
 

 

 
 
 
by 
 
 
 
 
Submitted in partial satisfaction of the requirements for degree of 
 
 
in 
 
 
 
in the 
 
GRADUATE DIVISION 
of the 
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 
 
______________________________________________________________________________ 

       Chair 
 
 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
Committee Members 

DOCTOR OF PHILOSOPHY

Bayesian inference of macromolecular ensembles

Biophysics

DISSERTATION

Matthew Hancock

Andrej Sali

Matthew Jacobson

James Fraser



Copyright 2024

by

Matthew Hancock

ii



Acknowledgements

Andrej Sali, Ph.D.

Matt Jacobson, Ph.D., James Fraser, Ph.D.

Paul Hancock, Jeannie Hancock

iii



Contributions

Chapter 2

Hancock, M., Peulen, T.-O., Webb, B., Fraser, J. S., Adams, P. & Sali, A. Integration of

software tools for integrative modeling of biomolecular systems. en. Biophysical Journal

214 (2022)

Chapter 3

Taylor, M. S., Chen, M., Hancock, M., Wranik, M., Miller, B. D., Palanski, B. A., Ficarro,

S. B., Groendyke, B. J., Xiang, Y., Linde-Garelli, K. Y., Mondal, D., Freund, D., Congreve,

S., Matas, K., Hennink, M., Xibinaku, K., Marto, J. A., Sali, A., Shi, Y., Gray, N. S.,

Sabatini, D. M., Chu, N., Rogala, K. B. & Cole, P. A. A Long-Range Recruitment Mechanism

for mTORC2 Phosphorylation of Akt. en

Chapter 4

Hancock, M., Fraser, J. S., Adams, P. D. & Sali, A. Bayesian multi-state multi-condition

modeling of a protein structure from X-ray crystallography. en

iv



Bayesian inference of macromolecular ensembles
Matthew Hancock

Abstract

Models of protein structure at atomic resolution are fundamental to many problems in

biology. Increasingly, we are interested in computing models of protein structure based on

noisy, sparse, and heterogeneous data; demanding a rigorous approach to modeling. Bayesian

inference is one such approach. In Chapter 1, we formalize modeling as a search for all models

consistent with the input information. In Chapter 2, we develop a computational framework

for computing models from heterogeneous biophysical software. In Chapter 3, we develop

a modeling method to compute a model of mTORC2 in complex with a native substrate,

Akt1. In Chapter 4, we develop a modeling method to compute multi-state models from

X-ray crystallography.
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Chapter 1

Modeling as an optimization problem

Scientific knowledge is gained through the relationship between experiments and models. A

model is a depiction of the state of knowledge about a system or process. A model can be used

to make predictions about future observations. An experiment will yield an observation that

that is either consistent or inconsistent with the model’s predictions. The new observations

can then be used in modeling to update the model.

The reason for the distinction between an observation and a model is that a model is an

information structure that is generally more useful for making predictions. For example, the

intensities of diffracted X-rays from a protein crystal are not useful for predicting the impact

of mutations on the protein’s function. On the other hand, a model of the protein’s structure

at atomic resolution is very useful for such questions. Here, the information contained by

the observed diffraction and the protein model is the same, yet the protein model has an

information structure that is far more useful in predicting new observations.

The process of modeling is a mapping of a space containing less useful objects (data space)

to a space containing more useful objects (model space). The prediction of observations by a

model is the inverse mapping. It is often the case that the mapping between data and model

space is not one to one. In other words, a point in data space may map to many points in

model space and vice versa. Many experimental observations contain noise and therefore we
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aim to transform a distribution of points in data space to a distribution of points in model

space.

Modeling can be formalized as the search for all models consistent with the input infor-

mation1. The model search can be formalized by the following steps: (i) specifying all model

variables (representation), (ii) ranking alternative models by their agreement with the input

information (scoring), and (iii) generating a sample of good-scoring models (sampling). A

model should be validated before being interpreted. Multiple iterations of gathering input

information, modeling, and validation are often necessary to compute a sufficiently precise

model.

1.1 Gathering of Input information

Input information comes in the form of data and prior models and may be used to inform

any step of the modeling process (representation, scoring, and sampling). By including all

available input information, the model is maximally accurate, precise, and complete1. In

molecular biology, such an integrative approach is often used. For example, the double-

helical structure of DNA was resolved through a fiber X-ray diffraction pattern, data about

the composition and stoichiometry of the component nucleotides, and theoretical information

about nucleotide complementarity2.

A prior model is anything known about the model before data collection and is often the

result of prior modeling. Most data involves several steps of abstraction before it is used in

modeling, and thus, the distinction between a prior model and data is somewhat arbitrary.

Three important prior models used in structural modeling are molecular mechanics force

fields, statistical potentials, and previously computed structural models. Molecular mechan-

ics force fields are mathematical models that describe the physical properties of proteins fit

to spectroscopy, quantum mechanical calculations, and experimental energies3. Statistical

potentials impute the statistical distribution of certain properties of protein structures from

2



large databases of previously computed models4. Machine learning algorithms for protein

structure prediction rely on learning such patterns. Previously computed protein structure

models, whether a prediction or determined from an experiment, are useful in a number of

structural modeling problems. For example, a previously determined model may be used to

provide a guess of the phases for X-ray diffraction patterns5 or flexibly fitted into a cryo-

electron microscopy (Cryo-EM) density map6.

Historically, a model of a protein structure at atomic resolution was computed from

data collected from X-ray crystallography, cryo electron microscopy (cryo-EM), or nuclear

magnetic resonance (NMR) spectroscopy7. It is increasingly of interest to compute models

of large, heterogeneous, and dynamic protein systems unsuitable to the above biophysical

methods8. Such systems can often only be characterized by noisy, sparse, and incomplete

experiments. Examples include cross-linking mass spectrometry (XL-MS), negative stain

EM microscopy, small angle X-ray scattering (SAXS), hydrogen-deuterium exchange mass

spectrometry (HDX), and Förster resonance energy transfer (FRET)1.

1.2 Model search

1.2.1 Defining the model representation

The model representation includes all model coordinates. The span of all degrees of freedom

is a space containing all possible models (model space). Any point in the model space is a

model and the model space may be continuous or discrete. Based on the input information,

constraints may also be placed on model coordinates to limit the space.

The choice of the model coordinates to include is guided by the question being answered.

The following considerations should guide the representation choice: (i) the model repre-

sentation should be maximally simple, therefore maximizing the explanatory power and

generality of the model. Kepler sought an analytical form to describe the elliptical orbits

of planets rather than fitting a neural network. (ii) the model resolution should also be

3



commensurate with the resolution of the input information. It would be a poor choice of

model representation to fit a fully parameterized atomic model to a 30Å map from negative

stain electron microscopy. (iii) the model representation should be selected such that the

available computational power may adequately sample it. It is often not possible to compute

a sufficiently precise sample of a high-dimensional landscape on a single CPU core. The se-

lection of the optimal model representation is an active area of research. Ideally, the type

and number of model variables may be treated as a model variable.

Historically, a protein structure model included atomic coordinates, temperature factors,

and atomic occupancies. Because of the increased complexity of the studied protein systems,

new experimental techniques, and increased computational power, it is becoming more com-

mon to expand the description of the target system through the addition of model variables.

2 areas of particular importance to protein models are including variables to describe the

system in a multi-scale and multi-state fashion8. A multi-scale model will describe the target

system at multiple scales; for example, the model representation may include model variables

describing the individual atoms and entire domains as rigid bodies. Different parts of the

protein may be represented at different scales commensurate to the resolution of the input

information. A multi-state model describes the protein’s various states and their transitions.

A state may describe a distinct conformational or compositional state the protein exists.

The transitions might represent a thermodynamic cycle or time-ordered assembly8.

1.2.2 Specification of a scoring function

The scoring function ranks all model configurations in the model space for compatibility

with the input information. A Bayesian posterior model density is the most objective scoring

function1. The posterior model density is the probability of a model M conditional on the

data D and prior models I :

p(M |D, I) ∝ p(D|M, I)× p(M |I) (1.1)

4



The posterior model density is factored into the likelihood and prior. The prior, the

probability of M given I, represents the state of knowledge about the model before data

collection, and the likelihood, the probability of D given M and I represents what is learned

from data observation.

It is often convenient to factor p(D|M, I) into a forward model f(M) that simulates the

data observation for a given model in the absence of noise and a noise model N(D; f(M), σ)

that quantifies the difference between the noiseless prediction and the data measurement

given some nuisance parameters σ.

As the posterior model density is a probability distribution over all possible models, it

allows for the explicit quantification of uncertainty. Ideally, the addition of more and more

input information would narrow the distribution, increasing certainty.

The iterative refinement of Bayesian inference reflects the way the human mind learns.

As more observations are made, the state of knowledge increases; reflected by the increased

certainty or accuracy of the posterior model density. Similarly, the mind stores models on

all aspects of how the world works and humans act based on the prediction of said models.

The models are constantly tested and updated based on new experiences and observations.

For example, we have a model where if we throw a ball in the air; it will fall to the ground.

Every instance where we observe the ball falling to the ground increases our confidence or

certainty in the model. If, however, we were to throw the ball in the air and it did not fall

to ground, our certainty in the model would dramatically decrease.

1.2.3 Sampling good scoring models

The goal of sampling is to find all models consistent with input information (ensemble of

good-scoring models). Since it is often impossible to enumerate the model space, a sample

of models is drawn from it.

Three important algorithms for computing a sample of good scoring protein structure

models are conjugate gradients, Molecular dynamics (MD) simulation, and Markov chain
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Monte Carlo (MCMC)9. Conjugate gradients minimizes an objective function by updating

model variables in the opposite direction of the partial gradient with respect to the model

variables and is useful for structure refinement10. MD simulation can generate samples of

low energy structure models by predicting the movement of atoms from a model of the

interatomic interactions11. Finally, MCMC can draw accurate samples from an unknown

distribution of some protein structure model coordinate(s) and is particularly useful when

there are large energy barriers in the scoring function12. These methods have several notable

variations, including replica exchange and simulated annealing13,14.

Sampling should continue until convergence is achieved. One test for sample convergence

is ensuring sufficient sample precision15. A model should not be interpreted with a resolution

greater than the sample precision.

1.3 Model validation

A model should be validated before being interpreted. Validation should include checking

that a model satisfies data used in modeling and data withheld from modeling. In X-ray

crystallography, it is common to withhold some fraction of the observed reflections as a test

set16. Computing the satisfaction of reflections withheld from the modeling process ensures

that the model is not overfit to the reflections used in modeling. It is also common to use

other input information, such as the Ramachandran plot, to assess the quality of a structure

model.
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Chapter 2

Integration of software tools for

integrative modeling of biomolecular

systems

2.1 Abstract

Integrative modeling computes a model based on varied types of input information, be it

from experiments or prior models. Often, a type of input information will be best handled

by a specific modeling software package. In such a case, we desire to integrate our integrative

modeling software package, Integrative Modeling Platform (IMP), with software specialized

to the computational demands of the modeling problem at hand. After several attempts,

however, we have concluded that even in collaboration with the software’s developers, inte-

gration is either impractical or impossible. The reasons for the intractability of integration

include software incompatibilities, differing modeling logic, the costs of collaboration, and

academic incentives. In the integrative modeling software ecosystem, several large modeling

packages exist with often redundant tools. We reason, therefore, that the other development

groups have similarly concluded that the benefit of integration does not justify the cost. As
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a result, modelers are often restricted to the set of tools within a single software package.

The inability to integrate tools from distinct software negatively impacts the quality of the

models and the efficiency of the modeling. As the complexity of modeling problems grows,

we seek to galvanize developers and modelers to consider the long-term benefit that soft-

ware interoperability yields. In this article, we formulate a demonstrative set of software

standards for implementing a model search using tools from independent software packages,

and discuss our efforts to integrate the IMP and the crystallography suite Phenix within the

Bayesian modeling framework.

2.2 Introduction

2.2.1 Introduction to integrative modeling

Integrative modeling combines information of different types into a model1,2. When all

available information is used, the accuracy, precision, and completeness of the model are

maximized. An example of an integrative model is the double-helical structure of DNA,

which could only be resolved through a joint consideration of a fiber X-ray diffraction pat-

tern of the DNA, data about composition and stoichiometry of the component nucleotides,

as well as theoretical information about physiochemical nucleotide complementarity3. Mod-

ern integrative modeling of biomolecular structures similarly considers experimental data

(e.g., an X-ray diffraction pattern, a cryo-electron microscopy (cryo-EM) density map, and

nuclear magnetic resonance (NMR) spectra) and prior information (e.g., a molecular me-

chanics force field, a statistical potential, and previously obtained structural models). As

the complexity (e.g., size, resolution, heterogeneity, and dynamics) of biomolecular struc-

tural models grows, integration of diverse and often sparse experimental data will be critical

for maximally exploiting experimental techniques and their complementarities (Fig. 4.1)4.

10



Figure 2.1: Coverage of molecular weight by structural technique. Histogram of the molecu-
lar weight of structures resolved by solution-state NMR spectroscopy, macromolecular X-ray
crystallography, and electron microscopy (EM) deposited in the Protein Data Bank (PDB)5.
Each technique has a different coverage with respect to the molecular weight of the studied
system. This variation illustrates one reason why it is desirable to integrate varied types of
information as well as the software tools used to compute models from them.
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2.2.2 Developing software modeling tools is challenging

Modeling is often only possible through computation using software tools. The development

of software tools for modeling is challenging because it demands both domain knowledge

and technical expertise. Domain knowledge encompasses both an understanding of the gen-

eral concepts of the field and a thorough understanding of both the theory and practices

of the leveraged experimental techniques. The technical prerequisites include the ability to

formulate the theory into stable numerical algorithms and to develop software of sufficient

quality. Moreover, software needs to incorporate new technical and scientific advancements.

Fulfilling the above prerequisites is difficult when developing software for an individual exper-

imental technique. The challenge is compounded in the development of integrative modeling

software, where several sources of experimental information generally are combined. Never-

theless, there is a large number of independent and complex integrative modeling software

packages6–20, as reviewed4.

2.2.3 Collaborative development maximizes the efficiency and

quality of modeling

Given the technical and scientific difficulty of developing software modeling tools, it is desir-

able to tackle integrative modeling as a collaborative development effort of multiple research

groups and development teams. Such collaborative development has the benefits of better

integration of domain expertise into modeling software. There is also a benefit in the distri-

bution of development costs over multiple research groups. For these reasons, collaborative

software development maximizes both the efficiency of the software development and the

quality of the resulting models.
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2.2.4 Integration of software tools is an efficient approach to col-

laborative development

One way to achieve collaborative development is by developing software that is designed

to solve a modeling problem through integration with one or more additional modeling

tools. Such integration can occur between tools within and across integrative modeling

software packages. The ability to combine the tools from existing software packages can

extend the set of methods that can be implemented with these tools. It is often better to

approach an integrative modeling problem by mixing and matching existing tools rather

than by building new ones because the developer benefits from prior work. For example,

Rosetta14 integrates high-level tools within Rosetta through RosettaScripts21 and lower-level

Rosetta functionality with tools outside of Rosetta through the C++/Python layers, such

as phenix.rosetta_refine22.

2.2.5 Why is integration of software tools challenging?

There are numerous structural biology software packages, including tens of integrative mod-

eling programs alone2. While there is consensus that software interoperability is beneficial,

little has been done to address the issue. It is often attractive to implement new tools within

one’s own software ecosystem, even if similar tools already exist elsewhere. It is not unusual

to see, for example, unique implementations of vector classes within modeling packages.

Possible reasons include the difficulty of coordinating a large number of contributors, lack of

support and motivation for rigorous development and maintenance standards for academic

software, and the incentive for individual programmers and research groups to publish new

software.

2.2.6 Opportunity for standardization

As the complexity of integrative modeling problems grows, they will be increasingly diffi-
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cult to solve by relying on tools from a single software package. Integration can be done

on an ad hoc basis, where specific tools are combined when needed. Such an integration

is not efficient, however, as the pool of tools grows because any integration would incur

additional development costs. An alternative is the adoption of software standards for tools

developed by the integrative modeling community. Software standards offer guarantees on

some aspect of the software’s implementation or function. Well-defined standards would

benefit the integrative modeling field by ensuring that software tools are of sufficient quality

and generality to be interoperable with other software tools that adhere to the standards.

If a standard is adopted by the community, an integrative modeler may be able to readily

mix-and-match software that has been produced from multiple development groups. Similar

to the PDB/mmCIF standards for archival, the nature and extent of the standards must be

agreed upon by the integrative modeling development community.

2.2.7 Article overview

In this article, we develop a demonstrative software standard for integrating one or more

independent tools in a model search. We begin by describing modeling as a 5-step search for a

model that satisfies input information and distinguishing between informed and uninformed

model searches. We then describe how the model search is achieved through basic function

definitions. We illustrate the standards by integrating Phenix and Integrative Modeling

Platform (IMP) for computing an atomic model from X-ray crystallography datasets and

a molecular mechanics force field. Key to the integration is the factorization of the model

posterior density into likelihoods and priors. We discuss our attempts to integrate IMP

and Phenix tools as independent processes via file input/output and within a single process

using both libraries’ application programming interface (API). We conclude by discussing

how software integration may increase the quality and potential complexity of the model as

well as the efficiency of the modeling.
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2.3 Approach

2.3.1 Modeling as a search

A model is a depiction of a system or process that we would like to inform from input

information, consisting of experimental data and prior information2. A model can then

be used to rationalize input information and make testable predictions. Modeling is the

search for a set of models consistent with the input information. Ideally, we aim to find all

models that satisfy the input information, reflecting the uncertainty of the input information.

It is convenient to divide the search into the following three steps: (i) defining the model

representation that specifies all degrees of freedom whose values are determined by modeling,

(ii) defining a scoring function for ranking alternative models for their agreement with the

input information, and (iii) generating a sample of good-scoring models. As an aside, these

models can be optionally filtered based on the input information and should also be validated

before interpretation2.

2.3.2 Multistate model of Nup133 computed by a model search

For example, a model search is used to compute a multi-state model of the Nup133 nucle-

oporin from small-angle x-ray scattering (SAXS), electron microscopy class averages, and

cross-linking mass spectrometry (XL-MS) data23. To reflect the structural heterogeneity of

Nup133 in solution, the authors defined the model representation as an ensemble of fully

atomic structures. The degrees of freedom, to be fit to the input information, include the

number of models in the ensemble as well as the positions of atoms in each structure. There-

fore, the objective of the model search is to find all Nup133 ensembles that satisfy the input

information. A sample of Nup133 ensembles was generated via molecular dynamics simula-

tions (MD) such that sufficient coverage of the energy landscape was achieved. The scoring

function then evaluated the consistency of any model ensemble with the SAXS profile, the

EM class averages, and chemical cross-links by simulating data via physical principles and
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comparing it to the observed data. The model search framework is a general description of

modeling that can describe most modeling protocols.

2.3.3 Informed vs uninformed search

Generally, integrative modeling software either explicitly or implicitly implements tools for

each step of the model search. The model search can be categorized as either uninformed or

informed, relative to some input information. In the uninformed search, candidate models

are systematically generated to explore the search space without consideration for a specified

subset of input information24. For example, the minimal ensemble approach to computing

protein structure ensembles based on SAXS data generates an ensemble of structures without

consideration of the experimental data25. In the informed search, a specified subset of input

information is used to bias the generation of solutions24. For example, partial derivatives

based on the SAXS data could be used to guide sampling.

It is easier to isolate software tools in an uninformed search because outputs of relevant

modeling steps can be combined as an additional post-processing step. However, due to

a large model space generally required to be searched when solving integrative modeling

problems, we are interested in the integration of software tools that enable informed search,

in addition to the uninformed search. Informed search demands the passage of information

between the tools that implement representation, scoring, and sampling during the modeling

procedure.

2.3.4 Demonstrative software standards (Fig. 4.2)

While tools within a given software package generally pass information to each other, they

have not been designed to do so across different software packages. Interoperability may

sometimes be achieved by engineering connections between a particular set of software tools

in an ad hoc fashion. However, to maximize generalizability, it is better if information is com-

municated in well-defined channels defined by a software standard. Here, we develop basic
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standards to illustrate how information passing could be accomplished between independent

modeling tools.

To facilitate the integration of two modeling tools, they should share the minimal amount

of information necessary. It is also desirable that the tools be limited in scope to maximize

modularity. For example, if a tool implemented a specific modeling step (i.e., representation,

scoring, sampling, and optionally filtering plus validation). Tools with a well-defined purpose

that hide their implementation details help manage the technical complexity of an integrative

modeling problem. In the example of the Nup133 model search, a distinct software tool could

be used to implement the multi-state model representation, the molecular dynamics sampler,

the SAXS scoring function, the XL-MS scoring function, and the EM scoring function. The

tools must be able to communicate with one another, but at the same time, they should be

encapsulated from each other’s technical complexity.

To design message passing, we first define the function of a model representation, scoring

function, and sampling algorithm tool based on an informed search. The model represen-

tation manages the model state (the current value of the model parameters), which we

partition between structural, X, and nuisance parameters, σ. The model representation

manages the model state at step i of the model search, {X, σ}i, as well as previously visited

states, {X, σ}1 . . . {X, σ}i−1. The scoring function computes the scores s, an assessment of

the compatibility of {X, σ}i with input information, D. The scoring function also returns

heuristics, h, as a function of D, which help inform the search process (eg, gradients for

finding local minima in the search space), f({X, σ}i, D) = s, h. A sampling tool updates the

model state based on {X, σ}i, s, and h, g({X, σ}i, s, h) = {X, σ}i+1.

Based on the above definitions, the minimal informed search is implemented by the

following 4 functions that facilitate communication between the model representation, the

scoring function, and the sampling algorithm tools (Fig. 4.2). First, the scoring function

must be able to access the model state from the model representation (get_state). Second,

the sampling algorithm must be able to access the current model parameters from the model
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Figure 2.2: Class diagram for proposed standard for implementing a model search. A model
search may be implemented through the communication of software tools implementing a
modeling step (representation, scoring, sampling). A box represents an independent tool
and the arrows represent function calls.

representation (get_state). Third, the sampling algorithm must be able to also access the

score and heuristic information from the scoring function (get_score). Finally, the sampling

algorithm must be able to update the current model parameters (update_state).

Our demonstrative standard is sufficiently general to enable the mixing-and-matching of

modeling tools. For example, when computing a model of Nup133, an integrative modeler

wishes to score their model against multiple sources of input information (SAXS, XL-MS, and

EM) that are not easily handled by a single modeling tool. 3 distinct scoring tools may be

drawn from different modeling packages specialized to the computational demands unique to

each experimental datatype. Optimally, these scoring function tools operate independently

on each information source to manage the complexity of the tool’s implementation. If all

tools provide a uniform interface for returning the score and computed heuristics (get_score),

they may be used interchangeably while remaining isolated from one another.

2.3.5 Illustrative modeling problem

We demonstrate the software standard by integrating IMP and Phenix to solve a specific

problem in X-ray crystallography. Namely, we are interested in computing a model of a
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set of atomic protein structures (multi-state model), based on multiple diffraction datasets

collected at different temperatures and physical principles. Such a multi-state model can be

useful for mapping the dynamics and allostery of proteins26,27. Next, we describe the three

necessary steps in modeling.

Input Information

We are interested in informing our model by both structure factors from the X-ray crystallog-

raphy experiments in addition to an empirical molecular mechanics force field. Satisfaction

of the X-ray crystallography data restrains the overall model geometry while an empirical

potential energy function restrains the stereochemistry and nonbonded interactions of local

sets of atoms. Utilization of experimental X-ray diffraction datasets in conjunction with a

force-field has been applied previously in computing X-ray models28,29.

Representation

The multi-state model M is defined by Cartesian atomic coordinates for each of a small

number of discrete structural states of a protein; the model also includes the relative weight

of each state.

Bayesian scoring function

In general, Bayes’ theorem states that the posterior model density, p(M |D, I), (the con-

ditional probability density of model, M , given experimental measurements, D, and prior

information, I) is proportional to the product of the data likelihood, p(D|M, I), (the prob-

ability of D given M and I) and prior distribution, p(M |I), (the probability of M given

I):

p(M |D, I) ∝ p(D|M, I)× p(M |I) (2.1)

For our multi-temperature model where we have multiple diffraction datasets, Di, we
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assume that the likelihood is the product of independent likelihoods for each diffraction

dataset. The posterior model density is:

p(M |D, I) ∝ Πp(Di|M, I)× P (M |I) (2.2)

where p(Di|M, I) is the likelihood for the diffraction data from the i-th experiment.

In Bayesian modeling, the model is not a single model instance, rather the model is the

posterior density over the entire model space spanned by the degrees of freedom defined

by the model representation. The uncertainty of the model is the posterior model density

spread. Bayesian modeling is conducive for integrative modeling because likelihoods and

priors can be combined from diverse experimental datasets and prior information. As is

often the case with probabilistic modeling, the score, s, is the negative logarithm of the

model posterior density:

s =− log p(M |D, I) (2.3)

=− log p(M |I)− log Πp(Di|M, I) (2.4)

=− log p(M |I)−
∑

log p(Di|M, I) (2.5)

Though the scores can be weighed as pure probabilities, it is often useful to weigh the

likelihood and priors so that the gradients have comparable magnitudes28. The weights,

w1, w2, may be optimized to a target function (eg, Phenix.refine) or empirically chosen:

s = −w1 log p(M |I)− w2

∑
log p(Di|M, I) (2.6)

Sampling

A sample can be generated from the model posterior via Molecular Dynamic simulation

where atomic positions are updated based on a force computed from the potential energy
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surface. The stochastic Monte Carlo method, where parameter moves are accepted and re-

jected based on relative energy levels, is also useful for generating molecular ensembles. Fur-

thermore, enhanced sampling variations of the Monte Carlo method that leverage derivatives

(eg, Hamiltonian Monte Carlo) are useful for improving sample convergence from complex

posterior model densities.

To implement the representation, scoring, and sampling outlined above, we integrated

software tools from the Phenix software suite and IMP modeling package using our demon-

strative standard.

2.3.6 Phenix

Phenix (Python-based Hierarchical Environment for Integrated Xtallography) provides a

suite of programs for manipulating experimental data, computing models, and validating

structures from cryo-EM and X-ray/neutron/electron crystallography data. Phenix includes

tools for the entire data processing and model generation workflow, including computing data

quality indicators (phenix.xtriage), maximum likelihood estimation of phases from molecular

replacement via a homologous structure (phenix.phaser30), phase optimization (phenix.den-

sity_modification31), model building (phenix.autobuild32), refinement of the model to better

fit both experimental and empirical restraints (phenix.refine33), and finally model validation

(access to MolProbity webserver34). Despite a large number of algorithms in Phenix, there

would be great benefit from integration with IMP, for example by providing access to the flex-

ible model representations, incorporation of non-crystallographic information, and enhanced

sampling techniques in IMP.

2.3.7 IMP

Integrative Modeling Platform (IMP) is open-source software that contains a large number

of libraries and programs for flexibly computing integrative models of biomolecular systems

(https://integrativemodeling.org)15. IMP supports a diverse set of model representa-
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tions that can be flexibly coarse-grained to suit the problem. Restraints can be formulated to

score models against various experimental data (eg, chemical cross-links identified by mass

spectrometry, electron microscopy density maps, and small-angle X-ray scattering profiles)

as well as prior models (eg, excluded volume, comparative models, molecular mechanics force

fields, and statistical potentials). Models can be sampled or enumerated through numeri-

cal integration techniques, variations of the Monte Carlo method, as well as Molecular and

Brownian Dynamics simulations. IMP’s relative strengths include a large variety of model

representations, scoring functions based on different data, and sampling schemes, all of which

can be mixed and matched relatively easily with each other to facilitate integrative structure

modeling. Another distinction is an increasingly Bayesian perspective on uncertainties in

input information, model representations, and scoring functions. In contrast, IMP does not

include tools for X-ray crystallography. However, Phenix is a premier program for this task.

2.3.8 Integration of Phenix and IMP (Fig. 4.3)

As IMP and Phenix use independent modeling frameworks, we were required to implement

the standard functions by using and modifying software tools from both packages. Engineer-

ing the interfaces, therefore, required familiarity with the application and implementation

of tools from both software ecosystems. For example, IMP and Phenix employ their own

model hierarchy to represent atomic structures. Yet for the model search, there must be a

shared definition of the model representation. Efficiently managing and interconverting be-

tween the unique model hierarchies proved challenging. Such challenges of handling specific

modeling packages further motivates the need for general standards to facilitate software

interoperability without additional development effort.

The multi-state model representation is defined in IMP (IMP.Model). The sampler is

also defined in IMP (IMP.MolecularDynamics). We implemented 2 scoring function tools, to

evaluate the prior and likelihood respectively. The distinction between data likelihood and

prior provides an opportunity for distributing an evaluation of the scoring function across
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both Phenix and IMP, taking advantage of the comparative strengths of each software pack-

age. The prior scoring function uses the IMP.atom library to evaluate stereochemical and

non-bonded scores based on the CHARMM22 empirical force field. The likelihood scoring

function uses Phenix’s maximum likelihood target function for a given set of experimen-

tally observed structure factors. Evaluation of the crystallography likelihood includes sev-

eral computationally demanding tasks such as the inference of distribution parameters and

determination of the solvent region in the unit cell. Both the prior and likelihood scoring

function tools were implemented with an identical interface to return the score and gradients,

ensuring compatibility with IMP.Model and IMP.MolecularDynamics.

The model search could be implemented in two ways: in separate runtime environments

via data integration or in the same runtime environment via library integration, as follows.

Data integration

Our first attempt to integrate Phenix and IMP was by exchanging data between indepen-

dent executions of custom scoring evaluation programs written separately from the Phenix

(Computational Crystallography Toolbox (CCTBX)) and IMP libraries, respectively. The

stochastic sampling algorithm proposes a move and saves the coordinates to a disk file in

the PDB format, which is then read separately by the two evaluation programs. The Phenix

program computes the likelihood while the IMP program computes the prior independently.

The posterior is the product of these two terms. The advantage of this strategy is that the

runtime environments are completely separated. However, the design presents a runtime

challenge because all model data must be saved from the IMP address space to disk and

then be read by the IMP and Phenix programs. As the structure factor calculations using

Fast Fourier Transform (FFT) are extremely fast, the addition of the computational over-

head presented a significant challenge to generating and scoring a sufficiently large sample.

Phenix can compute 6224 structure factors for a ubiquitin molecule in 0.015 seconds on a

single computational core. Phenix can read and write a PDB file in 0.08 seconds, while IMP
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is even slower. As millions of samples may be necessary to sufficiently sample the Bayesian

posterior model density, this additional overhead makes the data integration expensive. For

the informed search to be computationally feasible, the likelihood and prior evaluations must

occur in the same runtime environment, which is achieved via library integration.

Library integration

We also engineered evaluation of both the likelihood and prior with Phenix and IMP, respec-

tively, within the same runtime environment. A single evaluation function accepts a model

and computes both the likelihood and prior using Phenix and IMP library calls, respectively.

To integrate the scoring functionalities of Phenix and IMP, it was essential to develop a code

for translating between the IMP and CCTBX hierarchical representations. As a result, the

IMP sampling algorithm can make proposals based on IMP’s implementation of the model

representation that is automatically reflected in CCTBX’s implementation representation

and can be used natively with other CCTBX tools. Although the release of both IMP and

Phenix’s underlying libraries (CCTBX) in conda-forge enables a consistent Python environ-

ment, we opted to build our integration in C++ for its performance advantages, followed

by wrapping in Python for usability. We handled the technical integration of both IMP

and Phenix shared dynamic (.so) libraries along with their dependencies through a custom

compilation of IMP facilitated by CMake.

2.3.9 Conclusions

We were successful in incorporating IMP and Phenix functions, data structures, and numer-

ical calculators in a model search. Rather than integrating IMP and Phenix tools in an ad

hoc fashion, we organized them as proposed by our standard where the scoring function,

sampling, and model representation tools communicate through defined channels. Impor-

tantly, the crystallographic likelihood and derivative calculator were completely independent

of the molecular mechanics force field likelihood and derivative calculator. Using the model
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Figure 2.3: Workflow for integrating modeling software, exemplified by Phenix and IMP.
The sampler is implemented by IMP.MolecularDynamics. The model representation is im-
plemented by IMP.Model. Two scoring tools are used: ForceFieldRestraint for computing
the prior based on an empirical force field and XtalRestraint for computing the likelihood
based on the observed diffraction data. IMP.MolecularDynamics calls to the model represen-
tation evaluate both restraints. The restraint then calls the functions to compute the score
and gradients. For ForceFieldRestraint, calls were made to the IMP.atom library to return
individual stereochemical and nonbonded scores which are combined to compute in the to-
tal prior and gradients. For XtalRestraint, calls were made to Phenix functions within the
mmtbx and cctbx libraries. IMP.MolecularDynamics updates the model parameters based
on Newton’s second law of motion where the force is derived from the sum of the returned
gradients. The modularity of the design enables the substitution of alternative model repre-
sentation and sampling tools (IMP.MonteCarlo). The isolation of Phenix and IMP scoring
evaluations demonstrates how software integration is facilitated by the factorization of the
Bayesian posterior model density into a data likelihood and a prior.
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Figure 2.4: Sample of SARS-CoV main protease posterior model density evaluated through
integration of IMP and Phenix. Sample of Histidine 246, Proline 241, Glutamic Acid 240,
and Leucine 202 conformations from the SARS-Cov main protease model posterior density.
The sample of 100 structures was generated via Molecular Dynamics sampling of the model
posterior density. The posterior was evaluated as the product of the molecular mechanics
prior and the X-ray likelihood, computed by IMP and Phenix libraries respectively. The
model posterior density sample is overlaid by the all features (2Fo-Fc) map.

search implemented through the integration of IMP and Phenix, we generated a sample

of the model posterior density from the structure of SARS-Cov main protease (PDB ID:

2H2Z) (Fig. 4.4). Structures contained within the sample are drawn from the potential en-

ergy landscape formulated from the satisfaction of empirical stereochemical and non-bonded

relationships as well as the observed X-ray data.

As introduced above, the first major advantage of integration is that little

crystallography-specific source code must be implemented in IMP. By leveraging the crystal-

lographic functionality of Phenix, we do not have to implement a large number of crystallo-
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graphic data structures and subroutines in IMP. CCTBX and IMP consist of 6210 (955,323

lines of code) and 3450 unique source files (327,966 lines of code), respectively, supported by

multiple groups around the world. Direct integration of source has historically been the de

facto approach to accommodating new data types in IMP. This integration saves significant

development time and also prevents inflation of either codebase. We also benefit from the

significant amount of previous Phenix development and will continue to benefit from future

Phenix development. IMP also benefits from the Phenix authors’ expertise in computational

crystallography, which includes significant runtime optimizations (e.g., testing whether FFT

or direct summation is faster for a given crystal system).

Secondly, the standard is sufficiently general to enable substitution of other model rep-

resentation, sampling algorithm, or scoring function tools. For example, the modularity is

well suited for introducing additional scoring function tools as they simply need to parse

the model representation and return the computed score plus heuristics. Using the Bayesian

framework, new tools could be easily introduced for computing likelihoods from new forms

of experimental data, for example nuclear magnetic resonance (NMR) restraints, or prior

information, for example statistical potentials from the PDB.

More complex sampling and scoring procedures may also be employed. The optimal

strategy for sampling a model space is often unknown prior to modeling. Methods often rely

on iterations of sampling procedures that may vary the sampling parameters (eg, temperature

in simulated annealing) or the scoring functions (optimization of satisfaction of one source

of input information over the other). Based on our framework, the model representation

and scoring functions, are encapsulated from the details of the sampling procedure (in other

words, g). New sampling procedures can easily be substituted so long as they can access the

model representation to update the parameter state and accept scores and heuristics from

the scoring function.
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2.4 Discussion

Next, we discuss the implications of software integration for the field of integrative mod-

eling. In integrative modeling, the goal is to build increasingly complex models based on

increasingly varied sets of data4. Key to any modeling is input information, which deter-

mines the type of model that can be computed; the choice of model representation is of

course also informed by the questions asked of a model. In addition to model represen-

tation, a general description of modeling requires a Bayesian posterior model density that

specifies the probability density of a model, given the input information, and a scheme for

sampling this posterior density. Using Bayes’ theorem, the posterior can be factorized into

data likelihoods, which depend on data, and priors, which depend on prior information. The

evaluation of a posterior based on independent likelihoods and priors is simple in concept,

but may be technically challenging; in other words, writing the code that implements the

component likelihoods and priors may require a significant amount of effort and expertise

that is difficult to duplicate by non-experts and wasteful to duplicate by experts. Thus, soft-

ware integration can be seen as the major method for maximizing the quality and efficiency

of modeling based on varied data and prior models. If the experts encoded their expertise

in the code that can be easily mixed and matched, integrative modelers would in turn be

able to rigorously combine likelihoods and priors for all the available input information to

solve their integrative modeling problems efficiently. To illustrate this point in more detail,

we discuss three specific examples of the posterior model density factorization next.

The first example is that used above (Approach), corresponding to computing an atomic

multi-state model based on crystallography data and physical principles. Posterior model

density is factorized into a data likelihood based on X-ray diffraction patterns and a prior

based on a molecular mechanics force field. Consequently, input information is conveniently

isolated in the software (IMP for prior models and Phenix for diffraction patterns) that is

best suited to evaluate a model based on it. The separation of software manages the technical

complexity of the prior and likelihood implementation.
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The second example is computing a coarse-grained structural model of the hetero-

heptameric Nup84 complex based on a negative-stain electron microscopy map and residue-

specific cross-links as well as prior models of the subunits35. Posterior model density is fac-

torized into a data likelihood based on the map, a data likelihood based on the cross-links,

a prior based on prior subunit models, and a prior based on excluded volume. Although all

the terms were evaluated in IMP in this case, it is conceivable that a more accurate encoding

of a subset of input information is or will be available in another software package. In such a

case, software integration would facilitate computing a higher quality model more efficiently.

The third example is computing a multi-scale model of glucose-stimulated secretion in

human pancreatic beta-cells, based on 8 prior models of different aspects of different parts

of the entire system36. These prior models are a coarse-grained spatiotemporal simulation

of insulin vesicle trafficking, docking, and exocytosis; a molecular network model of glucose-

stimulated insulin secretion signaling; a network model of insulin metabolism; a structural

model of glucagon-like peptide-1 receptor activation; a linear model of a pancreatic cell popu-

lation; and ordinary differential equations for systemic postprandial insulin response. When

dealing with a complex multi-scale model, it is often not reasonable to assume independence

of the input information. In this case, the prior models must be coupled by additional terms

in the scoring function. In addition to the prior models, simple models of statistical cou-

pling between the prior models are also defined. The prior models and the couplers are the

priors in a posterior model density for a model of the entire system. Bayesian metamod-

eling estimates the posterior density via backpropagation. Thus, Bayesian metamodeling

decomposes the problem of modeling a large, complex system into smaller, more tractable

modeling problems. It is likely that more sophisticated and physically realistic coupling of

prior models would be facilitated by software integration, where each type of prior model is

evaluated in a separate specialized code developed by experts in the domain of that model.
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2.5 Conclusions

In summary, software interoperability would greatly benefit the field of integrative modeling

as the integration of software specialized for handling specific types of information supports

more efficient building of higher quality and more complex models. We proposed a demon-

strative standard that facilitates simple software integration by representing modeling as a

model search with defined information passing. We then implemented the above standards

to integrate Phenix and IMP. Finally, we discussed the ability of the Bayesian formulation to

facilitate collaborative integrative modeling by mixing-and-matching priors and likelihoods.

Ultimately, we suggest that the software development community in the field of integrative

modeling consider the definition and adoption of de facto protocol standards for improving

the interoperability of their software.�
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Chapter 3

A Long-Range Recruitment

Mechanism for mTORC2

Phosphorylation of Akt

3.1 Abstract

In response to growth factors like insulin, the mTOR Complex 2 (mTORC2) phosphorylates

and activates Akt, PKC, and SGK protein kinases, which in turn control diverse cellular

processes1–3. How mTORC2, a large protein complex containing mTOR, Rictor, mSin1, and

mLST8, recognizes these kinases to phosphorylate them on specific sites is uncertain3–6. To

address these questions, we studied the phosphorylation by mTORC2 of Ser473 of Akt, a

central regulator of growth and metabolism7. Enzymatic and cellular data revealed that

mTORC2 directly phosphorylates Akt Ser473, and that the local sequence makes limited

contributions to recognition. To understand why, we prepared bivalent semisynthetic Akt

proteins to stabilize the interactions with mTORC2, enabling cross-linking mass spectrome-

try and cryo-electron microscopy (cryo-EM) analysis of the mTORC2-Akt co-complex struc-

ture. We find that mTORC2 phosphorylation of Akt is driven by recognition of the three-
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dimensional fold of Akt at two interfaces: (1) mSin1 CRIM domain with the Akt N-lobe,

and (2) mSin1/Rictor N-terminal regions with the Akt C-lobe, and is augmented by PIP3-

induced membrane association via mTORC2 and Akt PH domains. The surface on the Akt

N-lobe that binds to mSin1 CRIM overlaps with that previously proposed to mediate the

intramolecular interaction between Akt phospho-Thr450 and its N-lobe, suggesting an in-

tricate interplay between mTORC2-mediated phosphorylation of Thr450 and Ser473. We

show that this mechanism of molecular recognition by mTORC2 is conserved across a sub-

set of AGC kinases. Together, these results reveal the long-range interactions that enable

mTORC2 to specifically phosphorylate and activate Akt and other key cellular signaling

substrates.

3.2 Introduction

The mTOR complexes mTORC1 and mTORC2 are critical for diverse cellular functions,

including the control of growth, metabolism, and proliferation, and are conserved from

yeast to human2,8. Extracellular signals including insulin and other growth factors acti-

vate mTORC2 at the plasma membrane9. mTORC2 phosphorylates and activates AGC

family kinases including Akt (protein kinase B)1,10–12, protein kinase C (PKC)13, and SGK14

at their hydrophobic motifs (Ser473 in Akt) in the C-terminal tail (C-tail, residues 422-480

in Akt) (Fig. 4.1a). Dysregulated mTOR signaling is central to the pathology of aging

and diseases including diabetes/metabolic syndrome and many human cancers8. Because

the two mTOR complexes have distinct and often opposing signaling roles and cellular feed-

back loops, selective modulation of both complexes is of interest in these diseases8. While

both mTORC1 and mTORC2 are sensitive to ATP-site small molecule inhibitors, inhibition

of both complexes by existing agents limits their clinical utility15, and efforts to develop

complex-specific pharmacology have been stymied because both complexes share the kinase

mTOR and component mLST8 in nearly identical conformations4,16.
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Figure 3.1: mTORC2 directly and specifically phosphorylates Ser473 of Akt with little 
contribution from local Akt sequence. (Figure caption continued on next page.)



Figure 3.1: mTORC2 directly and specifically phosphorylates Ser473 of Akt with little
contribution from local Akt sequence. (Figure caption continued on next page.)
(Figure caption continued from previous page.) a, Model for two-step activation of Akt
by mTORC2 at the plasma membrane. Following PIP3-mediated recruitment, Akt is se-
quentially modified at Ser473 by mTORC2, facilitating a conformational change of the PH
domain, and then at Thr308 by PDK1, together resulting in full activity. b, Purified monodis-
perse mTORC2 expressed in SF9 insect cells. c,dc No significant effect of Akt inhibitors and
Akt catalytic activity of mTORC2 phosphorylation of Akt Ser473 in vitro; inhibitors used
have reported Akt IC50 <10 nM; v

[E]
= velocity

[enzyme (mTORC2)] ; 5 nM mTORC2, 1 mM ATP, 1 µM
Akt, 10 mM MgCl2. c, Neither ATP-competitive Akt inhibitor GDC-0068 nor Akt catalytic
status affects mTORC2 phosphorylation of Akt (D274A Akt: catalytic null). d, Allosteric
Akt inhibitor MK-2206 and ATP-competitive Akt inhibitor AZD-5360 do not affect Akt
phosphorylation by mTORC2 at 1-2 µM. e, Akt Ser473 phosphorylation assay in Akt1/2-
null HCT116 cells; transfected cells were serum starved for 20 hours, stimulated for 40 min
with insulin and hIGF4, and analyzed by immunoblotting. f, mTORC2 and mTORC1 are
specific in phosphorylating canonical substrates Akt and 4E-BP1, respectively under identi-
cal conditions in vitro as read by quantitative western blotting; 1 µM substrate, 1 mM ATP,
and 10 mM MgCl2; n=4, representative of 2 experiments (p<0.0001, both rate compar-
isons, t-test). g, Around half of mTORC2-Akt phosphorylation is lost with S473A mutation
as measured by γ32P-ATP assay; 1 µCi γ32P-ATP was used at 1 mM final, 5 µM Akt, 5
nM mTORC2, 10 mM MgCl2; notably WT Akt and AktS473A preparations have minimal
pT30812. h-j, Local sequence around Ser473 has little impact on Akt Ser473 phosphory-
lation despite conservation. h, C-tail sequences of human AGC kinases shows conservation
of Ser473-flanking Phe472 and Tyr474. i,j, Neither mutation of Phe472 to Ala nor phos-
phorylation of Tyr474, Ser477, or Thr479 has a significant effect on Ser473 phosphorylation
in vitro (quantitative western blotting; i, 5 µM Akt, j, 1 µM Akt). k, Mass spectrometry
measurement of in vitro phosphorylated Akt tails shows monophosphorylated tail peptide is
largely pSer473, and mTORC2 produces doubly phosphorylated pSer473-pSer475 tails.

Recent structural analysis has revealed how two distinct motifs, TOS17–19 and RAIP20–22

control phosphorylation of mTORC1 substrates including 4E-BP1. In contrast to mTORC1,

the enzymological properties and structural interactions of mTORC2 with its substrates have

not been characterized in depth4,5,23,24. Biochemical and cellular studies have suggested po-

tential roles for the CRIM25 and pleckstrin homology (PH) domains26 of mSin1 in Akt C-tail

modification, and the role of the atypical Ras binding domain (aRBD) is controversial27,28.

However, the relative importance of proximal amino acid residues around Akt Ser473 versus

distal docking sites for mTORC2 recognition remain unclear. Moreover, a recent report

proposed a mechanism in which mTORC2 may not even directly phosphorylate Akt, SGK,

and PKC at the C-tail6. Instead, Akt was proposed to autophosphorylate Ser473 follow-
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ing mTORC2 phosphorylation of an upstream site in the ‘TIM’ motif (Thr443 in Akt),

with analogous mechanisms proposed in SGK and PKC6. mTORC2 has also been shown

to have a role in turn motif phosphorylation of Akt (Thr450), PKC13,29, and PKN30, and

these phospho-sites are proposed to engage in intramolecular N-lobe interactions in these

kinases that promote their stability13,29. Currently, there are no experimental structures of

mTORC2 bound to Akt, SGK, or other substrates4,5. Although there are increasing numbers

of high-resolution structures of protein kinases bound to synthetic peptide substrate analogs,

there have been very few of protein kinases bound to their folded protein substrates. Beyond

kinases that autophosphorylate, we are aware of only a few such examples including: Csk

bound to Src31, BRAF complexed with MEK32, and p38 engaged with MK233. A principal

challenge in capturing protein kinase/protein substrate structures is the modest affinity of

these interactions, which likely facilitates efficient catalytic turnover.

Akt1 (referred to here as Akt) and its paralogs Akt2 and Akt3 are Ser/Thr protein

kinases that govern cell proliferation and metabolism and play key roles in health and dis-

eases including cancer and diabetes7,34. Growth factor signaling through PI3-kinase first

recruits Akt to the plasma membrane via elevation of the phospholipid phosphatidyl-3,4,5-

triphosphate (PIP3)7,34. Two protein kinases, mTORC2 and PDK1, then sequentially acti-

vate Akt (Fig. 4.1a): mTORC2 targets Akt at Ser473 on the C-tail hydrophobic motif, re-

lieving autoinhibition and facilitating subsequent PDK1 phosphorylation of Thr308 in Akt’s

activation loop1,10–12,35–37. Turn motif phosphorylation at Akt Thr450 requires mTORC2

and is thought to be constitutive, but it may be regulated in other AGC members13,29,38,

such as PKN19. The combination of activation loop and C-tail phosphorylation results in

full stimulation of Akt, which then phosphorylates key substrates such as GSK3, PRAS40,

and the FOXO transcription factors7,34. Whereas the molecular basis for PDK1 recognition

and activation loop phosphorylation of the AGC family of kinases has been partially illu-

minated39, much less is known about how mTORC2 targets the C-tails of Akt and those of

related AGC kinases including SGK and PKC. To shed light on this mechanism, we began
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by establishing a system to study mTORC2 phosphorylation of Akt Ser473 in vitro.

3.3 Results

3.3.1 mTORC2 directly phosphorylates Akt at Ser473

Understanding of mTORC2-Akt interactions have been limited by the challenges of pro-

ducing mTORC2 as well as Akt with controlled post-translational modifications. To gener-

ate homogeneous Akt substrates and standards, we employed expressed protein ligation40;

the resultant semisynthetic Akt proteins lack Thr308 phosphorylation and contain either

a uniformly unmodified or a uniformly Ser473 mono-phosphorylated synthetic C-tail12

(Fig. 3.7a). We overexpressed and purified human mTORC2 from both HEK293T and

insect cells (Fig. 4.1b, Fig. 3.7b-d) and measured mTORC2 catalytic parameters by quan-

titative western blots using semisynthetic Akt substrates and standards. These studies

revealed apparent KM values with insect cell-produced mTORC2 for Akt and ATP of 6 µM

and 1 mM, respectively (Fig. 3.7e). Comparable results were seen with HEK293T cell-

produced mTORC2, although a lower apparent ATP KM was measured (apparent KM of

0.27 mM, Fig. 3.8a-c). Due to low yield of monodisperse mTORC2 from HEK293T cells,

further analyses were performed with insect cell expressed mTORC2.

To distinguish between mTORC2 catalyzed phosphorylation of Ser473 and Akt au-

tophosphorylation, we tested the catalytically inactive D274A mutant Akt as an mTORC2

substrate and several Akt inhibitors including the ATP-competitive inhibitors GDC-0068

(ipatasertib)41 and FDA-approved AZD5363 (capivasertib)42 and the Akt allosteric inhibitor

MK220643. The rate of mTORC2 phosphorylation of AktD274A on Ser473 was similar

to that of wild-type (WT) Akt and was minimally affected by Akt inhibitors (Fig. 1c-d,

Fig. 3.8d-f). These results show that the catalytic activity of Akt is not essential for its

C-tail phosphorylation by mTORC2. In contrast, the mTOR inhibitors Torin1 and Torin2

potently inhibit Akt Ser473 phosphorylation (Fig. 3.7e, Fig. 3.8c), evidence that mTORC2
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directly catalyzes Ser473 phosphorylation. We also investigated the role of Thr443 and Akt

catalytic activity on C-tail phosphorylation in mammalian cells. We expressed WT and

mutant Akt forms in HCT116 Akt1/Akt2 knockout cells44 and found that T443A mutation

resulted in little impact on Ser473 phosphorylation whereas catalytically inactive AktD274A

showed enhanced Ser473 phosphorylation, perhaps due to a cellular feedback mechanism7,8

(Fig. 4.1e, Fig. 3.8f). Taken together, the biochemical and cellular experiments indicate

that mTORC2 directly phosphorylates Akt Ser473.

3.3.2 Specificity Determinants of mTORC2 Catalyzed Phospho-

rylation of Akt

To understand the specificity of mTORC2 in C-tail phosphorylation of Akt, we compared

the activity of purified mTORC1 versus mTORC2. Both mTOR complexes showed high

specificity for canonical substrates in vitro, with mTORC2 ~150-fold faster in phosphory-

lating Akt and mTORC1 ~140-fold faster towards 4E-BP1 (Fig. 4.1f, Fig. 3.9a,b). We

also looked at the potential role of the PH domain of Akt in C-tail phosphorylation and

found that mTORC2 effectively phosphorylates Akt in solution, with or without the Akt

PH domain: the apparent kcat/KM was within ~2-fold for WT vs ∆PH-Akt (amino acids

123-480), although the apparent KM of �PH-Akt was elevated (>20 �M) relative to full length

Akt (Fig. 3.9c). The Akt PH domain is therefore not essential for C-terminal phosphoryla-

tion of Akt by mTORC2 in solution.

We next tested how the residues flanking Ser473 in Akt, namely Phe472 and Tyr474,

affect mTORC2 catalysis. Phe472 and Tyr474 are conserved across Akt1-3 as well as SGK1

and PKCα(Fig. 4.1h). We chose to test F472A and pTyr474 Akt forms45. To enable ac-

curate western blot calibration, it was necessary to prepare compound-modified AktF472A-

pSer473 and AktpSer473-pTyr474 by expressed protein ligation. Unexpectedly, mTORC2

phosphorylation of AktF472A and AktpTyr474 occurs with rates nearly identical to WT Akt

(Fig. 4.1i, Fig. 3.9d-e). These results suggest that, despite their conservation, the specific
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residues neighboring Ser473 are relatively unimportant in mTORC2-mediated phosphory-

lation of the Akt C-tail. However, these residues are likely important for pSer473 effects

on Akt kinase activity45 and may influence susceptibility of pSer473 to dephosphorylation.

Similar results were obtained with pSer477 or pSer479 Akt, two previously identified neigh-

boring phospho-sites on Akt46, which showed little change in mTORC2 phosphorylation of

Ser473 despite the addition of bulky phosphate groups in proximity (Fig. 4.1j, Fig. 3.9e).

We also probed mTORC2 site-selectivity using a radioactivity-based assay with γ32P-

ATP with WT and S473A mutant Akt as substrates. Analysis of γ32P-incorporation into

WT Akt vs AktS473A indicated that Ser473 accounts for about 50% of the overall phospho-

rylation of Akt, indicating a fair degree of promiscuity by mTORC2 (Fig. 4.1g). Interest-

ingly, AktS473A showed little inhibition of mTORC2-catalyzed phosphorylation of WT Akt

even at 10 µM ∆PH-Akt competitor, suggesting that the Kd of Akt is relatively weak and

greater than its apparent KM (Fig. 3.9g). We next assayed the specificity of Akt C-tail

phosphorylation using nanoLC-MS/MS and found that monophosphorylation of Ser473 of

purified Akt is the major phosphorylation site by purified mTORC2, with lesser amounts

of diphosphorylation of Ser473+Ser475 (Fig. 4.1k, Fig. 3.24, Fig. 3.25). Together, these

data show that local substrate sequence has little effect on mTORC2 activity and suggest

that other mechanisms likely mediate mTORC2 recognition of Akt.

3.3.3 Akt-ATP as a bisubstrate inhibitor of mTORC2

Our kinetic experiments reveal a low baseline affinity of Akt for mTORC2, which has likely

impeded the acquisition of a stable co-complex suitable for structural analysis4,5. Appropri-

ately designed ATP-peptide bisubstrate analogs typically show enhanced affinity for their

cognate kinases relative to the unmodified peptides and have been used as structural tools

to analyze substrate molecular recognition for several protein kinases12,47–49. We employed

a related approach to prepare an Akt-ATP protein bisubstrate analog using semisynthesis

with the linkage through an aminoAla-acetyl-ATP�S at Ser473 of Akt (Fig. 3.10a). While
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producing the Akt-ATP protein bisubstrate analog, we generated the Akt-ATP peptide con-

jugate (aa460-480) as a useful comparator. We analyzed the affinities of Akt-ATP peptide

and protein by testing these agents as inhibitors of mTORC2 phosphorylation of unmodi-

fied Akt. These experiments showed that Akt-ATP peptide possessed an IC50 of 180 µM

whereas Akt-ATP protein displayed an IC50 of 1.5 µM (Fig. 3.10b). The ~100-fold differ-

ence in IC50 values of the peptide versus protein reveals the importance of the full-length

Akt versus the truncated C-tail in molecular recognition of substrates by mTORC2.

Akt-ATP showed sufficient affinity for mTORC2 to partly co-elute with mTORC2 us-

ing size-exclusion chromatography (Fig. 3.10c) but cryo-EM analysis of this complex did

not reveal a strong density for Akt (data not shown). Unable to extract additional struc-

tural details from microscopy, we employed crosslinking mass spectrometry (XL-MS) on the

reconstituted mTORC2:Akt-ATP co-complex. Using complementary cross-linkers includ-

ing DSS (disuccinimidyl suberate) or EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

hydrochloride) we aimed to reveal potential binding or contact interfaces among the compo-

nents. This revealed several Akt-mSin1 cross-links including (1) Akt Lys183-mSin1-Lys295

and (2) Akt Lys183-mSin1-Lys313, and (3) Akt Lys154-mSin1 Lys175, as well as numerous

other cross-links (Fig. 3.10d, discussed below). Lysines 154 and 183 of Akt are in the kinase

N-lobe while mSin1 Lys175 is in the CRIM domain, and Lys295 and Lys313 of mSin1 are

C-terminal to CRIM in the adjacent aRBD27.

Because Lys154 and Lys183 are conserved among mTORC2 substrates Akt1-3, SGK1,

and PKCαand solvent exposed (Fig. 3.10e,f), we examined the importance of the Akt

surfaces containing these residues in mTORC2 recognition. Transient expression experiments

in HCT116 Akt1/2 knockout cells revealed that trialanine mutation of residues 153-155 had

a modest effect on pSer473 levels, and mutation of 182-184 nearly abrogated it (Fig. 3.10g).

Among alanine scanning of 182-184 residues, K182A and E184A show moderate reduction

in Akt pSer473 levels, whereas K183A almost completely abolished pSer473 (Fig. 4.2a,

Fig. 3.10h). pThr450 levels of mutant Akt forms are comparable or slightly reduced relative
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to WT. pThr450 levels are often used as a marker of proper folding and stability of Akt45.

As discussed later in this study, we show that pThr450 is directly formed by mTORC2,

making it more complex to interpret as such a biomarker.
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Figure 3.2: mTORC2-Akt Complex Structure Determined Using Akt-Torin. (Figure cap-
tion continued on next page.)
(Figure caption continued from previous page.) a, First-generation bivalent mTORC2 ligand
Akt-ATP was insufficient for structure determination, but cross-linking mass spectrometry
(Extended Data Fig. 2.1) revealed a contact between Akt K183 and mSin1 CRIM. Mutation
of K183 and neighboring residues was tested in Akt phosphorylation in transfected HCT116
cells; ø, untransfected cells. b, Peptide inhibition of mTORC2 phosphorylation of Akt in
vitro by Akt-Torin peptide is 180-fold more potent than Akt-ATP peptide; 5 µM Akt, 1
mM ATP, 5 nM mTORC2, 10 mM MgCl2 (n=4). c, Design of second-generation bivalent
mTORC2 ligand Akt-Torin. Torin acrylamide is conjugated to Cys473 of an Akt tail peptide
via a Michael addition, and purified Akt-Torin peptide (460-480) is ligated to Akt(1-459)
thioester; the expressed protein ligation reaction produces a native peptide backbone, fa-
cilitated by the presence of Cys460 in Akt. d, Structural determination of apo-mTORC2
and mTORC2-Akt-Torin by cryo-EM, resolved to 3.12 Å and 2.55 Å, respectively. Diagram
shows the components of the complex, their compositions, and structurally resolved regions.
Akt binds to mTORC2 in the “substrate arch”, where mLST8, mSin1, and Rictor together
form two distinct docking interfaces ~75 Å from the mTOR active site. First, the Akt kinase
domain N-lobe binds mSin1 CRIM, which is tethered and stabilized at two points against
mLST8. Second, the Akt kinase domain C-lobe binds to the N-terminal region of mSin1, a
flexible interaction we name the “mSin1 N-mooring”. The critical component for mTORC2
substrate binding is mSin1, which takes a long and circuitous path, snaking from a pocket
in Rictor against which it builds the N-mooring, across the substrate arch, around the back
of mLST8, and then back to build the CRIM interface. Subsequent mSin1 domains aRBD
(atypical Ras binding domain) and PH are involved in regulation and tether mTORC2 to
the plasma membrane, respectively.

To further explore the role of Lys183, which was crosslinked to mSin1, we pursued an in

vitro approach and generated semisynthetic single mutant K183A and triple mutant KKE182-

184AAA Akt purified proteins and examined them as mTORC2 substrates in kinase assays.

These assays showed that mTORC2-catalyzed phosphorylation of Ser473 was ~50% slower

for AktK183A relative to WT Akt, whereas AktKKE182-184AAA displayed ~10-fold reduc-

tion (Fig. 3.11a). Taken together, these results demonstrate that aa182-184 of Akt are

influential determinants of mTORC2-catalyzed phosphorylation of Akt Ser473. This is es-

pecially notable, given both (1) the large spatial separation between Akt N-lobe and C-tail

and (2) the apparent lack of importance of residues neighboring Ser473 in this reaction.

To further explore the potential mode of interaction between mTORC2 and Akt, we mod-

eled the interaction based on cross-linking data50 using our open-source Integrative Modeling
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Platform (IMP) software51. The results together satisfy 192/201 cross-links (95.5%) and show

two predominant binding configurations of Akt and mTORC2 components; (1) docked in

the substrate arch as identified in our preliminary cryo-EM map, 75 Å away from the mTOR

active site, and (2) at remote locations surrounding the recently-identified ATP binding site

on Rictor (the “A-site”)4 (Fig. 3.11b-c). We rationalize this second binding configuration

as an artefact of the ATP in our bisubstrate, given that added ATP γS was seen in this site

in prior studies4.

3.3.4 Akt-Torin as a bivalent ligand for mTORC2

To generate a more stable mTORC2:Akt co-complex, we reasoned that replacing ATP in the

bisubstrate with an ATP-competitive inhibitor of mTOR, such as an analog of Torin152, could

lead to a better bivalent ligand with both higher affinity and specificity for the mTORC2

active site, avoiding binding to the Rictor “A-site”. Inspection of an X-ray structure of

mTORΔN bound to Torin2 suggested that the propionyl-piperazine moiety of Torin1 should

be oriented away from the catalytic pocket and toward an approaching substrate Ser hy-

droxy (PDB 4JSX, Fig. 3.12a,b)53. Moreover, structure-activity-relationship analysis of

Torin1 suggested that substitutions of its propionyl group could preserve high affinity for

mTORC254. We thus prepared Torin-acrylamide and conjugated it to the Akt C-tail peptide

(aa460-480) via Michael addition, enabled by cysteine substitution at position 473 (S473C).

The resulting Akt-Torin peptide displayed an IC50 of 1 �M in blocking mTORC2 phospho-

rylation of Akt, greater than 100-fold more potent than Akt-ATP peptide (Fig. 4.2b-c,

Fig. 3.12b-d). We next employed Akt-Torin peptide in expressed protein ligation to gener-

ate Akt-Torin protein. Although the ligation proceeded with >50% conversion, the result-

ing monodisperse fraction contained <20% Akt-Torin (1-480) and >80% unligated (C-tail

deleted) Akt (aa1-459), likely due to limited solubility conferred by attachment of the Torin

analog. Despite the presence of mixed protein species, mTORC2 selectively bound to the

fully conjugated Akt-Torin and co-migrated in size-exclusion chromatography, which yielded
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stoichiometric mTORC2:Akt-Torin co-complex suitable for structural analysis (Fig. 3.12e).

3.3.5 Cryo-EM analysis of mTORC2:Akt-Torin co-complex

We performed single-particle cryo-EM of apo-mTORC2 and the mTORC2:Akt-Torin co-

complex and determined their structures to overall resolutions of 3.1 Å and 2.5 Å, respectively

(Fig. 4.2d, Fig. 3.26, Fig. 3.27, Fig. 3.28, Fig. 3.29, Fig. 3.30). This facilitated building

full atomic models of both complexes, including numerous regions of the complex not previ-

ously resolved such as the mSin1 CRIM domain and large sections of the mTOR spiral. The

resulting cryo-EM map with bound Akt-Torin substrate revealed that the three-dimensional

kinase fold of Akt engages mTORC2, creating what we refer to as the “substrate arch”.

The local environment was highly dynamic, allowing us to resolve it only to 5.5 Å. Yet this

resolution was sufficient to reveal two distinct structural interfaces of mTORC2 that enable

substrate docking. First, the Akt N-lobe makes contacts to the mSin1 CRIM domain over

a broad surface (“Interface 1”), including directly engaging the CRIM “acidic loop”, which

was previously reported to be involved in Akt binding25. Second, at the opposite end of the

mTORC2-docked Akt, the kinase domain C-lobe engages a flexible interface we named the

“mSin1 N-mooring” comprising N-terminal regions of mSin1 (“Interface 2”). The Akt kinase

itself was captured in the inactive conformation55, with no apparent density corresponding

to helices αB, αC, or the PH domain. This suggests high conformational flexibility, consis-

tent with our observation that the Akt PH domain is not essential for mTORC2-catalyzed

phosphorylation of the Akt C-tail. mSin1 CRIM is stabilized against mLST8 by binding of

the α6-�2 loop (mSin1 residues 163-174) to mLST8 �1.4 (residues 35-39).

In the active site of mTORC2, 11 residues of the Akt C-tail are resolved (Arg466-Ala476),

filling the mTOR active site (Fig. 3.13a). Akt-linked Torin1 assumes a nearly identical con-

formation to the analogous Torin2-bound crystal structure from which it was designed53, with

key contacts to mTOR Trp2339, Val2240, Ile2356, and Asp2357 (Fig. 3.13b). The peptide

backbone takes a similar path like that seen in the two other PIKKs (phosphatidylinosi-
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tol 3-kinase-related kinases) previously resolved with substrates: SMG1 (PDB 6Z3R) and

ATM (PDB 8OXO), although the orientation is reversed (Fig. 3.13c). The backbone and

sidechains of the Akt C-tail make a series of electrostatic and hydrophobic interactions with

mTOR. Notably, Akt Phe472 engages a deep hydrophobic pocket (Fig. 3.13d). Together

these contacts may partially explain mTOR’s slight preference for Ser473 and accommoda-

tion of diverse sequences, but further study is needed using unmodified peptides.

3.3.6 Interface 1: Akt N-Lobe – mSin1 CRIM

The Akt N-lobe binding to mSin1 CRIM is facilitated by the positively charged surface span-

ning the five-stranded �-sheet of the Akt N-lobe that is well conserved (Fig. 4.3a, Fig. 3.10e,

Fig. 3.17a,b). The basic sidechains of Akt N-lobe residues Lys158, Lys163, Lys182, and

Arg222 directly engage the negatively-charged CRIM acidic loop (aa236-245), as does ad-

jacent Akt Thr219, (Fig. 4.3a, right panel). As mentioned above, cellular phosphoryla-

tion of Ser473 was moderately impaired with transiently expressed K182A Akt (Fig. 4.2a,

Fig. 3.10g,h). To further investigate the importance of this Akt interface, we explored a se-

ries of single and multiple Ala replacements of Akt Lys158, Lys163, Lys182, and Arg222

as well as flanking Thr219, His220, and Asp221. Interestingly, single K158A, K163A,

and R222A mutant transfected Akts showed similar pSer473 levels to WT and reduced

pThr450, especially in non-growth factor stimulated cells. Double mutant KK158/163AA

and the quadruple mutant KKKR158/163/182/222AAAA transfected Akt forms displayed

sharply decreased pSer473 and pThr450 levels (Fig. 4.3b, Fig. 3.17b). Although tran-

siently expressed H220A and D221A Akt phosphorylation levels appeared similar to that

of WT Akt, T219A Akt displayed a steep fall in pSer473 without change in pThr450

(Fig. 4.3b, Fig. 3.17c-d). In vitro kinase assays with mTORC2 revealed approximately

50% lower Ser473 phosphorylation of purified T219A Akt protein compared with WT Akt.

(Fig. 3.17e).
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Figure 3.3: Interplay between Thr450 Phosphorylation and mTORC2-Akt Interface 1: Akt N-
Lobe – mSin1 CRIM. (Figure caption continued on the next page.)



Figure 3.3: Interplay between Thr450 Phosphorylation and mTORC2-Akt Interface 1:
Akt N-Lobe – mSin1 CRIM. (Figure caption continued on the next page.)
(Figure caption continued from the previous page.) a, Cryo-EM structure and model of
this interface shows a broad docking surface that includes two loops on each mSin1 CRIM
and Akt kinase domain N-lobe that have strongly complementary charges, as seen by the
Coulombic electrostatic potential (calculated with ChimeraX). b, Key Akt residues assayed
by transfection in Akt-null HCT116 for impacts on both hydrophobic motif pSer473 and turn
motif pThr450 phosphorylation show (1) Thr219 and (2) a basic patch of four residues K158,
K163, K182, and R222A together drive the interaction (all four basic residues mutated in
N-lobe 4xAla construct). Double K158A-K163A and quadruple 4xAla Akt mutations largely
abrogate both pSer473 and pThr450 levels despite equal total Akt expression. c, Both CRIM
loops are required for Akt phosphorylation, as assayed by complementation transfection
experiments in mSin1-null HEK293T cells with endogenous Akt substrate. Deletion of the
acidic loop (Δacidic, aa236-245) or mutation of all 6 acidic residues in the acidic loop (6xNQ),
or mutation of Phe259 + Phe259 on the adjacent loop all reduce pSer473 and pThr450. d,
mSin1-CRIM binds to AGC kinase N-lobe at a shared binding interface with the stabilizing
intramolecular interaction with phosphorylated turn motif (pThr450 in Akt, pThr555 in the
PKC-iota crystal structure PDB 3A8W, shown). Remarkably, overlaying the mTORC2-Akt
structure PKC-iota crystal highlights that CRIM and phosphorylated turn motif threonine
bind the same four key basic residues, and that both could not simultaneously bind. e, Test
of the hypothesis that pThr450 may compete with Ser473 phosphorylation by transfection
of ‘phospho-mimic’ and control alanine mutants in HCT116 cells. Increased pSer473 with
T450D and T450E mutants is consistent with the expected weaker binding of sidechain
carbonyl groups than a phosphate to the basic patch. f, In vitro rate of phosphorylation of
Akt Thr450 and Ser473 by mTORC2 is similar, supporting a similar direct phosphorylation
mechanism of both turn and hydrophobic motifs (full gels for b-f in Fig. 3.17).

To test the importance of the mSin1 CRIM surfaces in recruiting the Akt N-lobe, we

generated mSin1-null HEK293T cells and complemented them in transient expression ex-

periments with WT mSin1 or variants. mSin1 lacking the acidic loop (�acidic) or with

replacement of the 6 acidic loop aspartates and glutamates with asparagine and glutamine

(6xNQ, previously ‘poly NQ’)25 demonstrated greatly reduced pSer473 Akt levels compared

with WT mSin1. Interestingly, acidic loop deleted mSin1 also displayed a large decrease in

pThr450, whereas the effect of 6xNQ mutation on pThr450 was less pronounced (Fig. 4.3c,

Fig. 3.18a,b). Neither of these mutants compromise the integrity of mTORC2 complex

formation as measured by co-immunoprecipitation with mSin1 of mTOR, mLST8, or Rictor

(Fig. 3.18c, Fig. 3.23b). We also tested the role in binding of the adjacent loop on CRIM,

where residues Phe247 and Phe259 appear to contact Akt N-lobe. Mutation of these residues
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markedly reduced both Akt pSer473 and pSer450 levels (Fig. 4.3c).

In addition, we prepared several recombinant mSin1 protein fragments and tested them

as potential competitive inhibitors of mTORC2-catalyzed phosphorylation of Akt protein.

These experiments revealed that both CRIM the extended CRIM-aRBD-PH multi-domain

fragments are modest inhibitors of mTORC2 activity, with IC50 values of approximately 130

and 50 µM, respectively; the slight increase in potency when aRBD-PH is added argues these

domains may make a small contribution to recognition (Fig. 3.18). Deletion of the CRIM

acidic loop (aa236-245), the 6xNQ mutations, or mutation of conserved aliphatic residues in

the acidic loop (‘AA’ mutant) in CRIM25 abolished CRIM’s inhibition of mTORC2, further

supporting a role of CRIM and its acidic loop in Akt recruitment (Fig. 3.18).

Remarkably, the basic Akt N-lobe patch (residues Lys158, Lys163, Lys182, and Arg222)

required for CRIM binding were previously shown to form an intramolecular interaction with

the phosphate of turn motif pThr450, stabilizing cellular Akt; this stabilizing interaction is

proposed to be present in 26 of the 63 annotated AGC kinases38. A crystal structure of PKC-

iota shows pThr450-equivalent pThr555 bound in this basic pocket (3A8W)56, highlighting

the structural conservation with Akt. Overlaying this with our structure of CRIM-Akt re-

veals that this is a shared binding interface that could be occupied by either pThr450 or

mSin1-CRIM, but not both (Fig. 4.3d). To test whether competition between these bind-

ing modes has functional consequences, we assayed cellular mTORC2 phosphorylation of

Akt with mutations of Thr450 to alanine, aspartate, and glutamate. The acidic mutants

increased pSer473, whereas the alanine mutation had little effect (Fig. 4.3e), similar to

prior studies38. The pThr450 antibody did not recognize any of these mutants, further

validating its specificity. We interpret these data to mean that Thr450Asp/Glu mutants,

which presumably have reduced coordination of the basic Akt N-lobe residues as compared

to pThr450, facilitate CRIM binding by reducing competition with this intramolecular inter-

action, thereby increasing Ser473 phosphorylation. While, based on this model, the T450A

mutant would be expected to ablate intramolecular N-lobe binding and further potentiate
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Ser473 phosphorylation, reduced stability, increased phosphatase susceptibility,13,29 or bind-

ing to the mTOR active site as a dead-end substrate analog likely offsets any potential gains

in CRIM recognition.

Prior combinatorial mutagenesis of Lys158, Lys163, Lys182, and Arg222 resulted in a

steep reduction of both cellular Akt levels and Thr450 phosphorylation29,38. Decreased

pThr450 accompanying the loss of these four basic residues was understandably interpreted

as enhanced susceptibility to cellular phosphatases. However, genetic studies show mTORC2

is required for Thr450 phosphorylation13, and phospho-Thr450 is generated in reactions with

crudely immunoprecipitated mTOR29. Thus, we hypothesized that mTORC2 could directly

phosphorylate Thr450. To test this, we generated phosphate-free Akt C-tail by treatment

of immobilized Akt with lambda protein phosphatase prior to expressed protein ligation.

We observed that mTORC2 phosphorylated this phosphate-free C-tail on Akt at Thr450

at a similar rate to that of Ser473, and that the reaction was also inhibited by Torin1

(Fig. 4.3f, Fig. 3.17f). Overall, these experiments substantiate the importance of the Akt

N-lobe-mSin1 CRIM interface, as observed in our cryo-EM structure, in mediating mTORC2

phosphorylation of both Ser473 and Thr450 of Akt.

3.3.7 Interface 2: Akt C-Lobe – mSin1 N-Mooring

The cryo-EM analysis also revealed a novel but flexible substrate docking site for Akt kinase

domain C-lobe that involves residues near the N-terminus of mSin1 that we refer to as “mSin1

N-mooring” (Fig. 4.4a). Here, the Akt αG-αH loop containing residues 366-368 interacts

directly with mSin1 Trp76 and Phe78, including hydrophobic interactions between (1) mSin1

Trp76 and Akt Phe368 and Ile367 and (2) mSin1 Phe78 with Akt Ile367, as well as (3) a

potential interaction between mSin1 Phe78 with Akt Arg366 (Fig. 4.4a). To probe these

interactions, we first mutated residues 366-368 on Akt to either glycine or glutamate, which

showed sharply reduced Ser473 and Thr450 phosphorylation despite equal Akt expression

(Fig. 4.4b). Mutation of mSin1 residues Trp76 and Phe78 to serine or glycine showed a
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modest ~30% decrease in phosphorylation; curiously for the di-glycine mutant, the reduction

in pThr450 was more pronounced than in pSer473, whereas for di-serine, the defect in pSer473

was larger but pThr450 did not reach statistical significance (Fig. 4.4c).
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continued on next page.)



Figure 3.4: mTORC2-Akt Interface 2: Akt C-Lobe – mSin1 N-mooring. (Figure caption
continued on next page.)
(Figure caption continued from previous page.) a, Cryo-EM structure of this flexible dock-
ing interface shows Akt N-terminus and Ile366-Phe368 abut the mSin1 N-terminal region,
especially Trp76 and Phe78, with the unstructured N-terminus of Rictor in close proximity.
b, Mutation of Akt residues 366-368 to glycine or glutamate ablates Ser473 phosphorylation
and dramatically limits Thr450 phosphorylation in Akt-null HCT116 cells without affecting
total protein levels. c,d, To assay contributions from mSin1, WT and mutant constructs
were transfected into mSin1-null HEK293T cells. c, residues Trp76 and Phe78 were mutated
to glycine or serine, which show modest effects on both Ser473 and Thr450 phosphorylation
(*, p<0.05; **, p<0.01; ***, p<0.001,; n.s, not significant; n=4 points from n=2 indepen-
dent experiments). d, Arginines 81-83, >15 Å from docked Akt, have been proposed to be
important for SGK but not Akt phosphorylation by mTORC25. To test the importance of
these residues, they were simultaneously mutated to Ala (R81-83A), which shows large im-
pacts on Ser473 and Thr450 levels. Mutation of the individual residues show these effects are
mostly due to R83, with lesser contribution from R81 and no significant contribution from
R82 (**** p<0.0001). To investigate the contribution of unstructured and bridging mSin1
residues 50-76, these were deleted and replaced with a 5-residue GGGGS linker (Δ50-76L),
which includes Trp76. This shows no effect on Akt phosphorylation, which may be explained
by backbone interactions. (Note, these gels are from the same experiment as figure 3c, left
panels; all lanes shown in Fig. 3.17e).

Because of flexibility, the mSin1 N-mooring appears to also engage two helices in the

Akt C-lobe and their connecting loop αH and αI, together spanning residues 374-408. Con-

servation in this region of Akt (Fig. 3.19b) suggested residues Ala376 and Lys386 might

be involved in substrate recognition or local domain stability. Indeed, mutant A376G Akt

and K386A Akt reduce mTORC2-catalyzed phosphorylation of Ser473 without impacting

Thr450 phosphorylation (Fig. 3.19a). Because the highly conserved N-terminus of Rictor

is also in close proximity to the Akt C-lobe in this region but residues 1-21 are not resolved

structurally, we investigated its importance in Akt phosphorylation. Rictor constructs in

which the first 16 and 26 residues are deleted (�1-16, �1-26) complement Akt phosphoryla-

tion equally to WT in Rictor-null HEK293T cells and do not affect mTOR complex formation

(Fig. 3.19), ruling out a significant contribution of these Rictor residues in Akt recognition.

The conserved mSin1 tri-arginine cluster R81-R83, situated at the edge of the N-mooring,

was previously interpreted as important for mTORC2 phosphorylation of SGK1, but not for

Akt5. To examine its function, we performed Akt phosphorylation assays with single and
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triple Ala mutants. The triple RRR81-83AAA mutant nearly completely ablates Ser473

phosphorylation and causes around a 50% reduction in pThr450 levels; most of this can be

explained by R83, with lesser contributions from R81 more than R82 (Fig. 4.4d). However,

these arginine residues are positioned further than 15Å away from docked Akt. Together

with data showing mTORC2 assembly with these mutants is grossly intact (Fig. 3.17e,

Fig. 3.23b), arginine residues 81-83 are more likely required for local structural configuration

of mTORC2 rather than direct contact with substrate.

The large effect of mSin1 R81-83 mutations contrasts with the modest effect of mutat-

ing Akt-abutting residues Trp76 and Phe78. To further probe the role of the N-terminal

region of mSin1 in substrate recruitment, we replaced a large unstructured loop and ex-

tra bridging residues comprising residues 50-76 of mSin1 with a 5-residue GGGGS linker

(�50-76L, Fig. 3.19d). This mutant shows no effect on Akt phosphorylation by mTORC2

(Fig. 4.4d). A significant component of the mSin1 interaction in the N-mooring region may

therefore be driven by or be complemented by interactions between the mSin1 backbone

with the Akt C-lobe. Of note, both the mSin1-N-mooring - Akt C-lobe interaction and the

mSin1 CRIM - Akt N-Lobe interaction are required in concert for mTORC2-Akt recognition

and phosphorylation.

3.3.8 Integrative Modeling of the mTORC2:Akt co-Complex

To further describe the dynamic structure of mTORC2 in complex with Akt, we computed an

integrative structure model of the complex using IMP51, based primarily on the cryo-EM and

XL-MS data (Fig. 4.5a). We generated 5 million potential mTORC2-Akt structures through

extensive conformational sampling, aiming to fit the structures in the map while satisfying

as many cross-links as possible. While the model computed from the XL data alone results

in two distinct solutions, discussed above, clustering of the mTORC2-Akt structures that

sufficiently satisfied both the XLs and cryo-EM map revealed a unitary cluster (ensemble)

satisfying 90% of the cross-links (181/201, Fig. 4.5a, Fig. 3.20, Fig. 3.21). Our integrative
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model, for the first time, provides structural insights into the entire mTORC2 complex,

including domains and loops that that have been undetectable in cryo-EM structures: the

Akt PH domains, mSin1 domains (CRIM, aRBD, and PH), and large, flexible loops within

Rictor and mTOR. Together, these additional components account for approximately 26%

of mTORC2 residues (Fig. 3.21b).
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Figure 3.5: Integrative Modeling and Membrane Association of mTORC2-Akt. (Figure
caption continued on next page.)
(Figure caption continued from previous page.) a, Integrative model centroid solution of
mTORC2:Akt co-complex based on crosslinking mass spectrometry and biophysical con-
straints. Each sphere is a “flexible bead”, representing 10 residues, and localization den-
sities, shown on one symmetric mTORC2 monomer, represent the variability found within
the ensemble for each component. The modeling localizes the remaining components of
mTORC2, including PH domains of both Akt and mSin1 and the mSin1 aRBD (inset). b,
mTORC2:Akt interfaces from centroid structure; cryo-EM map (gray) and prv otein cross-
links (navy blue pipes) shown. The modeling recapitulates the positioning of Akt in both
Akt kinase N-lobe with mSin1 CRIM and the Akt C-lobe with the “mSin1 N-Mooring”. c,
Model of Akt C-tail phosphorylation. The flexible C-tail (aa 430-480), modeled from the last
resolved residue in the Akt C terminus (Ser422), extends ~75Å to the mTOR active site with
abundant slack and without violating excluded volumes. The Akt PH domain (purple) is be-
hind the kinase C-lobe in this view and does not encumber phosphorylation. Thr450 can be
similarly accommodated (see Fig. 3.21c) c, Model of mTORC2 membrane engagement: the
4 PH domains (2 each mSin1 and Akt) in the mTORC2 homodimer can be coplanar within
the ensemble, shown interacting with the phospholipid bilayer e.g. at the plasma membrane.
d, In vitro vesicle kinase assay in which SUVs (1 mM total lipid) are pre-incubated with 5
nM mTORC2 and the indicated concentration of WT Akt or Akt lacking the PH domain
(δPH-Akt, amino acids 144-480), and reacted for 10 min at 30°C with 1 mM ATP,10 mM
MgCl2 (except where indicated) and analyzed by quantitative immunoblotting. Ctrl, con-
trol vesicles (PC:PE,1:1). PIP3 containing vesicles (PC:PE:PS:PIP3,30:50:19:1). n=4; **,
p<0.002 for 2-fold rate increase at 0.2 µM and 1 µM, but not at 5 µM (two-way ANOVA).
e, Effect of mSin1 PH domain on Akt phosphorylation. mSin1 lacking the C-terminal PH
domain (ΔPH) or WT was transfected into mSin1-null HEK293T cells; n=4-16 from exper-
iments done in duplicate.

The integrative model uniformly presents a fully engaged Akt substrate with its kinase

domain N-lobe oriented towards CRIM and C-lobe oriented towards the mSin1 N-mooring.

The Akt kinase domain is in an inactive conformation similar to allosterically inhibited and

autoinhibited Akt crystal structures (PDB 3O96 and 7APJ), and the PH domain is posi-

tioned at the boundary of the kinase domain lobes, facing away from mTORC2, in a unique

orientation distinct from either structure or the Alphafold model (Fig. 4.5a,b, Fig. 3.21c,

Fig. 3.22a)55. The simulated location of Akt and mSin1 CRIM is fairly consistent across

models, but the positions of the mSin1 aRBD and PH domains show more flexibility. Next,

we examined C-tail phosphorylation computationally. Based on previous crystal structures

of Akt and disorder prediction algorithms55,57, the Akt sequence C-terminal to residue ~430
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is largely flexible. Accounting for the excluded volume of Akt and mTORC2, the Akt C-tail

is sufficiently long to traverse the ~65 Å distance to the mTOR active site and position

either Thr450 or Ser473 for phosphorylation with considerable residual slack in the C-tail

(Fig. 4.5b, Fig. 3.21c). Finally, the model can place the PH domains of mSin1 and Akt in

close proximity and coplanar with respect to the lipid bilayer, in a conformation that allows

all four PH domains within the mTORC2-Akt dimer to simultaneously engage membrane

phospholipids (Fig. 4.5c, Fig. 3.22b).

3.3.9 Membrane recruitment in mTORC2’s phosphorylation of

Akt

We hypothesized that the co-association of Akt and mTORC2 to PIP3-containing mem-

branes might enhance mTORC2-mediated phosphorylation of Akt through increased rela-

tive concentration and preferential orientation relative to the membrane. To test this, we

prepared vesicles containing PIP3 and control vesicles, which in an ultracentrifugation assay

demonstrated PIP3-dependent recruitment of Akt (Fig. 3.22c). In addition, only vesicles

containing PIP3 were able to stimulate mTORC2-catalyzed phosphorylation of Akt at low

Akt concentrations (0.2 and 1 µM) but less so at higher Akt concentrations (5 µM). This

stimulatory effect with full-length Akt was not observed with∆PH-Akt, and could be blocked

by addition of soluble PIP3, indicating that membrane embedded PIP3-mediated recruit-

ment to the vesicles was necessary (Fig. 4.5d)38. These in vitro kinase results appear to

correlate with how PIP3 elevation in cells can trigger Akt phosphorylation by mTORC27.

To explore the role of the mSin1 PH domain, we employed the mSin1 knockout cells and

observed that complementation with ∆PH-mSin1 relative to WT mSin1 led to decreased

pSer473 and slightly decreased pThr450 (Fig. 4.5e). Together, these experiments demon-

strate a key role for membrane co-recruitment of mTORC2 and Akt by their respective PH

domains for efficient Ser473 phosphorylation. Such membrane recruitment may be dispens-

able for Thr450 phosphorylation, perhaps due to stability of the modification conferred by
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binding to the basic patch38.

3.3.10 Mechanistic similarity in mTORC2 recognition and direct

activation of Akt, PKC, and PKN

To test whether the mechanism by which mTORC2 recognizes the 3D structure of Akt is

generalizable to other substrates, we assayed the phosphorylation of the PKCαC-tail at both

hydrophobic (Ser657) and turn motifs (Ser638). We also evaluated AGC member PKN1,

in which the hydrophobic motif Ser is replaced with a “phosphomimetic” Asp, and which

has been reported to have mTORC2-regulated phosphorylation of the turn motif Ser91630

(Fig. 3.6a). In transient expression experiments in HCT116 cells, following growth factor

stimulation, PKCαSer657 was robustly phosphorylated, PKCαS657A showed no phosphory-

lation, and Torin1 treatment prevented phosphorylation, confirming the expected mTORC2

dependence. As seen in Akt, catalytic null PKCαD463A showed similar or higher levels

of phosphorylation as WT PKCα, together supporting direct phosphorylation of the PKC

hydrophobic motif by mTORC2 rather than autophosphorylation (Fig. 3.6b, Fig. 3.23a).

To test whether the mode of mTORC2 recognition of PKC is like that of Akt, we made anal-

ogous mutations in the kinase domain N-lobe as those that disrupt the Akt-mSin1 CRIM

interaction: Akt K183A equivalent PKCαK372A and Akt T219A equivalent PKCαT409A,

along with trialanine ‘3A’ mutants that include adjacent residues. These mutants show

reduced phosphorylation and unperturbed expression levels (Fig. 3.6b, Fig. 3.23a).
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Motifs. (Figure caption continued on the next page.)



Figure 3.6: mTORC2 Similarly Phosphorylates AGC Kinases at Both Turn and Hy-
drophobic Motifs. (Figure caption continued on the next page.)
(Figure caption continued from previous page.) a, Domain diagram of Akt1, PKCα, and
PKN1 and alignment of turn motif (TM) and hydrophobic motif (HM). The HM residue for
PKN1 is instead a ‘phosphomimic’ aspartate. b, PKC phosphorylation assay in HCT116
cells mirrors Akt results. Cells were transfected with PKCαconstructs, serum-starved, and
treated with DMSO or Torin1 for 1 hour prior to stimulation with insulin and hIGF1 and
immunoblotting. Catalytic-null D463A PKCαis indistinguishable from WT, and interfaces
mirroring Akt K183 (PKCαK372) and Akt T219 (PKCαT409) are similarly required for
HM phosphorylation at S657. c,d, Effect of mTORC2 PH domain on transfected substrate
PKCαHM (Ser657) and PKN1 TM (Ser916) phosphorylation; comparison to endogenous
Akt serves as an internal control. Quantified blots highlight that PKCαphosphorylation
does not depend on the PH domain, whereas PKN1 TM shows a similar dependence on
the PH domain as the Akt HM. n=4-16 points from independent experiments each done
in duplicate. e,f, mSin1 and domain contribution to PKCαand PKN1 phosphorylation in
mSin1-null HEK293T cells transfected with WT mSin1 or the indicated mSin1 mutants.
Δacidic lacks the acidic loop, 6xNQ mutant removes the six acidic residues from the acidic
loop, and R81-83A and 50-76L constructs are in the mSin1 N-terminus. e, mSin1 presence
and acidic loop are required for PKC phosphorylation; N-terminal constructs that affect
Akt have less effect on PKCα. f, PKN1 TM Ser916 phosphorylation depends on mTORC2
status and is not detected in S916A mutant. mSin1 mutations have nearly identical effects
on PKN1 as Akt. Domains: C1, C2, conserved regions; HR1, heptapetide repeat 1; these
domains of PKCαand PKN1 are involved in regulation and membrane targeting. g, AGC
kinases phosphorylated on C-tail by mTORC2. Both TM and HM are directly modified,
except for kinases marked †, in which HM Ser/Thr is Asp/Glu and only TM is targeted. *
p<0.05; **** p<0.0001;

To test the importance of mTORC2 membrane association in these kinases, we assayed

phosphorylation of transfected PKCαand PKN1 alongside endogenous Akt1 in mSin1-null

HEK293T cells complemented with WT or∆PH mSin1. We found that mTORC2 is required

for phosphorylation of PKCαand PKN1 turn motifs and the PKCαhydrophobic motif. While

the loss of the mSin1 PH domain had no impact on PKCαphosphorylation by mTORC2

(Fig. 3.6c), phosphorylation of the PKN1 turn motif Ser916 was reduced by approximately

50%, similar to the reduction seen in the Akt hydrophobic motif Ser473 (Fig. 3.6d).

To gain further mechanistic insight, we examined our panel of mSin1 CRIM mutations

with Akt, PKCαand PKN1 in mSin1-null HEK293T cells (Fig. 3.6e,f). Phosphorylation of

both PKCαhydrophobic and turn motifs requires the CRIM acidic loop, but no effect was

seen with less disruptive mSin1 mutations 6xNQ and R81-83A. In contrast, PKN1 turn motif
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pSer916 behaves nearly identically to Akt hydrophobic motif pSer473 in these experiments.

Contradicting a prior hypothesis5, the consistent requirement or these arginine residues in

Akt and PKN phosphorylation and the previous report of their importance in SGK phos-

phorylation argue against a role for these Arg residues in the specific recognition of these

AGC kinase subsets. PKCαrecognition by mTORC2 appears more robust and less sensitive

to perturbation than Akt or PKN1. Strikingly, when transiently expressed, the stabilities of

PKN1 and PKCαare dramatically reduced absent mTORC2 activity, as measured by total

protein levels, whereas the effect of mTORC2 activity in stabilizing endogenous Akt in these

cells is subtle but statistically significant over many experiments (Fig. 3.23c). Together,

these data demonstrate that mTORC2 recognizes and activates PKC and PKN similarly

to Akt, with long-range docking and a key interaction between the kinase domain N-lobe

and mSin1 CRIM leading to direct phosphorylation of both hydrophobic and turn motifs by

mTORC2.

3.4 Discussion

Using a combination of biochemical, structural, and cellular experiments, we have demon-

strated that mTORC2 recognizes the three-dimensional structure of the Akt kinase domain

at two distinct locations distal to the active site to facilitate direct phosphorylation of the

Akt C-tail by mTOR. Our results support that Thr450 and Ser473 phosphorylation of Akt

involve a similar Akt-mSin1 interface, although Ser473 phosphorylation is generally more

sensitive to its disruption than Thr450 phosphorylation. This differential phosphorylation

likely due in part to pThr450 protection from dephosphorylation by intramolecular interac-

tions with the Akt N-lobe basic cluster Lys158, Lys163, Lys182, and Arg22229,38. As this

N-lobe basic cluster also appears to mediate mTORC2 interaction by binding the mSin1

CRIM acidic loop, we have identified an intricate interplay between pThr450 and pSer473.

The fact that Ser473 phosphorylation is not significantly inhibited by the presence of pThr450
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suggests that the interaction between pThr450 and the basic cluster is sufficiently weak to

allow for efficient competition by the acidic loop of the CRIM domain, likely aided by ad-

ditional CRIM residues Phe257 and Phe259 that together engage a broader surface area on

Akt including Lys183 and Thr219.

Our data also show that the mode of recognition of Akt by mTORC2 is conserved among

the family of AGC kinases including PKC, PKN, and likely others, where phosphorylation

of hydrophobic motif, turn motif, or both are regulated. In addition, our vesicle and cellular

assay data substantiate a role for PIP3-mediated membrane recruitment of Akt in mTORC2

catalyzed phosphorylation of Akt, and cellular data also show a similar role for membrane

recruitment in PKN phosphorylation by mTORC2. More work is needed to understand these

events and their regulation in physiology, however. While mTORC2 has been proposed to

be regulated and mediate signal transduction through small G proteins including Ras and

Rho isoforms in various contexts and across organisms27,28,58, we have limited understanding

of which signals are required, how they are integrated by mTORC2 to control downstream

processes, and how this is dysregulated in diseases such as diabetes and cancer.

The data presented here could aid in the development of both broad-spectrum PIKK

and selective mTORC2 inhibitors. By revealing the first high-resolution structure of a PIKK

active-site pocket bound to a substrate (2.5 Å), we lay a strong foundation for the rational

design of more potent and specific small molecule active site inhibitors. Even though our

structure does not reveal a clear small molecule pocket that can be targeted to select be-

tween mTORC2 and mTORC1, we reveal several surfaces as key to such selective targeting,

including mSin1 CRIM. The Akt kinase domain N-lobe could also be engineered as a domi-

nant negative genetic tool, like the dominant negative mSin1 construct lacking CRIM that

was recently reported to slow growth in a melanoma model58.

Taking together the distinct sequences of turn and hydrophobic motifs mTORC2 rec-

ognizes (Fig. 3.6g, Fig. 3.23d), available binding information about mTORC1 with 4E-

BP122, the lack of specificity of mTOR for its known substrates in peptide array profiling
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experiments59, that mTORC2 can phosphorylate Akt Ser477 and Thr47946, and our mass

spectrometry data showing mTORC2 can doubly phosphorylate the Akt tail, we propose

that mTOR displays limited local sequence specificity in phosphorylation2, and that regu-

lation is instead governed by remote docking interactions that control access to the mTOR

active site. Structural insight into mTORC2 substrate recognition has been challenging and

was unsuccessful in prior efforts4,5 for at least two key reasons. First, docking affinity in

solution is low (mTORC2-Akt Kd > 10 µM), necessitating membrane co-localization for

efficient phosphorylation. Despite stoichiometric tethering of Akt-Torin to mTORC2 via

the active site, only about 6% of all mTORC2 particles fully recruited Akt to the substrate

arch. Second, the identified docking interfaces are degenerate and broad, accommodating

a series of slightly different binding poses that blur the position of Akt in our cryo-EM

maps to 5.5 Å resolution. Adjacent residues often compensate for point mutations, requiring

larger deletions of entire loops or residue clusters to fully inhibit binding in two different

modes: the mSin1 CRIM and Akt N-lobe interface employs complementary charged surfaces

(interface 1), and the Akt C-lobe establishes redundant hydrophobic contacts with mSin1’s

N-mooring that may also involve backbone interactions (interface 2). From a technical per-

spective, the use of a small molecule ATP-competitive inhibitor site-specifically attached to

a protein substrate as developed here suggests a generalizable strategy to facilitate structural

determination of protein kinases in complex with protein substrates.
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3.5 Material and Methods

Kinase sequences compared were fetched from Uniprot and aligned using MUSCLE60 package

in Jalview 2.11.3.2 and visualized using Snapgene version 7.1.1.

3.5.1 Reagents

All chemicals and buffers were from Sigma unless otherwise stated. EDTA-free protease

inhibitor tabs, EDC, Sulfo-NHS, Dynabeads M-270 Epoxy, and anti-HA magnetic beads were

from Thermo Fisher Scientific. DSS was from ProteoChem. PhosSTOP was from Roche.

PEI MAX 40K was from Polysciences. Lipids and PIP3 were from Avanti Polar Lipids.

InstantBlue Coomassie Protein Stain was from Abcam; a similar reagent was prepared by

dissolving 80 mg Coomassie Brilliant Blue G-250 (Goldbio), 50 g EtOH, 80 g phosphoric

acid, and 5 g �-cyclodextrin in a final volume of 1 L H2O.
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3.5.2 Antibodies

Rabbit monoclonal antibody to Akt pS473 (ab81283, EP2109Y) and total PKCα(ab32376)

were from Abcam; Rabbit monoclonal mTOR (2983), Rictor (9476), mLST8 (3274), To-

tal Akt (4685), Akt pT450 (12178), total 4E-BP1 (9644), 4E-BP1 pT37/T46 (2855),

PKCαpT638 (9375), PKCαpS665 (9371), Flag epitope tag (14793), HA epitope tag (3724),

HRP-linked anti-mouse secondary antibody (7076) and HRP-linked anti-rabbit secondary

antibody (7074) were from Cell Signaling Technology. Flag-M2 antibody used for preparing

magnetic beads was from Millipore Sigma (F1804). Anti-Raptor (09-217) was from EMD

Millipore. Anti-adenosine was from LSBio (LS-C347801). Mouse monoclonal to vinculin

was from Santa Cruz (sc-73614). Mouse monoclonal to mSin1 (Sigma 05-1044, clone 1C7.2)

was knockout validated; Rabbit polyclonal to mSin1 (Bethyl A300-910A) was used for insect

overexpression but did not detect endogenous mSin1 in HEK-293T or HCT116. p-Ser916

PKN1 antibody and non-phospho PKN1 blocking peptide were gifts from Bryce Paschal and

used as described30. We were unable to identify any commercial reagent to SGK1 (pS422)

that showed signal in untransfected or SGK-transfected HEK293T or HCT116 cells that

depended on the presence of mTORC2.

3.5.3 Tissue Culture

Akt1/2-null HCT116 cells44 were a gift from Bert Vogelstein. HEK293T cells were from

ATCC. SF21, SF9, and ExpiSF cells, DMEM, FreeStyle 293 Medium, Grace’s Insect Medium,

SF-900 Medium, ExpiSF CD Medium, Lipofectamine 3000, Cellfectin II, and Expifectamine

SF were from Thermo Fisher Scientific. FBS and penicillin/streptomycin were from Sigma.

McCoy’s 5A medium was from Quality Biological. Amino acid-free and potassium-free

medium was from US Biologicals. Adherent mammalian cells were maintained in a hu-

midified 37°C incubator with 5% CO2 with 10% FBS and 100 IU/mL penicillin, and 100

µg/mL streptomycin and passaged 2-3 times weekly. Suspension-adapted HEK293T cells

were grown 125 ml – 5 L polycarbonate or glass Erlenmeyer flasks in Freestyle 293 medium

69



supplemented with 50 IU/mL penicillin, and 50 µg/mL streptomycin and 1% FBS in a

37°C incubator with 8% CO2, shaken at 90-125 rpm, and maintained at densities from 0.4-5

million/ml. SF9 cells were maintained at 27°C in glass spinner flasks or Erlenmeyer shake

flasks at densities 0.5-4 million / ml in SF-900 II or SF-900 III medium. ExpiSF cells were

maintained similarly in Erlenmeyer flasks at densities from 0.5-15 million/ml in ExpiSF CD

medium.

3.5.4 Akt and PKC Cell Signaling Assay in HCT116 cells

Akt1/2-null HCT116 cells44 were maintained in McCoy’s 5A medium supplemented with

10% FBS and 500,000 cells per well were seeded in 6-well plates. The next day, cells were

transfected with 1.5 µg per well of WT or mutant Akt pcDNA3 plasmid with duplicates

using Lipofectamine 3000 reagent according to the manufacturer’s instructions. After 24

hours, cells were washed in PBS, and starved for 18-20 hrs in McCoy’s 5A with 0.5% FBS.

Where noted “serum starved”, the cells remain untreated until plates were collected. Where

noted “stimulated”, cells were treated with McCoy’s 5A without FBS but with 200 ng/ml

of insulin (ThermoFisher Scientific) and 60 ng/ml human IGF-1 for 40 minutes at 37°C.

Cells were placed on ice, washed in ice cold PBS, and lysed in 100 µl RIPA buffer (CST)

containing 1x complete protease inhibitor tablet and 1 mM phenylmethylsulfonylfluoride

(PMSF), incubated on ice for 5 minutes before cells were scraped for harvest and cleared

by centrifugation at 21,000 × g for 10 minutes at 4°C. 30 µg of total protein (BCA assay)

was assayed with anti-GAPDH (1:1000), total Akt (1:1000), pS473 Akt (1:5000), or pT450

Akt (1:1000) in 5% BSA in TBST. In PKC transfections, Akt1/2-null HCT116 cells were

maintained, prepared, transfected, and starved following the pcDNA3 plasmid transfection

procedure mentioned above. However, after 18-20 hrs serum starvation, cells were either

treated with DMSO control or with 500nM Torin1 for 1hr at 37°C before stimulation with

200 ng/ml of insulin and 60 ng/ml human IGF-1 for 40 minutes at 37°C. Cells were harvested,

lysed, and assayed similarly.
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3.5.5 Akt, PKC, and PKN Cell Signaling Assays in HEK293T

cells

WT, mSin1-null, or Rictor-null HEK293T cells maintained in supplemented DMEM. For

Akt and PKN1 assays, 500,000 cells per well were seeded in duplicate 6-well plates; for

immunoprecipitation (IP) experiments including PKCαassays and mTORC2 complex as-

sessment, 3 million cells were plated on duplicate 10 cm dishes. The next day, cells were

transfected using PEI-MAX 40k at a 3:1 ratio (w/w) to plasmid, with boiled salmon sperm

DNA normalization; on 6-well wells, with 750 ng PKN1 plasmids, 500 ng mSin1 plasmids,

1 µg Rictor plasmids, and/or control plasmids in indicated combinations; on 10-cm dishes,

with 500 ng PKCαplasmids, 2.5 µg mSin1 plasmids, 5 µg Rictor plasmids, and/or control

plasmids in the indicated combinations. Two days later cells were lysed in 200 µL (6-well)

or 800 µL (10 cm) CHAPS lysis buffer (50 mM HEPES 7.5, 10 mM B-glycerol phosphate,

10 mM Sodium Pyrophosphate, 1% CHAPS, 150 mM NaCl, 1 mM TCEP, supplemented

with protease inhibitor and PhosSTOP tablets, incubated on ice for 5 minutes before cells

were scraped for harvest and cleared by centrifugation at 21,000 × g for 10 minutes at 4°C.

For IP, magnetic beads bound to antibody recognizing the Flag epitope tag were prepared

in-house by coupling Dynabeads M-270 Epoxy (Thermo Fisher Scientific) to Flag M2 anti-

body (Millipore Sigma) as described61. Cleared lysates were added to 25 µL washed HA 1

micron magnetic beads (Pearce) or 10 µL Flag M2 Dynabeads and bound for 30 min at 4°C,

separated and washed 3 times in 1 ml lysis buffer, and eluted by shaking for 10 min at 70°C

in 50 µL nonreducing 2x LDS loading dye (Thermo Fisher Scientific), separated, reduced

with TCEP (20 mM final), and boiled for 2 min at 95°C.

3.5.6 Generation of cells with loss-of-function mutations of

mTORC2 components Rictor or mSin1

Akt1/2-null HCT116 cells or HEK293T cells were transiently transfected with plasmids con-

71



taining guides targeting key coding exons of Rictor or mSin1 and encoding double-NLS Cas9-

T2A-GFP and an optimized sgRNA scaffold62, viable GFPdim single cells were sorted into

individual wells and expanded. Clones were assayed for loss of mSin1 and Rictor expression

and Akt S473 phosphorylation by western blotting, followed by restoration of expression

by addback of the missing genes; knockout was confirmed by NGS and loss of the plas-

mid demonstrated by fluorescence microscopy. The best guide for mSin1 (pMT906) targets

exon 2, residue 59, sequence ACACATTCCCGTGTCATCAC. The best guide for Rictor

(pMT921) targets exon 8, residue 204, sequence GGTGTTTAGTCCACCTCGAA.

3.5.7 Molecular Cloning and Plasmids

Flag-PKN1 (WT and S916A) expression plasmids were gifts from Bryce Paschal. cDNAs

containing human Akt1 were in pcDNA3 for mammalian expression (Addgene, # 9021) or

with C-terminal MxeIntein-CBD in pFastbac1 as described12. To generate point mutants

and truncations of cDNAs for structural validation, site-directed mutagenesis reactions were

performed using a two-stage QuikChange protocol63 using PfuUltra-II HS polymerase, by

the Q5 Site-Directed Mutagenesis strategy (NEB), or by multichange isothermal assembly64.

Constructs for bacterial expression were cloned into pFloat.SUMO65, with N-terminal His10-

SUMO tag. mTORC2 components for mammalian expression of the complex were cloned

into pDarmo.CMVT, with mTOR and Rictor in individual plasmids and mLST8 and mSin1

(variant 1.1, full length) assembled into two cassettes of a single plasmid65. To express

mTORC2 in insect cells, a simplified insect vector based on the MultiBac system66 was

developed called pDarmo.polH2.1 and all mTORC2 components were assembled using this

system to generate a single 20.8 kB expression vector. pDarmo.polH2.1 contains minimal

sequence required for baculovirus recombination, a Golden Gate acceptor site67 for assem-

bling multiple expression cassettes, and an expression cassette containing [5’Cis enhancer,

polyhedrin promoter, ccdB death cassette, and polyhedrin polyadenylation signal] flanked

by synthetic DNA barcodes. cDNAs for mTOR, Rictor, mSin1, and mLST8 were cloned into
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pDarmo.polH2.1, and then Rictor, mSin1, and mLST8 (n-1) cassettes were amplified using

the barcodes with primers containing ends for directional Golden Gate assembly (NEB) and

assembled into the mTOR-containing vector to create the final plasmid and verified by next-

generation sequencing (NGS). To generate mTORC1-expressing baculoviruses, mLST8 was

first cloned into pLIB68, and then sequential expression cassettes from pDARMO.polH2.1

with appropriately tagged mTOR and RAPTOR were cloned into the SpeI and AvrII sites,

respectively, and verified, yielding 18.8 kB vectors. mTORC2/1 plasmids were recombined

into DH10EMBacY (Geneva Biotech) and validated by PCR. All plasmids are listed in Sup-

plementary Table 2 and all plasmids developed in this study are deposited in Addgene.

3.5.8 Bacterial Expression and Purification of mSin1 fragments

and 4E-BP1

N-His10-SUMO tagged mSin1 protein fragments and 4E-BP1 proteins were transformed into

in E.Coli LOBSTR69 containing the Rosetta tRNA plasmid (Novagen), grown in Teriffic

Broth in UltraYield Flasks (Thompson) at 220 rpm at 37°C with 1:5000 Antifoam 204

(Sigma) and 25 µg/ml kanamycin to OD of 2-3, cooled on ice for 30-60 minutes, induced

with 0.2 mM IPTG (Isopropyl ß-D-1-thiogalactopyranoside), and grown overnight at 16°C.

Pellets were resuspended in 4 volumes of lysis/wash buffer (50 mM HEPES, pH 8.0, 1 M

NaCl, 0.5 mM TCEP, 0.1% Tween-20, 50 mM Imidazole), lysed with 2 passes through a

Microfluidizer (Microfluidics) or French Press (Thermo), clarified by centrifugation, bound

to Ni-NTA agarose (MCLAB), and cleaved overnight off the resin at 4°C using purified GST-

Ulp1-R3 protease70. Eluted proteins were concentrated and purified by gel filtration on a

Superdex 200 column in a buffer containing 10 mM HEPES 7.4, 500 mM NaCl, and 0.5 mM

TCEP.
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3.5.9 mTORC2 Expression in Suspension HEK-293T Cells

HEK-293T cells were grown in suspension and log-phase cells at 3-4 million/ml were trans-

fected using 1.1 mg/L cDNA as follows. Three plasmids expressing His-TEV-mTOR, Rictor-

3C-3xFlag, and untagged mLST/mSin1.1 were mixed at a 1.5:2:1 molar ratio, respectively.

cDNAs and 4.4 mg/L PEI-Max 40k (Polysciences) were separately diluted in 1/50th final

culture volume unsupplemented DMEM (Thermo), mixed, incubated 15 minutes at RT, and

added to cells. 1 day after transfection, valproic acid was added to 4 mM final71, and cells

were harvested 3 days after transfection.

3.5.10 mTORC2 Expression in Insect Cells

“Quad” baculoviruses expressing all four components of mTORC2 on a single virus were

generated with either Flag-TEV-mTOR, Rictor-3C-3xFlag, or Rictor-3C-Flag tags by trans-

fection of adherent SF9 cells using Cellfectin II and subsequent amplification to generate P3

viruses according to the manufacturer’s instructions. 10-40 ml P3 virus per liter was added

to SF9 cells at 3-4 million per mL and cells were harvested 72 hours after expression. For

experiments with mutant mTORC2, wild type and mutant mTORC2s were generated by

transient transfection of ExpiSF cells in suspension using the ExpiSF system (Thermo) ac-

cording to the manufacturer’s instructions.

3.5.11 mTORC2 Purification

Screening of tag combinations revealed better complex stoichiometry with initial purification

using Rictor with C-terminal 3xFlag tag. HEK293T- or SF9-expressed mTORC2 were pu-

rified similarly, except that for HEK-expressed mTORC2, glutamate and arginine were not

included in the buffers. Cell pellets were resuspended in 4 volumes lysis/wash buffer contain-

ing 200 mM NaCl, 50 mM Bicine pH 8.5, 50 mM glutamate, 50 mM arginine, 2 mM MgCl2,

and 0.5 mM TCEP, supplemented with 1 protease inhibitor tablet per 100 ml and 30 U Uni-
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versal Nuclease (Thermo) per ml, homogenized with 3 strokes in a Dounce homogenizer, and

lysed with 2 passes through a Microfluidizer. Lysates were clarified at 40,000 × g for 30 min,

filtered through 1 micron glass fiber filters (Pall), and then bound to Flag M2 resin (1 ml

per 12 g starting cell pellet) for 90 minutes. Resin was collected by centrifugation at 500 ×

g for 5 min, transferred to a column, and washed using 10 column volumes (CV) wash buffer

(lysis buffer with one protease inhibitor tab per 250 ml), 10 CV wash buffer supplemented

with 5 mM ATP (Chem-Impex) and 10 mM MgCl2, and 10 CV wash buffer, then eluted in

5 CV total wash buffer containing 0.25 mg/ml 3xFlag peptide (MIT Biopolymers Lab) and

5 U/ml Universal Nuclease in 3 rounds of 30 min each. Eluted mTORC2 was concentrated

in pre-rinsed 100k centrifugal devices (Millipore Sigma) and purified by size exclusion on

a TSKgel G4000SWXL silica matrix column23 (Tosoh) in SEC buffer containing 150 mM

NaCl, 10 mM HEPES pH 7.5, 50 mM glutamate, 50 mM arginine, 0.5 mM TCEP, 0.5 mM

MgCl2, and 0.1% CHAPS (Anatrace). Fractions containing monodisperse mTORC2 (~8.5

ml) were concentrated to 3-15 mg/ml and used directly for electron microscopy or aliquoted,

snap-frozen, and stored at -80°C. For experiments with Akt-Torin, MgCl2 was omitted from

the SEC buffer. For some experiments with Akt-ATP, MnCl2 was used in place of MgCl2.

3.5.12 mTORC1 Expression and Purification

“Triple” baculoviruses expressing all three components of mTORC1, mTOR, RAPTOR, and

mLST8, with tag as either RAPTOR-3C-3xFlag or Flag-TEV-mTOR, were expressed and

mTORC1 purified from SF9 insect cells analogously to mTORC2 as above. mTORC1 with

RAPTOR-3C-3xFlag was used for kinetic experiments.

3.5.13 Small Uni-lamellar Vesicle (SUV) Preparation

Control (PC:PE,1:1) vesicles were prepared with 50% (by mass) 18:1 (Δ9-Cis) PC (DOPC,

Avanti) and 50% 18:1 (Δ9-Cis) PE (DOPE, Avanti). PIP3 (PC:PE:PS:PIP3,30:50:19:1)

vesicles72 were made with 50% DOPE, 30% 18:1 DOPC, 19% 18:1 PS (DOPS, Avanti) and
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1% 18:1 PI(3,4,5)P3 (Avanti). Individual lipid stocks were made by dissolving powder in

chloroform to make 10 mg/mL solutions, which were added to a round bottom flask to

constitute control and PIP3 vesicle mixtures at above-stated proportions. Chloroform was

removed by Rotovap and overnight high vacuum. Dried lipid film was resuspended in 50

mM HEPES to make aqueous vesicle solutions at 13 mM final lipid concentration. Vesicle

solutions were thoroughly mixed by vortexing for 30 seconds every 10 minutes in 1 hour.

Vesicle mixtures were freeze-thawed for five rounds using dry ice-methanol bath followed by

42 °C water bath. Lipid mixtures were then sonicated for 10 minutes before being passed 20

times through a 100 nm polycarbonate filter (Avanti) using a mini-extruder (Avanti). The

final vesicle solutions were stored at 4 °C for up to seven days or until use.

3.5.14 Ultracentrifugation Vesicle Binding Assay

Control and PIP3 small uni-lamellar vesicles (SUVs) were incubated with full-length Akt or

ΔPH Akt for 30 minutes at 25°C. As control, SUVs were simultaneously incubated with red

fluorescent protein mScarlet in pulldown buffer (50 mM HEPES, 0.2 mg/mL BSA, 5 mM

DTT, 1mM PMSF, 1x Roche protease inhibitor tablet). The vesicles and bound proteins

were pelleted in thick-wall polycarbonate centrifuge tubes (Beckman Coulter) at 55,000 rpm

using a TLA 120.1 rotor (Beckman, ~130,000 × g) for 1.5 hours. Supernatant was carefully

removed from vesicle pellets and then boiled in 10% SDS loading dye and run on SDS-PAGE.

Pellets were washed once with 100 µL pulldown buffer and boiled in 10% SDS loading dye.

3.5.15 In Vitro Akt Phosphorylation Assay with mTORC2 and

mTORC1

In vitro kinase assays were carried out in 1.5 mL microcentrifuge tubes in a 20 µL reaction

mixture containing 50 mM HEPES pH 7.5, 10 mM MgCl2, 5 mM DTT, 1 mM PMSF, 0.2

mg/mL BSA, 1x Roche Protease Inhibitor tablet (kinase reaction buffer), 1 mM ATP, 1 µM
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of Akt substrate and 5 nM mTORC1 or mTORC2, unless otherwise specified. Reactions were

initiated by the addition of Akt and were performed at 30°C for 10 min (unless otherwise

stated). The kinase reactions were quenched by adding 13 µL quench solution (8 µL of 4x

SDS loading buffer and 5 µL of 500 mM EDTA) and boiled for 5 min before loading 50 ng Akt

on a 4-20% Tris-Glycine Gel. In addition to the reaction samples, standard semisynthetic

pS473 Akt of known concentrations were also loaded on the same gel to create a calibration

curve for data analyses. Samples separated on the gel were transferred onto a nitrocellulose

membrane using iBlot2 (Thermo) and assayed with total Akt (1:5000) or pS473 Akt (1:5000)

in 5% BSA in TBST. Western blot images were taken and processed using a CCD camera.

Band intensities (area under the curve) were calculated with ImageJ. Calibration curves were

constructed using the pS473 Akt standards.

3.5.16 In Vitro Akt Phosphorylation Assay with γ32P-ATP

In vitro kinase assays were carried out in 1.5 mL microcentrifuge tubes in a 20 µL reaction

mixture containing 50 mM HEPES pH 7.5, 10 mM MgCl2, 5 mM DTT, 1 mM PMSF, 0.2

mg/mL BSA, 1x Roche Protease Inhibitor tablet (kinase reaction buffer), 1 mM cold ATP,

1 µCi γ-32P-ATP, 5 µM of Akt substrate and 10 nM mTORC2. Reactions were initiated

by the addition of Akt and were performed at 30°C for 10 min. The kinase reactions were

quenched by adding 13 µL quench solution (8 µL of 4x SDS loading buffer and 5 µL of

500 mM EDTA) and boiled for 5 min before loading 1 µg Akt on a 4-20% Tris-Glycine gel

(Fisher Scientific). The gel was rinsed in ddH2O, Coomassie stained and washed again in

ddH2O. It was then laid out on a sheet of filter paper, covered with Saran wrap, and dried

under mild heat and vacuum for 2 hours in the Model 583 gel dryer (Bio-Rad). A sheet

of BAS-IP storage phosphor screen (GE Healthcare) was photobleached for 2 hours on a

white light transilluminator (Fisher Scientific). The phosphor screen was then placed face

down on top of the dried gel in a BAS cassette (Fujifilm) for overnight development in the

dark. The phosphor screen was scanned the next day for radioactivity read out in a Typhoon
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Biomolecular Imager (Amersham).

3.5.17 In Vitro 4E-BP1 Phosphorylation Assay with mTORC1

and mTORC2

In vitro kinase assays were carried out in 1.5 mL microcentrifuge tubes in a 20 µL reaction

mixture containing 25 mM HEPES pH 7.4, 10 mM MgCl2, 0.5 mM TCEP, 100 mM NaCl, 1

mM ATP, 1 µM of 4E-BP1 substrate, and 5 nM mTORC1 or mTORC2. Enzyme calculations

are for the protomer (monomeric) unit; in other words, 5 nM mTORC2 contains 5 nM total

mTOR. Reactions were initiated by the addition of ATP and were performed at 30°C for 10

min (unless otherwise stated). The kinase reactions were quenched by adding 6 µL of 4x SDS

loading buffer and boiled for 5 min before loading 50 ng 4E-BP1 on a 4-20% Tris-Glycine

Gel. In addition to the reaction samples, standard phospho-4E-BP1 concentrations were also

loaded on the same gel to create a calibration curve for data analyses. Those standards were

generated by reacting 1 µM 4E-BP1 with 100 nM mTORC1 for 2 hrs at 30°C, as we tested

and observed plateauing of phospho-signal with both more enzyme and longer incubation

time. Samples separated on the gel were transferred onto a nitrocellulose membrane using

iBlot2 (Thermo) and assayed with total 4E-BP1 (1:2000) or pT37/46 4E-BP1 (1:5000) in

5% BSA in TBST. Western blot images were taken and processed as mentioned in Akt

phosphorylation assay section.

3.5.18 mTORC2-Akt reactions for mass spectrometry analysis

Triplicate reactions were set up with 10 µM Akt, 50 mM HEPES pH7.5, 10 mM MgCl2,

2.5 mM DTT, 5 mM ATP, 1 mM EGTA in 40 µL total, and initiated by adding 50 nM

mTORC2; mTORC2 was omitted from control reactions. Reactions were incubated for 2

hours at 30°C and quenched by adding an equal volume of 10% SDS. Samples were reduced,

alkylated, acidified, and processed for mass spectrometry using S-Trap Micro columns (Pro-
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tiFi) with digestion using Sequencing Grade Modified Trypsin (Promega) according to the

manufacturer’s instructions with the exception that Trypsin was dissolved in 50 mM ammo-

nium bicarbonate pH 8.0 for digestion, with elution in three sequential volumes of 40 µL each

50 mM ammonium bicarbonate pH 8, 0.2% formic acid, 50% acetonitrile in water. Samples

were then dried using a SpeedVac (Thermo). For phosphopeptide enrichment, an additional

set of triplicate experimental and control reactions were next processed using Cell Signaling

PTMScan phospho-enrichment IMAC Fe-NTA magnetic beads were used according to the

manufacturer’s instructions, with two elutions in 40 µL water/20% trifluoroacetic acid and

subsequently dried using a SpeedVac (Thermo).

3.5.19 nanoLC-MS analysis of AKT reactions

Seven standard peptides corresponding to the last 15 residues of the Akt C-tail (R466-

A480) were purchased from Genscript: unmodified, pSer473, pTyr474, pSer475, pSer477,

pThr479, double pSer473-pSer475. Synthetic standards and experimental tryptic peptides

were reconstituted in 3% acetonitrile with 0.5% formic acid and loaded onto EVO tips

(EVOSEP, Odense, Denmark) according to the manufacturer’s instructions. Peptides were

analyzed by nano-LC/MS using an EVOSEP HPLC pump interfaced to a timsTOF Pro2

mass spectrometer (Bruker, Billerica, MA). Peptides were resolved with a 20 SPD method

with a self packed analytical column73 (15 cm of 1.9 µm Reprosil packed into 75 µm I.D.

fused silica). The mass spectrometer executed 10 cycles of PASEF MS/MS (charge 2 to 5,

target intensity of 14500, intensity threshold 1750, mobility range 0.6-1.6). Active exclusion

was enabled with a release time of 0.4 minutes. Data files were searched against a custom

database containing AKT and mTORC2 using FragPIPE (version 20.0, with MSFragger

3.8 and Philopsher 5.0.0)74. Search parameters specified variable phosphorylation of S, T,

Y residues, variable oxidation of methionine, and fixed carbamidomethylation of cysteine.

Peak areas for peptides were determined using mzStudio software version 1.375. To confirm

site localization, reactions were analyzed by targeted EAD experiments on a 7600 ZenoTOF
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mass spectrometer (ABSciex, Framingham, MA). Peptides were injected with a Waters M-

Class UHPLC onto a heated (50°C) self packed column (15 cm of 1.9 µm Reprosil C18, Dr.

Maisch) and eluted with an HPLC gradient (1-28% B in 45 minutes, A=0.1% formic acid in

water, B=0.1% fomic acid in acetonitrile). Peptides were introduced from the top port at a

flow rate of 0.5 µL/min using an Opti-flow source equipped with a low flow needle (Sciex)

operated at 4kV. EAD was performed with an electron beam current of 7500 nA, a kinetic

energy of 5eV and a reaction time of 25 ms. Synthetic peptides were analyzed in a similar

fashion, except that 5 µM solutions were prepared in 30% acetonitrile, 0.1% formic acid and

directly infused at a flow rate of 0.5 µL/min into the top port of the Optiflow source. Figures

were rendered in mzStudio software.

3.5.20 Peptide Synthesis

Peptides corresponding to residues 460-480 of Akt1 (CVDSERRPHFPQFSYSASGTA) and

derivatives were synthesized using solid phase peptide synthesis on a Prelude automated

synthesizer (Protein Technologies) using the Fmoc strategy as previously reported12. Briefly,

residues were double coupled (1.5 h for standard amino acids and 3 h for phospho-amino

acids) and Fmoc groups were removed with 20% (v/v) piperidine in DMF over three 10 min

cycles. Proline residues were triple coupled. The peptides were deblocked and cleaved from

resin with trifluoroacetic acid: water: triisopropylsilane (95:2.5:2.5, v/v/v) for 3 hours, then

precipitated with chilled diethyl ether and purified using reverse-phase C18 HPLC using

a gradient of water:acetonitrile containing 0.05% trifluoroacetic acid. Pure fractions were

combined, concentrated in vacuo and lyophilized. Peptide structures were confirmed using

MALDI or electrospray mass spectrometry.

3.5.21 Semisynthesis of Akt Proteins

Both homogenous Akt protein substrate and Akt phospho-Ser473 standard used for

mTORC2 kinase assays and quantitative western blots were produced using expressed pro-
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tein ligation with Akt-intein fusions expressed in SF9 insect cells as described12. Briefly, 5 mg

of intein-mediated N-terminal Akt (2-459) thioester was reacted with 2 mM of the synthetic

Ser473 or phospho-Ser473 Akt(460-480) peptides in ligation buffer (50 mM HEPES pH 7.5,

150 mM NaCl, 1 mM TCEP, 0.5 mM PMSF, 10% glycerol) for 5 hours at RT and then

maintained overnight at 4˚C. The semisynthetic Akt proteins were purified by gel filtration

on a Superdex 200 column (GE Healthcare) with Akt storage buffer (50 mM HEPES 7.5,

150 mM NaCl, 0.5 mM TCEP, 10% glycerol). The pure fractions of monodisperse protein

were combined, concentrated to ~5 mg/ml, aliquoted and then stored at -80˚C.

3.5.22 Preparation of Lambda Phosphatase Dephosphorylated

Akt

10 mg Akt(2-459)-Intein-CBD (chitin binding domain) was immobilized on chitin resin,

washed, and divided equally into two tubes in a buffer containing 50 mM HEPES pH 7.5,

100 mM NaCl, 2 mM DTT, 0.01% Brij 35, 1 mM MnCl2. One was treated for two hours

with 4000 units lambda protein phosphatase (New England Biolabs) and the other with no

enzyme as a control. The resins were drained and thoroughly washed to remove any residual

phosphatase with 40 CV wash buffer, 20 CV wash buffer supplemented with 1M NaCl, and

40 CV wash buffer. Akt (2-459) thioester was cleaved from the column overnight with 300

mM MESNA in 50 mM HEPES pH 7.5, 150mM NaCl, 10% glycerol, 1 mM PMSF, then

ligated with non-phosphorylated S473 Akt (460-480) tail peptide and purified by gel filtration

as above. Immunoblotting against total Akt (pan) and phospho-Akt (Thr450) antibodies

confirmed complete dephosphorylation of Akt at Thr450, and there was no difference in yield

of dephosphorylated monodisperse protein vs control mock-treated protein.

3.5.23 Semisynthesis of Akt-ATP Protein Bisubstrate

The strategy for site-specific Akt-ATP peptide conjugation was modified from76 and is similar
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to production of ATP-GSK3 peptide reported in12. Briefly, Akt (460-480) peptide was

synthesized with Ser473 replaced with alloc-protected diaminoproprioinc acid (DAP). The

DAP Alloc was orthogonally deprotected with 4.4 equivalents of palladium dissolved in

20:1:0.5- chloroform:dichloromethane:acetic acid for 3 h, and then reacted with 10 equivalents

of bromoacetic anhydride dissolved in 5% NMM in DMF for 3 h to generate bromo-Akt

peptide. Bromo-Akt peptide was cleaved from the resin, purified using reverse phase C18

HPLC, and lyophilized as described above. 10 mg of bromo-Akt peptide was reacted with

2 equivalents of ATP-gamma-S (Lithium salt, Roche) in 100 mM NH4HCO3 and purified

using reverse phase HPLC with basic conditions (30-55% gradient of acetonitrile to water

containing 10 mM NH4HCO3). 2 mM of Akt-ATP peptide was ligated to 5 mg of Akt(2-459)

thioester as above for 2 days at 4°C followed by purification by gel filtration on a Superdex

200 column in Akt storage buffer. Monodisperse protein was pooled, concentrated, ATP

conjugation verified with anti-adenosine antibody (1:1000, Extended Data Figure), and used

for further analysis.

3.5.24 Synthesis of Torin Acrylamide

Synthesis of Ethyl 4-((4-(4-(tert-butoxycarbonyl)piperazin-1-yl)-3-

(trifluoromethyl)phenyl)amino) -6-chloroquinoline-3-carboxylate (Fig. 3.12,

SI-1):

A suspension of ethyl 4,6-dichloroquinoline-3-carboxylate (772 mg, 2.87 mmol, 1.0 equiv)

and tert-butyl 4-(4-amino-2-(trifluoromethyl)phenyl)piperazine-1-carboxylate (994 mg, 2.87

mmol, 1.0 equiv) in anhydrous dioxane (10 mL) was heated to 110 °C for 24 hours. UPLC-MS

analysis showed roughly 50% conversion to the desired product; the reaction was returned

to heating at 110 °C for an additional 18 hours. UPLC-MS analysis showed no additional

conversion. The reaction was poured into saturated aqueous NaHCO3 and extracted with

EtOAc (3x50 mL) and 3:1 CHCl3/iPrOH (2x50 mL). The combined organics were washed

twice with water and then with brine, dried over MgSO4, filtered, and concentrated to
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provide a dark red oil. The crude material was carried forward to the next step. LRMS

(ESI) calculated for C28H31ClF3N4O4 [M+H]+ 579.1980, found 579.17.

Synthesis of tert-butyl 4-(4-(9-chloro-2-oxobenzo[h][1,6]naphthyridin-1(2H)-yl)-

2-(trifluoromethyl)phenyl)piperazine-1-carboxylate (Fig. 3.12, SI-2):

The crude SI-1 was dissolved in absolute ethanol (20 mL) and cooled on ice. Sodium boro-

hydride (636 mg, 17.22 mmol, 6.0 equiv) was added and the reaction was stirred overnight,

slowly warming to room temperature. UPLC-MS analysis showed full conversion to the al-

cohol (observed M+H = 537.17). The reaction was poured into saturated aqueous NH4Cl

and extracted with EtOAc (3x50 mL). The combined organics were washed twice with water

and then with brine, dried over MgSO4, filtered, and concentrated.

The crude alcohol intermediate was dissolved in DCM (25 mL). MnO2 (1.50 g, 17.22

mmol, 6.0 equiv) was added and the reaction was stirred at room temperature for 48

hours. The reaction was then filtered through Celite, washing with DCM, and concen-

trated. UPLC-MS analysis showed approximately 80% conversion to the aldehyde (observed

M+H = 535.07).

The crude aldehyde was dissolved in absolute ethanol (20 mL) in a 100-mL round-bottom

flask. Triethyl phosphonoacetate (1.120 mL, 5.6 mmol, 2.0 equiv) and K2CO3 (1.161 g, 8.4

mmol, 3.0 equiv) were added. The flask was fitted with a reflux condenser and heated to 100

°C for 16 hours. The reaction was cooled to room temperature and volatiles were removed

by rotary evaporation. The residue was dissolved in EtOAc (50 mL) and poured into water.

The aqueous component was extracted with EtOAc (3x30 mL). The combined organics were

washed with water and brine, dried over MgSO4, filtered, and concentrated. ISCO flash

chromatography (24 g silica, 0 to 100% EtOAc/hexanes, 9 min gradient to elute impurities,

followed by a solvent switch; 0 to 10% MeOH/DCM, 6 min gradient and 6 min hold) provided

the title compound as a rust-colored solid (94.6 mg, 6% yield over 4 steps). LRMS (ESI)

calculated for C28H27ClF3N4O3 [M+H]+ 559.1718, found 559.17.
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Synthesis of tert-butyl 4-(4-(2-oxo-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-

1(2H)-yl)-2-(trifluoromethyl)phenyl)piperazine-1-carboxylate (Fig. 3.12, SI-3):

A suspension of SI-2 (94.6 mg, 0.17 mmol, 1.0 equiv), 3-quinolineboronic acid (58.1 mg, 0.34

mmol, 2.0 equiv), Pd(PPh3)2Cl2 (12.1 mg, 0.017 mmol, 0.10 equiv), and XPhos (12.3 mg,

0.026 mmol, 0.15 equiv) in dioxane (3.4 mL) and saturated aqueous Na2CO3 (0.85 mL) was

sparged with N2 for 10 minutes and heated to 80 °C for 18 hours. The reaction was cooled to

room temperature and filtered through Celite, washing with EtOAc and 10% MeOH/DCM.

ISCO flash chromatography (12 g silica, 0 to 10% MeOH/DCM; requires a second round of

purification at a 5% MeOH/DCM isocratic run) provided the title compound as an amber

oil (86.8 mg, 78% yield). LRMS (ESI) calculated for C37H33F3N5O3 [M+H]+ 652.2530,

found 652.26.

Synthesis of 1-(4-(4-acryloylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-

(quinolin-3-yl)benzo [h][1,6]naphthyridin-2(1H)-one (Fig. 3.12, BJG-06-035,

Torin-acrylamide):

To a solution of SI-3 (86.8 mg, 0.13 mmol, 1.0 equiv) in DCM (1.0 mL), added TFA (0.25

mL). The reaction was stirred at room temperature; UPLC-MS analysis at 3 hours showed

roughly 75% deprotection. An additional 0.2 mL TFA and 0.5 mL methanol were added,

and the reaction was heated to 50°C for 4 hours, at which point UPLC-MS analysis showed

roughly 85% deprotection. Solvents were removed in vacuo.

The crude deprotection product was dissolved in DCM (1.5 mL). Acryloyl chloride (1 M

solution in DCM, 0.15 mL, 0.15 mmol, 1.2 equiv) and triethylamine (54.4 µL, 0.39 mmol,

3.0 equiv) were added dropwise. THF (0.5 mL) was added as a co-solvent. The reaction was

stirred at room temperature for 90 minutes. The reaction was poured into dilute aqueous

HCl and extracted with DCM (3x5 mL). The combined organics were washed with saturated

aqueous NaHCO3, water, and brine, dried over MgSO4, filtered, and concentrated. The

material was purified by ISCO flash chromatography (12 g silica, 0 to 10% MeOH/DCM,
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7 min gradient) and further purified by reverse-phase HPLC (0.035% TFA, 100 to 20%

H2O/MeCN, 30 min gradient, 20 mL/min). Lyophilization from H2O/MeCN provided the

title compound as a light-yellow powder (7.1 mg, TFA salt). LC-MS analysis showed >95%

purity; 1H NMR suggests ~9:1 mixture of rotamers. 1H NMR (500 MHz, DMSO-d6) � 9.24

(s, 1H), 8.60 (d, J = 2.4 Hz, 1H), 8.37 (d, J = 9.5 Hz, 1H), 8.30 (d, J = 2.3 Hz, 1H), 8.23

(d, J = 8.6 Hz, 1H), 8.19 (dd, J = 8.6, 1.9 Hz, 1H), 8.07 (d, J = 8.4 Hz, 1H), 8.01 (dd, J

= 8.8, 1.8 Hz, 2H), 7.89 – 7.79 (m, 2H), 7.77 – 7.68 (m, 2H), 7.14 (d, J = 2.4 Hz, 1H), 6.98

(d, J = 9.4 Hz, 1H), 6.78 (dd, J = 16.6, 10.5 Hz, 1H), 6.15 (dd, J = 16.6, 2.4 Hz, 1H), 5.75

(dd, J = 10.5, 2.4 Hz, 1H), 3.65-3.42 (m, 4H), 2.81 – 2.63 (m, 4H). LRMS (ESI) calculated

for C35H27F3N5O2 [M+H]+ 606.2111, found 606.17.

3.5.25 Protein Cross-linking and Mass Spectrometry (XL-MS)

mTORC2 preparations (apo or pre-assembled with Akt-ATP or Akt-Torin) were purified by

gel filtration, diluted to 1.2-3 µM in HEPES buffered saline (50 mM HEPES pH 7.4, 150 mM

NaCl), and cross-linked with 0.5-5 mM disuccinimidyl suberate (DSS) for 25 min or with 5-

30 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and 2.5 molar

equivalents of N-hydroxysulfosuccinimide (sulfo-NHS) for 60 min at 23°C with agitation at

1000 rpm and quenched with 50 mM Tris pH 8.0. Protein samples were reduced in 8M

urea, 5mM TCEP, 5mM DTT, alkylated with 30mM iodoacetamide, and trypsin digested

in-solution into peptides. The peptides were then desalted using C18 resin and subjected

to analysis by nanoflow liquid chromatography coupled to Thermo Q Exactive HF-X mass

spectrometry. All the samples were analyzed at least twice and the raw data was searched

using pLink software version 2.3.977 with 5% FDR and manually checked to remove potential

false-positive identifications essentially as described50,78–80. Cross-linking results were then

visualized by CX-Circos (https://cx-circos.vercel.app/).
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3.5.26 Integrating Modeling of mTORC2-Akt

Integrative structure modeling of the mTORC2-Akt complex proceeded through five stages81:

(1) gathering input information, (2) representing subunits, (3) translating input informa-

tion into spatial restraints, (4) configurational sampling to produce an ensemble of struc-

tural models that satisfy input information, and (5) analyzing and validating the en-

semble. The integrative structure modeling protocol (stages 2, 3, 4, and 5) was imple-

mented using our open-source Integrative Modeling Platform (IMP) package version 2.17

(https://integrativemodeling.org)51. The current procedure is an updated version of

previously described protocols79,80,82. All input files, modeling scripts, and output files are

available at https://integrativemodeling.org/examples/mTORC2-Akt and in the nascent

wwPDB archive for integrative structures.

Stage 1: Gathering input information

The subunit structures were determined previously by X-ray crystallography, cryo-EM, and

nuclear magnetic resonance (NMR) spectroscopy as well as by de novo prediction using Al-

phaFold2. 201 intra- and inter-molecular DSS and EDC cross-links were identified using

XL-MS (Extended Data Table 1), which informed both the spatial proximities and confor-

mations of the subunits of mTORC2 and Akt. The density map of the entire mTORC2-Akt

complex was determined by single particle reconstruction cryo-EM at 3-10Å resolution, which

informed the morphology of the complex.

Information about the modeled system (‘Stage 1: gathering input information’) can

in general be used for representing the system, defining the scoring function that ranks

alternative structures, limiting the structural sampling, filtering good-scoring structures,

and validating the resulting model. Here, the mTORC2-Akt representation relies on X-ray

structures, cryo-EM structures, and AlphaFold2 models of the subunits. The scoring function

relies on chemical cross-links, the cryo-EM density map, excluded volume, and sequence

connectivity. The sampling benefits from knowledge of mTORC2-Akt’s symmetry as well
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as spatial proximities from previous experimental structures. The model was validated, in

part, through mutagenesis experiments as well as phosphorylation assays.

Stage 2: Representing subunits

To increase the efficiency of structural sampling, the subunits of mTORC2-Akt were rep-

resented using rigid bodies and flexible beads consisting of multiple residues. A rigid body

consists of beads whose relative distances, defined by an experimental structure or de novo

prediction, are constrained during conformational sampling. A rigid body is represented in

a multiscale fashion, by both 1-residue and 10-residue beads. A 1-residue bead represents

the position of a corresponding Cαatom. A 10-residue bead represents the center of mass

of up to 10 residues. The remaining ~27% of residues in subunits not in rigid bodies were

represented using flexible strings of 10-residue beads.

Representations of mTOR, Rictor, mLST8, and mSin1 N-terminus (1-157) relied pri-

marily on previous atomic cryo-EM structures of apo mTORC2 (PDB ID: 6ZWM). Repre-

sentation of mSin1 Crim (158-279) relied on an atomic NMR structure (PDB ID: 2RVK).

Representation of mSin1 Rbd (280-380) and mSin1 PH domain (381-522) relied on a crys-

tal structure (PDB ID: 7LC1). Representation of the Akt PH domain (1-144) relied on

high-confidence regions (pLDDT > 60) of the AlphaFold2 model. Representation of the Akt

Kinase Domain C-lobe (145-231) and Akt1 Kinase Domain N-lobe (232-480) relied on the

crystal structure (PDB ID: 3o96).

Stage 3: Translating input information into spatial restraints

After specifying the model representation, we defined a differentiable pseudo-Bayesian scor-

ing function based on a subset of the gathered input information (Stage 1). The scoring

function was used to quantify the consistency of a model with the input information. The

scoring function consisted of the following spatial restraints.

(1) Cross-link restraint: A spatial restraint based on each of the 200 DSS and 20 EDC
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cross-links is the Bayesian data-likelihood for the cross-link observation given an evaluated

structure. The restraint is similar to an upper bound on the distance between the pair of

cross-linked residues. Additionally, the restraint takes into account the assignment ambiguity

for cross-links involving different residues of the same subunit type, which can be intra-

or inter-molecular, by considering both assignments, with only the least violated distance

contributing to the score.

(2) Cryo-EM density restraint: A spatial restraint based on the cryo-EM density map

is the correlation coefficient between the Gaussian Mixture Model (GMM) representations

of the map and an evaluated structure83. To reduce the cost of the restraint’s evaluation,

we omitted high-resolution regions of the map for which a model was unambiguously built

(mTOR, Rictor, mLST8). The arch region of the map with local resolution ~10 Å was fit by

100 Gaussians, while the N-terminal lobe of Akt, C-terminal lobe of Akt, and mSin1 Crim

domain were fit with 1 Gaussian per 5 residues, resulting in 76 model Gaussians for these 3

rigid bodies84.

(3) Excluded volume restraint: A spatial restraint based on the excluded volume is a

lower distance bound on all pairs of 10-residue beads. The radius of a bead is determined by

its volume, which is estimated from the number of residues in the bead and the statistical

relationship observed from a large number of protein structures. To accommodate attempting

fitting rigid bodies into a noisy cryo-EM density map, we removed the excluded volume

restraint between Akt KD N-lobe and Akt KD C-lobe/mSin1 Crim.

(4) Sequence connectivity restraint: A spatial restraint based on sequence connectivity is

an upper harmonic distance bound on the distance between two consecutive beads in a single

subunit, with the mean distance equal to twice the sum of the radii of the two connected

beads.
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Stage 4: Sampling structures to produce an ensemble of structures that satisfy

input information

To maximize the precision at which the sampling of good-scoring structures is exhaustive,

we improved the efficiency of structural sampling in the following two ways. First, we

reduced the number of degrees of freedom by considering the known spatial proximities of

mTORC2 subunits. The configuration of the mTOR, Rictor, mLST8, and mSin1 N-terminus

rigid bodies was constrained to that in the input cryo-EM structure. Second, we reduced

the number of degrees of freedom by considering the C2 symmetry of mTORC2-Akt. The

C2 symmetry was applied to the system around the z-axis, resulting in a symmetry unit

consisting of one copy of mTOR, Rictor, mLST8, mSin1 N-terminus, mSin1 Crim, mSin1

Rbd, mSin1 PH, Akt PH, Akt KD N-lobe, and Akt KD C-lobe; as a result, we only sampled

the structure of a single symmetry unit, although the scoring function evaluated the model

of the entire complex including the interface between the symmetry units.

The starting positions and orientations of all rigid bodies and the starting positions of

all beads were assigned randomly. The positions of all beads were first optimized via 100

steps of conjugate gradients. The positions and orientations of the rigid bodies as well as

the conformations of the flexible strings of beads were then sampled using Replica Exchange

Monte Carlo with 8 replicas with a temperature range between 1.0 and 2.5. Each step of

sampling proposed 20 Monte Carlo moves including random translation and rotation of rigid

bodies (up to 5 Å and 5 radians, respectively) and random translation of 10-residue beads in

the flexible strings of beads (up to 5 Å). The acceptance of a Monte Carlo Move is conditioned

on the scoring function (Stage 3). 100 independent runs of sampling were performed for

50,000 steps. The sampling produced a total of 5,000,000 models from 100 independent

runs, requiring ~4 days on 800 computational cores. For the most detailed specification

of the sampling procedure, see the IMP modeling script (https://integrativemodeling.

org/examples/mTORC2-Akt).
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Stage 5: Analyzing and validating the ensemble

Input information and obtained structures need to be analyzed to estimate the precision

and accuracy of the model, detect potentially inconsistent and missing information, and

suggest future experiments. We used an analysis and validation protocol published earlier,

as follows. First, we estimated the precision at which sampling is exhaustive. Second, we

clustered good-scoring structures and estimated the model precision from their variability.

Third, we quantified the fit of the model to input information that was used to construct

the model. Fourth, we assessed the fit of the model to data that was not used to compute

it.

A previously developed test estimated the precision at which the stochastic sampling

of our mTORC2-Akt model is exhaustive (sampling precision) to be ~14 Å. The sampling

precision provides a lower bound on the size of interpretable model features.

We obtained a sample of good-scoring mTORC2-Akt structures by performing density-

based clustering on the score of all sampled structures from which we filtered 2000 of the best-

scoring structures. The structures were clustered based on root-mean-square fluctuations

(RMSF). Over 80% (1616/2000) of the structures clustered in a single cluster (RMSF) to yield

the final ensemble of good-scoring structures (the ensemble). The precision of the ensemble is

defined by the structural variability (quantified by RMSD) among the constituent structures.

The precision of the ensemble is ~12Å, close to the estimate of sampling precision and

sufficient for characterizing the molecular architecture of the system. The local fluctuations,

as quantified by RMSF, vary in different parts of the model (SI Figure 5), and are particularly

high in the flexible regions. We were encouraged to see, however, that spatial proximities of

Akt are relatively consistent between ensemble structures, with the PH domain presenting

the most significant fluctuations.

The mTORC2-Akt model sufficiently satisfies all input information that was used to

construct the model. We consider a cross-link as satisfied by the ensemble if the cross-linked

distance in any individual structure in the ensemble is less than the maximum threshold
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(16 Å for EDC and 35 Å for DSS). The mTORC2-Akt ensemble satisfies 90% (181/201) of

the input cross-links of the inter-subunit and intra-subunit cross-links (Fig. 3.21a). 61%

(11/18) of the unsatisfied cross-links can be attributed to the Akt-ATP bisubstrate binding

and cross-linking to the Rictor ATP binding pocket (‘A site’), ~80 Å from the active site

(Fig. 3.11). The remaining unsatisfied cross-links may be attributed to false positives in

data collection, the complex existing in multiple states in solution, and the finite structural

sampling during modeling.

The localization densities for the dominant cluster overlap well with the cryo-EM density

map. The cross-correlation coefficient of the ensemble density with the half of the map con-

taining substrate density is 0.85 (Fig. 3.20c). The cross-correlation is negatively impacted

by areas of the model lacking any density in the cryo-EM map, particularly the entirely ab-

sent mSin1 and Akt domains and flexible regions of mTOR and Rictor. For visualization, the

localization densities are typically contoured at the threshold that results in approximately

twice the protein volume estimated from its sequence (Fig. 3.20b).

The remaining connectivity and excluded volume restraints are harmonic, with a specified

force constant related to the standard deviation of the corresponding Gaussian distribution.

A restraint is satisfied by the mTORC2-Akt ensemble if the restrained distance in any struc-

ture in the ensemble (considering restraint ambiguity) is violated by less than 3 standard

deviations. The connectivity restraints were either satisfied or their violations can be ratio-

nalized without the need to change the interpreted features of the model, as follows. First,

a quarter of the ensemble structures violated connectivity restraints between the 4 beads

spanning mTOR residues 1222-1261. These persistent violations are attributed to the dis-

tance between L1222 and S1261 in the cryo-EM mTOR model being too long to be spanned

by coarse-grained beads that assume a Van der Waals sphere based on statistics computed

from globular proteins. Second, the vast majority of the structures (99.9%) satisfy each

remaining connectivity restraint. These violations can be rationalized by the coarse-graining

and limited structural sampling of the flexible and rigid regions. Similarly, the excluded
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volume restraints were also satisfied by the ensemble. The vast majority of the structures

(99.9%) satisfy all excluded volume restraints.

The model sufficiently satisfies input information that was not used to construct it, as

follows. First, our model is consistent with the orientation of Akt of the manually built EM

structure (Fig. 4.3, Fig. 4.4). Our model is consistent with the mutagenesis experiments

at the interface of mTORC2 and the N-terminal lobe of Akt Kinase domain. The Akt triple

mutant KKE182-184AAA and adjacent T219A significantly disrupt mTOR phosphorylation

of Akt (Fig. 4.3g, Fig. 4.4d), suggesting a coordinated role of these residues in the interface

of the N-terminal lobe of the Akt Kinase domain with mTORC2. Our model is consistent

with the role of these residues in the recognition and engagement of Akt as the Cαpositions

of these charged residues are in direct spatial proximity of potentially constituent negatively

charged residues in the mTORC2 “acidic loop” (Fig. 4.3a). In concert with the EM struc-

ture, our model identified a secondary interface between the C-lobe of the Akt KD and

the disordered portions of Rictor/mSin1. We validated this interface with the A376G and

K386A mutations, which similarly ablated phosphorylation of Akt (Fig. 4.4d).

3.5.27 mTORC2 and mTORC2:Akt co-Complex Preparation for

cryo-EM

For mTORC2:Akt-Torin co-complex, purified mTORC2 was mixed with Akt-Torin (present

with excess unligated Akt 1-459) and incubated for 60 min on ice. The co-complex was

injected on either a TSKgel UP-SW Aggregate column (Tosoh) or a TSKgel G4000SWXL

column (Tosoh) and fractions containing monodisperse mTORC2+Akt-Torin were combined.

For all mTORC2 preparations, freshly purified mTORC2 was concentrated to 3-15 mg/ml

and cleared 10 minutes at 200,000 × g in a TLA-100 rotor (Beckman). Supernatant con-

centration was re-measured by A280 and held at high concentration on ice with dilution

immediately before grids were spotted. When used, Akt-ATP was added at between 1.2 and

10 molar equivalents and incubated on ice for at least 60 minutes prior to vitrification. Spec-
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imens were prepared with a Vitrobot Mark IV (Thermo). 3.5 µL of 0.6-1.0 µM mTORC2,

mTORC2:Akt-ATP, or mTORC2:Akt-Torin was applied to glow-discharged gold 300 square

mesh Quantifoil R 1.2/1.3 holey carbon grids (Quantifoil). The grids were then blotted from

both sides for 3 s at 90% humidity and plunge-frozen in liquid ethane.

The resulting mTORC2 grids were screened for favorable ice thickness and particle dis-

tribution on a Talon Arctica electron microscope (Thermo Fisher Scientific) at MIT.nano,

operated at 200 kV. High-quality mTORC2 datasets (Apo, +Akt-ATP, +Akt-Torin) were

collected using two different Titan Krios electron microscopes (Thermo Fisher Scientific)

with Gatan K3 direct detection cameras and BioQuantum energy filters (slit width of 20 eV)

at: (1) Harvard University, and (2) MIT.nano. Specific microscope settings used for data

collection are listed in Extended Data Table 1. Fully automated data collection was carried

out using either SerialEM34 (Harvard) or EPU (MIT.nano) operating software.

3.5.28 Cryo-EM Image Processing

Image processing was carried out as previously reported, with modification82. Data process-

ing workflow of the final mTORC2 reconstitutions are illustrated in Fig. 3.31. Large movie

datasets recorded with a Titan Krios G3i microscopes at MIT.nano (apo-mTORC2: 17,072

movies, mTORC2-Akt-Torin: 22,619 movies) were corrected for drift using MotionCor2 im-

plementation in Relion83,84, and CTF parameters were determined using GCTF85. For each

motion-corrected micrograph dataset, we applied two particle search models in Topaz: (1) a

default pre-calculated model provided by the software developers, and (2) a trained model,

based on a manually picked subset of 400 mTORC2 particles86. The resulting particle sets

(apo-mTORC2: (1) 17,448,682 and (2) 4,142,679; mTORC2-Akt-Torin: (1) 15,361,038 and

(2) 3,631,574) were extracted and downscaled for further processing in Relion. Referenced

2D classifications (based on the preliminary 5 Å map of mTORC2) eliminated contaminat-

ing non-mTORC2 particles87. The remaining particles were reclassified in 3D, and the best

classes from Topaz sets (‘default and ‘trained’) were combined using a strict distance cut-off
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(100 Å) to discard duplicates. The resulting clean sets of particles (apo-mTORC2: 765,077

and mTORC-Akt-Torin: 2,256,242) were used as input for a refined search model picking in

Topaz. Picked particles (apo-mTORC2: 5,153,640 and mTORC2-Akt-Torin: 5,819,505) were

extracted and given as input for referenced 2D classification to eliminate non-mTORC2par-

ticles (apo-mTORC2: 1,460,017 and mTORC2-Akt-Torin: 3,192,975). The best classes in

3D classification were combined with the particles from the previous rounds and a strict

distance-cutoff (100 Å) applied to discard duplicates. Overall, a total number of 1,046,398

particles were determined for apo-mTORC2 and 3,169,869 for mTORC2-Akt-Torin.

Particles were re-extracted at full size and used for initial refinement and reconstruc-

tion. Iterative cycles of CTF and aberration refinements in Relion88 (per-particle defocus,

per-micrograph astigmatism, beam tilt and higher-order aberrations) improved the maps

substantially. Further alignment of the mTORC2 map to C2 symmetry and correction

of per-particle motion in Relion89 produced maps extending to a resolution of 3.52 Å for

apo-mTORC2 and 2.76 Å for mTORC2-Akt-Torin. The particle sets were further refined in

cryoSPARC v.3.1.090 using iterative cycles of non-uniform refinement and CTF refinement—

until convergence. The final map obtained from these particles was estimated at 3.12 Å res-

olution for apo-mTORC2 and 2.55 Å for mOTRC2-Akt-Torin according to a gold-standard

Fourier shell correlation of 0.143 (Fig. 3.30, Fig. 3.31). Local resolution was estimated in

cryoSPARC and is visualized in Fig. 3.30, Fig. 3.31.

3.5.29 Cryo-EM Model Building and Refinement

All model building tasks were performed using the C2-symmetric composite map of

mTORC2. Coordinates from PDB entry 6ZWM and Alphafold predictions were docked

into the cryo-EM reconstruction with UCSF Chimera91 and rebuilt by hand using Coot92;

The mSin1 CRIM domain as well as the Akt N and C lobes were built independent of each

other. Note that only one protomer unit of mTORC2 was built manually, and after its refine-

ment with phenix.real_space_refine93, the second protomer model was generated with C2
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symmetry operators. Model refinement was carried out with restraints applied to secondary

structure elements. The final model contains 8380 amino acids. Figures of the map and the

final model were rendered in UCSF ChimeraX94.

3.5.30 Data availability

The coordinates for the apo-mTORC2 and mTORC2-Akt-Torin have been deposited in the

Protein Data Bank (PDB ID: 9B08 and 9B09, respectively). The single particle cryo-EM

maps and composite maps have been deposited in the EMDB under accessions EMD-44036

(apo), EMD-44037 (mTORC2-Akt-Torin). The mass spectrometry proteomics data for in

vitro phosphorylation of Akt by mTORC2 have been deposited to the ProteomeXchange Con-

sortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repos-

itory with the dataset identifier PXD048719. The proteomics data from XL-MS analy-

sis was deposited at MassIVE: MSV000090707 and will be made publicly upon publica-

tion. Files containing the input data, scripts, results of integrative modeling are available

at https://integrativemodeling.org/examples/mTORC2-Akt and the nascent integrative

modeling section of the worldwide Protein Data Bank (wwPDB) PDB-Dev repository for

integrative structures. Novel plasmids are deposited in Addgene.

Extended Data/Supplement
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Chapter 4

Bayesian multi-state multi-condition

modeling of a protein structure from

X-ray crystallography

4.1 Abstract

A model of a protein structure at atomic resolution is key to rationalizing and predicting its

biological function. Many such models are computed from a diffraction pattern from X-ray

crystallography. Despite the protein crystal containing billions of protein molecules that

independently sample the energy landscape during data collection, most models computed

from X-ray data depict a single set of atomic coordinates. A model with multiple sets of

atomic coordinates (multi-state) may improve the satisfaction of the X-ray data and is a more

accurate, precise, and informative depiction of the protein. However, computing a multi-state

model is challenging on account of a low data-to-parameter ratio. X-ray datasets collected

for the same system under distinct experimental conditions (eg, temperature) may provide

additional observations, thereby improving the data-to-parameter ratio. Here, we develop,

benchmark, and illustrate MultiXray: Bayesian multi-state multi-condition modeling for
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X-ray crystallography. The input information is J X-ray datasets collected under distinct

conditions and a molecular mechanics force field. The model representation is N independent

atomic models of the protein structure (states) and the weight of each state under each

condition. A Bayesian posterior model density quantifies the match of the model with all X-

ray datasets and molecular mechanics. A sample of models is drawn from the posterior model

density using molecular dynamics simulations. We benchmark MultiXray on simulated X-ray

data and analyze the impact of additional states and conditions on the scoring function and

model search. We illustrate MultiXray on temperature-dependent X-ray datasets collected

for SARS-CoV-2 Mpro and compute multi-state multi-condition models that improve the

Rfree relative to the PDB model by up to 0.05. MultiXray is implemented in our open-source

Integrative Modeling Platform, relying on integration with Phenix, thus making it easily

applicable to other systems.

4.2 Introduction

4.2.1 A protein crystal is a heterogeneous mix of structural states

X-ray crystallography is an important experimental technique for obtaining structural models

of proteins at atomic resolution. In X-ray crystallography, the protein crystal contains

between 106 − 1015 copies of the protein1–3. Due to the high solvent content of the crystal,

protein molecules within the crystal can fluctuate nearly independently throughout data

collection and adopt distinct structural states based on the energy landscape4–6. Despite

the resulting structural heterogeneity, a majority of models computed from X-ray datasets

describe a single structural state with Gaussian isotropic B-factors7. Fitting a B-factor to an

X-ray dataset convolutes all sources of experimental uncertainty, including the heterogeneous

mix of structural states, random thermal motion, and long-range crystallographic disorder8,9.

The inability of a B-factor to describe the heterogeneous mix of structural states found within

the protein crystal contributes to the inability of protein models to satisfy an X-ray dataset
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within its theoretical uncertainty10,11. A model that depicts anharmonic conformational

substates found in a protein crystal will improve the satisfaction of X-ray data and reveal

the structural basis of important biological properties at atomic resolution, such as allosteric

networks or hidden cavities for small molecule binding (cryptic pockets)12,13.

4.2.2 Approaches to modeling a heterogenous mix of structural

states

There are 2 approaches for computing models that depict multiple structural states from X-

ray data. First, conformational substates can be captured by computing single-state models

that independently satisfy the X-ray dataset, as is seen in the modeling of Nuclear Magnetic

Resonance spectra14. For example, phenix.ensemble_refinement computes an ensemble from

snapshots of a molecular simulation restrained by a time-averaged X-ray target function15.

Such approaches may not find weakly occupied states in a reasonable amount of computation

time, as they are dependent on overcoming potentially large barriers in the scoring function.

Alternatively, a model can depict conformational substates by introducing additional struc-

tural variables3. All variables are then collectively fit against the X-ray data. The extent

and detail of the additional degrees of freedom depend on the available computational power

and data quality16. For example, qFit-3 avoids introducing excessive structural parameters

by representing side chains as ensembles of one or more rotameric states17. Methods that

refine multiple fully parameterized atomic models have been limited to systems that diffract

to ultra-high resolution6,18–21.

4.2.3 Multi-condition crystallography

Often, multiple X-ray datasets are collected for the same system under distinct experimen-

tal conditions. One example is multi-temperature crystallography, where data collection is

performed at temperatures from cryogenic to near-physiological22. Data collection at higher
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temperatures has been shown to dramatically modify protein dynamics within the protein

crystal23–25. More recently, models computed from higher temperature datasets have revealed

a fuller set of structural states within the protein’s energy landscape at atomic resolution26–28.

Comparisons of models of the same system computed at distinct temperatures show similar

structural states but shifted thermodynamic equilibrium26,29,30. Therefore, multiple X-ray

datasets under distinct conditions containing mutual structural information could increase

the data-to-parameter ratio and inform a more accurate, precise, and complete multi-state

model.

4.2.4 Computing a multi-state multi-condition model

Here, we seek to compute a multi-state model from multiple X-ray diffraction patterns col-

lected under distinct conditions (Fig. 4.1a). We can fit a multi-state model using multiple

X-ray datasets without needing ultra-high-resolution X-ray data. We accommodate for the

thermodynamic shift of distinct experimental conditions by computing each state’s weight

under each condition. In other words, we assume the sets of structural states are consistent

across all experimental conditions with varied weights, allowing a single multi-state model to

be informed by all X-ray datasets and massively boosting the data-to-parameter ratio. The

assumption of a consistent set of structural states under all conditions is not limiting be-

cause the structural states may include sparsely populated or completely unpopulated states.

We formulate a Bayesian posterior model density for the multi-state multi-condition model.

We draw a sample from the Bayesian posterior model density using a molecular dynamics

algorithm where all structural states are jointly restrained by the satisfaction of all X-ray

datasets in addition to molecular mechanics. We benchmarked the method using synthetic

X-ray datasets simulated from multi-state SARS-CoV-2 Mpro structural models and showed

that multiple structural states are needed to satisfy the data and that by including multiple

X-ray datasets, all datasets are better satisfied individually. We illustrate our method to

compute a multi-state model of the SARS-CoV-2 viral target Mpro from multi-temperature
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X-ray under 6 conditions and show that all datasets are satisfied better by increasing the

number of states and X-ray datasets.

4.3 Methods

4.3.1 Overview of modeling method

A model is a depiction of our knowledge about a system or process. We wish to inform the

model based on the input information, which generally includes experimental data and prior

models (eg, physical theories and statistical preferences). A model can then rationalize past

observations and predict future ones. Modeling is the search for a set of models consistent

with the input information. We aim to find all models that satisfy the input information,

reflecting the uncertainty of the input information and the modeling process. It is convenient

to divide modeling into three steps: (i) specifying all model variables (representation), (ii)

ranking alternative models by their agreement with the input information (scoring), and

(iii) generating a sample of good-scoring models (sampling). A model should be validated

before being interpreted, often by examining the satisfaction of input information withheld

from the modeling process. Multiple iterations of gathering input information, modeling,

and validation are often necessary to compute a sufficiently precise model31,32.

4.3.2 Input information

The input information may be used to inform any step of modeling: representation, scoring,

and sampling. Here, we use the following input information: 1) X-ray datasets D1, ..., DJ

collected under distinct experimental conditions (eg, at distinct temperatures) and corre-

sponding PDB models. Each X-ray dataset is a set of observed structure factor amplitudes

{|FO
~s |}~s∈S indexed by a scattering vector ~s. The X-ray datasets are used in scoring. The

PDB model is used in scoring and sampling. 2) The CHARMM19 force field parameters33.

The force field parameters are used in scoring to evaluate the prior.
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Figure 4.1: a, modeling can be framed as a model search given some input information.
Here, the input information is the CHARMM19 force field parameters and J X-ray datasets
collected for the same system under distinct experimental conditions (eg, temperature). The
representation is the N atomic states containing all the heavy atoms of the system along
with the weight matrix that parameterizes the weight of each state under each condition.
All states and the weight matrix are scored collectively against each X-ray dataset. Each
state is individually scored against the molecular mechanics force field. A sample is drawn
from the posterior model density using molecular dynamics. All states are initialized by a
starting structure and the force on the atoms is computed from the satisfaction of all X-ray
datasets along with the molecular mechanics, and the weights are stochastically sampled.
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4.3.3 Representation

The representation defines the degrees of freedom whose values are to be determined by

modeling. The multi-state multi-condition model M includes the following variables: (i) N

states Mi (N is selected before modeling). Each state is an independently parameterized

model of a protein structure. The number and type of atoms (composition) of each state

are based on the PDB models (Input Information). Only non-hydrogen atoms from the

protein are included, however, the representation may be generalized to include additional

atoms/molecules (eg, hydrogen, solvent, ion, and ligand). As we are computing a model

containing a set of discrete structural states, all atomic B-factors are set to 15 and atomic

occupancies to 1. (ii) Weight matrix WN×J containing the weight of Mi under condition j,

wij. The weight matrix is subject to the constraint that the sum of the weights of all states

under each condition (ie, columns) is 1. (iii) Nuisance variables, taken from established

modeling methods, to improve the fit of the X-ray datasets by the model34,35. For clarity,

we do not include nuisance parameters in the notation.

4.3.4 Scoring

Bayesian posterior model density

A scoring function assesses the match of the model to the input information. Bayesian

inference is one approach to assess this fit. In Bayesian inference, the posterior model density

p(M |D, I) describes the relationship between model M , prior information I, and data D.

The posterior model density may be factored into a prior p(M |I) that quantifies the state of

knowledge prior to the observation of data and a likelihood p(D|M, I) that quantifies what

is learned from the observation of data36:

p(M |D, I) = p(D|M, I)× p(M |I) (4.1)

It is often helpful to decompose the likelihood into a forward model f(M) that simulates
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a noiseless data observation and a noise model N(f(M);D, σ) that quantifies the differ-

ence between the observed and simulated data based on a model of the experiment’s noise

parameterized by σ31.

Joint-likelihood

The likelihood of observing all X-ray diffraction patterns from a multi-state multi-condition

model is:

p(D1, ..., DJ |M1, ...,MN ,WN×J) (4.2)

The likelihood may be factored into the likelihood of observing each condition’s dataset:

p(D1, ..., DJ |M1, ...,MN ,WN×J) =
J∏

j=1

p(Dj|M1, ...,MN ,WN×J) (4.3)

The likelihood for each condition’s dataset depends only on the set of states and the

weights representing the states under the corresponding condition (matrix column):

p(Dj|M1, ...,MN ,WN×J) = p(Dj|M1, ...,MN , w1j, ..., wNj) (4.4)

The likelihood of an X-ray dataset is factored into the likelihood of observing each struc-

ture factor amplitude FO
~s

35:

p(Dj|M1, ...,MN , w1j, ...,WNj) =
∏
~s∈S

p(FO
~s |M1, ...,MN , w1j, ...,WNj) (4.5)

The likelihood of a structure factor amplitude given a multi-state multi-conditional model

is a noise model that quantifies the difference between the observed structure factor amplitude

FO
~s and the model structure factor amplitude FM

~s simulated by the forward model from the

multi-condition multi-state model35:
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p(FO
~s |M1, ...,MN , w1j, ...,WNj, I) = p(FO

~s |FM
~s ) (4.6)

The noise model is based on the assumption that the real and imaginary parts of a

complex structure factor F are sampled from a two-dimensional Gaussian with variance

εβand scale parameter α~s
35:

p(ReF, ImF) =
1

πεβ~s
exp

(
−(ReF − α~sF

M cosφM)2 + (ImF − α~sF
M sinφM)2

)
/εβ~s) (4.7)

The likelihood for a single structure factor amplitude is35:

p(FO
~s |FM

~s , α~s, β~s) =



2FO
~s

εβ~s
exp

(
−FO

~s
2+α2

~sF
M
~s

2

εβ~s

)
I0(

2α~sF
O
~s FM

~s

2εβ~s
)

...if ~s acentric

( 2
επβ~s

)1/2 exp
(
−FO

~s
2+α2

~sF
M
~s

2

2εβ~s

)
cosh

(
2α~sF

O
~s FM

~s

2εβ~s

)
...if ~s centric

(4.8)

where I0 is the hyperbolic Bessel function of the first kind (α= 0) and cosh is the hyper-

bolic cosine function.

Forward model

The forward model FM
~s is the magnitude of the complex model structure factor FM

~s :

FM
~s = |FM

~s | (4.9)

The model structure factor is the sum of the protein FC
~s and bulk solvent structure factor

FB
~s with an overall scale factor ktotal and bulk solvent scaling factor kmask

37.

FM
~s = ktotal(FC

~s + kmaskFB
~s ) (4.10)
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It is well-established how to compute the scattering from a model of a protein structure

assuming a perfect crystal38. Here, we compute the scattering of a model of a protein

structure with multiple weighted structural states. It is important to keep in mind that

different structures and positions of molecules in a crystal can result in the same X-ray

diffraction data, even when the data are noiseless, complete, and collected instantaneously.

We show that the scattering in the 5 cases is equivalent (Fig. 4.2ab).

The degeneracy between (i) and (ii) relates the scattering of a multi-state crystal to a

set of single-state crystals. The structure factor for a multi-state model may be computed

from the structure factor Fi~s:

F~s =
states∑
i=1

Fi~s (4.11)

The degeneracy of (i), (iv), and (v) complicates the interpretation of a match between a

multi-state model and an X-ray dataset. For example, imagine we compute an N -state model

with N rotamers for residues A and B each. Without exhaustive sampling of all possible

multi-state models, we do not know if the rotamer pair always occurs in the same molecule

or is one of many possible combinations of the rotameric states in multiple molecules. In

other words, we cannot rule out any combination of the rotameric states of A and B in

one molecule. As an aside, the degeneracy of the X-ray data might be broken by using

additional information for modeling; for example, a potential energy function may rule out

combinations of rotameric states that result in overlapping atoms.

Prior

The prior for the multi-state multi-condition model is the product of a prior for each state:

p(M |I) =
N∏
i

p(Mi|I) (4.12)

The prior for a state is the Boltzmann distribution corresponding to the potential energy
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Figure 4.2: a, five cases where the scattering is degenerate based on a multi-state model
containing 2 states M1 and M2 with w1 and w2. (i) Scattering from a heterogeneous crystal
containing unit cells occupied by either M1 or M2 with probability w1 and w2, respectively.
(ii) A weighted combination of the scattering from homogeneous crystals containing identical
unit cells with a single copy of M1 and M2 respectively. (iii) Scattering from a homogeneous
crystal that contains the occupancy-weighted average of M1 and M2 (ie, the atomic occu-
pancy of an atom from M1 and M2 is w1 and w2, respectively). (iv) Scattering from a
heterogeneous crystal the same as I where the states are re-indexed (ie, M1 becomes M2 and
w1 becomes w2 and vice versa). (v) If w1 = w2, the scattering from a heterogeneous crystal
except the states contain an intermixing of the atomic positions of M1 and M2. b, as the
number of unit cells goes to infinity, the reciprocal lattice points simulated from a crystal in
ii, iii, iv, and v converge to those for the crystal in i. We construct 100 random reference
crystals with U3 unit cells where each unit cell is randomly populated by M1 or M2 with
probability w1, w2 respectively. M1, M2 each contain 2 scatterers with random atomic posi-
tion and scattering type. We compute the reciprocal lattice points up to a maximum miller
index of hkl=(3,3,3) via a discrete Fourier Transform (DFT). For (ii), (iii), (iv), and (v), we
construct 100 random crystals as described and compute the same reciprocal lattice points.
For each reciprocal lattice point, we compute the Euclidean distance for each structure factor
to the reference structure factor U from 10 to 100. As U grows larger, the average Euclidean
distance between the structure factors and reference structure factors converges to 0.
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of the state, including terms for bond lengths b, bond angles θ, dihedral angles φ, improper

dihedral angles w, and non-bonded interactions rij:

p(Mi|I) = − 1

Q
( exp

{∑
bnd

kb(b− b0)
2 +

∑
ang

kθ(θ − θ0)
2 +

∑
dih

kφ[1 + cos(nφ− δ)]

}
(4.13)

+ exp

{∑
imp

kω(ω − ω0)
2 +

∑
nb

(ε[(
Rminij

rij
)12 − (

Rminij

rij
)6]

}
)

where the parameters kb, b0, kθ, θ0, kφ, δ, kw, w0, ε, and Rminij
are obtained from the

CHARMM19 molecular mechanics force field33 and Q is the partition function, which is

ignored in practice.

Scoring function

A Bayesian scoring function for ranking alternative solutions based on the available infor-

mation is:

S = − log p(D|M, I)− log p(M |I) (4.14)

4.3.5 Sampling

The purpose of sampling is to find all models consistent with the input information. In

Bayesian modeling, this is achieved by computing a sufficiently converged estimate of

p(D|M, I).

Atomic coordinates

The atomic positions for each state are sampled via molecular dynamics (MD). The atomic

positions of a state are initialized to one of the input PDB models. The velocity of each

atomic coordinate is sampled from a Boltzmann distribution with T = 300K. Because of the
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likelihood, the force on the atoms is non-conservative, and a thermostat is used to maintain

a simulation temperature of 300K15. We do not include explicit solvent molecules in the

simulations, but the likelihood restrains each state to well-folded conformations. To account

for discrepancies in the X-ray datasets, we reset the center of the mass to the center of

mass of the corresponding PDB model before scoring against an X-ray dataset. The force

computed on each atom is the partial derivative of the scoring function with respect to the

atomic position of atom ~x in state i, ~xi:

∂S

∂~xi

= −(
∂ log p(D1|M1, ...,MN , w11, ..., wN1, I)

∂~xi

+ . . . (4.15)

+
∂ log p(DJ |M1, ...,MN , w1J , ..., wNJ , I)

∂~xi

− ∂ log p(Mi|I)
∂~xi

To calculate ∂p(Dj |M1,...,MN ,w1j ,...,wNj ,I)

∂~xi
more efficiently, a quadratic approximation of

p(FO
~s |FM

~s ) is used35. By computing the partial derivative of all atomic positions for a multi-

state model, the atoms are restrained to satisfy a heterogeneous X-ray dataset collectively.

Furthermore, all atoms of all states are restrained to satisfy all J X-ray datasets collectively.

Because the magnitudes of the derivative of the likelihood and prior can vary significantly,

we introduce 2 scaling parameters wxray and wauto:

∂S

∂~xi

= −wxray(w
0
auto

∂ log p(D1|M1, ...,MN , w11, ..., wN1, I)

∂~xi

+ . . . (4.16)

+ wJ
auto

∂ log p(DJ |M1, ...,MN , w1J , ..., wNJ , I)

∂~xi

)

− ∂ log p(Mi|I)
∂~xi

wj
auto is computed automatically to ensure the average force on the atoms from the

likelihood of Dj is approximately equal to that from the prior21. To account for the presence
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of multiple X-ray datasets, wxray is selected before modeling. We select wxray ∈ {2−i;−5 ≤

i ≤ 5} by computing a trial sample using each wxray and identifying the wxray that results

in a sample that best satisfies the data (Rfree) after filtering out wxray that produce non-

physiological conformations (Fig. 4.3c).

We perform a short refinement minimization of p(Mi|I) for each state of each model.

Weight matrix

For every 100 steps of sampling of the atomic positions, we propose 10 sets of weights per

condition. A proposal weight is accepted for a condition if it improves the likelihood for the

corresponding X-ray dataset. Each proposal is sampled from a Normal distribution with a

mean equal to the current weight and a standard deviation of 0.05 and normalized.

Nuisance parameters

The nuisance variables are not stochastically sampled to enhance computational efficiency

but optimized by minimizing the least squares residual between the model and the observed

X-ray diffraction data34.

4.3.6 Software availability

The software, input files, and output files are freely available at as part of our open-

source Integrative Modeling Platform (https://integrativemodeling.org/2.20.0/doc/

manual/)39. The software relies on integration with Phenix (https://phenix-online.

org/)37, as described previously40.
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4.4 Results

4.4.1 Synthetic Benchmark

Framework for analyzing a modeling method

If the ground truth (native) is known, a modeling method may be evaluated by its ability

to find the native as the best-scoring model. Assuming all models are enumerated with

sufficient precision, the only relevant feature of the scoring function is the native being

the global minimum of the scoring function (global minimum accuracy) (Fig. 4.3a1, a2).

However, in practice, all models cannot be enumerated with sufficient precision due to the

high dimensionality of the search space. Therefore, we use stochastic search methods to find

the global minimum. The efficacy of most search methods depends strongly on the scoring

function having a funnel shape around the global minimum. The radius of convergence of

the funnel is the area where meaningful gradients can be computed to assist convergence to

the global minimum (the width of the funnel) (Fig. 4.3a3). The smoothness of the funnel

is defined as the correlation between the score and model coordinates (Fig. 4.3a4). Most

search methods benefit from a smoother funnel with a larger radius of convergence.

We benchmark our modeling method by comparing the 1-state 1-condition, 1-state 2-

condition, 2-state 1-condition, and 2-state 2-condition scoring functions. Because the prior

has been evaluated previously, we focus on the negative log-likelihood and refer to the neg-

ative log-likelihood as the scoring function. First, we estimate the global minimum of the

scoring function. Second, we quantify the thoroughness of the search process by plotting the

best score found as a function of the amount of sampling (convergence curve). Third, we in-

terpret the differences between these plots for different scoring functions by considering their

radius of convergences and smoothnesses. If the differences in the convergence curve cannot

be explained by the differences in the radius of convergence and smoothness of the scoring

function, then they must be a result of higher-dimensional characteristics of the landscape.
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Figure 4.3: a, i-iv, depictions of a scoring function relating the model error to the score.
The native is shown in red. ii) a scoring function where the native is not the scoring function
global minimum (poor global minimum accuracy). iii) a scoring function with a small funnel
(poor radius of convergence). iv) a scoring function where the correlation between the model
error and score (poor smoothness). v) a depiction of the thoroughness of the search relating
the best score found to the size of the sample. The search process finds the global minimum
with a sufficiently large sample (red line). b, one of the native models used in the synthetic
benchmark. The native model contains 2 states under 2 conditions. A native dataset is
simulated from the native model using the forward model for each set of weights (D1 and
D2). c, the thoroughness of the search process for an example native showing the best score
found as a function of the amount of the sampling for all 4 scoring functions. The score is
either the likelihood of D1 (if J = 1) or the joint likelihood of D1 and D2 (if J = 2). The
amount of sampling is quantified by the number of trajectories included in the sample from
1 to 250 (max). d, the multi-state multi-condition scoring function for N in 1, 2 and J in 1,
2 for an example native. The error is the multi-state multi-condition error in Å relative to
the native. The score is either the likelihood of D1 (if J = 1) or the joint likelihood of D1

and D2 (if J = 2). Each decoy structure is a point and the global minimum of the scoring
function is in red. f, The best Rfree found in the sample for each pair of N , J for all natives.
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Natives

There is no large set of multi-state multi-condition models with corresponding experimentally

measured X-ray datasets. Thus, we use a synthetic benchmark, where a reflection dataset

is computed, rather than measured, from a native. The benchmark consists of 10 2-state

2-condition models constructed, in part, from a previously determined SARS-CoV-2 Mpro

structure29 (Fig. 4.3a).

Native reflection datasets

For a native, X-ray datasets D1 and D2, corresponding to condition 1 and condition 2, are

simulated via the forward model at 2.0 Å resolution based on the experimentally determined

experimental unit cell dimensions and space group29 (Fig. 4.3b). Gaussian noise is applied

to the simulated structure factor amplitudes. Reflections within each resolution shell are

randomly withheld for model assessment.

Model error

We define the model error of a NA-state J -condition model by its deviation from a NB-state

J -condition model where all states are compositionally identical as follows:

error = 1

J

J∑
j=0

RMSD(avg(MA
1 , ...,M

A
NA

, w1j, .., wNj), avg(MB
1 , ...,MB

NB
, w1j, .., wNj)) (4.17)

The inside sum is the RMSD between the weighted average of MA and the weighted

average of MB using the j column of the respective weight matrices. In the weighted average,

the atomic position vector k is the weighted sum of the respective atomic position vectors

across all states. Computing the model error in this fashion is useful for the following reasons.

First, we can compute the model error when NA 6= NB. Second, if NA = NB = 1, then the

model error is the average of the RMSD function across all conditions. Third, the model
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error equals 0, if and only if the atomic position vector of the model average of MA and the

model average of MB are equal for all atoms for all conditions. It is possible, however, for

distinct models to have the same weighted average structure and thus an error of 0. Fourth,

the model error shares the symmetry properties with the multi-state X-ray forward model

for a given condition. The model error and multi-state X-ray forward model are a function

of the set of atomic positions for a given atom k (along with their weights) and, therefore,

independent of the assignment of an atom to a specific state. For example, the model error

would not change, if the states in MA or MB are re-indexed. More generally, the model error

would not change, if the positions of atoms k in any 2 states are swapped (state mixing).

Benchmark: accuracy of the global minimum

We estimate the value of the global minimum of the 4 scoring functions for each native

(Fig. 4.3c). For a 2-state scoring function, we know that the global minimum error is 0 for

all natives. We estimate the value of the global minimum of the 1-state scoring functions

by computing the score of a large set of decoy models. The 1-state scoring functions do not

have a global minimum near the native, because the 1-state model representation does not

provide a good match to the 2-state model from which the data was simulated. Using a

representation that better matches the data-generating process increases the accuracy of the

global minimum of the scoring function.

4.4.2 Sampling convergence

To quantify the thoroughness of the search process, we plot the sampling convergence of the

4 scoring functions for each native (Fig. 4.3d).

The model search with a 1-state scoring function converges to the best score near the

estimated global minimum for the respective scoring functions. In other words, the model

search for satisfying the 2-state datasets finds a nearly best-scoring 1-state model. The

model search for the 2-state scoring functions converges to a score considerably better than
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the 1-state samples. However, as expected for a stochastic search, it does not find the global

minima of the scoring functions, instead becoming stuck in local minima. The convergence

curves suggest that further sampling would not significantly improve the best score found.

For both the 1-state and 2-state scoring functions, the consideration of an additional

X-ray dataset does not significantly improve the best score found. The mean improvement

in the 1-state 1-condition likelihood of D1 vs the 1-state 2-condition marginal likelihood of

D1 is 0.050±0.070. The mean improvement in 2-state 1-condition likelihood of D1 vs the

2-state 2-condition marginal likelihood of D1 is 0.054±0.112. However, we see a significant

improvement in Rfree of D1 by including a second X-ray dataset (Fig. 4.3f). The mean

improvement in Rfree from 1-state 1-condition vs 1-state 2-condition is 0.054±0.026. The

mean improvement in Rfree from 2-state 1-condition vs 2-state 2-condition is 0.030±0.021.

4.4.3 Benchmark: the shape of the scoring function

The convergence of the model search to the global minima of the 1-state scoring functions

suggests that the scoring functions are smooth and have a large enough radius of convergence

to facilitate the model search by molecular dynamics simulations, given the initial conditions.

The score and model error are correlated with each other more weakly for the 2-state vs

1-state scoring functions (Fig. 4.3e). This observation is consistent with the 2-state scoring

function depending on twice the number of atomic variables and state weights. The inability

of the model search to find the global minimum of the 2-state scoring function can likely be

attributed to this decrease in the smoothness of the scoring function. Despite the randomized

initial conditions, the trajectories tend to be trapped in similarly scoring, but distinct, local

minima, as evidenced by the low variance in the convergence curves.

The smoothness and radius of convergence of the scoring function do not appear to be

sensitive to considering additional conditions. Thus, we attribute the improvement in Rfree

from adding an additional condition to characteristics of the scoring function beyond our

definitions of its smoothness and radius of convergence.
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4.4.4 Multi-state multi-condition modeling of SARS-CoV-2 Mpro

We illustrate our method by computing multi-state multi-condition models of the SARS-

CoV-2 main protease (Mpro), a therapeutic target41. Data was collected and modeled previ-

ously at 100K, 240K, 277K, 298K, 298K* (high humidity), and 310K29.

Using our method as described, we compute a sample of models for each N in 1, 2, 4,

8, and 16 based on each of the 63 combinations of datasets, containing 1 to 6 datasets (J )

(Fig. 4.4a). We construct a supersample containing all models for all N and J. For an

X-ray dataset, the best Rfree N -state J -condition model is defined as the supersample model

with N states and J conditions with the minimum Rfree; similarly, the best Rfree model is

defined as the supersample model with the minimum Rfree (Fig. 4.4b). For each dataset,

we compare the Rfree values of the PDB model, best Rfree model, and best Rfree 1-state

1-condition model (Fig. 4.4c), as follows.

For all 6 datasets, the best Rfree 1-state 1-condition model has a worse Rfree than the

PDB model. In the 1-state 1-condition case, the accuracy of the global minimum of our

scoring function is less accurate, presumably because the PDB model representation includes

hydrogen, ion, ligand, and solvent atoms, thus depicting the reality more completely; in

addition, another reason may be decreased search thoroughness of our method due to the

lack of manual adjustments between rounds of refinement.

For all 6 datasets, the best Rfree model has a better Rfree than the best Rfree 1-state

1-condition model. The best Rfree model contains 2-16 states (N ) computed based on 2-4

datasets (J ). As shown previously, the model’s fit of the free reflections likely improves for 2

reasons: (i) increased global minimum accuracy from adding additional states to the model

representation and (ii) better Rfree from adding additional datasets. For 4 of the 6 datasets

(≥277K), the best-free model has N ≥8 states and fits the dataset better than the PDB

model. For higher temperature datasets, the improvement in Rfree from including additional

states and datasets is greater than the loss in fit on account of the representation. This

is not the case for the 2 lower-temperature datasets. For all 6 datasets, the fit of the free
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Figure 4.4: a, overview of all samples built for SARS-Cov-2 Mpro. A sample of good-
scoring models was computed from the model posterior density for N in 1, 2, 4, 8, 16, and
all combinations of X-ray datasets (J from 1 to 6). There are 63 non-empty combinations of
X-ray datasets. Each sample contains 25 trajectories (7,500 models total). The super-sample
contains 7,500 x 63 x 5 = 2,362,500 models. b, The best-free model from the super-sample
for each of the 6 temperature-dependent X-ray datasets. c, Statistics from the super-sample
for each of the temperature-dependent X-ray datasets. The columns include the temperature
the dataset was collected under, the resolution of the dataset, the Rfree of the PDB model,
the Rfree of the best-free 1-state 1-condition model in the supersample for the dataset, the
Rfree of the best-free model in the supersample for the dataset, the number of states N ) in
the best-free model, and the number of conditions used to inform the best-free model J ).
d, The Rfree of the best-free model for each dataset as a function of the resolution. The
observed and model structure factors computed from the best-free model were divided into
20 resolution bins. The y-axis is the Rfree of the resolution bucket and the X-axis is the
minimum resolution (Å) of the resolution bucket.
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reflections by the best-free model worsens as a function of resolution, also contributing to

the relatively poor fit of the free reflections of the highest resolution datasets (100K, 240K)

(Fig. 4.4d). The fit of the free reflections of the 277K, 298K, and 298K* is considerably

better than the fit of corresponding reflections in 100K and 240K datasets, suggesting the

better fit of the higher resolution datasets is at least in part from the including structural

heterogeneity rather than the dataset being lower resolution and therefore more ambiguous.

We report the improvement in the Rfree (ΔRfree) for each dataset by the best-free N -

state J -condition model relative to the best-free 1-state 1-condition model for each N and

J (Fig. 4.3a). Generally ΔRfree exhibits unimodal behavior with a maximum improvement

at J = 3.4 and 2.4 for ≥277K and <277K datasets respectively. For 277K, 298K*, and

310K, the minimum ΔRfree (biggest improvement) occurs when all 4 of the ≥277K datasets

were used together. For 298K, the minimum improvement occurs using 3 of the 4 ≥277K

datasets. The lower temperature datasets are similarly grouped with 240K minimum ΔRfree

based on the 100K, 240K, and 310K datasets and the 100K minimum ΔRfree based on the

100K and 240K datasets.

The partitioning of X-ray datasets by temperature condition is likely a result of the struc-

tural heterogeneity in the crystal being similar at similar temperatures. Datasets observed

under temperature conditions with similar structural heterogeneity provide additional inde-

pendent observations that prevent the multi-state model from overfitting to the noise of a

single dataset. Computing a sample of N -state 1-condition models with wxray as a multiple

(1-6x) of the optimized wxray value causes the best Rfree to worsen in most cases, demon-

strating that adding additional datasets does not satisfy the data better simply because of

an increase in the contribution from X-ray datasets to the overall score (Fig. 4.5b).

We report the improvement in the fit of the force field (ΔFF) by the best-free N -state

J -condition model relative to the best-free 1-state 1-condition model for each N and J for

each dataset (Fig. 4.5c). The satisfaction of the force field decreases as a function of N

and J. The dissatisfaction of the force field as a function of N is likely a result of the model
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Figure 4.5: a, The difference between the Rfree of the 1-state 1-condition best-free model
and the best-free N -state J -condition model (ΔRfree) for all N and all J for all 6 datasets.
A negative ΔRfree indicates greater improvement in satisfaction of the X-ray dataset. For
each dataset, the ΔRfree corresponding to the best-free model is identified along with the
corresponding input datasets. b, The difference between the force field energy (divided by
the number of states) of the 1-state 1-condition best-free model and the best-free N -state
J -condition model (ΔFF) for all N and all J for all 6 datasets. A negative ΔFF indicates
greater improvement in satisfaction of the molecular mechanics force field. c, The Rfree of
the best-free N -state 1-condition model as a function of increased wxray, up to 6x wxray. As
the wxray for each sample was picked based on the wxray that produced a best-free model
with the minimum Rfree out of a set of trial wxray values, increasing wxray generally does not
improve the Rfree of the best-free model. d, The Ramachandran plot for the best-free 1-state
1-condition, 1-state 6-condition, 16-state 1-condition, and 16-state 6-condition models for
the 277K dataset.
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being able to use a larger number of parameters to satisfy density in the Fo-Fc map that

would not be able to be satisfied using a lesser number of states. For example, the model

may violate the force field to satisfy the electron density that represents an ordered solvent

molecule. The dissatisfaction of the prior as a function of J is likely a result of the attempt to

satisfy distinct datasets with a single set of states. To further explore why the impact of the

number of states and conditions on the force field, we see that the number of Ramachandran

outliers is a synergistic function of both N and J (Fig. 4.5d). Integrative modeling aims to

compute a model that best explains all input information, even when the input information

represents varied experimental conditions and prior models.

4.5 Discussion

Here, we developed, benchmarked, and illustrated a Bayesian method to compute a model

depicting multiple structural states from multiple X-ray diffraction patterns representing

distinct experimental conditions.

First, we discuss the impact of introducing multiple states into the scoring function for

a single condition (X-ray dataset). A multi-state scoring function evaluates the collective

satisfaction of an X-ray dataset by all states. The scoring function can be generalized for

scoring a model depicting multiple states by exploiting the degeneracy of the X-ray forward

model for a weighted set of structural states and the weighted sum of the forward model for

a single structural state (Fig. 4.2b). In contrast, the degeneracy of the X-ray forward model

of assigning an atom to a particular state complicates the interpretation of the multi-state

model. To resolve this degeneracy, additional information, such as a molecular mechanics

force field, is required.

We show that by introducing additional states, the global minimum of the scoring func-

tion is closer to the native (Fig. 4.3c). For experimental data, where the true number of

structural states far exceeds the number of states reasonably included in a model, adding
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additional states will continue improving the accuracy of the global minimum of the scoring

function. The accuracy of the global minimum will also be further improved by includ-

ing additional variables to represent the atomic content of a protein crystal, such as water

molecules, ions, and ligands. When the optimal representation is unknown before modeling,

the number and type of model parameters may be sampled alongside the values of the re-

maining model parameters. In such cases, it may be beneficial to consider model selection

criteria such as Bayesian or Akaike Information Criterion to explain the data with as few

model parameters as possible42.

Adding additional states decreases the smoothness of the scoring function (Fig. 4.3e),

which may contribute to the inability of the model search to find the global minimum of

the multi-state multi-condition scoring function. The decreased smoothness of the scoring

function results from the increased number of model parameters. It is conceivable that

removing some nuisance parameters from the likelihood, such as the scaling factors α and

β, could increase the smoothness of the scoring function.

Next, we discuss the impact of introducing multiple conditions into the scoring function.

A multi-state multi-condition scoring function evaluates the collective satisfaction of all X-

ray datasets by all states. The scoring function can be generalized to multiple conditions

by computing a joint likelihood from the multiplicative product of the likelihood of each

independent X-ray dataset. For a gradient-based sampling algorithm, such as molecular

dynamics simulations, the force on an atom is the sum of the partial derivatives of each log-

likelihood, thereby pushing the atom to a position that better satisfies all X-ray datasets. It

was previously found advantageous to balance the first derivatives of the likelihood and the

force field prior (wauto)21. Correspondingly, we also found by trial and error the best scaling

factor for the partial derivatives for all log-likelihoods (wxray).

Considering additional conditions significantly improves the satisfaction of the synthetic

and experimental free reflections (Fig. 4.3f, Fig. 4.5a), while it does not appear to impact

the properties of the scoring function nor the satisfaction of the synthetic or experimental
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work reflections. Thus, consideration of additional conditions must impact more complex

properties of the scoring function than its smoothness and radius of convergence. In other

words, the geometry of a scoring function with multiple conditions improves the ability of

the model search to find a minimum reflecting the actual native rather than the noise of the

work reflections.

The model search may be further improved using advanced sampling algorithms, such

as simulated annealing instead of the constant-temperature molecular dynamics simulations

used here. Such methods would expand the explored model space for a given amount of CPU

time43. Additionally, future sampling may benefit from including additional information

about stereochemistry (eg, sampling side chains using known rotameric states).

Several applications may benefit from Bayesian multi-state multi-condition modeling in

X-ray crystallography. First, in serial crystallography, a series of small and often imperfect

crystals are exposed to the X-ray beam, generating partial diffraction patterns at a series of

time points44. This trajectory could be represented as differently weighted mixtures of the

same states along the sampled time points. Using our multi-state multi-condition scoring

function would inform a model of each state at each time point based on the totality of the

X-ray data, presumably improving the accuracy of the models as demonstrated here. Second,

in a fragment screen, the protein is crystallized in the presence of one fragment at a time,

corresponding to a single condition45. Fragments often have low affinity, and therefore, only a

fraction of the protein molecules in the crystal will be bound. The multi-state multi-condition

representation can conceivably combine data from multiple experiments in several ways. For

example, a multi-state multi-condition model may be computed where the states correspond

to each fragment’s apo state and the dominant holo state. As a result, X-ray diffraction

patterns from each fragment will inform all states. Third, non-Bragg scattering is often

ignored in modeling based on X-ray crystallography data. For example, diffuse scattering

contains information on the correlated motions of atoms in the crystal46. Our Bayesian

framework may facilitate including another likelihood term based on diffuse scattering data
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in computing a multi-state model.

To facilitate the application of our method by scientists to many other systems, we

implemented it as a module of our open-source Integrative Modeling Platform (IMP)39, freely

available at https://integrativemodeling.org/2.20.2/doc/manual/.
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