UC Irvine
ICS Technical Reports

Title
Methodology for the Generation of Program Test Data (Revised)

Permalink
https://escholarship.org/uc/item/7hp7b332

Author
Howden, William E.

Publication Date
1974-02-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7hp7b332
https://escholarship.org
http://www.cdlib.org/

METHODOLOGY FOR THE GENERATION

OF PROGRAM TEST DATA

" William E. Howden

University of California at Irvine
'~ 2 Februvary, 1974

The research described in this paper was carried out in cooperation with
the McDonnell Douglas Astronautics program in the research and development
of program validation software., The research was part of a project funded
by the Hational Bureau of Standards.

istiact

A methodology for generating program test data is described. The
methodology is a model of the test data generation process and can be
used to characterize the basic problams of test data generation, It
is well defined and can be used to build an autamatic test data
generation system,

The methodology decomposes a program into a finite set of classes
of paths in such a way that an intuitively complete set of test cases
would cause the execution of one path in each class. The test data
generation problem is theoretically unsolvable: there is no algorithm
which, given any class of paths, will generate a test case that causes
same path in that class to be followed. The methodology attempts to
generate test data for as many of the classes of pathé as possible,

It operatés by constructing descriptions of the input data subsets
which cause the classes of paths to be followed. It transforms these

descriptions into systems of predicates which it attenpts to solve.

1. 'Introduction

The validation phase of the software production process has received
increasing attention in the last few years (e.g. [1], [2] and [3]). The
two most important approaches to validation which havé been studied are
program verification and program testing. In the program verification
approach a program is mathematically proved to be correct over its
entire input domain, In the testing approach a program is showﬁ to be
correct over a finite subset of its input domain by evaluating the
program over that set. The verification approach is limited to small
programs, The testing approach is generally applicable and is likely to
- remain the most important software validation tool.

Several programming tools have been built which automate parts of
the program testing process. Stucki [4] and Brown [5] describe systems
which aufm;atically insert instrumentation statements into a program.-
The instrumentation statements keep a record of the branches and state-
ments that are executed during the testing of a program. Reports can be
generated which describe how thoroughly the statements and branches have
beern tested. The system described by Brown also contains features for
manipulating a data base of test cases and for automatically checking
test results, Krause [6] describes a system for extracting a sequence of
paths from a program which "covers" each branch in the program. The
system extracts skeletal descriptions of the paths, which the user
examines in order to construct test cases which cause the paths to be
followed. The skeletal descriptions which are generated by the system
are similar to the "implicit descriptions"” which are described below.

A scheme has been devised by Paige and Balkovitch [7] for testing a prograin

against its specifications. Ramamoorthy [8] has constructed a system which

autanatically checks a program for ancmolous statements and constructions,
Ramamoorthy's system also provides facilities for the autamatic insertion
of trace statements.

This paper describes a methodology for the generation of program
test data. The methodology is a model of the test data generation
process and can be used to characterize the basic problems of test data
~generation, It is well defined and can be used to build an automatic
test data generation system. The methodology is general and can be
applied to programs in different languages although it was designed with
FORI'RAN programs in mind, 'The basic problems of test data generation
are described in context, along with the description of the methodology.

The methodology decamposes a program into a finite number of
standard classes of program paths. It then attempts to generate a set of
test cases which causes one path from each class to be tested. The
~ general test data generation problem is undecidable, There is no
algorithm which can examine any class of paths through a program and
_generate a test case for that class. A camplete standard set of test |
cases contains one test case for each standard class of paths. The

methodology attempts to generate a large subset of the complete set,

2. General Approach

The methodology consists of five phases., The first phase analyzes
a program and constructs descriptions of the standard classes of paths.
The input data which causes the paths in a class of paths to be followed

can be characterized by a subset of the assignments, loops, function calls and

branch predicates in the paths. The second phase of the methodology
constructs descriptions of the sets of input data which cause the
different standard classes of paths to be followed. The descriptions
generated by the second phase are implicit descriptions in the sense

that they do not explicitly describe a set of data in terms of predicates
and relations. They contain assignments and loops and other program-like
constructs. The third phase of the methodology attempts to transform the
implicit descriptions into equivalent explicit descriptions. An explicit
description consists entirely of predicates and relations. In general,
it is not possible to transform any implicit description into an explicit
description. The fourth phase constructs explicit descriptions 6f subsets
of the input data sets for which the third phase was unable to construct
explicit descriptions. The fifth phase of the methodoldgy generates
input values which satisfy explicit descriptions. Explicit descriptions
of mmeric input data consist of systems of equalities and inequalities.

~ Values which satisfy numeric explicit descriptions can be cobtained by the
application of inequality solution techniques.

i

3. Generation of Class Descriptions

(a) Boundary-Interior Test Paths. There are a potentially infinite
nutber of paths through a program which contains loops. Only a finite
mumber of these can be tested. One approach is to test the K shortest
paths, for some fixed constant K. The K shortest paths approach is
redundant and unpredictable. It causes intuitively similar tests to be
carried out. It tests the "important” paths through scme programs but
not through others.

Another approach is to group the paths into a finite number of

standard classes and to test one path from each class. In the loop

reduction method paths are grouped into classes by ignoring iéerations of
loops. This method has two obviocus disadvantages. It does not distinguish
between alternative paths through a loop and it does not distinguish
between the boundary and interior tests of a loop. A boundary test of a
loop is a test which causes the loop to be entered but not iterated. 2An
interior test causes a loop to be entered and then iterated at least once.
Experience indicates that both the boundary and interior conditions of a
loop should be tested. ‘

The boundary-interior method generates separate classes of paths fgr
alternative paths through and for the boundary and interior tests of a
loop. Paths which differ other than in traversals of loops aré grouped
in different classes. Paths which differ only in traversals of loops are
classified as follows. Suppose Pl and P2 are two paths which enter and
leave a loop L. Pl and P2 are placed iﬁ different clasées if:

o (d) P, is a boundary test and P, an interior test of L
(ii) Pl and P, enter or leave L along different loop
entrance or 1loop exit.branches
(iii) P, and P, are boundary tests and they follow different
paths through L
(iv) Py and P, are interior tests and they follow different
paths through L on their first iteration of L.

(b) Class Descriptions. The first phase of the methodology uses

the boundary-interior approach to decompose.a program into a finite set
of classes of paths. It constructs program-like descriptions of the
classes. Class descriptions consist of branch predicates, assignmenf
statements, I/0 statements and "FOR~-loops". Figure 2 contains the
description of the class of paths which test the interior of (i.e., iterate

at least once)'the loop in the program in Figure 1.

1 READN

2 IFN<OGTO 10
3 Mel

4 IFN=0 GOTOS8

5 M<«M*N

6 N<«N-1
7 GO T4

| 8 PRINT M
9 HALT
10 PRINT -1
11 HALT

Fig. 1. Factorial program,

The FOR-loop notation in Figure 2 is used for denoting traversals
of loops. The use of the FOR-loop notationrrr;kes it possible to introduce

. & variable into a description which denotes the number of times a loop is

traversed .

The class descriptions for a program will contain common subdescriptions.

A complete set of class descriptions can be represented in the form of a

"description tree". Figure 3 contains the description tree for the factorial

program in Figure 1.

(¢} Class Description Generation Process. Phase one of the methodology
reads through a program and constructs its class description tree. |
The phase one process has the structure of a recursive finite state

automaton. Each copy of the automaton is associated with the processing

of a loop in the program. When a subloop is discovered during the

FOR I1 = 1 TO K1 ' w

N=0
M+«M*N
N+«N-1

N =

PRINT M

HALY

Fig. 2., Class description,

processing of some loop a fresh copy of the autcmaton is created for the
processing of the subloop. When the processing of a loop has been completed,
control is returned to a previously interrupted copy of the automaton. The

structure of the process is such that loops must be properly nested.

- The structure of the phase one process is described by the state
diagram in Figure 4. As it reads through a program the process adds
assigmment statements, branch predicates, I/0 statements and FOR-loops
to the description tree. The process begins in the MATN state. It
continues in this state until a branching statement or the entrance to a

loop is encountered. When it reaches a branching statement it constructs

READ N

N

N=z0 N <O
M<1 PRINT -1
HALT
N 0 N =
M<+~M*N PRINT M
N«N-1 | Har?

FOR I1 =1 TO K1

N=z20
M<«<M*N
N+« N - ;

N =

PRINT M

HALT

Fig. 3, Description tree.

branches in the description tree which correspond to statement branches.
The BRANCH state chooses which branch to continue processing along.
When a loop entrance is encountered the process enters the ENTRANCE state.

It continues in the ENTRANCE state until a branching statement, the first

’
’ Y
4 JTERATE \
/ ,

first statement . \
first state;ment

first statement

‘Fig, 4. State diagram for class description generation process.

statement in the loop or the entrance to a subloop is reached. If a branching

statement is reached it sets up the appropriate branches in the description

tree. If the first statement is reached the PATH state is entered. The
PATH state sets up subpaths in the tree which correspond to the alternative paths
which can be followed on the first iteration of the loop. If the

entrance to a subloop is encountered a fresh copy of the automaton is
created and entered at the ENTRANCE state. When the PATH state -
re-encounters the first statement of the loop being processed it passes
control to the ITERATE state. The ITERATE state constructs a FOR-lcop
which describes all possible further iterations of the loop. The

ITERATE state passes control to the EXIT state. The EXIT state “exits" .
from a loop. It constructs-subpaths in the tree corresponding to the
different paths through the loop from the first statement of the loop to
some exit branch out of the loop. The BACKTRACK state causes control to
return to some previously interrupted copy of the automaton. It does

this by backtracking through the partialiy camplete description tree until
it encounters a node which has branches leading to uncompleted subpaths.

It passes control to BRANCH to choose a branch along which to continue the-
tree construction process. The PRINT state prints out, or hands along to.

phase 2, a completed class description.

4, Tmplicit Input Data Descriptions

'The input data which causes a path to be followed is the data which
causes the predicates in the path to be satisfied. The predicates in a
path, together with the input and computational statements wich affect
the variables in the predicates, form an "implicit" description of the
subset of the input domain which causes the path to be followed. Phase 2

of the nethodoldgy constructs implicit input data descriptions of the

sets of data which cause classes of paths to be followed. It does this
by extracting the predicates and predicate affecting statements from class

descriptions. Figure 5 contains the implicit input data description

for the class description in Figure 2.

FOR Il = 1 TO K1
N=z0

N<+N-1

Fig, 5. TInplicit input data description.

Phése two can be described in two parts. The first part of phase
two deletes the output statements from a class description and replaces
all input statements by assignment statements. FEach input statement in
a program is assumed to read the hext value in an input gtream. The
values in the input stream are represented by the dummy input variables
#1, #2, Different notations can be developed for different kinds
of program input. In Figure 5 the input statement "READ N" has been
replaced by the assignment N < #1. Special consideration must be given
to input statements which occur inside loops. Similar techniques can be

used for subroutine input.

10

The second part of phase two deletes all "@ecessm" assignment
statements. It does this by reading backwards from each predicate. As
it reads back it constructs lists of “predicate affecting" variables.
It uses these lists to determine whicﬁ assignment stateménts do not affect

predicates and can be deleted from a description.

5. Transforming Implicit into Explicit Descriptions

(a) Explicit Input Data Descriptions. An explicit input data

description for a FORTRAN program consists of a system of inequalities in
input variables and constants. It is usually only possible to construct
"partially" explicit descriptions. Partially explicit descriptions are
simplified implicit descriptions. Like implicit descriptions, they con-
tain assigrments and FOR-loops as well as predicates and relations. Phase
three of thé methodology is a symbolic inter;-)retation process which.
transforms implicit descriptions into explicit and partially explicit
descriptions. '

Phase three attempts to evaluate and delete the assigmment statements
and FQR—lmps in an implicit description. An assignment statement is
evaluated by substituting the current symbolic values of the independent
variables in the statement into the statement. The expression on the right
hand side of the resulting statement becomes the current symbolic value
of the variable -on the left hand side. Symbolic values are substituted
for occurrences of variables in predicates and relations. Figure 6 contains.
a partially explicit description for the implicit description in Figure 5.
The assigmment N <« #1 has been evaluated and the symbolic value #1
substituted for N in the predicates Nz 0 and N = 0.

The assignment N « N - 1 has also been evaluated.

11

N < $#1

#1 =2 0

#1 =0

N+ $#l -1

Kl=0

FORIl=l'IOKi
N=0

N<N-1

. Fig. 6. Partially explicit description,

The current symbolic value #1 - 1 of N cannot be substituted for
occurrences of N in the FOR-loop becausé N is assigned a value in the loop.
Phase three attempts to evaluate and delete FOR-loops by finding "closed
forms" for iterative expressions. The FOR-loop in Figure 6 can be
replaced by the closed form in Figure 7. Once the FOR-loops have been
eliminated from a partially explicit description, further evaluation may
be possible. The value of N computed in the assignment N < #1 - 1 can be
substituted for N in the closed form expression for the FOR-loop. A
symbolic value for N can also be srubstituted into the predicate N = 0.
Figure 8 contains the resulting description. '

Some assigrment statements can be deleted once they have been
evaluated and others will remain in the resulting partially explicit
description. Assignment statements which do not affect predicates in é
partially explicit description can be deleted from the description. All
of the assigmﬁeht statements in Figure 8 can be deleted. Figure 9 contains
the resulting description. In this case a completely explicit description

is generated.

12

13

N < #1
#1
$#1 = 0

v
[=]

N+« #l -1

K1 =0
(N<O0OVN>EKL - 1)
"N+ N-KL

N=20 |

Fig,.7. Description with closed form

(#1 ~1 < 0 v #1 -1 >K1l - 1)
N«<#1-1-K1

- 1 -KL =0
Eig. 8. Partially explicit description

#1 =0

#$1 =2 0

Kl =20

(#1 -1 <0 v #l—l>Ki-—1)

#1 - 1 -XKL =0

Fig. 9. Explicit input data description

(b) Interpretation Problems. There are several problems which

make interpretation a complicated process and which can prevent the
construction of a completely explicit input data description. The
problems result from the presence of array references and FOR~-loops in
an implicit description.

FORTRAN array references have thé property that they may stand for
different array elements, depending on the values of the indices in the
reference. Suppose that the value of an index in a reference can only
be determined at execution time. Then the symbolic interpreter may be
unable to complete the evalﬁation of the statement in which the

reference occurs., In the example in Figure 10 the interpreter can

A(K,2) « 121
A(T,2) « 144

X+ A{K,2)

: Fig, 10. Indeterminate variable references prablem, .

evaluate the first two assigmments and assign the values 121 and 144
to the variable symbols A(K,2) and A(J,2). If the interpreter is
unabie to determine Qhether or not K is equal to J at that point in the
program it cannot assign the value 121 or 144 to X and cannot complete the
evaluation of X + A(K,2). The symbolic value of A(K,2) will be "'indeter—
minate". The best the interpreter can do is to assign the symbolic values
"A(K,2)" to X and refrain from deleting the assignments A(K,2) < 121 and
A(J,2) + 144,

The interpretation process in phase three of the interpreter uses
the concept of the "domain" and "range" of a variable symbol to determine

when evaluation and deletion can take place. The domain of a

14

15

variable symbol which occurs at some point in a program is the set of
variables which that symbol may stand for at execution time. The range
of the symbol is the set of possible values of the ranges of the variables
in the domain of the symbol. The domain of an array référence is deter-
mined by the ranges of its indices.

There are three classes of FOR-loop interpretation problems. The
first involves the substitution of values computed outside FOR-].OOiDS for
variable references occurring inside FOR-loops. Suppose that a referénce
to a variable X occurs in a predicate or on the right hand side of an
assignment inside a loop. Iet Xy be the value of X on entry to the loop.
If X also appears on the left hand side of an assignment in the loop
then the initial value X 0 of X cannot be "brought into" the loop and the
assigrment of X, to X outside the loop cannot be deleted from the
description.. This problem occurs in the example in Figure 5. The value
#1-1 for N cannot be brought into the loop in the partially explicit
description in Figure 6. In this particular example a closed form for the
FOR-loop was discovered which allowed the substitﬁb’_on to be carried out
later on in the evaluation process, and the assigmment N « $1 -1 to be
deleted.

The second class of problems involves the substitution of values
computed inside FOR-loops for variable referencers occurring outside
FOR~loops. Suppose that a variable X is corﬁputed inside a loop and then
referenced outside the loop. If there is no closed form for the iteratively
camputed value of X then the value of X cannot be "brought out" of the loop
and the FOR-loop cannot be deleted. In the example in Figqure 6 it was
pdssible to construct a closed form for the iteratively computed value of
N which could be "brought out" of the loop and substituted for the reference
to N in the predicate N = 0. It will usually be difficult to construct

closed forms. The construction of the closed form for even the simplé

FOR-loop in Figure 6 reqﬁires the application of a relatively sophisticated
closed form role.

The third class of FOR-loop interpretation problems involves the
interpretation of "disjunctive" and "recurrence" statements. Suppose that
a program contains a loop L and that the conditional statement "IF P THEN
X + Y" occurs inside L. Phase one of the methodology will distinquish
between the paths through L for which P is true and those for which ~ P
is true. Each class description which is constructed by phase one will
contain a description of a particular path through L and a FOR~1oop which
describes all possible iterations of L. The FOR-loop will contain the
disjunctive statement (P AX < V) ; ~P. A disjunctive statement
consists of a number of terms connected by the v synbol. An assignment
which occurs as part of a term in a disjunctive statement cannot be
synbolically evaluated unless the ihterpfeter is able to determine the
truth values of the predicates in the statement. When the phase three
interpreter encounters a disjunctive statement is marks the values of the
assigned variables in the statement as "indeterminate".

In a recurrence assigmment, the variable on the left hand side also
occurs on the right hand side. The description in Figure 6 contains the
recurrence assignment N < N - 1. Recurrence assignments can occur both
inside and outside FOR-loops and can be evaluated in the normal way when
they occur outside a loop. They cannot be symbolically evaluated when
they occur inside a loop. The phase three interpreter marks the values
of assigned variables in recurrence assignments as indeterminate.

(c) Interpretation Process. The phase three interpretation process

consists of two parts. In the first part the assignment statements and
FOR-loops in a description are evaluated. Values of variables are

substituted into predicates and relations. In the second part the

16

17

unﬁecessary statements and FOR-loops in the evaluated description are
deleted. The separation of evaluation and statement deletion simplifies
the problem of determining if an assignment can be deleted from a partially
explicit description.

The evaluation part of the interpretation process (the evaluator),
‘has t::he structure of the recursive automaton in Figure 11. A new copy
of é‘e automaton is created whenever a sub FOR-loop is discovered during
the processing of a description. Each of the states in the automaton
is associated with a subprocess which makes a "symbol pass", "evaluation

pass" or "closed-form pass" over an implicit or partially explicit

description,
end of
o descrlgtlon @
, of end of end of end of end of
loop \@{ loop doop loop loop
‘\\ *’ é\ -

Fig. 11. State diagram for evaluation process

The eValuator begins in the E state at the first statement of a
description. The E state uses an E-list to synmbolically evaluate
assignment statements and substitute values of variables into predicates
and relation. A E-list is an ordered list of ordered pairs. The first |

element of each pair is a variable symbol and the second a symbolic value.

18

Each time a new symbolic value is computed for a variable an ordered pair
is added to the end of the E-list. When the E-state encounters a subloop
the evaluator creates a new copy of the automaton and enters it at the
first S~state. It saves the interrupted copy of the automaton, together
with its partially completed E-list.

The S-state subprocess creates "FOR-loop symbol lists" or S~-lists.
5-lists are lists of ordered pairs of variable symbols and statement numbers.
An S-list for a loop contains an ordered pair for each variable symbol
which occurs on the left hand side of an assignment in the loop. The
evaluator uses the S-list for a loop to determine when a value of a
variable can be "brought inside" a loop. Consider the.example in

Figure 12.

X <+ 10
FORTI =1 to N

Y+ X

X< 20
Fig, 12. FOR-Loop

Suppose that the S-list for the loop has be constructed and that the
evaluator is attempting to evaluate the assignment Y <« X, If the S-list
does not contain an entry for X then the value 10 can be brought into the
loop and substituted for the 6ccurrence of X in the assigrment. If the
S-list does contain an entry for X then the value of X is indeterminate

in the loop.

When the S-state of an automaton reaches the end of a FOR~loop control
passes to the following E-state of the autcmaton. The E~state uses the
computed S-list for the loop, an E-list which it constructs as it goes
along, and the partially completed E-lists of the outer loops to evaluate
the assignments in the loop. It uses the S-list to determine when it is
possible to bring a value from an outer loop E-list into the loop which
is being processed. | |

After two S and E passes have been applied in succession to a
FOR-loop, the C-state of the automaton is entered. The C-state attampts
to find a closed form for the evaluated FOR-1loop produced by the two
S-E passes. It attempts to find closed forms for all of the iteratively
computed values and predicates in the loop.

When a C-pass reaches the end of a loop control passes to the
BACKTRACK state. The BACKTRACK state returns control to the interrupted
automaton associated with the next enter FOR-1oop. If the loop is at
the top level of the description control returns to the "top level®
automaton. The process halts when the C-state in the top level automaton.
reaches the end of the implicit description.

One of the interesting features of implicit description evaluation
is the necessity for repeated applications of S and E passes to a FOR-loop.
The evaluator described in Figure 12 carries out two S-E passes in
succession to each loop each time the loop is encountered. The reason
why more than one S-E pass is necessary is that pProcessing on some earlier
portion of a FOR-1oop may be blocked by the presence of unevaluatable
statements later in the loop. Once the statements which come later in the
loop have been evaluated it may be possible to carry out the blocked
processing on a secornd S-E pass of the loop. Consider the example in

Figure 13. On the first S-pass over the loop an $-list containing the

- 19

variable symbols T and A(X) will be constructed. On the first E-pass

the evaluator will attempt to evaluate the assigmment T < A(4). The

evaluator will not be able to bring the value A(4)

= 3 into the loop

since A(X) will be in the S-list and it will not be able to determine

“at that point that A(X) $ A(4). When the assignment A(X) < 6 is

encofmtered the evaluator will be able to bring the value X = 2 into

the loop since X will not be in the loop's S-list.

The first S-E pass

will generate the partially explicit description in Figure 14,

.X+2
A(4) < 3
FORI =1 to N
T <« A(4)
A(X} < 6

X<« 10

Fig, 13. FOR-Loop.

X+ 2

A(4) « 3

FORI =1 TON
T « A(4)
A(2) « 6

X< 10

Fig, 14. FOR-Ioop after first S-E pass,

20

21

The S-list constructed during the second S—é pass will contain the
symbols T and A(2). The value A(4) = 3 will be brought into the loop since
the synmbol A(4) cannot be equivalent to any of the variable symbols that |
will be in the S-list. The second S-E pass will .generate the partially

explicit path in Figure 15.

X+ 2

A(4) « 3

FORTI =1 TON ‘
T+ 3
A(2) < 6

X+« 10
Fig. 15. FOR-Loop after second S-E pass.

Although it has not been proved, experience indicates that two S-E
passes are sufficient to complete the S-E processing of any FORTRAN implicit
path description. More passes may be necessary for programming languages
contaii.ning other kinds of program and data structures.

The deletion part of the interpretation process deletes assignment state-
ments which no longer affect predicates. The deletion part of the interpreter
works in the same way as the deletion subprocess in phase two of the methodology.
The deletion process in phase two deletes assignment statements which do nc‘)t
affect predicates in class descriptions. The phase three deletion process
deletes assignment statements which do not affect predicates in evaluated
partially explicit descriptions. In both cases the deletion process constructs
lists of predicate-affecting variables by reading backwards from each predicate
in a description. The process uses these lists to determine which assignment

statements must be retained.

22

6. Explicit Subset Descriptions

Phase three of the methodology transforms implicit descriptions into
explicit and partially explicit descriptions. Implicit.descriptions which
contain FOR-loops will usually be transformed into partially explicit
rather than explicit descriptions. It is usually very difficult to find
closed forms for and to eliminate FOR-loops from implicit descriptions.
Implicit descriptions which do not contain FOR-loops can almost always be
transformed into explicit descriptions.

Each of the explicit and partially explicit descriptions which are
generated by phase three of'the methodology describes a set of input data.
Phase four of the methodology constructs explicit descriptions of subsets
of the sets which are described by partially explicit descriptions. If
constructs subset descriptions by traversing the FOR-loops in partially
explicit descriptions. Suppose that a pértially explicit description D
dontains a FOR-1loop whose loop upperbound is a variable K = 0. D describes
the set of all input data which satisfies the predicates in D for all
feasible choices of K. Loop-free descriptiohs of subsets of D can be
constructed by choosing particular values of K. If D contains disjunctive
statements, subset descriptions consisting of simple sequences of
Qrediéatés and assignments can be constructed by choosing a particular
term in each disjunctive expression. Phase four constructs explicit
subset descriptions by choosing particular values of loop bounds and
particular terms in disjunctive statements.

Figure 7 contains a closed form for the FOR-loop in the example in
Figure 6. Suppose that the evaluator had been unable to construct the
closed form for the FOR-1oop. Then phase three would have generated the

partially explicit description in Figure 16. Each choice of a non-negative

#1 =0

#1 = 0

N<#$#l -1

Kl1z=0

FOR Il = 1 TO K1
' N=z0

N+«N-1

Fig. 16. Partially explicit description

containing FOR-Loop.

| integer value for Kl corresponds to a different subset of the set
described by the partially explicit description. Figure 17 contains the
subset description corresponding to the choice K1 = 0. The description
in Figure 17 contains no FOR-loops and can be evaluated to produce the
explicit subset description in Figure 18,

A description is feasible if there are values in the input domain

which satisfy the descriptions. Infeasible descriptions describe the empty

subset of the input domain.

#1 2 0
L2 0
N+ #1 -1
N=20

Fig., 17. Partially explicit subset description.

23

$#1 =2 0
#1 2 0

#1

!
[
I
(=]

Fig. 18. Explicit subset description,

Particular choices of values for loop bourds and terms in disjunctive

' statements can result in the generation of infeasible subset descriptions.
If a partially explicit description is itself infeasible then all.choices

of loop bourds and disjunctive terms will result in infeasible subset
descriptions. Phase four of the methodology attempts to choose loop

bounds and disjunctive terms in such a way that the resulting subset
description is feasible whenever the original pa;tially'explicit description
is feasible;

Two general techniques can be used to help ensure the generation of
feasible subset descriptions. The predicates which congtrain the loop
bounds in a partially explicit description form a loop bound subdescription.
The f%rst technique is to only choose loop bound values which satisfy loop
bound subdescriptions. These subdescriptions will often be simple loop-
free systems of predicates from which loop bound values can be'easily
generated. The subdescription constraining the loop bound in Figure 16
consists of the single predicate K1 = 0. If a subdescription's
minimal- solution is always chosen then the resulting subset description
will be as short as possible. The second technique is heuristic search.
If a subset description is infeasible then a new subset description can
be generéted by choosing new loop bound values or disjunctive terms.,
Different heuristics can be used to guide the search through the set of
possible choices. Suppose, for example, that a variable in a subset

description is constrained by contradictory predicates and that in the

24

25

original partially explicit description the value of the variable is set
inside a FOR-loop. If the FOR~loop was iterated K times in forming the
subset description then a new subset description can be generated by
iterating the loop K+l times. Other rules can be developed for other

kinds of feasibility problems.

7. Generation of Test Cases

Phase five is the test data generation phase of the methodology. It
divides standard classes of paths into three'sets: those for which it can
generate test data, those for which it can determine infeasibility, and
those for which it can neither generate test data nor determine infeasibility.
In general, since the test data generation problem is unsolvable, this is
the best that can be expected from a test data generation methodology.

Phase.five is an integrated collection of inequality solution
téchniques that can be applied tb all of or parts of explicit descriptions
for FORTRAN programs. The techniques are applied to complete descriptions
to generate test cases and to subdescriptions to check feasibility. If
a subdescription is infeasible then the description is infeasible. The
phase five techniques are applied to both the explicit descriptions which
are generated by phase three of the methodology and to the subset
descriptions generated by phase four.

There are several well defined methods for solving classes of
inequalities which do not contain function calls, subroutine calls, and
array references with variable‘indices. Same of the methods are effective
in the sense that they always$ produce solutions. Others are partially
effective, they produce solutions to some systems of inequalities but-
not to others. Phase five includes both effective and partially effective

methods. It uses a straightforward effective method for solving linear

systems in one variable. Kuhn's method [9] is used to produce

solutions for linear real valued systems in several variables. A method
developed by Singhania and described in [10] is used to produce

solutions for non-lincar systems in one variable of degree less than five.
Both Kuhn's and Singhania's method are éffective. A large number of the
descriptions which afe generated by phases three and four of the

meth 1ology can be solved using these and other effective techniques.

The e;plicit subset description in Figure 18 can be easily solved using
the method for linear systems in one variable.

Phase five uses partially effective methods for solving general
non-linear system and integer valued systems. The basic method is
backtrack seérch. The backtrack search method constructs a sequence of

‘partial solutions to a system. A partial solution to a system is a set
of values for some subset of the variables in the system which does not
contradict the relations constraining those variables. The nethod crders
the variables in a system into a sequence. It begins by finding a partial
solution for the first variable in the sequence. It then attempts to
extend this partial solution by choosing a value for the next variable in
the sequence. It continues until a complete solution has been constructed
If it is unable to extend a partial solution ét some stage it "backs up"
/énd attempts to change the previous partial solution. If it backs up to
the initial single variable system and exhausts the set of all possible
values which satisfy the constraints on that variable then the system is
unsolvable,

The backtrack approach can be applied directly to the solution of
linear integer valued systems. Kuhn's method is used to generate a
sequence of linear systems, each of which contains one less variable than

its predecessor in the sequence. Any solution to a member of the sequence

26

is a partial solution to its predecessor. The first member of the sequence

is the original system., The last member is a single variable system. The
method begins by choosing an integer solution to the single variable system.
It uses this solution to reduce the second to last system to a single
variable system. It then attempts to construct integer soluticns to
this system. The iﬂteger solution to the two variable system can be used
to reduce and solve the three variable system, and so on. If some reduced
system has no integer solution the method backs up and attempts to
construct a different integer solution to the previous reduced system
in the sequence.

The backtrack method can also bé applied to non~linear systems.
The non-linear system is replaced with a linear system by substituting
dunty linear variables for occurrences of variables raised to powers
greater than one. Kuhn's method is used to generate a sequence of partial
sélutions to the linear system. At each stage the method checks to see
that the partial solution to the linear system does not contradict the
substitution relationships. If the substitution relationships are
not contradicted then the next partial solution in the sequence is
- constructed. If some relationship is contradicted then the method backs
up and attempts to construct an alternative linear partial solution. The

backtrack method is illustrated for the non-linear integer valued system

in Figure 19.
X - 4y + 6y2 2 2
-X + 2y - 2y2 =20
-x + Sy - 5y2 =z =1

Fig, 19. Non-linear integer valued system,

27

The substitution z = y2 reduces the non-linear éystemAto the linear system

in Figure 20.

X -4y + 6z = 2
-X -2y - 2220
%+ 5y ~ 522> ~-1

Fig, 20. Linear system.

Kuhn's method can be applied to the system in Figure 20 to produce the

sequence of systems in Figure 21.

X -4y + 6z 2 2 -2y + 4z = 2
~X =2y -2z 2 0 y+zz1
X+ 5y -5z =2 ~1

Fig, 21. Sequence of partial solution systems.

i

An initial linear partial solution can be constructed by choosing a
value for z which satisfies the last system in the sequence. Suppose z=l
is chosen. This can be used to reduce the preceeding system to the single

variable system in Figure 22.

Fig, 22. Reduced system,

28

29

The initial partial solution can be extended to a two variable partial
solution by choosing a value for y which satisfies the reduced System.
Suppose y=0 is chosen. Although (z=1,y=0) is a partial scolution to the
linear system it contradicts the substitution relationship z=y2.. The
method will backtrack at this point and choose a new value for y. If
y=1 is chosen then a complete solution to the original system will be
generated. -

In order to be able to generate test data for other than the lowest
level functions and subroutines in a program, phase five of the methodology
must be capable of solving systems containing functions and subroutine
calls. In certain special cases a function call can be conveniently replaced
with an equivalent subsystem of inequalities which does not cpntain the call.
The only general technique which has been developed is a variation of the
backtiack search method. Suppose that a system contains a single sub-
routine call. The system is first partially solved to find a set of
bounds on the input to the subroutine and a set of bounds on its output.

A set of input values which satisfiés the input bounds is chosen and the
subroutine is evaluated. If the resulting ocutput satisfies the output
bourkds then a solution to the part of the system which affects and is
affected by the subroutine has been discovered. If the output does not
satisfy the bounds the method backtracks and a new set of input values is
chosen. The