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RNA, action through interactions

Tri C. Nguyen?l, Kathia Zaleta-Riveral, Xuerui Huang?!, Xiaofeng Dai?, and Sheng Zhongl*
1Department of Bioengineering, University of California San Diego, USA

2Wuxi School of Medicine, Jiangnan University, P.R. China

Abstract

As transcription of the human genome is quite pervasive it is possible that many novel functions of
the noncoding genome have yet to be identified. Often the noncoding genome’s functions are
carried out by their RNA transcripts which may rely on their structures and/or extensive
interactions with other molecules. Recent technology developments are transforming the fields of
RNA biology from studying one-RNA-at-a-time to transcriptome-wide mapping of structures and
interactions. Here, we highlight the recent advances in transcriptome-wide RNA interaction
analysis. These technologies revealed surprising versatility of RNA to participate in diverse
molecular systems. For example, tens of thousands of RNA-RNA interactions have been revealed
in cultured cells as well as in mouse brain, including interactions between transposon-produced
transcripts and mRNAs. Additionally, most transcription start sites in the human genome are
associated with noncoding RNA transcribed from other genomic loci. These recent discoveries
expanded our understanding of RNAS’ roles in chromatin organization, gene regulation, and
intracellular signaling.

RNA interactions regulate diverse molecular functions

RNA is produced from most human genomic sequences, although only a relatively small
portion of these transcripts are translated and/or have known associated functions. The vast
amounts of transcripts with unknown functions may not be translated and present an
opportunity to investigate the functions of the noncoding genome. Previous studies of
noncoding RNA interactions have led to major discoveries, including RNA interference [1,
2], essential steps of RNA splicing through snRNA binding to intronic splice sites [3, 4], and
site-specific rRNA pseudouridination through snoRNA-rRNA interactions [5]. On the other
hand, RNA-chromatin interactions constitute essential steps in X chromosome silencing [6,
7], RNAI mediated epigenetic inheritance [8], telomere replication [9], de novo DNA
methylation on an imprinting locus [10], transcriptional activation [11,12], and a negative
feedback between paralogous genes [13]. We therefore anticipate novel functions to be
revealed by identifying novel classes of RNA-participating interactions.
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Recent technology developments are transforming the way RNA structure and interactions
are analyzed. Instead of studying one RNA or one interaction at-a-time, recent technologies
have enabled transcriptome-wide analysis of RNA structures, RNA-RNA interactions, and
RNA-DNA interactions (Figure 1). These developments were achieved by combining
biochemical reactions with next-generation sequencing. The general strategy of investigating
RNA-RNA and RNA-DNA interactions is to convert interacting sequence (RNA-RNA or
RNA-DNA) pairs into chimeric DNA, and leverage DNA sequencing as a high-throughput
readout of the underlying interactions. Many of these technologies can be applied to analyze
intact cells and primary tissues without requiring genetic perturbation or ectopic expression.
In this article, we review sequencing-based approaches for mapping RNA structures, RNA-
RNA and RNA-DNA interactions, summarize the major findings, and point out the new
hypotheses derived from these findings.

RNA STRUCTURE

Sequencing-based methods for mapping RNA structures

The flexibility of RNA provides a physical basis for forming a diverse array of secondary
and tertiary structures. The structures of RNA and their interactions with other molecules are
modulated by physiochemical environment [14-18], RNA sequences, and posttranscriptional
modifications [19-22]. A general strategy employed in systematic mapping of RNA
structures is to leverage enzymes or chemicals that specifically react with certain local
structures [23]. These reactions include RNA cleavage or modification. The cleaved or
modified sites could then be systematically revealed by sequencing. We have classified the
sequencing-based RNA structure analysis methods: 1) by reagents, into enzyme-based and
chemical-based approaches (columns, Figure 2, Panel A), and 2) by application scenarios,
into /n vitroand in vivo approaches (rows, Figure 2, Panel A). Briefly, enzyme-based /n
vitro RNA structure analysis methods include Protein Interaction Profile Sequencing (PIP-
seq) [24, 25], Parallel Analysis of RNA Structure (PARS) [26], Parallel Analysis of RNA
structures with Temperature Elevation (PARTE) [27], Fragmentation Sequencing (FragSeq)
[28]. Chemical-based in vitro methods include Dimethyl Sulfate Sequencing (DMS-seq)
[29], in vivo Click Selective 2-hydroxyl Acylation And Profiling Experiment (icSHAPE)
[30], Structure-seq [31], and Mod-seq [32]. Chemical-based /in vivo methods include
Chemical Inference of RNA Structures (CIRS-seq) [33] and Selective 2'-hydroxyl Acylation
analyzed by Primer Extension and Mutational Profiling (SHAPE-MaP) [34]. Finally,
Mapping RNA Interactome and Structure /7 vivo (MARIO) is an enzyme-based analysis
method that in theory captures /in vivo structures [35]. In addition to revealing the single-
stranded regions, MARIO also identifies all the spatially proximal regions of an RNA
molecule, thus providing unique information about the secondary and tertiary structures.
Figure 2B shows selected examples of these methods to illustrate their major experimental
steps.

The enzyme-based approaches leverage different ribonucleases (RNases) based on their
selectivity in cutting either single-stranded or double-stranded regions. The resulting mixture
of RNA fragments when analyzed by sequencing, allows for assessment of nucleotide
accessibility and base-pairing regions, and thereby inference of secondary structures. The
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commonly used dsRNA-specific RNase with predefined structural preferences is RNase V1,
which is, but the specificity is not absolute [36]. RNase S1 (process all four nucleotides),
RNase P1 (process all four nucleotides), RNase A (ssC/U-specific) and RNase T1 (ssG-
specific) are ssSRNA-specific, but these enzymes may miss small bulges, loops, or
mismatches [28]. Thus, integration of the sequencing data obtained from treatments with
different RNases may generate more complete mapping of single- and double-stranded
regions. A limitation of enzyme-based methods is that the applications are often limited to /n
vitro structural analysis. This is in part due to the large sizes of RNases (>10 kDa) and hence
the difficulty of crossing cell membranes and susceptibility to steric hindrance in the
presence of bound proteins or other RNA-associated macromolecules.

Chemical-based methods utilize small molecules to probe RNA structure. These membrane
permeable molecules are utilized for /n vivo analyses of RNA structures, which often
achieve single nucleotide resolution. Frequently used chemicals include nucleobase-specific
chemicals, carbodiimide modifying reagents, and ribose-specific probes. Nucleobase-
specific chemicals including dimethyl sulfate (DMS) can modify the functional groups on
the Watson-Crick (WC) face of the base. DMS alkylates the unprotected N1 position of
adenine (N1A), unprotected N3 position of cytosine (N3C), and unprotected N7 position of
guanine (N7G) [37]. Carbodiimide modifying reagents react with guanosine and uridine.
These chemicals detect the presence of base-paired regions, allowing for mapping of the
secondary structures and protein binding sites. Ribose-specific probes acylate the flexible
C2’-hydroxy! group of the ribose (C2’-OH). Using such a probe, Selective 2’-Hydroxyl
acylation Analyzed by Primer Extension (SHAPE) resolves the local structural environment
at nucleotide resolution [38]. Flexible bases exhibit a higher tendency to adapt to specific
local structural environments, which facilitates acetylation, resulting in higher SHAPE
activity [39]. An advantage of SHAPE reagents over nucleobase-specific probes lies in their
capability of targeting the ribose of all four nucleotides (Table 1). Ideally, combining the
sequencing data generated from treatments of multiple chemicals and enzymes may release
the complimentary advantages of these methods and potentially reveal more comprehensive
structural information.

Toward understanding sequence and environmental determinants of RNA structures

High-throughput mapping of RNA structures has been completed for the HIV-1 RNA
genome [38], bacteria [40] [41], yeast [26], Arabidopsis [31], Drosophila [42],
Caenorhabditis elegans [42], and selected cell types in mouse [30, 33] and human [25, 29,
43]. These high-throughput analyses offered insights to sequence and environmental
determinants of RNA structures.

Sequence determinants of RNA structures have been identified using the above based
methods. In addition to base pairing, a triplet repeat pattern emerged from both /n vitro[41]
and /n vivo [31] experiments. This repeat pattern in chemical/enzyme reactivity is indicative
of existence of combinatorial rules of sequence motif arrangement for determining RNA
structure [26, 31, 33, 41, 43-47]. Furthermore, single-nucleotide polymorphisms (SNP) were
found to correlate with variations in RNA structures [43]. Thousands of riboSNitches (SNP-
mediated RNA structure switch) were discovered in healthy human parent-offspring trios.
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Approximately 200 riboSNitches overlapped with expression quantitative trait loci (eQTL),
and 22 riboSNitches overlapped with disease-associated SNPs. These data suggested that
personal genomic difference could result in variation of personal traits through altering RNA
structure [43]. However, it is likely that only a small portion of sequence determinants of
mMRNA structures have been identified. Taking E. coli for example, “operonic MRNAs are
comprised of ORF-wide units of secondary structure that vary across ORF boundaries such
that adjacent ORFs on the same mRNA molecule are structurally distinct’ [40]. It is difficult
to conceive a model with currently available sequence-to-structure information to
completely explain how sequence could orchestrate such a structural arrangement.

Diverse environmental factors can modulate RNA structures [14-18]. For example, cold
shock induces a global decrease of mMRNA secondary structures in E. coli, which correlates
with increased translation [48]. /n vitro, RNA generally appears more structured than /n vivo
[29-31], which is partially attributable to different Mg2+ concentrations [29] and
accessibility to RNA-binding proteins. Melting and refolding of an mMRNA results in
different structures as revealed by SHAPE-MaP [49]. By quantifying the reactivity
differences between in vivoand in vitro conditions [30] and between /n cellulo and ex vivo
conditions [50], two teams were able to reveal protein-bound RNA regions. By adding cross-
linking and proximity ligation steps, the MARIO team identified a case of protein-assisted
RNA folding [35]. It remains a challenge to integrate RNA sequence and cellular context for
deriving the most compatible structure from diverse types of structure probing assays.

RNA-RNA INTERACTIONS

Sequencing-based methods for mapping RNA-RNA interactions

Methods for analysis of intermolecular RNA-RNA interactions were restricted to targeting a
specific RNA that participates in RNA-RNA interactions, until it was discovered that
chimeric RNAs can be extracted from RNA sequencing data [51]. Although these chimeric
RNAs are present in low frequencies, they could represent pairs of interacting RNAs [52].
Two subsequent methods, Crosslinking, Ligation, And Sequencing of Hybrids (CLASH)
[53] and RNA Hybrid and Individual-Nucleotide Resolution UV Cross-Linking and
Immunoprecipitation (hiCLIP) [54] enriched for the interacting RNAs by purifying a
specific protein that is required for such interactions. The major difference between these
two methods lies in utility of ectopic expression of a tagged protein (CLASH) versus
antibody-based isolation of the protein of interest from unperturbed cells (hiCLIP). CLASH
and hiCLIP broke the barrier of having to target a specific RNA in identifying RNA-RNA
interactions. These technologies enabled identification of RNA interactions mediated by a
specific protein.

High-throughput RNA interactome analysis was enabled by a cohort of four methods,
including Psoralen Analysis Of RNA Interactions And Structures (PARIS) [55], Sequencing
Of Psoralen-Crosslinked, Ligated, And Selected Hybrids (SPLASH) [56], Ligation of
Interacting RNA Followed By High-Throughput Sequencing (LIGR-seq) [57], and Mapping
RNA Interactome and Structure /n7 vivo (MARIO) [35] (Figure 3). The central idea of these
technologies is to leverage proximity ligation to produce chimeric sequences. All methods
used in vivo crosslinking of RNA, either by UV-mediated RNA-protein crosslinking
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(MARIO), or RNA duplex crosslinking enabled by psoralen derivatives (PARIS, SPLASH,
LIGR-seq), followed by RNA fragmentation to produce single-stranded RNA ends, which
were subjected to intramolecular ligation and reverse-crosslinking to convert into a
sequencing library. The different choice of crosslinking reagents led to revelation of several
types of RNA interactions. PARIS, SPLASH and LIGR-Seq used psoralen or its derivatives
including 4’-aminomethyltrioxsalen (AMT) and biotinylated psoralen, which intercalate in
RNA helices and undergo interstranded cross-link upon 365 nm UV irradiation. MARIO
crosslinked RNAs with proteins and ligated the RNAs bound by the same protein molecules.
PARIS, SPLASH, LIGR-seq were designed for identifying hybridized RNA pairs, whereas
MARIO was designed for identifying all RNA pairs brought together by any protein without
requiring RNA-RNA hybridization. A bias of psoralen-based crosslinking methods is
introduced by psoralen’s preferential activities with pyrimidines [58]. Combining MARIO
with one of the psoralen-based methods (PARIS, SPLASH, and LIGR-seq) may lead to a
more comprehensive view of the RNA interactome.

RNA interactome as a scale-free network

Lack of specificity was once considered a theme in miRNA interaction with its target
MRNAs. This phenomenon was also referred to as promiscuity in miRNA targeting. The
promiscuity was supported by many complementary sequences in the transcriptome, as well
as changes in transcript abundances when the endogenous concentration of a miRNA was
perturbed [59-61]. However, when applied to unperturbed cells, none of the four high-
throughput assays (PARIS, SPLASHSs, LIGR-seq, MARIO) reported many targets for most
of the miRNAs. Instead, in embryonic stem cells and in mouse brain, most of the miRNAs
exhibited only 1 to 3 mRNA targets [35]. Only a handful of miRNAs exhibited more than 10
mMRNA targets. In addition, most lincRNAs also appeared to each target only one or a few
MRNAs. More generally, the MARIO authors found that the RNA interactome follows the
power-law and is a scale-free network [35]. Nearly all other molecular networks being
studied were reported to be scale-free [62, 63], whereas the promiscuity of miRNA-involved
interactions would argue against the scale-free property in an RNA interactome. However,
the /in vivo high-throughput data suggested that in endogenous cellular conditions, the RNA
interactome remains scale-free and therefore does not present an exception to the power-law,
a physics rule of biological networks [62].

Sno-miR: A new gene repertoire of regulatory RNAs

Abundant interactions between snoRNAs and mRNAs were reported from all four assays
(PARIS, SPLASH, LIGR-seq, MARIO). The identified snoRNA interaction sites on mRNAs
were enriched with pseudouridylation sites [35], consistent with the contribution of
snoRNAs to the pseudouridylation process. However, many identified interactions involved
truncated forms of snoRNAs rather than the entire sSnoRNAs [35]. These truncation forms
were present in the cells, as revealed by small RNA sequencing, and were bound by AGO2
as revealed by High-Throughput Sequencing of RNA Isolated By Crosslinking
Immunoprecipitation (CLIP-seq) [35]. Knocking down the SNORD83B snoRNA resulted in
increased abundances of three out of four of LIGR-seq identified SNORD83B targeting
MRNAs [57]. Taken together, more than 170 snoRNA genes appeared to produce miRNA-
like RNAs, which interact with mRNAs. The snoRNA-originated miRNA-like RNAs (snho-
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miR) could be a new repertoire of regulatory RNAs. Indeed, one of the human snoRNAs is
processed by DICER and mediate mMRNA silencing through AGO1 and AGO2 [64].

Connections between mRNA-mRNA interaction and coordinated regulation

Many mRNA-mRNA interactions were identified by all four assays (PARIS, SPLASH,
LIGR-seq, and MARIO) [35, 55-57]. In humans and mice, approximately 1,000 mRNA
pairs interact by base pairing [56], and more than 5,000 mRNA pairs were brought together
by the same protein [35]. Base complementation was significant even in MARIO identified
MRNA-mRNA interactions, where the experimental procedure did not select for base paired
RNA pairs [35]. Interactions at sites near start codons negatively correlated with translation
efficiency, whereas intra-molecular interactions of the two ends of mMRNA molecules
positively correlated translation efficiency, suggesting a link between RNA interaction and
translational control [56]. Furthermore, interacting mMRNA pairs tended to encode for
proteins that co-localize to the same subcellular compartments and sometimes exhibited
similar translation efficiencies or RNA decay rates, suggesting mRNA-mRNA interaction as
a means of co-regulation of gene expression [56]. Although the mechanisms underscoring
the similar kinetic rates remain largely unknown, mRNA duplexes with complementary Alu
sequences in their 3" untranslated regions (UTRs) could trigger Staufenl-mediated RNA
decay [65]. In addition, intermolecular hybridization of RNA molecules could promote
phase transition [49], a process underscoring the formation of liquid droplets including stress
granules, P-bodies, and nuclear speckles [66]. The created liquid droplets may provide
physical substrates for segregating mRNAs into different pools for coordinated RNA
metabolism in each pool [67, 68].

Pseudogenes and transposons produce RNAs that interact with mRNAs

Large numbers of transcripts produced from pseudogenes and transposons were reported to
interact with mRNAs [35]. Pseudogene RNAs interacted with both exonic and intronic
regions of mMRNAs. Both pseudogene-exon and pseudogene-intron interactions exhibited
significant base pairing [35]. Significant base pairing was also observed in interacting Long
Interspersed Nuclear Element (LINE) RNA-mRNA pairs and Long Terminal Repeat
(LTR)_RNA-mRNA pairs [35]. The interaction sites on pseudogene RNAs and mRNAs
exhibited increased interspecies conservation levels than other parts of the pseudogenes and
MRNAS, suggesting the pseudogene_ RNA-mRNA interactions were evolutionarily selected
for [35]. These novel interactions indicate a subset of pseudogenes and transposons may
function by providing mRNA-interacting transcripts. In line with this conjecture, Alu-repeat-
containing polyadenylated long noncoding RNA (IncRNA) when duplexed with mRNAS’
3’UTR could trigger Staufen1-mediated RNA decay [69]. However, the /n vivo identified
RNA duplexes contained imperfect base-pairing of many other types of repeat sequences,
which may serve as starting points for searches of Staufen-independent regulatory pathways.

RNA-DNA INTERACTIONS

Sequencing-based methods for mapping RNA-DNA interactions

Earlier technology developments focused on mapping genome-wide locations of a specific
RNA (one RNA versus the genome, Figure 4A), including Chromatin Isolation by RNA
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Purification (ChIRP) [70], Capture Hybridization Analysis of RNA Targets (CHART) [71]
and RNA Antisense Purification (RAP) [72]. These technologies utilize biotinylated
complementary oligonucleotides to pull down a specific target RNA together with its
binding partners. The identities of its DNA- or protein-binding partners are subsequently
revealed by sequencing or mass spectrometry. A more recent cohort of technologies enabled
mapping (possibly) all chromatin-interacting RNAs together with each RNA’s genomic
interacting regions (all RNAs versus the genome, Figure 4A), including Mapping RNA-
Genome Interactions (MARGI) [73], Chromatin-Associated RNA Sequencing (ChAR-seq)
[74] and Mapping Global RNA Interactions With DNA by Deep Sequencing (GRID-seq)
[75]. These methods leverage proximity ligation to convert RNA and its proximal DNA
sequence into a chimeric sequence that can be read out by sequencing. A major advantage of
these ligation-based methods is their capability of discovering de novo chromatin-associated
RNA:s.

In all these techniques, cells are first subjected to cross-linking reagents to preserve protein-
nucleic acid interactions. ChIRP, CHART, and RAP focus on capturing chromatin
interactions of individual RNAs. All use synthetic biotinylated antisense DNA
oligonucleotides designed specifically to capture and purify IncRNA-chromatin complexes
from the cells. Due to the inherent stickiness of RNA and propelled by the need to maximize
both specificity and recovery of the RNA of interest, chemical crosslinking is used to allow
stringent manipulations of pulldown experiments. Crosslinking coupled with sonication as
well as denaturing washing conditions are to ensure that non-physiological bindings formed
in vitro upon cell lysis are removed. ChIRP, CHART, and RAP are very similar in overall
approach with differences in specific crosslinking reagents, strength of chromatin shearing,
strength of washing buffer, density and length of antisense probes. Without much prior
knowledge about the local structures of RNA such as folding, and interacting proteins, it is
difficult to design only a few probes that ensure consistent performance of every pulldown
experiments. Taking this consideration into account, ChIRP and RAP do not rely on any
knowledge of the RNA of target. Instead, tiling probes that are spaced across the entire RNA
are used. This design maximized the chances of capturing the entire length of fragmented
RNAs, which is usually sheared in advance into smaller species. Chromatin shearing by
sonication, however brief, is almost always required to efficiently lyse chemically
crosslinked cells. ChIRP uses substantial sonication to fragment RNA into hundreds of
nucleotides length. On the other hand, RAP only employs brief sonication for solubilizing
the chromatin to minimize the chances of damaging the target RNA. ChIRP uses 20-mer
probes that can be easily synthesized while RAP uses 120-mer probes which would require
in vitrotranscription to prepare [76]. A variation of ChIRP, domain ChIRP (dChIRP) [77]
designs probe sets by iteratively finding the minimal set of probes targeting the chromatin-
interacting region of a RNA, which can result in higher signal-to-noise ratio.

In all-RNA-versus-genome approaches (MARGI [73], ChAR-Seq [74], GRID-seq [75]), a
bivalent, and biotinylated linker comprising both single-stranded RNA at one end and
double-stranded DNA at another end is used to link RNA to DNA by proximity ligation. The
RNA end of the linker is first ligated to RNA molecule. Next, the DNA end of the linker is
proximity-ligated to the DNA molecule. The biotinylated linker enables enrichment of
desirable chimeric RNA-DNA segments. The procedure is followed by amplification and
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deep sequencing to detect the RNA-DNA interactions. In MARGI, the linker ligation and
proximity ligation were performed on RNA-DNA protein complexes that are tethered to the
solid surface of streptavidin beads [73]. In contrast, ChAR-Seq and GRID-seq performed
those steps in intact nuclei [74, 75].

Diverse modes of RNA-chromatin interactions

Several modes of RNA-chromatin interactions have been revealed. Some lincRNAs bind to
chromatin in a localized fashion reminiscent of transcription factor binding while others
spread wider in binding locations [70-72, 78]. lincRNAs can interact in cis near their sites of
transcription or in trans to regions on different chromosomes [11, 70, 79]. Some IncRNAs
only interact with a few genomic loci while others interact promiscuously with multiple
genomic regions. Some IncRNAs or 5’UTRs [79] act as repressors, whereas others function
as activators [11] of gene expression. Some IncRNAs, Xist for example, spread their binding
regions by using the three-dimensional organization of the chromatin to spread to spatially
proximal genomic loci [72]. It remains an open question whether there are principles that
can explain the diverse types and functions of observed RNA-chromatin interactions.

RNA-DNA interaction on transcription start sites: a genome-wide phenomenon

An overriding theme emerged from the genome perspective. That is nearly all promoters
[75] or more specifically nearly all transcription start sites (TSS) [73] are associated with
trans-interacting RNAs. Even the TSSs of silent genes are associated with RNAs. However,
the amount of TSS-associated RNAs exhibited weak correlation with the expression level of
TSS-specified genes [73], suggesting RNA attachment on TSS may promote transcription.
Consistent with this idea, a case study of TSS-associated antisense RNA suggested such an
interaction promotes the transcription of the TSS-specified gene [80].

Enhancer-promoter interaction offers a possible explanation for the large amounts of TSS-
RNA interactions. In this model, transcripts produced from enhancers can associate with
promoters either as a result of or as a contributing cause to enhancer-promoter interactions.
Conversely, many enhancers were found associated with the transcripts of their supposedly
regulating genes [75]. However, enhancer-promoter interactions cannot completely explain
the symmetric pattern of RNA attachment, centering at each TSS [73]. It remains to be
tested if RNA attachment on TSSs is a molecular mechanism for specifying the start sites of
transcription. After all, unlike yeasts that have characteristic binding sites including TATA
and CAAT boxes located at defined distances which could help the transcription machinery
to pinpoint the locations to initiate transcription [81], the vertebrate promoters do not
necessarily contain a predefined set of transcription factor binding sites at fixed distances to
TSS [82].

RNA decoration on chromatin as a new layer of epigenome

RNA attachment was found to positively correlate with histone modifications H3K27ac and
H3K4me3, both of which are associated with more open chromatin regions and active
transcription [73]. The genomic regions enriched with trans- interacting RNAs (RNA
attachment hotspots) were clearly correlated with H3K9me3 depleted regions [73]. These
general observations, however, do not seem to apply to every type of RNAs. An exception
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lies in snoRNAs, of which both MARGI [73] and CHAR-seq [74] reported extensive
interactions with chromatin, but primarily with heterochromatin [74]. More intriguingly,
ChAR-Seq analysis revealed that TSS-associated RNAs are enriched at topologically
associated domain (TAD) boundaries, corroborating with the potential role of active
transcription in shaping the topological organization of the genome [74]. Although the
above-mentioned associations await further validations, these RNA attachments may act
inter-dependently or coordinately to the hitherto better characterized DNA-and histone-
modifications, thus constitute a novel layer of chromatin modifications that contribute to
gene regulation.

Concluding remarks

The recent eruption of technologies propelled RNA biology to new frontiers. High-
throughput methods derived rich information on RNA-participating interactions. These
interactions are indicative of a wide range of new functions. Coupling the identified
interactions with genome editing or RNA perturbation experiments may lead to new insights
on the functions of the RNA-producing genomic sequences (See Outstanding Questions).

RNA could exhibit surprising functions in different subcellular compartments, as
exemplified by the miR-1 miRNA in enhancing translation in mitochondria [83] and the
LINK-A IncRNA in binding with inner membrane lipids and transducing PI3K-Akt
signaling [84, 85]. It would be exciting to reveal all RNA-participating interactions in each
type of membrane- and membraneless- organelles including mitochondria, exosomes, stress
granules, and P-bodies. A potential approach is to combine the recently developed P-body
purification method [67] or its variation with a high-throughput RNA-interaction detection
method. The resulting organelle-level RNA interactomes could illuminate intricate
organelle-specific molecular machinery, thus revealing the context-specificity of the multiple
functions of each (class of) RNA. Organelle-specific RNA interactomes would facilitate
studies on liquid-liquid phase separations in nucleus and cytoplasm [86], thus contributing to
addressing fundamental questions including how the 3 dimensional (3D) organization of the
nucleus is coordinated [87].

Revealing the principles underlying 3D organization of nuclear components has become a
focal international endeavor [87]. A bottleneck is the shortage of high-throughput methods
capable of identifying spatially proximal molecular units that do not physically interact [88]
[89]. Most methods require introduction of some forms of engineered Ascorbate Peroxidase
(APEX) as proximity labeling reagents [88, 89]. It turns out that endogenous RNAs could
serve as proximity labeling media for identifying proximal regions of different
membraneless organelles, due to the nature of /7 vivo proximity ligation in MARGI [90].
Combining /n vivo proximity-ligation methods with innovative use of endogenous RNA
distribution could transform the means of studying spatial organization of membraneless
organelles, both in nucleus and in cytoplasm. Future work on between- and within- organelle
RNA interactions may connect the dots from “structure” to function, where the structure is
the 3D organization of subcellular organelles.
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Outstanding questions

What are the sequence motifs and grammar that determine RNA structures?
How do the structures change in response to defined changes of
environmental factors?

What are the functions of pseudogene_ RNA-mRNA, transposon_RNA-
MRNA, lincRNA-MRNA, and mMRNA-mRNA interactions?

SnoRNA genes produce miRNA-like small RNAs (sno-miR). What are the
regulatory functions of these sno-miRs?

Do RNA-RNA interactions promote protein-protein interactions or facilitate
signal transduction?

Why are most transcription start sites attached with RNAs that are transcribed
from other genomic regions?

How does personal genomic difference affect personal variations in RNA-
RNA interactions and RNA-DNA interactions?

RNA attachment to chromatin could be regarded as a type of epigenomic
modifications. Could RNA-DNA interaction be passed on across generations?
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Highlights

New technologies have enabled systematic mapping of RNA-RNA
interactions, revealing tens of thousands of such interactions.

In endogenous cellular conditions, miRNAs and lincRNAs tend to specifically
target one or a few mRNAs, indicating that the entire RNA interactome is a
scale-free network.

Hundreds of snoRNA genes produce miRNA-like short RNAs which interact
with mRNAs, thus providing a gene repertoire of new regulatory RNAs.

Pseudogenes and transposons produce RNAs that interact with mRNAS,
through base pairing. The interaction regions exhibit increased inter-species
conservation levels.

New technologies enabled systematic mapping of RNA-DNA interactions,
revealing hundreds of chromatin-interacting RNAs.
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Overview of sequencing-based technologies for mapping RNA structures, RNA-RNA
interactions, and RNA-DNA interactions.
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Figure 2. Sequencing-based technologies for mapping RNA structures.
(A) Summary of enzyme-based and chemical-based RNA structure technologies (columns)

and their application domains (rows). Selected technologies (underscored) are expanded in
detail in panels B. (B) Major steps of selected technologies. In PARS, polyA-tailed RNA is
selected and divided into two pools. One pool is treated with RNase S1 that cleaves single-
stranded sequence, and the other pool is treated with RNase V1 that cuts at double-stranded
regions. The produced RNA segments are subjected to random fragmentation and converted
into a sequencing library. In icSHAPE, cells are treated with NAI-azide, allowing for
attaching a biotin moiety through copper-free CLICK reactions. SHAPE-reacted RNA
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segments are enriched by streptavidin-biotin interaction, and are subsequently converted into
a sequencing library. In SHAPE-MaP, RNA is treated with 1M7 and is reverse transcribed in
a reaction mixture that induces mutation at SHAPE-reacted sites.
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Figure 3. Sequencing-based technologies for mapping RNA-RNA interactions.
(A) Summary of antibody-based methods that analyze interactions mediated by a specific

protein (left column) and genome-wide methods without targeting any specific proteins
(right column). Selected technologies (underscored) are expanded in panels B. (B) Major
steps of selected technologies. In PARIS, double-stranded RNA regions are crosslinked by
AMT and UV. RNA is purified and subjected to proximity ligation. The resulting RNA is
ligated with a 3’ adaptor and converted into a sequencing library. SPLASH procedure is
similar to PARIS, except that instead of AMT, biotinylated psoralen is used as the
crosslinking reagent, which allows for enrichment of double-stranded regions. LIGR-Seq
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used a similar experimental strategy, with different choices of RNA purification, treatment
and ligation steps. In MARIO, RNA-protein complexes are crosslinked by UV. RNA is
randomly fragmented and ligated with a biotinylated linker sequence and then subjected to
proximity ligation. The resulting RNA-linker-RNA chimeric sequences are purified by
streptavidin-biotin interaction and converted into a sequencing library.
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Figure 4. Sequencing-based technologies for mapping RNA-DNA interactions.
(A) Summary of technologies for RNA-DNA interactions based on a specific RNA (left

column) or any RNA (right column). Selected technologies (underscored) are expanded in
detail in panels B-D. (B-D) Major steps of selected technologies. (B) In MARGI, protein-
RNA-DNA complexes are crosslinked by formaldehyde. DNA is fragmented. RNA is ligated
with the RNA-end of a biotinylated half-RNA-half-DNA linker, and the DNA-end of this
linker is subsequently ligated to DNA through proximity ligation. The resulting chimeric
RNA-DNA sequences are selected by streptavidin-biotin interactions and converted into a
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sequencing library. (C-D) The ChAR-Seq and GRID-seq procedures are similar to MARGI.
The major difference is that many steps are conducted in intact nuclei, including restriction
enzyme digestion, RNA-linker ligation, and proximity ligation.
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