression in the two cell types may involve similar molecular mechanisms. This hypothesis is further supported by the finding that many of the same genes are misregulated in \textit{Izf1}\(^{\Delta F4/\Delta F4}\) thymocytes and in BCR-ABL-transformed progenitor B cells from \textit{Izf1}\(^{\Delta F4/\Delta F4}\) mice. The loss of the tumor suppressor function of Ikaros in the \textit{Izf1}\(^{\Delta F4/\Delta F4}\) strain will make this strain particularly valuable for future studies, since it exhibits only a subset of the other phenotypes observed in \textit{Izf1}\(^{\text{null}}\) mice. This feature will allow studies of the tumor suppressor function in a background in which many Ikaros target genes involved in its other functions are relatively unperturbed.

Online Methods

Methods and any associated references are available in the online version of the paper at http://www.nature.com/natureimmunology/.

Methods

Mice

Germline-targeted deletions of exon 4 (encoding zinc finger 1) and exon 6 (encoding zinc finger 4) of the \textit{Izf1} gene were obtained by homologous recombination in embryonic stem cells (ESC). Electroporation of ESC was performed in the UCLA Molecular Genetic Technology Center (MGTC) and screening for correctly targeted ESC clones was performed by Southern blot. Injection of the mutant ESC lines into 129 blastocysts was performed by the UCLA MGTC. After germline transmission was achieved, the floxed \textit{neo} cassette introduced into the genome during homologous recombination was removed by crossing with \textit{EIIa-cre} mice on a C57BL/6 background. Germline transmission of the deletions was confirmed after backcrossing with wild-type C57BL/6 mice. The mutant strains were subsequently backcrossed through more than 10 generations with wild-type C57BL/6. Animals were excluded from analysis of hematopoietic development if they were runt, or if they had developed thymic lymphoma (for the \textit{Izf1}\(^{\Delta F4/\Delta F4}\) strain). No randomization or
blinding was performed for the animal studies. Animals of both sexes were used, at E18.5 (fetal hematopoiesis), 4 weeks (thymic development) and 6-8 weeks of age (peripheral lymph nodes, peritoneal B cells, spleen and bone marrow). All phenotypes described were analyzed with a minimum sample size $n = 5$, using wild-type littermate controls and represented by at least 3 separate experiments with animals from different litters. Animals were housed in the vivaria of the UCLA Division of Laboratory Animal Medicine. All experiments were approved by the UCLA Animal Research Committee (ARC) and were performed according to UCLA Institutional Animal Care and Use Committee guidelines. Wild-type C57BL/6 and Elia-cre mice were purchased from The Jackson Laboratory.

Cell preparations and flow cytometry

Cell suspensions were prepared from adult hematopoietic tissues and filtered through 70 μM nylon cell strainers (BD Biosciences). Fetal hematopoietic cells were prepared as previously described from mesentery54 and fetal liver55. All antibodies for flow cytometry were from BD Biosciences or eBioscience, except for the cytoplasmic Ig μ antibody, which was from Southern Biotech (Supplementary Table 1). All antibodies were initially used at 1:200 dilutions and were individually titrated when necessary. Intracellular staining of cytoplasmic μ was performed using reagents from the Foxp3 staining buffer set (eBioscience). Flow cytometry or sorting was performed on a FACSCalibur, BD LSR II, or FACSaria II SOP (BD Biosciences), and data were analyzed using FlowJo 7.5 and Diva 6.1.1 software.

Histological analysis and visualization of lymph nodes and Peyer's patches

Dissected tissues were fixed in 10% formalin (4% formaldehyde) (Fisher Scientific) for > 72 h, decalcified when needed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin (H&E) by the Translational Pathology Core Laboratory at UCLA. Visualization of inguinal and lumbar lymph nodes and Peyer's patches was done as described54,56.

Immunoblots

Whole cell extracts were prepared by re-suspension of cells in 1 volume water in the presence of protease inhibitor cocktail (Roche) and immediate direct lysis by adding 1 volume of 2× SDS sample buffer. SDS-polyacrylamide gel electrophoresis and transfer to nitrocellulose membrane were performed, and blots were probed with an antibody raised against the N-terminal region of Ikaros (residues 1-80)32 or an antibody against SNP7057 as loading control.

Retroviral transduction, cell culture, and bone marrow transplantation

Retroviral supernatants for expression of BCR-ABL were produced with the pMSCV-YFP-IRES-p185 plasmid, and bone marrow cells were transduced as described50, except that whole bone marrow from untreated mice was used for transduction. For in vitro cell culture, 5 × 106 transduced cells were plated on top of pre-established feeder cells from wild-type C57BL/6 bone-marrow stroma. Cells were split, counted, and reseeded at 1-2 ×105 cells/ml in 5 ml every 2-3 days for growth curve analysis. For in vivo experiments, 1 × 106 transduced whole bone marrow cells were injected intravenously into irradiated wild-type C57BL/6 recipient mice. Mice were monitored for development of B-ALL, and the endpoint was assessed by complete paralysis of hind legs or moribund condition.

RNA purification and RNA-Seq

RNA was prepared using TRI Reagent (Molecular Research Center, Inc.) followed by purification with an RNeasy kit (Qiagen), with on-column RNase-free DNase I treatment. For RNA-Seq analysis, MicroPoly(A)Purist Kit (Ambion) or the Tru-Seq RNA Sample Prep Kit (Illumina) was used to isolate mRNA according to the manufacturer’s protocol.
was prepared for the Illumina Sequencing platform using the fragmented double-stranded cDNA protocol58 or using the Illumina TruSeq kit. Sequencing was performed on an Illumina HiSeq machine with 50-bp single-end reads at the UCLA Broad Stem Cell Research Center High Throughput Sequencing Core. Raw data were uploaded to the Galaxy website (http://galaxy.psu.edu/) and mapped with Tophat to the July 2007 annotation of the mouse (Mus musculus) genome (mm9), filtering for uniquely mapped reads59-63. Genome coverage visualization files were created with BEDtools and uploaded to UC Santa Cruz genome browser (http://genome.ucsc.edu)64. Relative mRNA expression levels (RPKM)65 were calculated based on exonic reads using SeqMonk software (Babraham Bioinformatics) and reference genome annotations from NCBI (mm9). For RNA-Seq analysis of DP thymocytes, exonic reads were analyzed by the Bioconductor DESeq program66 to find genes differentially expressed to a statistically significant degree between two populations. Clustering analysis (k-means) was performed on log2-transformed, mean centered RPKM values, using Cluster 3.0 software67,68 and visualized with Java Treeview software69. Gene ontology analysis was performed using Panther software70.

ChIP and ChIP-Seq

Primary thymocytes were fixed in 1% formaldehyde for 10 min at 25 °C, washed in PBS and snap frozen. Ikaros ChIP was performed with an antibody directed against the Ikaros N-terminal region (residues 1-80)32 and tested by PCR for enrichment at published18,19 and unpublished (Zfp260) Ikaros binding sites identified from initial ChIP-Seq experiments. Input DNA was prepared from wild-type thymocytes as a negative control. Libraries were prepared for sequencing on the Illumina platform as described71 and sequenced at the USC Epigenome Data Production Facility and the UCLA Broad Stem Cell Research Center High Throughput Sequencing Core. Raw sequences were mapped by Bowtie to the July 2007 annotation of mouse (Mus musculus) genome data (mm9), and significant peaks over background were called using the Sole-Search software72,73. Genome coverage visualization files were created with BEDtools and uploaded to the UC Santa Cruz genome browser (http://genome.ucsc.edu)64. De novo motif analysis was performed using the Homer software74, and position weight matrix analysis was performed with the MEME software (http://meme.sdsc.edu/meme/intro.html)75.

Recombinant protein preparation and gel electrophoretic mobility shift assays (EMSA)

\textit{Ikzf1} gene sequences encoding DNA-binding zinc fingers 1 through 4 were PCR amplified from cDNA and subcloned into the bacterial expression plasmid pGEX-4T-1 (GE Healthcare) by standard methods. Recombinant proteins were expressed in Rosetta (DE3) (Novagen), induced with IPTG, and purified using B-PER GST Fusion Protein Purification Kit (Thermo Scientific). The GST tags were removed and proteins were purified by on-column thrombin cleavage. Ikaros EMSAs were performed as described30, with the exception that bacterially expressed recombinant Ikaros proteins were used instead of nuclear extracts. Sequences of probes are given in Supplementary Table 2.

Statistical analysis

Statistical analyses (unpaired, two-tailed, Student’s \textit{t} test, 95% confidence intervals) were performed with the GraphPad Prism software.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Acknowledgments

We thank P. Aliahmad (Cedars-Sinai, CA, USA), D. Bhatt, K. Dorshkind, C. Li, and E. Montecino-Rodriguez for helpful advice and/or critical reading of the manuscript, the UCLA Division of Laboratory Animal Medicine (DLAM) for ongoing care of mice, and H. Mak, T. Jacob, C. Garcia, J. Flores and J. Lorenzano for assistance with the mouse colony. ChiP-Seq and RNA-Seq libraries were sequenced at the USC Epigenome Data Production Facility and the UCLA Broad Stem Cell Research Center High Throughput Sequencing Core. This work was supported by NIH grant R01DK043726 (to S.T.S.). O.N.W. is an Investigator of the Howard Hughes Medical Institute.

References

Nat Immunol. Author manuscript; available in PMC 2014 April 01.

Figure 1.
Adult B cells are present in mice with germline deletion of *Ikzf1* exons encoding zinc fingers 1 or 4. (a) Immunoblot analyses with thymocyte extracts from the *Ikzf1*ΔF1/ΔF1 strain and the *Ikzf1*ΔF4/ΔF4 strain. The bands denoted with an asterisk correspond to an unidentified form of Ikaros, most likely a post-transcriptionally modified form of Ik-1 (and Ik-2 after exon 4 deletion). SNP70 is shown as a loading control (bottom). (b) RNA-Seq analyses of thymocyte mRNAs (*n* = 4) confirmed the absence of reads from exons 4 and 6 in the *Ikzf1*ΔF1/ΔF1 and *Ikzf1*ΔF4/ΔF4 strains, respectively. (c) CD11b+ myeloid-cell percentages analyzed in bone marrow from 6-week-old wild-type and mutant mice. One experiment is shown with average ± SEM for wild-type (WT) (*n* = 21), *Ikzf1*ΔF1/ΔF1 (*n* = 10) and *Ikzf1*ΔF4/ΔF4 (*n* = 14) strains. (d) CD19+ (left) and CD19+B220+ (right) B lineage cells analyzed in the bone marrow (BM) and spleen of 6-week-old mice from the two mutant strains. Average cell numbers ± SEM (left and middle) and % of live cells (right, horizontal bar represents the mean) from wild-type (*n* = 12–20), *Ikzf1*ΔF1/ΔF1 (*n* = 9–18) and *Ikzf1*ΔF4/ΔF4 (*n* = 6–17) mice are shown.
Figure 2.

B cell development is disrupted at different stages in Ikzf1^{ΔF1/ΔF1} and Ikzf1^{ΔF4/ΔF4} mice. (a). B-cell development was analyzed in whole bone marrow from 6- to 8-week-old mice. One representative experiment out of three or more is shown. Staining is shown for total bone marrow in row 1, pre-pro B to large pre-BII (B220^+CD43^+) cells in row 2, lineage (Lin^-) B220^+CD43^-CD19^-cells (for analysis of pre-pro B) in row 3, and small pre-BII to mature B (B220^+CD43^-) cells in row 4. The average percentage of the indicated population in total bone marrow is shown. Lineage markers included CD3, TER119, Gr-1, and CD11b. (b) Absolute numbers of the indicated populations in total bone marrow of wild-type (n=13), Ikzf1^{ΔF1/ΔF1} (n=6) and Ikzf1^{ΔF4/ΔF4} (n=6-8) mice are shown. Each symbol represents an individual mouse and bar shows the mean. *P<0.05, **P<0.01, ***P<0.001. (c) Cytoplasmic Ig μ expression was analyzed in bone marrow cells, gated on B220^+IgM^- . One representative out of four separate experiments is shown (d) Absolute numbers of B220^+IgM^-c μ cells per femur are shown. Each symbol represents an individual mouse and bar shows the mean ± SEM of wild-type (n=5), Ikzf1^{ΔF1/ΔF1} (n=6) and Ikzf1^{ΔF4/ΔF4} (n=3) mice. (e-f) Flt3 and IL-7R α expression was analyzed on c-Kit^+ bone marrow cells gated on Lin^{neg–lo} cells. One representative experiment is shown with the average percentage of total live bone marrow cells from wild-type (n=12-14), Ikzf1^{ΔF1/ΔF1} (n=3-4) and Ikzf1^{ΔF4/ΔF4} (n=8-9) mice.
Figure 3.
Selective thymocyte and fetal phenotypes in $\text{Ikzf1}^{ΔF1/ΔF1}$ and $\text{Ikzf1}^{ΔF4/ΔF4}$ mice. Thymocyte development was analyzed with 4-week-old mice, while fetal hematopoietic development was analyzed with E18.5 liver, mesentery, and thymus. (a) Thymic cellularity is shown relative to wild-type littermate controls for $\text{Ikzf1}^{ΔF1/ΔF1}$ (n=8) and $\text{Ikzf1}^{ΔF4/ΔF4}$ (n=9) mice. (b) Early stages of thymocyte development were analyzed gated on CD4+CD8- (DN) cells. Numbers in quadrants indicate average percentages of CD44+CD25- (DN1), CD44+CD25+ (DN2), CD44-CD25+ (DN3) and CD44-CD25- (DN4) cells. (c) The ETP population (Lin-Kit+CD44+CD25-) were analyzed in wild-type, $\text{Ikzf1}^{ΔF1/ΔF1}$ (n=11), and $\text{Ikzf1}^{ΔF4/ΔF4}$ mice (n=11). *P<0.05 (d) Analysis of CD4 and CD8 expression in the thymus. In b and d, one representative experiment is shown with average values for the indicated populations for wild-type (n=16), $\text{Ikzf1}^{ΔF1/ΔF1}$ (n=8) and $\text{Ikzf1}^{ΔF4/ΔF4}$ (n=8) mice. (e) Histological analysis with H&E staining of thymi from 4-week-old mice. (f) Thymic γδ TCR+ cells and thymic B cells (CD19+CD4-CD8-) were analyzed in $\text{Ikzf1}^{ΔF1/ΔF1}$ mice (n=8-9) and $\text{Ikzf1}^{ΔF4/ΔF4}$ mice (n=8-11). (h) Fetal (E18.5) B cells (CD45+CD19+CD43-CD25-) were analyzed in the $\text{Ikzf1}^{ΔF1/ΔF1}$ strain (n=8) and the $\text{Ikzf1}^{ΔF4/ΔF4}$ strain (n=9). (j) The number of fetal thymocytes was selectively reduced in E18.5 $\text{Ikzf1}^{ΔF1/ΔF1}$ embryos (n=10). (k) Lymphoid tissue inducer cells (LTi, CD45+CD3e-CD4+IL-7Ra+) were selectively absent in the fetal mesentery of the $\text{Ikzf1}^{ΔF4/ΔF4}$ strain. (l) Inguinal lymph nodes and other peripheral lymph nodes (not shown) were selectively absent in adult $\text{Ikzf1}^{ΔF4/ΔF4}$ mice, as visualized with Evan's Blue. One representative of two or more experiments are shown (k,l)
Figure 4.
Differential DNA binding of Ikaros in Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 thymocytes. (a-d) Ikaros ChIP-Seq was performed with thymocytes from 4-week-old wild-type and mutant mice. UCSC genome browser tracks are shown for four genomic regions that contain repetitive Ikaros recognition motifs, thereby yielding unusually strong ChIP-Seq peaks. Examples of interactions that do not depend on neither finger 1 nor finger 4 (Snx29), that depend on finger 1 (Nr3c2), or that depend on finger 4 (Chr19 and Snx25) are shown. Input genomic DNA was sequenced as a negative control. The repetitive genomic sequences are shown below the tracks, with putative Ikaros recognition sites in yellow (GGGAA or GGAA) and green (TTCC). Position weight matrices of the putative Ikaros recognition sequences that were repeated are shown at the bottom, with the zinc fingers predicted to contact or lie in close proximity to the nucleotides indicated (F1-F4). (e) Electrophoretic mobility shift assays were performed with oligonucleotide probes from three repetitive sequences and recombinant proteins containing Ikaros fingers 1-4, 1-3, or 2-4. Zinc fingers predicted to contact or lie in close proximity to the nucleotides flanking the GGGAA core recognition sequence are indicated at the bottom (F1 or F4). (f) Bioinformatics analysis of a wild-type Ikaros ChIP-Seq dataset revealed the localization of the core GGGAA sequence relative to the center of each ChIP-Seq peak.
Figure 5.
Deregulation of distinct sets of genes in Ikzf1ΔF1/ΔF1 and Ikzf1ΔF4/ΔF4 DP thymocytes. (a) RNA-Seq was performed with FACS-sorted DP thymocyte mRNA from 4-week-old wild-type and mutant mice in duplicate. A Venn diagram shows the number of genes that exhibited increased or decreased mRNA levels of at least 3-fold ($P \leq 0.001$) in one of the mutant strains. Genes with RPKM ≥4 in at least one of the six samples were included in this analysis. (b) A Venn diagram shows the number of genes from the RNA-Seq experiment described above that exhibited increased or decreased mRNA levels of at least 10-fold ($P \leq 0.001$) in one of the mutant strains. (c) Gene Ontology analysis of genes upregulated more than 3-fold ($P \leq 0.001$) in Ikzf1ΔF4/ΔF4 DP thymocytes. (d) The distribution of RPKMs (mRNA levels) is shown for all annotated genes (left) and all genes that were upregulated by at least 3-fold ($P \leq 0.001$) in Ikzf1ΔF1/ΔF1 (middle) or Ikzf1ΔF1/ΔF1 (right) mutant mice.
Figure 6. *Ikzf1*^F4/F4^ but not *Ikzf1*^F1/F1^ mice develop spontaneous thymic lymphoma. (a) Kaplan-Meier survival curves reveal premature death of *Ikzf1*^F4/F4^ mice due to thymic lymphoma. (b) Histochemical analysis with H&E stain of an *Ikzf1*^F4/F4^ mouse where the thymic lymphoma engulfed the heart (right panel) (n=3). A wild-type control is also shown (left panel). (c) Histochemical analysis with H&E stain of an *Ikzf1*^F4/F4^ mouse (right panel) revealed thymic lymphoma infiltrating the lung. (d) Variable CD4 and CD8 expression was observed in lymphomas that had metastasized to the spleen in three representative *Ikzf1*^F4/F4^ mice. Wild-type spleen cells are shown as a control. Figures c-d display one representative for each of six or more sick mice analyzed.
Figure 7.
Selective synergy between BCR-ABL and the \textit{Ikzf1}^{\Delta F4/\Delta F4} mutation \textit{in vitro} and \textit{in vivo}.
(a) \textit{In vitro} growth curves from one representative experiment (of three) are shown for bone marrow cells from wild-type, \textit{Ikzf1}^{\Delta F1/\Delta F1}, and \textit{Ikzf1}^{\Delta F4/\Delta F4} mice transduced with a BCR-ABL-expressing retrovirus and grown under B-ALL culture conditions. (b) Kaplan-Meier survival curves are shown for irradiated recipient mice transplanted with 10^6 BCR-ABL-transduced bone marrow cells from wild-type (n=15), \textit{Ikzf1}^{\Delta F1/\Delta F1} (n=8), and \textit{Ikzf1}^{\Delta F4/\Delta F4} (n=14) mice. (c) RNA-Seq was performed with mRNA from sorted pro B cells (pro-B) and pre-BI+large pre-BII cells (pre-BI-II_L), as well as from BCR-ABL-transformed wild-type, \textit{Ikzf1}^{\Delta F1/\Delta F1}, and \textit{Ikzf1}^{\Delta F4/\Delta F4} cells harvested at day 21 (d21) or day 28 (d28) in culture. Genes whose mRNA levels differed by 3-fold or more between any two samples among the 12 samples analyzed were clustered by k-means clustering. (d) Genes that were selectively upregulated or downregulated in BCR-ABL-transformed \textit{Ikzf1}^{\Delta F4/\Delta F4} cells were identified by k-means clustering of the data sets from the six BCR-ABL-transformed cultures. Only the two clusters containing genes that were selectively upregulated or downregulated in the \textit{Ikzf1}^{\Delta F4/\Delta F4} samples are shown. Expression data from pro B cells (pro-B) and pre-BI+large pre-BII cells (pre-BI-II_L) were aligned after the cluster analysis was completed. (e) One representative flow cytometry experiment out of three or more is shown for the \textit{in vitro} cultures described in panel a. Cells are gated on YFP$^+$ cells. (f) Reduced \textit{Il2ra} (CD25) and increased \textit{Kit} mRNA levels are shown from the RNA-seq data (n=2).