
UCLA
UCLA Electronic Theses and Dissertations

Title
Analytical Methods for Diagnosis and Prediction of Health Conditions

Permalink
https://escholarship.org/uc/item/7hp389gm

Author
Davis, Tyler Austin

Publication Date
2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7hp389gm
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Analytical Methods

for Diagnosis and Prediction

of Health Conditions

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Tyler Austin Davis

2023



© Copyright by

Tyler Austin Davis

2023



ABSTRACT OF THE DISSERTATION

Analytical Methods

for Diagnosis and Prediction

of Health Conditions

by

Tyler Austin Davis

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Majid Sarrafzadeh, Chair

Recent years have seen a tremendous amount of growth in the performance and adop-

tion of artificial intelligence (AI) and machine learning (ML) systems. These systems now

permeate our lives, underpinning everything from web search to credit card fraud detection

and photography. In principle, these advancements could also be applied to the domain of

healthcare, where they could improve patient outcomes.

However, despite the almost fifty years that have elapsed since the first National Insti-

tutes of Health AI in Medicine (AIM) workshop in 1973 and the ubiquity of AI systems in our

daily lives, AIM has not yet lived up to its lofty promises. AIM systems have seen limited

deployment due to challenges including data missingness, data heterogeneity, explainabil-

ity, and generalizability across variances in patient populations. The recent increase in the

availability of electronic health record information, the variety and cost-effectiveness of mo-

bile sensors, and the capabilities of machine learning algorithms promise to help improve

healthcare delivery if challenges can be overcome. Through techniques such as interpretable

ii



analysis of heterogeneous information networks and missingness-aware modeling, we demon-

strate that the challenges of AI in Medicine can be overcome in order to improve healthcare

access, aid physicians, and generate new insights into disease.
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CHAPTER 1

Introduction

1.1 Motivation

Not long after the term “artificial intelligence” (AI) was first coined, researchers began to

dream of how computer systems may one day be used to automate and improve patient

care [15, 16]. However, the path towards this goal was hampered by challenges such as

the difficulty of encoding knowledge into a system, which resulted in narrowly scoped sys-

tems [17], limited performance [18,19], and “AI winters” where research dramatically slowed

for decades at a time [15, 16]. The early 2010s saw immense breakthroughs in AI and an

associated boom in research [20] that led to the widespread adoption of AI systems for

everything from self-driving cars [21], natural language understanding [22], and even pho-

tography [23]. However, despite this widespread adoption in other domains, AI has seen

comparatively limited adoption in the field of medicine. This has been due to factors such as

outsized expectations in conjunction with limited trust between clinicians and tools [24, 25]

and the difficulty in extracting meaning from noisy, biased, and multidimensional data [16].

Meanwhile, mounting challenges to healthcare delivery in the United States are incen-

tivizing researchers and healthcare systems to look for new ways to lower costs while ensuring

quality care. Patient care costs are currently increasing at a remarkable rate, up 130% since

2000 to $11,582 in 2019, outpacing inflation [26] and resulting in a total of 3.8 trillion dol-

lars in expenditures [27, 28]. This expenditure is equivalent to 17.7 percent of the 2019 US

GDP. Unfortunately, these costs are only expected to rise as the US population continues to
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age [29], with an expected average growth rate of 5.4% per year. In addition, there is pre-

dicted to be a shortage of 40,800 to 109,000 physicians by 2030 [30], meaning that resources

may be stretched thin, potentially threatening the quality of care that patients receive. Some

recent reports in medical journals argue that the impending shortage can be addressed in

ways other than simply training more physicians, such as by using new technologies to enable

existing physicians to deliver care to more patients and to allow for better delivery of care

to underserved populations [31,32].

Healthcare delivery, and the technologies supporting it, have undergone a remarkable

amount of transformation within the last fifteen years, the effects of which are still only be-

ginning to be felt. In 2008, only 9% of non-federal acute care hospitals in the United States

were maintaining patient records in a basic electronic health record (EHR) system [33]. To-

day things are a bit different, with over 90% of non-federal acute care hospitals electronically

storing patient information in a way that it can be exchanged with other care providers [34].

It is estimated that a single hospital stay now generates approximately 150,000 discrete pieces

of data [35]. Additionally, the average healthcare system manages more than 8.4 petabytes

of data as of 2018, an almost ninefold increase from 2016 [35]. This rapid digitization of

healthcare records means that not only is it easier for patients to have their information

follow them as they move between physicians, but that records are now richer and easier to

search through, lowering the barrier to running large scale retrospective studies.

At the same time as this rapid digitization of health records, advancements in wireless

systems, low cost sensors, and personal computing began enabling continuous gathering of

information, such as blood glucose or respiratory rate, that would have previously been

prohibitively expensive. Add on top of this recent explosion in information-rich and easily

accessible healthcare data a renewed interest in AI research, and the stage is set for the

application of new techniques to datasets the likes of which have never been seen before.

The recency of these developments in the artificial intelligence and healthcare communities

means that there is an enormous amount of potential to explore the possibilities for easing
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modern challenges in healthcare delivery and epidemiological research.

1.2 Research Objectives

The goal of this work is to develop new analytical techniques that will incorporate new

sensors, new information rich heterogeneous data sources, and extensive but imperfect health

records in order to overcome long-standing hurdles to the adoption of artificial intelligence

in medicine including:

1. Heterogeneity: A single patient’s records may contain time series sensor readings,

tabular data such as biographical information, text based notes, and medical scans

saved as images.

2. Missingness: Each patient’s health record is composed of a unique combination of

clinic visits and tests, so there is no guarantee that two patients will have the same

types of data their record, or that they will have similarly dense records, often leading

to high levels of missingness.

3. Generalizability: There is a great amount of variation between patients due to bio-

logical differences from factors such as age, sex, and disease. These differences make it

difficult to generalize algorithms and insights to the diverse population at large.

4. Interpretability: Many modern analytical techniques are “black box” systems where

it is not possible to peer inside the box and determine why the system arrived at its

final conclusion. This is particularly an issue in medicine as clinicians want to verify a

system is arriving at a decision for the right reasons, understand why a system erred,

or even update their own beliefs using the model’s insights.

Each of the works described in this dissertation deals with a different set of challenges,

and addressing these challenges is a core component of the research. By overcoming these

challenges, future AIM systems may be able to:
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1. Aid physicians: Advances in machine intelligence may allow for time-consuming and

laborious tasks to be partially automated, or for helpful suggestions to be provided as

guides for diagnosis and analysis.

2. Gain new insights into disease: The increased prevalence of EHR systems means

that not only is it easier than ever before to find retrospective cohorts of patients, but

also that these records are richer than ever before. Careful analysis of this information

may lead to new insights into less common disease patterns.

3. Increase healthcare access: New sensors allow for patient monitoring to be done in

ways not previously possible, allowing for high quality monitoring without the mone-

tary or time cost of a clinic visit.

1.3 Contributions

This dissertation describes works which all work towards the research objectives listed above

while addressing unique domain-specific challenges. In these works:

• We introduce HTAD, a novel model for diagnosis prediction using electronic health

records represented as heterogeneous information networks. Our model introduces a

target-aware hierarchical attention mechanism that allows it to learn to attend to the

most important clinical records when aggregating their representations for prediction

of a diagnosis.

• We describe a physiological signal data collection system based on a portable device and

a smartphone. Through a classifier trained on this data and our own analysis, we show

the different impacts of psychological stress in healthy and cognitively impaired older

adults as well as in males and females. Our proposed system can be used as a continuous

stress monitoring system in real-world settings that is non-invasive, portable, and easy

to use.
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• We describe a deep neural network for predicting the risk of rapid kidney function

decline and identify populations at higher risk of rapid decline using the CURE-CKD

Registry. Our model achieves strong performance despite high levels of data missing-

ness in the registry.

• We describe RimNet, a fully automated system for accurate segmentation of the optic

disc rim, and the first study to report performance for this task on incomplete rims.

• We describe DDLSNet, the first system for automated estimation of DDLS, enabling

faster evaluation with less variability. Additionally, this is the first study to report on

the problem of determining optic disc size solely using optic disc photos without any

external aids.

• We describe a system that evaluates pairs of images for the same markers of progression

that glaucoma specialists look for. Combined with image saliency techniques, such a

system is a promising add-on for clinical decision-making.
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CHAPTER 2

Hierarchical Target-Attentive Diagnosis Prediction

(HTAD)

In this chapter we introduce HTAD, a novel model for diagnosis prediction using Electronic

Health Records (EHR) represented as heterogeneous information networks. Recent stud-

ies on modeling EHR have shown success in automatically learning representations of the

clinical records in order to avoid the need for manual feature selection. However, these

representations are often learned and aggregated without specificity for the different pos-

sible targets being predicted. Our model introduces a target-aware hierarchical attention

mechanism that allows it to learn to attend to the most important clinical records when

aggregating their representations for prediction of a diagnosis. Additionally, our model is

built to handle the heterogeneity of data types in EHR, as it can accept many forms of input

data simultaneously, including both time series and tabular data.

We evaluate our model using a publicly available benchmark dataset and demonstrate

that the use of target-aware attention significantly improves performance compared to the

current state of the art. Additionally, we propose a method for incorporating non-categorical

data into our predictions and demonstrate that this technique leads to further performance

improvements. Lastly, we demonstrate that the predictions made by our proposed model

are easily interpretable.
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2.1 Introduction

Electronic Health Records (EHR) provide a comprehensive picture of patients’ medical histo-

ries, consisting of information such as written clinician notes, medical imagery, prescriptions,

and diagnoses. With the recent availability of EHR datasets to researchers, there has been

a significant amount of interest in using this information to improve patient outcomes. In

this study, we focus on the problem of predicting patients’ diagnoses based on their health

records.

Some of the challenges in mining health data are its high heterogeneity and its sparse

record distribution, which have led many studies to rely on expert knowledge and man-

ual selection of a set of dense features [36, 37]. One way in which these challenges have

been approached is through an unsupervised record embedding technique, first proposed by

Med2Vec [38]. Med2Vec, as well as successive studies such as [39], use a skip-gram [40] based

technique to learn latent representations for health records based on their co-occurrence re-

lations. In this approach, predictions are commonly made by training supervised models

on patient representations, which are obtained by aggregating the embeddings of the items

in a patient’s health records. Another work using a similar approach is HeteroMed [9],

which demonstrates the advantages of modeling EHR data using Heterogeneous Information

Networks (HIN). HeteroMed shows that HINs can capture the structure and semantically

important relations of EHR and model its heterogeneity. In this study we continue to ex-

plore the promise of HINs for modeling EHR, addressing the shortcomings of prior record

embedding approaches along the way.

One shortcoming in these past works stems from the relatively simple aggregation process

they use, in which they treat records with equal importance regardless of what diagnosis is

being predicted. Taking diabetes and kidney failure as an example, we can see how this is an

issue: prior models generate a single patient representation by combining records with fixed

weights, which is then used for the prediction of both diagnoses; however, the importance

7



of tests should vary based on the diagnosis being predicted, with blood glucose levels being

more important than blood albumin levels when predicting diabetes than when predicting

kidney failure and vice versa. Another shortcoming of these past approaches is that the

predictions generated by these models are not easily interpretable, with no way for an end

user to understand how the model arrived at its conclusion. Lastly, past approaches only

make use of records whose values can be mapped to distinct categories, leaving out other

important information such as time series vital signs and medical imagery.

Inspired by the very recent success of attention mechanisms in network embedding [41,42],

we propose HTAD, a novel approach for modeling EHR data that leverages hierarchical

attention, to overcome these shortcomings. HTAD produces diagnosis-aware patient repre-

sentations, as well as explainable predictions. We also suggest how non-categorical data, in

particular, time series data, can be integrated into HTAD.

Considering EHR in the context of HIN with patients and records mapped to network

nodes, our model’s goal is to aggregate a patient’s neighborhood such that the obtained

representation is tailored to the prediction of a specific target diagnosis. Recognizing hetero-

geneity of nodes, we perform the neighborhood aggregation at two levels: first, at node-level

and among nodes having similar type to obtain a set of type representations, and then at

the type-level to achieve a comprehensive patient representation. In node-level aggregation,

we propose employing a target-aware attention mechanism to learn the importance of vari-

ous nodes with respect to the given diagnosis. We also show ways for the incorporation of

time-series data at this level. We apply similar attention technique at the type-level to allow

the model to learn preference towards various record types for the prediction of the specified

disease. We then pass the resulting patient representation into our objective function for

prediction. Importantly, attention weights generated in our model improve the interpretabil-

ity by providing insight as to which nodes and types the model finds most important for the

prediction.

We evaluate our proposed model’s performance on two diagnosis prediction tasks: ex-
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act diagnosis code prediction and high-level diagnosis group prediction, using the publicly

available MIMIC-III EHR dataset [43]. We compare HTAD to several existing models that

represent the state of the art for diagnosis prediction using EHRs. Our experiments show

that HTAD outperforms these benchmarked models on both tasks, in multiple cases beating

them by a margin of over 10%.

Additionally, we evaluate our model’s interpretability, something that has not been ex-

plored in past models for diagnosis prediction that represented patients based on their ag-

gregated EHR embeddings. In summary, we make the following contributions in this paper:

1. We propose Hierarchical Target Attentive Diagnosis (HTAD) in an HIN setting and

demonstrate that it significantly improves diagnosis prediction performance.

2. We demonstrate that HTAD’s use of target-aware hierarchical attention can improve

interpretability.

3. We demonstrate that non-categorical data can be incorporated when mining EHR data

represented as an HIN.

2.2 Related Work

In this section, we highlight prior representative works in three areas that come together

in this study: EHR data mining, Heterogeneous Information Network embedding, and

attention-based modeling.

2.2.0.1 EHR Modeling

When modeling EHR, there are two main challenges that prior studies have approached.

First, clinical records are heterogeneous and are sparsely distributed among patients. To

tackle this, manual feature selection has been a method of choice in many studies, lead-

ing to two recent works on benchmarking a public EHR dataset [36, 37] and introducing
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Figure 2.1: (a) A visualization of how we map EHRs to an HIN, (b) EHR heterogeneous

information network schema.

a set of features to be extracted for various tasks [36]. In another direction, studies such

as Med2Vec [38] introduced the unsupervised embedding of clinical records using a skip-

gram which was adopted by a number of later studies [39, 44, 45] and was extended by

HeteroMed [9].

Second, it can be difficult to model the complex structure and relations in EHRs. Re-

current Neural Networks (RNNs) have been one of the most widely adopted techniques.

However, RNNs lose efficiency and performance when working on long sequences, and clin-

ical records may contain thousands of items. Moreover, they fail to capture the structure

and semantics of relations in EHR. HeteroMed [9] proposes the use of HINs for the analysis

of EHRs, allowing to capture both node and relation semantics. Our work is inspired by the

success of HeteroMed in representing EHRs as an HIN and works to overcome prior studies

shortcomings in disregarding the importance of records and providing integrative modeling.
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2.2.0.2 Heterogeneous Information Network Embedding

Heterogeneous Information Networks (HIN) have recently gained considerable attention, es-

pecially in the domain of recommendation systems. These networks are able to capture

various types of entities and relation semantics, which is essential in modeling real-world set-

tings. Embedding an information network refers to learning compact representation vectors

for its nodes. Many homogeneous network embedding approaches, such as DeepWalk [46]

and node2vec [47], employ random walks or neighbor prediction mechanisms, paired with

skip-gram based models. For HINs, relation-based walks have been introduced to incorporate

the heterogeneity of data [48].

2.2.0.3 Attention Mechanisms

Attention mechanisms for learning algorithms have gained huge success in the domains of

natural language processing [49], with the goal of allowing a model to attend to the most

important parts of text while ignoring less relevant portions. Attention for network analysis

is a growing topic of interest, with recent studies [41, 42] employing it in the selection of

important neighbor nodes, random walks, and meta paths, respectively. In this study, we

explore attention in HINs for target-aware node importance scoring when modeling EHR.

2.3 Preliminaries

Definition 1. Heterogeneous Information Networks [50] A Heterogeneous Informa-

tion Network (HIN) is defined as a graph G = (V,E) with two type functions h : V 7→ A and

g : E 7→ R that map nodes and edges to their predefined types A and R, respectively.

Definition 2. Meta Path [50] Given A and R, representing sets of all node and edge types

in graph G, a meta path is defined by a schema in the form of A1
R1−→ A2

R2−→ . . .
Rm−−→ Am+1.

Any two nodes with a connecting path matching this schema will be linked through this meta
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path.

2.3.1 EHR Network Formation Process

In general, an EHR can be viewed as a set of patients P = {p1, p2, . . . , p|P |} and clinical

records C = {c1, c2, . . . , c|C|}. We first put forward a formal view of clinical records.

Definition 3. Clinical Record A clinical record is defined as a triple: c = (i, t, v), where

i, t, and v respectively denote the ID of the recorded item (e.g., blood glucose level), its

type (e.g., laboratory test), and its value which can be null for some record types, such as

symptoms.

To model EHR as an HIN we rely on a function mapping clinical records to nodes, defined

as: fc: C 7→ V , which projects c = {i, t, v} ∈ C to a node v ∈ V identified by the tuple

(i, v) and having type t. Similarly, fp : P 7→ V maps each patient to a node with the

same type and identified by the patient ID. Furthermore, the basic links of the network are

formed between patient nodes and the nodes representing their clinical records. Fig. 2.1

illustrates this process. To interpret the clinical record values in an EHR, we follow the

strategies introduced in [9], which attempt to categorize all node values. However, unlike

their approach, we do not discard information that remains in a non-categorical format, and

we later present a way for incorporating this data into our model.

Definition 4. Target/Context Nodes Target nodes are defined as the nodes for which

the presence of the link to a patient should be predicted (diagnosis nodes in this study). All

nodes other than patient and target are considered as context nodes.

Given these preliminaries, the diagnosis prediction task in an HIN representing EHR data

can be defined as:

Definition 5. Clinical Prediction in an HIN Setting Given a patient p with context

nodes N(p) = {N1(p), N2(p), . . . , NT (p)} where Nt(p) denotes the type t neighborhood of p,

predict p’s target neighborhood: Nd(p) = {d1, d2, . . . , d|Nd(p)|}, where di is the ith target node.
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When working with diagnosis prediction task, it is important to note that many medical

ontologies, such as the ICD-9 system [51], provide a hierarchical and multi-resolution view

of diagnoses, with the highest level of the hierarchy identifying the general disease group

(e.g., cardiovascular disorders) and lower levels providing more specificity as to the exact

diagnosis. Importantly, clinicians may assign codes to a patient at any level. Therefore, the

diagnosis prediction task can be defined at two levels:

• Low-level (exact) code prediction: Due to the large number of diagnosis codes, this

task is approached as a ranking problem, with the aim of scoring positively labeled

codes higher than others.

• High-level (grouped) code prediction: In this task, we aim to predict all diagnosis

groups associated with a patient, formulated as a multi-label classification task.

2.4 Methodology

In this section, we present our proposed HIN-based EHR model, leveraging a hierarchical

target-attentive architecture.

2.4.1 Model Overview

To model health records and patients, we rely on learning embedding vectors for all these

entities. In this approach, a patient representation is often obtained by an aggregation of the

embeddings of his/her clinical records and is used for the target prediction task. Different

from prior studies where a single patient representation was generated, our model learns to

obtain a distinct patient representation for each target node, achieved by favoring the most

predictive records for that specific target. The overall architecture for our target-attentive

patient aggregation is depicted in Fig. 2.2.

Describing the process in HIN setting, we first aggregate context nodes based on their type
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Table 2.1: Notation and Explanations

Symbol Explanation

hn Embedding of node n

h
′
n Transformed embedding of node n

Nt(p) Type t neighborhood of patient p

ztp,d
Aggregated embedding of nodes in Nt(p)

with respect to diagnosis d

qd Node-level attention vector for diagnosis d

sd Type-level attention vector for diagnosis d

αt
n,d

Node-level attention score assigned to node n ∈ Nt(p)

when predicting for diagnosis d

βt
p,d

Type-level attention score assigned to type t representation

of patient p, when predicting for diagnosis d

fp,d Aggregated patient p embedding with respect to diagnosis d

M Node embedding lookup matrix

Q Node-level attention lookup matrix

S Type-level attention lookup matrix

W t
c , b

t
c Transformation parameters for context nodes with type t

Wd, bd Transformation parameters for target (diagnosis) nodes

Wq, bq Transformation parameters to obtain node-level attention

Ws, bs Transformation parameters to obtain type-level attention

Wt, bt Transformation parameters for time series type embedding
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Figure 2.2: The architecture of the proposed hierarchical target-attentive HIN, illustrating

the aggregation of patient p’s context nodes with respect to diagnosis d

using a node-level attention mechanism, generating type-specific embedding vectors. The

attention weights are assigned based on the importance of the node in the prediction of the

diagnosis. We also present a type-level attention layer to learn the importance of each type

in predicting the target, further helping to obtain a diagnosis-aware patient representation.

Finally, to generate the aggregated type embedding for time-series nodes as well, we replace

the node-level attention mechanism with a deep sequential model.

In addition to learning node embeddings using the supervised model described above, we

use an unsupervised approach for learning embeddings in order to capture the structure and

semantically important relations in EHRs.

2.4.2 Network Node Embedding

Having N as the set of all network nodes, the embedding of n ∈ N is denoted as hn and

is obtained by looking up the corresponding vector from a trainable embedding matrix
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M ∈ R|N |×F , where F is the length of the embedding vector.

2.4.3 Target-attentive Node-Level Aggregation

As EHRs are composed of data of heterogeneous types, each node type can carry specific se-

mantic and diagnostic information. Therefore, we start the aggregation process of a patient’s

neighborhood by combining the context nodes based on their types, thus obtaining type rep-

resentation vectors. With this in mind, given a patient p, its type t neighborhood, Nt(p), and

a diagnosis node d with corresponding embedding vector hd, the node level target-attention

works as follows:

We first utilize a linear transformation layer, parameterized by a type-specific weight

matrix W t
c ∈ RF

′×F and bias vector btc ∈ F′
, to project p’s context nodes into a new feature

space that is more expressive for attention-based node scoring:

h
′

n = W t
chn + btc (2.1)

where hn and h
′
n, having length F and F

′
, denote the original and transformed embeddings

of context node n ∈ Nt(P ).

The importance of each node is then measured based on the similarity of its transformed

embedding to a diagnosis-specific attention vector qd ∈ F
′
. In the most general design, this

vector is obtained by applying a linear transformation, parameterized by weight Wq ∈ RF
′×F

and bias vector bq ∈ F′
, to the diagnosis node embedding hd, formulated as:

qd = Wqhd + bq (2.2)

where hd is the original diagnosis node embedding.

However, when working with low-level diagnosis codes, there is a significant imbalance

in their frequency in a real-world setting. Therefore, the prior approach may face trouble in

learning attention vectors for sparser codes. As such, grouping together those with similar

diagnostic processes and allowing them to share attention vectors can improve the expressive
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power of attention for sparser codes.

Following this idea and taking D
′

as the set of such a grouping with size |D′ |, qd can

be looked up from an attention matrix Q ∈ R|D′ |×F
′
, after mapping d to one of the |D′|

diagnosis groups. Q is randomly initialized and jointly trained by the model. It is important

to note that for high-level diagnosis classification task these groups can be defined the same

as diagnosis groups we are predicting for. We refer to this approach for the rest of this paper

as group-based attention.

Having the transformed node embedding h
′
n and diagnosis attention vector qd obtained,

the importance score between them denoted as etn,d, is calculated as:

etn,d =
qd · h′

n√
F ′

(2.3)

where t shows the type of node n and division by
√
F ′ is used to scale the score for improved

performance, following [52].

We then normalize the node importance scores using a softmax function to obtain the

attention coefficient αt
n,d.

αt
n,d =

exp(etn,d)∑
n′∈Nt(P ) exp(et

n′ ,d
)

(2.4)

Lastly, the normalized attention coefficients are used as weights for linear aggregation of

transformed node embeddings, which is then followed by a non-linearity function to form

the type embedding:

ztp,d = σ
( ∑

n∈Nt(p)

αt
n,d · h

′

n

)
(2.5)

where ztp,d denotes the representation of type t neighbors of p when predicting for diagnosis

d.
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2.4.4 Node-Level Time Series Aggregation

As discussed in section 2.4.2, the node embeddings used in the node-level aggregation process

are obtained using a shallow embedding lookup process. However, such a technique is not

usable for records kept in a time series format, as these records cannot be easily mapped to a

small fixed set of categorical values and as there would be too little sharing of nodes between

patients if each unique time series value were mapped to a node. Therefore, to incorporate

such records into our proposed information network, we employ a Long-Short Term Memory

(LSTM) [53] sequential model similar to [36]. In particular, patient p’s time series records

St(p) = {s1, s2, s3, . . . , sT} is first fed to the LSTM model and then the hidden state of the

last LSTM cell, denoted as vt, is transformed to a vector with embedding size F
′
, forming

the type t representation:

ztp,d = Wtvt + bt (2.6)

It is worth noting that the embedding obtained is not diagnosis specific, but we have included

d to keep the type representation notation consistent throughout the paper.

2.4.5 Type-Level Aggregation

After deriving type representations, Zp,d = {z1p,d, z2p,d, . . . , zTp,d}, our next step is to combine

them to generate the patient representation. Similar to nodes, the predictive power of the

different types may vary across diagnoses. For example, the diagnosis of some diseases relies

more upon the laboratory tests while others on symptoms.

Therefore, we propose to use another layer of diagnosis-aware aggregation. Similar to

node-level aggregation, a type-level attention vector is employed that can either be obtained

by a linear transformation of the original diagnosis embedding, parameterized by weight W s

and bias bs, or be looked up from the attention-matrix S ∈ R|D′ |×F
′
.

The normalized attention coefficient between the type t representation (ztp,d) and attention

vector sd is defined as:
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βt
p,d =

exp
sd · ztp,d√

F ′∑
z
′
p,d∈Zp,d

exp
sd · z′

p,d√
F ′

(2.7)

In the final step, the comprehensive patient representation, specific to prediction of diag-

nosis d, is denoted as fp,d and is obtained by combining the type representations as follows:

fp,d = σ
(∑
t∈T

βt
p,d · ztp,d

)
(2.8)

2.4.6 Model Inference and Optimization

In section 2.4.5, we explained how we obtain a set of patient representations Fp = {fp,d1 ,

fp,d2 ,. . ., fp,dk}, in order to predict each of the k diagnoses in D = {d1, d2, . . . , dk}. In this

section, we describe the optimization and inference of the two prediction tasks built on top

of these representations.

2.4.6.1 High-level Diagnosis Code Classification

As this task is formulated as a multi-label classification problem, we first feed the represen-

tations into a Multi Layer Perceptron (MLP) that maps FP 7→ D and is implemented in two

layers: the first one shared among all patient representations and the second one specific to

each diagnosis group. We then optimize the model by the following loss function:

L = mean(l1, l2, . . . , lk)

li = −yi log σ(xi)− (1− yi) log(1− σ(xi))
(2.9)

where yi denotes the ground-truth label for diagnosis di in patient p’s records and xi is

the prediction made by the model.
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2.4.6.2 Low-level Diagnosis Code Ranking

As this task is framed as a ranking problem, we rely on score calculation between a patient

and diagnoses. In particular, given a patient representation fp,d ∈ RF
′

learned with respect

to diagnosis d, the score of diagnosis d for patient p is defined as the dot product between

their representations:

score(p, d) = fp,d · h
′

d (2.10)

where h
′

d denotes the transformed diagnosis node embedding parameterized by Wd ∈ RF
′×F

and bias vector bd ∈ F
′
, which is in the same space as fp,d.

Using this score definition, we optimize the model using a hinge loss formulated as:

max(0,−score(d, p) + score(∼d, p) + ϵ) (2.11)

where ∼d is a negative diagnosis sampled for this patient and ϵ is the hinge margin.

2.4.6.3 Unsupervised Node Embedding

Besides the guidance of the supervised task, the network structure and relation of nodes can

provide additional information that can be embedded in node representations. To capture

this information, we employ an unsupervised network embedding objective similar to [9].

Formally, given a node i and its random neighbor j, we calculate the probability of observing

j as a neighbor of i, conditioned on the type of the simple or meta path r connecting them,

as follows:

P (j|i; r) =
exp(hi · hj)∑

j′∈Dest(r) exp(hi · hj
′ )

(2.12)

where Dest(r) is the set of all nodes that are possible destinations on a path of type r and

hi and hj are the embedding vectors of nodes i and j, respectively. As the above probability

becomes expensive to compute in large networks, we instead use negative sampling [40] to
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approximate the probability:

logP (j|i; r) ≈ log σ(hi · hj + br)+

k∑
l=1

Ej′∼P r
n(j

′ )[log σ(−hi · hj′ − br)]
(2.13)

The supervised objectives we introduced, try to learn the node embeddings suitable for the

diagnosis prediction task, while the unsupervised model embeds more general knowledge

about the relation and proximity of nodes. To combine these two types of models, we follow

the joint optimization approach suggested in [54] and define the following objective:

2.4.6.4 Combining the Supervised and Unsupervised Models

The supervised objectives we introduced learn the node embeddings suitable for the diagnosis

prediction task, while the unsupervised model embeds more general knowledge about the

relations and proximity of nodes. To combine these two types of models, we follow the joint

optimization approach suggested in [54] and define the following objective:

Ljoint = ωLunsupervised+

(1− ω)Lsupervised + λ
∑
i

∥hi∥22
(2.14)

where ω ∈ [0, 1] sets the weight used when sampling a model to train at each training step.

2.5 Experiments

In this section, we provide qualitative and quantitative evaluations of HTAD, demonstrating

its superior performance to existing models and its interpretability advantages.

2.5.1 Dataset

All evaluation experiments in this study are conducted using MIMIC-III database [43]. For

data preparation and preprocessing, we follow the steps introduced a recent study on stan-
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dardizing and benchmarking this dataset [36]. Accordingly, a total of 42,019 unique hospital

admissions are included for modeling, 35,725 of which are used for training and 6,294 of

which are used for testing. A mean of 11 diagnosis codes are recorded for each admission

with 6016 diagnosis codes overall. [36] also introduces a set of manually selected features for

model training, which we rely upon in our time series node aggregation process. Further-

more, for the task of high-level diagnosis prediction, we rely on the 25 disease phenotype

groups introduced in this study.

2.5.1.1 Evaluation Metrics

Prediction of high-level disease groups is considered a multi-label classification problem.

Accordingly, we follow existing works and employ Micro, Macro, and Weighted AUC-ROC

scores to evaluate this task.

On the other hand, the exact diagnosis code prediction task is considered a ranking prob-

lem. Following the common approaches in the evaluation of large-scale ranking tasks [55],

the ranking is conducted on a list of 100 codes, consisting of the original positive codes and

a number of negatively sampled diagnosis codes. We evaluate our performance on this task

using the Mean Average Precision at K (MAP@K), where K is set to 4, 6, 8, and 10.

2.5.2 Baselines

We compare our proposed model, HTAD, to recent studies that have achieved state-of-the-

art results in diagnosis prediction, including those using manual feature selection as well

as those relying on unsupervised EHR embedding. We also evaluate variants of HTAD to

demonstrate the effectiveness of each of its components. A comprehensive list of models

evaluated is as follows:

• Std-LSTM [36]: An LSTM-based model for predicting high-level diagnosis groups,

introduced as the standard baseline for diagnosis prediction task.
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• MMDL [37]: A multi-modal deep model for diagnosis group prediction that relies on a

comprehensive set of hand selected features extracted from categorical and time series

records in EHR.

• SAnD [56]: A recent study that employs a self-attention mechanism when modeling

the EHR data. This study relies on manual feature extraction as well.

• Med2Vec [38]: An influential skip-gram based model for embedding health records. As

this model is used to learn node embeddings and not for prediction, we employ mean

aggregation of the embeddings it learns to represent patients based on their records

and rely on supervised prediction methods similar to those used in HTAD.

• HeteroMed [9]: An HIN embedding method for modeling EHR data. Comparing to

HeteroMed can directly reveal the benefits of learning record importance scores, as its

basic architecture is similar to HTAD’s.

• HeteroMedMLP: A variant of HeteroMed that we use for the group-based diagnosis

classification task, obtained by replacing the hinge loss objective with HTAD’s multi-

label classification one, to achieve a fair comparison.

• HTADnoAttnGrp/noTS: A variant of HTAD that does not employ the group-based atten-

tion introduced in section 2.4.3. This model also excludes time series data so that the

performance comparison to HeteroMed is solely focused on the attention mechanism

used.

• HTADAttnGrp/noTS: A variant of HTAD that employs the group-based attention. For

fair comparison with HeteroMed, this model excludes the time series data as well.

• HTAD: Our proposed model, employing group-based attention along with time series

node aggregation.
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2.5.2.1 Implementation Details

We implemented HTAD in Python using TensorFlow [57]. HTAD is trained using the Adam

optimizer [58] and the learning rate of the optimizer, the batch size, the node embedding

size, and the attention vector size are set to 0.001 and 32,256, and 128 respectively. When

using grouped attention vectors, diagnosis groups are formed based on the CCS hierarchical

coding system [59]. Furthermore, the LSTM model used in node-level time series aggregation

is pre-trained using the model configuration proposed by the Std-LSTM model [36].

Our implementation of HeteroMed shares its code base with HTAD, particularly in net-

work formation and unsupervised node embedding training. For a fair comparison, both

models use the same set of hyperparameters and meta paths when training the unsupervised

node embedding task. The metapaths used are: labt← pati→ diag, diag ← pati→ symp,

labt ← pati → symp. Furthermore, we observed that running the unsupervised part as a

pre-training step provided the best results for low-level prediction in HTAD, and as such

for both models we do not employ joint training for this task. However, joint training is

employed in all other tasks. Med2Vec is trained with an embedding size of 256, and the

MMDL and SAnD models are run using the same parameters and setups suggested in their

studies. Experiments were run on one NVIDIA GeForce RTX 2080 Ti GPU and two cores

on an Intel Core i9-7920X CPU.

2.5.3 Evaluation of Disease Phenotype Classification

Table 2.2 lists the results obtained from evaluating our models on the diagnosis group classi-

fication task. Overall, we observe that HTAD outperforms all the baselines we investigated.

Inspection of results further demonstrates that:

• HTADAttnGrp/noTS shows notably higher performance than HeteroMedMLP. This com-

parison is important as it demonstrates the effectiveness of our target-attentive aggre-

gation mechanism versus models that otherwise share the same structure.

24



Table 2.2: Phenotype Classification Results

AUC-ROC

Model Micro Macro Weighted

Std-LSTM 0.821 0.77 0.757

MMDL 0.819 0.754 0.738

SAnD 0.816 0.766 0.754

Med2Vec 0.815 0.748 0.741

HeteroMed 0.831 0.745 0.739

HeteroMedMLP 0.864 0.788 0.786

HTADnoAttnGrp/noTS 0.871 0.829 0.815

HTADAttnGrp/noTS 0.874 0.832 0.818

HTAD 0.880 0.843 0.828

• Compared to HTADnoAttnGrp/noTS, HTADAttnGrp/noTS shows slightly better performance.

This indicates that defining independent attention vectors as in group-based attention

can be easier to train even when we are working with limited set of diagnoses.

• HTAD shows better performance than HTADAttnGrp/noTS, which is expected as the

latter does not utilize the time series information in our dataset.

• HeteroMedMLP outperforms HeteroMed by a considerable margin. This is in line with

our expectations, as the original ranking objective used in HeteroMed may not be op-
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Table 2.3: Exact Diagnosis Code Ranking

Model MAP@4 MAP@6 MAP@8 MAP@10

Med2Vec 0.752 0.743 0.738 0.714

HeteroMed 0.866 0.843 0.814 0.805

HTADnoAttnGrp/noTS 0.867 0.842 0.813 0.806

HTADAttnGrp/noTS 0.888 0.848 0.821 0.810

HTAD 0.890 0.881 0.865 0.923

timal for multi-label classification, and we expected that adjusting that could improve

the performance.

• HeteroMedMLP shows performance distinctly superior to that of the methods that rely

on deep neural networks (SAnD, Std-LSTM, MMDL). This can be attributed to the

fact that information networks eliminate the need for manual feature selection and

allow for the incorporation of all clinical records. HeteroMedMLP also outperforms

Med2Vec, which is expected as it employs a more semantic-aware node representation

learning approach.

2.5.4 Evaluation of Exact Diagnosis Code Prediction

The feature extraction based studies introduced for evaluation of the previous task have not

approached the task of exact disease code prediction, mainly due to the huge size of the

prediction space. In this study, we evaluate variants of our model against HeteroMed and

Med2Vec, results of which are presented in Table 2.3 that shows:
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Figure 2.3: Distribution of attention scores for prediction of kidney disease and diabetes in

a patient presenting with both conditions

• HTAD, which incorporates time series data as well as group-based attention, outper-

forms all other models.

• Similar to the high-level classification task, a comparison between HTADAttnGrp/noTS

and HeteroMed reveals the significance of employing hierarchical attention mechanism

in node-aggregation.

• The performance gain of HTADAttnGrp/noTS compared to HTADnoAttnGrp/noTS is signif-

icantly greater in this task. This gain can better demonstrate the advantage of using

the group-based attention mechanism. As discussed before, sharing attention vectors

among similar diagnoses can result in better performance for less common ones that

otherwise remain under-trained.
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2.5.5 Analysis of Attention Mechanism

Besides the performance improvement that our proposed hierarchical attentive architecture

offers, one major benefit it provides is the interpretability of its results. We illustrate this

in the node-level aggregation process in Fig. 2.3. We consider a patient diagnosed with

both diabetes and kidney failure and study the importance score assigned to each of his 59

laboratory tests when predicting these two conditions.

The first important observation from this figure is that the set of laboratory tests the

model attends to varies between the two diagnoses. As the figure shows, the highest attention

score for the detection of diabetes is given to blood glucose level, which is a key predictor

for diabetes. Similarly, the laboratory tests listed for kidney failure are highly indicative of

this condition.

Additionally, we observe a larger skewness in attention scores when predicting for dia-

betes, with glucose having a notably higher score than other labs, than we do when predicting

for kidney disease, where attention scores are more evenly distributed. This can be attributed

to the fact that kidney failure is indicated by multiple factors while blood glucose is a single

key indicator of diabetes. Insights such as these can be highly beneficial in supporting the

diagnosis decision process.

We next analyze the attention scores in the type-level aggregation. Fig. 2.4 is a box plot

demonstrating the range of attention weights assigned to different type-level embeddings

across all the diagnoses in our test set. As we can see, the procedures and laboratory tests

are overall our main predictors of diagnoses. However, there is more variance in procedure

scores than in laboratory test scores, indicating that the predictive power of this category

varies across diagnoses.
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Figure 2.4: The distribution of attention weights among various record types

2.6 Conclusion

In this chapter, we introduced HTAD, an HIN based model incorporating a hierarchical

attention mechanism for diagnosis prediction using EHRs. In HTAD, a patient representation

is learned through a target-attentive aggregation of its clinical records’ embeddings, a process

that allows distinguishing important record items for the prediction of a specific diagnosis.

The novelty of this approach lies also in the interpretability it offers. Additionally, HTAD is

capable of incorporating non-categorical records unused by past approaches. Experimental

results demonstrate HTAD’s superior performance compared to the previous state-of-the-art

methods and the interpretability of its predictions.
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CHAPTER 3

Psychological Stress Detection in Older Adults With

Cognitive Impairment Using Photoplethysmography

In this chapter, we discuss a system that leverages low cost mobile sensors to continuously

monitor elderly patients for cognitive impairment risk factors. Our system generalizes well

across patients of different genders and cognitive status, something that is important due to

the underlying biological differences that can exist between these populations.

Psychological stress can have significant impacts on both physical and mental health.

Chronic stress brings multiple adverse health outcomes, including cognitive difficulties. Un-

fortunately, there is a dearth of literature on the use of physiological sensor data to detect

stress and analysis on the effects of gender and cognitive impairment on stress response in

older adults, an especially important cohort as the population of the United States continues

to age. We developed a physiological signal data collection system based on a portable device

and a smartphone and used it to acquire signal data from 62 older adults (72± 10 years old;

30 cognitively healthy, 31 with mild cognitive impairment, and 1 with Alzheimer’s disease)

in three conditions: rest, psychological stress, and recovery. Through a classifier trained

on this data and our own analysis, we show the different impacts of psychological stress in

healthy and cognitively impaired older adults as well as in males and females. Our classifier

achieved a 0.84 F1-score when discriminating between the rest and stress conditions. Our

proposed system can be used as a continuous stress monitoring system in real-world settings

that is non-invasive, portable, and easy to use.
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3.1 Introduction

Cognitive impairment, especially that associated with aging, has a significant cost both for

our society and our healthcare system. The impact of Alzheimer’s disease (AD) and other

forms of dementia is consistently increasing, with over 8.3 million years of potential life lost

worldwide in 2012, more than the double the number lost in 2000 [60]. The estimated cost of

lifetime care for an individual with dementia in the United States was $350,000 in 2018, and

in 2018 alone the unpaid assistance given by caregivers totaled over 18.5 billion hours [61].

The increasing prevalence of cognitive impairment, coupled with an aging US population,

means that maintaining health in aging for our elderly will be an important challenge to

address in the next decade [62].

Early identification of risk factors for cognitive impairment can allow for effective treat-

ment and intervention, helping to reduce their impact on AD. Physiological dysregulation

due to stress is associated with age-related cognitive deficits [63]. Studies have shown a pos-

itive correlation between cortisol levels and cognitive decline. Lupien et al. [64] followed a

group of healthy adults as they aged, and they found that the adults that developed memory

deficits had increasing cortisol secretion every year, resulting in high cortisol levels at the

end of the study [65]. This study also found that persons with mild cognitive impairment

(MCI), the risk state for developing dementia, tend to release more cortisol than healthy

adults, while AD patients release more cortisol than those with MCI [65].

Unfortunately, cortisol measurement is not always readily attainable, and traditional

methods of psychiatric assessment, such as clinical interviews and self-reports, have limita-

tions. The latter assessment methods depend on retrospective summaries and subjective

observations, which can result in reporting biases, inaccurate recall, and delayed treat-

ment [66]. These assessments are also too coarse-grained to capture the dynamic nature

of daily stress [67]. Timely intervention with a reliable mental stress detection algorithm can

prevent stress from becoming chronic [68].
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One alternative method for identifying stress is the use of a Photoplethysmography (PPG)

sensor. PPG signals can provide valuable information about the cardiovascular system, such

as irregularities in heart rhythms [69], and they can be captured non-invasively and at low

cost using commercially available devices such as pulse oximeters, smartwatches, and even

some smartphones. PPG sensors use a light source and a photodetector to measure the

volume of blood flow based on the received light, giving insight into heart activity [69].

Heart rate variability (HRV), the variation in the time between heart beats, is the most

critical marker for recognizing the reaction of the autonomic nervous system in response

to stress [70]. Stress reactivity and recovery data obtained from HRV signals may deliver

critical information on stress-related cardiovascular disease [71]. Unfortunately, there are

few studies that use sensor data to examine how gender and cognitive differences in older

adults correlate with stress response.

This study aims to address these unknowns by evaluating the feasibility of using a novel

PPG-based stress monitoring system to continuously and reliably identify psychological

stress. Building a useful stress monitoring and management solution requires the gathering

of physiological sensor data for stress detection and validation through data-driven analysis.

In our previous publication [72], we developed a mobile application to collect PPG signals

using a wireless pulse oximeter and validated that PPG data can contribute to the identi-

fication of MCI in conjunction with conventional cognitive tests. In this paper, we apply

machine learning algorithms to investigate psychological stress detection in older adults us-

ing only PPG-derived features. We also identify statistically significant correlations between

cognitive status, gender, and stress response that may be useful for future analysis.

3.2 Related Work

Several techniques for detection of mental stress using objective readings from physiological

sensors have been proposed. Some of these proposed techniques synthesize readings from
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multiple sensors to perform their detection. In [73], researchers collected ECG, respiration,

skin conductance, and electromyography (EMG) signals from 30 young adults. Mental stress

was induced by having participants perform mathematical calculations, a logic puzzle task,

and a memory task. The classification accuracy of the resulting system when identifying

stress and non-stress conditions was 80%. In [70], 10 young adults wore a commercial

smartwatch to obtain skin conductance, heart rate, and body temperature. Researchers

induced stress using logic tasks and identified stress conditions with 84.5% accuracy using

a K-Nearest Neighbors classifier. These studies above reported that mean heart rate, mean

heart peak-to-peak intervals, and the standard deviation of the peak-to-peak intervals are

the most useful time-domain cardiovascular features for stress detection.

Following along these lines, several studies have performed stress detection using only one

wearable sensor. Stress Hacker [67] used a commercially available Empatica E4 wristband

to obtain PPG signals in real-life settings. Twelve study participants provided a list of their

daily stress dynamics, split into four tiers of stress, and classification accuracy was 88.6%.

A study in [71] analyzed how age and gender affected heart rate changes in response to a

social stress test. The researchers focused not only on the peak stress response, but also the

recovery process after stress, allowing for an understanding of the physiological resilience of

individuals. They collected heart rates using chest ECG device from 28 children, 34 younger

adults, and 26 older adults. They found that the older group had lower heart rates, both

while resting and after the induction of stress, than younger subjects. Additionally, they

found that during the stress recovery phase the heart rates of older men returned to baseline,

while the heart rates of older women remained elevated. These studies validate the feasibility

of stress detection using only one sensor. However, while these studies did investigate how

physiological responses to stress differ in older adults, they did not investigate the effects of

cognitively impaired aging on stress response.
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3.3 Methods

3.3.1 Physiological Recordings

For our study, participants are equipped with the Nonin fingertip pulse oximeter (Nonin

Onyx II 9550; Nonin Medical, Plymouth, MN) [74] on the index finger of the non-dominant

hand. The Nonin pulse oximeter is a clip type PPG device that measures heart rate (HR)

and peripheral capillary oxygen saturation (SpO2) with a 3 Hz sampling rate and PPG with

a 75 Hz sampling rate.

We use a study-provided smartphone to wirelessly collect PPG signals from the pulse

oximeter. The details of the system architecture and the data collection protocol are de-

scribed in [72].

3.3.2 Experimental Protocol

Our data collection system measured the physiological state of sixty-two older adults (Ta-

ble 3.1) in three study phases:

1. Rest phase: The baseline PPG recordings were three minutes long and made when

participants were in a relaxed state and seated.

2. Psychological stress phase: Mental stress was induced by three cognitively chal-

lenging tests: the California Verbal Learning Test-II (CVLT-II) [75], the Auditory

Consonant Trigrams (ACT) test [76], and the Stroop test [77]. The PPG recordings

for this phase are from 20 to 30 minutes long, depending on how long participants took

to complete the tests.

3. Recovery phase: After the completion of a multi-hour neuropsychological evaluation,

the participants rested while another three minute PPG Signal was recorded.
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Table 3.1: Demographic of Study Population

Control Cognitively Impaired Total

(N=30) (N=32) (N=62)

Age

Mean(SD) 70.7 (11.6) 74.9 (9.3) 72.9 (10.6)

Median 73.0 76.5 74.0

Range 53, 92 56, 91 53, 92

Gender, n(%)

Male 14 (46.7%) 16 (50.0%) 30 (48.4%)

Female 16 (53.3%) 16 (50.0%) 32 (51.6%)

3.3.3 Feature Extraction

We divide the time-series physiological recordings into one minute windows to generate

features. Each window contains 180 samples for HR, 180 samples for SpO2, and 4500 samples

for PPG, and is labeled as rest, stress, or recovery. Statistical features, including minimum,

maximum, range, median, mean, standard deviation, variance, and kurtosis are extracted

from each signal in each window. A peak detection algorithm [78] is used to generate features

from PPG signals in the time domain, such as the number of peaks per window (countPeaks),

the mean of peak-to-peak (PP) intervals (meanPP), the standard deviation of PP intervals

(SDNN), and root mean square of successive differences between successive peaks (RMSSD).

A total of twenty-eight features are extracted from the physiological recordings. These

features are rescaled using min-max normalization before they are used for model training.
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3.3.4 Classification Scenarios

The dataset has 1954 unique 1-minute recordings from 62 participants. To compare stress

reactivity based on cognitive status, the dataset is split into healthy aging (control) and

cognitively impaired aging (MCI and AD). As the psychological stress portion of the study

took 20-30 minutes per patient versus 3 minutes for rest or recovery, we have almost ten times

more psychological stress samples (1582) than rest or recovery samples. To help models learn

effectively despite this class imbalance we employed undersampling, keeping only 300 random

samples of the psychological stress class. In the end we have a total 672 samples, with 350

from the cognitively impaired aging group and 322 from the control dataset.

We investigated five classic machine learning models for the task of detecting the psycho-

logical stress phase. These models included Logistic regression (LR), Random Forest (RF),

Extra Trees (ET), Support Vector Machine (SVM), and Multilayer Perceptron (MLP). Each

of these models was trained using scikit-learn [79]. We randomly split the subjects into 75%

train set and 25% validation set, ensuring that samples from any subject are not used for

both training and validation. We refrained from using deep learning models as these can

require tens of thousands or even millions of training samples, and our dataset is relatively

small.

As physiological state at baseline, during stress, and after stress may be different, we

measured classification accuracy on four different classification tasks:

• Rest vs. Stress : a binary classification between the rest phase and the mental stress

phase.

• Stress vs. Recovery : a binary classification between the mental stress phase and the

recovery (post-stress) phase.

• Stress vs. Non-stress : a binary classification between mental stress and non-stress

conditions (both rest and recovery phases).
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(a) Cognitively Impaired (b) Control

Figure 3.1: ROC curves and AUC

• Rest vs. Stress vs. Recovery : a 3-class classification among rest, mental stress, and

recovery phases.

3.4 Experimental Results

Table 3.2: F1-score of Stress Detection across Cognitively Impaired Aging and Control

Groups

Classification Rest vs. Stress Stress vs. Recovery Stress vs. Non-stress Rest vs. Stress vs. Recovery

Cognitive Impaired Yes No Yes No Yes No Yes No

LR 0.76 0.83 0.63 0.76 0.71 0.78 0.54 0.61

Random Forest 0.69 0.78 0.56 0.62 0.56 0.80 0.45 0.55

Extra Trees 0.70 0.84 0.53 0.72 0.58 0.80 0.39 0.55

SVM 0.60 0.83 0.58 0.75 0.57 0.78 0.46 0.59

MLP 0.75 0.79 0.59 0.82 0.62 0.78 0.48 0.61

Table 3.2 shows the F1-score of each classification scenario for each of the learning models.

The Rest vs. Stress binary classification tasks have the best classification accuracy (0.76 and

0.84) among the classification scenarios. We interpret this to mean that PPG-derived features

have clear differences between rest and mental stress states. The next highest stress detection
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accuracy is observed in the Stress vs. Non-stress task, where rest and recovery classes are

combined for Non-stress. We observe the lowest classification performance in the three way

Rest vs. Stress vs. Recovery task. One possible explanation for the lower performance on

this task is that our PPG-derived features may not always significantly differ between the

rest and recovery periods.

Table 3.2 also breaks down performance based on cohort. We observe that the learning

models generally perform worse at identifying stress states in the cognitively impaired adults,

perhaps indicating a less well defined physiological response in this group. The receiver

operating characteristic (ROC) curves and the area under the curve (AUC) for the Rest

vs. Stress classification (Figure 3.1) lend support to this possibility because the AUC of

the cognitively impaired group (Figure 3.1a) is less than the control group (Figure 3.1b).

These results indicate that stressors typically prompt cardiovascular changes in older adults,

but the changes can be less pronounced in individuals with cognitive deficits. It is possible

that since cognitively impaired older adults experience cognitive difficulties in everyday life,

the cognitive tests we administered may not have been as stress-inducing to them as the

tests were to the controls. We conclude that psychological stress detection using one minute

windows of easily obtained PPG data is feasible, particularly using the logistic regression

model, which attained high F1-scores while also being lightweight and efficient to run.

3.4.1 PPG Features Across Cohorts

In addition to investigating whether machine learning models could discriminate between

stress states, we also investigated whether there might be any differences in the PPG-derived

features that would allow a human to differentiate between the cognitively impaired and the

control groups.

We plot the distribution of mean heart rate (meanHR), range of PPG signals (range-

Pleth), and RMSSD, shown in Figure 3.2. In [71], the heart rates of older women were found

to increase after mental stress. However, our analysis suggests that women with cognitive
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Table 3.3: Statistically Significant Correlation with Cognitive Status

Feature

RMSSD during stress

SDNN during stress

meanPP during stress

meanHR during stress (female only)

deficits do not have increased heart rates in response to these stressors. The basal heart rate

of older women is higher than older men (Figure 3.2a). The mean rangePleth of older men

is highest in the rest state, followed by the stress phase and lastly the recovery phase. On

the other hand, older women typically have the highest rangePleth in the stress phase, and

cognitively impaired women generally have higher rangePleth than the control (Figure 3.2b).

RMSSD is an indicator of the psychological stress period for both genders, but RMSSD for

women is higher and the difference between phases is bigger than for men (Figure 3.2c).

We also used a Python implementation of an independent t-test [80] to determine which

measures of stress response were statistically different across cohorts, comparing the features

of the MCI group’s PPG signals in each phase to those of the control group, split by gender.

3.4.1.1 Cognitive Decline

We show the list of all features we found to differ statistically significantly (ps < .05)

when comparing participants of a given gender with and without cognitive impairment in

Table 3.3. For meanHR, there was no statistically significant difference (p < .05) between

normally aging and cognitively impaired males, and for females there was only a significant

difference in the “during stress” phase.
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Table 3.4: Statistically Significant Correlation with Gender

Feature

RMSSD at rest

RMSSD during stress

RMSSD during recovery (healthy aging only)

MeanHR at rest

MeanHR during stress (healthy aging only)

MeanHR during recovery

SDNN at rest (cognitively impaired aging only)

SDNN during stress

SDNN during recovery (healthy aging only)

meanPP (all stages)

Our analysis suggests that cognitive decline was associated with a statistically significant

difference in meanPP during the mental stress phase in both males and females, and that

no significant difference existed in the rest or recovery phases. We observe a similar pattern

for RMSSD and SDNN, with cognitive decline being associated with a significant increase

in HRV during the stress phase, but not the rest or recovery phases.

3.4.1.2 Gender

We show the list of all features we found to differ statistically significantly (ps < .05) when

comparing participants of a given cognitive status across gender in Table 3.4.
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3.4.2 Limitations

One limitation of our proposed approach is that the PPG sensor used may still generate poor

readings if the subject is moving. In order to reduce possible motion artifacts in this study,

we disallowed hand-movement while recording PPG signals. While the goal is to create a

system that could continuously monitor mental stress throughout the day, it may be difficult

to generate readings in situations where a user is not completely stationary. Reducing motion

artifacts in PPG is an active area of research [81,82], and such techniques may help to make

our system more flexible. While the Nonin fingertip pulse oximeter provides readings of high

enough quality to be used in healthcare settings, it can still provide low quality readings when

certain factors are in play, such as extreme ambient light, moisture, or fingernail polish [74].

Another limitation of this study is that while many forms of mental stress exist, we only

induced mental stress using three cognitively challenging tasks. While our analysis shows

that our proposed system is useful for identifying the stress induced by these tasks, we have

not yet proven whether it is also able to capture other forms of stress, such as financial or

social factors, as well.

Lastly, stress is not simply an all or nothing state: stress exists on a spectrum, and indi-

viduals may experience widely varying stress levels throughout the day, sometimes rapidly

transitioning between them. This is in contrast to our study, in which we sought only to

determine whether an individual was in a relaxed or stress-induced state. More research

must be done in order to determine whether our method can be extended to detect various

stress levels in an elderly population.

3.5 Conclusion

We successfully identified mental stress conditions based on features extracted from PPG

sensor data from 62 older adults. Our high-accuracy classification results indicate that mon-

itoring heart activity with a PPG sensor can assess psychological stress in older adults.
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Based on our classification results, our features may not sharply distinguish between rest

(pre-stress) and recovery (post-stress) states. Our further analysis with learning models and

statistical analysis provides insight into the associations between gender, cognitive impair-

ment, and psychological stress reactivity and recovery. With insight into these associations,

we were able to achieve high accuracy in a diverse population with physiological differences.

The system’s portability and convenience, especially if coupled with a wrist-worn PPG de-

vice, give it the potential to monitor daily stress dynamics in real-life environments. The

classification models we used can be run on smartphones, allowing for real-time stress detec-

tion, a stark contrast to the survey-based conventional methods of stress and MCI detection.

Personalized stress monitoring and management using a PPG sensor is an exciting option

for promoting positive health outcomes among older adults.
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(a) Mean Heart Rate

(b) Range of PPG signal

(c) RMSSD

Figure 3.2: Distribution of the PPG features
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CHAPTER 4

Predicting Rapid Kidney Function Decline Using EHR

Data Despite High Missingness

In this chapter we describe a system for the prediction of rapid kidney function decline, as

well as how the system can be used to identify risk factors for this rapid decline. While

the progression of chronic kidney disease (CKD) to end stage kidney disease is typically a

gradual process occurring over 1-2 decades depending on the cause, in some cases progression

occurs rapidly and unexpectedly, with patients losing over 40% of their kidney function in

just two years. Rare disease phenotypes such as this are easier to study when researchers

have access to detailed accounts of the outcome in question. Automated tools can identify

individuals at risk of renal function decline and facilitate disease mitigation, but electronic

health record (EHR) datasets can be challenging to work with due to high levels of missing

data. This paper describes a model for the prediction of rapid kidney function decline despite

high missingness, capable of generating quality predictions despite many of the most useful

features being missing more than 50% of the time. Additionally, the model’s scores are used

with combinations of features to identify population cohorts at risk for rapid kidney function

decline. This study finds that that rapid eGFR decline can be detected most reliably among

middle-aged patients with reduced eGFR, elevated urine albumin-to-creatinine ratio and

elevated systolic blood pressure.
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4.1 Introduction

Chronic kidney disease (CKD) is one of the most prevalent chronic health conditions in the

world, with an estimated 10-13% of all individuals affected [83]. Not only can CKD lead to

severe complications such as end-stage kidney disease (ESKD), but it is also a significant

risk factor for cardiovascular disease, death from COVID-19, and overall mortality [84–88].

As a chronic condition, kidney health management typically includes lifestyle modifications,

patient monitoring, and the use of medications to slow disease progression [89], as well

as kidney transplantation, when indicated and available [90, 91]. However, some patients

progress rapidly or non-linearly in the span of just a few years [90, 92, 93]. In fact, rapid

decline that results in the loss of 40% or more of kidney function within two years is such

a strong predictor of kidney failure that it is used as an alternative outcome to ESKD in

clinical trials [94]. Little is currently known about why some patients experience more rapid

kidney function decline than others. To better understand the complex interactions between

various potential risk factors, a prediction system was built to examine 40% renal function

decline, as based on estimated glomerular filtration rate (eGFR), using the CURE-CKD

registry [95,96] with two goals in mind:

1. To identify individual patients at risk of 40% renal function decline in order to facilitate

disease mitigation, as well as to identify associated risk factors; and

2. To identify populations at higher risk of 40% decline, creating insights into key differ-

ences between (sub)groups

This paper describes the development of a set of predictive models for assessing the

risk of rapid eGFR decline, defined as a > 40% decrease in eGFR over two (2) years [94],

and identifies populations at higher risk of this rapid decline. The modeling and analysis

conducted show that rapid eGFR decline can be detected most reliably among middle-aged

patients with reduced eGFR, elevated urine albumin-to-creatinine ratio, and elevated systolic
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blood pressure. The patients and subpopulations identified are strong candidates for closer

study.

4.2 Related Work

4.2.1 Predicting CKD and Progression to ESKD

While the study of rapid kidney function decline is a relatively recent phenomenon [97], a

great deal of work has been done to understand CKD progression [90,98,99], particularly to

assess potential renal failure. One of the most widely used and validated tools for predicting

the 2- and 5-year risk of renal failure is a Cox proportional hazards-based model developed

by Tangri et al. [100]. This model has been validated in a multinational study of more

than 700,000 patients, demonstrating good discrimination across cohorts diverse in their

age, race, and diabetes status [101]. A review of other models for prediction of kidney

failure shows that they often rely on myriad labs, including some such as albuminuria and

plasma biomarkers that are inconsistently collected, even in at-risk patients [98,99,102–106].

As such, many of these tools have seen limited adoption given missing data and pragmatic

implementation [98]. Some models, such as Tangri’s [100], address this challenge by providing

multiple separate risk equations: a higher accuracy model incorporating many labs, and a

simpler model using just more common lab values [107–110]. However, these models cannot

conclude on the significance of the presence or absence of a specific variable, and the simpler

models are typically less accurate [103]. Moreover, falling back to a simpler model relies

on the assumption that data is missing completely at random [111] and can result in a loss

of performance in situations where the absence of information, (e.g., fewer blood pressure

readings in healthier patients) [112].

Still, a noted strength of proportional hazards models and other regression-based models

is that each risk factor is assigned a particular hazard ratio or risk score. These interpretable

scores then enable insights into factors associated with eGFR decline (e.g., hyperfiltration
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in patients with diabetes [113,114], cardiovascular disease [115,116]). However, the insights

provided by these models are limited as they do not consider the interactions between risk

factors, instead assuming an additive risk model for each factor.

A comprehensive external validation study of eleven kidney failure risk models [103] found

that when accounting for competing risks, the models investigated had average c-statistics

of 0.74 on the European Quality Study dataset and 0.80 on the Swedish Renal Registry

dataset [117]. This stands in contrast to an average c-statistic of 0.89 in past validations,

which did not account for competing risk factors [103]. Most models with longer prediction

horizons were found to overpredict risk considerably, with the 5-year kidney failure risk

equation [101] overpredicting risk by 10-18% [103].

4.2.2 Predicting Rapid Decline

Although the above approaches are useful for understanding kidney function decline in CKD

patients and patients at-risk of CKD on a population level, some studies have found that the

trajectory of kidney function decline in the sickest patients varies greatly from others at risk

of kidney failure. For example, O’Hare et al. analyzed the eGFR trajectories of Veterans

Affairs patients in the two years before initiation of long-term dialysis [118], finding that

the trajectories could be split into four distinct categories. For most patients, the decline

into kidney failure was gradual and prolonged, with a decline of as little as 5 mL/min/1.73

m2 per year. Yet some patients were observed to decline more precipitously, with an initial

period of stable kidney function followed by a decline of more than 20 mL/min/1.73 m2 per

year - a greater than 40% decrease in eGFR within two years, a phenotype that is both

rare [119,120] and clinically significant [97,119–121].

Indeed, while general kidney failure risk models incorporate risk factors to understand

unique patient characteristics, they have not been built in a way that allows them to ac-

curately predict those who would have rapid decline. Some effort has been undertaken to

address this challenge, building prediction models that focus explicitly on rapid kidney func-
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tion decline, variably defined as a loss of at least 3-10 mL/min/1.73 m2 per year. Such models

often incorporate additional variables beyond the ones used in standard CKD progression and

kidney failure models, including blood biomarkers [122] and longitudinal electronic health

record (EHR) data [123]. Though these works show good performance, they markedly re-

quire even more information in an already high data missingness environment. Additionally,

their definitions of rapid decline are less strict than the definition used in this study (a > 40%

decrease in eGFR within two years), resulting in decreased specificity for finding the most

severe cases of rapid decline.

To address these issues, the chosen approach for this study is based on machine learning

(ML) models capable of learning the complex nonlinear interactions between risk factors in

the patients with a > 40% decrease in eGFR within two years. Additionally, the technique

is designed with data missingness in mind, assuming it to be the norm rather than the

exception, so that the models may use as many variables as possible while also understanding

what the presence or absence of data may indicate.

4.3 Methods

4.3.1 Population

Analysis was performed using the CURE-CKD registry [95, 96], a large EHR dataset that

contains records for more than three million patients (Figure 4.1). Patients are split into

two groups based on kidney function: those with diagnosed CKD and those at-risk for CKD.

Here, the CKD group consists of patients with eGFR < 60 ml/min/1.73 m2, a CKD diagnosis

by ICD-9/ICD-10 codes, or albuminuria; and the at-risk for CKD group consists of patients

with CKD risk factors including diabetes and hypertension. These groups are based on

EHR coding from patients with CKD (N=599,121) and at-risk for CKD (N=2,566,172). All

patients have at least two years of follow-up. To reduce uncertainty, all patients without a

year two eGFR value were excluded. In total, 21,641 (0.68%) patients met the definition of
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Total Registry

n=3,500,000

Total Eligible

n=3,165,293

Total Included

n=1,169,548

CKD

n=230,413

At-Risk

n=939,135

Rapid Decline

N=21,641

At-Risk n=12,322

CKD n=9,309

Between 18 and 100 years of age

eGFR present at year 2

Figure 4.1: STROBE Diagram: Overview of participant groups by CKD and at-risk CKD

categories in the study
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rapid kidney function decline used in this study at the 2-year mark. The prevalence of rapid

decline differs between the CKD and at-risk groups, with 9,400 patients (1.6%) meeting the

criteria in the CKD group and 12,241 (0.48%) meeting the threshold in the at-risk group.

Table 4.1: Continuous variables used in analysis

Variable Name Mean (SD) Median (IQR) Percent Missing

Age, years 58.34 (16.94) 59 (23) 0.00%

eGFR, mL/min/1.73 m2 82.08 (23.76) 83.7 (31.6) 0.07%

HbA1c, percent 6.60 (1.63) 6 (1.4) 76.57%

UACR, mg/g 101.19 (443.45) 11.6 (27.6) 93.82%

UPCR, g/g 1.45 (2.56) 0.42 (1.34) 99.53%

Diastolic blood pressure, mm Hg 74.85 (10.20) 75 (13) 50.14%

Systolic blood pressure, mm Hg 128.32 (16.17) 127 (21) 50.07%

Ambulatory visit count 5.32 (6.60) 3 (6) 0.00%

Inpatient visit count 0.11 (0.41) 0 (0) 0.00%

ACE inhibitor, ARB use, days 7.75 (24.60) 0 (0) 0.11%

SGLT2 inhibitor use, days 0.07 (2.38) 0 (0) 0.00%

GLP-1 agonist use, days 0.13 (3.18) 0 (0) 0.00%

NSAID use, days 5.01 (19.65) 0 (0) 0.10%

Proton pump inhibitor use, days 4.81 (19.38) 0 (0) 0.12%

4.3.2 Model Variables

Variables in the CURE-CKD registry (Table 4.1 and Table 4.2) include: age; sex; race/

ethnicity; eGFR; systolic blood pressure (SBP); hemoglobin A1C (HbA1c); the number of

days of use at study entry for common medications that may affect kidney function, such as
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Table 4.2: Categorical variables used in analysis

Characteristic No. (%)

Sex

Male 648 238 (55.4%)

Female 521 310 (44.6%)

Site Source

UCLA 978 602 (83.7%)

Providence

Health
190 946 (16.3%)

Race/ethnicity

White

Non-Latino
762 903 (66.9%)

White Latino 41 143 (3.6%)

Black 54 455 (4.8%)

Asian 69 476 (6.1%)

American

Indian
11 203 (1.0%)

Hawaiian 6 862 (0.60%)

Other 113 892 (10.0%)

Not categorized 80 148 (7.0%)

Characteristic No. (%)

Rural-Urban Commuting Area

code

Urban 1 049 717 (90.6%)

Large rural 57 284 (4.9%)

Small rural 26 179 (2.2%)

Isolated 24 816 (2.1%)

Medical Conditions

CKD from eGFR 205 896 (17.6%)

CKD from eGFR,

no race
210 093 (18.0%)

CKD from ICD-9/10 35 649 (3.0%)

CKD from

albuminuria
20 816 (1.8%)

Diabetes mellitus 182 911 (15.6%)

Prediabetes 115 929 (9.9%)

Hypertension 406 035 (34.7%)

51



angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB);

and the diagnosis of hypertension, type 2 diabetes, and/or CKD. Urine albumin-to-creatinine

ratio (UACR) and urine protein-to-creatinine ratio (UPCR) are also used, two lab tests that

are used to establish kidney disease clinically [89]. Every variable in the CURE-CKD registry

is used in this analysis. This approach was used as the importance of the various variables

for rapid decline and the potentially complex interactions between variables are not known,

and it would be undesirable to prematurely filter out information that may be useful.

4.3.3 Data Preparation

One challenge presented by data obtained from many registries, compared to clinical trial

data, for instance, is that the patients’ records are typically not complete. As such, there

are varying levels of missingness in the dataset. For example, 50% of patients are missing

SBP readings at study entry, as shown in Table 4.1.

The data preprocessing for the predictive models takes steps to minimize the effects of

this missingness. The data preparation consists of three steps. First, as correlations between

a missing value and a patient’s health status are expected, missing values are not simply

imputed. Instead, to preserve the information that a patient was missing a particular vari-

able, indicator variables are added for each feature that contains missing information [124].

This indicator flag is then set whenever the corresponding variable is missing. By way of

illustration, if a patient has no systolic blood pressure reading at study entry, the value of

the “SBP is missing” variable is set to “1” for that patient. Second, tabular data is converted

into a normalized form for ingestion by the model. This step consists of one hot encoding

all categorical variables and normalizing continuous variables by subtracting the mean and

scaling to unit variance. Lastly, after specifying the indicator variables, mean imputation is

used to fill in missing values. Mean imputation was chosen so that the imputed values will

have a minimal effect on the overall distribution of continuous variables.

The data processing pipeline is built using Pandas 1.1 [125] and NumPy 1.19 [126] for

52



Table 4.3: Hyperparameter search space for deep neural network (DNN)

Hyperparameter Name Possible Values

L2 Regularization Weight Range(.0001, .25), log sampled

No. Hidden Layers Range(1, 16), linearly sampled

Learning Rate Range(1−6, 1−2), log sampled

Units in first hidden layer Range(16, 512), linearly sampled

Table 4.4: Hyperparameter search space for logistic regression (LR)

Hyperparameter Name Possible Values

Inverse Regularization strength 20 values logarithmically spaced from 1−4 to 13

Regularization L1, L2

data manipulation, and scikit-learn 0.24.2 [79] for imputation and scaling.

4.3.4 Predictive Modeling

With a goal of training a high performing model for the task of predicting rapid kidney

function decline, three different families of classification models were investigated:

• Deep neural network (DNN): A multilayer perceptron with dropout and L2 regu-

larization was developed. The number of layers in the model, the width of each layer,

the weight for L2 regularization, and the learning rate were selected through a hyperpa-

rameter search with the Hyperband algorithm [127] implemented in KerasTuner [128].

The model that performs best on the validation dataset consists of one hidden layer,

an L2 regularization weight of 2.9 × 10−4, 272 units in the first hidden layer, and a

learning rate of 8.6 × 10−4. The DNN was built using TensorFlow 2.2 [129]. The full
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Table 4.5: Hyperparameter search space for gradient boosted trees (GBT)

Hyperparameter Name Possible Values

Learning Rate 0.05, 0.10, 0.15

Min Child Weight 1, 3, 5, 7, 10

Gamma 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, 5

Subsample 0.6, 0.8, 1.0

colsample by tree 0.5, 0.6, 0.7, 0.8, 1.0

Max Depth 3, 6, 8, 10, 12, 15

No. Estimators 32, 100, 300, 500, 1 000, 2 000, 10 000, 15 000

hyperparameter search space is shown in Table 4.3.

• Logistic regression: Logistic regression models can achieve high performance for

many classification tasks, though they perform best when there is a linear relationship

between model inputs and the target variable. Scikit-learn 0.24.2 [79] was used to train

the logistic regression model. The SAGA solver [130] was used due to its speed on large

datasets and support for L1 regularization. An exhaustive hyperparameter search was

performed over the parameter grid shown in Table 4.4.

• Gradient boosted trees (GBT): Gradient boosted trees are an adaptation of the

random forest family of models that excel at learning nonlinear relationships between

model inputs and variables of interest. A random search algorithm was used to identify

the best hyperparameters with undersampling to balance the dataset. 600 hyperpa-

rameter combinations were sampled from the search space. The gradient boosted tree

model was implemented using XGBoost 1.1.0 [131]. The full hyperparameter search

space is shown in Table 4.5

• Gradient boosted trees ensemble (GBTe): The use of an undersampling ap-
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proach for rebalancing class frequencies in this dataset reduces the size of the training

dataset by 96%. As such, differently undersampled training datasets may result in

models specialized on subsets of the dataset. Combining multiple models with unique

strengths to generate a final prediction is an approach that has seen great success in

recent years, including in the medical domain [132, 133]. To explore this idea, the

hyperparameter search employed for the gradient boosted trees model was repeated

100 times, each time with a unique seed for the undersampling process. Two ensemble

methods were investigated. The first ensemble investigated was one built using the

top 10% of undersampled GBT models based on validation set performance. Another

ensemble using the center 90% of undersampled GBT models was also investigated,

with the goal of minimizing overfitting to the validation set. Both ensembles generate

predictions by taking the mean of the predictions from each submodel.

A variety of techniques were employed to mitigate the effects of dataset imbalance on

model performance. Each model except for the GBTe model was trained with both an under-

sampling and an oversampling approach for equalizing class frequencies. Imbalanced-learn

0.9.0 was used to equalize class frequencies for the logistic regression and gradient boosted

trees models [134]. All models were trained using a stratified 60/20/20 train/validation/test

split, and the test split was a complete holdout. Bootstrapping with 100 bootstraps was

done on the test set in order to determine confidence intervals.

4.3.5 Identification of Risk Factors

After training the predictive models, the risk distribution of 8,503,055 subgroups of the test

set, obtained from all possible expert-defined combinations of the variable splits shown in

Table 4.6, were computed. To ensure that all subgroups analyzed are clinically relevant,

subgroups containing fewer than 15 patients were excluded. In the event that multiple

subgroups contained identical sets of patients, the subgroups were collapsed into one. The
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Table 4.6: Splits used for subgroup analysis

Split Criteria

Age 18-45 years, 56-65 years, or ≥ 66 years

Sex

Race/Ethnicity

Hypertension

ACEi/ARB use

SGLT2 inhibitor use

GLP-1 agonist use

NSAID use

Proton Pump Inhibitor use

HbA1c > 8%

SBP > 140 mm Hg

CKD diagnosis1

Diabetes status

1 Defined as union of all CKD diagnosis cat-

egories in Table 4.2
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Figure 4.2: Illustration of the subgroup analysis process

risk distribution for each subgroup was then compared against the whole population’s risk

distribution using the Kolmogorov-Smirnov (KS) test [135] implemented in SciPy 1.4.1 [136].

Subgroups with the highest risk of decline are identified using the KS test (Holm-Bonferroni

method [137] with α = 0.05) on the highest performing model. This process is illustrated in

Figure 4.2.

4.4 Experimental Results

4.4.1 Model Performance Results

Results for each model are shown in Table 4.7. The primary metric for determining per-

formance is the average precision (AP) score, as this metric provides good insight into the

performance of each model despite the significant class imbalance in the dataset. The area

under the receiver operating characteristic curve is also reported.

The center 90% GBTe model achieved an average precision of 0.099 on the test set, very

similar to the 0.098 PR-AUC achieved by the top 10% GBTe model. The best performing
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Table 4.7: Model performance on test set

Model Name AP Score (95% CI) AUC (95% CI)

Logistic Regression, undersampled 0.065 (±.00047) 0.72 (±0.00085)

Logistic Regression, oversampled 0.064 (±.00049) 0.73 (±0.00082)

Gradient boosted trees, undersampled 0.093 (±.00041) 0.74 (±0.00077)

Gradient boosted trees, oversampled 0.092 (±.00041) 0.74 (±0.00079)

Gradient boosted trees,

center 90% ensemble, undersampled
0.099 (±0.00043) 0.75 (±0.00076)

Gradient boosted trees,

top 10% ensemble, undersampled
0.098 (±0.00043) 0.752 (±0.00077)

DNN, oversampled 0.096 (±0.00040) 0.75 (±0.00085)

DNN, undersampled 0.094 (±0.00042) 0.76 (±0.00082)

Figure 4.3: Effect of varying threshold on precision and recall for GBTe model on test set
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DNN achieved an average precision of 0.096, and the best performing GBT and logistic

regression models achieved an average precision of 0.093 and 0.065 respectively. The strong

and similar performance from the DNN, GBT, and GBTe models may indicate that the

interactions between risk factors are nonlinear and/or too complex to be captured by simpler

models with less learning capacity, such as logistic regression without feature crosses. As the

center 90% GBTe model achieved the highest average precision, its predictions are used for

the remainder of the analysis. Precision and recall as a function of threshold for the center

90% GBTe model are shown in Figure 4.3.

4.4.2 Subgroup Analysis

Table 4.8: Most frequently occurring vari-

ables among top 100 highest risk subgroups

Variable name Prevalence

CKD1 100%

Proton Pump Inhibitor use 100%

SBP >140 mm Hg 98%

HbA1c > 8% 87%

Age 45-66 years 79%

1 Defined as union of all CKD diagnosis

categories in Table 4.2

Of the 8,503,055 subgroups investigated, 1,640,355 were eligible for further analysis af-

ter collapsing identical subgroups and filtering out undersized groups. Of these 1,640,355

subgroups, 503,578 had a statistically significant increase in their predicted risk score above

the population mean. The most frequent predictors of rapid eGFR decline across the 100

highest risk populations were identified, shown in Table 4.8. Patients in these 100 subgroups
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Table 4.9: Race/ethnicity for patients with predicted risk above versus study population

Race/Ethnicity Prevalence above 0.5 (%) Prevalence overall (%) Ratio

White Non-Latino 66.4% 66.9% 0.99

White Latino 3.2% 3.6% 0.89

Black 6.7% 4.8% 1.40

Asian 4.9% 6.1% 0.80

American Indian 1.5% 1.0% 1.50

Hawaiian 1.1% 0.6% 1.83

Other 10.5% 10.0% 1.05

Not categorized 5.6% 7.0% 0.80

were 13.7 times more likely to experience rapid decline than the overall study population

(23.4% prevalence vs 1.8% prevalence).

4.4.3 Risk Factor Distributions

Figure 4.4 shows the distributions for several continuous variables in the patients with pre-

dicted risk above 0.5 compared with the distribution in the patients with predicted risk

below 0.5. All differences in distribution are statistically significant (KS test, p < .00001).

Table 4.9 shows the breakdown of race and ethnicity in the patients with predicted risk above

0.5 compared with the overall study population.

4.5 Discussion

Identifying 40% decline at two years in a dataset as sparse and imbalanced as the CURE-

CKD registry is a challenging task. Despite this, the explored models were able to achieve

adequate performance, enabling the detection of certain high risk patients with good speci-
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(a) UACR (b) eGFR

(c) Age (d) Systolic blood pressure

(e) HbA1c

Figure 4.4: Distributions of features compared in patients with and without predicted decline

(threshold = 0.5)
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ficity. Additionally, the subgroup analysis provides interesting insights into the types of

patients that the model is identifying as high risk. Notably, 79% of the top 100 high-risk

groups include only middle-aged patients. This finding suggests that middle-aged patients

should still be considered to have risk of rapid kidney function decline, even though they

are younger than many patients on dialysis [138]. This observation is also supported by

Figure 4.4c. Additionally, the highest risk patients (threshold=0.5) are consistently in CKD

Stage 3a or lower, often with coexisting hypertension. Taken together, this suggests that

the patients at highest risk of rapid decline tend to be those with CKD and hypertension,

two significant health issues, despite being younger age than many CKD patients in the

CURE-CKD registry (mean 54.6 years vs 71.2 years). UACR levels are also elevated for

many of the patients identified as high risk, but 80% of patients identified as high risk have

no UACR data in the study entry period.

Table 4.9 shows that Black, American Indian, and Hawaiian patients were overrepresented

in the group with predicted risk > 0.5, a finding in line with previous analysis of patterns of

ESKD [138].

4.5.1 Importance of UACR to the Model

As shown in Figure 4.4a, the highest risk patients also had UACR values far from the

overall study population’s median, suggesting that these high UACR values are connected

to an outcome of rapid decline. As such, to assess the importance of UACR on the model’s

performance on the test set, an experiment was conducted in which all UACR values from

the 6% of patients with UACR lab results were removed, and the values were marked as

missing. Risk scores were then generated for all patients without retraining the model. The

hypothesis was that removing UACR records would result in a marked drop in performance

because UACR is known to be one of the most important tests for assessing the risk of kidney

failure [89,139]. However, removing UACR values from the test set only resulted in a minor

decrease in average precision score, with the average precision of the best performing gradient
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Table 4.10: Prevalence of ≥ 40% eGFR decline in CURE-CKD registry by eGFR level and

albuminuria

Albuminuria Category

eGFR Category Unknown A1 A2 A3

G1 1.13% 0.72% 1.35% 6.74%

G2 1.59% 0.73% 2.39% 9.97%

G3a 2.61% 0.74% 2.55% 12.99%

G3b 4.54% 1.51% 2.33% 17.08%

G4 12.29% 3.31% 4.55% 29.52%

G5 7.63% 0% 2.33% 15.29%

Table 4.11: Incidence of ≥ 40% eGFR decline in CURE-CKD registry by eGFR level and

albuminuria

Albuminuria Category

eGFR Category Unknown A1 A2 A3

G1 4 838 153 71 65

G2 7 575 170 135 120

G3a 3 021 41 55 93

G3b 2 329 33 33 124

G4 2 020 14 24 152

G5 550 0 1 24

Percent 94% 1.9% 1.5% 2.6%
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boosted tree ensemble decreasing from 0.099 to 0.096. Additionally, the true positive rate

with a threshold of 0.5 did not change significantly, decreasing from 3.9% to 3.7%. While this

result may seem at first to contradict the well established importance of UACR for assessing

the risk of kidney failure [89, 139], this result may largely be a result of two characteristics

of the CURE-CKD registry.

First, while most equations for kidney failure and renal decline risk have been developed

on populations with dense features, lab results in the CURE-CKD dataset, especially for

UACR, are very sparse, with only 6.2% of all patients having a UACR reading, with 23%

of diabetic patients and 3.1% of nondiabetic patients having readings. This screening rate

stands in contrast to CKD screening guidelines for diabetic patients, which recommend yearly

UACR tests [140]. The low screening rates observed in the CURE-CKD registry are in line

with those observed at other centers, which have reported UACR screening rates among type

2 diabetes patients of 40 to 60% [104,105]. One possible reason for the lower screening rate

reported in this study is that the analysis performed uses patients’ records at entry into the

CURE-CKD registry, dating back as far as 2005, when screening rates have been reported

to be lower [106].

Second, in addition to UACR readings being rare in the CURE-CKD dataset, the presence

or absence of a UACR reading is not strongly correlated with a > 40% decline in eGFR. In

the full study population, the Pearson’s correlation between rapid decline and the absence

of a UACR reading is 7.7× 10−4, with a p-value of 0.4. This high p-value indicates that the

null hypothesis is true and there is no association between the presence of a UACR reading

and the outcome of rapid decline. In the subset of the population diagnosed with diabetes,

the correlation coefficient is 0.045 with a p-value of 2.01× 10−82. This indicates that within

the diabetic subset of the study population, patients with UACR readings are slightly less

likely to experience rapid decline.

Taken together, the high missingness rate for UACR readings and the weak connection

between the presence of a UACR reading and rapid decline means that patients without

64



UACR readings are as equal to experience rapid decline as patients with UACR readings

(shown in Table 4.10), and that the majority of cases of rapid decline occur in patients

without UACR lab results (shown in Table 4.11). As such, the model seems to have learned

that while a high UACR result is a risk factor for rapid decline, the absence of a UACR

lab result is uninformative, and other features must be relied upon for prediction. This is

supported by the small change in TPR when UACR information is removed, indicating that

it is likely that the model is relying on a blend of features to determine risk.

4.6 Conclusion

A risk model was developed for rapid eGFR decline using big data and its predictions, along

with the KS test, were used to identify subpopulations with significantly high risk for rapid

eGFR decline. This was achieved despite the high missingness in the dataset, showing that

retrospective cohort studies can be feasible even when the data is collected from an EHR

system and not from a purpose-built study. Additionally, subgroup and risk analysis were

performed to identify common patterns among the patients at highest risk of rapid eGFR

decline. These patients tended to be of poor health at a relatively young age, with multiple

comorbidities. The patients and subpopulations identified are strong candidates for closer

study.
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CHAPTER 5

RimNet: A Deep Neural Network Pipeline for

Automated Identification of the Optic Disc Rim

In this chapter we describe RimNet, a system for accurate optic disc rim segmentation

across a spectrum of cameras and disease severities. Accurate neural rim measurement

based on optic disc imaging is an important part of glaucoma severity grading and is typically

performed by trained glaucoma specialists. There is room for error in this process as clinicians

may not agree on the size of the optic disk or where exactly to define the edge of the optic

cup. Additionally, glaucoma specialists comprise only a fraction of ophthalmologists, and

less trained physicians may not be able to grade eyes as consistently, especially in edge cases.

Neural rim measurement seems a prime target for the development of an assistive tool that

could not only help to turn a manual process into a partially automated process, but could

also provide an external check to help verify the decisions of clinicians. We aim to improve

upon existing automated tools by building a fully automated system (RimNet) for direct

rim identification in glaucomatous eyes and measurement of the minimum rim-to-disc ratio

(mRDR) in intact rims, the angle of absent rim width (ARW) in incomplete rims, and the

rim-to-disc-area ratio (RDAR) with the goal of grading optic disc damage.

We evaluate RimNet using both an internal dataset and the Drishti-GS dataset, which

is used for external validation. Performance is evaluated by using clinician segmentations as

ground truth and then measuring both intersection over union and error in mRDR, ARW,

and RDAR. RimNet demonstrates acceptably accurate rim segmentation and mRDR and

ARW measurements on the internal dataset, as well as competitive performance on Drishti-
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GS.

5.1 Introduction

Glaucoma is the leading cause of irreversible blindness and the second leading cause of

blindness worldwide [141]. Roughly half of all glaucoma cases are undiagnosed according

to population-based studies [142, 143]. Early treatment preserves patient quality of life

and reduces disease burden [144]. Therefore, identification of early glaucoma is key to

preventative care.

Glaucoma diagnosis and grading are performed, in part, by evaluation of the optic nerve

head’s neuroretinal rim of the optic disc. Metrics often include cup-to-disc ratio (CDR),

rim-to-disc ratio (mRDR), and the inferior > superior > nasal > temporal (ISNT) rule,

which compares the regional width of the neuroretinal rim [1]. Recent studies have shown the

advantages of mRDR compared to ISNT and CDR for glaucoma classification accuracy [145].

The mRDR cannot adequately account for the degree of damage in optic discs with

localized rim loss where the neuroretinal rim is noncontinuous or “incomplete”. A solution

can be found in the Disc Damage Likelihood Scale (DDLS) proposed by Spaeth et al. [1].

DDLS accounts for incomplete rims by measuring the angle for which a rim is absent. This

is called the absent rim width (ARW). Additionally, the scale accounts for disc size which

affects the significance of the mRDR or ARW [1]. It is commonly accepted and has been

incorporated into eye health guidelines for optometrists and ophthalmologists [146, 147].

DDLS is limited as a diagnostic tool by the need for expert time to accurately grade images.

Automated high-efficacy DDLS grading could offer a powerful screening method.

In recent years, a confluence of several factors has led to efforts in automated glaucoma

diagnosis and grading. First, studies have shown that automated algorithms can offer more

consistent and reliable grading than human graders [147]. Second, there has been a rapid

advancement in image segmentation, image processing, and deep learning neural networks.
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In other fields, several neural networks outperformed human graders in image classification

tasks [148]. This could allow for unprecedented accuracy in optic rim segmentation and

glaucoma grading [2]. Finally, the optic disc exhibits characteristic alterations in glaucoma-

tous patients, a prime candidate for automated segmentation and analysis. Together, these

factors make automated glaucoma diagnosis and grading a possibility.

While DDLS also requires disc size analysis, automated rim segmentation with mRDR

calculation for intact neuroretinal rims and ARW calculation for incomplete neuroretinal rims

offers a step towards creating an efficacious, high-throughput diagnostic system for glauco-

matous disc damage. Such a segmentation algorithm would need to be broadly applicable.

Additionally, it would require an expansive learning capacity that could be applied to a vari-

ety of fundus images taken with different imaging modalities and with concurrent pathologies

and normal variations. Convolutional neural networks offer such an approach [149].

The goal of this paper is to present a novel convolutional neural network algorithm for

neuroretinal rim segmentation, automated mRDR calculation for intact rims, and ARW cal-

culation for incomplete neuroretinal rims. This neural network algorithm offers an important

step towards building an automated DDLS screening tool.

5.2 Methods

The study adhered to the tenets of the Declaration of Helsinki, was approved by UCLA’s

Human Research Protection Program, and conformed to the Health Insurance Portability

and Accountability Act (HIPAA) policies.

5.2.1 Dataset

Optic disc photographs were taken from the UCLA Stein Eye Glaucoma database. The

images were of varied magnifications and taken from slides and three different digital fundus

cameras. All cameras were visible light cameras. No infrared, laser scanning, red-free, aut-
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Figure 5.1: Distribution of mRDRs for Train, Validation, and Test Datasets. For each

dataset, a frequency histogram is shown above with a box plot corresponding to the dataset

below.
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ofluorescence, or hand-held smartphone-based cameras were used. Slide films were scanned

and digitized at a third-party location.

The enrolled images met the following inclusion and exclusion criteria as deemed by two

board-certified glaucoma specialists. Inclusion criteria include: (i) evidence of glaucomatous

damage in the posterior pole; (ii) images had to be in focus, with discernible posterior pole

and vasculature details. Exclusion criteria were concurrent non-glaucoma disease including

optic neuritis, optic disc neovascularization, and vitreous hemorrhage that would impair

visualization of the posterior pole. Globally, it was ensured that the full spectrum of glau-

comatous damage, from early-stage intact neuroretinal rims to late-stage incomplete rims,

were included while abiding by the inclusion and exclusion criteria. Figure 5.1 shows the

mRDR distributions of our train, validate, and test set. The neuroretinal rim and optic cup

were then manually segmented by one of three glaucoma specialists with a smart tablet and

the image editing program GIMP. These masks were used as ground truth. The diagnostic

categories for patients are shown in Table 5.1.

5.2.2 RimNet Model and Hyperparameter Architecture

A deep learning model for rim segmentation was developed as the centerpiece of the RimNet

pipeline. The model was developed with Python 3.9.7 [150]. Libraries used include Ten-

sorFlow 2.6.0 [129], Segmentation Models 1.0.1, Keras Tuner 1.04 [128], OpenCV Python

4.5.3 [151], NumPy 1.19.5 [126], SciPy 1.7.1 [80], and scikit-learn 0.24.2 [79].

Optimizing the deep learning model requires a careful choice of model architecture and

hyperparameters. The choice of hyperparameters can greatly influence the prediction speed,

processing requirements, and accuracy of a neural network model [152]. These hyperparam-

eters include the decoder, learning rate, optimizer, and loss function as shown in Table 5.3.

The optimal combination of these parameters is task dependent. Whereas trial and error has

been used in the past, newer architecture search techniques allow for the rapid evaluation of

combinations of hyperparameters with the goal of optimizing a selected metric [152].
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Table 5.1: Demographic distributions for internal dataset

Scanned

Slides

Digital

Camera 1

Digital

Camera 2

Digital

Camera 3

Gender
F 407 119 55 12

M 302 85 44 11

Age

Mean 60.72 67.13 72.80 66.92

SD 13.48 17.43 12.75 17.71

Median 61.87 71.06 73.91 72.37

IQR 15.79 16.33 12.86 22.54

Min 9.36 6.92 16.19 17.48

Max 90.05 96.10 94.41 86.17

Race/Ethnicity

Asian 90 34 24 2

Black 63 22 8 1

Hispanic 66 20 16 6

White 366 100 45 12

Other 53 5 3 0

Unknown 71 22 3 2
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To narrow the search space, an encoder of InceptionV3 was chosen based on literature

review and computational efficiency. InceptionV3 was first published in 2015, outperforming

popular encoders at the time with a fraction of the computation costs [153]. It has previously

been used for medical segmentation [154,155]. Our workstation uses NVIDIA 2080 RTX Ti

graphics cards. Therefore, with limited computational efficiency, the selection of InceptionV3

was appropriate.

Transfer learning with ImageNet weights was used to initialize InceptionV3. No transfer

learning was done for the decoder. Augmentations were used including a 20-degree rotation,

a 10% vertical shift, a 10% horizontal shift, a horizontal flip, a vertical flip, up to a 30%

random crop, a brightness change by ± 50 units, and a contrast limited adaptive histogram

equalization (CLAHE) filter. Image down sampling was completed via a nearest neighbor

algorithm. Color information was encoded using RGB channels with 8 bits per channel. The

encoder and decoder were coupled using the Segmentation Models 1.0.1 library. The total

number of trainable parameters was 29 896 979. No dropout layers were manually added.

Finally, a random search was performed using the Keras Tuner library [128]. The search

parameters included the decoder, loss function, learning rate, and the optimizer. The rim

Intersection over Union (IoU) was used as the segmentation metric. The full search space is

documented in Table 5.3.

5.2.3 End-to-End mRDR Calculation Procedure

mRDR, ARW, and rim-to-disc-area ratio (RDAR) measurements are the final output of Rim-

Net, which can be accomplished by accurate rim segmentation followed by image analysis.

These two steps, along with preprocessing, led to the final framework for RimNet as shown

in Figure 5.2.

The optic disc photographs were first resized to 224x224 with nearest neighbor interpo-

lation in order to meet model specifications. A contrast limited adaptive histogram equal-
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Figure 5.2: RimNet Pipeline, showing preprocessing, mask generation, and calculation of

RDAR along with either mRDR or ARW depending on whether the rim is intact.
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ization (CLAHE) filter was then applied to highlight distinctive features. The preprocessed

image was submitted to the neural network model which generated a segmentation mask

of the optic rim and cup. While a segmentation of the optic cup is not directly needed for

mRDR or RDAR calculations, it was found that training the model to identify and segment

the optic cup improved identification of incomplete rims and ARW calculations. Finally,

the rim segmentation mask was resized to the dimensions of the original image to allow for

accurate mRDR calculation and submitted to image analysis algorithms.

For mRDR, the algorithm first identified the center of the segmented optic cup using

OpenCV. Vectors were created from the center of the cup to the boundary points. Bound-

ary points were found using OpenCV. The number of vectors depended on the number of

boundary points detected in the segmented rim. The intersection between the vectors and

the segmented rim was taken as the rim width. The shortest rim width was identified and,

through boundary point analysis of the rim, the disc diameter was found. Hence, the mRDR

was calculated by dividing the rim width by the diameter. The RDAR was calculated by

dividing the number of pixels of the segmented rim by the number of pixels in optic disc.

The Absent Rim Width (ARW) was calculated by first applying contour hierarchies to

identify shapes within the rim segmentation. We rely on the fact that intact rims will have

a “second shape” within the segmentation, the elliptical or circular form of the optic cup.

Incomplete rims will not have this second shape. If the rim is classified as broken, 360 radial

segments from the center are drawn to the edge of the rim. The radial segments that do not

intersect the rim are those within the “broken” segment of the neuroretinal rim. The number

of radial segments within the incomplete segment are added to give the ARW, one radial

segment for each degree. If there were two breaks in a neuroretinal rims, the angles were

added together and reported as one ARW. Examples of this can be found in the neuroretinal

rim segmentation shown in Figure 5.3.
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5.2.4 External Validation

The Drishti-GS database is a publicly available dataset of retinal images of glaucomatous

eyes with manual cup and disc segmentations [156, 157]. Each image in the dataset is

accompanied by four disc segmentations and four cup segmentations. In order to arrive

at a single mask for each image, we took the true cup and disc masks to be the region of

total agreement between all four segmentations. Before being used for evaluation, the images

were first cropped around the optic disk, as they are available at a field of view of 30 degrees.

Then, by subtracting the Drishti-GS cup segmentations from the disc segmentations, rim

segmentations were acquired. These were used as “ground truth’ for validation testing.

The database has been used to compare performance between published optic cup and disc

segmentation models through metrics such as IoU and Dice score [2–7]. Few investigators

have attempted rim segmentations on the Drishti-GS database [6]. Therefore, RimNet rim

segmentations were used to recreate cup segmentations to allow for comparison with other

segmentation models. The intersection over union for cup segmentations (CupIoU) and disc

segmentations (DiscIoU) were reported. Additionally, the Dice scores for the cup (CupDice)

and disc (DiscDice) were reported.

5.2.5 Evaluation Criteria

The main outcome measures are the median absolute error (MAE) difference between the

glaucoma specialists and RimNet for three metrics: mRDR, RDAR, and ARW. A secondary

measure is the RimIoU, the IoU of the RimNet rim segmentation compared to that of the

glaucoma specialists.

The mRDR, RDAR, and ARW have been explained above. Two measures of segmenta-

tion accuracy are also reported: Intersection over Union and Dice scores. The Intersection

over Union (IoU), also known as the Jaccard distance, is a measure of segmentation accuracy.

It compares the ground truth with the segmentation by reporting the ratio of the intersection
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area over the union area. The Dice score for cup and disc segmentations are reported for

the Drishti-GS dataset to compare segmentation performance. The Dice score compares the

ground truth with the segmentation by reporting the ratio of two times the intersection area

over the summed area of the ground truth and segmentation.

5.3 Results

Table 5.2: Glaucoma diagnosis for all 1 208 patients included in the RimNet dataset

Diagnosis Count

Primary Open-Angle Glaucoma 530

Glaucoma Suspect 403

Chronic Angle-Closure Glaucoma 71

Low-Tension Glaucoma 47

Secondary Open-Angle Glaucoma 35

Capsular glaucoma with psuedoexfoliation 33

Anatomical Narrow Angle 27

Glaucoma secondary to Eye Infection 24

Pigmentary Glaucoma 15

Secondary Angle Closure 11

Congenital glaucoma 7

Juvenile Glaucoma 3

Acute angle-closure glaucoma 2

A database of 1 208 optic disc photographs of 121 eyes from 903 glaucoma patients

were used for training, validation, and testing in an 80/10/10 split. Both scanned slides and

original digital images were represented in the dataset. The average (±SD) age of the patients
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was 63.7 (± 14.9) with a 43:57 male-to-female ratio. Full demographics including gender,

age, and race/ethnicity are listed in Table 1. The average (±SD) visual field mean deviation

(MD) was -8.03 ± 8.59 dB (range: -31.64, 3.59). Of the 1 208 optic disc photographs, 340

had incomplete neuroretinal rims. The diagnoses for the patients are listed in Table 5.2.

5.3.1 Hyperparameter Architecture

Table 5.3: Hyperparameter search space for RimNet

Hyperparameter Name Possible Values

Decoders U-Net, FPN, LinkNet, PSPnet

Loss Function Categorical Crossentropy, Categorical Focal Loss

Learning Rate 10−3, 10−4, 10−5, 10−6

Optimizer Adam, SGD

Optimized parameters were found through the random search of 64 model combinations,

detailed in Table 5.3 [58, 153, 158–167]. The combination of the InceptionV3 backbone and

LinkNet architecture proved to be the most accurate [153, 159]. LinkNet is a lightweight

decoder first published in 2017 [159]. Other parameters identified include the loss function

of binary cross-entropy, learning rate of 10−3, and the Adam optimizer [58].

5.3.2 Segmentation Network Results

The code used to train, run, and evaluate RimNet can be found on our public repository at

https://github.com/TylerADavis/GlaucomaML. On the test set, an mRDR MAE (IQR)

of 0.03 (0.05) was achieved on the intact rims while an ARW MAE (IQR) of 31 (89) degrees

was achieved on the incomplete rims. 22 of 34 eyes with incomplete rims were correctly

identified as incomplete on segmentation. A RDAR MAE (IQR) of 0.09 (0.10) was achieved
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Figure 5.3: Segmentation Results. This figure demonstrates several examples of RimNet

segmentation compared to physician segmentation. The left-most column shows the raw

image. The middle column overlays the physician segmentation (white) over the raw image.

The right-most column overlays the RimNet segmentation (white) over the raw image. In

intact rims, green line shows the diameter and the dark blue shows the thinnest rim. In

incomplete rims, the dark blue shows the edges of the segmentation.
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Figure 5.4: Bland-Altman plots showing the agreements in mRDR and RDAR between

clinician and RimNet in test images. Red dashed lines indicate 95% confidence limits.

Table 5.4: RimNet Results on internal test set and Drishti-GS dataset. The ARW cannot

be calculated on the Drishti-GS dataset because all rims are intact.

Metric Name Internal Dataset Drishti-GS

mRDR MAE (IQR) 0.03 (0.05) 0.03 (0.04)

ARW MAE (IQR) 31.00 (89.00) N/A

RDAR MAE (IQR) 0.09 (0.10) 0.09 (0.10)

RimIoU (Intact Rims) 0.68 0.67

No. 121 (87 Intact, 34 Incomplete) 101 (101 Intact, 0 Incomplete)
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Table 5.5: DRISHTI-GS segmentation performance of RimNet compared to published seg-

mentation models [2–7].

Model CupIoU DiscIoU CupDice DiscDice

RimNet 0.77 0.91 0.86 0.95

Zilly et al. (2017) 0.85 - 0.87 0.87

Sevastopolsky (2017) 0.75 - - -

Edupuganti et al. (2018) 0.81 0.69 - -

Al-Bander and Zheng et al. (2018) - - 0.83 0.95

Joshua et al. (2019) 0.79 - - -

Yu et al. (2019) - - 0.88 0.97

on all images. A RimIoU of 0.68 was achieved on intact rims, while a RimIoU of 0.45 was

achieved on incomplete rims. The results of RimNet are presented in Table 5.4. Figure 5.3

demonstrates examples of RimNet segmentation results. To better examine the accuracy

of the mRDR and RDAR calculations, the difference between the estimated values and the

ground truths were calculated. Bland-Altman plots comparing the estimated and ground

truth mRDR and RDAR are shown in Figure 5.4.

A comparison of RimNet segmentation on the Drishti-GS dataset to other published

works is presented in Table 5.5. The mRDR MAE (IQR) was 0.03 (0.04) and the RDAR

MAE (IQR) was 0.09 (0.10). The IoU of the optic cup (CupIoU) was 0.77 and a IoU of the

optic disc (DiscIoU) was 0.91. The Dice score of the cup (CupDice) was 0.86 and Dice score

of the optic disc (DiscDice) 0.95 was achieved.
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5.4 Discussion

These results demonstrate that RimNet is capable of reasonably accurate segmentation and

analysis of optic discs with both intact and incomplete rims. Spaeth et al. distinguished

different DDLS grades by mRDR steps of 0.1 [1]. The MAE of the mRDR is well within

this value, showing that RimNet segmentations are clinically relevant. For more advanced

glaucoma with DDLS grades of 6 and above, the neuroretinal rim is incomplete and Spaeth

et al. uses the ARW to distinguish grades. The five categories are less than 45 degrees, 45

degrees to 90 degrees, 90 degrees to 180 degrees, 180 to 270 degrees, and greater than 270

degrees. The minimum step is 45 degrees; the MAE falls slightly below that category at

31 degrees with 22 of 34 total incomplete rims correctly identified as incomplete. However,

the IQR demonstrates a broad range of ARW. The error echoes the difficulties faced by

the glaucoma specialists. While segmenting these severely glaucomatous rims to create

the “ground truth’ masks, glaucoma specialists often differed regarding where rims were

interrupted and if rims were incomplete or intact. Though a forced consensus was eventually

reached, this demonstrates the difficulty of the task and the variability of this “ground truth’.

RimNet offers 65% accuracy in identifying incomplete rims and a relatively low ARW MAE.

To our knowledge, RimNet is the first to offer such capabilities in published literature.

This work offers three improvements in the current landscape of optic disc segmentation.

First, we utilized a dataset of 1 208 images with external validation on Drishti-GS [157].

Second, while we have still reported IoU and Dice scores, we have focused on more clinically

relevant metrics such as mRDR, RDAR, and ARW. Third, our study is the first to focus

on accurate segmentation of incomplete rims. RimNet is a useful step towards completely

automating the DDLS algorithm.

Automated segmentation of the optic disc and cup have been previously explored. The

original studies were initially based on image processing functions such as thresholding, level

set, active contour, clustering, and component extraction with success on local and publicly
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available datasets [168]. As early as 2001, Chrástek et al. offered an automated method

of optic disc segmentation with filtering and edge detection, which achieved a segmentation

accuracy of 82% [169]. In 2008, Liu and collaborators used level set and thresholding methods

to achieve 97% accuracy when comparing algorithm-determined CDR ratio to clinical CDR

ratio on a dataset of 73 images from the Singapore Eye Research Centre [170]. In 2015,

Lotankar et al. used active contouring to achieve a 99% pixel-to-pixel accuracy on a private

database of 150 images [171]. However, each of these approaches were limited in scope.

Level-setting and thresholding would fail with images with decreased or increased intensity

caused by pathological findings, which can be commonly seen on optic disc photographs such

as peripapillary atrophy. This leads to overestimating or underestimating CDRs. Active

contouring may similarly be affected by abnormal pathology or bright artifacts fixating on

local maxima or minima within the image. Therefore, though these methods have proven

efficacy, they can be improved upon.

An automated grading system for glaucoma diagnosis and progression needs a high effi-

ciency, broadly applicable segmentation algorithm with an expansive learning capacity which

could be applied to a variety of funduscopic images acquired with different imaging modal-

ities with concurrent pathologies and variations. Though further work must be done, deep

learning and convolutional neural networks may play an important role in the solution. They

have an enormous learning capacity relative to their size [149]. Rapid advances in compu-

tational memory and processing speed have made neural networks more accessible for optic

disc segmentation. Zilly et al. used ensemble learning to achieve 89% IoU on disc segmen-

tation and 84% IoU on cup segmentation on the Drishti-GS dataset [3]. Sevastopolsky and

coworkers furthered this work by using a modified U-Net to achieve a comparable accuracy

in less than a tenth of the time [4]. More on segmentation efforts, both image processing

functions and neural network attempts, can be found on a review article by Thakur and

Juneja et al. [168].

Several groups have pursued automated mRDR and RDAR calculations. In 2019, Kumar
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et al. proposed using an imaging processing technique called active discs to segment the optic

disc and cup and perform general glaucoma classification (normal, moderate, severe) based on

mRDR [145]. Though direct mRDR accuracy was not reported, an mRDR-based approach

demonstrated high classification accuracy. In 2020, Martins et al. proposed a smartphone-

based glaucoma diagnosis pipeline, which focuses on glaucoma classification and calculates

RDAR [172]. However, RDAR results were not directly reported. More recently, Pachade

et al. proposed an NENet model consisting of EfficentNetB4 and adversarial learning that

achieved an area-under-the-curve (AUC) of 0.901 on RDAR calculation for Drishti-GS [173].

To the best of our knowledge, RimNet is the first engineering attempt to pursue seg-

mentation and glaucoma grading efforts with incomplete neuroretinal rims. Thus, direct

comparison of RimNet to other segmentation models is difficult. However, through the

Drishti-GS dataset, an artificially-derived segmentation comparison is possible by recreat-

ing cup and disc masks from the RimNet rim segmentations. Table 5.5 demonstrates that

RimNet performed well overall compared to recent segmentation models on the Drishti-GS

dataset. While it outperformed several other models in CupDice, DiscIoU, and DiscDice

segmentations, it was below average in CupIoU. These results must be understood in the

context of three factors. First, the Drishti-GS images were available as 30-degree field of

views. However, RimNet requires images centered and cropped near the optic disc margin.

Therefore, RimNet has a significant information loss compared to other models that use

the 30-degree field of view. Second, RimNet is unique in that it has been trained on both

complete and incomplete rims. The models compared to RimNet have been trained only

on complete rims. It is reasonable to expect a higher segmentation accuracy in these cases.

Finally, the cup and disc segmentations produced by RimNet were artificially derived from

the RimNet’s rim segmentation. By not directly predicting on the cup and disc, accuracy

was lost. Considering these three factors, RimNet’s performance on Drishti-GS is acceptable.

This is corroborated by the Drishti-GS mRDR MAE of 0.03 (0.04) and RDAR MAE of 0.09

(0.10), both of which are low.
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The findings of this study need to be interpreted with the shortcomings in mind. First,

the hyperparameter architecture search was limited by the computational and memory limits

of our workstation, which uses NVIDIA RTX 2080 Ti graphics cards. We could not include

larger models such as ResNet152 or EfficientNetB3 into our search due to these memory

constraints. Second, the number of ground truth masks and optic disc images, particularly

those of more severe glaucoma is limited. Greater numbers of samples diverse in glaucoma

severity and race/ethnicity would allow RimNet to generate better segmentations, and thus

increase the accuracy of its mRDR and ARW calculations. Lastly, while multiple clinicians

created segmentations for this project, each of the images in the internal dataset used to train

and evaluate this model was segmented by only one clinician. Leveraging the expertise of

multiple clinicians for each segmentation, whether by averaging segmentations, segmenting

by consensus, or conducting manual review of the dataset, may distill the knowledge of

multiple clinicians into the model, potentially improving performance.

As we continue to develop this system, it may be worth exploring newer convolutional

neural network segmentation architectures, such as UNet++ [174] and UNet+++ [175], as

well as transformer based techniques such as TransUNet [176] and Swin-Unet [177]. These

architectures have shown good performance on some medical segmentation tasks, and it

would be interesting if they would be able to show such benefits for the task of neuroreti-

nal rim segmentation as well. Additionally, Stein Eye has a wealth of stereoscopic fundus

images available. It would be interesting to see whether the depth information encoded

in these stereo pairs could successfully be leveraged by a model to generate more accurate

segmentations.

RimNet brings glaucomatous detection and DDLS grading a step closer to full automa-

tion [1]. Automated grading of disc size is a necessary step to fully autonomous DDLS

grading. A future goal would be to not only pursue full automation of DDLS grading, but

to test their capabilities as diagnostic tools. One promising avenue for further investiga-

tion would be screening with smartphone fundoscopy. The increasing quality of smartphone
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cameras have made smartphone fundoscopy viable as a screening method [178, 179]. This,

combined with automated DDLS grading, could provide a powerful screening tool to revo-

lutionize glaucoma detection.

5.5 Conclusion

In conclusion, RimNet provides a method for high efficacy rim segmentation, mRDR, and

ARW calculation. It also provides an example of how ophthalmic care be augmented by

artificial intelligence. Though more work remains to be done, we believe that detection,

diagnosis, and care of glaucoma can integrate with approaches such as these and aid oph-

thalmologists in decision-making to provide higher quality care for a global population of

patients.
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CHAPTER 6

DDLSNet: A Novel Deep Learning-Based System for

Grading Funduscopic Images for Glaucomatous

Damage

In this chapter, we build upon the work described in chapter 5 to build an end-to-end

fully automated image analysis pipeline, DDLSNet, consisting of a rim segmentation branch

(RimNet) and a disc size classification branch (DiscNet), to estimate the disc damage likeli-

hood scale (DDLS). Extending RimNet by incorporating disc size information and estimating

DDLS, a well established grading system, provides an output understandable by non-experts,

especially when done in an interpretable manner as described here. By separating the calcu-

lation of rim width from the calculation of disc size, the system’s estimations can be validated

more easily. Additionally, an automated system allows for rapid screening of large databases

of ungraded fundus images, completing in a fraction of a second what may take upwards of a

minute for a trained glaucoma specialist. Such rapid screening tools allow for easier creation

of datasets for downstream studies.

DDLSNet was tested against manual grading of DDLS by clinicians, with the average

score across clinicians used as “ground truth’. Reproducibility of DDLSNet grading was

evaluated by repeating DDLS estimation on a dataset of non-progressing paired optic disc

photos taken at separate times. On our internal dataset, DDLSNet achieved moderate

agreement with clinicians for DDLS grading, as measured by weighted kappa score. This

novel approach illustrates the feasibility of automated optic disc photo grading for assessing
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glaucoma severity.

6.1 Introduction

Glaucoma is the leading cause of irreversible blindness worldwide with an estimated 80 mil-

lion people affected in 2020 and a projected rise to 111.8 million people by 2040 [141, 180].

Glaucoma is asymptomatic in the early stages; untested individuals often remain undiag-

nosed until advanced symptoms are present. In developed countries, up to 70% of patients

with glaucoma are undiagnosed, a number that rises in areas with less access to screen-

ing [181]. While patients with mild glaucoma have a quality of life comparable to that of

healthy patients, the quality of life drastically decreases with more advanced glaucoma [182].

Early diagnosis and treatment allow for preservation of patient quality of life and is at the

forefront of strategies for reducing disease burden [144].

Glaucoma diagnostic methods can be grouped into two categories: techniques that eval-

uate structural changes in the eye and techniques that evaluate functional changes in vision.

Among those assessing structural changes, optical coherence tomography (OCT) and fun-

dus photography are most often used in clinical practice. While OCT has been shown to

have a high sensitivity for detection of structural glaucomatous changes, the high cost of

the technique often restricts the device to large eye clinics or centers [183, 184]. This is

especially problematic given that developing regions have the highest rates of undiagnosed

glaucoma [181]. Moreover, the World Glaucoma Association considers the largest barrier to

glaucoma screening to be cost [185]. In contrast to OCT, fundus photography stands as a

lower cost option; new advances such as telemedicine screening and smartphone fundoscopy

have made fundus photography a feasible and financially viable option even in remote loca-

tions [178,179].

While OCT and fundus photography allow for the structural findings to be captured,

a mechanism is needed to classify such changes and correlate them with functional glauco-
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matous damage. The Disc Damage Likelihood Scale (DDLS) is one such approach. DDLS

is a well-established grading scale to correlate glaucomatous damage with progression of

fundus photographs [1, 146, 181]. DDLS has been incorporated into the eye health profes-

sional guidelines for optometrists and ophthalmologists [146]. The interobserver agreement

of DDLS even among glaucoma specialists can vary from 85% based on optic disc pho-

tographs to 70% based on clinical exam although intraobserver reliability is high [186]. This

is especially troubling as DDLS scores can be used as the basis for referral by a variety of

eye health professionals, and improper grading may result in missed opportunities for early

intervention [146].

An ideal screening tool would be high-throughput, accurate, and reliable with high speci-

ficity. With the advent of neural network models and an increase in image processing capa-

bilities, high specificity with acceptable sensitivity, together with high throughput, may be

achieved with a neural network-based pipeline [187]. In this chapter, we present DDLSNet,

a neural network pipeline which aims to accurately grade DDLS based on optic disc pho-

tographs with a combination of a rim segmentation neural network (RimNet) and a disc size

classification network (DiscNet).

6.2 Methods

The DDLS grading criteria is shown in Figure 6.1. The DDLS score is determined by

two features of the optic disc: the disc size and the narrowest rim width. Progression of

glaucomatous damage is seen as enlargement of the optic disc cup and subsequent thinning

of the optic disc rim. This thinning can be measured by the rim-to-disc ratio (mRDR) in

intact rims. However, in severe glaucoma, the rim can be completely absent in certain areas.

In these cases, the angle for which the rim is completely lost is measured. We call this

the “absent rim width” (ARW) and we call these rims “incomplete’. These three features,

mRDR, the absent rim width, and disc size, are the metrics needed to calculate DDLS.
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Figure 6.1: The Disc Damage Likelihood Scale as originally proposed, figure by Spaeth et

al. [1]
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The latter is crucial as the significance of mRDR or ARW varies depending on disc size [1].

Therefore, the DDLSNet pipeline consists of two components: RimNet, which performs

rim and cup segmentation and calculates mRDR or absent rim width, and DiscNet, which

classifies the size of the optic disc into small, average, and large.

6.2.1 Database

Table 6.1: Glaucoma diagnoses for all 1 208 patients included in the RimNet dataset

Diagnosis Count

Primary Open-Angle Glaucoma 530

Glaucoma Suspect 403

Chronic Angle-Closure Glaucoma 71

Low-Tension Glaucoma 47

Secondary Open-Angle Glaucoma 35

Capsular glaucoma with psuedoexfoliation 33

Anatomical Narrow Angle 27

Glaucoma secondary to Eye Infection 24

Pigmentary Glaucoma 15

Secondary Angle Closure 11

Congenital glaucoma 7

Juvenile Glaucoma 3

Acute angle-closure glaucoma 2

Our image database was based on a collection of all the optic disc photographs (ODPs)

available in the UCLA Stein Eye Glaucoma Division. For the RimNet database, three glau-

coma specialists manually created a mask of the optic disc rim and optic disc cup for each

90



funduscopic image using the image editing program GIMP. These masks were used as the

ground truth. The RimNet dataset had two inclusion criteria. The images had to show signs

of glaucomatous damage and the images had to be in focus and with discernible posterior

pole and vasculature details, both as deemed by two board-certified glaucoma specialists.

The exclusion criteria was concurrent non-glaucoma disease including optic neuritis, optic

disc neovascularization, and vitreous hemorrhage that would impair visualization of the pos-

terior pole. The demographic information for the RimNet dataset is presented in Table 5.1.

Table 6.1 presents the glaucoma diagnoses for the RimNet dataset. These requirements re-

sult in a database that displays the full range of glaucomatous changes to the optic disc rim,

ranging from mild optic disc rim narrowing in early-stage glaucoma to absent optic disc rim

in severe glaucoma.

The DiscNet database consisted of optic disc photographs with available corresponding

Cirrus high-definition OCT Optic Disc Cubes (200x200). The size of the Bruch’s membrane

as measured by Cirrus OCT was used as a proxy for disc area and was used to categorize

the disc size into small, average, or large optic discs. The optic disc photographs had to

be of “good’ quality—in focus with unobstructed view of the posterior pole—as determined

by a board-certified glaucoma specialist. The OCT images were required to have a good

quality (signal strength > 6) and be free of artifacts based on the review of printouts. To

examine reliability, a database of non-progressing glaucomatous eyes was created. Each eye

had two optic disc photographs available taken less than four years apart, which were deemed

stable as confirmed by a glaucoma specialist. The time restriction was imposed to increase

the population included but decrease the chance of glaucoma progression between the two

photos.

6.2.2 RimNet

RimNet consists of a pre-processing step of contrast enhancement, an optic disc rim and cup

segmentation model, and an image analysis step to calculate the mRDR for intact rims and
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Table 6.2: Hyperparameter search space for RimNet

Hyperparameter Name Possible Values

Decoders U-Net, FPN, LinkNet, PSPnet

Loss Function Categorical Crossentropy, Categorical Focal Loss

Learning Rate 10−3, 10−4, 10−5, 10−6

Optimizer Adam, SGD

ARW for incomplete rims. This latter case occurs in eyes with severe glaucomatous damage.

The model was optimized by submitting it to a hyperparameter search with rim intersection

over union as the metric. The included hyperparameters were the neural network structure,

learning rate, loss function, and optimizer [58, 153, 158–160, 162–165, 167]. Table 6.2 lists

the hyperparameter search space. Fifty total hyperparameter combinations were trained

with the Keras Tuner library [128] with the rim segmentation proficiency, measured as an

intersection-over-union, as the optimized metric. The rim segmentation model was trained,

validated, and tested on a database of images from the UCLA Stein Eye Glaucoma Division

with an 80/10/10 split.

6.2.3 DiscNet

DiscNet is a deep neural network developed to assign disc size as small, average, or large

as an essential process in DDLS grading. The disc photographs included scanned digitized

slides and digital photographs. Disc size information taken from paired OCT data was used

as the ground truth. While the original DDLS grading defined small, average, and large discs

as diameters of <1.50 mm, between 1.50 mm and 2.00 mm, and >2.00 mm respectively [1],

we modified the cutoffs slightly to ≤1.44 mm, 1.44 mm to 2.28 mm, and ≥ 2.28mm so that

the three disc size categories had more evenly distributed sample sizes. This sorted our
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available data into a 15/70/15 split for small, average, and large discs.

When training DiscNet, we used a transfer learning approach and instantiated our model

using weights from pretraining on ImageNet [188]. We used a two phase transfer learning

approach to improve performance. In the first phase, only the final layer of the model was

trainable, ensuring that the steep gradients when adapting the model to an entirely new

domain did not result in the weights in the pretrained model getting destroyed. Once the

model’s performance stabilized, we then unlocked a number of the backbone’s layers, allowing

them to be fine-tuned for the new task. The portion of the model’s layers trained is termed

the “tuning fraction” of the model. We used unique learning rates in each phase of training.

Table 6.3: Hyperparameter search space for DiscNet

Hyperparameter Name Possible Values

Backbones
InceptionV3, EfficientNetB4, EfficientNetB0,

ResNet101v2, VGG16, VGG19

Phase One Learning Rate 10−4, 10−5

Phase Two Learning Rate 10−5, 10−6, 10−7

Tune Fraction 0.1, 0.2, 0.5

Optimizer Adam, SGD, RMSProp

A hyperparameter search was completed to select the optimal learning rates in both

phases, the tuning fraction, the optimizer, and the network architecture. Table 6.3 lists the

hyperparameter search space, which each hyperparameter was selected from. Thirty total

hyperparameter combinations were trained with the Keras Tuner library with classification

accuracy as the optimized metric [128].
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Figure 6.2: DDLSNet pipeline, illustrating both the RimNet and DiscNet arms. The calcu-

lated disc size and mRDR or ARW are used to calculate the DDLS score.
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6.2.4 DDLSNet Pipeline

The mRDR and ARW from RimNet and the disc size from DiscNet were used to calculate

the DDLS score. A full diagram of our pipeline is shown in Figure 6.2. DDLSNet was

evaluated against a ground truth database of optic disc photographs, which three glaucoma

specialists had graded with DDLS. The weighted kappa agreement ±1 DDLS grade between

the DDLSNet’s output and the average of the grades of three glaucoma specialists was

measured. The average of the interobserver agreement for clinicians was also measured. The

code used to train, run, and evaluate DDLSNet can be found on our public repository at

https://github.com/TylerADavis/GlaucomaML.

Evaluating DDLSNet reliability is necessary, as physician intraobserver accuracy for

DDLS grading should be matched by our proposed system for it to be clinically useful.

A database of pairs of funduscopic photos of 781 non-progressing glaucomatous eyes taken

within four years was used to test DDLSNet reliability. Each image was graded via DDLSNet,

and the difference between the two images for each eye was recorded. Glaucoma specialists

verified that the eyes were non-progressing, based on evaluation of the disc photos and the

visual fields.

6.2.5 Evaluation Criteria

The main evaluation criterion was the weighted kappa agreement between DDLSNet and

physicians with the ground truth database. Interobserver and intraobserver agreement was

also measured as secondary evaluation criteria.

6.3 Results

RimNet was trained, validated, and tested on 1 208 optic disc photographs with an 80/10/10

split respectively. The mean age was 63.7 (±14.9) years with a male:female ratio of 43:57.
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Table 6.4: Demographic characteristics for the datasets used for RimNet, DiscNet, DDLSNet,

and DDLSNet reliability

DDLSNet

Test Set
RimNet DiscNet

DDLSNet

Reliability

Total No. of Images 120 1 208 11 536 1 562

Total No. of Eyes 109 1 021 5 213 781

Gender: Male/Female 45:55 43:57 58:42 43:57

Age: Mean (SD) 65.9 (±14.8) 63.7 (±14.9) 67.6 (±14.5) 73.8 (±11.4)

Table 6.5: The DDLS distribution for our test set of 120 images, graded by glaucoma spe-

cialists

DDLS Grading by Clinician Count

1 0

2 12

3 29

4 30

5 12

6 19

7 12

8 4

9 2

10 0

Total 120
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DiscNet was trained, validated, and tested on a database of 11 536 eyes in an 80/10/10 split.

The mean age was 67.6 (±14.5) and had a male:female ratio of 58:42. DDLSNet was tested

on 120 optic disc photographs from the RimNet test set manually graded based on DDLS

by three glaucoma specialists. The distribution of DDLS grades in the test set is shown in

Table 6.5. Reproducibility of DDLSNet was evaluated on 781 eyes, each with two optic disc

photographs available (mean age=73.8 (±11.4) years, male:female ratio=43:57). The eyes

were all classified as non-progressing by a glaucoma specialist based on review of the optic

disc photographs. The demographic data for the 4 cohorts are presented in Table 6.4.

6.3.1 Model Architecture and Hyperparameter Search

After exploring thirty different combinations of hyperparameters through random search,

the following hyperparameters were identified as providing the highest classification accu-

racy for DiscNet: VGG19 architecture, phase one learning rate of 1−4, phase two learn-

ing rate of 1−5, tuning fraction of 0.5, and Adam optimizer [58, 153, 161–163, 189, 190].

VGG19 is a 19-layer convolutional neural network published in 2015 that has previously

been used in medical image analysis [163,191,192]. For RimNet, fifty different combinations

were examined through a random search, which resulted as follows: InceptionV3/LinkNet

architecture, binary cross-entropy loss function, learning rate of 10−3, and Adam opti-

mizer [58,153,158–160,162–165,167]. InceptionV3 was first published in 2015, outperforming

popular encoders at the time with a fraction of the computation costs [153]. It has been

previously used in medical segmentation [154, 155]. LinkNet is a lightweight decoder first

published in 2017 [159]. Given the computational restrictions of our workstation, which uses

NVIDIA RTX 2080 Ti graphics cards, these were appropriate choices.
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6.3.2 RimNet

The RimNet evaluation criteria were the mean absolute error (MAE) for mRDR for intact

rims and the MAE for ARW for incomplete rims between physician grading and RimNet

grading with a secondary evaluation criterion of the rim intersection over union (RimIoU).

The intersection over union (IoU) is a commonly used measure for segmentation accuracy.

RimNet achieved an mRDR MAE of 0.04 (± 0.03), a ARW MAE of 48.9 (± 35.9), and a

RimIoU of 0.68.

6.3.3 DiscNet

DiscNet raw classification accuracy was found to be 73% (95% CI: 70, 75) across a test

set of 1,137 images, which included both scanned slides and digitally acquired optic disc

photographs. Broken down by category, DiscNet had a classification accuracy of 62% (95%

CI: 55, 70) for small discs, 77% (95% CI: 74, 80) for average discs, and 60% (95% CI: 52, 68)

for large discs. Notably, only three small discs out of 234 (1.2%) were mistakenly classified

as large and only two large discs out of 146 (1.3%) were mistakenly classified as small.

6.3.4 DDLSNet

Table 6.6: Kappa agreement between DDLSNet and glaucoma specialist grading

Graders Kappa (95% CI)

Grader 1 vs. Grader 2 0.52 (0.32, 0.72)

Grader 1 vs. Grader 3 0.56 (0.35, 0.77)

Grader 2 vs. Grader 3 0.49 (0.29, 0.70)

Grader Average vs. DDLSNet 0.54 (0.40, 0.68)
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Table 6.7: Difference in DDLSNet grading between paired images of non-progressing optic

disc photographs. All photographs were taken within four years of each other.

DDLS Difference Number of Images

0 481

1 267

2 28

3 1

DDLSNet was evaluated on a testing database of 120 optic disc photographs. Three

glaucoma specialists also graded the same 120 funduscopic images with DDLS. The weighted

kappa agreement between the average grading of the three glaucoma specialists and DDL-

SNet was 0.54 (95% CI: 0.4, 0.68). A full breakdown of results can be found in Table 6.6.

The model matched the kappa scores between physicians, which included 0.49, 0.52, and

0.56, averaged at 0.52. DDLSNet reproducibility was measured by evaluating pairs of non-

progressing optic disc photographs. Of the 781 pairs of eyes, 485 (62%) had DDLS difference

of 0, 267 (34%) had a DDLS difference of 1, 28 (4%) had a DDLS difference of 2, and 1

(0.1%) had a DDLS difference of 3 (Table 6.7).

6.4 Discussion

We present an automated pipeline for estimating the DDLS score with optic disc photographs

in patients with suspected or established glaucoma to facilitate detection and monitoring of

the disease. The DDLSNet weighted kappa agreement of 0.54 (95% CI 0.40-0.68) demon-

strated moderate agreement with clinician grading and matching inter-clinician agreement.

Moreover, the DDLSNet reproducibility was high with 96% of 781 non-progressing eyes found

to have ±1 DDLS grade difference on stable pairs of optic disc photographs.
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Automated glaucoma grading with optic disc photographs has been evolving. Most ex-

perimental approaches focus on accurate detection of the cup-to-disc ratio with techniques

ranging from thresholding to level setting to artificial intelligence models [168]. As early

as 2001, Chrástek et al. offered an automated method of optic disc segmentation with fil-

tering and edge detection, which achieved a segmentation accuracy of 71% with accuracy

defined subjectively as “good” or “very good” [169]. More recently, Kumar and Bindu used

U-Net [193], a segmentation neural network architecture, to achieve an intersection-over-

union (IoU) of 87.9% in optic disc segmentation [194]. Our algorithm for measuring mRDR,

RimNet, combines both the image processing techniques used in older segmentation studies

and the artificial intelligence of newer studies to achieve a high-efficacy segmentation on a

variety of optic disc photographs.

Cup-to-disc ratio has been repeatedly shown to be inferior to DDLS in grading glauco-

matous damage [195]. Several papers addressed detection of the minimum optic disc rim

width, an important component of calculating the DDLS score [196–198]. However, few

have used automated DDLS calculation due to the complexity of the challenge. Two studies

examined the results of a 3D stereographic camera (Kowa Nonmyd WX 3D, Kowa, Tokyo,

Japan) [199, 200]. The camera automatically displays the DDLS grade in its final report.

The study by Han et al. showed moderate agreement (weighted kappa value, 0.59) with one

glaucoma specialist [200]. This study has two limitations compared to our study. First, the

study only evaluates the camera against one glaucoma specialist rather than the three in our

study. Second, such camera-specific software does not offer the generalizability of DDLSNet.

While functional on certain cameras, such software would not offer the generalizability of

DDLSNet. A third study provided clinical validation for RIA-G, an automated cloud-based

optic nerve head analysis software that has been reported to be able to grade optic disc pho-

tographs based on DDLS [201]. This study showed a moderate agreement of 0.62 (0.55, 0.69)

between three glaucoma specialists and the software. However, the validation set favored

photographs of mild glaucoma (average DDLS grade 3, DDLS 1-7 included) and required

100



fundus photographs with a 30-degree field of view [201]. Our validation set has a wider spec-

trum of glaucomatous damage (average DDLS grade 4.5, DDLS 2-9) and DDLSNet does not

require a 30-degree field of view. Moreover, the RIA-G optic disc cup and disc detection

software operates based on contrast detection which would be impaired in photographs with

bright artifacts and abnormal pathology48. A fourth study implemented a partial-DDLS

grading using active discs, where a circular disc shape was assumed and DDLS grades were

grouped into normal, moderate, and severe categories [145]. The model achieved a category

accuracy of 89% [145]. DDLSNet improves upon this study by directly comparing then ten

DDLS grades rather than three categories. Additionally, our network accounts for disc size

variations through DiscNet and intact and incomplete rims through RimNet. It is unclear

if and to what extent the above studies included optic discs with areas of absent optic disc

rim widths, which constitute the most severe DDLS grades.

DDLSNet is the most accurate and generalizable approach developed to date for several

reasons. First, it was validated on optic disc photographs with a wide breadth of glauco-

matous damage. This included optic disc photographs with areas of absent optic disc rims.

Second, it makes no assumptions of the size or shape of the optic disc when grading size.

Third, it is built on a neural network model rather than thresholding or contrast-based algo-

rithms which are limited in learning capacity. Finally, it is not restricted to specific fundus

cameras, making it more amenable for use in mobile settings where smartphones or portable

fundus cameras can be used for fundus photography.

The shortcomings of our study need to be considered. Expanding the dataset could

improve performance of both RimNet and DiscNet. The models will also have to be trained

on images with significant concurrent pathologies, such as severe diabetic retinopathy and

macular degeneration. The hyperparameter search was limited by the processing power and

memory constraints of our NVIDIA RTX 2080 Ti graphics cards, which were used to train

the model. A more extensive hyperparameter search can be done using larger architectures

such as ResNet152 with more powerful computing hardware. Following the hyperparameter
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search, the selected DiscNet model and RimNet model had the highest accuracy and rim

intersection over union respectively on the validation set. However, their loss functions had

evidence of possible overfitting. This would need to be addressed in future study. Finally,

the number of physicians grading and segmenting funduscopic images could be increased to

allow DDLSNet to learn a wider consensus of gradings.

6.5 Conclusion

In conclusion, DDLSNet offers a unique, high-efficacy, high-throughput, reliable DDLS grad-

ing system, which is well-suited to perform as a screening, diagnostic, and prognostic tool

for identifying and classifying glaucomatous damage and monitoring disease progression.

DDLSNet is also well-suited for mobile applications in a variety of settings, including use by

individuals without extensive ophthalmological training such as a neurology resident using a

phone camera attachment or optometrists seeking to better evaluate their patients’ fundus-

copic images. Future study directions include increasing the number of physician graders and

examining the implementation in remote areas with limited access. With powerful comput-

ing technology, glaucoma screening could be enhanced and widely disseminated, improving

clinical outcomes for patients.
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CHAPTER 7

A Twin Convolutional Neural Network for the

Identification of Glaucoma Progression Using Images

of the Optic Nerve Head

In this chapter we introduce a system for the detection of glaucoma progression using serial

photographs of the optic nerve head. Unlike past systems which have been trained to detect

progression by predicting the visual field or optical coherence tomography reading corre-

sponding to a photo, this study uses consensus-derived clinician-generated labels as ground

truth. Clinician-derived labels are used with the intention of allowing the recognition of

glaucoma progression across a broad variety of phenotypes and disease severities based on

the same features that a glaucoma specialist would look for. Additionally, we pair the system

with an image saliency technique, allowing for insight into what portions of an image the

deep learning model is attending to when generating its prediction.

We evaluate the model against an internal dataset and find that it demonstrates ac-

ceptable performance for detecting glaucoma progression, outperforming simpler automated

techniques based solely on the width of the optic disc rim. Eyes correctly identified by the

model demonstrated clinically relevant functional deterioration. These findings suggest that

with further refinement and expansion of datasets and optimizations to the training process,

deep learning has promising potential as an ancillary method for clinical decision-making

regarding glaucoma progression.
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7.1 Introduction

Glaucoma is a progressive optic neuropathy that can cause significant visual disability or

blindness if inadequately treated [202]. Timely detection of glaucoma progression is a press-

ing unmet need. Appropriate remedial action can be taken and further visual loss prevented

only if worsening of glaucoma is detected in a timely manner. Progressive damage to retinal

ganglion cell axons at the level of lamina cribrosa is currently considered to be the main

factor leading to characteristic structural changes within the optic disc [203, 204]. Various

imaging modalities, such as optic disc photography, scanning laser ophthalmoscopy, and

optical coherence tomography have been utilized for detection of disease deterioration in

glaucoma. Among these, optic disc photography is widely available, easy to perform, and

does not require sophisticated software for review; hence, it is a viable option in “low-tech”

environments [205].

Serial optic disc photography is an established method to detect progressive glaucomatous

damage especially in early to moderately severe disease [205–207]. However, review and

comparison of serial disc photos (DPs) is time-consuming and requires extensive experience.

Additionally, detection of serial change is subjective and there is high interrater variability

even among seasoned glaucoma specialists [208–213]. As such, despite the low cost of optic

disc photography compared to other imaging methods, and despite the decades of disc photos

some patients have in their records, optic disc photography remains underutilized in the care

of glaucoma patients. However, an important advantage of optic disc photography is that it

has remained relevant despite past technological innovations, and will likely remain relevant

into the future. As such, clinicians will always be able to compare prior disc photos to

a current exam or recent photographs and make a decision on whether the disease has

progressed.

Recent improvements in computing power and the availability of large clinical databases

have spurred great interest in artificial intelligence approaches in healthcare [214–216]. Deep
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learning in particular has seen great success in imaging tasks, achieving performance par with

clinicians in various domains, including ophthalmic applications. Identification of diabetic

retinopathy and clinical management of glaucoma both rely heavily on clinicians analyz-

ing images of the eye, and the demonstrated strengths of convolutional neural networks in

image classification [217] have translated into promising performance in the ophthalmic do-

main [218–225]. Studies on glaucoma detection with deep learning models have reported high

discriminative capability [218–220,222, 223]. Li et al. reported an area under receiver oper-

ating characteristic curve (AUC) of 0.986 for detection of glaucoma based on color fundus

photographs [222]. However, despite the great success of deep learning identifying the pres-

ence of glaucoma, there are comparatively few studies that attempted to identify glaucoma

progression [226–229]. Identification of glaucoma progression is a unique problem because

rather than discriminating solely between healthy and glaucomatous eyes, a grader must be

capable of finer discrimination, such as that between moderate and severe glaucoma. Addi-

tionally, identifying progression requires a model capable of accepting more than one image a

time, and most image-based deep learning models for classification accept only single images.

The purpose of this study is to design a supervised deep learning model for detection of

glaucoma progression relying on longitudinal series of disc photos. The model’s performance

was investigated according to severity of glaucoma damage at baseline. Use of deep learning

techniques could potentially enable non-expert clinicians as well as glaucoma specialists to be

able to ascertain disease progression; we speculate that deep learning methods could exceed

the performance of glaucoma experts for making this important decision.

7.2 Methods

Patients from the clinical database of the Stein Eye Institute, University of California Los

Angeles (UCLA), meeting the inclusion criteria and who were seen between 1998 and 2019

were enrolled. The current study was carried out in accordance with the tenets of the dec-
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Total eyes with disc photos

Eyes=25,224

Eligible by diagnosis and follow-up

Eyes=2,139

Progressing

n=289

Stable

n=1,140

Progressing

n=56

Stable

n=218

Train

Eyes=1,376

Images=5,675

Val/Test

Eyes=274

Images=1,096

Diagnosis of POAG, PACG,

NTG, PG, or PSXG,

2 years of follow-up with 2 or more DPs,

generate train/test/val split

≥ 2 days with DPs, strict quality,

exactly 2 photos per visit

≥ 2 days with DPs, good quality

Figure 7.1: STROBE Diagram: Overview of eyes included in the study

laration of Helsinki and the Health Insurance Portability and Accountability Act (HIPAA)

and was approved by UCLA’s Human Research Protection Program.

7.2.1 Dataset

The study eyes were required to have at least two years of follow-up with two or more

optic disc photographs available during the follow-up period. Only patients with a diagnosis

of primary open angle glaucoma (POAG), normal tension glaucoma (NTG), pigmentary

glaucoma (PG), pseudoexfoliation glaucoma (PXFG), and primary angle closure glaucoma

(PACG) were included. Optic disc photographs were acquired with multiple devices during
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the study period including an older version of the Zeiss 450 camera (Carl Zeiss Meditec,

Dublin, CA) and the FF450plus Fundus Camera with VISUPAC™ Digital Imaging System

(Carl Zeiss Meditec, Dublin, CA). The images acquired before 2013 by the older Zeiss fundus

camera were digitized prior to the study at a resolution of 4256 x 2832 pixels. The serial DPs

were first evaluated by two ophthalmologists (VH and DS) for quality and those deemed to be

of poor quality or with any evidence of retinal disease (such as retinal vein occlusion, diabetic

retinopathy, etc.) were excluded. Standard achromatic perimetry was performed with a

Humphrey Field Analyzer II using 24-2 strategy. Visual field exams with a false positive

rate of <15% were included. Lastly, in order to ensure each eye in the test and validation

splits was equally represented, we kept only photos in these sets from eyes where there

were exactly two photos at both the baseline and final visits. Additionally, an unpublished

convolutional neural network was used to reduce the likelihood of human error by identifying

images that were likely to be of low quality in the test and validation splits. The restriction

on number of images per visit and the second quality check were not applied to the training

set in order to maximize the size of the training set and provide additional regularization.

The dataset construction process is summarized in Figure 7.1.

7.2.2 Labeling Glaucoma Progressors vs Nonprogressors

Two ophthalmologists (VH and DS) were first retrained on detection of glaucoma progression

using disc photos by two glaucoma specialists. VH and DS then independently labelled every

(baseline, final visit) image pair as either stable or progressing. In instances where the two

clinicians disagreed on presence of progression, the images were reviewed independently by

two glaucoma specialists. In the instance that the two glaucoma specialists disagreed, the

result was adjudicated by a third glaucoma specialist.
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Table 7.1: Demographic and clinical characteristics of the study population

Variable

Median (IQR) follow-up time (years) 10.26 (5.1-14.5)

Mean (±SD) baseline VF MD (dB) -3.8 (±5.2)

Percent of progressors (%) 20.2%

Baseline glaucoma severity (%)

Mild severity at baseline 977 (79%)

Moderate severity at baseline 152 (12%)

Severe severity at baseline 113 (9)%

7.2.3 Dataset Statistics

Fourteen thousand two hundred and ninety-seven disc photos from 1,645 eyes of 916 patients

were included in this study. Table 7.1 shows the demographics of the study population.

Median (IQR) follow-up time was 10.26 (5.1-14.5). The mean (±SD) baseline 24-2 visual

field Mean Deviation (MD) was -3.8 dB (±5.2). The distribution of glaucoma severity at

baseline was as follows: mild glaucoma (24-2 visual field MD ≥ −6 dB): 79%, moderately

severe glaucoma (MD between −12 and −6 dB): 12%, and severe glaucoma (MD < −12

dB): 9%. Based on clinical review of DPs as described above, 289 eyes (20.2%) progressed

during the follow-up period and 1140 eyes (79.8%) were considered as nonprogressors.

7.3 Image processing

Labeling for laterality (right versus left eye) was performed manually. In order to pass

only the most informative region of the image into the model [230], we cropped the raw

fundus images to squares centered around the optic disc. Square crops were chosen so that
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preprocessing the images before feeding them into the model would not result in changes to

the aspect ratio, thus avoiding any apparent warping of the optic disc. To identify the optic

disc, we used the segmentation model first described in RimNet [13]. Our cropping algorithm

identified the tightest possible square bounding box around the optic disc and cropped the

raw image such that the distance from each side of the bounding box to the edge of the

image was 40% of the width of bounding box. This results in the bounding square around

the disc taking up 31% of the cropped image.

In order to increase the number of (baseline visit, final visit) tuples available to the model

for training, we train the model using all possible pairings of images from the baseline visit

and final visit. This means that if an eye had two images from the baseline visit and two

images from the final visit, we generate 2 × 2 = 4 unique pairings of images which we feed

into the model. Eyes were randomly divided into an 80/10/10 train/validation/test split

before the filtering process described in Figure 7.1. In situations where both of a patient’s

eyes were present in the dataset, both eyes were assigned to the same split.

7.4 Development of Twin Convolutional Neural Network

In order to identify progression from pairs of color fundus images, we developed a convo-

lutional neural network with a twin structure [231]. A twin neural network consists of two

copies of the same neural network, with weights shared between them. After both inputs

have been passed through the neural network, the pair of intermediate results are processed

to generate a final result. This approach has been used in the past for tasks such as deter-

mining whether two signatures are the same [231], determining whether two images show

the same landmark or scene regardless of viewpoint or lighting [232,233], and generally any

task where the goal is to measure the similarity of a pair of inputs [234]. This makes twin

neural networks a good fit for our task, as our goal is to determine whether two images of an

eye show similar glaucoma severity. The twin structure with shared weights was chosen in
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order to reduce the probability of overfitting, as initial experiments without shared weights

failed to demonstrate good performance on the validation set.

We chose to base our network on an EfficientNetV2B0 [235] model pretrained on Ima-

geNet [188] as transfer learning has been shown to be beneficial in other medical imaging

tasks [236] and EfficientNetV2 has been reported to outperform other models for transfer

learning tasks [235]. In transfer learning, a model that was originally trained for one task,

such as identifying whether an image contains a cat or a dog, is repurposed for a new task.

For this study we used a two phase transfer learning approach to improve performance. In

the first phase, only the final layer of the model is trainable, ensuring that the steep gra-

dients when adapting the model to an entirely new domain do not result in the weights in

the pretrained model getting destroyed. Once the model’s performance stabilized, we then

unlocked a number of EfficientNetV2’s six blocks, allowing them to be fine-tuned for the new

task.

To complete the forward pass of the model, we first took our square-cropped input images

and resized them to 224x224 with bilinear interpolation. Our model takes in the baseline

and final images and passes each separately through the EfficientNetV2 backbone. The

intermediate outputs are then passed through a batch normalization layer [237] before they

are concatenated together. This vector is then passed through a dropout layer [238] to help

prevent overfitting before being fed into a hidden layer and finally the output layer. The

architecture is illustrated in Figure 7.2.

In order to determine the optimal hyperparameters for our model, we used the Keras

Tuner library [128] to perform a random search over 20 different combinations of phase one

and phase two learning rates, dropout rates, portions of the model to unlock for the second

phase of training, and the size of the hidden layer. The objective optimized during the

random search was the area under the receiver operator characteristic curve (AUC-ROC)

on the validation set. The full search space is shown in Table 7.2. All models were trained

using the Adam optimizer [58], a batch size of 32, and binary cross entropy loss for 50 epochs
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Figure 7.2: Architecture of the twin neural network
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Table 7.2: Hyperparameter search space for twin neural network

Hyperparameter Name Possible Values

Phase One Learning Rate 1−2, 1−3, 1−4

Phase Two Learning Rate 1−4, 1−5, 1−6

Blocks Unlocked 1, 3, 6, all layers

Dropout Rate 0.0, 0.2, 0.4, 0.6

Hidden Layer Size 0, 64, 512, 1024

in phase one and 200 epochs in phase two. Due to the imbalance between the progressing

and non-progressing eyes in the dataset, we increase the weight assigned to progressing eyes

when calculating loss.

Lastly, in order to further reduce the likelihood of overfitting, we applied augmentations

to the images during training. Augmentations applied included random rotations of up to

36 degrees clockwise or counterclockwise, a random vertical shift of up to 10% up or down,

a random horizontal shift of up to 10% left or right, a horizontal flip, a vertical flip, and

a random zoom of up to 20%. Augmentations are applied independently to each image,

including images belonging to the same eye. This was done to help ensure the model’s

predictions are invariant to shifts in position and apparent size.

The code used to train and evaluate our model is available upon request. The model

was developed with Python 3.9.7 [150]. Libraries used include TensorFlow 2.9.0 [129], Keras

Tuner 1.04 [128], NumPy 1.19.5 [126], SciPy 1.7.1 [80], and scikit-learn 0.24.2 [79]. All

training was performed on a single NVIDIA 2080 Ti graphics card.
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7.4.1 Segmentation Model

In order to investigate the utility of attributes such as color and texture, we also investigated

the performance of rim-to-disc ratio (RDR) and rim-area-to-disc-area-ratio (RADAR), two

often used measures of glaucoma severity [239], for identifying progression. While RDR and

RADAR are typically calculated by hand by trained glaucoma specialists, our goal was to

build a high throughput automated system, and as such we calculated these measures using

the deep learning segmentation model and computer vision tools described in RimNet [13].

The segmentation model accepted 224x224 images preprocessed with contrast limited adap-

tive histogram equalization (CLAHE).

7.5 Model Performance and Statistical Analysis

Model performance was evaluated on the test set, with AUC-ROC discriminating between

progressing stable eyes as the primary metric. The ROC curve displays the trade-off be-

tween sensitivity and false positive rates (1− specificity) with an AUC of 0.5 representing

discrimination no better than chance and an AUC of 1 denoting perfect discrimination [240].

Additionally, we report the area under the precision-recall curve (PR-AUC), as this curve

allows for the trade-off between precision and recall to be visualized, which is useful in

situations such as this where the significant majority of eyes are not progressing.

We also report overall accuracy, sensitivity and specificity, and visualize model perfor-

mance with a confusion matrix. These metrics were calculated using a threshold of 0.5,

though the threshold can be customized to optimize for sensitivity or specificity.

Lastly, we used eXplanation with Ranked Area Integrals (XRAI) to generate saliency

maps [241], allowing for clinicians to confirm that when the model correctly identifies an eye

as progressing it is basing its prediction on the same features in an image that a clinician

would. Our XRAI saliency maps were generated with the baseline image constant, and as

such they are intended to highlight which zones of the final visit photos are most important
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to the prediction. We chose to use XRAI rather than GradCAM [242] for a variety of reasons,

including that XRAI’s salient regions tend to adhere more closely to the bounds of objects in

the frame and that in instances where multiple relevant regions are in an image, GradCAM

can tend to focus on space in between the regions rather than on the regions themselves [241].

These two attributes are particularly important for our work because we expect the model

to focus on fine detail, such as the thickness of the optic disc rim or the position of a blood

vessel. Additionally, markers of progression may be present in multiple regions within an

image, such as in the case where broad thinning of the optic disc rim is present [243]. As

such, it is important that our selected saliency method be able to adhere tightly to multiple

regions of interest within a single image. We also investigated Blur IG [244], which has

been used in multiple studies of the eye [244, 245]. However, we found that while Blur IG

excels at identifying the small-scale pathologies in an eye with diabetic retinopathy, it is

not as effective at highlighting the features indicative of glaucoma progression in an easily

interpretable manner.

7.6 Results

Figure 7.3: ROC curve on the test set
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Figure 7.4: Precision recall curve on the test set

Figure 7.5: Precision and recall as a function of threshold on the test set

Table 7.3: Performance metrics for the investigated models on the test set

Model AUC (95% CI) PR-AUC (95% CI)

Twin Network 0.766 (±0.0015) 0.413 (±0.0024)

Baseline RDR 0.754 (±0.0032) 0.424 (±0.0055)

Baseline RADAR 0.737 (±0.0030) 0.394 (±0.0049)
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Performance metrics obtained via 1,000 bootstraps for the three approaches investigated

are shown in Table 7.3. As each eye was evaluated with four unique (baseline, final visit)

image pairs, the model’s final prediction was taken the mean of all four predictions. The

AUC of the deep learning model for discriminating between deteriorating and stable eyes

was 0.77, shown in Figure 7.3. The RDR based model had an AUC of 0.75 and the RADAR

based model had an AUC of 0.74. The PR-AUC of the twin network model was 0.435, with

the curve illustrated in Figure 7.3. The effect of varying the threshold on precision and recall

is shown in Figure 7.5. We then calculated the change of visual field MD from the baseline

to the final visit. To this aim, available VFs within 12 months of the baseline and final

DPs were included. Of the 123 eyes in the test set, 100 had matching VFs. AUC for mild

(baseline MD ≥ 6 dB), moderate (baseline MD between -6 and -12 dB) and severe (baseline

MD ≤ −12 dB) glaucoma were 0.81, 0.57 and 0.66, respectively.

Figure 7.6: Maximum variation in scores for a single eye with twin network

In order to validate our assumption that it is valid to evaluate glaucoma progression

from mismatched stereo pairs, such as a left stereo image from the baseline and a right

stereo image from the final visit, we investigated the variation within the four image pairs

generated for each eye. We found that the median (IQR) difference between an eye’s highest

and lowest scores was 5.2 × 1−3 (0.103). The maximum score difference per eye, calculated
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Figure 7.7: XRAI saliency maps for two eyes that were correctly classified as progressors by

the deep learning model. Arrows indicate areas of rim loss.

as the difference between an eye’s highest and lowest scores, is shown in a histogram in

Figure 7.6.

We next inspected the saliency maps to assess whether the trained model was basing its

predictions off of the same regions of the image as clinicians would. Examples of eyes classified

as progressing are shown in Figure 7.7. Close inspection of the image series demonstrates

that warmer colored areas of the saliency map in the right column match the area of the

disc clearly showing change between the baseline and final follow-up images. In the first

example (Figure 7.7, top row), discernible optic disc rim thinning (focal notch) in the 11, 2,

and 6 o’clock positions can be observed at the final visit; the XRAI saliency map correctly
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highlights the corresponding locations. A broad thinning of the optic disc rim developed at

the 1-2:30 o’clock postion during the follow-up period in the second example (bottom row)

and the saliency map highlighted the same area.

7.7 Discussion

We designed and trained a deep learning model to detect structural glaucoma progression

solely based on longitudinal series of optic disc photos. We used consensus derived labels

from experienced clinicians as the ground truth. The final model achieved good and clinically

relevant performance, distinguishing progressors with efficacy (AUC = 0.766). The kappa

agreement [246] between the deep learning model and the clinician labels was 0.42 with a

threshold of 0.11 (95% CI: ±0.0027). Once validated on an external dataset, our proposed

deep learning model could be deployed clinically and used as an assistive software tool to

identify functionally relevant structural progression.

The twin neural network outperforming the segmentation model based approach as mea-

sured by AUC suggests that there is additional information useful for understanding glau-

coma progression beyond the thickness of the optic disc rim. This is in line with recent

findings that suggest that glaucoma can be identified without the use of the optic disc at

all [230].

Evaluation of optic disc photos remains an essential tool for detection of structural glau-

coma deterioration [247,248]. There are multiple advantages to using serial DPs for assessing

glaucoma progression. First, clinically significant optic nerve head changes can often precede

functional changes in eyes with ocular hypertension or early glaucoma [249, 250]. Addition-

ally, the platforms for acquiring and reviewing DPs are relatively inexpensive and have

remained quite stable over a long period of time, although the quality of the fundus cameras

has improved over time. However, the interobserver agreement for detection of glaucoma

progression between clinicians is low [209]. Azuara-Blanco et al. reported significant in-
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terobserver variability for detection of glaucoma progression with DPs [251], with a kappa

value ranging from 0.34 to 0.68. Our proposed deep learning model, trained for detection

of structural change on serial optic disc photos, tended to focus on the optic disc rim and

the cup as the primary regions of interest, as shown by the XRAI saliency maps. The twin

neural network model also agreed well with the ground truth used in this study, with a kappa

value of 0.42, compared to 0.20 among clinicians in Jampel et al. [209]. One could argue that

since we required agreement of two experienced glaucoma specialists on the presence or lack

of progression in challenging cases, the quality of the ground truth used in this study was

above any individual experienced clinician and hence the performance of the deep learning

model is actually quite good. Another strength of the twin neural network model is that the

series of DPs used in this study were acquired with different devices or modalities ranging

from scanned slides (before 2013) to two versions of Zeiss fundus cameras providing digital

DPs with 15° or 20° field of view.

Inspection of saliency maps is a very useful technique to identify specific image regions

and features used by a neural network to reach a conclusion, such as presence or absence

of progression in this study [252]. Therefore, saliency maps provide valuable information

whether the model is focusing on the expected relevant features of the image for providing

the correct classification. Thinning of optic disc rim and enlargement of the cup are the major

features observed at the level of the optic nerve head with glaucoma progression [247, 253].

According to the XRAI saliency maps we generated, we could conclude that the model was

focusing on changes within the optic disc rim and cup when classifying individual eyes as

progressing. This finding reinforces our confidence in the proposed deep learning model

with regard to assisting clinicians with the decision-making related to structural glaucoma

progression.

In this study, we designed a novel CNN, which was specifically trained to provide com-

parison between longitudinal DPs. Although many works in this field have leveraged transfer

learning previously, these models have been mainly used for classification at a single point in
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time [223,254,255]. Therefore, we had to build a new model capable of accurately assessing

change on pairs of images in order to classify glaucomatous eyes as progressing or stable.

In a recent study, Medeiros et al. developed a deep learning model using transfer learning

to classify glaucoma progression by predicting longitudinal changes of global retinal nerve

fiber thickness (RNFL) from series of DPs with promising results [256]. Our model showed

a lower AUC, with an AUC of 0.78 versus 0.86. However, while their study used machine

measurements for ground truth, this study used clinical evaluation of the serial DPs and

hence, our ground truth may more closely mimic the day-to-day performance of experienced

clinicians managing glaucoma patients. For example, using an OCT-based ground truth may

result in a model that is unable to recognize signs of progression that would not manifest on

an OCT.

The reasonable and clinically relevant performance of the model (AUC = 0.784) would

make this model, once externally validated, a potential candidate as an assistive tool for

decision-making by optometrists or general ophthalmologists alike.

7.7.1 Limitations

At present, the techniques described in this paper have only been evaluated on the Stein

Eye internal dataset. Validating against an external dataset would allow insight into the

generalizability of the models to populations underrepresented in our study and to cameras

besides the ones used at Stein Eye. We are currently planning to acquire data from outside

our center to do this. Another limitation is that it is possible that the relatively small sample

size did not allow the model to be adequately trained to detect subtle features of change in

glaucoma eyes. Some glaucoma phenotypes, such as an acquired pit of the optic nerve, are

relatively uncommon compared to others [243].

The performance of the techniques described in this paper were potentially limited by

the approach taken to increase the number of unique training tuples. In order to increase the

number of unique training tuples, the model was provided with tuples where a baseline image
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was a left stereo image and the final image was a right stereo image. While this provides

a degree of regularization to the system by disconnecting a change in image angle from the

content of the image and the outcome label, it is possible that this may have a negative effect

on test set performance, as a change in angle can alter the apparent position of structures

in the eye due to parallax error. This is evidenced by the small number of eyes that had a

difference of more than 0.3 between their highest and lowest scores, as shown in Figure 7.6.

It is worth investigating whether better performance can be achieved by training a model on

tuples where the both images come from the same side of a stereo pair, as well as whether

a model can be trained with tuples consisting of stereo left and right from both the baseline

and final visit, thus utilizing four images per prediction. Accomplishing this would require

each image being labeled as left stereo or right stereo. Additionally, visual inspection of the

dataset has shown a handful of duplicate images present with different filenames and slightly

different image contents due to recompression. Removing these images from the dataset will

result in having more eyes usable for evaluation, as eyes with more than two images on a

given day are currently excluded.

Recent research has shown that there are statistically significant differences in glaucoma

phenotypes in patients of different ages, race/ethnicity, and sex [243]. It is possible that

providing such demographic information to our model may enable it to better learn how

glaucoma progression manifests in different subpopulations, thus providing increased perfor-

mance.

Lastly, although the dataset included multiple visits for each eye, the label of progression

was only applied to the last visit in each patient’s history. As the dataset does not say

when exactly progression occurred between a patient’s first and last visit, the twin neural

network model was limited to using only images from the first and last visit. If the dataset

were regraded to note exactly when in a patient’s history progression occurred, an updated

model could be implemented that works with the full sequence of images in a patient’s

history. Having an exact date on which progression occurred would also allow for the size
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of the training set to be significantly expanded. Currently, additional nonprogressing pairs

can be generated by pairing all images from a nonprogressing eye or by pairing images from

progressing eyes taken on the same day, but there is no way to generate additional progressing

pairs. Being able to generate additional image pairs beyond the ∼6,000 that were used to

train the model described in this paper may improve performance and generalizability.

7.8 Conclusion

In this chapter, we introduced a novel twin neural network-based system for detecting glau-

coma progression based on fundus images. Eyes correctly identified by the model demon-

strated clinically relevant functional deterioration. The system’s accuracy is a promising

first step towards the creation of an automated ancillary method for clinical evaluation of

glaucoma progression. Additionally, we demonstrate that XRAI can be effectively used to

evaluate optic nerve head-based models, allowing for effective debugging and the develop-

ment of trust between clinicians and the model.
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CHAPTER 8

Conclusion

The works described above showcase the potential for new analytical techniques to be wed-

ded with new sensors, new information rich heterogeneous data sources, and extensive but

imperfect health records in order to overcome long-standing hurdles to the adoption of artifi-

cial intelligence in medicine, including data missingness, generalizability, and heterogeneity.

In overcoming these hurdles, the systems are good first steps towards gaining new insights,

improving healthcare access, and aiding physicians. In summary, this dissertation described:

• HTAD, a new system that uses attention to generate target aware representations of

medical record items represented as a heterogeneous network, increasing accuracy for

the diagnosis prediction task.

• A novel fingertip PPG-based system for the identification of mental stress in older

adults with cognitive impairment, enabling real time monitoring in the home in a way

that was not previously possible.

• A large scale analysis of the CURE-CKD repository, resulting in a new model capable

of predicting patients at risk for rapid kidney function decline despite high missingness.

This work also resulted in new insights as to the groups most at-risk for such a decline.

• RimNet, a fully automated system for accurate segmentation of the optic disc rim, and

the first study to report performance for this task on incomplete rims.

• DDLSNet, the first system for automated estimation of DDLS, enabling faster evalua-

tion with less variability. Additionally, this is the first study to report on the problem
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of determining optic disc size solely using optic disc photos without any external aids.

• The first system that evaluates pairs of images for the same markers of progression that

glaucoma specialists look for. Such a system demonstrates deep learning systems may

be promising add-ons for clinical decision-making regarding glaucoma progression.

8.1 Future Work

Through my work developing clinically relevant systems, I have encountered a number of

challenges that I believe would be great avenues for future exploration.

First, through my collaborations with clinicians it became clear that clinicians often

have access to a wealth of data, but they do not always have the expertise to leverage

this data. This is especially true after the transition to EHRs and the associated massive

record digitization efforts. In-house data teams and cross-disciplinary collaborations can be

very valuable, but I have found that there are typically more ideas worthy of exploration

than there are team members with the expertise and availability to work on them. While

there may be only a handful of data analytics or machine learning experts on a team, there

are typically multiple individuals comfortable with the raw data and statistics essentials.

This pattern is not unique to medicine, and as such recent years have seen the rise of low-

code or no-code systems for machine learning, often referred to as “AutoML”. Examples

of AutoML include Google’s VertexAI and Amazon Web Service’s SageMaker platform.

While an individual may not have the expertise to build a convolutional neural network that

leverages transfer learning, they are more than capable of leveraging these AutoML platforms

to gain insights into the datasets they already have. The models derived from these AutoML

platforms could then serve as either a proof of concept to establish the feasibility of further

exploring an idea, a baseline to understand the benefits of handmade models, or just a way

to quickly get a system off the ground for relatively little cost. While these systems are not

currently strongly marketed towards the medical community, recent work has shown that
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commercial AutoML can achieve good performance in the medical domain [257]. It would

be worth exploring how such AutoML platforms could be further improved for common

medical tasks, such as by incorporating new medicine-specific transfer learning datasets,

adding common enhancements such as contrast limited adaptive histogram equalization,

providing more flexible architectures, such as systems that accept pairs or sequences of

images, or by providing state-of-the-art medical segmentation models, such as some of the

newest UNet derivatives [174–177].

Another clear direction for future work would be increased utilization of multimodal and

multi-machine fusion when generating predictions. As described in Chapter 2, it is common

to have highly heterogeneous data in a health record. This problem becomes even more

difficult as technology evolves, such as when color cameras replaced black and white cam-

eras for fundus photography, or now in modern times when new generation OCT machines

generate more accurate readings and cleaner images than older machines. Clinicians need to

be able to understand a patient’s condition over long periods of time, and leveraging mul-

tiple modalities from multiple generations of technology is essential to accomplishing this.

While HTAD shows how time series data can be combined with an information network to

generate better performance, systems capable of generating predictions leveraging all of a

patient’s data, regardless of the modality or the machine that generated it, will be key to a

comprehensive understanding of a patient health.

Lastly, there is still a need for tools and frameworks for model understanding and ex-

plainability. One of the most difficult parts of the project described in Chapter 4 was figuring

out a way to determine what unique insights, if any, the model was generating, as well as

what its predictions meant in a clinical setting. While it is great to know that a model is

predicting a particular individual as being at risk for an outcome, this is not sufficient for

clinicians. Clinicians want to know what populations are at risk, they want to know what

type of patient they should be most concerned about, and they want to know if the model

has developed insights that have not previously been reported. While there has been a
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great amount of research in towards model explainability through tools like SHAP [258] and

LIME [259], there is not yet a good framework that can take in a model and test dataset and

automatically output something akin to a model card [260], though reporting on a model’s

key insights in addition to solely evaluating it for potential biases.
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