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Chapter 5

Reconstruction and Analysis of Central Metabolism
in Microbes

Janaka N. Edirisinghe, José P. Faria, Nomi L. Harris, Benjamin H. Allen,
and Christopher S. Henry

Abstract

Genome-scale metabolic models (GEMs) generated from automated reconstruction pipelines often lack
accuracy due to the need for extensive gapfilling and the inference of periphery metabolic pathways based
on lower-confidence annotations. The central carbon pathways and electron transport chains are among the
most well-understood regions of microbial metabolism, and these pathways contribute significantly toward
defining cellular behavior and growth conditions. Thus, it is often useful to construct a simplified core
metabolic model (CMM) that is comprised of only the high-confidence central pathways. In this chapter,
we discuss methods for producing core metabolic models (CMM) based on genome annotations. With its
reduced scope compared to GEMs, CMM reconstruction focuses on accurate representation of the central
metabolic pathways related to energy biosynthesis and accurate energy yield predictions. We demonstrate
the reconstruction and analysis of CMMs using the DOE Systems Biology Knowledgebase (KBase). The
complete workflow is available at http://kbase.us/core-models/.

Key words Central metabolism, Core metabolic models, Metabolic model reconstruction, Flux
balance analysis, Biochemical pathways, Model comparison

1 Introduction

Central carbon metabolism is a key component in the metabolic
network of living organisms as these pathways harbor many of the
most important mechanisms for energy biosynthesis, as well as
producing the precursor compounds for most essential biomass
building blocks. The energy production strategies defined in the
central metabolic pathways have a significant impact on the behav-
ior and growth conditions of microorganisms, thus playing a crucial
role in the quantitative prediction of biomass and energy yields
[1, 2]. Energy production strategies in microbes are highly diversi-
fied, unlike those in higher eukaryotes. These strategies primarily
depend on environmental factors such as: (1) carbon source

Marco Fondi (ed.), Metabolic Network Reconstruction and Modeling: Methods and Protocols, Methods in Molecular Biology,
vol. 1716, https://doi.org/10.1007/978-1-4939-7528-0_5, © Springer Science+Business Media, LLC 2018

111

https://doi.org/10.1007/978-1-4939-7528-0_5


utilization; (2) ability to respire by reducing numerous electron
acceptors; and (3) fermentation capabilities.

It continues to be challenging to make accurate computational
predictions based on metabolic models and in silico simulations
interpreting complex microbial behavior. Tools for automated met-
abolic model reconstruction such as ModelSEED [3–5] can rapidly
generate draft genome-scale metabolic models from annotated
genome sequences [6]. However, these draft models, and in some
cases even curated published models, can lack accuracy in predict-
ing growth yields, ATP production yields, and central carbon flux
profiles. This poor accuracy stems primarily from three common
problems: (1) poor representation of energy biosynthesis pathways;
(2) a lack of diverse electron transport chain (ETC) variations; and
(3) addition of extensive gapfilling reactions that can sometimes
misrepresent an organism’s behavior [7].

Many of these problems can be avoided by using a simplified
model comprised of only the most confidently annotated and bio-
logically critical pathways for energy biosynthesis [8] (Fig. 1). We
define these models as Core Metabolic Models (CMM), and they
consist primarily of the sugar oxidation pathways, the fermentation
pathways (Fig. 2), and the ETC variations. We previously devel-
oped an approach for the reconstruction and analysis of CMMs
based on annotated genome sequences [9], which we implemented
as a pipeline in the DOE Systems Biology Knowledgebase (KBase).
In this chapter, we demonstrate how this analysis workflow can be
run in KBase. The complete workflow, including example data and
commentary, can be accessed from http://kbase.us/core-models.
The pipeline is comprised of four main steps: (1) genome annota-
tion by RAST [10]; (2) CMM reconstruction [9]; (3) gapfilling
[7]; and (4) flux balance analysis (FBA) [11]. We also discuss
methods for exploring metabolic diversity by studying the varia-
tions in central metabolic pathways in a phylogenetic context.

2 Materials

In this section, we describe the data and tools required to build
CMMs using the KBase Narrative Interface (https://narrative.
kbase.us). Methods that use the data and tools listed in this section
are described in detail in Subheading 3.

2.1 KBase Narrative

Interface

In KBase, reproducible workflows called Narratives can be created
and shared. Narratives can include data, analysis steps, results,
visualizations, and commentary. Narratives can be shared with
collaborators as “active papers” that let others repeat the analysis
workflows and even alter parameters or input data to achieve differ-
ent or improved results. We encourage readers to view and copy the
Core Model Construction Narrative (see http://kbase.us/core-

112 Janaka N. Edirisinghe et al.

http://kbase.us/core-models
https://narrative.kbase.us
https://narrative.kbase.us
http://kbase.us/core-models


Fig. 1 Seven-step pipeline used to construct and analyze core metabolic models in KBase. The core model
reconstruction pipeline is comprised of seven apps (rounded rectangles with dashed borders), which operate
on specific data types (magenta rectangles). These apps are driven by several curated reference data sources
(green diamonds), including RAST subsystems, the template model pathways, the template model objective
functions, and the compounds that make media formulations used for gapfilling and FBA. The purple ovals
identify the essential components/data (explained in the text) required for apps; the blue ovals show the steps
performed by the apps. Dashed arrows show optional steps while turquoise arrows show major steps of the
pipeline. The resulting data can be downloaded as explained in Note 1
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Fig. 2 Metabolic pathways comprising the core metabolic model. The core model template encompasses
12 central metabolic pathways including sugar oxidation (glycolysis, gluconeogenesis, Entner-Doudoroff,
pentose phosphate), TCA cycle and fermentation pathways (fermentation end products displayed as squares
with blue borders). These pathways produce 16 biomass precursor molecules (green circles) (Table 1)
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models) and try running the steps on the example data or using
their own data.

2.2 Core Metabolic

Model Reconstruction

Pipeline (Apps)

The CMM reconstruction pipeline in KBase permits a user to
progress from raw genome sequencing reads through assembly
and annotation to core model reconstruction and then perform
model analysis and comparison. The pipeline is comprised of seven
apps (centered on the four main steps previously mentioned),
which are described in this section (Fig. 1).

The first step of the pipeline is the Assemble Contigs from Reads
app, which accepts short reads from Next-Generation Sequencing
(NGS) as input and produces assembled contigs as output. KBase
includes numerous apps for genome assembly, but the Assemble
Contigs from Reads app is the most sophisticated, as it enables
users to run multiple assemblers at once, then aids in selecting the
best set of contigs produced by all the assemblers.

The second step of the pipeline is the Annotate Microbial
Contigs app. This app is based on the RAST (Rapid Annotations
using Subsystems Technology) pipeline for microbial genome
annotation [12]. The app accepts assembled contigs as input, per-
forms gene calling using a combination of Glimmer [13] and
Prodigal [14], then functionally annotates genes from the SEED
subsystems ontology [15] using a kmer-based approach [16]. Alter-
natively, if one already has a genome with existing gene calls in
GenBank format, the Annotate Microbial Genome app can be used
to simply re-annotate the existing genome while keeping the gene
calls intact. This app also uses the RAST approach for functional
annotation. Note that when an existing genome is imported into
KBase, its original annotations are kept intact. Unless the imported
genome was generated by RAST or PATRIC [17], it is likely that
the annotations do not conform to the SEED subsystems ontology.
As a result, it is currently necessary to re-annotate these genomes
using the Annotate Microbial Genome app prior to building a
metabolic model. Both annotation apps produce an annotated
genome as output, which includes data on all genome contigs,
genes, proteins, and functional annotations.

The third step of the pipeline is the Build Metabolic Model app.
In this app, the functional annotations generated by the RAST-
based genome annotation apps are used to generate a draft meta-
bolic model. A draft model consists of three parts: (1) a network of
metabolic reactions (including both gene-associated reactions and
spontaneous reactions); (2) a set of gene-protein-reaction (GPR)
associations that dictate how each reaction activity depends on
associated gene activity; and (3) a biomass composition reaction
that defines the small molecule building blocks that comprise 1 g of
biomass (e.g., amino acids, nucleotides, lipids, cofactors, cell-wall
components, and energy). This app produces genome-scale meta-
bolic models by default, but it is possible to select the core template
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to build a core model instead. Core models contain far fewer
reactions, and their biomass composition reaction uses only
central-carbon precursor molecules. The reactions included in the
models produced by the Build Metabolic Model app are selected
from the ModelSEED [18] biochemistry database. This curated
database contains mass and charge balanced reactions, standardized
to aqueous conditions at neutral pH. The Model SEED reaction
database integrates biochemistry from KEGG [19, 20], MetaCyc
[21], EcoCyc [22], Plant BioCyc, Plant Metabolic Networks, and
Gramene [23]. The database is available for download from
GitHub (https://github.com/ModelSEED/ModelSEEDData
base/blob/master/Biochemistry/).

The fourth step of the pipeline is the Gapfill Metabolic Model
app. Draft metabolic models (built using the Build Metabolic Model
app) usually have missing reactions (gaps) due to incomplete or
incorrect functional genome annotations. As a result, these models
are unable to produce biomass using media on which the organism
typically is capable of growing. Gapfilling algorithms can overcome
this problem by identifying the minimum number of new reactions
that must be added to the model, or existing reactions that must be
made reversible to enable the production of biomass. The gapfilling
app in KBase uses Model SEED reaction database for gapfilling. It
works equally well on core or genome-scale metabolic models.
When gapfilling a core model, only the reactions present in the
core model template (see Subheading 2.3) are considered for gap-
filling. When gapfilling a genome-scale model, all 13,000 reactions
from the ModelSEED [18] biochemistry database are considered
for gapfilling.

The fifth step of the pipeline is the Run Flux Balance Analysis
app. This app predicts the flow of metabolites through the meta-
bolic network of an organism by optimizing for the selected cellular
objective function, which is typically the production of biomass.
Flux Balance Analysis (FBA) is a constraint-based approach that
estimates growth-optimal fluxes through all the reactions in the
metabolic network, thereby making it possible to estimate the
growth rate of an organism (the rate of biomass production) or
the rate of production of a given metabolic output on a specified
media. This app makes it possible to analyze an organism’s growth
on different substrates and to evaluate the reactions and metabo-
lites that carry fluxes in each growth condition. In addition to
optimizing the biomass, one can choose to optimize a certain
reaction (e.g., transporter reaction) so that the model optimizes
to produce flux through that reaction. The Run Flux Balance
Analysis app requires the user to specify a media formulation in
which the growth will be simulated. In KBase, the media contains a
list of the chemical compounds that are available for consumption
in the flux simulation. KBase currently maintain more than
500 commonly used media conditions. In addition, users are able
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to build and upload their own custom media formulations. The
Run Flux Balance Analysis app includes a range of FBA algorithms,
including flux variability analysis, gene essentiality prediction, and
expression data analysis.

The sixth step of the pipeline is the Compare Models app. This
app provides comparative analysis of two or more models based on
reactions, compounds, biomass, and proteins families. The app
provides overall statistics of conserved reactions, conserved com-
pounds, and conserved biomass precursors across metabolic
models.

The seventh and final step of the pipeline is the Compare FBA
Solutions app. KBase permits the use of flux balance analysis to
predict how an organism will behave metabolically in a wide range
of growth conditions. With this capability, it quickly becomes
important to be able to compare the flux profiles predicted by
FBA side-by-side in order to understand how an organism’s behav-
ior changes from one condition to the next, or how the behavior of
two different organisms differs within a single condition. The
Compare FBA Solutions app enables this comparison. FBA solutions
are compared on three levels: (1) the objective value for each FBA
solution; (2) the flux through each reaction in each FBA solution;
and (3) the uptake and excretion of metabolites in each FBA
solution. For the flux comparison, reaction fluxes are categorized
into four possible states: not in model; no flux; forward flux; and
reverse flux. Metabolite fluxes are categorized into similar states:
not in model; no flux; uptake; and excretion. FBA solutions are
compared based on these states, and solutions with similar states are
compared based on magnitude of flux.

2.3 Metabolic

Pathways in the Core

Model Template

All metabolic model reconstruction in KBase is built upon a set of
model templates, each of which integrates the three types of data
needed to build a model from an annotated genome: (1) the full set
of reactions that comprise the metabolic pathways across a wide
range of organisms; (2) the SEED functional roles associated with
the enzymes that perform all metabolic reactions; and (3) the
default objective functions to be used in the reconstructed models
(see Subheading 2.5). Different model templates are used to con-
struct different types of models (e.g., plants, gram negative gen-
omes, gram positive genomes), and for core models, a specific core
model template (CMT) is applied.

The CMT integrates 200 highly curated reactions (https://
github.com/ModelSEED/ModelSEEDDatabase/blob/master/
Templates/Core/Reactions.tsv) encompassing 12 key energy bio-
synthesis pathways (Fig. 2) linked to central metabolism including:
sugar degradation pathways (Glycolysis, Entner-Doudoroff, Citric
acid cycle and Pentose phosphate), fermentation pathways (pro-
ducing end products: lactate, acetate, formate, ethanol,
2,3-butanediol, butyrate, butanol, and acetone) that are derived
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from central metabolism as well as various aerobic and anaerobic
Electron Transport Chains (see Subheading 2.4). These pathways
are considered the building blocks of the central metabolism that is
represented by our CMT, and they were derived from an analysis of
a phylogenetically diverse set of well-studied model organisms,
including Escherichia coli, Bacillus subtilis, Pseudomonas aeroginosa,
Clostridium acetobutylicum, and Paracococcus denitrificans [9]. We
also added a number of manually curated ETC reactions to the
CMT. These reactions reflect the diverse ETC variations in aerobic
respiration as well as facilitating the reduction of number of anaer-
obic electron acceptors (see Subheading 3.4). The CMT maps its
200 reactions to over 400 SEED functional roles through com-
plexes (see Subheading 3.3, Fig. 3). These mappings are used to
associated genes to the CMT reactions when building a CMM from
an annotated genome.

2.4 Encoding of ETC

Diversity in the Core

Model Template

Unlike the electron transport chains of higher eukaryotes, bacterial
ETCs are highly diversified. As a result, they are able to grow in a
variety of aerobic and anaerobic environments reducing anaerobic
electron acceptors such as nitrate, nitrite, fumarate, dimethyl

Fig. 3 Diverse electron transport chains in bacteria. Escherichia coli (a) and Paracoccus denitrificans (b) are
able to respire aerobically and anaerobically by reducing nitrate. E. coli (a) is able to reduce organic electron
acceptors fumarate, DMSO, and TMAO. P. denitrificans (b) is able to reduce more inorganic electron acceptors
including nitrite, nitric oxide, and nitrous oxide
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sulfoxide (DMSO), and trimethylamine N-oxide (TMAO). Given
the importance of the ETCs in governing cell behavior and growth
conditions, significant curation was invested to encode various
ETCs as a part of the CMT. For instance, Escherichia coli (Fig. 3a)
is known to respire aerobically and anaerobically reducing nitrate,
fumarate, TMAO, and DMSO. Paracoccus denitrificans (Fig. 3b) is
also able grow aerobically and anaerobically reducing a variety of
nitrogen-based compounds including nitrate, nitrite, nitrous oxide,
and nitric oxide. Better annotation of ETCs aids identification of
complex respiration types and makes energy yield predictions more
accurate.

2.5 Default Objective

Functions in the Core

Model Template

The CMT integrates two default objective functions for the
CMMs: (1) a biomass production objective function, modeled by
maximizing the simultaneous production of 16 central carbon pre-
cursors needed to produce 1 g of biomass (green circles in Fig. 2);
and (2) an energy production objective function modeled by max-
imizing flux through an ATP hydrolysis reaction. The biomass
biosynthesis objective function in our CMT was constructed
based on the biomass precursor stoichiometry that was derived by
Varma and Palsson [24] and used in one of the earliest models of
E. coli (Table 1) [25]. In our analysis of the biomass objective
function, we found that gapfilling was occasionally required to
enable synthesis of all essential biomass precursors in our biomass
object function [9]. For this reason, we also include the energy
object function in the CMT, which permits a focused study of
energy biosynthesis in our core models without any gapfilling.
Using this objective function, we computed ATP production yields
in all models without any gapfilling; hence, these computations
were based solely on reactions derived from existing RAST
annotations.

3 Methods

3.1 Construction of a

Draft Core Metabolic

Model from an

Annotated Genome

Here, we apply our core model reconstruction pipeline (see Sub-
heading 2.2 and Fig. 1) in KBase to build and analyze a core model
for the genome Escherichia coli K12 (see http://kbase.us/core-
models/). Because we are starting with an imported genome, we
skip the genome assembly step of our pipeline and apply the Anno-
tate Microbial Genome app to re-annotate our genome with func-
tions from the SEED subsystems ontology [15]. In this
re-annotation step, RAST assigns 3889 genes with 3797 distinct
functions. 1804 of these functions appear in the SEED subsystem
ontology.

Now that the genome is annotated with SEED functions, the
Build Metabolic Model app can be used with the CMT (see Subhead-
ing 2.3) selected to build a draft CMM. In addition to constructing
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a core model, this app has an optional “Gapfill metabolic model”
checkbox. If this option is selected, then when the Build Metabolic
Model step finishes, the Gapfill Metabolic Model step will start
automatically. For the sake of our example, this checkbox is left
“unchecked” so these steps can be run separately. When the Build
Metabolic Model step completes, a draft model is created, which is
comprised of 158 reactions, 168 compounds, and 478 genes.
Because gapfilling was not run automatically, this draft model
only includes reactions that are associated with genes.

The gene associations were generated based on a two-step
process. In the Annotate Microbial Genome app, the genes in our
genome were assigned biological functions (e.g., Pyruvate kinase

Table 1
Central carbon precursors of small-molecule building blocks of biomass

Biomass compound Coefficient

NADPH �1.8225

D-Erythrose4-phosphate �0.8977

NADH 3.547

Phosphoenolpyruvate �0.5191

NADP 1.8225

NAD �3.547

H2O �41.257

Acetyl-CoA �3.7478

ADP 41.257

CoA 3.7478

ATP �41.257

Pyruvate �2.8328

3-Phosphoglycerate �1.496

Oxaloacetate �1.7867

Phosphate 41.257

D-fructose-6-phosphate �0.0709

ribose-5-phosphate �0.8977

H+ 46.6265

Glyceraldehyde3-phosphate �0.129

2-Oxoglutarate �1.0789

D-glucose-6-phosphate �0.205

Compound names and associated coefficients of the biomass biosynthesis objective function used in CMMs. This biomass
stoichiometry originally derived by Varma and Palsson [8] and used in CMMs with modifications [9]
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(EC 2.7.1.40)), and in our CMT, these functions are mapped to
the appropriate biochemical reactions. Thus, the Build Metabolic
Model app maps the reactions associated with function A in the
CMT to the gene(s) associated with function A in the genome
(Fig. 4a). As some metabolic enzymes have multiple functional
subunits encoded by separate genes, this mapping process also
integrates information about such complexes, so the genes encod-
ing separate subunits are mapped to the appropriate reaction as a
group (Fig. 4b). If only one subunit is annotated in the genome,
the reaction is still added to the model, although a note is made that
the other subunits appear to be missing.

The draft model also has two different objective functions, as
defined by our CMT (see Subheading 2.5): an energy production
function (called bio2) and a biomass production function (called
bio1). These objective functions play a role in the gapfilling of the
model performed in the next step of our model reconstruction
pipeline, as well as in how the model is analyzed during flux balance
analysis.

3.2 Gapfilling Core

Metabolic Model for

Energy and Biomass

Production

The next step of our pipeline is to gapfill the CMM to enable the
production of energy and biomass in a specified growth condition.
We must specify a growth condition when gapfilling because the
nutrients present in the growth condition have a major impact on
the reactions required to permit growth and energy production. In
KBase, growth conditions are specified as media formulations,
which specify the concentration and uptake ranges of all metabo-
lites known to be available in the growth condition. By default,
gapfilling will use a special growth condition calledCompletemedia,
which includes all metabolites for which there is a transport

Fig. 4 Organization of genes, gene annotations, complexes, and the biochemical reactions in gene protein
reaction (GPR) mappings. Panel (a) shows a gene assigned Pyruvate Kinase (EC 2.7.1.40) as a function. This
gene is mapped first to a complex (Complex A), then to a biochemical reaction. Panel (b) shows two genes that
were assigned the NAD(P) transhydrogenase (EC 1.6.1.2) alpha and beta subunits as functions. These genes
are mapped first to a single complex (Complex B), then to the appropriate reaction
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reaction in KBase (see Subheading 2.2). In the case of our E. coli
K12 CMM, we will gapfill in glucose minimal media as E. coliK12 is
known to grow in this condition.

Gapfilling also requires that a specific objective function be
specified for the gapfilling operation. The output of this specified
objective function (e.g., biomass reaction or a transporter reaction)
is constrained to a nonzero value, while linear programming algo-
rithms are applied to identify a minimal set of additional reactions
that must be added to the model to permit the function to achieve a
nonzero value. In the case of our E. coli K12 CMM, we have
specified the biomass reaction, which produces all the compounds
involved in the biomass biosynthesis (Table 1), as the objective
function resulting in an objective value greater than zero.

Because we have two separate objective functions in our CMM,
we run the gapfilling with each function. As it turns out, our E. coli
K12 CMM requires no additional reactions to reach a nonzero
value with either of our objective functions. This result was
expected for our energy production objective function, which was
specifically designed to require minimal or no gapfilling. However,
some genomes do require at least some gapfilling to permit stan-
dard biomass production. This lack of significant required gapfilling
highlights one of the major strengths of using CMMs: CMMs
generally require far less (or no) gapfilling compared to genome-
scale models, meaning the predictions they make will be based
primarily if not entirely on the genome annotations. Now that
our E. coli K12 CMM has been demonstrated to be capable of
producing both energy and biomass, we can use flux balance analy-
sis to predict the flux profile in E. coli that optimizes each of these
objective functions.

3.3 Analysis of Core

Metabolic Model with

Flux Balance Analysis

In the fifth step of our pipeline, we use the Run Flux Balance
Analysis app in KBase to optimize the production of biomass and
energy (see Subheading 2.5) in our CMM, while also predicting
metabolite uptake, intracellular flux profile, and growth/ATP pro-
duction yields. As with gapfilling, FBA requires that a growth
condition (media) be specified for the analysis, and as before, we
select glucose minimal media under aerobic conditions as our
desired growth condition for analysis. Our FBA reveals a biomass
yield of 0.12 g biomass/mmol glucose uptake and an energy yield
of 26.5 mmol ATP per mmol glucose uptake. In KBase, the Run
Flux Balance Analysis app automatically also runs flux variability
analysis (FVA), which enables the classification of model reactions
during predicted growth or energy production. FVA reveals that
37 (27%) of reactions in E. coli are essential for biomass production
when growing in glucose minimal media, while 31 (19%) are essen-
tial for energy production. As expected, simple energy production
requires fewer pathways than biomass production.
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3.4 Comparative

Analysis of CMMs and

Flux Distributions

Now that our E. coli CMM has been built and analyzed, it is
interesting to apply this same pipeline to examine other genomes
and/or growth conditions. KBase includes tools that support the
comparison of models and/or FBA solutions when studying multi-
ple genomes in multiple growth conditions. Comparative analysis
of the models helps to reveal metabolic pathways that are common
to all models compared and also to identify unique parts of metab-
olism for each individual model. Comparing flux distributions
allows the identification of high flux pathways and pathways that
are not being utilized under certain environmental conditions.

We demonstrate this capability by applying our CMM recon-
struction pipeline to build a model of Paracoccous denitrificans
PD1222. We then compare the models (E. coli and
P. denitrificans) and their predicted flux profiles using the Compare
Models and Compare FBA Solutions apps respectively. This analysis
reveals that P. denitrificans and E. coli have 50 reactions in com-
mon, with only 4 reactions unique to P. denitrificans and 112 reac-
tions unique to E. coli. Comparing the FBA predictions, we find
that the reactions common to both models were largely essential for
biomass production, while the reactions unique to each model were
active but not essential. We also compared the flux profiles of E. coli
that optimize the energy yield in glucose minimal media under
aerobic and anaerobic conditions. This comparison reveals that
ATP yield is much higher (26.5 ATPmmol/mmol of glucose) in
the aerobic condition where 31 reactions have nonzero fluxes
compared to in the anaerobic condition (2.75 ATPmmol/mmol
of glucose) where only 21 reactions have nonzero fluxes. The
difference in energy yield is due to the fact that under aerobic
conditions, E. coli is able to fully oxidize glucose-utilizing aerobic
ETCs, yielding more energy, whereas in anaerobic conditions with
no anaerobic electron acceptors present, energy is produced solely
through fermentation by substrate level phosphorylation.

3.5 Determining

Metabolic Pathways in

CMMs and

Phylogenetic

Distribution

To study and evaluate the metabolic potential of an organism, it is
useful to ascertain the existence of classical metabolic pathways. We
have used CMMs to determine the presence or absence of key
energy biosynthesis-related pathways (Fig. 2). We have developed
a set of Boolean rules to determine the presence and absence of
each pathway based on reactions present in each of the CMMs
[9]. This methodology allows for alternative reactions within an
individual step of each pathway, but every step of each defined
pathway must be annotated in order for the pathway to be classified
as present. Boolean rules that were used to determine the existence
for Glycolysis and Gluconeogenesis are listed in Table 2.

Once the presence and absence of pathways have been deter-
mined, there are multiple ways to analyze the pathway data. In
Fig. 5, we have painted pathway presence and absence data for
Glycolysis, Gluconeogenesis, and Entner-Doudoroff on a
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Table 2
Booleans rules used to govern pathway presence/absence in CMMs (rules that are displayed in this
table were used to determine presence/absence of glycolysis and gluconeogenesis)

Section 1

Enzyme names Reaction ID

phospho_glucose_isomerase rxn00558

ATP-dependent-pfk rxn00545

ADP-dependent-pfk rxn04043

ppi-dependent-pfk rxn00551

NAD-dependent_phosphoglycerate_
dehydrogenase

rxn00781

NADP-dependent_phosphoglycerate_
dehydrogenase

rxn00782

ATP-
dependent_phosphoglycerate_kinase

rxn01100

GTP-
dependent_phosphoglycerate_kinase

rxn01105

phosphoglycerate_mutase rxn01106

Enolase rxn00459

pyruvate_kinase rxn00148

fructose_bis_phosphotase rxn00549

f1,6_bisphosphate_aldolase rxn00786

ATP_pyruvate_water_phosphotransferase rxn00147

Section 2

Enzyme names/pathway segments Rule

gdh means 1 of {NAD-
dependent_phosphoglycerate_dehydrogenase,NAD-
dependent_phosphoglycerate_dehydrogenase}

pgk means 1 of {ATP-dependent_phosphoglycerate_kinase,
ADP-dependent_phosphoglycerate_kinase}

pgm means phosphoglycerate_mutase

pyrk means pyruvate_kinase

pfk means 1 of {ATP-dependent-pfk,ADP-dependent-pfk,ppi-
dependent-pfk}

G3P-PYR means gdh and pgk and pgm and enolase and pyrk

G3P-PEP means gdh and pgk and pgm and enolase

F6P-PYR means pfk and f1,6_bisphosphate_aldolase and G3P-PYR

G6P-PYR means phospho_glucose_isomerase and F6P-PYR

(continued)
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phylogenetic tree where it depicts phylogenetic distribution of a
given biochemical pathway. In Fig. 6, we have organized all CMMs
by their taxonomic groups against pathway presence and absence
data. Taxonomic groups that are displayed along the horizontal axis
of Fig. 6 were sorted sequentially as they appear in a 16S rRNA-
based phylogenetic tree [9].

3.6 Overview and

Discussion

In this chapter, we present a detailed protocol for the reconstruc-
tion and analysis of core metabolic models (CMMs) in KBase. In
comparison to genome-scale models, CMMs are simpler and can
accurately determine: (1) ATP yields based on different growth/
environmental conditions, (2) ETC variations and respiration
types, (3) ability to produce fermentation products, (4) presence
and absence of classical biochemical pathways in central metabo-
lism, and (5) ability to produce key metabolic pathway intermedi-
ates in central metabolism which are precursors of essential biomass
components of the cell.

We have implemented the CMM construction and analysis
pipeline using KBase apps (see Subheading 2.2) with commentary
(see Subheading 2.1), where the following major steps are demon-
strated: (1) annotation of microbial genomes, (2) reconstruction of
CMM, (3) gapfilling of CMM, and (4) perform flux balance analy-
sis (Fig. 1). Comparative analysis of CMMs and flux distributions
based on different media conditions is also demonstrated.

Table 2
(continued)

glycolysis_t1 means G6P-PYR

glycolysis_t2 means F6P-PYR and not G6P-PYR

glycolysis means glycolysis_t1 or glycolysis_t2

gluconeogeneis means fructose_bis_phosphotase and G3P-PEP or
(fructose_bis_phosphotase and G3P-PEP and
ATP_pyruvate_water_phosphotransferase)

glycolysis_is_supported means glycolysis

glycolysis_is_not_supported means not glycolysis

glycolysis_is_ADP-dependent means glycolysis and (ADP-dependent-pfk or
ADP-dependent_phosphoglycerate_kinase)

glycolysis_is_ppi-dependent means glycolysis and ppi-dependent-pfk

Section 1 of the table displays the reaction names and the corresponding reaction ids for the pathways that are considered
for establishing Boolean rules. Section 2 displays assigned rules for reactions that are mentioned in Section 1. Rules able

to facilitate: (1) pathway steps that may have more than one enzymatic reaction (e.g., gdh means 1 of {NAD

dependent_phosphoglycerate_dehydrogenase,NAD-dependent_phosphoglycerate_dehydrogenase}), (2) partial path-

way segments (e.g., G3P-PEP means gdh and pgk and pgm and enolase), and (3) complete pathways (e.g., glycolysis
means glycolysis_t1 or glycolysis_t2)

Boolean rules were established for 12 central metabolic pathways including pathways that are mentioned in this table and

were originally published in Edirisinghe et al. [9])
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Fig. 5 Phylogenetic distribution of central metabolic pathways (originally published in Edirisinghe et al. [9]).
Microbial life tree (16S OTU98.5) depicting the presence and absence of sugar degradation pathways
glycolysis, gluconeogenesis, and Entner-Doudoroff. The name of the organism and the phylum can be
found at the leaf of the tree in the high-resolution image. The colored branches depict which clades gained
or lost certain metabolic pathways. The curved arrow shows the range of the group Gammaproteobacteria,
and the straight arrows indicate the regions where species belongs to several different genera have different
phenotypes with the same taxonomic group: Escherichia and Salmonella (purple) (A), (B) Buchnera (green),
(C) Shewanella (light blue) and (D) Pseudomonas (light blue). A high-resolution image of this figure can be
accessed at http://bioseed.mcs.anl.gov/~janakae/coremodel/springer/fig5.pdf
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Along with the described reconstruction and analysis tools,
KBase also offers a large amount of public data including microbial
genomes and media formulations that aid in the CMM reconstruc-
tion process across the microbial tree of life (see Subheadings 2.2
and 3.5).

In our specific example where we used the Escherichia coli K12
annotated genome as the starting point, we demonstrated the
CMM’s ability to predict energy yields and biomass without requir-
ing any gapfilling reactions, thus the CMM predictions are solely
based on genome annotations. We performed flux balance analysis
(FBA) coupled with flux variability analysis (FVA) (see Subheading
2.2) using the E. coli K12 CMM in glucose minimal media to
predict metabolite uptake and excretion, intracellular flux profiles,
and growth/ATP production yields. These analyses reveal the
essential reactions required for E. coli K12 to predict energy yields
or biomass/growth under a specific media/environmental condi-
tion. A comparative analysis of the CMM of E. coli and
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Fig. 6 Presence and absence of key central metabolic pathways of about 8100 organisms sorted by major
phylogenetic groups originally published in Edirisinghe et al. [9]). Taxonomic groups that are displayed in the
horizontal axis of the graph were sorted sequentially as they appear in a 16SrRNA-based phylogenetic tree
(GlucoNG gluconeogenesis, ED Entner-Doudoroff, PenP Pentose Phosphate)
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P. denitrificans showed conservation of essential metabolic reac-
tions across both organisms, while reactions reflecting each organ-
ism’s unique biology were deemed mainly nonessential.
Comparative analysis of E. coli flux profiles under aerobic and
anaerobic conditions has revealed the differences in energy yield
predictions due to the presence of ETCs. We conclude our analysis
by showing the presence and absence of key energy biosynthesis
pathways in CMMs, and we present the pathway conservation data
in phylogenetic context. In addition to the CMM reconstruction
and analysis tools that are discussed in this chapter, KBase offers an
extensive catalog of apps (see Note 2) that provide analysis and
comparison capabilities that allow researchers to investigate impor-
tant biological questions related to microbial metabolism and other
topics in systems biology.

4 Notes

1. Genomes, CMMs, Flux distributions, comparative analysis of
the models and flux distributions data can be downloaded from
the KBase Narrative interface (see the instructions at http://
kbase.us/data-upload-download-guide/downloading-data/).

2. KBase offers an extensive catalog of apps for metabolic model
construction and for comparative analysis genomes. The list of
apps can be found at https://narrative.kbase.us/#catalog/
apps/
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